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ABSTRACT

We present the first measurements of the Probability Distribution Function (PDF) of galaxy fluctuations in the four-passes, first-epoch VIMOS-
VLT Deep Survey (VVDS) cone, covering 0.4x0.4 deg between 0.4 < z < 1.5. We show that the PDF of density contrasts of the VVDS galaxies
is an unbiased tracer of the underlying parent distribution up to redshift z = 1.5, on scales R = 8 and 10 ~~'Mpc. The second moment of the
PDF, i.e., the rms fluctuations of the galaxy density field, is to a good approximation constant over the full redshift baseline investigated: we find
that, in redshift space, o for galaxies brighter than M = —20 + 5log & has a mean value of 0.94 + 0.07 in the redshift interval 0.7 < z < 1.5.
The third moment, i.e., the skewness, increases with cosmic time: we find that the probability of having underdense regions is greater at z ~ 0.7
than it was at z~ 1.5. By comparing the PDF of galaxy density contrasts with the theoretically predicted PDF of mass fluctuations we infer
the redshift-, density- and scale-dependence of the biasing function b(z, d, R) between galaxy and matter overdensities up to redshift z = 1.5.
Our results can be summarized as follows: i) the galaxy bias is an increasing function of redshift: evolution is marginal up to z ~ 0.8 and more
pronounced for z > 0.8; ii) the formation of bright galaxies is inhibited below a characteristic mass-overdensity threshold whose amplitude
increases with redshift and luminosity; iii) the biasing function is non linear in all the redshift bins investigated with non-linear effects of the
order of a few to ~10% on scales >5 h~'Mpc. By subdividing the sample according to galaxy luminosity and colors, we also show that: iv)
brighter galaxies are more strongly biased than less luminous ones at every redshift and the dependence of biasing on luminosity at z~ 0.8 is
in good agreement with what is observed in the local Universe; v) red objects are systematically more biased than blue objects at all cosmic
epochs investigated, but the relative bias between red and blue objects is constant as a function of redshift in the interval 0.7 < z < 1.5, and its
value (b ~ 1.4) is similar to what is found at z ~ 0.

Key words. cosmology: large-scale structure of Universe — galaxies: distances and redshifts — galaxies: evolution —
galaxies: statistics
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1. Introduction

The understanding of how matter structures grow via gravi-
tational instability in an expanding Universe is quite well de-
veloped and has led to a successful and predictive theoretical
framework (e.g., Peebles 1980; Davis et al. 1985).

One of the most critical problems, however, is to under-
stand the complex mechanisms which, on various cosmologi-
cal scales, regulate the formation and the evolution of luminous
structures within the underlying dark-matter distribution. Its
solution ultimately relies on the comprehension of the “micro-
scopic” physics which describes how the baryons fall, heat-up,
virialize, cool and form stars in the potential wells generated
by the dominant mass component of the Universe, i.e., the non-
baryonic dark matter (e.g., White & Rees 1978). A zero-order,
minimal approach to this investigation consists of “macroscop-
ically” characterizing the cosmological matter fluctuations in
terms of a reduced set of fundamental quantities, essentially
their positions and mass scales, and in studying how the re-
spective spatial clustering and density amplitudes relate to the
corresponding statistics computed for light fluctuations. This
comparison scheme is generally referred to as matter-galaxy
biasing (e.g., Dekel & Lahav 1999).

An operational definition of bias is conventionally given in
terms of continuous density fields by assuming that the local
density fluctuation pattern traced by galaxies (6;) and mass ()
are deterministically related via the “linear biasing scheme"

55(6) = b ey

where the constant “slope” b is the biasing parameter (Kaiser
1984).

This specific formulation, however, represents a very crude
approximation which is not based on any theoretical or physical
motivation. It is obvious, for example, that such a model cannot
satisfy the physical requirement 5,(—1) = —1 for any arbitrary
value b # 1. In particular the biasing process could be non lo-
cal (e.g., Catelan et al. 1998), stochastic (e.g., Dekel & Lahav
1999) and non linear (e.g., Mo & White 1996). Moreover,
both theory and numerical simulations predict that the bias
grows monotonically from the present cosmic epoch to high
redshifts (e.g., Dekel & Rees 1987; Fry 1996; Mo & White
1996; Tegmark & Peebles 1998; Basilakos & Plionis 2001).

From a theoretical perspective, light does not fol-
low the matter distribution on sub-galactic scales, where
nearly 90% of dense, low-mass dark matter fluctuations
(M ~ 107103 h~! M) failed to form stars and to become
galaxies (e.g., Klyplin et al. 1999; Moore et al. 1999; Dalal
& Kochanek 2002). A difference in the spatial distribution of
visible and dark matter is predicted also on galactic scales,
since the radial scaling of density profiles of dark matter halos
(Navarro et al. 1997) differs from the three-dimensional radial
distributions of light (Sersic and Freeman laws). Galaxy bias-
ing is theoretically expected also on cosmological scales. In
particular, simulations of the large-scale structure predict the
existence of a difference in the relative distribution of mass and
dark halos (e.g., Cen & Ostriker 1992; Bagla 1998; Kravtsov
& Klypin 1999) or galaxies (e.g., Evrard, et al. 1994; Blanton
et al. 2000; Kayo et al. 2001). Various physical mechanisms for
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biasing have been proposed, such as, for example, the peaks-
biasing scheme (Kaiser 1984; Bardeen et al. 1986), the prob-
abilistic biasing approach (Coles 1993), or the biasing models
derived in the context of the extended Press & Schechter ap-
proximation (Mo & White 1996; Matarrese et al. 1998).

Turning to the observational side, the fact that, in the local
Universe, galaxies cluster differently according to morpholog-
ical type (Davis & Geller 1976), surface brightness (Davis &
Djorgovski 1985), luminosity (Maurogordato & Lachi¢ze-Rey
1987), or internal dynamics (White et al. 1988) implies that
not all can simultaneously trace the underlying distribution of
mass, and that galaxy biasing not only exists, but might also
be sensitive to various physical processes. Redshift informa-
tion that recently became available for large samples of galax-
ies has significantly contributed to better shaping our current
understanding of galaxy biasing, at least in the local Universe.
The analysis of the power spectrum (Lahav et al. 2002) and bi-
spectrum (Verde et al. 2002) of the 2dF Galaxy Redshift Survey
(2dFGRS Colless et al. 2001) consistently shows that a flux-
limited sample of local galaxies (z < 0.25), optically selected
in the by-band (b; < 19.4), traces the mass, i.e., it is unbiased,
on scales 5 < R(h‘lMpc) < 30.

The galaxy correlation function has been measured up to
redshift ~1 by the CFRS (Le Fevre et al. 1996), and by the
CNOC (Carlberg et al. 2000) surveys giving conflicting evi-
dence on clustering amplitude and bias evolution (see Small
et al. 1999). More recently, the analysis of the first season
DEEP2 data (Coil et al. 2004) seems to indicate that a com-
bined R-band plus color selected sample is unbiased at z ~ 1.
On the contrary, measurements of the clustering (Steidel et al.
1998; Giavalisco . 1998; Foucaud et al. 2003) or of the am-
plitude of the count-in-cell fluctuations (Aldeberger et al.
1998) of Lyman-break galaxies (LBGs) at z ~ 3 suggest that
these objects are more highly biased tracers of the mass den-
sity field than are galaxies today. Higher redshift domains
have been probed by using photometric redshift information
(Arnouts et al. 1999), or compilation of heterogeneous samples
(Magliocchetti et al. 2000). Again, the clustering signal appears
to come from objects which are highly biased with respect to
the underlying distribution of mass.

While there is general observational consensus on the broad
picture, i.e., that biasing must decrease with cosmic time, the
elucidation of the finer details of this evolution as well as any
meaningful comparison with specific theoretical predictions is
still far from being secured. Since clustering depends on mor-
phology, color and luminosity, and since most high redshift
samples have been selected according to different colors or
luminosity criteria, it is not clear, for example, how the very dif-
ferent classes of objects (Ly-break galaxies, extremely red ob-
jects or ultraluminous galaxies), which populate different red-
shift intervals, can be considered a uniform set of mass tracers
across different cosmic epochs. Furthermore, the biasing rela-
tion is likely to be nontrivial, i.e., non-linear and scale depen-
dent, especially at high redshift (e.g., Somerville et al. 2001).

Only large redshift surveys defined in terms of uniform
selection criteria and sampling typical galaxies (or their pro-
genitors), rather than small subclasses of peculiar objects,
promise to yield a more coherent picture of biasing evolution.
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In particular, the 3D spatial information provided by the
VIMOS-VLT Deep Survey (VVDS, Le Fevre et al. 2005a,
hereafter Paper I) should allow us to investigate the mass and
scale dependence, as well as to explore the time evolution of
the biasing relation between dark matter and galaxies for a ho-
mogeneous, flux-limited (/ < 24) sample of optically selected
galaxies.

The intent of this paper is to provide a measure, on some
characteristic scales R, over the continuous redshift interval
0.4 < z < 1.5, of the local, non-linear, deterministic biasing
function

b =0b(z,6,R). (2)

The goal is to provide an observational benchmark for theo-
ries predicting the efficiency of structure formation, or semi-
analytical simulations of galaxy evolution. The problem, how-
ever, is to find an optimal strategy to evaluate the biasing
function in the quasi-pencil-beam geometry of the first-epoch
VVDS survey. At present, the angular size of the first-epoch
VVDS redshift cone (~0.5 degz) does not allow us to con-
strain the biasing function using high order moments of the
galaxy distribution (for example the 3-point correlation func-
tion). Moreover, we cannot determine the biasing function
simply regressing the galaxy fluctuations (6,) versus mass fluc-
tuations (). The fundamental limitation preventing such an in-
tuitive comparison is evident: it is easy to “pixelize" the sur-
vey volume and to measure the galaxy fluctuations in each
survey cell, but, since the VVDS is not a matter survey, it is
much less straightforward to assign to each cell a mass den-
sity value. Thus, in this paper, we take an orthogonal approach
and we infer the biasing relation 6, = J4(6) between mass and
galaxy overdensities from their respective probability distribu-
tion functions (PDFs) f(6) and g(d,): assuming a one-to-one
mapping between mass and galaxy overdensity fields, conser-
vation of probability implies

45:0) _ f©).

= 3
&5 9 )

The advantage over other methods is that we can explore the
functional form of the relationship s = b(z, 6, R)6 over a wide
range in mass density contrasts, redshift intervals and smooth-
ing scales R without specifying any a priori parametric func-
tional form for the biasing function.

In pursuing our approach, we assume that the PDF of mat-
ter overdensities f(9) is satisfactorily described by theory and
N-body simulations. What we will try to assess explicitly, is the
degree at which the measured PDF of the VVDS overdensities
g(6,) reproduces the PDF of the underlying parent population
of galaxies. The large size and high redshift sampling rate of
the VVDS spectroscopic sample, together with the multi-color
information in the B, V, R, I filters of the parent photometric cat-
alog and the relatively simple selection functions of the survey,
allow us to check for the presence of observational systematics
in the data. In principle, this analysis helps us to constrain the
range of the parameter space where first-epoch VVDS data can
be analyzed in a statistically unbiased way and results can be
meaningfully interpreted.
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The outline of the paper is the following: in Sect. 2 we
briefly describe the first-epoch VVDS data sample. In Sect. 3
we introduce the technique applied for reconstructing the three-
dimensional density field traced by VVDS galaxies, providing
details about corrections for various selection effects. In Sect. 4
we outline the construction of the PDF of galaxy overdensi-
ties and test its statistical representativity. We then derive the
PDF of VVDS density contrasts and analyze its statistical mo-
ments. In Sect. 5 we review the theoretical properties of the
analogous statistics for mass fluctuations. Particular emphasis
is given to the problem of projecting the mass PDF derived
in real space into redshift-perturbed comoving coordinates in
the high redshift Universe. The method for computing the bias-
ing function is introduced and tested against possible system-
atics in Sect. 6. VVDS results are presented and discussed in
Sect. 7. and compared to theoretical models of biasing evolu-
tion in Sect. 8. Conclusions are drawn in Sect. 9.

