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Y.-Y. Zhang a, H. Böhringer a, A. Finoguenov a, Y. Ikebe a,b,
K. Matsushita a,c, P. Schuecker a, L. Guzzo d, C. A. Collins e

aMax-Planck-Institut für extraterrestrische Physik, Garching, Germany
bJoint Center for Astrophysics, University of Maryland, Baltimore, USA

cTokyo University of Science, Tokyo, Japan

dINAF-Osservatorio Astronomico di Brera, Merate/Milano, Italy
eLiverpool John Moores University, Liverpool, U.K.

Abstract

The precise determination of global properties of galaxy clusters, and their scaling
relations, is a task of prime importance for the use of clusters as cosmological probes.
We performed a detailed XMM-Newton study of 14 X-ray luminous REFLEX Sur-
vey clusters at z ∼ 0.3. We found that the properties of the galaxy clusters show a
self-similar behavior at r > 0.1rvir. This helps to establish tighter scaling relations.
Peculiarities in the individual clusters are important to understand the scatter from
the self-similar frame in the cluster central parts.

Key words: Large scale structure of the Universe, Galaxy clusters, Observational
cosmology

1 Introduction

ROSAT and ASCA observations (e.g. Markevitch et al. 1998; Vikhlinin et
al. 1999; Arnaud et al. 2002; Reiprich and Böhringer 2002) and simulations

⋆ This work is based on observations made with the XMM-Newton, an ESA science
mission with instruments and contributions directly funded by ESA member states
and the USA (NASA).

Preprint submitted to Elsevier Science 1 December 2018

http://arxiv.org/abs/astro-ph/0502197v1


Fig. 1. Scaled temperature profiles. The shadow shows a weighted temperature
profile of the REFLEX-DXL clusters (hatched) and the temperature profile range
in Markevitch et al. (1998; filled).

(e.g. Kay 2004; Borgani 2004) indicate a self-similar form of the intraclus-
ter medium (ICM) properties such as temperature, density, and entropy for
massive clusters (kBT > 4 keV) excluding cooling cores (Fabian and Nulsen
1977). XMM-Newton has the advantage of high spectral resolution and large
field of view (FOV) for detailed studies. This helps us to compose an almost
volume complete sample of 13 distant, X-ray luminous (DXL; z = 0.27 to
0.31; LX ≥ 1045 erg s−1 for 0.1 − 2.4 keV) galaxy clusters and one sup-
plementary cluster at z = 0.2578 from the ROSAT-ESO Flux-Limited X-ray
(REFLEX; Böhringer et al. 2004) galaxy cluster survey. We correct the vol-
ume completeness with a known selection function for distant, X-ray luminous
clusters (LX ≥ 1045 erg s−1) as described in Böhringer et al. (2005; Paper I).
A prime goal for the study of the REFLEX-DXL sample is to obtain spa-
tially resolved ICM properties such as the temperature (Zhang et al. 2004a;
Paper II), to derive accurate measurements of the cluster mass and gas mass
fraction, and to study the peculiarities in the cluster structure which intro-
duce a scatter in the scaling relations. We adopt a flat ΛCDM cosmology with
Ωm = 0.3 and H0 = 70 km s−1 Mpc−1. Confidence intervals correspond to the
68% confidence level.
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Fig. 2. The best surface brightness model fits (PSF deconvolved) scaled to the
self-similar frame for pn. The color coding is the same as used for Fig. 1. The
typical uncertainty of the surface brightness increases from 10% to 20% from the
inner parts to the outer parts.

2 Data reduction

We use the XMMSAS v6.0 software for data reduction. For pn data, the
fractions of the out-of-time (OOT) effect are 2.32% and 6.30% for Extend Full
Frame (EFF) and Full Frame (FF) mode, respectively. We create an OOT
event list file and statistically remove the OOT effect. To avoid the episodes
of “soft proton flares” (De Luca & Molendi 2004), we use a threshold of 3σ
clipping to clean the data in both the hard band (10–12 keV band and 12–
14 keV band for MOS and pn, respectively) and the soft band (0.3–10 keV
band).

Over half of the clusters clearly show substructures or/and elongation. We use
“edetect chain” to detect point-like sources. We subtract the substructures and
point-like sources leaving only the main component.

