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ON CERTAIN ISOGENIES BETWEEN K3 SURFACES

CHIARA CAMERE AND ALICE GARBAGNATI

Abstract. The aim of this paper is to construct “special” isogenies between
K3 surfaces, which are not Galois covers between K3 surfaces, but are ob-
tained by composing cyclic Galois covers, induced by quotients by symplectic
automorphisms. We determine the families of K3 surfaces for which this con-
struction is possible. To this purpose we will prove that there are infinitely
many big families of K3 surfaces which both admit a finite symplectic auto-
morphism and are (desingularizations of) quotients of other K3 surfaces by a
symplectic automorphism.

In the case of involutions, for any n ∈ N>0 we determine the transcendental
lattices of the K3 surfaces which are 2n : 1 isogenous (by a non Galois cover)
to other K3 surfaces. We also study the Galois closure of the 22 : 1 isogenies
and we describe the explicit geometry on an example.

1. Introduction

K3 surfaces are symplectic regular surfaces and among their finite order auto-
morphisms the ones which preserve the symplectic structure (the symplectic auto-
morphisms) play a special role. Indeed, the quotient of a K3 surface by a finite
symplectic automorphism produces a singular surface whose desingularization is
again a K3 surface. This construction establishes a particular relation between dif-
ferent sets of K3 surfaces: the ones which admit a finite symplectic automorphism
and the ones obtained as desingularization of the quotient of a K3 surfaces by a
symplectic automorphism. In the following the latter K3 surfaces are said to be
(cyclically) covered by a K3 surface and the former are said to be the cover of a
K3 surface. We denote by Ln the set of the K3 surfaces which admit an order n
symplectic automorphism and by Mn the set of the K3 surfaces which are n : 1
cyclically covered by a K3 surface. From now on we assume the surfaces to be
projective.

Thanks to several works, starting from the end of the 70’s until now (see, e.g.
[N2], [Mo], [vGS], [GSar1], [GSar2] [GSar3], [G2]), the sets Ln and Mn are de-
scribed as the union of countably many families of R polarized K3 surfaces, for
certain known lattices R. The dimension of these families is at most 11, and, re-
calling that the families of generic projective K3 surfaces have dimension 19, one
immediately observes that the K3 surfaces which either admit a finite symplectic
automorphism or which are cyclically covered by a K3 surface are quite special. So,
it is natural to expect that the intersection Ln ∩Mn is extremely small, i.e. that
a K3 surface which is both covered and cover of another K3 surface is really rare.
On the other hand, there is at least one known example of a family of K3 surfaces
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contained in Ln∩Mn, given by the family of the K3 surfaces which admit an ellip-
tic fibration with an n-torsion section (see Section 3). This family has codimension
one in the families which are components of Ln and of Mn. Hence, surprisingly,
the intersection Ln ∩Mn is not so small.

The aim of this paper is to investigate more precisely the intersection between
the two sets Ln and Mn and to relate it with the study of isogenies between K3
surfaces. In this paper, the term “isogeny between K3 surface” means a generically
finite rational map between K3 surfaces, as in [I] and [BSV].

The quotient by a finite symplectic automorphism on a K3 surface X induces
an isogeny between X , which admits the symplectic automorphism, and the K3
surface Y cyclically covered by X . The isogeny is birationally the quotient map
and has of course the same order as the automorphism. There are other isogenies
between K3 surfaces, which are not quotient maps, see e.g. [I] and [BSV]. Here we
discuss one of these other isogenies: given a K3 surface Z ∈ Ln ∩Mn, it induces
an n2 : 1 isogeny between other two K3 surfaces. Indeed, since Z ∈ Mn, it is n : 1
covered by a K3 surface X ; since Z ∈ Ln, it is an n : 1 cover of a K3 surface Y .
By composing these two n : 1 maps one obtains an n2 : 1 isogeny between X and
Y . We will prove that generically this isogeny is not induced by a quotient map.

In Section 2 we recall some preliminary results on the set Ln of K3 surfaces
admitting a symplectic automorphism of order n and on the set Mn of the K3
surfaces n : 1 cyclically covered by a K3 surface. In Section 3 we obtain our main
results on the intersection Ln ∩Mn. In particular in Theorem 3.9 we prove:

Theorem There are components Z of Ln∩Mn such that dim (Ln) = dim (Mn) =
dimZ, i.e. the dimension of Z is the maximal possible and thus Z is an irreducible
component of both of Ln and Mn.

As a consequence we construct n2 : 1 isogenies and we prove that generically
they are not quotient maps. The Section 4 contains the main results for the case
n = 2. In addition to the results which hold for every admissible n, we also obtain
the following theorem (see Theorem 4.6 and Corollary 4.8)

Theorem For any d, n ∈ N > 0, there exists a lattice Rd,n (with Rd,n ≃ Rd′,n′ if
and only if (d, n) = (d′, n′)) and there exists a family of Rd,n-polarized K3 surfaces
such that, for any m ∈ N>0 and any Rd,n-polarized K3 surface X there exists an

Rd,m-polarized K3 surface Y isogenous to X with an isogeny of degree 2|n−m|.
So for each d ∈ N>0 there are countably many families of polarized K3 surfaces,

such that there exists an isogeny between members of each family.
The Néron–Severi group and the transcendental lattice of all the surfaces involved

in these isogenies are explicitly given. In Section 4.3 we describe the Galois closure
of the 22 : 1 (non Galois) covers constructed. Moreover, in Section 4.4 we describe
the geometry of a generic member X2 of a certain maximal dimensional family
of K3 surfaces which is contained in L2 ∩ M2. The K3 surface X2 admits two
different polarizations of degree 4: one exhibits the surface X2 as a special singular
quartic in P3 with eight nodes, the other as smooth double cover of a quadric in P3.
The former model is the singular quotient of another K3 surface by a symplectic
involution (thus it implies that X2 ∈ M2), the latter implies that X2 admits a
symplectic involution induced by the switching of the rulings on the quadric (thus
it implies that X2 ∈ L2). We describe both projective models of X2 and give the
explicit relation between them, providing a geometric realization of the previous
lattice theoretic result which guarantees that X2 is both covered by a K3 surface
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and is a cover of a K3 surface. In particular this allows us to describe a symplectic
involution on the model of X2 as singular quotient. In Section 4.5 we analyse the
similar problem for two specific families of codimension 1 in L2 ∩M2; one of these
families is totally contained in all the components of L2 and the other in all the
components of M2.

Acknowledgements. Part of this project was realized while the first-named au-
thor was visiting the Max Planck Institute of Mathematics in Bonn: the first-named
author is grateful to Max Planck Institute for Mathematics in Bonn for its hospital-
ity and financial support. We are grateful to Bert van Geemen for his enlightening
suggestions and to Simon Brandhorst for his precious remarks.

2. Preliminary results

We recall in this section some of the definitions and results on K3 surfaces,
symplectic automorphisms on K3 surfaces and quotients of K3 surfaces by their
automorphisms. In the following we work with projective surfaces.

2.1. Symplectic automorphisms and cyclic covers of K3 surfaces.

Definition 2.1. A (projective) K3 surface is a regular projective surface with trivial
canonical bundle. If X is a K3 surface, we choose a generator of H2,0(X), (i.e. a
symplectic form), we denote it by ωX and we call it the period of the K3 surface.
The second cohomology group H2(X,Z) of a K3 surface X equipped with the cup
product is a lattice, isometric to a standard lattice which does not depend on X and
is denoted by ΛK3 := U⊕3 ⊕ E8(−1)⊕2.

Definition 2.2. Let X be a K3 surface, and ωX its period. An automorphism σ
of X is said to be symplectic if σ∗(ωX) = ωX .

One of the main results on symplectic automorphisms on K3 surfaces is that the
quotient of a K3 surface by a symplectic automorphism is still a K3 surface, after
a birational transformation which resolves the singularities of the surface.

Proposition 2.3. ([N2]) Let X be a K3 surface and σ ∈ Aut(X) a finite automor-
phism of X. Then the minimal smooth surface Y birational to X/σ is a K3 surface
if and only if σ is symplectic.

Definition 2.4. We will say that a K3 surface Y is n : 1 cyclically covered by
a K3 surface, if there exists a pair (X, σ) such that X is a K3 surface, σ is an
automorphism of order n of X and Y is birational to X/σ.

The first mathematician who worked on symplectic automorphisms of finite or-
der on K3 surfaces and who established the fundamental results on these automor-
phisms was Nikulin, in [N2]. We summarize in Theorem 2.7 and Theorem 2.9 the
main results obtained in his paper, but first we recall some useful information and
definitions.

If σ is a symplectic automorphism on X of order n, its linearization near the
points with non trivial stabilizer is given by a 2×2 diagonal matrix with determinant
1 and thus it is of the form diag(ζan, ζ

n−a
n ) for 1 ≤ a ≤ n−1 and ζn an n-th primitive

root of unity. So, the points with non trivial stabilizer are isolated fixed points and
the quotient X/σ has isolated singularities, all of type Amj

where mj +1 divides n.
In particular the surface Y , which is the minimal surface resolving the singularities
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of X/σ, contains smooth rational curves Mi arising from the desingularization of
X/σ. The classes of these curves span a lattice isometric to ⊕jAmj

.

Definition 2.5. Let Y be a K3 surface, n : 1 cyclically covered by a K3 surface.
The minimal primitive sublattice of NS(Y ) containing the classes of the curves Mi,
arising from the desingularization of X/σ, is denoted by Mn.

We observe that Mn is necessarily an overlattice of finite index (a priori possibly
1) of the lattice ⊕jAmj

spanned by the curves Mi. The presence of a smooth
cyclic cover of X/σ branched over the singular points obtained as contraction of
the curves Mi suggests that there are some divisibility relations among the Mi’s
and thus that the index of the inclusion 〈(Mi)i〉 →֒ Mn would not be 1 (as indeed
stated in Theorem 2.7).

Definition 2.6. (See [N2, Definition 4.6]) Let σ be an order n automorphism of
a K3 surface X. We will say that its action on the second cohomology group is
essentially unique if there exists an isometry gn : ΛK3

∼
−→ ΛK3 of order n of ΛK3

such that for every pair (X, σ), there exists an isometry ϕ : H2(X,Z) → ΛK3 such
that σ∗ = ϕ−1 ◦ gn ◦ ϕ.

Theorem 2.7. Let X be a K3 surface and σ a finite symplectic automorphism of
X of order |σ| = n. Then

• 2 ≤ n ≤ 8 (see [N2, Theorem 6.3]);
• the singularities of X/σ depend only on n (see [N2, Section 5]);
• the class of isometry of the lattice Mn depends only on n and Mn is an
overlattice of index n of the lattice 〈(Mi)i〉 spanned by the curves arising
from the desingularization of the quotient X/σ (see [N2, Theorem 6.3]);

• the action of σ∗ on H2(X,Z) is essentially unique (see [N2, Theorem 4.7])

and thus the classes of isometry of the lattices H2(X,Z)σ
∗

and
(
H2(X,Z)σ

∗)⊥
depend only on n.

• The lattice
(
H2(X,Z)σ

)⊥
is primitively embedded in NS(X) (see [N2, Lemma

4.2]) and rank((Λgn
K3)

⊥
) = rank(Mn) (see [N2, Formula (8.12)]).

Definition 2.8. Let X be a K3 surface with a symplectic automorphism σ of
order n. Since the action of σ∗ on H2(X,Z) is essentially unique, the lattice(
H2(X,Z)σ

∗)⊥
is isometric to (Λgn

K3)
⊥

(with the notation of Definition 2.6) and
we denote it by Ωn.

For every admissible n the lattices Ωn were computed: in [vGS] and [Mo] if
n = 2; in [GSar2] if n is an odd prime; in [GSar3] if n is not a prime.

The lattices Mn were computed for every admissible n in [N2, Theorems 6.3 and
7.1].

The lattices Ωn and Mn characterize the K3 surfaces admitting a symplectic
automorphism of order n or a n : 1 cyclic cover by a K3 surface respectively;
indeed, the following two results hold

Theorem 2.9. (See [N2, Theorem 4.15]) A K3 surface X admits a symplectic
automorphism of order n if and only if Ωn is primitively embedded in NS(X).