The coherent cosmological picture emerging from indepen-
dent observations and analysis motivate us to frame all the re-
sults presented in this paper in the context of a ACDM cosmo-
logical model with Q,, = 0.3 and Q5 = 0.7. Throughout, the
Hubble constant is parameterized via & = Hy/100. All magni-
tudes in this paper are in the AB system (Oke & Gunn 1983),
and from now on we will drop the suffix AB.

2. The first-epoch VVDS redshift sample

The primary observational goal of the VIMOS-VLT Redshift
Survey as well as the survey strategy and first-epoch observa-
tions in the VVDS-0226-04 field (from now on simply VVDS-
02h) are presented in Paper I.

In order to minimize selection biases, the VVDS survey
in the VVDS-02h field has been conceived as a purely flux-
limited (17.5 < I < 24) survey, i.e., no target pre-selection
according to colors or compactness is implemented. Stars and
QSOs have been a posteriori removed from the final redshift
sample. Photometric data in this field are complete and free
from surface brightness selection effects, up to the limiting
magnitude I = 24 (Mc Cracken et al. 2003).

First-epoch spectroscopic observations in the VVDS-02h
field were carried out using the VIMOS multi-object spectro-
graph (Le Fevre et al. 2003) during two runs between October
and December 2002 (see Paper I). VIMOS observations have
been performed using 1 arcsec wide slits and the LRRed grism
which covers the spectral range 5500 < A(A) < 9400 with an
effective spectral resolution R ~ 227 at A = 7500 A. The ac-
curacy in redshift measurements is ~275 km s~!. Details on
observations and data reduction are given in Paper I, and in
Le Fevre et al. (2004).

The first-epoch VVDS-02h data sample extends over a sky
area of 0.7x0.7 deg (which was targeted accordingto a 1, 2 or
4 passes strategy, i.e., giving to any single galaxy in the field 1,
2 or 4 chances to be targeted by VIMOS masks (see Fig. 12 of
Paper I) and has a median depth of about z ~ 0.76. It contains
6582 galaxies with secure redshifts (i.e., redshift determined
with a quality flag >2 (see Paper I)) and probes a comoving vol-
ume (up to z = 1.5) of nearly 1.5 x 10° 4=3 Mpc? in a standard
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ACDM cosmology. This volume has transversal dimensions
~37 x 37 h™'Mpc at z = 1.5 and extends over 3060 h~'Mpc
in radial direction.

For this study we define a sub-sample (VVDS-02h-4) with
galaxies having redshift z < 1.5 and selected in a continuous
sky region of 0.4 x 0.4 deg which has been homogeneously
targeted four times by VIMOS slitmasks. Even if we measure
redshifts up to z ~ 5 and in a wider area, the conservative angu-
lar and redshift limits bracket the range where we can sample in
a denser way the underlying galaxy distribution and, thus, min-
imize biases in the reconstruction of the density field (see the
analysis in Sect. 4.1). The VVDS-02h-4 subsample contains
3448 galaxies with secure redshift (3001 with 0.4 < z < 1.5)
and probes one-third of the total VVDS-02h volume. This is
the main sample used in this study.

3. The density field reconstruction scheme

The first ingredient we need in order to derive the biasing
relation

0g = b(z,6,R)0 4)

is a transformation scheme for diluting an intrinsic point-like
process, such as the galaxy distribution in a redshift survey, into
a continuous 3D overdensity field (see the review by Strauss &
Willick 1995). We write the dimensionless density contrast at
the comoving position r, smoothed over a typical dimension R
as

pe(r.R) =5
Ps

and we define (e.g., Hudson 1993) the smoothed number den-

sity of galaxies above the absolute magnitude threshold M¢ as

the convolution between Dirac’s delta functions and some ar-
bitrary filter

8g(r,R) = 5)

OP(r —r) * F(%)
S (ri, M)D(m)

pe(r, R < M) =) (6)
where the sum is taken over all the galaxies in the sample,
S (r, M) is the distance-dependent selection (or incomplete-
ness) function of the sample (see Sect. 3.2), ®,(m) is the red-
shift sampling function (see Sect. 3.3) and F(|r|/R) is a smooth-
ing kernel of width R. In this paper, the smoothing window F'
is modeled in terms of a normalized Top-Hat (TH) filter

F(%l) - (4773R3)®(1 B %)

where © is the Heaviside function, defined as ®(x) = 1 for
0 < x <1, and O(x) = 0 elsewhere.

Within this weighting scheme, shot-noise errors are evalu-
ated by computing the variance of the galaxy field

F(LR"'I) 241/2
Z:mem@wﬁ}'

1

)

1
e(r)= —
Pe

®)

Note that all coordinates are comoving and that the mean den-
sity pg depends on cosmic time. Since we observe an evolu-
tion of nearly a factor of two in the mean density of galaxies
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brighter than M (z = 0) from redshift z = Oup to z = 1 (see
Ilbert et al. 2005, hereafter Paper II), we compute the value of
pg at position 7 (corresponding to some look-back time #) with
Eq. (6) by simply averaging the galaxy distribution in survey
slices 7 + Ry where R, = 400 h~'Mpc. We note that conclusions
drawn in this paper depend very weakly on the choice of Rg in
the interval 200 < Rs(h‘lMpc) < 600.

In this paper, the density field is evaluated at positions r
in the VVDS-02h volume that can be either random or regu-
larly displaced on a 3D grid (see Sect. 3.4). Even if we cor-
rect for the different sampling rate in the VVDS-02h field (by
weighting each galaxy by the inverse of redshift sampling func-
tion (®,(m))) we always select, for the purposes of our analy-
sis, only the density fluctuations recovered in spheres having at
least 70% of their volume in the denser 4-passes volume. This
in order to minimize the Poissonian noise due to the sparser
redshift sampling outside the VVDS-02h-4 field.

We also consider only volumes above the redshift threshold
7y where the transversal dimension L of the first-epoch VVDS-
02h cone is L(z;) > 2R. As an example, for TH windows of size
R = 5(10)h 'Mpc we have z; ~ 0.4(0.7). Within the redshift
range 0.4 < z < 1.5 the VVDS-02h field contains 5252 galaxies
(of which 3001 are in the four passes region).

Note that we have characterized the galaxy-fluctuation field
in terms of the number density contrast, instead of the luminos-
ity density contrast, because the former quantity is expected to
show a time-dependent variation which is more sensitive to the
galaxy evolution history (formation and merger rates, for exam-
ple). Moreover, as described in Sect. 3.4, a robust description of
the density field and a reliable determination of the PDF shape
can be obtained only minimizing the shot noise component of
the scatter; this is more easily done by considering galaxy num-
ber densities rather than galaxy light densities.

The most critical elements of the smoothing process are di-
rectly readable in Eq. (6): we must first evaluate galaxy abso-
lute magnitudes at each redshift in the most reliable way, then
specify the selection function and the redshift sampling rate of
the VVDS survey. In the next sections we will describe how
these quantities have been evaluated.

3.1. The K-correction

The absolute magnitude is defined as:

M’ =m° - 5logd,(z, Q) — K(z, SED) )

where the suffixes r and o designate respectively the rest-frame
band in which the absolute magnitude is computed and the
band where the apparent magnitude is observationally mea-
sured, and d; is the luminosity distance evaluated in a given
a priori cosmology (i.e., using an appropriate set of cosmolog-
ical parameters Q = [Qn, Qa]).

The correction factor K, which depends on redshift and the
spectral energy distribution (SED), accounts for the fact that
the system response in the observed frame corresponds to a nar-
rower, bluer rest-frame passband, depending on the redshift of
the observed object. A complete description of the application
of this transformation technique to VVDS galaxies is detailed
in Paper II.



C. Marinoni et al.: The VVDS: Galaxy biasing up to z = 1.5

The estimate of the galaxy absolute luminosity is thus
affected by the uncertainties introduced by probing redshift
regimes where the k-correction term cannot be neglected.
Using mock catalogs simulating the VVDS survey, we have
shown (see Fig. A.1 in Paper II) that the errors in the recov-
ered absolute magnitude are significantly smaller in the B band
(og = 0.08) than in the 7 band (o; = 0.17). Thus, in what
follows we will use absolute luminosities determined in the
B-band rest-frame.

3.2. The radial selection function

Since our sample is limited at bright and faint apparent mag-
nitudes (17.5 < I < 24), at any given redshift we can only
observe galaxies in a specific, redshift-dependent, absolute
magnitude range. It is usual to describe the sample radial in-
completeness by defining the selection function in terms of the
galaxy luminosity function ¢(M)

M (r)
) PMIM

I eryam

Here My(r) and M(r) are the B-band absolute magnitudes
which correspond, at distance r, to the /-band limiting appar-
ent magnitudes m;, = 17.5 and my = 24 respectively (see dis-
cussion at the end of the section). Since Eq. (9) also depends
on galaxy colors, we compute its mean value at distance r by
a weighted average over the population mix observed at dis-
tance r.

The VVDS luminosity function (LF) has been derived in
Paper II and is characterized by a substantial degree of evolu-
tion over the redshift range 0 < z < 1.5. Therefore, we estimate
¢(M) in the B band at any given position in the redshift interval
[0, 1.5] by interpolating, with a low order polynomial function,
the Schechter shape parameters @ and M* given in Table 1 of
Paper II.

Assuming M}, = —15 in Eq. (10), which corresponds to the
limiting absolute magnitude over which the LF of the VVDS-
02h sample can be robustly constrained in the lowest redshift
bins, the selection function exponentially falls by nearly 2 or-
ders of magnitude in the redshift range up to z < 1.5. Thus,
the density field reconstruction strongly depends on the ra-
dial selection function used especially at high redshifts, where
Eq. (10) can be affected by possible systematics in the determi-
nation of the LF or in the measurements of faint magnitudes.
Therefore, we will also analyze volume-limited sub-samples,
which are essentially free from these systematics.

Since in a magnitude limited survey progressively brighter
galaxies are selected as a function of redshift, a volume-limited
sample also allows us to disentangle spurious luminosity-
dependent effects from the measurement of the redshift evo-
lution of the biasing function.

S, M) = (10)

3.3. The redshift sampling rate

As for most redshift surveys, the VVDS does not target spec-
troscopically all the galaxies that satisfy the given flux limit
criteria in the selected field of view (see Paper I). Because of
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Fig. 1. The VVDS redshift sampling rate in the four-passes VVDS-
02h-4 region is plotted versus the observed apparent magnitude in the
I-band. The mean redshift sampling rate is ~0.3.

the sparse sampling strategy, we have to correct the density es-
timator with a sampling rate weight @, in order to reconstruct
the real underlying galaxy density field in a statistically unbi-
ased way.

The VVDS redshift sampling rate is the combination of two
effects: i) only a fraction of the galaxies (~40%, see Paper I) in
the photometric sample is targeted (target sampling rate); ii)
and only a fraction of the targeted objects (~80% see Paper I)
yield a redshift (spectroscopic success rate). We can model this
correction term, by assuming, to a first approximation, that
the sampling rate depends only on the apparent magnitude.
Since the VVDS targeting strategy is optimized to maximize
the number of slits on the sky, the selection of faint objects
is systematically favored. Inversely, the ability of measuring
a redshift degrades progressively towards fainter magnitudes,
i.e., for spectra having lower signal-to-noise ratios (the spec-
troscopic success rate decreases from >90% at I ~ 22 down to
~60% at I ~ 24). These two opposite effects conspire to pro-
duce the magnitude-dependent sampling rate function shown
in Fig. 1. Clearly, with such an approximation, we neglect any
possible dependence of the sampling rate from other impor-
tant parameters such as for example surface brightness, spectral
type or redshift. However, in Sect. 3.2 of Paper II we showed,
using photometric redshifts, that any systematic sampling bias
introduced by a possible redshift dependence of the spectro-
scopic success rate is expected to affect only the tails of our
observed redshift distribution (z < 0.5 and z > 1.5) i.e., red-
shift intervals not considered in this study (see Sect. 3).

We describe the VVDS sampling completeness ®@,(m) at a
given magnitude m, as the fraction of objects with measured
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redshifts N, over the number N of objects detected in the pho-
tometric catalog.