The observations of RXCJ2011.3−5725 are contaminated by flares. Thus we
only obtain a global temperature (∼ 3.77 keV). Some properties of these ob-
servations and an overview of the sample are described in Paper I. We obtained
the temperature profiles of 9 REFLEX-DXL clusters in Paper II. Also included
in this paper are the observational parameters, alternative names, data prepa-
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Fig. 3. Scaled X-ray mass profiles of the REFLEX-DXL clusters. The color coding
is the same as used for Fig. 1. The typical uncertainty of the mass increases from
10–40% to 25–80% from the inner parts to the outer parts.

ration and double background subtraction method which is developed to pro-
vide a precise spectral background removal. We apply the XMM-Newton blank
sky pointings in the Chandra Deep Field South (CDFS) as background.

3 ICM properties

We have considered the projection effects over the line of sight in the tem-
perature and surface brightness measurements. We have accounted for the
PSF effect for surface brightness. In the spectral analysis, we have applied
a large radial binning, greater than 0.5′, to reduce the PSF effect instead of
accounted for the PSF blurring completely because of limited photon statis-
tics. This should be considered for the reliability of the temperature profiles in
the central part. For such distant clusters, the PSF effect is important within
0.3rvir which introduces an added uncertainty to the final results. This can
only be investigated using deep exposures with better photon statistics.
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3.1 Temperature distribution

We perform the spectral analysis in five annuli: 0–0.5′, 0.5–1′, 1–2′, 2–4′, and 4–
8′, to measure the temperature profiles. We applied both the residual spectrum
(e.g. Arnaud et al. 2002; Zhang et al. 2005) and a “powerlaw” model (Zhang
et al. 2004a) to account for the residual background in the double background
subtraction method (Zhang et al. 2004a) for spectral background removal.
We found that the two methods provide consistent results within 1 σ error
except for the last annulus for RXCJ0232.2−4420 and RXCJ1131.9−1955.
The disagreement is caused by the underestimate/overestimate of the formal
errors in the measurements using a residual model/spectrum. We deprojected
the temperature profiles and found consistent results within 1 σ error bars.

We apply the global spectral temperatures and rvir to scale the temperature
profiles (see Fig. 1). Excluding the individual data points with error bars
over 150% of the mean value, we derived a weighted temperature profile of
the REFLEX-DXL clusters. We found a closely self-similar behavior with a
constant distribution at r < 0.3rvir and a decrease at r > 0.3rvir. This averaged
temperature profile keeps an overall agreement with the one in Markevitch et
al. (1998). A similar universal temperature profile is indicated in simulations
(Borgani et al. 2004; Borgani 2004).

3.2 Surface brightness

We choose the 0.5–2 keV band to derive surface brightness profiles (also see
Zhang et al. 2005). This provides an almost temperature-independent X-ray
emission coefficient over the expected temperature range. We derive the az-
imuthally averaged surface brightness of the XMM-Newton blank sky point-
ings in the same detector coordinates as for the targets. The count rate ratio
of the targets and CDFS in the 10–12 keV band and 12–14 keV band for
MOS and pn, respectively is used to scale the CDFS surface brightness. The
data are rebinned to ensure (1) at leat 100 counts (30 counts for a limited
photon statistics case) per bin, and (2) 3-σ source count rate. We subtract
the scaled CDFS surface brightness and obtain the surface brightness includ-
ing the cluster surface brightness and a residual soft X-ray background. This
residual background is flat over the FOV. It is estimated in the outer region
(11′ < r < 15′). We fit the cluster surface brightness profile by a surface
brightness prediction convolved with the XMM-Newton Point Spread Func-
tion (PSF; Ghizzardi 2001).

Four (RXCJ0232.2−4420, RXCJ0307.0−2840, RXCJ0437.1+0043 and RXCJ0528.9−3927)
of 13 clusters show pronounced or moderate cooling flows. For the remaining 9
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clusters, a β-model provides a satisfying χ2 fit of the surface brightness profiles
in the observed radial range. The surface brightness profiles (see Fig. 2) are
scaled according to the standard self-similar model (e.g. Arnaud et al. 2002)
and show a good self-similarity in the r > 0.1rvir region.

3.3 Mass distribution

Surface brightness profiles can be deprojected to yield the emission per volume
element, ξ(r) = ˜Λ(r)n2

e(r). This is used to derive ICM density distributions.

