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Abstract

Describing and reasoning about asynchronous distributed systems is often a difficult and error
prone task. In this paper we experiment the Input/Output Automata framework as a tool to
describe and reason about cryptographic protocols running in an asynchronous distributed system.
We examine a simple certified email protocol [5], give its formalization using the IOA model, and
prove that some security properties are satisfied during the execution of the protocol.

1 Introduction

With the spreading diffusion of the Internet and the World Wide Web, our
society is becoming more and more dependent on communication data which
are transmitted over computer networks. A large number of transactions
involving a growing number of people has been actually replaced by their
digital analogues, in which electronic “objects” are exchanged among two
or more parties. An example comes from the diffusion of the electronic mail
service which allows users to exchange messages containing text or multimedia
files.

Because of its features, such as low cost, rapidity and accessibility, the
email service is increasingly used in place of ordinary mail. In many cases,
email messages are recognized as receipts or evidences of online transactions,
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such as buying airline tickets, or submissions of papers for publications in
conferences or journals, and so on. However the use of email poses some
problems, since in its simplest form the email service does not have many
features that are usually required in such cases. The standard email service is
based on the Simple Mail Transfer Protocol [12] and Post Office Protocol [10],
which do not offer guarantees on the delivery and the integrity of the messages.
Messages are usually stored and transmitted in plain text allowing a malicious
adversary to tap the connection during the transfer and making him able to
access sensible data.

In order to provide some form of protection, cryptographic techniques have
been employed to obtain additional guarantees on the email service. A number
of certified email protocols has been presented in literature, ensuring that the
message exchange procedure provides the participants with different security
properties. Usually such protocols involve a trusted third party (ttp for brief)
which controls the behavior of the participants, helping them in the message
exchange, and resolving any dispute if necessary. According to the role played
by the ttp, protocols have been classified as inline or optimistic. In inline
protocols [3,5,14,15], the ttp is actively involved in each message exchange.
In optimistic protocols [1,2,9], the sender and the receiver perform the message
exchange without the intervention of the ttp but they can invoke the ttp to
resolve any dispute, caused for example by a cheating attempt from one of the
party.

In this paper we analyze Deng’s certified email protocol [5], and present
its formal model relying on the Input/Output Automaton [7], (IOA for brief),
framework. IOA provides a framework allowing both a precise description
of the code and the possibility of very detailed proofs [6,13]. The aim of the
work is to use the IOA as a tool to describe and to reason about cryptographic
protocols running in an asynchronous distributed system. In this perspective,
to perform the analysis, we consider a scenario in which the participants to
the protocol are modeled as interacting nodes in a distributed system. Their
behaviour is then described through IOA automata. The IOA model is then
used to prove that some security properties are satisfied during the execution
of the protocol.

The IOA formalism has been previously employed for the modeling and
the analysis of security protocols in [8], where the correctness of a simple
shared key communication protocol and the Diffie-Helmann key distribution
protocol has been proved. The security of Asokan’s certified email protocol
[1] has been analyzed in [11], where a formal model relying on simulatability
and probabilistic state-transition machines is employed.

This paper is organized as follows. In the next section, we introduce the
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framework we consider to analyze the protocol, presenting the setting and
cryptographic primitives used during the execution of the protocol. In Sec-
tion 3 we describe Deng’s email protocol, and in Section 4 we present its IOA
formalization. Finally, the correctness of the protocol is provided in Section
5, where non repudiation properties for the origin and destination and fair-
ness properties are shown to hold with the help of invariant assertion proofs.
Conclusions are drawn in Section 6.

2 The Framework

We consider a distributed system consisting of n nodes (processors) P =
{1, 2, . . . , n} and a special node, namely the Trusted Third Party (ttp for
brief) which is delegated by the participants to control the behavior of the
parties, assist them during the exchange of messages and resolve any dispute
if necessary. The ttp is a fully trusted party, meaning that the senders and
the receivers have complete trust in it. Moreover, there is a communication
channel between each node of the set P∪ {ttp}.

2.1 Cryptographic Primitives

The cryptographic primitives used in this paper are:

- Sig
A
(m): denotes the digital signature of the message m using the private

key of user A under a public-key signature algorithm;

- h(m): indicates the hash of message m using some collision resistant hashing
scheme. A collision resistant hash function maps arbitrary length messages
to constant size messages such that it is computationally infeasible to find
any two distinct messages hashing to the same value.

- PK
B
(m): denotes the encryption of message m using the public key of user

B in some public-key encryption algorithm. The algorithm should provide
non-malleability, i.e., given a ciphertext it is impossible to generate another
ciphertext such that the respective plaintexts are related.

- Ek(m): denotes the encryption of message m using the key k under some
symmetric encryption algorithm.

2.2 IOA Automata

In order to help the reader not familiar with IOA to understand the code we
briefly explain how to read IOA code using a simple example.

An IOA is a simple type of state machine in which transitions are associ-
ated with named actions. Figure 1 shows an automaton that models a channel

C. Blundo et al. / Electronic Notes in Theoretical Computer Science 99 (2004) 339–359 341



channeli,j

State:
Msgs, a set of elements of M, initially empty

Actions:

input Send(m)i,j

Eff: add m to Msgs
output Receive(m)i,j

Pre: m is in Msgs
Eff: remove m from Msgs

Tasks: {Receive(m)i,j}

Fig. 1. Automaton channeli,j

for communication from node i to node j. The state is a list of all the vari-
ables that describe the state of the automaton. For this channel the state is
completely described by a variable that contains the messages still in transit
on the channel.