Zf\fl w(m — m;, dm)

@ (m) = (11)
SN wim — m;, dm)

with the window function w defined as:
A _J Vifim—my < dm/2

w(m = my, dm) = { 0 otherwise. (12)

Working in low resolution mode (i.e. allowing up to 4 galax-
ies to have spectra aligned along the same dispersion direction
with a typical sky separation of 2 arcmin) and observing the
same region of sky 4 times for a total of about 16 hours (four-
passes strategy), we can measure redshifts for nearly 30% of
the parent photometric population, as shown in Fig. 1. In other
terms, on average, nearly one over three galaxies with magni-
tude / < 24 has a measured redshift in the four-passes VVDS
region. This high spatial sampling rate is a critical factor for
minimizing biases in the reconstruction of the 3D density field
of galaxies. In particular we note that our I < 24,z < 1.5
VVDS-02h-4 sample is characterized by an effective mean
inter-particle separation in the redshift range [0, 1.5] ((r) ~
5.1 »~'Mpc) which is smaller than that of the original CFA
sample ({r) ~ 5.5 h"'Mpc) used by Davis & Huchra (1981) to
reconstruct the 3D density field of the local Universe (i.e., out
to ~80 1~'Mpc). At the median depth of the survey, i.e., in the
redshift interval 0.75 + 0.05, the mean inter-particle separation
is 4.4 h~'Mpc, a value nearly equal to the mean inter-particle
separation at the median depth of the 2dFGRS. We finally note
that in the redshift range [0.7, 1.35], which is also covered by
the DEEP2 survey, the VVDS mean-inter-particle separation is
5.5 h~'"Mpc compared to the value ~6.5 h~'Mpc inferred from
the values quoted by Coil et al. (2004) for their most complete
field, currently covering 0.32 deg?.

By dividing the VVDS-02h-4 field in smaller cells and re-
peating the analysis, we conclude that the sampling rate does
not show appreciable variations, i.e., the angular selection func-
tion can be considered constant for the purposes of our analy-
sis. This corresponds to the fact that the success rate in redshift
measurement in each VIMOS quadrant (i.e., the spectroscopic
success rate per mask) is, to a good approximation, constant
and equal to ~80% (see Paper I).

3.4. Shot noise

In a flux-limited sample, the shot noise in the density field is an
increasing function of distance (see Eq. (8)). One may correct
for the increase of the mean VVDS inter-particle separation as
a function of redshift (and thus the increase of the variance of
the density field) by opportunely increasing the length of the
smoothing window (e.g., Strauss & Willick 1995). However,
since we are interested in comparing the fluctuations recovered
on the same scale at different redshifts in a flux limited survey,
we take into account the decreased sampling sensitivity of the
survey at high redshift in an alternative way.

We deconvolve the signature of this noise from the
density maps by applying the Wiener filter technique
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Fig. 2. The real- and redshift-space rms fluctuations of the flux-limited
VVDS sample recovered using Eq. (13) and the results of the correla-
tion function analysis presented in Paper III are plotted at six different
redshifts in the interval 0.4 < z < 1.7.

(cf. Press et al. 1992) which provides the minimum variance re-
construction of the smoothed density field, given the map of the
noise and the a priori knowledge of the underlying power spec-
trum (e.g., Lahav et al. 1994). The application of the Wiener
denoising procedure to the specific geometry of the VVDS
sample is described in detail in Appendix A.

Here we note that the Wiener filter requires a model for the
underlying 3D power spectrum P(k, z) which we compute, over
the frequency scales where the correlation function of VVDS
galaxies is well constrained (0.06 < k < 10), as (see Eq. (48)
in Appendix A):

ro(2)"? Y@

P(k,z) = 4HWF(2 —v(2)) sin 7

13)

where the normalization ry(z) and the slope y(z) of the corre-
lation function at redshift zhave been derived by interpolating
the values measured in various redshift intervals of the VVDS-
02h volume by le Fevre et al. (2005, hereafter Paper III).

The variance of the galaxy distribution on a 8 h~'Mpc
scale in the VVDS-02h sample can be obtained by integrating
Eq. (13) using a TH window of radius 8 4~ 'Mpc and the (o, y)
parameters of the VVDS correlation function
P(k)Fik*dk (14)

0'§ = 2—”2
where F} is the Fourier transform of the TH filter (see Eq. (45)
in Appendix A). Note that, by integrating the power spectrum
down to k — 0, i.e., extrapolating the power law shape of
Eq. (13) beyond L ~ 100 A~'Mpc (k <0.06), one would revise
upwards the value of og by ~2%(at z = 0.35) and by ~4% at
z = 1.4. Since, however, the amplitude of the power spectrum
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Fig. 3. 3D density field traced by the galaxy distribution in the VVDS-
02h Field (left, 1641 galaxies), in the flux-limited (/ < 24) GALICS
simulation (right, 9450 galaxies), and in the flux-limited GALICS
sample after applying the VVDS target selection criteria (center,
1656 galaxies). Data span the redshift interval [0.8, 1.1]. In each cone,
the galaxy distribution is continuously smoothed using a TH window
function with R = 5 h~'Mpc which nearly corresponds to the mean
inter-particle separation in this same redshift interval. The cone met-
ric was computed assuming a ACDM cosmology and the correct axis
ratio between transversal and radial dimensions has been preserved.
The cones have approximate transverse dimensions of 28 A~'Mpc at
z =1 and extend over 527 h~'Mpc.

on large scales is expected to downturn and to be systemati-
cally lower than predicted by Eq. (13), we safely conclude that,
with our computation scheme, the inferred og value should be
biased low by no more than ~2% and 4% in the first and last
redshift bin, respectively.

Projecting the results from real-space into the redshift-
distorted space (see Sect. 5), i.e., implementing the effects
of large-scale streaming motions, we infer that the rms of
galaxy fluctuations are oy = [0.55 + 0.10, 0.62 + 0.12,
0.71 £0.11, 0.69 + 0.14, 0.75 + 0.14, 0.92 + 0.20] at redshift
z = [0.35, 0.6, 0.8, 1.2, 1.2, 1.65] (see Fig. 2). Thus, the am-
plitude of o for a flux-limited / < 24 sample increases as a
function of redshift by nearly 70% between z ~ 0.3 andz ~ 1.7.

3.5. The 3-dimensional VVDS density field

The VVDS-02h galaxy density field reconstructed on a scale
R = 5 h™'"Mpc and in the redshift bin 0.8 < z < 1.1 is visually
displayed in the left most panel of Fig. 3. Note that the chosen
smoothing scale nearly corresponds to the mean inter-galaxy
separation in the VVDS-02h sample at z ~ 1. Figure 3 shows
the regular patterns traced by over- and under-dense regions in
the selected redshift interval. Specifically, we note that, in this
redshift slice, there are over- and under-dense regions which
extend over characteristic scales as large as ~100 2~'Mpc. A
more complete discussion of the “cartography” in such deep
regions of the Universe is presented by Le Fevre et al. (2005c).

In the same figure, we also display the density field re-
constructed in an analogous redshift range, using the GALICS

807

simulation (Galaxies in Cosmological Simulations, Hatton
et al. 2003). GALICS combines cosmological simulations of
dark matter with semi-analytic prescriptions for galaxy forma-
tion to produce a fully realistic deep galaxy sample. In partic-
ular we plot the density field of the I < 24 flux-limited sim-
ulation as well as the density field recovered after applying to
the pure flux-limited simulation all the VVDS target selection
criteria (see Sect. 4.1). No qualitative difference between the
density fields reconstructed before and after applying to the
simulation all the survey systematics is seen.

Clearly, a more quantitative assessment of the robustness
and reliability of the VVDS overdensity field can be done by
studying its PDF.

4. The PDF of galaxy fluctuations

Once the three-dimensional field of galaxy density contrasts
0y has been reconstructed on a given scale R, one can fully
describe its properties by deriving the associated PDF g(d,).
This statistical quantity represents the normalized probability
of having a density fluctuation in the range (0, 6 +dd) within
a region of characteristic length R randomly located in the sur-
vey volume.

While the shape of the PDF of mass fluctuations at any
given cosmic epoch is theoretically well constrained from
CDM simulations (see next section), little is known about the
observational PDF of the general population of galaxies in the
high redshift Universe. Even locally, this fundamental statis-
tics has been often overlooked (but see Ostriker et al. 2003).
Notwithstanding, the shape of the galaxy PDF is strongly sen-
sitive to the effects of gravitational instability and galaxy bias-
ing, and its redshift dependence encodes valuable information
about the origin and evolution of galaxy density fluctuations.

The shape of the PDF can be characterized in terms of its
statistical moments. In particular the variance of a zero-mean
field (such as the overdensity field we are considering) is

0k = (Op)r = f 52gR(5)dS,. (15)
0

Higher moments can be straightforwardly derived (see

Bernardeau et al. 2002, for a review). In the following, we will

drop the suffix R, unless we need to emphasize it.

4.1. Estimating reconstruction systematics using mock
catalogs

For the purposes of our analysis, it is imperative to check that
the various instrumental selection effects as well as the VVDS
observing strategy are not compromising the determination of
the PDF of galaxy fluctuations. In this section, we explore the
region of the parameter space (essentially redshift and smooth-
ing scales) where the PDF of VVDS overdensities traces in a
statistically unbiased way the underlying parent distribution.
Possible systematics can be hidden in the reconstructed
PDF essentially because i) the VVDS redshift sampling rate
is not unity; ii) the slitlets are allocated on the VIMOS masks
with different constraints along the dispersion and the spatial
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axis, and iii) the VIMOS field of view is splitted in four differ-
ent rectangular quadrants separated by a vignetting cross.

We have addressed point iii) by designing a specific tele-
scope pointing strategy which allows us to cover in a uniform
way the survey sky region (see the telescope pointing strategy
shown in Fig. 1 of Paper I). With the adopted survey strategy,
we give to each galaxy in the VVDS-02h-4 field four chances
to be targeted by VIMOS, thus increasing the survey sampling
rate (nearly 1 galaxy over 3 with magnitude / < 24 has a mea-
sured redshift).

Concerns about points i) and ii) can be directly addressed
using galaxy simulations covering a cosmological volume
comparable to the VVDS one. Thanks to the implementation
of the Mock Map Facility (MoMaF, Blaizot et al. 2003), it is
possible to convert the GALICS 3D mocks catalog into 2D
sky images, and handle the 2D projection of the simulation as
a pseudo-real imaging survey. Pollo et al. (2005), have then
built a set of 50 fully realistic mock VVDs surveys from the
GALICS simulations to which the whole observational pipeline
and biases has been applied. By comparing specific properties
of the resulting pseudo-VVDS sample with the true underlying
properties of the pseudo-real Universe from which the sample
is extracted, we can directly explore the robustness, as well as
the limits, of the particular statistical quantities we are inter-
ested in.

In brief these include addeding to the 3D galaxy mocks a
randomly simulated distribution of stars to mimic the same star
contamination affecting our survey. Next, we have masked the
sky mocks using the VVDS photometric masks, i.e., we have
implemented the same geometrical pattern of excluded regions
with which we avoid to survey sky regions contaminated by the
presence of bright stars or photometric defects. Then, we have
extracted the spectroscopic targets by applying the target selec-
tion code (VMMPS, Bottini et al. 2005) to the simulated 2D
sky distribution. To each GALICS redshift, which incorporates
the Doppler contribution due to galaxy peculiar velocities, we
have added a random component to take into account errors
in z measurements. Finally, we have processed the selected ob-
jects implementing the same magnitude-distribution of failures
in redshift measurements which characterizes the first-epoch
observations of the VVDS survey (see Paper I and Fig. 1).

Since GALICS galaxies have magnitudes simulated in the
same 4 bands surveyed by VVDS (B, V, R, I), we have ap-
plied the K-correction to obtain rest frame absolute magnitudes
and we have empirically re-derived all the selection functions
for the mock catalogs according to the scheme presented in
Sect. 3. In this way we can also check the robustness of the
techniques we apply for computing absolute magnitudes and
selection functions (see Paper II).

The PDF of galaxy overdensities obtained from the mock
samples has been finally compared to the PDF of the parent
population. For brevity, in what follows, we will call s-samples
(survey-samples) the mocks simulating the VVDS redshift sur-
vey and p-sample (parent sample) the whole GALICS simula-
tion flux-limited at 17.5 < I < 24.