Theorem 2.10. (See [GSar1, Proposition 2.3] for the case n = 2 and [G2, Theorem
5.2] for other n) A K3 surface Y is n : 1 cyclically covered by a K3 surface if and
only if Mn is primitively embedded in NS(Y ).
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Corollary 2.11. Let X be a projective K3 surface admitting a symplectic auto-
morphism of order n. Then ρ(X) ≥ 1 + rank(Ωn) and if ρ(X) = 1 + rank(Ωn),
then NS(X) is an overlattice of finite index (possibly 1) of 〈2d〉 ⊕Ωn, for a certain
d ∈ N>0, such that Ωn is primitively embedded in this overlattice.

Let Y be a projective K3 surface n : 1 cyclically cover by a K3 surface. Then
ρ(Y ) ≥ 1 + rank(Mn) and if ρ(Y ) = 1 + rank(Mn), then NS(Y ) is an overlattice
of finite index (possibly 1) of 〈2e〉 ⊕ Mn, for a certain e ∈ N>0, such that Mn is
primitively embedded in this overlattice.

Proof. Since X admits a symplectic automorphism of order n, Ωn is primitively
embedded in NS(X). Since Ωn is negative definite and X is projective, the orthog-
onal to Ωn in NS(X) contains a class with a positive self intersection, in particular
it is non empty. So ρ(X) ≥ 1 + rank(Ωn) and 〈2d〉 ⊕ Ωn is embedded in NS(X).
Similarly one obtains the result for ρ(Y ) and NS(Y ). �

Definition 2.12. We define the following sets of K3 surfaces (which are subsets
of the moduli space of the K3 surfaces):

Ln := {K3 surfaces which admit a symplectic automorphims σ of order n}/ ∼=,

Mn := {K3 surfaces which admit an n : 1 cyclic cover by a K3 surface}/ ∼=,

where ∼= denotes the equivalence relation given by isomorphism between two K3
surfaces.

Given an even hyperbolic lattice R which admits a primitive embedding in ΛK3,
we denote by P(R) the moduli space of isomorphism classes of R-polarized K3
surfaces, i.e. of those K3 surfaces X for which there exists a primitive embedding
R ⊂ NS(X). Moreover, we will write A < B in order to say that B is an overlattice
of finite index of A.

Corollary 2.13. The set Ln is a union of countably many components and each of
them is a family of R-polarized K3 surfaces, for an appropriate choice of the lattice
R:

Ln =
⋃

d∈N




⋃

(〈2d〉⊕Ωn)<R
Ωn⊂R prim.

P(R)


 .

All the components P(R) are equidimensional and have dimension 19− rank(Ωn).
The set Mn is a union of countably many components and each of them is a

family of R-polarized K3 surfaces, for an appropriate choice of the lattice R:

Mn =
⋃

d∈N




⋃

(〈2d〉⊕Mn)<R
Mn⊂R prim.

P(R)


 .

All the components are equidimensional and have dimension 19 − rank(Mn) =
19− rank(Ωn).

Proof. Let R be an overlattice of finite index of 〈2d〉⊕Ωn such that Ωn is primitively
embedded in it. If X is a K3 surface such that R is primitively embedded in
NS(X), then Ωn is primitively embedded in NS(X) and thus X admits a symplectic
automorphism of order n, by Theorem 2.9. Vice versa, if a projective K3 surface
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X admits a symplectic automorphism of order n, then there exists a d ∈ N > 0
such that 〈2d〉 ⊕ Ωn is embedded in NS(X), and an overlattice R of 〈2d〉 ⊕ Ωn

is primitively embedded in NS(X). So one can describe the set Ln as union of
families P(R) of R-polarized K3 surfaces, where R is a proper overlattice of index
r (possibly 1) of 〈2d〉 ⊕ Ωn for a certain d ∈ N. There are countably many lattices
〈2d〉⊕Ωn and each of them has a finite number of overlattices of finite index. So Ln

is the union of countably many families of R-polarized K3 surfaces. The dimension
of each of these families is 20− rank(R) = 20− (1 + rank(Ωn)). This concludes the
proof for the set Ln.

The proof for Mn is similar, but one has to use the Theorem 2.10 instead of the
Theorem 2.9. �

2.2. Isogenies between K3 surfaces. The following definition was first given by
Inose in [I] in the case of K3 surfaces with Picard number 20.

Definition 2.14. Let X and Y be two K3 surfaces. We say that X and Y are
isogenous if there exists a rational map of finite degree between X and Y . This
map is said to be an isogeny between X and Y and if it is generically of degree n,
the map is said to be an isogeny of degree n.

The easiest construction of an isogeny between K3 surfaces is given by the quo-
tient by a finite symplectic automorphism, i.e. if X is a K3 surface admitting a
symplectic automorphism σ of order n, then the quotient map induces an isogeny
of degree n between X and Y , the minimal model of X/σ. So if X ∈ Ln, then there
exists Y ∈ Mn which is isogenous to X with an isogeny of degree n. Similarly if
Y ∈ Mn, then there exists a K3 surface X ∈ Ln which is isogenous to Y with an
isogeny X 99K Y of degree n.

There exist however isogenies between K3 surfaces which are not induced by
the quotient by a finite group of symplectic automorphisms: an example is given
by isogenous Kummer surfaces constructed from Abelian surfaces related by an
isogeny, as in [I, Proof of Thm 2], under the additional assumption that the degree
is a prime p > 7, (see also [BSV, Example 6.5]).

Now, let us suppose that Z is a K3 surface such that Z ∈ Ln ∩Mn. Then, there
exists a K3 surface X ∈ Ln which is isogenous to Z, with an isogeny ρ : X 99K Z
of degree n, but also a K3 surface Y ∈ Mn which is isogenous to Z with an
isogeny π : Z 99K Y of degree n. So the existence of Z ∈ Ln ∩Mn allows one to
construct an isogeny of degree n2 between the two K3 surfaces X and Y , given by
the composition π ◦ ρ : X 99K Y . We will show that in many cases this isogeny is
not induced by a quotient by a finite group of symplectic automorphisms acting on
X , see Proposition 3.11.

In the Section 3 we prove that Ln ∩Mn is non empty if 2 ≤ n ≤ 8 and then we
provide examples of n2 : 1 isogenies between K3 surfaces.

2.3. Remarks on Hodge isogenies between K3 surfaces. The Definition 2.14
is not the only notion of isogeny existing in the literature: to distinguish between the
two definitions, we will talk here of Hodge isogeny for the notion used for example
in [Bu, Huy].

Definition 2.15. Let X and Y be two K3 surfaces. We say the X and Y are
Hodge isogenous if there exists a rational Hodge isometry between H2(X,Q) and
H2(Y,Q).
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Hodge isogenous K3 surfaces have been studied since foundational work of [M]
and [N3], also in relation with Šafarevič’s conjecture [Ša] about algebraicity of
correspondences on K3 surfaces.

In [BSV, Prop. 3.1], the authors give a comparison between the notion of isogeny
and of Hodge isogeny:

Proposition 2.16. If ϕ : X 99K Y is an isogeny of order n, n is not a square
and the rank of the transcendental lattices TX and TY is odd, ϕ is never a Hodge
isogeny.

This follows from the fact that, under these assumptions, there cannot exist any
isometry TX ⊗Q ≃ TY ⊗Q. The transcendental lattice TX of the very general K3
surface X ∈ Ln has always odd rank (see Theorem 3.9); by Proposition 2.16 if n is
not a square, so if n 6= 4, the surface X is never Hodge isogenous to the minimal
resolution of its quotient. The assumption on the degree n is in particular due to
the following straightforward fact:

Lemma 2.17. For any non degenerate lattice T and any integer n ∈ N, there exists
an isometry T ⊗Q ≃ T (n2)⊗Q.

Proposition 2.18. For any n ∈ N, if ϕ : X 99K Y is an isogeny of degree n2, then
X and Y are Hodge isogenous.

Proof. It is proven in [BSV, Proposition 3.2] that TX ⊗ Q ≃ TY ⊗Q if and only if
TY ⊗Q ≃ TY (n

2)⊗Q, which is true by Lemma 2.17. Then Witt’s theorem implies
that the isometry TX ⊗ Q ≃ TY ⊗ Q extends to a Hodge isometry H2(X,Q) ≃
H2(Y,Q). �

In Proposition 3.11 we construct isogenies of degree n2 between K3 surfaces;
Proposition 2.18 implies that they are necessarily Hodge isogenies.

One of the interesting properties of Hodge isogenous K3 surfaces is that they
have isomorphic rational motives, by [Huy, Theorem 0.2]. This also holds in the
case described above of a K3 surface X isogenous to the minimal model Y of the
quotientX/σ, as shown for example in [L, Proof of Thm 3.1] following the argument
of [P], but to the knowledge of the authors it is still an open question for a general
isogeny.

3. The intersection Ln ∩Mn

The main result in this section is Theorem 3.9, where we exhibit the maximal
dimensional components of Ln ∩Mn. As preliminary result, we describe in §3.1 a
specific family of K3 surfaces contained in Ln ∩Mn. This family is related with a
special isogeny between K3 surfaces, which is induced by an isogeny between elliptic
curves, see Remark 3.3.

3.1. The (U ⊕Mn)-polarized K3 surfaces. The (U ⊕Mn)-polarized K3 surfaces
have interesting geometric properties: this family is considered for n = 2 in [vGS],
and for other values of n in [GSar2] and [GSar3] to find explicitly Ωn. Here we
reconsider it as example of a family of K3 surfaces contained in Ln ∩Mn.

Proposition 3.1. Let 2 ≤ n ≤ 8 and Un := P(U ⊕ Mn) be the family of the
(U ⊕Mn)-polarized K3 surfaces. Then:

• Un is non empty and has dimension 18− rank(Mn);
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• if S is a K3 surface such that S ∈ Un, then S admits an elliptic fibration
En : S → P1 with an n-torsion section t;

• Un ⊂ Ln ∩Mn;
• if S ∈ Un and σt is the translation by t on En, the minimal model of S/σt

is a K3 surface in Un.

Proof. The family Un is non empty for each n such that 2 ≤ n ≤ 8 as showed for
example in [Sh, Table 2] or [G1, Table 1]. The dimension of Un follows directly
by the fact that the dimension of a non-empty family P(R) of R-polarized K3
surfaces (for a certain lattice R) is 20 − rank(R), and in this case R ≃ U ⊕ Mn

has rank 2 + rank(Mn). The family Un was considered in [G1, Proposition 4.3],
where it is proved that the set of K3 surfaces admitting an elliptic fibration with a
torsion section of order n coincides with the set of (U ⊕Mn)-polarized K3 surfaces.
Since Mn is clearly primitively embedded in U ⊕Mn, all the K3 surfaces in Un are
also contained in Mn. Moreover, let En : S → P1 be an elliptic fibration on S
with an n-torsion section t. This allows to consider S as an elliptic curve over the
field of functions k(P1) and the presence of an n-torsion section is equivalent to the
presence of an n-torsion rational point on this elliptic curve. So the translation by t
is well defined and it induces an automorphism of order n on S. This is a symplectic
automorphism (it is the identity on the base of the fibration and acts on the smooth
fibers preserving their periods). We denote this symplectic automorphism by σt.
Since S ∈ Un admits a symplectic automorphism of order n, Un ⊂ Ln and thus
Un ⊂ Ln ∩Mn. In [G1, Proposition 4.3] it is also proved that the quotient of an
elliptic fibration with basis P1 by the translation by a torsion section is another
elliptic fibration over P1 with an n-torsion section. Thus S/σt admits a smooth
minimal model with an elliptic fibration with an n-torsion section and this minimal
model is a K3 surface (since σt is a symplectic automorphism). Thus the minimal
model of S/σt belongs to the family Un. �

Corollary 3.2. For every n such that 2 ≤ n ≤ 8, Ln ∩Mn is non empty.

Proof. The intersection Ln ∩Mn contains at least the non empty family Un. �

Remark 3.3. Since both Ln andMn are the union of (19− rank(Mn))-dimensional
families of polarized K3 surfaces, the intersection between these sets is at most
(19− rank(Mn))-dimensional. The Proposition 3.1 provides an intersection in a
codimension 1 subfamily. In the Theorem 3.9 we will see that one can obtain larger
intersection.