The channel has an input action Send(m)i,j which is controlled by another
(unspecified in the example) automaton A, modeling node i, which has the
same action Send(m)i,j as an output action. Whenever automaton A executes
this action also the channel executes the action (at the same time), we will
say that the action Send of A controls the action Send of channeli,j. In this
case the effect of the action, in the channel automaton, is to add a message in
the set of in transit messages.

The channel has an output action Receive(m)i,j which has a precondition
(a boolean condition) specifying when the action is enabled, that is when
the action can be executed. An output action can be executed whenever it
is enabled. Moreover, all other automata that have such an action as input
will execute it. There will be an automaton B, modeling node j, that has
Receive(m)i,j as an input action.

There are also internal actions that are similar to output actions (i.e., have
a precondition and an effect) with the difference that they do not interact with
other automata (i.e., several automaton may have internal actions with the
same name and they are all independent). We use the notation name.var to
indicate variable var of automaton name, for example channel.Msgs refers to
variable Msgs of automaton channeli,j.
Each IOA comes equipped with a partition of its locally controlled actions
(output and internal actions); each equivalence class in the partition repre-
sents some task that the automaton is supposed to perform. In order for the
input/output interaction to happen automata describing a system have to be
composed together. The composition of several IOA is one single IOA. The
execution of an IOA consists of a sequence of alternating states and transi-
tions, beginning from a starting state. An execution is called fair if each task
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gets infinitely many opportunities to perform one of its actions. Formally, an
execution fragment α of an IOA A is said to be fair if the following conditions
hold for each class C of tasks of A:

(i) If α is finite, then C is not enabled in the final state of α.

(ii) If α is infinite, then α contains either infinitely many events from C or
infinitely many occurrences of states in which C is not enabled.

We refer the reader to [7], Chapters 8 and 23, for more information about
the IOA models.

3 The CMPl Protocol

We now describe the CMP1 protocol for certified mail presented by Deng et
al. in [5]. A concise representation of protocol message flow is provided in
Figure 2.

Thrusted Third Party TTPSender S

M3 < Sig
ttp

(Sig
R

(S, R, ttp, h(m))), R, m >M4 =< Sigttp(Sig
R

(S, R, ttp, h(m))) >

M1 =< S, R, ttp, h(m), PK
ttp

(k), Ek(Sig
S

(S, R, ttp, m)) >

Receiver R

M2 =< Sig
R

(S, R, ttp, h(m)), PK
ttp

(k), Ek(Sig
S

(S, R, ttp, m)) >

Fig. 2. A concise representation of protocol message flows in CMPl.

To send a mail message containing m to the Receiver R, the Sender S first
digitally signs (S, R, ttp, m) with his private key to produce Sig

S
(S, R, ttp, m).

Then, S generates a session key k and encrypts the signed data under k using
a symmetric key cryptosystem. Finally, S computes h(m) and sends the mes-
sage M1 = 〈S, R, ttp, h(m), PK

ttp
(k), Ek(Sig

S
(S, R, ttp, m))〉 to R. The clear

text part (i.e., S, R, ttp, h(m)) in this message serves as the mail identifier.
This message informs R that there is a certified mail from S to him. After
receiving this message, R has two choices. He may ignore the message. In this
case, the protocol is aborted. He may choose to receive the message. In this
case, he signs (S, R, ttp, h(m)) using his private key and sends the message
M2 = 〈Sig

R
(S, R, ttp, h(m)), PK

ttp
(k), Ek(Sig

S
(S, R, ttp, m))〉 to ttp. Upon

receiving this message, the ttp first checks the validity of Sig
R
(S, R, ttp, h(m))

using public key of R. Then, it decrypts PK
ttp

(k) using its private key, and
decrypts Ek(Sig

S
(S, R, ttp, m)) using k. Next, the ttp checks the validity of

Sig
S
(S, R, ttp, m) using S’s public key, computes h(m), and compares this

h(m) with the one received in Sig
R
(S, R, ttp, h(m)). If the two values match,

the ttp knows that m is the mail content that S wanted to send to R, and that
R is willing to receive m. In this case, the ttp is able to compute the messages
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M3 = 〈Sig
ttp

(Sig
R
(S, R, ttp, h(m))), R, m〉 corresponding to the proof-of-origin

and M4 = 〈Sig
ttp

(Sig
S
(S, R, ttp, m))〉 corresponding to the proof-of-delivery

and sends them to R and to S, respectively.
In the next sections, by using the IOA model, we show that the protocol
CMP1 meets the following requirements:

• Non-repudiation of origin. The protocol provides the recipient of an email
with an irrefutable proof that the mail content received was the same as
the one sent by the originator. This proof-of-origin can protect against any
attempt by the originator to falsely deny sending that message.

• Non-repudiation of delivery. The protocol provides the mail originator with
an irrevocable proof that the mail content received by the recipient was the
same as the one sent by the originator. This proof-of-delivery can protect
against any attempt by the recipient to falsely deny receiving the message.