The density contrasts have been calculated as described in
Sect. 3. In the following, we will restrict our analysis to the set
of smoothing scales in the interval R = (5, 10) A~ 'Mpc. The
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choice of these particular limits is motivated by the fact that
5 h™'"Mpc is the minimum smoothing scale for which the re-
constructed density field is unbiased over a substantial redshift
interval (see discussion below). Note, also, that below this typ-
ical scale, linear regimes approximations, largely used in this
paper, do not hold anymore. The upper boundary is constrained
by the transverse comoving dimensions covered by the first-
epoch VVDS data (see Sect. 2), which is still too small for be-
ing partitioned using bigger scale-lengths without introducing
significant noise in the reconstructed PDF (see the transverse
comoving dimension of the VVDS-02h field quoted in Sect. 2).

The PDF of the galaxy density contrasts computed using
the s-sample is compared to the parent distribution inferred
from the p-sample in Fig. 4. We conclude that the distribu-
tion of galaxy overdensities of the s-samples for R = 8 and
10 A~ "Mpc scales is not biased with respect to the underlying
distribution of p-sample galaxy fluctuations. Thus, the VVDS
density field reconstructed on these scales is not affected by the
specific VVDS observational strategy.

It is evident in Fig. 4 that the VVDS redshift sampling rate
is not high enough to map in an unbiased way the low den-
sity regions of the Universe (log(l + 6s) < —0.5) when the
galaxy distribution is smoothed on scales of 5 4~ Mpc. Figure 5
shows that incompleteness in underdense regions is a function
of redshift, with the bias in the low-density tail of the PDF de-
veloping and increasing as the redshift increases. As a rule of
thumb, the PDF of the s-sample starts to deviate significantly
from the parent PDF when the mean inter-galactic separation
(r) of the survey sample is larger than the scale R on which the
field is reconstructed. Since we measure (#(z = 1)) ~ 5 A~ 'Mpc
((r(z = 1.5)) ~ 8 i~ 'Mpc), the PDF of the density field recov-
ered using a TH filter of radius 5 A~'Mpc is effectively un-
biased (at least over the density range we are interested in,
i.e., log(1 + &) > —1) only if the sample is limited at z< 1.
Therefore, in the following, results obtained for R = 5 h~'Mpc
are quoted only upto z = 1.

On scales R > 8 1~ 'Mpc, the agreement between the PDFs
of s- and p-samples holds true also for volume-limited subsam-
ples Specifically, the 2nd and 3rd moments of the PDF of over-
densities recovered using volume-limited s-samples on these
scales are within 1o of the corresponding values computed for
the parent, volume-limited, p-samples in each redshift interval
of interest up to z = 1.5.

To summarize, the results of simulated VVDS observa-
tions presented in this section show that, at least on scales
R > 8 h™'Mpc, the VVDS PDF describes in an unbiased
way the general distribution properties of a sample of I = 24
flux-limited galaxies up to redshift 1.5. In other terms, the
VVDS density field sampled in this way is essentially free
from selection systematics in both low- and high-density re-
gions, and can be meaningfully used to infer the physical bias
in the distribution between galaxy and matter. Obviously, the
representativeness of the measured PDF of VVDS overdensi-
ties with respect to the “universal” PDF up to z = 1.5 is a dif-
ferent question. Since the volume probed is still restricted to
a limited region of space in one field, the shape and moments
of the galaxy PDF derived from the VVDS-02h are expected
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Fig. 4. Tests of the PDF reconstruction scheme using the mocks VVDS
samples extracted from GALICS. The differential (G(y,)) probabil-
ity distribution functions of y, = 1 + J, for the “observed” s-sample
(dotted line, shadowed histogram), and for the parent p-sample (solid-
line). Note that the plotted histograms actually corresponds to G(y,) =
In(10)y,9(y.)) since the binning is done in log(y,). The logarithmic
PDFs are computed for density fields smoothed using TH filters of
different sizes (indicated on the top of each panel).

to deviate from the “universal” PDF of galaxies at this redshift
because of cosmic variance. Reducing the cosmic variance is
one of the main goals of extending the VVDS to 4 indepen-
dent fields. Anyway, our 50 mock realisations of the VVDS-
02h sample allow us to estimate realistic errors that include the
contribution from cosmic variance.

4.2. The PDF of VVDS galaxies: results

Let us then investigate the evolution, as a function of the look-
back time, of the observed PDF of VVDS galaxy fluctuations.

In an apparent magnitude-limited survey such as the
VVDS, only brighter galaxies populate the most distant red-
shift bins, whereas fainter galaxies are visible only at lower red-
shifts. As more luminous galaxies tend to cluster more strongly
than fainter ones (e.g., Hamilton 1988; Croton et al. 2004), the
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PDF of galaxy fluctuations is expected to be systematically bi-
ased as a function of redshift.

This effect is clearly seen in the first correlation analy-
sis of the VVDS (Paper III), and can be minimized by se-
lecting a volume-limited sample. Therefore, we have defined
a subsample with absolute magnitude brighter than M} =
—20 + 5logh in the rest frame B band (~1350 galaxies with
0.7 < z < 1.5 in the VVDS-02h field, ~800 of which are in the
VVDS-02h-4 region).

This threshold corresponds to the faintest galaxy luminos-
ity visible at redshift z = 1.5 in a I = 24 flux-limited sur-
vey and it is roughly 0.6 magnitudes brighter(fainter) than the
value of M, recovered at z ~ 0(~1.5) using the VVDS data
(see Paper II). The median absolute magnitude for this volume-
limited sample is ~—20.4.
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Fig.6. Top: the PDF per units of galaxy overdensities (G(y) =
In(10)yg(y)) is plotted for the volume limited VVDS sample (M =
—20 + 5log h) at three different redshifts. The PDFs are computed for
density fields recovered using TH filters of size 8 and 10 4~'Mpc.
Bottom: the corresponding cumulative distributions. Errorbars (which,
for clarity, are plotted only for the redshift bin 1.25 < z < 1.5) rep-
resent the Poissonian uncertainties. The flattened pedestal at the low-
density end of the cumulative distribution is contributed by empty re-
gions (6, = —1).

We note, however, that the populations of galaxies with the
same luminosity at different redshifts may actually be differ-
ent. As we have shown in Paper II, we measure a substantial
degree of evolution in the luminosity of galaxies, and, as a
consequence, with our absolute magnitude cut we are selecting
M* + 0.6 galaxies at z = 1.5, but M* — 0.6 galaxies at z = 0.
Thus, the clustering signal at progressively earlier epochs may
not be contributed by the progenitors of the galaxies that are
sampled at later times in the same luminosity interval.

The PDF of density fluctuations, in various redshift inter-
vals, and traced on scales of 8 and 10 4#~'Mpc by VVDS galax-
ies brighter than M, is presented in Fig. 6. Note that the anal-
ysis of the previous section guarantees that, on these scales,
the VVDS PDF fairly represents the PDF of the real underly-
ing population of galaxies up to z = 1.5. Figure 6 shows how
the shape of the measured galaxy PDF changes across different
cosmic epochs.

A Kolmogorov-Smirnov test confirms that the PDFs at dif-
ferent cosmic epochs are statistically different (i.e., the null hy-
pothesis that the three distributions are drawn from the same
parent distribution is rejected with a confidence Py > 1—-107°).

In particular the peak of the PDF in the lowest redshift in-
terval is shifted towards smaller values of the density contrast
6, when compared to the peak of the PDF in the highest red-
shift bin. Moreover, the shape of the distribution, also shows a
systematic “deformation”. Specifically, we observe the devel-
opment of a low-¢ tail in the PDF as a function of time on both
scales investigated. In other terms the probability of having low
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Fig.7. Redshift evolution of the standard deviation (upper panel)
and of the skewness (lower panel) of the galaxy PDF on a scale
R = 8 h~'Mpc for galaxies brighter than M = —20 + 5log h. The cor-
responding local values, estimated on the same scale by Croton et al.
(2004) using a subsample of the 2dFGRS having nearly the same me-
dian absolute luminosity of our sample, are represented with triangles.
Error bars represent 1o~ errors, and, in the case of VVDS measure-
ments, include the contribution from cosmic variance. The errorbar on
og of the 2dFGRS is smaller than the symbol size.

density regions increases as a function of cosmic time. For ex-
ample, underdense regions, defined as the regions where the
galaxy density field is log(1 + ) < —0.50na R = 8 h~'Mpc
scale, occupy a fraction of nearly 35% of the VVDS volume
at redshift 0.7 < z < 1.0, but only a fraction of about 25% at
redshift 1.25 < z < 1.5. Similar trends are observed when low-
ering the absolute luminosity threshold of the volume limited
sample (and consequently lowering the upper limit of the red-
shift interval probed) or when modifying the binning in redshift
space.

If galaxies are faithful and unbiased tracers of the underly-
ing dark matter field, then both this effects, the peak shift and
the development of a low density tail may be qualitatively inter-
preted as a direct supporting evidence for the paradigm of the
evolution of gravitational clustering in an expanding Universe.
At variance with overdense regions which collapse, a net den-
sity deficit (6 < 0) in an expanding Universe brings about a
sign reversal of the effective gravitational force: a density de-
pression is a region that induces an effective repulsive peculiar
gravity (Peebles 1980). If gravity is the engine which drives
clustering in an expanding Universe, we thus expect that, as
time goes by, low density regions propagate outwards and a
progressively higher portion of the cosmological volume be-
comes underdense.

The observed evolution in the PDF could also indicate
the presence of a time-dependent biasing between matter and
galaxies. As a matter of fact, it can be easily shown that a mono-
tonic bias, increasing with redshift, offers a natural mechanism
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to re-map the galaxy PDF into progressively higher intervals of
density contrasts.

We can better discriminate the physical origin of the ob-
served trends, i.e., if they are purely induced by gravitation or
strengthened by the collateral and cooperative action of bias-
ing, by studying the evolution of the PDF moments. In Fig. 7
the redshift evolution of the rms (o) and skewness (S3) of the
overdensity fields (see Table 1) for the Mg < —-20 + Slogh
sample are shown and compared to local measurements.

Following the standard convention within the hierarchi-
cal clustering model, we define the skewness S3 in terms of
the volume-averaged two- and three-point correlation functions
S3 =& /E%) noting that in the case of a continuous d,-field
with zero mean this expression reduces to S3 = (53)/(53)°. We
do not derive the moments (53) and (6, of the PDF by directly
applying the computation scheme given in Eq. (15), but by cor-
recting the count-in-cells statistics for discreteness effects using
the Poissonian shot-noise model (e.g., Peebles 1980; Fry 1985,
cf. Eqs. (374) and (375) of Bernardeau et al. 2002, possible bi-
ases introduced by this estimation technique are discussed by
Hui & Gaztanaga 1999). The corresponding values of o~ and S5
for the local Universe (in redshift space) have been derived by
Croton et al. 2004 using the 2dFGRS. Here we plot the values
corresponding to their —21 < M — 5logh < —20 subsample,
which actually brackets the median luminosity of our volume
limited sample.

We can see that the rms amplitude of fluctuations of the
VVDS density field, on scales 8 A~'Mpc, is into a good approx-
imation constant over the full redshift baseline investigated,
with a mean value of 0.94 + 0.07 over 0.7 < z < L.5.

While the strength of clustering of galaxies brighter than
M < =20+ 5logh does not change much in this redshift inter-
val, each VVDS measurement is lower than the value inferred
at z ~ 0 by Croton et al. (2004). In particular, our mean value
is ~10% smaller than the 2dFGRS value and the difference is
significant at ~20 level.

The skewness S3, which measures the tendency of gravi-
tational clustering to create asymmetries between underdense
and overdense regions, decreases as a function of redshift.
We observe a systematic decrement not only internally to the
VVDS sample, but also when we compare our measurements
with the z = O estimate. This trend is caused by the develop-
ment of the low-¢ tail in the PDF as a function of time on both
the R = 8, 10 A~ 'Mpc scales and reflects the fact that the prob-
ability of having underdense regions is greater at present epoch
than it was at z ~ 1.5 (where its measured value is ~20- lower.)