Remark 3.4. Since each (U ⊕Mn)-polarized K3 surface has an elliptic fibration,
it can be interpreted as elliptic curve over the field of rational functions in one
variable. The symplectic automorphism which induces the isogeny between the
two K3 surfaces in Un as in Proposition 3.1 is an isogeny of the associated elliptic
curve over the field of rational functions.

3.2. Maximal dimensional components of Ln ∩Mn. In this section we prove
that there are components of Ln completely contained in Mn and vice versa. The
proof is lattice theoretic: in order to obtain this result, we need some extra infor-
mation on the lattices Mn and Ωn. Both these lattices are primitively embedded
in the Néron–Severi group of a (U ⊕Mn)-polarized K3 surface, so we now use the
K3 surfaces in the family Un to compare the discriminant forms of Mn and Ωn.



ON CERTAIN ISOGENIES BETWEEN K3 SURFACES 9

Proposition 3.5. Let AΩn
(resp. AMn

) the discriminant group of Ωn (resp. Mn)

and qΩn
(resp. qMn

) its discriminant form. Then AΩn
= (Z/nZ)⊕2 ⊕ AMn

and
qΩn

= u(n)⊕ qMn
, where u(n) is the discriminant form of the lattice U(n).

Proof. Nikulin proved that AΩn
= (Z/nZ)

⊕2
⊕ AMn

in [N2, Lemma 10.2]. By the
Proposition 3.1, if NS(S) ≃ U⊕Mn, then S admits an elliptic fibration En : S → P1

with an n-torsion section t and thus a symplectic automorphism σt, which is the
translation by t. Let us denote by F the class in NS(S) of the fiber of the elliptic
fibration En, by O the class of the zero section, by t the class of the n-torsion
section, by ti, i = 2, . . . , n − 1, the class of the section corresponding to the sum
of t with itself i times in the Mordell–Weil group. By definition σt preserves the
classes F and O+ t+

∑n−1
i=2 ti. So U(n) ≃ 〈F,O+ t+

∑n−1
i=2 ti〉 ⊂ NS(S)σt and thus

〈F,O + t +
∑n−1

i=2 ti〉
⊥ ⊃ (NS(S)σt)⊥ . Since rank(Ωn) = rank(Mn), rank(Ωn) =

ρ(S)− 2. So

〈F,O + t+

n−1∑

i=2

ti〉
⊥ ⊃ (NS(S)σt)

⊥
≃ Ωn.

Denoted by TS the transcendental lattice of S, it follows from NS(S) ≃ U ⊕ Mn

that qTS
= −qMn

. By (NS(S)σt)
⊥

≃ Ωn one obtains that the orthogonal of Ωn

in H2(S,Z) is an overlattice of finite index (possibly 1) of U(n) ⊕ TS. Since

AΩn
= (Z/nZ)

2
⊕ AMn

, the orthogonal of Ωn in H2(S,Z) is U(n) ⊕ TS . So
qΩn

≃ −qU(n)⊕TS
= u(n)⊕ qMn

. �

Lemma 3.6. Let F be a finite abelian group with quadratic form qF and m ≥ 2. Let
V = 〈2d〉 ⊕W be an indefinite even non-degenerate lattice with discriminant group
AV = (Z/2dZ)⊕(Z/mZ)⊕2⊕F , with discriminant form qAV

= ( 1
2d)⊕u(m)⊕qF . If

d ≡ 0 mod 2m, then V admits an overlattice Z of index m with AZ = Z/2dZ⊕ F
and qAZ

= ( 1
2d )⊕ qF . Moreover, Z contains primitively W .

Proof. By assumption, there exists some integer k such that 2d = 4km. Let h be
a generator of the Z/2dZ summand of AV such that h2 = 1

2d , and let e1, e2 be a

basis of the (Z/mZ)⊕2 summand in AV such that e21 = e22 = 0 and e1e2 = − 1
m . We

define ǫ := e1 + 2ke2, so that ǫ2 = − 4k
m . Then the subgroup H := 〈(4k)h + ǫ〉 is

isotropic and its orthogonal inside AV is H⊥ = 〈h−e2, ν〉⊕F , where ν := e1−2ke2.
It follows from [N1, Propostion 1.4.1 and Corollary 1.10.2] that there exists an even
overlattice Z of V of index m with AZ

∼= H⊥/H = 〈h − e2〉 ⊕ F ∼= Z/2dZ ⊕ F ,
and qAZ

is induced on the quotient H⊥/H by (qAV
)|H⊥ , so it is exactly ( 1

2d )⊕ qF .
Finally, we observe that the intersection of H with AW inside AV is trivial, hence
W is a primitive sublattice of Z. �

Corollary 3.7. Let 2 ≤ n ≤ 8, d ∈ N, d ≥ 1 and d ≡ 0 mod 2n. Then 〈2d〉 ⊕
Ωn admits an overlattice of index n whose discriminant form is ( 1

2d ) ⊕ qMn
; this

overlattice contains primitively Ωn.

Proof. It suffices to apply Lemma 3.6 to the lattice V = 〈2d〉 ⊕ Ωn and to recall
that qΩn

= u(n)⊕ qMn
, by Proposition 3.5. �

Definition 3.8. For each 2 ≤ n ≤ 8 and each d ∈ N, d ≥ 1, we denote by Ld,n the
lattice 〈2d〉 ⊕ Ωn.

For each 2 ≤ n ≤ 8 and each d ∈ N, d ≥ 1, and d ≡ 0 mod 2n, we denote by
L′
d,n the overlattice of index n of Ld,n constructed in Corollary 3.7.
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For each 2 ≤ n ≤ 8 and each e ∈ N, e ≥ 1, we denote by Me,n the lattice
〈2e〉 ⊕Mn.

Theorem 3.9. Let d ∈ N, d ≥ 1 and d ≡ 0 mod 2n. The lattice L′
d,n is unique in

its genus and

L′
d,n ≃ Md,n.

The family P(L′
d,n) is (19− rank(Ωn))-dimensional and is a subset of Ln ∩ Mn,

i.e. each K3 surface in this family admits a symplectic automorphism of order n
and is n : 1 cyclically covered by a K3 surface.

Proof. By the Corollary 3.7, the lattice L′
d,n has the same discriminant group and

form as the lattice Md,n. By [N2, Proposition 7.1], the length and the rank of the
lattice Mn are the following:

n 2 3 4 5 6 7 8
l(Mn) 6 4 4 2 2 1 2

rank(Mn) 8 12 14 16 16 18 18

where the length l(R) of a lattice R is the minimal number of generators of the
discriminant group R∨/R. Since rank(Md,n) = 1+rank(Mn) and, if d ≡ 0 mod 2n,
l(〈2d〉⊕Mn) = 1+ l(Mn), for every admissible n and d ≡ 0 mod 2n, rank(Md,n) ≥
2 + l(Md,n), so by [N1, Corollary 1.13.3], there is a unique even hyperbolic lattice
with the same rank, length, discriminant group and form as Md,n. Since L′

d,n has

all the prescribed properties, we conclude that L′
d,n ≃ Md,n. Moreover, by [N1,

Theorem 1.14.4], if n < 7 the lattice L′
d,n ≃ Md,n admits a unique, up to isometry,

primitive embedding in ΛK3, and thus determines a (19 − rank(Ωn))-dimensional
family of K3 surfaces. If n = 7, 8, any primitive embedding of L′

d,n ≃ Md,n in the

unimodular lattice ΛK3, which exists by results in [GSar2, GSar3], identifies the
same genus of the orthogonal complement Td,n of rank three and signature (2, 1):
we get respectively that ATd,7

= Z/7Z⊕Z/2dZ and ATd,8
= Z/2Z⊕Z/4Z⊕Z/2dZ

with quadratic forms qTd,7
=
(
− 4

7

)
⊕
(
− 1

2d

)
and qTd,8

=
(
1
2

)
⊕
(
1
4

)
⊕
(
− 1

2d

)
. It

follows from [N1, Proposition 1.15.1] that the primitive embedding of L′
d,n ≃ Md,n

in ΛK3 is unique, up to isometry, if and only if Td,n is unique in its genus and
the map O(Td,n) → O(qTd,n

) is surjective. By [MM, Theorem VIII.7.5], these two
conditions hold in particular if the discriminant quadratic form qTd,n

is p-regular for
all prime numbers p 6= s and it is s-semiregular for a single prime number s. The
precise (and quite technical) definition of p-regular and p-semiregular form can be
found in [MM, Definition VIII.7.4]. An easy application of [MM, Lemma VIII.7.6
and VIII.7.7] implies that:

• qTd,7
is p-regular if p 6= 7 and it is 7-semiregular;

• qTd,8
is p-regular if p 6= 2 and it is 2-semiregular.

Hence, also for n = 7, 8, Td,n is unique in its genus and the primitive embedding of
L′
d,n ≃ Md,n in ΛK3 is unique up to isometry, and thus determines a (19−rank(Ωn))-

dimensional family of K3 surfaces.
Each K3 surface which is Md,n-polarized is contained in Ln ∩Mn because there

are primitive embeddings both of Ωn and of Mn in its Néron–Severi group. �

Proposition 3.10. Let 2 ≤ n ≤ 8 and d ∈ N, d ≥ 1. The lattice Ld,n is not
isometric to any overlattice of finite index (possibly 1) of Me,n, for any e. In
particular if X is a K3 surface such that NS(X) ≃ Ld,n, then X does not admit
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a cyclic n : 1 cover by a K3 surface and the families of the (Ld,n)-polarized K3
surfaces are not (totally) contained in Mn.

Proof. By Proposition 3.5, l(Ωn) = 2+l(Mn). Hence l(Ld,n) ≥ l(Ωn) = 2+l(Mn) >
l(Me,n). Since any overlattice of Me,n has at most the length of Me,n, the lattices
Ld,n can not be isometric to any overlattice of the lattice Me,n. �

In conclusion we proved that there are components of Ln (and of Mn) which
are completely contained in Ln ∩Mn, but there are also components of Ln, which
are not contained in Mn, and thus in Ln ∩ Mn. It is also true that there are
components of Mn which are not totally contained in Ln (see e.g. Theorem 4.6 for
the case n = 2.)

In the following proposition we construct an n2 : 1 isogeny between two K3
surfaces by using a third K3 surface, which is L′

d,n-polarized, and we prove that

generically this n2 : 1 isogeny is not just the quotient by an automorphism group.

Proposition 3.11. Let Z be a K3 surface, such that NS(Z) = L′
d,n, let X be

the K3 surface which is a n : 1 cyclic cover of Z and Y be the quotient of Z by
a symplectic automorphism of order n. Then there is an n2 : 1 isogeny between
X and Y but there is no finite group G of automorphisms on X such that Y is
birational to X/G.

Proof. By Theorem 3.9 the K3 surfaces Z which are L′
d,n-polarized are n : 1 isoge-

nous to two K3 surfaces, X and Y , respectively with the two n : 1 isogeniesX 99K Z
and Z 99K Y. The composition of these two isogenies is an n2 : 1 isogeny X 99K Y .

If there exists a group of automorphism G as required, it has to be a group of
symplectic automorphisms (otherwise the quotient X/G would not be birational to
a K3 surface). SoX should admit a group of symplectic automorphisms of order n2.