• Fairness. Proper execution of the protocol ensures that the proof-of-delivery
from the mail recipient and the proof-of-origin from the mail originator are
available to the mail originator and recipient, respectively. Moreover, the
protocol must be fail-safe. That is, incomplete execution of the protocol
will not result in a situation where the proof-of-delivery is available to the
originator but the proof-of-origin is not available to the recipient, or vice
versa.

4 Description of CMP1 using IOA Model

In this section we provide a detailed description of CMP1 protocol by using the
IOA model. We use an automaton senderi to model the sender part on node
i and an automaton receiveri to model the receiver part on node i. Hence,
each node i ∈ P is modeled with the composition of automata: senderi and
receiveri. The ttp is modeled with a single automaton and, for each i, j ∈ P∪
{ttp} there is an automaton which models the channel between the node i and
the node j.

We assume that the channel from the ttp to any node i ∈ P is reliable,
i.e., we assume that these channels do not lose or alter in transit messages.
Therefore, we distinguish two type of channels, a reliable one: channelttp,i,
and an unreliable one: UNREL CHANNELi,j , for any i ∈ P and j ∈ P∪ {ttp}.
The overall system is described by the composition of all the above automata.
Figure 3 gives an overview of the automata that compose the system.
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Unreliable channelj,ttp

Unreliable channeli,j

Unreliable channelj,i

Unreliable channeli,ttp

Channelttp,i

Channelttp,jSENDERi

SENDERj

RECEIV ERj

RECEIV ERi

TTP

Fig. 3. Overview of the system modeled as IOA.

4.1 IOA Code for the Sender

The code of senderi is shown in Figure 4. For each session, the sender keeps
the following information: the StatusSnd is the “program counter” that goes
through the steps of the normal protocol; variables M1 and M4 are used to
store the corresponding messages of the protocol.

senderi

Let S = {idle, send, wait, done}
State:

for each id ∈ N
StatusSnd(id) ∈ S, initially idle

M1(id) ∈ M, initially nil

M4(id) ∈ M, initially nil

Actions:
input Deliver(m, j)i

Eff: id := Getuniqid(m, j)
M1(id) := Constr M1(m, id);
StatusSnd(id) := send

output Send(M1(id), id)i,j

Pre: StatusSnd(id)= send

Eff: StatusSnd(id):= wait

input Receive(m, id)ttp,i

Eff: if (StatusSnd(id) = wait)
M4(id) := m
StatusSnd(id) := done

Tasks: {Send(M1(id), id)i,j}

Fig. 4. Automaton senderi

We can now start with the description of the automaton actions, and will
proceed by looking at each of them in the order they appear in the code from
top to bottom, left column first. This order corresponds to the logical order
in which the actions are executed. Notice the use of the unique identifier id:
it is attached to all the messages concerning a particular email: this is just to
avoid interference with possible delayed messages from other sessions.

We assume that the environment tells the automaton when to send an
email m to a recipient j; this is modeled by the input action Deliver(m, j)i. A
new session id is created for this email by means of the function Getuniqid and
this id is used to identify all the communication related to this request. The
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first step in the processing of a request for an email m is simply to construct
the first message of the protocol M1 = 〈S, R, ttp, h(m), PK

ttp
(k),

Ek(Sig
S
(S, R, ttp, m))〉 where k is a session key, by using the function

Constr M1. Variable StatusSnd is set to send so that the only (non-input)
action that is enabled is the Send action. This action interacts with the
channel to the recipient j and sends the message stored in M1 . The program
counter goes into a wait state wait. All the non input actions are not enabled
now. The execution proceeds when a message is received from the ttp. When
this message is received, it is stored into variable M4 . The program counter is
updated to done. At this point the protocol has terminated successfully and
nothing else has to be done. The output action Send is in a task, so in a fair
execution it has infinitely many opportunities to be performed.

4.2 IOA Code for the Receiver

The code of receiveri is shown in Figure 5. As for the sender, state variables
are indexed by a session id. Again, the state variable StatusRcv is the “pro-
gram counter”. Variables M1, M2 and M3 are used to store the corresponding
messages of the protocol.

receiveri

Let S = {idle, received, wait, discarded, done}
State:

for each id ∈ N
StatusRcv(id) ∈ S, initially idle

M1(id) ∈ M, initially nil

M2(id) ∈ M, initially nil

M3(id) ∈ M, initially nil

Actions:

input Receive(m, id)j,i

Eff: M1(id):=m
StatusRcv(id) := received

output Send(M2 (id), id)i,ttp

Pre: StatusRcv(id) = received

M2(id)= Constr M2(M1 (id), id)
Eff: StatusRcv(id) := wait

output Discard(id)i

Pre: StatusRcv(id) = received

Eff: StatusRcv(id) := discarded

input Receive(m, id)ttp,i

Eff: if(StatusRcv(id) = wait)
M3(id):=m
StatusRcv(id) := done

Tasks: {Send(m, id)i,ttp, Discard(id)i}

Fig. 5. Automaton receiveri

We next describe the actions, top to bottom, left to right. The Lose action
models the delivery of a corrupt message. The program counter StatusRcv

is set to discarded and the protocol is aborted. The first Receive action
takes a message from the channel and starts processing the incoming message.
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Variable M1 is used to store the message itself. The program counter StatusRcv

is set to received so that the enabled actions are Send and Discard. The
automaton non-deterministically executes one of these actions. If it executes
the Discard action the program counter StatusRcv is set to discarded and
nothing else has to be done. Otherwise, using the function
Constr M2 the message M2 = 〈Sig

R
(S, R, ttp, h(m)), PK

ttp
(k), Ek(Sig

S
(

S, R, ttp, m))〉 is constructed and it is sent to ttp. The automaton goes into
a waiting state (no internal or output action is enabled) by setting StatusRcv

to wait. The automaton exits from this waiting state upon reception of a
message from ttp. When this message is received, it is stored into variable
M3 . The program counter is updated to done. At this point the protocol
has terminated successfully. The done state for this session, means that the
receiver has the original email. The Send and Discard actions are in the same
task, hence, in a fair execution this task gets infinitely many opportunities to
perform one of these actions.