The amplitudes of the rms and skewness of galaxy over-
densities show an evolutionary trend dissimilar from that
predicted in first and second order perturbation theory for
the gravitational growth of dark matter fluctuations (see
Bernardeau et al. 2002 for a review). According to lin-
ear perturbation theory the amplitude of the rms of mass
fluctuations scales with redshift as in Eq. (18) while sec-
ond order perturbation theory predicts that, on the scales
where the quasi-linear approximation holds, the growth rate
of (63) and variance (6;)* are syncronized so that the skew-
ness Sz of an initially Gaussian fields should remain constant
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(Peebles 1980; Juszkiewicz et al. 1993; Bernardeau 1993)'.
Furthermore, in Le Fevre et al. (2005¢) we show that even the
general shape of the galaxy PDF deviates from a lognormal
distribution, i.e., from the profile in terms of which the mass
PDF is generally approximated (see Sect. 5). Therefore, we
conclude that the PDF evolution is not caused by gravity alone;
the redshift scaling of its global shape and moments effectively
indicates the presence of a time evolving bias.

We can deconvolve the purely gravitational signature and
investigate properties and characteristics of the biasing be-
tween matter and galaxies by comparing the galaxy PDF to
the corresponding statistics computed for mass fluctuations.
Thus, we now turn to the problem of deriving the PDF of mass
fluctuations.

5. The PDF of mass fluctuations
in redshift-distorted comoving coordinates

The VVDS survey is providing a rich body of redshift data for
mapping the galaxy density field in extended regions of space
and over a wide interval of cosmic epochs. On the contrary, the
direct determination of the underlying mass density field and its
associated PDF is a less straightforward process. Nonetheless
we may gain insight into the mass statistics by using simula-
tions and theoretical arguments.

In the standard picture of gravitational instability, the PDF
of the primordial cosmological mass density fluctuations is as-
sumed to obey a random Gaussian distribution. Once the den-
sity fluctuations reach the non-linear stage, their PDF signifi-
cantly deviates from the initial Gaussian profile and a variety
of phenomenological models have been proposed to describe
its shape (e.g., Saslaw 1985; Lahav et al. 1993). In particular,
it is well established in CDM models that when structure for-
mation has reached the nonlinear regime, the density contrasts
in comoving space f(9) follow, to a good approximation, a log-
normal distribution (Coles & Jones 1991; Kofman et al. 1994;
Taylor & Watts 2000; Kayo et al. 2001),

2y-1/2. 21972
2rw?) ox {_ [In(1 + 6) + w=/2] } (16)

O == 2w

This approximation becomes poor in the highly non-linear
regime (e.g., Bernardeau & Kofman 1995; Ueda & Yokoyama
1996). The PDF of mass overdensities f(9) is characterized by
a single parameter (w) that is related to the variance of the o-
field as

w? = In[1 + {(6%)]. (17)

At high redshifts, the variance o over sufficiently large scales
R (those explored in this paper) may be easily derived using the

linear theory approximation:
or(2) = or(z = 0)D(z) (18)

where D(z) is the linear growth rate of density fluctuations nor-
malized to unity at z = 0 (Heat 1977; Hamilton 2001).

! Note that the observed redshift evolution of the skewness is just
the opposite of what is expected also in generic dimensional non-
Gaussian models where S 5 is predicted to increase with redshift.
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The lognormal approximation formally describes the distri-
bution of matter fluctuations computed in real comoving coor-
dinates. On the contrary, the PDF of galaxies is observationally
derived in redshift space. In order to map properly the mass
overdensities into galaxy overdensities the mass and galaxy
PDFs must be computed in a common reference frame. It has
been shown by Sigad et al. (2000) that an optimal strategy to
derive galaxy biasing is to compare both mass and galaxy den-
sity fields directly in redshift space. Implicit in this approach is
the assumption that mass and galaxies are statistically affected
in the same way by gravitational perturbations, and thus, that
there is no velocity bias in the motion of the two components.

A general model which allows the explicit computation of
the statistical distortions caused by peculiar velocities has been
proposed by Kaiser (1987). This applies in the linear regime
(i.e., on large scales) and in the local Universe where red-
shift and distances are linearly related. At cosmological dis-
tances z, however, the mapping between real comoving co-
ordinates (x) and redshift comoving coordinates (y), i.e., the
pseudo-comoving coordinates inferred on the basis of the ob-
served redshifts, is less trivial, and we proceed to obtain it in the
following.

In an inhomogeneous Universe, galaxies have motions
above and beyond their Hubble velocity (e.g., Giovanelli et al.
1998; Marinoni et al. 1998; Branchini et al. 2001). As a conse-
quence, Doppler spectral shifts add to the cosmological signal
and the observed redshift (Z) is given by
- U(x)

7=z+ —(1 +2) (19)
where z is the cosmological redshift in a uniform Friedman-
Robertson-Walker metric and where U(x) = v(x) - 7 = |o(x)|u
is the radial component of the peculiar velocity (u is the cosine
of the angle between the peculiar velocity vector and the line-
of-sight versor 7).

The redshift comoving distance of a galaxy at the observed
redshift 7 is thus

c 2+ L (1+2) 1
y= FOL E—(X)dX’ (20)
where
E@) = [Qu(1 +2)° + (1 = Qu — Q)1 +2)° + Qu 12 (21)
At high redshifts (z > ‘%‘), we can write
y= f E—(X)d)( N —(1 +DEQR)"! 22)

which, in turns, gives the coordinate transformation from real
comoving space x to the redshift comoving space y

y=x 1+p<z)ﬁ} 3)
In this mapping, the cosmological term p(z),

1+z
p(2) = (24)

H()E(Z)
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Fig. 8. Redshift scaling of the rms mass fluctuations in sphere of
8 h'Mpc radius. Diamonds represent oy as computed from the
ACDM Hubble volume simulation in real comoving space (x-space),
while triangles represent the corresponding values recovered in the
redshift perturbed comoving coordinates (y-space). The solid line is
the analytical prediction for the scaling of og in the y-space obtained
using Eq. (30), while the dotted line represents the x-space evolution
predicted in real space. In both cases the power spectrum of pertur-
bations is the same and has been normalized in order to match the
simulation specifications (c*(z = 0) = 0.9).

is a correcting factor which takes into account the fact that, at
high redshifts, distances do not scale linearly with redshift, and,
thus, that peculiar velocities cannot be simply added to redshift
space positions as in the local Universe.

The galaxy density field in the redshift-distorted space is
related to the galaxy density in real space by the Jacobian of
the transformation between the two coordinate systems

dU -
) = px<x>[1+p<z)ﬁ] 145 )

At sufficiently large distances from the observer, neglecting the
survey selection function (i.e., considering a volume-limited
redshift survey) and at first order in perturbations we obtain

U (x)

(25)

6y(y) = 0x(x) -

26 (26)

The second term on the right hand side can be evaluated us-
ing linear-regime approximations and gravitational instability
theory. In comoving coordinates it is given by

dUE) _ P fQHE) 5.0
dx 1+z

27)

where f = dln D/dIna is the logarithmic derivative of the lin-
ear growth rate of density fluctuations with respect to the ex-
pansion factor a(f). At redshift z (corresponding to the comov-

ing position x) a useful approximation is given by:
f@ ~ QPEQ P + 2P (28)

(see Martel 1991; Lahav et al. 1991).
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Fig. 9. One-point PDFs of dark matter fluctuations (shaded area) com-
puted using the Hubble volume ACDM cosmological simulation in
4 different redshift ranges over a volume which mimics the geome-
try of the VVDS sample. The mass PDF has been recovered in the
redshift comoving space by smoothing the mass-particle distribution
with a TH window of size R = 8 h~'Mpc. Note that the plotted his-
togram actually corresponds to F(y) = (In10)yf(y) because the bin-
ning (dlogy = 0.1) is done in log(y) = log(1 + §). The dotted line
represents the lognormal approximation derived in the real comoving
space using Eq. (16). The solid curve represents the lognormal ap-
proximation computed adopting the variance parameter w (shown in
the inset) theoretically inferred using Eq. (30), which models peculiar
velocity distortions as a function of redshift.

By combining the previous results we obtain

§y@) = 6:(0[1 + 12 f2)).

which reduces to the Kaiser (1987) correction when z = 0.
The relation between the azimuthally averaged variances
measured in real and redshift comoving space is

(29)

2 1 1/2
/@) =1+ 3/@+3 | Q. (30)
We have tested the validity of Eq. (30) in the high redshift do-
main using the Hubble volume N-body simulations carried out
by the Virgo consortium (Colberg et al. 2000). This is a large
numerical experiment which allows the simulation of mass sur-
veys along the observer past light cone. The simulated mass
distribution is computed in a ACDM cosmogony with param-
eters Q, = 0.3, Qx = 0.7 and Hy = 70 km s~! Mpc‘l. The
volume covered by this N-body simulation is large enough that
the mass survey extracted along the diagonal of the simulation
cubes extends up to the redshift of interest i.e., the redshift cov-
ered by the first-epoch VVDS data (z = 1.5). In this simulation
the mass-particle resolution is 2.2 x 10'24~! M, and the present
epoch is defined by a linear rms density fluctuation in a sphere
of radius 8 ~~'Mpc of o3 = 0.9.
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The mass density contrasts in the redshift perturbed co-
moving coordinates d(y;, R) have been calculated at random
positions y; in the simulation volume, by smoothing the par-
ticle distribution with a spherical top hat window of length
R = 8 h™'Mpc. Mass variances in different redshift bins are
then derived using Eq. (15). The result is compared to the
prediction of Eq. (30) in Fig. 8. Note that, even if it is clear
that measurements suffer from cosmic variance due to the rel-
atively small volume sampled at each redshift, the predictions
of Eq. (30) are in agreement with the observed scaling of the
linear mass variance. The magnitude of the correction with re-
spect to the unperturbed case is also evident; mass fluctuations
recovered in redshift space on a 8 4~'Mpc scale, in the redshift
comoving coordinates, at z = 0.5(1.5) are ~25(35)% larger than
in real comoving space (the correction factor is ~17% in the lo-
cal Universe). Figure 9 shows that this apparent enhancement
in the rms fluctuations results in a broadening of the mass PDF
recovered in the redshift comoving space. Thus, the effect of
peculiar velocities is to shrink overdense regions and to inflate
underdense regions, enhancing the probability of having large
density fluctuations (both positive and negative).

We finally compare, in various redshift intervals, the accu-
racy with which the lognormal mass PDF derived in the red-
shift comoving space (by using Eq. (30) in 17) approximates
the PDF directly inferred from the Hubble volume simulation
(see Fig. 9). On a scale of 8 h~'Mpc, the agreement between
the analytical and simulated mass PDFs is satisfactory at all
redshifts. This holds true also when the mass PDFs recovered
on R = 5 and 10 4~ 'Mpc scales are compared.

Thus, with a good degree of confidence, we can use
Eq. (30) to predict the PDF of mass fluctuations in redshift dis-
torted comoving coordinates (the same coordinates where the
galaxy PDF is observed) and in a generic cosmological back-
ground. This allows us to speed up computation time and to
frame the results about the biasing function in a generic cos-
mological model.

6. Measuring galaxy biasing

In this section we describe the method applied to determine
the relationship between galaxy and mass overdensities. The
galaxy overdensity field 6, depends in principle on various as-
trophysical and cosmological parameters such as spatial posi-
tion (r), underlying matter density fluctuations (9), scale R with
which the density field is reconstructed, cosmological time (z),
galaxy colors, local gas temperature, non-local environment,
etc.