If X admits a group G of symplectic automorphisms, then
(
NS(X)G

)⊥
is a lattice

(analogous to Ωn) which is unique in most of the cases. Its rank depends only on
G and it is known for every admissible G, see [H]. In particular, if 2 ≤ n ≤ 8, for
every group Gn2 of order n2 acting symplectically on a K3 surface, the rank of the

lattice is rank
((

NS(X)Gn2
)⊥)

> rank(Ωn). Hence, if a K3 surface X admits Gn2

as group of symplectic automorphisms, ρ(X) > 1 + Ωn = ρ(Z). But X and Z are
isogenous, hence ρ(X) = ρ(Z) and thus X can not admit a group of symplectic
automorphisms of order n2. �

Remark 3.12. In Proposition 3.11 we proved that the n2 : 1 isogeny X 99K Y is
not induced by a quotient map, so that the rational map X 99K Y is not a Galois
cover. Let us denote by V its Galois closure, hence V is a surface such that both
X and Y are birational to Galois quotients of V . Denoted by G the Galois group
of the cover V 99K Y and by H the subgroup of G which is the Galois group of
V 99K X , H is not a normal subgroup of G, otherwise the rational map X 99K Y
would be a Galois cover with Galois group G/H . The Kodaira dimension of the
surface V is non negative (since V covers K3 surfaces), but moreover V can not
be a K3 surface. This can be proved applying the same argument of the proof of
Proposition 3.11: if V were K3 surface, it would admit G as group of symplectic
automorphism, but its Picard number is not big enough. We give more details on
the construction of V and G in the case n = 2, see Section 4.3
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4. Involutions

In this section we restrict our attention to the case of the symplectic involutions
(i.e. n = 2). In this case several more precise and deep results are known about the
relations between K3 surfaces admitting a symplectic involutions and K3 surfaces
which are their quotients, hence we can improve the general results of the previous
section and we can describe explicit examples. In particular we obtain: a complete
description of the maximal dimensional components of the intersection L2 ∩M2,
in Theorem 4.6; infinite families of K3 surfaces such that for each K3 surface in a
family there is another one in another family which is isogenous to it, in Corollary
4.8; geometric examples in Sections 4.4 and 4.5.

4.1. Preliminary results on symplectic involutions and Nikulin surfaces.

For historical reasons, we refer to the K3 surfaces in M2 (i.e. the K3 surfaces
which are cyclically 2 : 1 covered by a K3 surface) as the Nikulin surfaces and to
the lattice M2 as the Nikulin lattice, denoted by N(:= M2). So we have

Definition 4.1. A Nikulin surface Y is a K3 surface which is the minimal resolu-
tion of the quotient of a K3 surface X by a symplectic involution σ. The minimal
primitive sublattice of NS(Y ) containing the curves arising from the desingulariza-
tion of X/σ is denoted by N and it is called Nikulin lattice.

If σ is a symplectic involution on a K3 surface X , then the fixed locus of σ on
X consists of 8 isolated points. The quotient surface X/σ has 8 singularities of
type A1, so the minimal resolution X contains 8 disjoint rational curves, which are
the exceptional divisors over the singular points of X/σ. Called Ni, i = 1, . . . , 8

their classes in the Néron–Severi group, the class
(∑8

i=1 Ni

)
/2 is contained in the

Néron–Severi group. Indeed the union of the eight disjoint rational curves is the

branch locus of the double cover X̃ → Y , where X̃ is the blow up of X in the 8
points fixed by σ. We will say that a set of rational curves is an even set if the sum
of their classes divided by 2 is contained in the Néron–Severi group and that a set
of nodes is an even set if the curves resolving these nodes form an even set.

Proposition 4.2. ([N2, Section 6]) The Nikulin lattice is an even negative definite
lattice of rank 8 and its discriminant form is the same as the one of U(2)3. It
contains 16 classes with self-intersection −2, i.e. ±Ni, i = 1, . . . , 8. A Z-basis of

N is given by
(∑8

i=1 Ni

)
/2, Ni, i = 1, . . . 7.

As in the previous section, we will denote by Me,2 the lattice 〈2e〉 ⊕N .

Proposition 4.3. (a) A K3 surface Y is a Nikulin surface if and only if the lattice
N is primitively embedded in NS(Y ).

(b) The minimal Picard number of a Nikulin surface is 9.
(c) There exists an even overlattice of index two of Me,2 in which N is primitively

embedded if and only if e is even. In this case, this lattice is unique up to isometry
and denoted by M ′

e,2.
(d) If Y is a Nikulin surface with Picard number 9, then NS(Y ) is isometric

either to Me,n or to M ′
e,n for a certain e.

Proof. The point (a) is Theorem 2.10, the point (b) is proved in Corollary 2.11 in
the case n = 2. The point (c) is proved in [GSar1, Proposition 2.2] and the point
(d) in [GSar1, Proposition 2.1]. �
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In the case n = 2, the lattice Ω2 is known to be isometric to E8(−2). As in the
previous section, we will denote by Ld,2 the lattice 〈2d〉 ⊕ E8(−2) and by L′

d,2 the

overlattice of index two of Ld,2 such that L′
d,2 is even and E8(−2) is primitively

embedded in L′
d,2.

Proposition 4.4. (a) A K3 surface X admits a symplectic involution σ if and only
if the lattice E8(−2) is primitively embedded in NS(X).

(b) If X admits a symplectic involution, ρ(X) ≥ 9.
(c) There exists an even overlattice of index two of Ld,2 in which E8(−2) is

primitively embedded if and only if d is even. In this case, this lattice is unique up
to isometry and is L′

d,2.

(d) If X is a K3 surface admitting a symplectic involution and with Picard num-
ber 9, then NS(X) is isometric either to Ld,2 or to L′

d,2 for a certain d.

Proof. The Proposition follows directly by [vGS, Propositions 2.2 and 2.3] (and
the points (a), (b) and (c) were already proved in the more general setting of
automorphisms of order n in the previous Section). �

The main result which is known for involutions and is not yet stated in the more
general case of symplectic automorphisms of order n, is the explicit relation between
the Néron–Severi group of a K3 surface which admits a symplectic involution and
the Néron–Severi group of the K3 surface which is its quotient.

Proposition 4.5. ([GSar1, Corollary 2.2]) Let X be a K3 surface with a symplectic
involution σ and Y be the minimal resolution of X/σ. Then:

• NS(X) ≃ Le,2 if and only if NS(Y ) ≃ M ′
2e,2

• NS(X) ≃ L′
2e,2 if and only if NS(Y ) ≃ Me,2.

4.2. The intersection L2∩M2 and infinite towers of isogenous K3 surfaces.

Since we know the structure of all the possible Néron–Severi groups of Nikulin
surfaces of minimal Picard number (by Proposition 4.3) and all the possible Néron–
Severi groups of K3 surfaces of minimal Picard number admitting a symplectic
involution (by Proposition 4.4), we are able to give the following refinement of the
Theorem 3.9 and of the Proposition 3.10.

Theorem 4.6. A Nikulin surface Y such that ρ(Y ) = 9 admits a symplectic invo-
lution if and only if NS(Y ) ≃ M2d,2(≃ L′

2d,2).

A K3 surface X admitting a symplectic involution such that ρ(X) = 9 is a
Nikulin surface if and only if NS(X) ≃ L′

2d,2(≃ M2d,2).
So

L2 ∩M2 ⊃
⋃

d∈N>0, d≡0(2)

P(M2d,2).

Proof. By Theorem 3.9 M2d,2 ≃ L′
2d,2 and thus if NS(Y ) ≃ M2d,2, then Y admits

a symplectic involution. Similarly if NS(X) ≃ L′
2d,2, X is a Nikulin surface. It

remains to prove that if a K3 surface is in L2 ∩ M2, and its Picard number is 9,
then its Néron–Severi can not be isometric to M ′

e,2, to Me,2 for an odd e or to Lf,2

with f ∈ N>0. The argument is similar to the one of Proposition 3.10.
By Proposition 4.4, if Y is a Nikulin surface, its Néron–Severi group is either

isometric to Me,2 or to M ′
2e,2. By Proposition 4.3 if X is a K3 surface admitting

a symplectic involution, its Néron–Severi group is either isometric to Ld,2 or to
L′
2d,2. So if a K3 surface has both properties (i.e. it is in L2 ∩M2 and has Picard
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number 9), its Néron–Severi group is isometric both to a lattice in {Me,2,M
′
2e,2}

and to a lattice in {Ld,2, L
′
2d,2}. Hence we are looking for pairs of lattices, one

in {Me,2,M
′
2e,2} and one in {Ld,2, L

′
2d,2}, which are isometric. If two lattices are

isometric, they have the same length. We observe that l(Me,2) = 1 + l(N) = 7,
l(M ′

2e,2) = 1+ l(N)−2 = 5, l(Ld,2) = 1+ l(Ω2) = 9, l(L′
2d,2) = 1+ l(Ω2)−2 = 7. In

particular, the unique possible pair of lattices as required is given by (Me,2, L
′
2d,2).

Since if two lattices are isometric they have the same discriminant, one obtains that
e = 2d. �

Corollary 4.7. Two Nikulin surfaces Y and Ŷ with Picard number 9 are isogenous
by a chain of quotients by involutions if and only if one of the following equivalent
conditions hold:
(i) NS(Y ) ≃ Md,2, NS(Ŷ ) = Me,2, and there exists m ∈ N>0 such that either
d = 2me or e = 2md;
(ii) TY ≃ U ⊕U ⊕N ⊕ 〈−2d〉, TŶ ≃ U ⊕U ⊕N ⊕ 〈−2e〉 and there exists m ∈ N>0

such that either d = 2me or e = 2md.

Proof. We can assume that Ŷ is obtained by iterated quotients from Y . Then Y
admits a symplectic involution σ and, by Theorem 4.6, there exists an even d such
that NS(Y ) ≃ Md,2 ≃ L′

d,2. So Y is the cover of a K3 surface Z with Néron–Severi

group Md/2,2 (by Proposition 4.5). If d is odd, then the process stops and Ŷ is
necessarily Z; otherwise, NS(Z) ≃ Md,2 ≃ L′

d,2 and Z is the cover of a K3 surface
Z with Néron–Severi group Md/4,2. Iterating, if possible, this process m times,
one obtains Nikulin surfaces with Néron–Severi group isometric to Md/2m,2. In
particular, one never obtains lattices isometric to M ′

e,2 (for a certain e) as Néron–
Severi groups of a Nikulin surface obtained by iterated quotients from Y .

Vice versa, if NS(Ŷ ) ≃ Me,2 for a certain e, Ŷ is covered by a K3 surface W
with NS(W ) ≃ L′

2e,e ≃ M2e,2 (by Proposition 4.5). So W is a Nikulin surface,
2 : 1 covered by a K3 surface with Néron–Severi group isometric to L′

4e,e ≃ M4e,2.

Reiterating this processm times one obtains that Ŷ is isogenous to a Nikulin surface
whose Néron–Severi lattice is isometric to Mh,e with h = 2md.

The equivalent statement for the transcendental lattice follows by the fact that if
the Néron–Severi group of a K3 surface is isometric to Md,2, then its transcendental
lattice is isometric to U ⊕U ⊕N ⊕〈−2d〉 (since the discriminant form of the latter
is minus the discriminant form of Md,2, and in this case the transcendental lattice
is uniquely determined by its genus). �

We determined an infinite number of infinite series of Nikulin surfaces of Picard
number 9 related by iterated quotients by symplectic involutions. More precisely
we proved the following.

Corollary 4.8. For every d ∈ N, if NS(Y ) ≃ Md,2 there exists an infinite number of
K3 surfaces Ym isogenous to Y . In particular for each m there exists at least one K3
surface Ym with an isogeny of degree 2m to Y whose Néron–Severi group is isometric
to NS(Ym) = M2md,2. The transcendental lattice of Y is TY ≃ U ⊕U ⊕N ⊕ 〈−2d〉
and for each m the one of Ym is TYm

≃ U ⊕ U ⊕N ⊕ 〈−2m+1d〉.

Remark 4.9. The M2m+2d,2-polarized K3 surfaces can be interpreted as moduli
spaces of twisted sheaves on M2md,2-polarized K3 surfaces. Let e1, e2 be a stan-
dard basis of the first copy of U inside the K3 lattice ΛK3 and choose a primitive
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embedding of M2m+2d,2 in ΛK3 so that a generator of 〈2m+1d〉 is e1 + 2mde2 and

N is embedded in U⊥. Given S ∈ P(M2md,2) generic, the transcendental lattice
is TS = U⊕2 ⊕N ⊕ 〈−2m+1d〉, and with our previous choice it is easy to see that
〈−2m+1d〉 is generated by t := e1 − 2mde2. The B-field B = e2

2 ∈ H2(S,Q) is a
lift for the Brauer class β : TS → Z/2Z given by v 7→ (v, 2B). It is easy to see
that T (S,B) ∼= kerβ = U⊕2⊕N ⊕〈−2m+3d〉 ⊂ H∗(S,Z), where the last summand
is spanned by (0, 2t, 1). Moreover, the orthogonal of T (S,B) inside the Mukai
lattice H∗(S,Z) is the generalized Picard group Pic(S,B), which is the sublattice
spanned by f1 := (0, 0, 1), f2 := (2, e2, 0), f3 := (0, e1+2mde2, 0) and (0, bi, 0) with
b1, · · · , b8 ∈ M2m+2d,2 a basis of the lattice N , and has quadratic form




0 2 0
2 0 1
0 1 2m+1d


⊕N.