For Non-Cooling flow Clusters (NCCs), we make use of the temperature pro-
file and density profile to derive the mass, assuming spherical symmetry and
hydrostatic equilibrium. The XMM-Newton mass measurements of the NCCs
are consistent with the masses derived from the global temperatures using the
observationalM200–T relation based on the conventional β model for the X-ray
surface brightness profile and hydrostatic equilibrium for 22 nearby clusters
from Xu et al. (2001).

Cooling flow Clusters (CCs) show a surface brightness excess in the center.
Navarro et al. (1997; α = 1; NFW) describe a universal density profile for dark
halos from numerical simulations in hierarchical clustering scenarios. This fits
the steep X-ray mass profile of CCs in the central region to some degree.
An extended-NFW model from recent simulations (e.g. Diemand et al. 2004;
Navarro et al. 2004; α > 1; ext-NFW) provides an improved fit for such a
cuspy profile in the cluster center. For CCs, we make use of the deprojected
temperature profile and density profile to parameterize the ext-NFW model
under the assumptions of hydrostatic equilibrium, polytropic gas and spherical
symmetry. Then the mass is derived from the ext-NFW model.

The typical uncertainty of the mass increases from 10–40% to 25–80% from
the inner parts to the outer parts. The NCCs/CCs show shallow/steep mass
profiles at the inner parts (Fig. 3). We extrapolate the mass distributions
beyond the observed radial range up to the virial radii and scale the mass
profiles using the virial mass. The scaled mass profiles (Fig. 3) show a self-
similar behavior in the r > 0.1rvir region. The mass concentrations are different
for NCCs and CCs in the center.

3.4 Gas mass fraction distribution

The gas mass fraction (see Fig. 4) as a function of radius is derived by
fgas(r) = Mgas(r)/M(r). At r2500, the gas mass fractions derived from the
XMM-Newton exposure of around 10 ks agree with the measurements of
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Fig. 4. Gas mass fraction profiles for four typical examples. The WMAP mea-
sured baryon fraction of the Universe is fb = 0.166, where Ωb h2 = 0.0224 and
Ωm h2 = 0.135 (Spergel et al. 2003, horizontal line). The color coding is the same
as used for Fig. 1. The typical uncertainty is in the range of 20–70% at rvir.

Allen et al. (2004) based on the Chandra observations of 7 clusters yield-

ing fgas ∼ 0.105–0.138h
−3/2
70 with similar confidence intervals (∼ 0.02h

−3/2
70 ).

The gas mass fraction distributions between r500 and r200 are in the range
of 0.12 ∼ 0.24. This is in good agreement with the WMAP measurement of
0.166 (Spergel et al. 2003), the measurements of Ettori et al. (2002) which
are based on BeppoSAX observations of 22 nearby clusters, and the measure-
ments of Sanderson et al. (2003) which are based on ASCA/GIS, ASCA/SIS

and ROSAT/PSPC observations of 66 clusters yielding fgas = 0.13±0.01 h
−3/2
70

at r200. RXCJ0014.3−3022, RXCJ0516.7−5430 and RXCJ1131.9−1955 are in
the stage of merger. We obtain slightly higher gas mass fractions in the out-
skirts artificially caused by the assumption of spherical symmetry.

4 Summary and Discussion

We derive the spatially resolved temperature profiles. We combine the tem-
perature profile with the gas density profile observed up to almost r500 to
compute accurately the mass and gas mass fraction. An ext-NFW model (β-
model) provides a good fit for the CCs (NCCs). X-ray luminous (massive)
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galaxy clusters such as the clusters in this paper show a self-similar behavior
of their properties, e.g. temperature, density and mass in the r > 0.1rvir region
in which we have a good understanding of dark matter.

Peculiarities in the cluster structure introduce a scatter from the self-similar
frame in the cluster cores which is due to physical processes rather than sim-
ply being statistical fluctuations in the measurement (Zhang et al. 2004b).
For example, mergers can not only lead to a temporary increase in the clus-
ter temperature and X-ray luminosity (Randall et al. 2002), but also reduce
the surface brightness slope and increase the core radius particular in on-
going cluster mergers (Markevitch et al. 2002), e.g. RXCJ0658.5−5556 and
RXCJ0516.7−5430 in our sample. Many studies (e.g. Markevitch et al. 2002;
Randall et al. 2002) indicate that the X-ray mass estimate in the center could
be biased by the phenomena such as ghost cavities and bubbles that may
somehow invalidate the hydrostatic equilibrium hypothesis. More details of
the REFLEX-DXL cluster properties, scaling relations, correlations and their
scatters will be described in forthcoming papers.
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