For the purposes of this study, we will rely on the following
simplifying theoretical assumptions:

i) the efficiency of galaxy formation on a given cosmolog-
ical scale is sensitive only to the underlying mass distri-
bution. This means that the galaxy fluctuation field is in
a reasonably tight one-to-one relationship with the under-
lying mass fluctuation field, and that the biasing scheme
may be formally represented via the relationship 6, =
b(z, 6, R)6. While such an approach represents a non-trivial
step forward in understanding the properties of the biasing
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function b (if compared, for example, to constant param-
eterizations of the biasing relation), it is however evident
that the biasing function could show, in principle, a more
complex functional dependence.
ii) The current theoretical understanding of how clustering of
DM proceeds via gravitational instability in the expanding
Universe is well developed, i.e., the PDF of mass fluctu-
ations of the real Universe can be safely derived via an-
alytical models or N-body simulations (see discussion in
Sect. 6) In particular, in what follows, we will consider a
ACDM background mass distribution locally normalized to
os(z=0)=0.9.
The redshift distortions affect the densities of galaxies and
mass in a similar way, i.e., there is no velocity bias between
these two components, and galaxies follow the matter flow.

iif)

6.1. The method

As described in Sect. 1, we derive the relationship between
galaxy and mass overdensities in redshift space 5, = 04(0)
as the one-to-one transformation which maps the theoretical
mass PDF f(6) into the observed galaxy PDF g(d,). A similar
method to derive the biasing function has been proposed and
tested using CDM simulations by Sigad et al. (2000) (see also
Szapudi & Pan 2004). This same technique has been recently
applied in different contexts by Marinoni & Hudson (2002) to
derive the mass-to-light (M = M(L)) and the X-ray-to-optical
(Ly = Ly(L)) functions for a wide mass range of virialized sys-
tems, and by Ostriker et al. (2003) to explore the void phenom-
ena in the context of hydrodynamic simulations.

Using Eq. (1)—(3), we obtain the biasing function b(9) as
the solution of the following differential equation

Sy(=1) = —1
(€29)
b'(6)5 + b(6) = f(8)g(6g)™

where the prime denotes the derivative with respect to 6, f(9)
and g(0) are the PDF of mass and galaxy fluctuations respec-
tively, and the initial condition has been physically specified by
requiring that galaxies cannot form where there is no mass.
With this approach, we loose information on a possible
stochasticity characterizing the biasing function. The advan-
tage is that we can provide a measure, on some characteristic
scales R, of the local, non-linear, deterministic biasing function
(Eq. (2)) over the continuous redshift interval 0.4 < z < 1.5.
We have obtained the biasing function b(6) by numerically
integrating the differential Eq. (31), i) in different redshift in-
tervals in order to follow the evolution of b(6) as a function of
cosmic time, and ii) using matter and galaxy PDFs obtained by
smoothing the density fields on R = 5, 8, and 10 ~~'Mpc in or-
der to test the scale dependence of the galaxy biasing function.
The information contained in the non-linear function b(8)
can be compressed into a single scalar which may be easily
compared to the constant values in term of which the biasing
relation is usually parameterized (see Eq. (1)). Since, by def-
inition, (b(6)0) = 0, the most interesting linear bias estima-
tors are associated to the second order moments of the PDFs,
i.e., the variance (62) and the covariance (d, 6). Following the
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prescriptions of Dekel & Lahav (1999), we characterize the bi-
asing function as follows:

~ (b(5) 62
b= (b)) 25)2> ) (32)
and
b2(8) 6%
b} = L1057 <(62)> ) (33)

where the parameter b, measuring the slope of the linear regres-
sion of ¢, on ¢, is the natural generalization of the linear bias
parameter defined in equation 1 and bi is an “unbiased estima-
tor" of the linear biasing parameter defined as & = b*¢, when
the bias relation is deterministic, i.e., non-stochastic. The ratio
r = b/by is the relevant measure of nonlinearity in the biasing
relation; it is unity for linear biasing, and it is either larger or
smaller than unity for nonlinear biasing.

The errors in the measured values of the biasing parame-
ter by, have been computed using independent mock catalogs
which implement all the selection functions of the VVDS. This
allows us to incorporate in our error estimates the uncertainties
due to cosmic variance.

6.2. Testing the method

Before applying the biasing computation scheme (Eq. (31)) to
VVDS data, we have tested that the method can be meaning-
fully applied, i.e., it is free of systematics when implemented
with samples of simulated galaxies which mimic all the obser-
vational systematics of our sample.

The procedure consists of computing the biasing function
0s = b(6p)0, between the density field d; reconstructed us-
ing an s-sample (representing the pseudo-survey sample, see
Sect. 4.1) and the density fluctuations 6, of the corresponding
p-sample (representing the pseudo-real Universe). We have al-
ready determined the range of redshift, density contrasts and
smoothing scales where the sample simulating all the VVDS
selection functions (s-sample) trace the underlying density of
galaxies (p-sample). We thus expect, for consistency, that, in
that range, the biasing between the two samples derived by
applying our computation scheme (Eq. (31), using the PDFs
of the s- and p-samples) is independent of 6, and equal to
b(op) = 1.

Results are presented in Fig. 10 for two different TH
smoothing scales. Note that a log-log density plot is used in
order to emphasize the behavior of the biasing function in un-
derdense regions. We conclude that on scales R > 8 4~ Mpc the
density recovered by a “four-passes” VVDS-like survey is not
biased with respect to the underlying distribution on any den-
sity scale and in any redshift interval up to z = 1.5. As a matter
of fact, the linear bias parameter with which information con-
tained in the biasing function can be at first order approximated
is b, ~ 1 and the biasing relation does not show any significant
deviation from linearity as indicated by the fact that the r pa-
rameter is also very close to unity.

If the density field is smoothed on 5 h‘lMpc, the effects of
the incompleteness in low-density regions (already discussed
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Fig. 10. The simulated biasing function (solid-line) at different cosmic epochs, between the density field traced by the s-sample (GALICS data
simulating the VVDS sample, see Pollo et al. (2005) and Sect. 4.1) and the density field traced by the p-sample (GALICS data simulating the
real underlying distribution of galaxies). b, represent the linear bias parameter evaluated from the nonlinear biasing function using the estimator
given in Eq. (32). The dashed line is drawn at b, = 1 and represents the no bias case. The central cross is for reference and represents the
0, = 0 = 0 case. The r parameter measures the deviations from the linearity. The galaxy overdensities are reconstructed using a TH window of
sizes R = 5 h™'Mpc (upper panel) and R = 8 h~'Mpc (lower panel). The shadowed area represents 1o~ errors in the derived biasing function.

in Sect. 4.1, see Figs. 4 and 5) become evident. Underdense
regions (log(1 +6;,) < —0.5) in volumes at redshift greater than
1 are poorly sampled with the VVDS survey strategy.

In the same spirit, we have also solved Eq. (31) to deter-
mine the biasing relation between the PDF of the Hubble vol-
ume mass fluctuations and the lognormal approximation given
in Eq. (16). The biasing relation between these two different de-
scriptions of the mass density field is linear and consistent with
the no-bias hypothesis between the two representations of the
density field on the scales we are interested in (R > 5 h~'Mpc
and log(1 + ¢) > —1).

7. The biasing function up to z~ 1.5
7.1. Results

The numerical solutions of Eq. (31) for the M = —20+51ogh
volume-limited VVDS sample are plotted in various redshift
slices, in Fig. 11 for the cases R = 8 and 10 2~'Mpc. Note that
alog-log density plot is used in order to emphasize the behavior
of the biasing function in underdense regions (note that in these
units linear biasing appears as a curved line).

The corresponding parameters by, and r (also computed for
the whole flux-limited sample) are quoted in Table 1, together
with our estimates of the second moment of the galaxy PDF
og and of the skewness parameter S3. Both these statistics have
been computed as described in Sect. 5. Also note that the values
of og measured for the flux-limited sample are consistent with

the values independently derived in Sect. 3.4 on the basis of
the results of the analysis of the clustering properties of VVDS
galaxies (Paper III).

An empirical fit of the biasing function is obtained
by using a formula similar to the one proposed by
Dekel & Lahav (1999)

(1 +ag)(1 +6)™ — 1
ap + ao + a362

0<0

0>0 (34)

5,(0) = {
which best describes the behavior of biasing in underdense re-
gions (6 < 0), either the second order Taylor expansion of the
density contrast of dark matter (Fry& Gaztafiaga 1993)

(35)

which allows an easier comparison of our results with other
studies. The best fitting parameters of these non-linear approx-
imations are quoted in Table 2.

The dependence of the shape of the biasing function on
galaxy luminosity is plotted in Fig. 12. Results are shown at
the median depth of the VVDS sample (in the redshift bin
0.7 < z < 0.9) where faint objects (Mp < —17.7 + Slogh)
are still sampled.

In Fig. 13 we show the redshift evolution of the linear bi-
asing parameter by, computed over the redshift interval 0.4 <
z < 1.5 for both the flux and volume limited samples. We
can conclude that biasing is not changing with cosmic time for
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Table 1. Bias measurements from the VVDS first epoch data.

R Redshift range M Nga by r OR S3
h™'"Mpc
5 04<z<0.7 No 1583 0.87+0.15 095 094+0.15 12+03
0.7<z<09 1044 095+0.15 096 098+0.15 14+0.3
09<z<1.1 759 097+0.13 097 093+£0.13 1.1+03
5 04<z<0.7 -18.7 610 1.06+0.17 097 1.18+0.17 1.6+0.3
0.7<z<09 726 1.03+0.15 097 1.05+0.15 1.6+03
09<z<1.1 751 1.00+0.14 097 097+0.14 15+03
5 04<z<07 =20 160 1.10+£0.18 097 128+0.18 14+04
0.7<2z<09 229 1.12+0.17 099 1.18+0.17 1.1+0.3
09<z<1.1 289 1.18+0.15 097 1.17+0.15 14+04
8 0.7<2z<0.9 No 1263 0.92+020 097 067+020 1.6+04
09<z<1.1 864 1.03+£0.16 096 0.74+0.16 1.6+0.3
l.1<z<13 440 1.21+0.12 096 0.82+0.12 13+03
13<z< 15 234  1.51+0.10 095 096+0.11 1.0+0.3
8 0.7<z<09 -18.7 879 098021 098 0.75+021 1.6+04
09<z<1.1 813 1.01+0.16 097 0.72+0.16 1.8+0.3
8 0.7<z<09 =20 279 1.17+023 098 0.89+023 1.7+04
09<z<1.1 327 1.30+0.17 099 094+0.17 1.8+03
l.1<z<13 251 1.33+0.12 096 088+0.12 1.2+03
13<z<1.5 169 156+0.11 095 099+0.11 1.1+0.3
10 0.7<2z<09 No 1425 1.03+£022 091 0.66+022 1.6+04
09<z<1.1 955 1.05+0.18 097 0.64+0.18 1.7+04
1.1<z<13 480 1.17+0.13 090 068+0.13 13+0.3
13<z<1.5 250 1.55+0.11 093 0.84+0.13 12+03
10 0.7<2z<09 -18.7 991 1.03+0.25 095 069+025 15+04
09<z<1.1 900 1.03+0.18 096 0.63+0.18 1.7+0.3
10 0.7<2z<09 =20 316 1.14+0.25 092 0.75+025 1.6+04
09<z<1.1 360 126020 097 0.78+020 1.8+04
1.1<z<13 266 1.36+0.14 091 0.78+0.14 13+03
13<z< 15 175 154+0.13 093 084+0.13 13+03

Table 2. Best fitting parameters of the non linear biasing models given in Egs. (34) and (35). Errors do not include cosmic variance.