The isotropic element v := 2mdf2 − f3 now satisfies ((Zv)⊥ ∩ Pic(S,B))/Zv ≃
M2m+2d,2. Hence, the moduli space of stable twisted sheaves Mv(S, β) is a smooth
M2m+2d,2-polarized K3 surface. It is an interesting open question to see whether
the isogeny of degree 4 which we constructed here coincides with the one induced
by a twisted universal family on S ×Mv(S, β) or not (for further details see [Huy,
Theorem 0.1]).

4.3. The Galois closure of 22 : 1 covers. Let Xd be a K3 surface such that
NS(Xd) = Md,2. Then X2d ∈ L2∩M2 and there are the two Galois covers X4d 99K

X2d and X2d 99K Xd. The composition of these two maps is a 22 : 1 isogeny, not
induced by a Galois cover, by Proposition 3.11. As observed in Remark 3.12 there
exist a surface V , a group G ⊂ Aut(V ) and a subgroup H of G such that V/G is
birational to Xd, and V/H is birational to X4d. Here we construct the surface V
and the group G, proving the following

Proposition 4.10. The group G is the dihedral group of order 8 and V is a (Z/2Z)2

Galois cover of X2d, whose branch locus B is the union of 16 smooth rational curves.
If B is normal crossing, then V is a positive Kodaira dimension smooth surface such
that h1,0(V ) = 0 and h2,0(V ) ≥ 35.

To prove the Proposition one constructs a (Z/2Z)
2
Galois cover of X2d (see

Section 4.3.1) by a surface denoted by V . Then one constructs a (Z/2Z)
2
Galois

cover of Xd (see Section 4.3.2), and eventually one proves that these two covers
can be pasted to obtain a unique Galois cover by the dihedral group of order 8 (see

Section 4.3.3). In order to obtain the (Z/2Z)
2
covers one compares the branch loci

of the 2 : 1 maps X4d 99K X2d and X2d 99K Xd.
Here we do not consider the Galois closure of 2n : 1 isogenies given in Corollary

4.8, but for any fixed n a priori one can iterate the previous process.
In the following we will call the (Z/2Z)2 Galois covers bidouble covers as in [C],

where all the basic definitions and properties of these covers can be found.

4.3.1. A bidouble cover of the surface X2d. Let us denote by N1, . . . , N8 ⊂ X2d

the rational curves which are the branch locus of the double cover X4d 99K X2d.
Let us denote by σ2d the symplectic involution on X2d such that Xd is birational
to X2d/σ2d. The curves Ni, i = 1, . . . , 8 are not preserved by σ2d, since 〈H〉 :=

NS(X2d)
σ∗
2d is positive definite and more precisely H2 = 4d. Set N ′

i := σ2d(Ni).
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Hence we found two even sets of eight rational curves on X2d: {N1, . . . , N8} and

{N ′
1, . . . , N

′
8}. Let D1 :=

∑8
i=1 Ni, D2 :=

∑8
i=1 N

′
i , D3 := 0 and 2Li := Dj +

Dk, i, j, k ∈ {1, 2, 3}. The six divisors Dj , Li, j, i = 1, 2, 3 in NS(X2d) satisfy
the conditions which define a bidouble cover, so there exists a surface V such
that (Z/2Z)2 ∈ Aut(V ) and V/(Z/2Z)2 is (birational to) X2d (see [C, Section
2]). Moreover, there are three surfaces which are double covers of X2d branched
respectively along the curves supported on 2L1, 2L2 and 2L3; all of them are 2 : 1

covered by V . Since L2 =
∑8

i=1 Ni/2, the double cover of X2d branched on 2L2

is a non-minimal model of X4d. We denote the cover branched on the curves in

the support of 2L2 by X̃4d. Similarly the double cover of X2d branched on ∪iN
′
i

is the blow up of a K3 surface, X ′
4d, in 8 points and it will be denoted by X̃ ′

4d.
The Néron–Severi group of the K3 surface X ′

4d is determined by the one of X2d, by
Proposition 4.5, and thus it is isometric to M4d. We obtain the following diagram:

V

!!❉
❉❉

❉❉
❉❉

❉

��
~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

W

  ❆
❆❆

❆❆
❆❆

❆❆
X̃4d

π̃4d

��

X̃ ′
4d

π̃′
4d}}④④

④④
④④
④④

X2d

(4.1)

The surfaces W and V have non negative Kodaira dimension, because they are
covers of K3 surfaces.

Let us now suppose that the intersections Ni∩N ′
j are transversal, and thus both

the branch divisors of W → X2d and of V → X2d are normal crossing. Under
this assumption, V is smooth and the birational invariants of W and V depend
only on L2

j , for j = 1, 2, 3. The surface W is the double cover of X2d branched on

the reducible curve which is the support of 2L3, i.e. on the curve
⋃8

i=1(Ni ∪N ′
i).

Since Ni +N ′
i is an effective (σ∗

2d)-invariant divisor and H is the ample generator

of NS(X2d)
σ∗
2d , there exists a positive integer ki such that Ni + N ′

i = kiH . Then

L2
3 =

(∑8
i=1 kiH

)2/
4 = d

(∑8
i=1 ki

)2
and

χ(W ) = 4 +
d

2

(
8∑

i=1

ki

)2

, h2,0(W ) = 3 +
d

2

(
8∑

i=1

ki

)2

and h1,0(W ) = 0.

The singularities of W are in the inverse image of the singular points of
⋃8

i=1(Ni ∪
N ′

i) and V is a double cover of W branched on its singular points. The invariants
of V can be computed by [C, Section 2], from which one obtains

h2,0(V ) = h2,0(W ) = 3 +
d

2

(
8∑

i=1

ki

)2

≥ 3 + 32d ≥ 35, h1,0(V ) = h1,0(W ) = 0.

Hence V is a surface with non negative Kodaira dimension, h2,0(V ) ≥ 35 and
h1,0(V ) = 0, so its Kodaira dimension is necessarily positive.
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4.3.2. A bidouble cover of the surface Xd. The surfaceXd is the desingularization of
the quotient of X2d/σ2d and we will denote by R1, . . . , R8 the eight disjoint rational
curves resolving the singularities of X2d/σ2d. Equivalently, the double cover of Xd

branched on
⋃

i Ri is birational to X2d. Denoted by π2d : X2d → X2d/σ2d the
quotient map, one observes that π2d(Ni) = π2d(N

′
i), i = 1, . . . , 8, and π2d(Ni) is

a rational curve singular in the points π2d(Ni ∩ N ′
i). We denote by Ni the strict

transform on Xd of the curve π2d(Ni). The curves Ni could be singular and the set

{N1, . . . , N8} is a divisible set. Moreover, since Ni +N ′
i = kiH ⊂ NS(X2d)

σ∗
2d , one

has (π2d)∗(Ni +N ′
i) ⊂ NS(X2d/σ2d). Hence Ni ⊂ (N⊥NS(Xd)).

The sets {R1, . . . , R8} and {N1, . . . N8} are two 2-divisible sets of curves, which

allow us to construct a bidouble cover of Xd, whose data are ∆1 :=
∑8

i=1 Ri,

∆2 :=
∑8

i=1 Ni, ∆3 :=
∑8

i=1

(
Ri +N i

)
, 2Γi := ∆j +∆k, with {i, j, k} = {1, 2, 3}.

The double cover X̃2d → Xd is branched over ∪iRi, i.e. the curve in the support

of 2Γ2. It induces a double cover of X̃2d branched over ∪i

(
Ñi + Ñ ′

i

)
, where Ñi

(resp. Ñ ′
i) is the strict transform on X̃2d of the curve Ni (resp. N

′
i). Let us denote

by W̃ the surface double cover of X̃2d branched on ∪i

(
Ñi + Ñ ′

i

)
. So we have the

following diagram:

W̃

  ❇
❇❇

❇❇
❇❇

❇

����⑧⑧
⑧⑧
⑧⑧
⑧⑧

B

��❄
❄❄

❄❄
❄❄

❄ A

��

X̃2d

π̃2d
}}④④
④④
④④
④④

Xd

(4.2)

where π̃2d : X̃2d → Xd is induced by π2d.

4.3.3. The D4 cover of Xd. Both the diagrams (4.2) and (4.1) induce a 2 : 1 rational
map W 99K X2d, which is (birationally) the double of cover of X2d branched on⋃8

i=1 (Ni ∪N ′
i). Hence these diagrams can be pasted to obtain the following, where

all the arrows are rational maps of generically degree 2

V

""❊
❊

❊
❊

��
✤

✤

✤

}}③
③
③
③

W

!!❈
❈

❈
❈

❈

��
✤

✤

✤

��⑦
⑦
⑦
⑦

X4d

π4d

��
✤

✤

✤
X ′

4d

π′
4d||③

③
③
③

B

  
❆

❆
❆

❆ A

��
✤

✤

✤ X2d

π2d
}}③
③
③
③

Xd

(4.3)

We already proved that the 4 : 1 covers X4d 99K Xd and X ′
4d 99K Xd are not Galois

covers in Proposition 3.11. On the other hand, the cover 4 : 1 W → Xd is a Galois



18 CHIARA CAMERE AND ALICE GARBAGNATI

cover (indeed a bidouble cover), by construction. Since V 99K X2d is constructed as
bidouble cover, the cover involution of the cover W 99K X2d, lifts to an involution
of V (which is the cover involution of V 99K X4d). Hence one obtains that the
cover V 99K Xd is a Galois 8 : 1 cover. The cover group G is an order 8 group,
which admits non normal subgroups of order 2 (otherwise X4d 99K Xd should be
a Galois cover). Hence G ≃ D4, the dihedral group of order 8. We recall that
D4 :=< s, r|s2 = 1, r4 = 1, rs = sr−1 >. The center H of G is H :=< r2 > and
the quotient of V by H is birational to W . So we conclude that the Galois cover is
given by the surface V on which acts the group G = D4.

4.4. The K3 surface X2 ∈ L2 ∩M2. By Proposition 4.6, for every even d, if a
K3 surface Xd is such that NS(Xd) ≃ L′

d,2, then Xd admits a symplectic involution
and it is 2 : 1 cyclically covered by a K3 surface. Here we describe geometri-
cally these properties for the minimum possible value of d, i.e. for d = 2: let X2

be a K3 surface with NS(X2) ≃ L′
2,2. It admits an involution σ and by Propo-

sition 4.5 the K3 surface Y1 which is the desingularization of X2/σ is such that
NS(Y1) = M1,2 ≃ 〈2〉 ⊕ N . Since NS(X2) ≃ M2,2 ≃ 〈4〉 ⊕N (by Proposition 4.6),
the surface X2 is 2 : 1 covered by a K3 surface X4, whose Néron–Severi group is
NS(X4) ≃ L′

4,2 (by Proposition 4.5). Since X2 is a Nikulin surface, there are 8
disjoint rational curves, which resolve the singularities of the quotient of X4 by a
symplectic involution. Thus the surface X2 admits two different descriptions ac-
cording to the interpretation of it as K3 surface with a symplectic involution or as
Nikulin surface. These descriptions are associated to different projective models,
induced by different (pseudo)ample divisors. Here we recall these descriptions and
we explain how to pass from one to the other.

By [vGS, Section 3.5], any K3 surface X2 such that NS(X2) ≃ L′
2,2 is described

as bidouble cover of P2 as follows: one considers two smooth plane curves B and
C0 of degree respectively 4 and 2 in P2. The double cover of P2 branched on B∪C0

is a surface singular in eight points, the inverse image of B ∩C0. The resolution of
this surface is the K3 surface X1 such that NS(X1) ≃ M1,2 and the eight rational
curves arising from this resolution will be denoted by Ri, i = 1, . . . , 8. The curves
R1, . . . , R8 form an even set of rational curves on X1 and the double cover of X1

branched on ∪iRi is, by construction, a K3 surface X2 such that NS(X2) ≃ L′
2,2.