4.3 IOA Code for the Trusted Third Party

ttp

Let S = {idle, received, send rcv, send snd, corrupt, done}
State:

for each id ∈ N
StatusTtp(id) ∈ S, initially idle Rcv(id) ∈ P , initially nil

M2(id) ∈ M, initially nil Snd(id) ∈ P , initially nil

M3(id) ∈ M, initially nil Hcheck(id) ∈ B, initially no

M4(id) ∈ M, initially nil HTtpToRcv(id) ∈ B, initially no

Actions:

input Receive(m, id)i,ttp

Eff: if(StatusTtp(id) = idle)
M2(id) :=m
Rcv(id) := ExtractRcv(m)
Snd(id) := ExtractSnd(m)
StatusTtp(id) := received

internal Check(M2(id),id)ttp
Pre: StatusTtp(id) = received

Eff: if(CheckSignHash(M2(id), id))
StatusTtp(id) := send rcv

M3(id):=Constr M3(M2(id), id)
M4(id):=Constr M4(M2(id), id)
Hcheck(id):=yes

else StatusTtp(id) := corrupt

output Send(M3(id))ttp ,Rcv(id)

Pre: StatusTtp(id) = send rcv

Eff: StatusTtp(id) := send snd

HTtpToRcv(id) := yes

output Send(M4(id))ttp ,Snd(id)

Pre: StatusTtp(id) = send snd

Eff: StatusTtp(id) := done

Tasks: {Check(M2(id),id)ttp}, {Send(M3(id))ttp,Rcv(id)}, {Send(M4(id))ttp,Snd(id)}

Fig. 6. Automaton ttp

C. Blundo et al. / Electronic Notes in Theoretical Computer Science 99 (2004) 339–359 347



The code of the ttp is shown in Figure 6. For each session, the ttp keeps
the following information: the StatusTtp is the “program counter”; variables
Snd and Rcv store the sender and the receiver for the session; variables M2,
M3 and M4 are used to store the corresponding messages of the protocol.
By using the CheckSignHash(m, id) function the ttp first checks the valid-
ity of Sig

R
(S, R, ttp, h(m)) using public key of R, then it decrypts PK

ttp
(k)

using its private key, and decrypts Ek(Sig
S
(S, R, ttp, m)) using k. Next, the

ttp checks the validity of Sig
S
(S, R, ttp, m) using S’s public key, computes

h(m), and compares this h(m) with the one received in Sig
R
(S, R, ttp, h(m)).

If the two values match, the ttp knows that m is the mail content that S

wanted to send to R and that R is willing to receive m. In this case the
function CheckSignHash(m, id) returns true and the ttp is able to construct
the proof-of-origin and the proof-of-delivery by using the functions Constr M3

and Constr M4, respectively. Moreover, we also use two history variables 2

Hcheck and HTtpToRcv. The variable Hcheck is set to yes if the ttp is able to
construct the message M3 and M4 corresponding to the proof-of-origin and to
the proof-of-delivery, respectively, whereas, the value of the history variable
HTtpToRcv is yes if the ttp has sent the message M3 to the receiver. We are
now ready to describe the actions of automaton ttp top to bottom, left to right.
The Receive(m, id)i,ttp action takes a message from the channel and stores it into
variable M2. The program counter StatusT tp is set to received so that the
enabled action is the internal action Check(M2(id),id)ttp . The Check(M2(id),id)ttp

action checks wether it may construct the proofs of delivery and origin with the
CheckSignHash(m, id) function. If this is not possible, the program counter
StatusTtp is set to corrupt and the protocol is aborted. Otherwise, the
ttp constructs the messages M3 = 〈Sig

ttp
(Sig

R
(S, R, ttp, h(m))), R, m〉 and

M4 = 〈Sig
ttp

(Sig
S
(S, R, ttp, m))〉 and the program counter StatusTtp is set to

send rcv so that the enabled action is the Send to the receiver. Finally, the
Send(M3(id))ttp,Rcv(id) action sets the program counter StatusTtp to send snd

and the Send action to the sender can be executed. The message M4 is sent
to the sender so that the program counter StatusTtp is update to done. The
done state for this session means that this session has completed and noth-
ing else has to be done. Actions Check(M2(id),id)ttp , Send(M3(id))ttp ,Rcv(id) and
Send(M4(id))ttp,Snd(id) are in three different tasks, hence, in a fair execution they
get infinitely many opportunities to be executed.