R Redshift MZ, [N ay ap as bo b1 b2

h~'Mpc range

8 07<z<09 No 036+0.03 136=+0.11 060+0.12 -0.01+0.02 0.10+£0.06 0.88+0.10 -0.12+0.08
09<z<l1l1 035+£0.03 136+040 1.08+0.10 -0.08+0.02 023+0.06 1.18+0.09 -0.20+0.06
1.1<z<13 0.39+£0.04 1.64+0.13 1.14+0.11 -0.08+0.02 024+0.07 126+0.10 -0.22+0.06
13<z<15 0.54+0.05 234+030 146=+0.14 -0.11+£0.02 0.37+0.12 1.57+0.15 -0.24+0.08

8 07<z<09 20 025+0.05 167020 125+0.16 -0.09+0.03 0.18+0.10 130+0.15 -0.20+0.08
09<z<1.1 0.40+0.06 2.12+0.33 1.20+0.16 -0.05+0.02 023+0.17 129+0.16 -0.12+0.08
1.1<z<13 045+£0.04 186+0.13 129+0.13 -0.11+£0.02 0.31+0.08 140+0.13 -0.26+0.06
13<z<15 048 +£0.05 251+030 146+0.16 -0.10+0.02 0.33+0.14 155+0.15 -0.22+0.08

10 07<z<09 No 025+0.03 085+0.10 144+021 -023+0.06 0.17+0.07 120+£0.15 -0.30+0.12
09<z<1l1 0.18+0.02 120+008 1.23+0.13 -0.18+0.04 020+0.04 1.19+0.09 -0.34+0.08
1.1<z<13 0.39+£0.04 1.30+0.11 1.04 £0.13 -0.08+0.03 026+0.06 1.18+0.10 -0.22+0.08
13<z<15 0.54+£0.04 2.09+0.13 141+0.15 -0.14+0.03 039+0.08 155+0.12 -0.32+0.08

10 07<z<09 -20 021+0.03 133+0.10 145+0.16 -0.22+0.04 0.18+£0.06 126+0.11 -0.28+0.10
09<z<l1l1 0.18+0.04 1.51+0.15 138+0.16 -0.13+0.03 020+0.08 136=+0.14 -0.26+0.08
1.1<z<13 0.38+0.04 1.37+0.17 150+0.15 -0.13+0.03 0.37+0.10 150+0.14 -0.26+0.08
13<z<15 022+0.05 1.76+020 1.83+0.16 -0.18+0.03 0.33+0.12 1.73+0.17 -0.34+0.08

z < 0.8, while there is a more pronounced evolution of biasing
in the redshift interval [0.8, 1.5]. In particular, the difference
between the value of by at redshift z ~ 1.5 and z ~ O for a
population of galaxies with luminosity Mgz < —20 + Slogh is
Aby, ~ 0.5 + 0.14, thus significant at a confidence level greater

than 30-.

In Fig. 14 we show the dependence of the linear biasing pa-
rameter on galaxy luminosity. Intrinsically brighter galaxies are
more strongly biased than less luminous ones at every redshift
and the dependence of biasing on luminosity at z ~ 0.8 is in
good agreement with what is observed in the local Universe
(Norberg et al. 2001).



C. Marinoni et al.: The VVDS: Galaxy biasing up to z = 1.5

Given the difference in the rest-frame colors of elliptical
and irregular galaxies and the fact that the observed / band
corresponds to bluer rest-frame bands at higher redshift, the
relative fraction of early- and late-type galaxies in our / band
limited survey will change as a function of redshift.

Specifically, the observed difference in the B-band luminos-
ity function of early- and late-types (Zucca et al. 2005), implies
that the VVDS survey selects preferentially late-type galaxies
at higher redshift. It is known that at z = 0 late-type galax-
ies cluster less strongly than early-types (e.g., Giovanelli et al.
1986; Guzzo et al. 1997; Giuricin et al. 2001; Madgwick et al.
2002; Zehavi et al. 2002), and, thus, we might observe a varia-
tion of the amplitude of density fluctuations at high redshifts
just because the morphological composition of our sample
changes.

In order to disentangle the spurious morphological contri-
bution to the observed evolution of the global biasing func-
tion we have splitted our sample according to rest frame col-
ors, selecting a red (B — I)g > 0.95; 849 galaxies in the
4-passes region with z > 0.7) and a blue subsample of galax-
ies (B — 1)y < 0.68; 1891 galaxies with z > 0.7). These color
cuts roughly correspond to selecting, respectively, morpholog-
ical types < II and IV according to the classification scheme
devised by Zucca et al. 2005 for the VVDS sample.

Clearly, this subsample selection does not correspond to the
ideal case of a redshift survey sampling galaxies according to
their rest-frame colors; however, useful information about dif-
ferences in clustering between red and blue populations can
still be inferred.

Note that the hypothesis on which the technique of com-
paring mass and galaxy density distributions is based (Sect. 6)
can be straightforwardly generalized to compute the biasing
between the density distributions of different galaxy types. In
particular, we assume that the large scale velocities of late and
early types are not dissimilar relative to each other (as it is ef-
fectively observed at z = 0 e.g., Dekel 1994; Marinoni et al.
1998) i.e., the two velocity fields are noisy versions of the same
underlying field.

Results about the color dependence of biasing are summa-
rized in Table 3 and graphically presented in Fig. 15. The red
sample is systematically a more biased tracer of mass than the
blue one in every redshift interval investigated (i.e., b” > %
but the relative biasing between the two populations is nearly
constant (b"/b? ~ 1.4 +£0.1)

7.2. Analysis and discussion
7.2.1. Biasing for the global galaxy population

Here we examine and interpret the results derived in the pre-
vious section. We begin by discussing the general shape of the
non-linear biasing function, for the global population, in differ-
ent density regions. Our results can be summarized as follows:

i) in underdense regions (1 + ¢ <1) the local slope of the
biasing function b(6) is always larger than unity even when the
global slope is by, < 1 (see for example Fig. 12). The fact that
galaxies in low-mass density regions are always positively bi-
ased with respect to the mass distribution (i.e., locally b > 1)
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is possibly physically caused by the fact that galaxies do not
form in very low-density mass regions, i.e., below some fi-
nite mass underdensity the galaxy formation efficiency drops to
zero. Using the biasing relation given in Eq. (34) the character-
istic mass density threshold 6. below which very few galaxies
form (6, < —0.9), can be approximated as

1 +1log(1 + ayp)
aj

log(1 + d.) ~ — (36)
There is evidence that this mass-density threshold, character-
izing regions avoided by galaxies, increases as a function of
redshift (see Fig. 11) and luminosity (see Fig. 12). If we con-
sider R = 8 h™'Mpc and the redshift bin 0.7 < z < 0.9 we
see that while faint galaxies seem to be present even where
the mass density contrast is very low (left panel of Fig. 12,
log(1 + 6.) = —0.96 + 0.09),

brighter galaxies do not seem to form in deep mass under-
densities (right panel of Fig. 12, log(1 + 6.) = —0.73 £ 0.11).
Therefore low-density regions are preferentially inhabited by
low luminosity galaxies.

Moreover the mass-density threshold below which the for-
mation of bright galaxies (Mp < —20 + 5logh) seems to be
inhibited increases, irrespective of the scale investigated (see
Fig. 11) as a function of redshift. On a scale R = 8 h~'Mpc, the
threshold shifts from log(1 + 6.) = —0.73 £ 0.10 at z = 0.8 to
log(1+6.) ~ —0.55+0.07 at z = 1.4 This suggests that galaxies
of a given luminosity were tracing systematically higher mass
overdensities in the early Universe, i.e, as time progresses,
galaxy formation begins to take place also in lower density
peaks.

ii) Even in regions where the mass density distribution is
close to its mean value (1+6 ~ 1) bright galaxies are not
unbiased tracer of the mass-overdensity field (Fig. 11). This
can also be seen by setting 6 = 0 in Eq. (34) and noting that
04(0 = 0) = ap > 0 for both analyzed samples (flux- and
volume-limited) in all redshift ranges (see Table 2). This result
is at variance with what is expected within the simple linear
biasing picture, where, by construction, §;(6 = 0) = 0.

iii) In higher matter-density environments (1+6 > 1) galax-
ies were progressively more biased mass tracers in the past,
i.e., the local slope b(5) systematically increases with redshift
on every scale investigated (Fig. 11). There is some indication
that, at the upper tail of the mass density distribution, galaxies
are anti-biased with respect to mass on all scales (i.e., the local
slope is b(6) < 1 for 6 > 1). Antibiasing in overdense regimes
is a feature actually observed in simulations (e.g., Sigad et al.
2000; Somerville et al. 2001) and expected in theoretical mod-
els (e.g., Taruya & Sato 2000). Physically this could be due to
the merging of galaxies which reduces the number density of
visible objects in high density regions or because galaxy forma-
tion is inhibited in regions where the gas is too hot to collapse
and form stars.

iv) In general the linear approximation offers a poor de-
scription of the richness of details encoded in the biasing func-
tion. As a matter of fact the linear biasing function (dotted line
in Figs. 11 and 12) poorly describes, in many cases, the ob-
served scaling of the biasing relation (solid line). At the co-
moving scalesof R = 5, 8 and 10 Kl Mpc, non-linearities in the
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Fig. 11. The observed biasing function (solid-line) recovered for the density field smoothed on scales R = 8 h~'Mpc (upper panel) and

10 A~'"Mpc (lower panel) and for different redshift bins (from left to right) in the volume-limited VVDS sample (M5,

—20 + 5logh). The

dotted line represents the linear biasing model 6, = b6 while the no-bias case (b, = 1) is shown with a dashed line. The central cross is for
reference and represents the 6, = 6 = 0 case. The shaded area represents 1o errors in the derived biasing function. Errors take into account the
noise in the observed galaxy PDF (g(6,)), but do not include uncertainties due to cosmic variance.
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Fig. 12. The biasing function (solid-line) on scales R = 8 #~'Mpc and in the redshift interval 0.7 < z < 0.9 computed for different luminosity

classes. Symbols are as in Fig. 11.

biasing relation are typically (1 —r) < 10% in the redshift range
investigated. We find that the ratio b,/b; between the quadratic
and linear term of the series approximation given in Eq. (35)
is nearly constant in the redshift range 0.7 < z < 1.5 and does
not depend on luminosity (i.e. it is nearly the same for the flux-
and volume-limited subsamples) or smoothing scale. We find
that, on average, b,/b; ~ —0.15 £0.04 forR = 8 h"Mpc and
by/by ~ —0.19 + 0.04 for R = 10 h~'Mpc.

To facilitate comparison with other studies, which gener-
ally focus on the linear representation of biasing, we now dis-
cuss the properties of the linear approximation of our biasing
function. The general characteristics of the linear parameter by,
can be summarized as follows:

v) by inspecting Table 1, we do not find any signif-
icant evidence that the global value of the linear biasing

parameter b depends on the smoothing scale. Any possible
systematic variation, if present, is smaller than the amplitude
of our errorbars (~0.15). This scale independence in the biasing
relation extends into the high redshift regimes similar conclu-
sions obtained in the local Universe by the 2dFGRS on scales
>5 h™'Mpc (Verde et al. 2002). Moreover our results may
be interpreted as a supporting evidence for theoretical argu-
ments suggesting that bias is expected to be scale-independent
on scales larger than a few 4~'Mpc (e.g., Mann et al. 1998;
Weinberg et al. 2004).

Since we find no evidence of scale-dependent bias, and
since with different R scales we are probing different red-
shift regimes, in Fig. 13 we have averaged the linear biasing
parameters measured on 5, 8, and 10 h‘lMpc scales (values
quoted in Table 1) in order to follow, in a continuous way, the
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Fig. 13. The redshift evolution of the linear biasing parameter b, for
the volume-limited (Mg < —20+51og &) subsample (filled squares) is
compared to the evolution of the biasing parameter for the whole flux-
limited VVDS-02h sample (empty squares). Since there is no signif-
icant evidence of scale dependence in the biasing relation, we have
averaged the biasing parameters measured on 5,8, and 10 A~'Mpc
scales in order to cover the full redshift baseline 0.4 < z < 1.5. For
clarity, only the errorbars corresponding to the volume-limited sample
are shown. The triangle represents the z ~ 0 bias inferred for 2dFGRS
galaxies having median L/L* ~ 2 (i.e., the median luminosity of the
volume-limited VVDS sample) as explained in the text.

redshift evolution of the linear galaxy biasing over the larger
redshift baseline 0.4 < z < 1.5. Figure 13 shows that by,
for galaxies brighter than Mp = —20 + 5logh changes from
1.10+£0.18atz ~0.55t0 1.55+0.12atz ~ 1.4.