The choice of the curves B ∪ C0 totally determines the surfaces X1 and X2. To
construct the bidouble cover one considers also the double cover of P2 branched
on C0 and the double cover of P2 branched on B. The first surface is a quadric
Q ≃ P1 × P1 ⊂ P3, the latter a del Pezzo surface of degree 2, denoted in the
following by dP . Hence one has the following diagram, where all the arrows are
rational maps of degree 2:

X2

π2

  ❇
❇❇

❇❇
❇❇

❇

πdP

��

πQ

yyss
ss
ss
ss
ss

P1 × P1 ≃ Q

q1
%%❑

❑❑
❑❑

❑❑
❑❑

❑❑
dP

q2

��

X1

q3
~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

P2

(4.4)
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The Néron–Severi group of X2 is isometric to L′
2,2, hence it is an overlattice of index

two of 〈4〉⊕E8(−2). The linear system of the ample divisor L, orthogonal to E8(−2)
in L′

2,2 exhibits X2 as double cover of a quadric P1 × P1 in P3. One can assume
that the class generating L′

2,2/L2,2 is E1 := (L + e1)/2, where ei is a standard

basis of E8(−2) (i.e. eiei+1 = 2 if i = 1, . . . 6, e3e8 = 2, (ei)
2 = −4 and the other

intersections are 0). Then the divisor E1 is a nef divisor and the map associated
to its linear system ϕ|E1| : X2 → P1 is a genus 1 fibration. The action of σ∗ on
NS(X2) is the identity on the subspace 〈L〉 and minus the identity on the subspace
L⊥ ≃ E8(−2). So the image of E1 by σ∗ is the nef divisor E2 := (L−e1)/2 = E1−e1
(see [vGS, Section 3.5]). The two maps ϕ|Ei|, i = 1, 2 are the maps on the rulings

of the quadric Q ⊂ P3 image of the map ϕ|L| = ϕ|E1+E2|. In particular the set of
divisors {E1, e1, . . . e8} is a basis of NS(X2).

By (4.4), it follows that X2 admits three commuting involutions, the covering
involutions of the three double covers πQ, πdP , π2. The latter involution is the
symplectic involution σ, the others will be denoted by ιQ and ιdP respectively.

Proposition 4.11. The involutions ιQ and ιdP are non-symplectic involutions and
their composition is the symplectic involution σ. The group 〈ιQ, ιdP 〉 is isomorphic

to (Z/2Z)
2
and it is the Galois group of the 22 : 1 cover π : X2 99K P2.

The induced three involutions on NS(X2) act as follows on the basis {E1, e1, . . . e8}:

σ∗(E1) = E1 − e1, σ∗(ei) = −ei, i = 1, . . . , 8
ι∗Q(E1) = E1, ι∗Q(e1) = e1, ι∗Q(e2) = −e1 − e2, ι∗Q(ej) = −ej,
ι∗dP (E1) = E1 − e1, ι∗dP (e1) = −e1, ι∗dP (e2) = e1 + e2 ι∗dP (ej) = ej ,

where j = 3, . . . , 8.

Proof. The action of σ is minus the identity on (NS(X2)
σ)⊥ ≃ E8(−2) ⊂ NS(X2)

and we chose the basis of NS(X2) in such a way that the divisors ei, i = 1, . . . , 8

span exactly (NS(X2)
σ)

⊥
≃ E8(−2). Moreover we chose L to be the orthogonal to

〈ei〉i=1,...8 and thus σ∗(L) = L. By the definition of E1(= (L+ e1) /2) one obtains
σ∗(E1) = (L− e1)/2 = E1 − e1.

The automorphism ιQ is such that X2/ιQ is a rational surface and thus ιQ is
non symplectic and X2/ιQ is smooth. Since X2/ιQ is P1×P1, rank(NS(X2)

ιQ) = 2
and NS(X2)

ιQ is generated by the divisors which induce the maps X2 → P1 given
by the composition of the quotient map πQ : X2 → P1 × P1 with the projection
on the first, respectively second, factor. These maps are ϕ|E1| : X2 → P1 and

ϕ|E2| : X2 → P1. So NS(X2)
ιQ = 〈E1, E2〉 and ιQ acts as minus the identity on

(NS(X2)
ιQ)

⊥
. So ι∗Q(ej) = −ej if j = 3, . . . , 8, ι∗Q(E1) = E1, and ι∗Q(E2) = ι∗Q(E1−

e1) = E1−ι∗Q(e1) = E1−e1 = E2. It follows ι
∗
Q(e1) = e1. In order to find the image

of e2 it suffices to recall that ι∗Q is an involution and that
(
ι∗Q(e2)

)
·
(
ι∗Q(D)

)
= e2D

for any divisor D ∈ NS(X2). The group 〈ιQ, σ〉 is by construction the Galois

group of the cover π : X2 → P2, so it is isomorphic to (Z/2Z)
2
and contains three

different involutions, each of them is the composition of the other two. In particular
ιdP = ιQ ◦ σ and so ι∗dP = σ∗ ◦ ι∗Q and ιdP is non-symplectic. �

We already observed that the classesE1 := (L+e1)/2 and E2 := (L−e1)/2 induce
two elliptic fibrations ϕ|Ei| : X2 → P1. By the properties of these elliptic fibrations
we will be able to identify the classes of irreducible rational curves on X2 and in
particular 8 classes which span the Nikulin lattice. The following proposition gives
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the explicit isometry between L′
2,2 and M2,2 and shows directly that the surface

X2 admits a 2:1 rational double cover by another K3 surface, thus it provides an
explicit geometric interpretation of Theorem 3.9 in the case n = 2.

Proposition 4.12. Both the genus 1 fibrations ϕ|E1| : X2 → P1 and ϕ|E2| : X2 →

P1 have no reducible fibers and 8 disjoint sections which can be chosen to generate
the Mordell–Weil group (which is isomorphic to Z7). One can choose these sections,
for each fibration, in such a way that 7 sections are in common, the eighth section of
ϕ|E1| is a 5-section for ϕ|E2| and vice versa the eighth section of ϕ|E2| is a 5-section
for ϕ|E1|. The eight sections of ϕ|E1| (resp. ϕ|E2|) chosen as above form an even
set of eight disjoint rational curves, so X2 is a Nikulin surface and NS(X2) ≃ M2,2.

Proof. Since one has a basis of NS(X2), one can compute explicitly the sublattice
E⊥

1 := {D ∈ NS(X2) ≃ L′
2,2|DE1 = 0} and one observes that it is P (2) for a certain

degenerate even lattice P . In particular there are no (−2)-classes orthogonal to E1

in NS(X2) and thus the fibration ϕ|E1| does not admit reducible fibers. The fibration

ϕ|E2| : X2 → P1 is the image of ϕ|E1| for the automorphism σ, so also ϕ|E2| has no
reducible fibers too.

To conclude the proof it suffices to exhibit the classes of the irreducible rational
curves with the required properties. Let us assume that Ni is a class such that
N2

i = −2, NiL > 0, NiE1 = 1. Then Ni is the class of an effective divisor (by
NiL > 0), supported on a (possibly reducible) curve. If Ni is irreducible, then it is
a section of ϕ|E1|. Otherwise it should be the sum of a section and some irreducible
components of reducible fibers, but there are no reducible fibers in the genus 1
fibration ϕ|E1|. So Ni is a section of ϕ|E1|. All the classes listed below satisfy the

conditions N2
i = −2, NiL > 0, NiE1 = 1, so they are supported on irreducible

rational curves, all sections of E1:

N1 = E1 + e2; N2 = E1 + e2 + e3;
N3 = E1 + e2 + e3 + e4; N4 = E1 + e2 + e3 + e4 + e5;
N5 = E1 + e2 + e3 + e4 + e5 + e6; N6 = E1 + e2 + e3 + e4 + e5 + e6 + e7;
N7 = E1 − 2e1 − 3e2 − 5e3 − 4e4 − 3e5 − 2e6 − e7 − 3e8; N8 = 3E1 + e2 − e8.

Since NiNj = 0 for every i, j = 1, . . . , 8, i 6= j, the curves Ni are disjoint. Moreover

(
∑8

i=1 Ni)/2 ∈ NS(X2), so {N1, . . . , N8} is an even set of disjoint rational curves
and thus there is a 2 : 1 cover branched on these rational curves, i.e. X2 ∈ M2.

The curves Ni i = 1, . . . 7 intersect both E1 and E2 in 1 point. So the fibrations
ϕ|E1| and ϕ|E2| share 7 sections.

The divisor H := 6E1−e1+2e2−2e8 is a pseudoample divisor of self intersection
4 which is orthogonal to all the Ni’s. So N(X2) ≃ M2,2.

The class N ′′
8 := 3E1− 2e1+ e2− e8 is a section of ϕ|E2| and a 5 section of ϕ|E1|.

The class
(∑7

i=1 Ni +N ′′
8

)
/2 ∈ NS(X2), so {N1, N2, N3, N4, N5, N6, N7, N

′′
8 } is an

even set of disjoint rational curves. �

The explicit knowledge of the change of bases from {E1, e1, . . . e8} to {H,N1, . . . , N7,
∑8

i=1 Ni/2}
given in the proof of Proposition 4.12 allows one to obtain some interesting geo-
metric characterizations of the K3 surfaces with NS(X2) ≃ L′

2,2. Indeed, let S be a
K3 surface of Picard number 9 and which satisfies one of the following conditions:

• S admits an elliptic fibration E : S → P1 without reducible fibers and
admitting 8 disjoint sections, P1, . . . , P8, such that (

∑
i Pi)/2 ∈ NS(S).
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• S admits an elliptic fibration E : S → P1 without reducible fibers with
zero section O. The Mordell–Weil group of E is generated by 7 sections,
P1, . . . , P7, such that {O,P1, . . . , P6} are mutually disjoint and P7 intersects
the zero section in 12 points and the other sections Pi, i = 1, . . . , 6 in 6
points.

• S admits two elliptic fibrations E and F with class of the fiber E and F
respectively such that EF = 2. Let us assume that there are 7 orthogonal
rational curves such that 6 are sections of both the fibrations, the seventh
is section of one fibration and a 5-section for the others.

Then S satisfies also the other conditions, it admits a symplectic involution switch-
ing E and F and S is a Nikulin surface. In particular NS(X2) ≃ L′

2,2 ≃ M2,2.
Indeed, any of the above set of data of fibrations and sections is enough to exhibit
the lattice L′

2,2 as the Néron–Severi group of X2, as it follows by the proof of Propo-
sition 4.12.

The map ϕ|H| : X2 → P3 exhibits X2 as a singular quartic in P3 and its eight
nodes are ϕ|H|(Ni) for i = 1, . . . , 8. It is well known that the projection of a
nodal quartic from a node gives a model of the same K3 surface as a double cover
of P2 branched on a sextic. In particular, let us consider the projection by the
node ϕ|H|(N8), induced by the linear system |H − N8|. We thus have a 2 : 1

map ϕ|H−N8| : X2 → P2, which contracts the 7 curves Ni to seven nodes of the
branch sextic. Hence we obtain the following diagram, where the vertical arrows
are contractions of 7 curves and the horizontal arrows are 2 : 1 maps:

X2

ϕ|H−N8|

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖
2:1

//

��

P̃2

��

ϕ|H|(X2)
2:1

// P2

In particular P̃2 is the blow up of P2 in the seven points ϕ|H−N8|(Ni) (which are

the singular points of the branch locus of the map X2 → P2) and thus P̃2 is a del

Pezzo surface of degree 2. The cover involution of the double cover X2 → P̃2 is
an involution i, such that i∗(H − N8) = H − N8, i

∗(Ni) = Ni, i = 1, . . . 7 and
ι∗(N8) = 2H − 3N8. One is now able to rewrite the action of i∗ on the basis
{L, e1 . . . , e8} and one finds that i∗ = ι∗dP (where ι∗dP is as in Proposition 4.11).