2 An history variable is a variable that is used only for the proofs but it is not necessary
in the real code.

C. Blundo et al. / Electronic Notes in Theoretical Computer Science 99 (2004) 339–359348



4.4 IOA Code for Channels

The code for UNREL CHANNELi,j is shown in Figure 7. The state is described
by variable Msgs that contains the messages still in transit on the channel. It
has an input action Send(m, id)i,j whose effect is to add a message in the set of in
transit messages. Non-deterministically the automaton can execute one of the
two actions in the task: {Receive(m, id)i,j, Lose(m, id)i,j}. The Receive(m, id)i,j

action models the delivery of the message, whereas the Lose(m, id)i,j action
models the loss or the alteration of a message in transit on the channel.

UNREL CHANNELi,j

State:
Msgs, a set of elements of M, initially empty

Actions:
input Send(m, id)i,j

Eff: add (m, id) to Msgs

output Receive(m, id)i,j

Pre: (m, id) is in Msgs
Eff: remove (m, id) from Msgs

internal Lose(m, id)i,j

Pre: (m, id) is in Msgs
Eff: remove (m, id) from Msgs

Task: {Receive(m, id)i,j , Lose(m, id)i,j}

Fig. 7. Automaton UNREL CHANNELi,j ,

The code for channelttp,i is shown in Figure 8. The automaton is described
in section 2.2. We have only added the two history variables: HChanSnd(id)
and HChanRcv(id). The history variable HChanSnd(id) models the mailing of
a message from the ttp to i whereas, the variable HChanRcv(id) models the
delivery of the message.

channelttp,i

State:
for each id ∈ N

Msgs, a set of elements of M, initially empty
HChanSnd(id) ∈ B, initially no

HChanRcv(id) ∈ B, initially no

Actions:
input Send(m, id) ttp, i

Eff: add (m, id) to Msgs
HChanSnd(id)=YES

output Receive(m, id) ttp, i

Pre: (m, id) is in Msgs
Eff: remove (m, id) from Msgs

HChanRcv(id)=YES

Tasks: {Receive(m, id)ttp, i}

Fig. 8. Automaton channelttp,i
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5 Correctness of CMP1 Protocol

In this section we analyze the CMP1 protocol by using the IOA model, in
particular we prove that the protocol satisfies the properties shown in section
3. In the following we denote by S and R the indices corresponding to the
processes which represent the sender and the receiver, respectively.

During the Check(m,id)ttp action, the ttp executes the function
CheckSignHash(m,id) which returns yes if the ttp is able to construct the
proof-of-origin and the proof-of-delivery corresponding to the messages M3 and
M4, respectively. Hence, in order to show that the protocol CMP1 satisfies
the properties in section 3, we have to prove the following three informal
assertions:

• The sender eventually receives the message M4 corresponding to the proof-

of-delivery constructed by the ttp.

• The receiver eventually receives the message M3 corresponding to the proof-

of-origin constructed by the ttp.

• The sender eventually receives the proof-of-delivery if and only if the receiver
eventually receives the proof-of-origin.

In the following we will prove several invariants that will be used to prove
the above statements.

5.1 Invariants

The first invariant shows that if StatusSnd(id)= done the message M4 of the
protocol has been delivered to the sender.

Invariant 5.1 In any reachable state s, if s.StatusSnd(id)= done then

s.channelttp,S .HChanRec(id) = yes.

Proof: By induction on the length of the execution. The base case consists of
proving that the invariant is true in the initial state. Initially StatusSnd(id)
is idle. Hence, the invariant is true.

For the inductive step, assume that the invariant is true in a reachable state
s′. We need to prove that it is true in s for any possible step (s′, π, s). If
s.StatusSnd(id) �= done, the invariant is true. Thus, assume that
s.StatusSnd(id) = done. We have to distinguish the following two cases:

• s′.StatusSnd(id) = done. From the inductive hypothesis it holds that
s′.channelttp,S .HChanRec(id) = yes. Since HChanRec(id) once set to yes,
never changes any longer,
it holds that s.channelttp,S .HChanRec(id) = yes.
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• s′.StatusSnd(id) �= done. There exists only one enabled action that sets
StatusSnd(id) to done: π is the Receive(m, id)ttp,S action of the senderS au-
tomaton. This input action is controlled by the output action Receive(m, id)ttp,S

of the channelttp,S automaton.
Since this action sets channelttp,S .HChanRec(id) to yes, it follows that
s.channelttp,S .HChanRec(id) = yes.

The next invariant states that if i receives a message from the ttp the message
has been sent by the ttp.

Invariant 5.2 In any reachable state s, if s.channelttp, i.HChanRecttp, i(id) =

yes then s.channelttp, i.HChanSnd(id) = yes.

Proof: By induction on the length of the execution. The base case consists
of proving that the invariant is true in the initial state. Initially we have that
channelttp, i.HChanRecttp, i(id) = no. Hence, the invariant is true.

For the inductive step, assume that the invariant is true in a reachable state s′.
We need to prove it is true in s for any possible step (s′, π, s). If we have that
s.channelttp, i.HChanRec(id) = no, then the invariant is true. Thus, assume
that s.channelttp, i.HChanRec(id) = yes. We have to distinguish the following
two cases:

• s′.channelttp, i.HChanRec(id)= yes.

From the inductive hypothesis it holds that s′.channelttp, i.HChanSnd(id) =
yes. Since channelttp, i.HChanSnd(id) once set to yes, never changes any
longer, it holds that s.channelttp,i.HChanSnd(id) = yes.