Thus, we the notation of (4.4), one obtains P̃2 = dP , ιdP = i and the map πdP

is induced by the projection of ϕ|H|(X2) from the node ϕ|H|(N8). The even set
{N1, . . . , N7, N

′′
8 } is nothing but the image of the even set {N1, . . . , N8} for the

action of ιdP .

In Section 4.3 we proved that the construction of the D4 Galois cover of Xd is
totally determined by two sets of rational curves in Xd, i.e. the sets {R1, . . . , R8}
and {N1, . . . , N8}. In particular in the case we are now considering, i.e. if d = 1,
the curves Ri, i = 1, . . . , 8 were already considered in the diagram (4.4) and are
mapped by q3 : X1 → P2 to the eight singular points of the branch sextic B ∩ C0.
We now describe the curves N i, by giving their image as plane curves q3(Ni) ⊂ P2.
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By construction, q3(Ni) = π(Ni), where π : X2 99K P2 is the rational 22 : 1 map
given in (4.4).

Proposition 4.13. For each i = 1, . . . , 7, the curve π(Ni) ⊂ P2 is a bitangent line
to the quartic B. The curve π(N8) is a rational irreducible sextic D ⊂ P2 which is
tangent to B ∪ C0 in all their intersection points. The curves π(Ni), i = 1, . . . , 8
split in X1, the orbit of Ni with respect to 〈ιQ, ιdP 〉 consists of two rational curves
if i = 1, . . . , 7 and of the four curves if i = 8.

Proof. The surface dP is a degree 2 del Pezzo surface, and then it is naturally
endowed with an involution i, which is the cover involution of the 2 : 1 map dP → P2

(see [DO, Chaptes VII, Section 4] for details on del Pezzo surfaces of degree 2 and
its involution). The double cover q2 : dP → P2 is branched on B ⊂ P2. Since
dP is a del Pezzo surface of degree 2, there is a set of 7 disjoint (−1)-curves on
dP , denoted by pi, i = 1, . . . , 7 and such that βdP : dP → P2 is a contraction of
these (−1)-curves. The plane curves q2(pi) ⊂ P2 are 7 lines which are bitangent to
B, and each of them splits in the double cover into two rational curves pi, i(pi),
i = 1, . . . , 7. So we have the following commutative diagram:

X2

ϕ|H−N8|

''P
PP

PP
PP

PP
PP

PP
PP

P

βX2

��

2:1
// dP

βdP

��

q2

2:1
// P2 ⊃ B ∪ C0

ϕ|H|(X2)
2:1

// P2

(4.5)

where βX2 contracts the curvesNi, i = 1, . . . , 8. For i = 1, . . . , 7, one has ϕ|H−N8| (Ni) =

βdP (pi). Each of the 7 lines q2(pi) ⊂ P2 is bitangent to B, and intersects C0

transversally. So q2(pi) does not split in the double cover q1 : Q → P2, which is
branched on C0. In particular, q−1

1 (q2(pi)) = q−1
1 (π(Ni)) is an irreducible smooth

rational curve for i = 1, . . . , 7. So, for each i = 1, . . . , 7, π−1(πdP (pi)) ⊂ X2 consists
of a pair of rational curves, switched by ιQ, preserved by ιdP and then switched by
σ = ιQ ◦ ιdP . This can also be checked directly on the classes of the curves Ni by
using Propositions 4.11 and 4.12, indeed ι∗Q(Ni) = Ni and ιdP (Ni) = σ(Ni) 6= Ni

for i = 1, . . . , 7. Since for each i ∈ {1, . . . , 7} the curve Ni is a section of both the
elliptic fibrations |E1| and |E2| on X2, the curve q1(Ni) ⊂ Q ≃ P1 × P1 is a curve
of bidegree (1, 1) if i = 1, . . . 7.

It remains to describe the curve N8 ⊂ X2. The orbit of N8 is given by the
four classes N8 = 3E1 + e2 − e8, N ′

8 := σ(N8) = 3E1 − 3e1 − e2 + e8; N ′′
8 =

ιdP (N8) = 3E1 − 2e1 + e2 − e8, N
′′′
8 := σ(ιdP (N8)) = 3E1 − e1 − e2 + e8. Since

N8+N ′
8+N ′′

8 +N ′′′
8 ≃ 12E1−6e1 ≃ 6L the curve π(N8) is a sextic C8 in P2, which

splits in all the double covers Q, dP and X2 of P2. The sextic C8 is a rational curve
(since it is the image of rational curves) and thus has 10 nodes. Moreover, since C8

splits in the double covers, C8 ∩ C0 consists of 6 points with multiplicity two and
C8 ∩ B consists of 12 points with multiplicity two. The inverse image of C8 in Q
consists of two rational curves, one of bidegree (1, 5) which is the common image of
N8 and N ′′′

8 and one of bidegree (5, 1) which is the common image of N ′
8 and N ′′

8 .
The bidegrees of these curves are obtained by the fact that N8 is a section of E1

and a 5-section of E2, and N ′
8 is a section of E1 and a 5-section of E2. The inverse

image q−1
3 (C8) in X1 consists of two rational curves, one is π2(N8) = π2(N

′
8) and

it is the curve denoted by N8 in Section 4.3.2, the other is π2(N
′′
8 ) = π2(N

′′′
8 ). �
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Remark 4.14. As in the proof of Proposition 4.13 one is able to determine the
image of the curves in the linear systems |Ei| under the map π. The orbit of E1

for 〈ι∗Q, ι
∗
dP 〉 is {E1, E2}, thus we have two elliptic fibrations which are switched by

σ and by ιdP but each of them is preserved by ιQ. Since E1 + E2 = L, a curve

F1 ∈ |E1| is mapped to a line f1 in P2. Moreover, for a general F1, q
−1
1 (f1) is the

union of the two curves πQ(F1) and πQ(σ(F1)). Hence the line f1 is tangent to the
conic C0 (which is the branch locus of q1 : Q → P2). The line f1 does not splits
for the covers q2 and q3 and in particular the class (q3)∗(E1) induces an elliptic
fibration on X1. So q−1

3 (f1) is a genus 1 curve. This implies that q ∩ B consists

of 4 disjoint points (which are the branch points of the 2 : 1 cover q−1
3 (f1) → f1).

Hence the 1-dimensional linear system of genus 1 curve in |E1| is mapped by π to
the 1-dimensional linear system of lines tangent to the conic C0. The same holds
true for the 1-dimensional linear system |E2|, since σ∗(E1) = E2.

By definition the 2 : 1 map q2 : dP → P2 is the anticanonical map, and then,
denoted by h the class of a line in P2, q∗2(h) = −KdP . So q−1

2 (f1) is a genus 1
curve in the anticanonical system, with the special property that it intersects the
curve q−1

2 (C0) with even multiplicity in each of their intersection points. Hence the

curve q−1
2 (f1) ⊂ dP splits in the double cover πdP : X2 → dP . With the notation

of (4.5), the curve βdP (q
−1
2 (f1)) is a plane cubic tangent to βdP (q

−1
2 (C0)).

Until now our point of view was to consider X2 as a surface with a symplectic
automorphism σ and to determine its structure as Nikulin surface, but one can
consider the reverse problem: given a Nikulin surface with Néron–Severi group
M2,2, it has a very natural model as quartic in P3 with 8 nodes. To reconstruct the
structure of this surface as double cover of P1×P1 admitting a symplectic involution
one has to identify the two elliptic fibrations ϕ|E1| : X2 → P1 and ϕ|E2| : X2 → P1.

We gave a change of basis from {E1, e1, . . . , e8} to {H,N1, . . . , N7,
∑8

i=1 N1/2} in
proof of Proposition 4.12. Its inverse allows us to find the class of E1 in terms

of the classes H and Ni, i = 1, . . . , 8, in particular E1 = H − (
∑8

i=1 Ni)/2. The
curves in this linear system are mapped to cubics by the linear system |H − N8|.
So, given a curve F1 ∈ |E1|, c := ϕ|H−N8|(F1) is a cubic curve in P2 and ϕ−1

|H−N8|
(c)

consists of two curves, whose linear systems are E1 = H − (
∑8

i=1 Ni)/2 and E2 =

2H − (
∑8

i=1 Ni)/2 − 2N8 respectively. Their sum exhibits S as double cover of
P1 × P1 admitting the required symplectic involution.

In [vGS, Section 3.7] an equation of X2 is given, starting from a description of
a K3 surface X4 such that NS(X4) = L′

4,2. The surface X4 is given as complete

intersections of three quadrics in P5
(y0:y1:x0:...:x3)

of the form




y20 = Q1(x0 : x1 : x2 : x3)
y21 = Q2(x0 : x1 : x2 : x3)
y0y1 = Q3(x0 : x1 : x2 : x3)

(4.6)

Each complete intersection with equation (4.6) admits a symplectic involution in-
duced by the projective transformation

(y0 : y1 : x0 : x1 : x2 : x3) 7→ (−y0 : −y1 : x0 : x1 : x2 : x3).

As shown in [vGS, Section 3.7], a singular model of the quotient surface is given by
(4.7)
Q1(x0 : x1 : x2 : x3)Q2(x0 : x1 : x2 : x3) = Q2

3(x0 : x1 : x2 : x3) ⊂ P3
(x0:x1:x2:x3)

.
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By Proposition 4.5, the smooth model of the quotient surface (4.7) has Néron–Severi
group isometric to M2,2, i.e. it is the surface X2 ≃ S and the map to P3

(x0:x1:x2:x3)

is given by the linear system of the pseudo ample polarization H (with the notation
of Proposition 4.12).

Let us consider the pencil of quadrics Pt := {Q1 = tQ3} ⊂ P3. It cuts on X2

a pencil of curves, whose class is 2H −
∑8

i=1 Ni, since all the quadrics in Pt pass
through the 8 points in Q1 ∩Q2 ∩Q3, which are the singular points of the surfaces
in (4.7). For almost every t, Pt cuts two genus 1-curves on the surfaces in (4.7):
one is the complete intersection Q1 ∩ Q2 (and does not depend on t) the other is
(Q1 − tQ3) ∩ (Q3 − tQ2). So, the first curve is a fixed component of the linear

system 2H −
∑8

i=1 Ni, the latter is a movable curve. The curves Q1 ∩ Q2 and
(Q1− tQ3)∩ (Q3 − tQ2) intersect transversally in the singular points of the quartic
(4.7). So, they have no intersection points in the blow up X2 of the quartic (4.7)
in its singular points. Hence the curves Q1 ∩Q2 and (Q1 − tQ3) ∩ (Q3 − tQ2) are
two fibers of the same fibration X2 → P1

t and are represented by the same divisor

in NS(X2). It is necessarily
(
2H −

∑8
i=1 Ni

)
/2 = H −

(∑8
i=1 Ni

)
/2. This is the

divisor E1 considered above so we conclude that if the surface S ≃ X2 is embedded
in P3 as a quartic of the form Q1Q2 = Q2

3, then the elliptic fibration E1 is cut out
by Pt := {Q1 = tQ3}. The elliptic fibration E2 is the image of E1 under ιdP , which
is the involution induced by the projection from the node ϕ|H|(N8) of ϕ|H|(X2).

4.5. Special 10-dimensional subfamilies of L2 and M2. In Proposition 3.1
we discussed the family Un of (U ⊕ Mn)-polarized K3 surfaces, proving that it is
contained in Ln ∩Mn and it has codimension 1 in this space. This holds for every
admissible n, so in particular for n = 2. Here we reconsider this family, since it also
has interesting properties with respect to the components of M2: it is contained
in the common intersection of all the irreducible components of M2. We discuss
the analogous property for the components of L2, identifying another interesting
family of K3 surfaces, which has codimension 1 in each component of L2. More
precisely the aim of this section is to prove the following:

• There exists an irreducible connected 10-dimensional subvariety of the mod-
uli space of K3 surfaces (it is U2) which is properly contained in all the
families of Nikulin surfaces. Moreover all the K3 surfaces in this subvariety
also admit a symplectic involution.

• There exists an irreducible connected 10-dimensional subvariety of the mod-
uli space of K3 surfaces which is properly contained in all the families of
K3 surfaces admitting a symplectic involution. All the K3 surfaces in this
subvariety are also Nikulin surfaces.