• channelttp, i.HChanRec(id)= no.
There exists only one enabled action that sets s.channelttp, i.HChanRec(id)

to yes: π is the output action Receive(m, id)ttp,i of the channelttp,i au-
tomaton. The precondition of this action states that the message m is
in channelttp, i.Msgs. There is only one action that inserts a message in
channelttp, i.Msgs: the input action Send(m, id)ttp, i of the channelttp, i au-
tomaton. This action also sets channelttp, i.HChanSnd(id) to yes.
Since channelttp, i.HChanSnd(id) once set to yes, never changes any longer,
it follows that s.channelttp, i.HChanSnd(id) = yes.

Invariant 5.3 states that if the ttp has sent a message to the sender it has
completed the protocol.

Invariant 5.3 In any reachable state s, if s.channelttp,S .HChanSnd(id) = yes

then s.StatusT tp(id) =done.

C. Blundo et al. / Electronic Notes in Theoretical Computer Science 99 (2004) 339–359 351



Proof: By induction on the length of the execution. The base case consists
of proving that the invariant is true in the initial state. Initially we have tha
channelttp,S .HChanSnd(id) = no. Hence, the invariant is true.

For the inductive step, assume that the invariant is true in a reachable state
s′. We need to prove it is true in s′ for any possible step (s′, π, s). If
s.channelttp,S .HChanSnd(id) = no, the invariant is true. Thus, assume that
s.channelttp,S .HChanSnd(id) = yes. We have to distinguish the following two
cases:

• s′.channelttp,S .HChanSnd(id) = yes.

From the inductive hypothesis s′.StatusT tp(id) =done.
Since StatusT tp(id) once set to done never changes any longer, it holds
that s.StatusT tp(id) =done.

• s′.channelttp,S .HChanSnd(id) = yes. There exists only one enabled action
that sets s.channelttp,S .HChanSnd(id) to yes: π is the the input action
Send(m, id)ttp,S of the channelttp,S automaton. This input action is controlled
by the output action Send(m, id)ttp,S of the ttp automaton. Since this action
sets StatusT tp(id) to done, it follows that s.StatusT tp(id) =done.

The next invariant shows that if the receiver has completed the protocol, it
received the message M3.

Invariant 5.4 In any reachable state s, if s.StatusRcv(id) = done then we

have s.channelttp,R.HChanRec(id) = yes.

Proof: By induction on the length of the execution. The base case consists
of proving that the invariant is true in the initial state. Initially we have that
StatusRcv(id) is idle. Hence, the invariant is true.

For the inductive step, assume that the invariant is true in a reachable state
s′. We need to prove it is true in s for any possible step (s′, π, s). If it holds
that s.StatusRcv(id) �=done, the invariant is true.
Thus, assume that s.StatusRcv(id) =done. We have to distinguish the fol-
lowing two cases:

• s′.StatusRcv(id) =done. From the inductive hypothesis it holds that
s′.channelttp,R .HChanRec(id) = yes.
Since channelttp,R.HChanRec(id) once set to yes, never changes any longer,
it holds that s.channelttp,R .HChanRec(id) = yes.

• s′.StatusRcv(id) �= done. There exists only one enabled action that sets
StatusRcv(id) to done: π is the input action Receive(m, id)ttp,R of the au-
tomaton receiverR. This input action is controlled by the output action
Receive(m, id)ttp,R of the channelttp,R.
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Since this action sets channelttp,R.HChanRec(id) to yes, it follows that
s.channelttp,R.HChanRec(id) = yes.

The next invariant states that if the message is in transit on the channel from
the ttp to the receiver, the message was sent by the ttp.

Invariant 5.5 In any reachable state s, if s.channelttp,R.HChanSnd(id) =
yes then s.HTtpToRcv(id) = yes.

Proof: By induction on the length of the execution. The base case consists
of proving that the invariant is true in the initial state. Initially we have that
channelttp,R.HChanSnd(id) = no. Hence, the invariant is true.

For the inductive step, assume that the invariant is true in a reachable state s′.
We need to prove it is true in s for any possible step (s′, π, s). If we have that
s.channelttp,R.HChanSnd(id) = no, then the invariant is true. Thus, assume
that s.channelttp,R.HChanSnd(id) = yes. We have to distinguish the following
two cases:

• s′.channelttp,R.HChanSnd(id) = yes. From inductive hypothesis it holds
that s′.HTtpToRcv(id) = yes. Since HTtpToRcv(id) once set to yes never
changes any longer, it holds that s.HTtpToRcv(id)=yes.

• s′.channelttp,R.HChanSnd(id) = no. There exists only one enabled action
that sets
s.channelttp,R.HChanSnd(id) to yes:
π is the input action Send(m, id) ttp,R of channelttp,R. This input action is con-
trolled by the output action Send(m, id) ttp,R of the ttp automaton. Since this
action sets HTtpToRcv(id) to yes, it follows that s.HTtpToRcv(id)=yes.

Invariant 5.6 shows that if the ttp completed the protocol, then it has sent
message M3 to the receiver.

Invariant 5.6 In any reachable state s, if s.StatusT tp(id) = done then we

have s.HTtpToRcv(id) = yes.

Proof: By induction on the length of the execution. The base case consists of
proving that the invariant is true in the initial state. StatusT tp(id) = idle.
Hence, the invariant is true.