Proposition 4.15. There exists an overlattice of index 2 of U(2)⊕N , denoted by
(U(2)⊕N)′, which is isometric to U ⊕N and such that for any d ∈ N≥1, both the
lattice Md,2 and the lattice M ′

2d,2 are primitively embedded in (U(2)⊕N)′. Hence
all the irreducible components of the 11-dimensional families of Nikulin surfaces
properly contain the 10-dimensional family U2 = P(U ⊕N).

Proof. Let us consider the lattice U(2) ⊕ N . Let u1 and u2 be the basis of U(2)
such that u2

j = 0, j = 1, 2 and u1u2 = 2, and let wi,j , i = 1, 2 , j = 1, 2, 3, be

a set of vectors in N such that wi,h/2 are contained in the discriminant group
of N ⊂ U(2) ⊕ N . Moreover we assume that the discriminant form on wi,j/2,
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i = 1, 2, j = 1, 2, 3 is u(2)3. The vector v := (u1 + u2 + w1,1 + w2,1) /2 is isotropic
in AU(2)⊕N , and the lattice obtained by adding the vector v to U(2)⊕N is an even

overlattice of index 2 of U(2) ⊕ N . Let us call it (U(2)⊕N)
′
. The discriminant

group of (U(2)⊕N)
′
is generated by (u1 + w1,1) /2, (u1 + w1,2) /2, wi,j , i = 1, 2,

j = 2, 3 and its discriminant form is u(2)3. There is a unique, up to isometry, even
hyperbolic lattice with rank 10, length 6 and prescribed discriminant form u(2)3.
Hence (U(2)⊕N)

′
≃ U ⊕N .

To give a primitive embedding of Md,2 ≃ 〈2d〉 ⊕ N in U ⊕ N it suffices to give

a primitive embedding of 〈2d〉 in U , for example the embedding

(
1
d

)
→֒ U is

primitive.
To give a primitive embedding of M ′

2d,2 in (U(2)⊕N)′ we consider a primitive

embedding of M2d,2 in U(2) ⊕ N , which extends primitively to their overlattices.
As above, a primitive embedding of M2d,2 ≃ 〈4d〉 ⊕ N in U(2) ⊕ N is induced by
a primitive embedding of 〈4d〉 in U(2). We fix this embedding to be 〈u1 + du2〉 →֒
U(2). This induces a primitive embedding of M ′

2d,2 in (U(2)⊕N)
′
≃ U ⊕N . �

Let S be a K3 surface with NS(S) ≃ U ⊕N . Then S admits an elliptic fibration
with 8 reducible fibers of type I2 and a 2-torsion section. We denote by F the class
of the fiber of this fibration, by O the class of the zero section, by t the 2-torsion
section and by Cj

i , i = 0, 1, j = 1, . . . , 8 the i-th component of the j-th fiber (with
the usual assumption that the 0-component meets the zero section). A basis of

U ⊕ N is then given by F , F + O, Cj
1 , j = 1, . . . 7,

(∑8
j=1 C

j
1

)
/2 = 2F + O − t.

The translation by a 2-torsion section is a symplectic involution, denoted by σ
and classically called van Geemen–Sarti involution. Its action is F ↔ F , O ↔ t,
Cj

1 ↔ Cj
0 . The sublattice of NS(S) invariant for σ is NS(S)σ ≃ 〈F, s + t〉 ≃ U(2).

This exhibits the Néron–Severi group NS(S) ≃ U ⊕N as an overlattice (necessarily

of index 22) of U(2)⊕E8(−2), since (NS(S)σ)
⊥
≃ E8(−2). Chosen a positive integer

e, the divisor v := F −e(s+ t) has the following properties: v2 = −4e, v is invariant
and v⊥NS(S) ≃ L′

2e,2. In particular the van Geemen–Sarti involution on S induces

the symplectic involution whose action on NS(S) is −1 on E8(−2) →֒ L′
2e,2 ≃ v⊥

and +1 on v. Hence the isometry σ∗ on NS(S) extends the isometry associated
to the symplectic involution on L′

2e,2-polarized K3 surfaces, once an embedding
L′
2e,2 →֒ (U ⊕N) as in the proof of Proposition 4.15 is fixed.
Now we consider the analogous problem on the irreducible components of Ln.

Proposition 4.16. The 10-dimensional family P(U ⊕ E8(−2)) is properly con-
tained in all the families P(Le,2) and P(L′

2e,2).
The lattice U⊕E8(−2) is isometric to the lattice U(2)⊕N , hence all the members

of the family P(U ⊕ E8(−2)) are Nikulin surfaces.

Proof. The primitive embedding of Le,2 ≃ 〈2e〉⊕E8(−2) in U ⊕E8(−2) is induced

by the primitive embedding of 〈2e〉 ≃

〈(
1
e

)〉
in U , as in the proof of Proposition

4.15. We observe that U ⊕ E8(−2) is an overlattice of index 2 of U(2) ⊕ E8(−2).
Indeed, similarly to what we did in proof of Proposition 4.15, we consider the basis
u1 and u2 of U(2) ⊂ U(2)⊕E8(−2) and the vectors wi,j/2 i = 1, 2, j = 1, 2, 3, 4 in
AU(2)⊕E8(−2) such that the discriminant form on u1/2, u2/2 and wi,j/2, i = 1, 2,

j = 1, . . . , 4 is u(2)5. By adding v = (u1 + u2 + w1,1 + w2,1)/2 to U(2) ⊕ E8(−2)
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one obtains an even overlattice (U(2)⊕ E8(−2))
′
of index 2 of U(2) ⊕ E8(−2),

which is isometric to U ⊕ E8(−2). Hence the primitive embedding of L′
2e,2 in

(U(2)⊕ E8(−2))
′
≃ U ⊕ E8(−2) is induced by a primitive embedding of 〈4e〉 in

U(2), which is given by 〈4e〉 ≃

〈(
1
e

)〉
in U(2).

Since Le,2 and L′
2e,2 are primitively embedded in U⊕E8(−2) and they determine

uniquely their orthogonal complement in ΛK3, the families P(Le,2) and P(L′
2e,2)

properly contain the family P(U ⊕ E8(−2)).
The isometry between the lattices U⊕E8(−2) and U(2)⊕N follows by observing

that they are lattices with rank 10, length 8 and the same discriminant form. �

Let ER : R → P1 be a rational elliptic surface (i.e. R is a rational surface
endowed with an elliptic fibration ER). It is known that a base change of order 2
on this elliptic fibration branched on two smooth fibers induces an elliptic fibration
ES : S → P1 on a K3 surface S. If the fibration ER has no reducible fibers, then
NS(S) ≃ U⊕E8(−2), see e.g. [GSal, Proposition 4.6]. More in general the family of
the K3 surfaces obtained by a base change of order 2 on a rational elliptic surface,
is the family P (U ⊕ E8(−2)), see e.g. [GSal].

Proposition 4.17. The 10-dimensional family P(U ⊕ E8(−2)) is the family R
of the K3 surfaces obtained by a base change of order two on a rational elliptic
fibration ER : R → P1. Let S be a general member of R and let ES be the elliptic
fibration induced by ER: ES has no reducible fibers and its Mordell–Weil rank is

equal to 8. The symplectic involution σ on S preserves ES. Denoted by S̃/σ the

desingularization of S/σ, NS(S̃/σ) ≃ U ⊕D4 ⊕D4.

Proof. We already observed that S is obtained by a base change of order 2 by
ER : R → P1. Then ES admits an involution ι which acts only on the basis of the
fibration, and which is the deck involution of the generically 2:1 cover R → S. The
involution ι maps fibers of ES to other fibers and in particular preserves the class
of the fiber and of the sections, i.e. it acts trivially on the Néron–Severi group.
Thus it preserves the elliptic fibration (cf. [GSal, Proposition 4.6]). Moreover, ι
preserves exactly two fibers of ES (the ramification fibers of the cover R → S). The
elliptic fibration ES is preserved also by the elliptic involution ǫ, which preserves
the classes of the fiber and of the zero section (i.e. a set of generators of U in
NS(S) ≃ U ⊕E8(−2)). The composition σ := ι ◦ ǫ is a symplectic involution which
acts trivially on U →֒ U⊕E8(−2) ≃ NS(S) and as −id on E8(−2) →֒ U⊕E8(−2) ≃
NS(S). Thus σ is a symplectic involution whose fixed locus consists of 4 points on
each of the two fibers preserved by ι. Hence the elliptic fibration ES : S → P1

induces an elliptic fibration on S̃/σ whose generic fiber is a copy of the two fibers
of ES switched by σ. The images of the two fibers preserved by ι are two fibers

of type I∗0 . The Picard number of S̃/σ is 10, which is also the rank of the trivial
lattice of an elliptic fibration with two fibers of type I∗0 . We conclude that there

are no sections of infinite order for the elliptic fibration induced by ES on S̃/σ and

that NS(S̃/σ) ≃ U ⊕D4 ⊕D4. �

We observe that U ⊕D4 ⊕D4 6≃ U ⊕E8(−2) since their discriminant groups are

different, so NS(S) 6≃ NS(S̃/σ).
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By Proposition 4.16, if S is a K3 surface such that NS(S) ≃ U ⊕E8(−2), then it
admits a symplectic involution (described in the proof of Proposition 4.17) and it is
also 2 : 1 cyclically covered by a K3 surface. So it admits a 2-divisible set of rational
curves, which we describe here. As observed S is obtained by a base change of order
2 on R. Since R is a rational elliptic surface, it is the blow up of P2 in nine points
which are the base points of a pencil of generically smooth cubics. So S, which is a
2:1 double cover ofR branched on two smooth fibers, is a generically 2 : 1 cover of P2

branched in the union of two smooth cubics C1 and C2 (see e.g. [GSal, Section 2.2]).
The branch locus is singular in the nine points C1∩C2. We denote by H the genus 2
divisor on S such that ϕ|H| : S → P2 is this 2 : 1 cover of P2 and by Di, i = 0, . . . 8,
the classes of the rational curves contracted by ϕ|H| to the nine singular points of
the branch locus. By construction the fiber of the fibration ES is the class of C1

(and of C2), i.e.
(
3H −

∑8
i=0 Di

)
/2. The curves in the linear system |H−D0| (and

in |H−D1| respectively) on S are mapped to lines of a pencil in P2, with base point
ϕ|H|(D0) (with base point ϕ|H|(D1) respectively). Each line in this pencil meets
the branch in 4 points (with the exception of ϕ|H|(D0)), and so its inverse image in
S is a 2 : 1 cover of a rational curve branched in 4 points. So the curves in |H−D0|
(resp. |H −D1|) are genus 1 curves and |H −D0| and |H −D1| induce two genus
1 fibrations on S (see [GSal, Proposition 3.8]). Since (H −D0)(H −D1) = 2, the
map ϕ|2H−D0−D1| is a generically 2 : 1 map to P1×P1 ⊂ P3 (see [SD]). It contracts
the 8 mutually disjoint rational curves Di, i = 2, . . . , 8, and H − D0 − D1. The
last contracted curve is the pullback of the line through the two points ϕ|H|(D0)

and ϕ|H|(D1). The 2 : 1 map ϕ|H−D0| × ϕ|H−D1| : S → P1 × P1 is induced by

the 2 : 1 map ϕ|H| : S → P2 via the birational transformation β : P2 → P1 × P1,

which is the blow up of P2 in the two points ϕ|H|(D0) and ϕ|H|(D1) followed by
the contraction of the line through these points. So the branch locus of the 2 : 1
cover S → P1×P1 splits in the union of two genus 1 curves of bidegree (2, 2), which
are the images of the two cubics C1 and C2 under the birational transformation
β. The curves β(C1) and β(C2) intersect in 8 points in P1 × P1, which are the
images of the curves Di, i = 2, . . . , 8, and H−D0−D1. The classes of the pullback
of β(C1) and β(C2) on S coincide and each of them is represented by the class(
2(H −D0) + 2(H −D1)−

∑8
i=2 Di − (H −D0 −D1)

)
/2. So the set of curves

{D2, . . . D8, H −D0 −D1} is an even set.
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