For the inductive step, assume that the invariant is true in a reachable
state s′. We need to prove it is true in s for any possible step (s′, π, s). If
s.StatusT tp(id) �= done, the invariant is true.
Thus, assume that s.StatusT tp(id) = done. We have to distinguish the fol-
lowing two cases:
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• s′.StatusT tp(id) = done. From the inductive hypothesis, it follows that
s′.HTtpToRcv(id) = yes. Since HTtpToRcv(id) once set to yes never
changes any longer, it holds that s.HTtpToRcv(id)=yes.

• s′.StatusT tp(id) �= done. There exists only one action enabled that sets
s.StatusT tp(id) to done: π is the output action Send(m(id))ttp,Snd(id) of ttp

automaton. The precondition of this action claims:
StatusT tp(id) = send-snd. The only action that sets StatusT tp(id) to
send-snd is the output action Send(m(id))ttp,Rcv(id) of ttp automaton. This
action also sets HTtpToRcv(id) to yes. Since HTtpToRcv(id) once set to
yes never changes any longer, it holds that
s.HTtpToRcv(id)=yes.

The next invariant shows that the ttp executes the internal action Check

before executing its Send actions.

Invariant 5.7 In any reachable state s, if s.StatusT tp(id) ∈ {send-rcv,
send-snd, done} then s.Hcheck(id) = yes.

Proof: By induction on the length of the execution. The base case consists of
proving that the invariant is true in the initial state. Initially StatusT tp(id)
is idle. Hence, the invariant is true.

For the inductive step, assume that the invariant is true in a reachable state s′.
We need to prove it is true in s for any possible step (s′, π, s). If s.StatusT tp(id) �∈
{send-rcv, send-snd, done}, the invariant is true. Otherwise, we have to dis-
tinguish the following two cases:

• s′.StatusT tp(id) ∈ {send-rcv, send-snd, done}. From the inductive hy-
pothesis s′.Hcheck(id) = yes. Since, Hcheck(id) once set to yes, never
changes any longer, it follows that s.Hcheck(id) = yes.

• s′.StatusT tp(id) �∈ {send-rcv, send-snd, done}. There exists only one
enabled action that sets StatusT tp(id) to a value in {send-rcv, send-snd,
done}: π is the internal action Check(m,id)ttp of the ttp automaton. This
action also sets Hcheck(id) to yes. Therefore, s.Hcheck(id) = yes.

Finally, the following invariant states that once the ttp has sent message
M3 to the receiver, in order to complete the protocol it only needs to send
message M4 to the sender.

Invariant 5.8 In any reachable state s, if s.HTtpToRcv(id) = yes then we

have s.StatusT tp(id) ∈ {send-snd, done}.

Proof: By induction on the length of the execution. The base case consists of
proving that the invariant is true in the initial state. Initially s.HTtpToRcv(id)
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= no. Hence, the invariant is true.

For the inductive step, assume that the invariant is true in a reachable
state s′. We need to prove it is true in s for any possible step (s′, π, s). If
s.HTtpToRcv(id) = no, the invariant is true. Thus, assume that
s.HTtpToRcv(id) = yes. We have to distinguish the following two cases:

• s′.HTtpToRcv(id) = yes. From the inductive hypothesis, it holds that
s′.StatusT tp(id) ∈{send-snd,done}. If s′.StatusT tp(id) = send-snd there
exists only one enabled action that modifies the value of
StatusT tp(id): π is the output action Send(m, id) ttp,S of ttp automaton.
This action sets StatusT tp(id) to done. Moreover, StatusT tp(id) once set
to done never changes any longer.
It follows that s.StatusT tp(id) ∈ {send-snd,done}.

• s′.HTtpToRcv(id) = no. There exists only one enabled action that sets
s.HTtpToRcv(id) to yes: π is the output action Send(m, id) ttp,R of the ttp

automaton. This action also sets StatusT tp(id) to send-snd. Therefore,
s.StatusT tp(id) ∈ {send-snd,done}.

5.2 Non Repudiation of Destination Property

The variable M4 of senderS automaton contains a message received by the
ttp. We will prove that the ttp sends this message after that the controls
made by the CheckSignHash(m,id) function has been executed and the ttp is
able to construct the proof of delivery for the sender by using the Constr M4
function. Recall that the value of the history variable Hchek(id) is yes only
if the ttp may send the proof of delivery to the sender. Hence, we have to
prove the following lemma:

Lemma 5.1 In any reachable state s, if s.StatusSnd(id) = done then we

have that s.Hcheck(id) = yes.

Proof. If s.StatusSnd(id) = done, from Invariant 5.1 it holds that
s.HChanRecttp,S = yes. From Invariant 5.2 it holds that s.HChanSndttp,S = yes.
Moreover, from Invariant 5.3 it holds that s.StatusT tp(id) = done. Finally,
from Invariant 5.7 s.Hcheck(id) = yes.

If the history variable Hcheck(id) is set to yes, then the ttp is able to send
the proof-of-delivery corresponding to the message M4 to S. The next lemma
says that if the ttp sends the proof-of-delivery to S, eventually S receives it.

Lemma 5.2 In any fair execution, if there exists a state s′ for which it holds

that s′.Hcheck(id) = yes, then there exists a reachable state s such that

s.StatusSnd(id) = done.
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Proof. The variable Hcheck(id), initially is equal to no. There exists only
one action that sets it to yes: Check(m,id)ttp . Since the execution is fair, the
output actions Send(m,id)ttp,R and Send(m,id)ttp,S of the ttp will be executed.
Moreover, the Send(m,id)ttp,S action controls the input action of the channel
between ttp and the sender S. From the fair property also the output action
of the channel will be executed. Finally, the Receive action of the channel
controls the Receive action of the automaton SENDERS. Since, this action
sets StatusSnd(id) to done, it follows that there exists a state s such that
s.StatusSnd(id) = done.

The variable StatusSnd is set to done after that the sender received the
message M4 from the ttp. Therefore, the next theorem easily follows from
Lemma 5.1 and Lemma 5.2.

Theorem 5.3 The CMP1 protocol satisfies the non repudiation of destination

property.

5.3 Non Repudiation of Origin Property

The variable M3 of the RECEIV ERR automaton contains a message received
by the ttp. We will prove that the ttp sends this message after that the
controls made by the CheckSignHash(m,id) function has been executed and
the ttp is able to construct the proof of delivery for the sender by using the
Constr M3 function. Recall that the value of the history variable Hcheck(id)
is yes only if the ttp may send the proof of origin to the sender. Hence, we
have to prove the following lemma:

Lemma 5.4 In any reachable state s, if s.StatusRcv(id) = done then we

have that s.Hcheck(id) = yes.

Proof: If s.StatusRcv(id) = done, from Invariant 5.4 it holds that
s.HChanRecttp,R = yes. From Invariant 5.2 it holds that s.HChanSndttp,R = yes.
Moreover, from Invariant 5.5 and Invariant 5.8 it holds that
s.StatusT tp(id) ∈ {send-snd, done}. Finally, from Invariant 5.7
s.Hcheck(id) = yes.

If the history variable Hcheck(id) is set to yes, then the ttp is able to send
the proof-of-origin corresponding to the message M3 to R. The next lemma
says that if the ttp sends the proof-of-origin to R, eventually R receives it.

Lemma 5.5 In any fair execution, if there exists a state s′ for which it holds

that s′.Hcheck(id) = yes, then there exists a reachable state s such that

s.StatusRcv(id) = done.
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Proof. The variable Hcheck(id), initially is equal to no. There exists
only one action that sets it to yes: Check(m,id)ttp . Since the execution is fair,
the output actions Send(m,id)ttp,R of the ttp will be executed. Moreover, this
action controls the input action of the channel between ttp and the sender S.
From the fair property also the output action of the channel will be executed.
Finally, the Receive action of the channel controls the Receive action of the
automaton RECEIVERR. Since, this action sets StatusRcv(id) to done, it
follows that there exists a state s such that s.StatusSnd(id) = done.

The variable StatusRcv is set to done after that the receiver received the
message M3 from the ttp. Therefore, the next theorem easily follows from
Lemma 5.4 and Lemma 5.5.

Theorem 5.6 The CMP1 protocol satisfies the non repudiation of origin

property.

5.4 Fairness Property

The next lemma states that the sender receives the prof-of-delivery if and only
if the receiver receives the proof-of-origin.

Lemma 5.7 In any fair execution, there exists a state s for which it holds

that s.StatusRcv(id) = done if and only if there exists a state s′ such that

s′.StatusSnd(id) = done.

Proof: Assume that there exists a state s such that s.StatusRcv(id) =
done. From Invariants 5.4, 5.2 and 5.5 it holds that s.HTtpToRcv(id) =
yes. This variable, initially is equal to no and there exists only one action
that sets it to yes: Send(m,id)ttp,R . Since the execution is fair, the output ac-
tion Send(m,id)ttp,S of the ttp will be executed. Moreover, this action controls
the input action of the channel between ttp and the sender S. From the fair
property also the output action of the channel will be executed. Finally, the
Receive action of the channel controls the Receive action of the automaton
SENDERS. Since, this action sets StatusSnd(id) to done, it follows that there
exists a state s′ such that s′.StatusSnd(id) = done.

Conversely, assume that there exists a state s′ such that s′.StatusSnd(id)
= done. From Invariant 5.1, Invariant 5.2 and Invariant 5.3, it holds that
s′.StatusT tp(id)
= done. From Invariant 5.6 it holds that s′.HTtpToRcv(id) = yes. This
variable, initially equal to no, is set to yes in the Send action of the ttp to the
receiver R. This action controls the input action of the channel between ttp

and the receiver R. Since the execution is fair also the output action of the
channel will be executed. Finally, the Receive action of the channel controls
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the Receive action of the automaton RECEIVERR. Since this action sets
StatusRcv(id) to done, there exists a state s such that s.StatusRcv(id) =
done.

The next theorem easily follows from Lemma 5.7.

Theorem 5.8 The CMP1 protocol satisfies the fairness property.

6 Conclusions

Describing and reasoning about asynchronous distributed systems is often a
difficult and error prone task. The I/O Automaton [7] provides a framework
allowing both a precise description of the code and the possibility of very
detailed proofs. In this paper we carry out a simple experiment in using
the IOA as a tool to describe and to reason about cryptographic protocols
running in an asynchronous distributed system. We showed the feasibility
of the approach by examining the security properties of the Deng’s certified
email protocol and proving its correctness. We are planning to extend these
ideas to the modeling of more complex protocols for certified email [4].
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