An even steeper variation is observed for the biasing of the
flux-limited sample, indicating that biasing depends on galaxy
luminosity. Figure 13 shows that the ratio between the ampli-
tude of galaxy fluctuations and the underlying mass fluctua-
tions declines with cosmic time. This scaling is effectively pre-
dicted within the framework of the peaks-biasing theoretical
model (Kaiser 1984). At early times, galaxies are expected to
form at the highest peaks of the density field since one needs a
dense enough clump of baryons in order to start forming stars.
Such high-o peaks are highly biased tracers of the underlying
mass density field. According to this picture, as time progresses
and the density field evolves, galaxy formation moves to lower-
o peaks, nonlinear peaks become less rare events and thus
galaxies become less biased tracers of the mass density field.
Additional “debiasing” mechanisms may contribute to the ob-
served scaling shown in Fig. 13. It is likely that the densest
regions stop forming new galaxies because their gas becomes
too hot, cannot cool efficiently, and thus cannot collapse and
form stars (Blanton et al. 1999). As galaxy formation moves
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Fig. 14. Comparison between the galaxy linear bias parameter mea-
sured in the redshift interval 0.4 < z < 0.9 for 3 different luminosity
classes (squares) and the corresponding local estimates provided by
the 2dFGRS (triangles). Points with increasing sizes correspond to
three different volume-limited VVDS subsamples, i.e Mz — Slogh <
-17.7, < —18.7 and < —20, respectively. For clarity, squares with in-
creasing size have been progressively displaced rightward to avoid
crowding. The z~0 measurements have been interpolated by using
the formula describing the luminosity dependence of the 2dFGRS bias
parameter (Norberg et al. 2001), the bias parameter for the 2dFGRS L*
sample (i.e., b, = 0.92 (Verde et al. 2002)) and the median luminosity
of the three VVDS subsamples (L/L*=0.52,0.82,2.0 respectively).

out of the hottest (and rarest) regions of the Universe, the bias-
ing decreases. Finally, we also note that in order to derive the
biasing function we have assumed that there is no difference in
the velocity field of the luminous and matter components. After
galaxies form, they are subject to the same gravitational forces
as the dark matter, and thus they tend to trace the dark matter
distribution more closely with time as shown by Dekel & Rees
(1987); Fry (1996); Tegmark & Peebles (1998).

vi) In Fig. 13 we also show, for comparison, the value of
the 2dFGRS linear biasing parameter inferred at z = 0.17
(the effective depth of the survey) as the ratio between the
og value measured by Croton et al. 2004 (in redshift-distorted
space; see their Figs. 3 and 4) for a sample of objects with
-21 < Mp—51logh < =20 (which actually brackets the median
luminosity of our volume limited sample ~2L*), and the rms
of mass fluctuations (in redshift-distorted space) in a ACDM
background (see Sect. 6). This value (~1.07 £0.06) is in excel-
lent agreement with what one would independently obtain by
combining the linear bias parameter measured by Verde et al.
(2002) for the whole 2dFGRS (1.04+0.11) with the bias scaling
law recipe of Norberg et al. (2001),1i.e., b(z =0.17,L = 2L*) =
1.07 £ 0.13.
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We can conclude that the time dependence of biasing is
marginal (db/b ~ 7 + 25%) for z < 0.8 while it is substan-
tial (db/b ~ 33 + 18%) in the resdhift interval [0.8—1.5]. The
observed time evolution of bias is well described by the simple
scaling relationship by = 1 + (0.03 £ 0.01)(1 + z)>3*% in the
interval 0 < z < 1.5.

Assuming a linear biasing scheme, one may note that this
result was already implicit in Fig. 7 of Sect. 4. The rms fluctu-
ations of the mass density field on a 8 #~'Mpc scale decrease
monotonically with redshift by a factor of ~22% and ~23%
in the redshift intervals [0.17-0.8] and [0.8-1.4], respectively;
thus, a nearly constant bias is predicted in the redshift range
z = [0.17-0.8] because the rms fluctuations of the galaxy den-
sity field are also decreasing by a factor ~16% in this same
interval. Since, instead, og of galaxies is marginally increasing
in the range z = 0.8-1.4 (do/o ~ 10%, see Table 1), over this
redshift baseline the biasing evolves rapidly.

vii) Bright galaxies are more biased mass tracers than the
general population (see Fig. 12). This result confirms and ex-
tends into the high redshift domain the luminosity dependence
of biasing which is observed in local samples of galaxies
(e.g., Benoist et al. 1996; Giuricin et al 2001; Norberg et al.
2001; Zehavi et al. 2002). Specifically, in Fig. 14 we show the
dependence of galaxy biasing from luminosity measured in the
redshift interval 0.4 < z < 0.9 using three different volume-
limited VVDS subsamples (i.e., Mg—5logh < —17.7,< —18.7
and <-20 respectively) and compare their linear biasing pa-
rameters with those observed locally for a sample of objects
having the same median luminosities of the VVDS subsamples
(i.e., L/L* = 0.52, 0.82, 2.0 respectively). The local estimates
have been computed on the basis of the scaling relationship
b/b*=0.85 + 0.15 L/L* derived by Norberg et al. (2001) us-
ing the 2dFGRS sample, assuming the b* value given by Verde
et al. (2002). As shown above for the volume-limited sample,
no significant evolution is seen up to z ~ 0.8 also when the
dependence of bias from luminosity is analyzed.

Finally, we note that, as already discussed in Sect. 5, galax-
ies with the same luminosity at different redshifts may ac-
tually correspond to different populations. Since, as we have
shown, biasing increases with luminosity also at high redshift,
and since the measured value of M* for our sample at redshift
z = 0.4(1.5) (Paper II) is fainter(brighter) than the cut-off mag-
nitude Mj = —20 + 5logh, we can infer that by (z) for a pop-
ulation of objects selected, at any given redshift, in a narrow
luminosity range around M=(z) should increase with redshift
even more than what we have measured for our volume-limited
sample (see Fig. 13). A more detailed analysis of the biasing for
M (z) galaxies will be presented in the future, when a larger
VVDS data sample will be available.

7.2.2. Biasing as a function of galaxy color

Results summarized in Table 3 and presented in Fig. 15 show
that, on scales R = 8 h~'Mpc, the red sample is a more bi-
ased tracer of mass than the blue one in every redshift inter-
val. Similarly to what we have found for the global population,
there is some indication of a systematic increase as a function
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Table 3. The biasing parameters for red and blue VVDS subsamples
on a scale R = 8 h~'Mpc.

Redshift Volume bl bf b

range limited

07<z<09 No 1.3£02 13+£05 1.0+05
09<z< 1.1 No 1.3+02 14+05 1.1+04
l.1<z<13 No 14+02 16+05 12+04
13<z<15 No 1.4+03 23+x04 16+04
07<z<09 =20 14+03 15+06 1.1+£0.6
09<z< 1.1 =20 1.3£03 16+x06 12+05
l.L1<z<13 =20 1.5+02 20+05 13+04
13<z<15 =20 1.3£03 21+x04 16+04

of redshift of the biasing of bright red and blue objects even
if, because of the large errorbars, this trend is not statistically
significant.

We can compare our results to the biasing measured for
extremely red objects (EROS), i.e., objects with extremely
red colors ((R — K)yega > 5). Using the results of the cor-
relation analysis of Firth et al. (2002), we obtain, for their
(I = H)vega > 3, Hyega < 20.5 sample (which has a median blue
luminosity Mp = =20.3 + 5log h), bEROS(z ~ 1.2) ~ 2.3 £ 0.6.
Considering the results of Daddi et al. (2001), who analyzed
a sample of EROS with (R — K)yega > 5 (which roughly cor-
responds t0 (I — H)yega > 3), Kyega < 19.2 sample, we con-
clude that bEROS(z ~ 1.2) ~ 4 £ 1. These values for the galaxy
biasing are respectively ~0.5 and 1.80 higher than that mea-
sured for our sample of bright (Mp < —20 + 5log /) but mod-
erately red galaxies (b{(z ~ 1.2) = 2 £ 0.5). One may inter-
pret this results as an indication for the reddest objects being
more strongly biased then moderately red galaxies of similar
luminsity. Anyway, given the large errorbars, the evidence that,
at z ~ 1.2, the biasing properties of these two differently se-
lected populations are different is not statistically significant.
As a matter of fact, the values quoted above are also consistent
with an alternative hypothesis, i.e., the strength of the EROS
fluctuations with respect to the mass fluctuations is not excep-
tional when compared to the density fluctuations observed in
a sample of high redshift, moderately red galaxies of similar
luminosity.

The specific values of the biasing parameter at each cos-
mic epoch are affected by large errors due to the sparseness
of our volume-limited subsamples, and to the presence of cos-
mic variance. One way to bypass uncertainties due to cosmic
variance consists in computing the relative biasing function
b(8) = b'(6)/b"(5) between the red and blue subsamples.
As the subsamples are drawn from the same volume, this ratio
should be minimally affected by the finiteness of the volume
probed by the first epoch VVDS data.

Results about the relative biasing between galaxy of differ-
ent colors are graphically shown in the lower panel of Fig. 15,
while estimates of the corresponding by, are quoted in Table 3.

We do not observe any trend in the relative biasing between
red and blue volume-limited subsamples in the redshift range
0.7 < z < 1.5. Moreover, our best estimate bfl ~14+0.1is
in excellent agreement with what is found for nearly the same
color-selected populations both locally (Willmer et al. (1998)
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Fig. 15. Upper panel: redshift evolution of the galaxy bias on a scale
R = 8 h™'Mpc for the red (squares) and blue (triangles) galaxies
in the volume limited samples. For clarity, the triangles have been
slightly displaced rightward to avoid crowding. Black diamonds rep-
resent the global bias for galaxies brighter than M§ = —20 + 5logA.
Lower panel: the relative bias between the red and blue population
™ = b"/b) is shown as a function of redshift.The filled and shaded
areas represents the 1o~ confidence region of the z ~ 0 value for the
relative bias derived by Wilmer et al. (1998) and Wild et al. (2005) re-
spectively. The diamond represents the relative bias measured by Coil
et al. (2004) in the redshift interval (0.7-1.35).

found that, on a scale R = 8 h™'Mpc, b = b((B — R)o.vega >
1.3)/b((B = R)oyega < 1.3) = 1.4 £ 0.3, while Wild et al.
(2005) using the 2dFGRS found on the same scale brLe' =
b((B—=R)ovega > 1.07)/b((B—R)o,vega < 1.07) = 1.5+0.07) and
at z~1 (Coil et al. (2004) found, on a scale R = 8 h~'Mpc, that
bl = b((B-R)o > 0.7)/b((B-R)y < 0.7) = 1.41£0.10). Thus,
VVDS results suggest that there is no-redshift dependence for
the relative biasing between red and blue objects up to z ~ 1.5.
Possible systematics could conspire to produce the observed re-
sults; the linear approximation may not always captures, in an
accurate way, all the information contained in the biasing func-
tion, and more importantly, a purely magnitude limited survey
samples the red and blue populations at high redshift with a
different efficiency (see discussion in Sect. 7.1).

In principle, the relative bias could be further studied as
a function of scale. For example, locally, there is evidence of
scale dependence in the relative bias with the bias decreasing
as scale increases (Willmer et al. 1998, Madgwick et al. 2003,
Wild et al. 2005). However, the sample currently available is
not sufficiently large to obtain proper statistics on this effect,
although this should be measurable from the final data set.

Finally, we note that no differences in the value of bfl are
seen by comparing volume-limited subsamples with the flux-
limited one in different redshift intervals (see Table 3).
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Fig. 16. The redshift evolution of the linear biasing parameter by, for
the volume-limited (M§ = =20+ 5log h) sample (see Fig. 13) is com-
pared to various theoretical models of biasing evolution. The dotted
line indicates the conserving model normalized at b;(z = 1.4) = 1.28,
the solid and dashed lines represent the star forming and merging mod-
els with the mass thresholds set at 3.2 x 10'! and 2.4 x 10"2h7" M,
respectively.

Thus, we can deduce that in each redshift bins 5R(Mp <
—-20)/bR ~ bB(Mpy < —20)/b®. In other terms the biasing be-
tween the most luminous objects of a particular color and the
global population of objects of the same type appears to be in-
dependent of galaxy colors (see Table 3).

8. Comparison with theoretical predictions

In this section we compare our results about the biasing of the
Mg = =20 + 5logh volume-limited, global galaxy sample,
with predictions of different theoretical models.

Since we have found that the distribution of galaxy and
mass fluctuations are different and the bias was systematically
stronger in the past, we can immediately exclude the scenario
in which galaxies trace the mass at all cosmic epochs. We thus
consider more complex theoretical descriptions of the biasing
functions, in particular three different pictures based on orthog-
onal ideas of how evolution proceeds: the conserving, the merg-
ing, and the star forming biasing models (see e.g., Moscardini
et al. 1998).

In the first model the number of galaxies is conserved as a
function of time (Dekel & Rees 1987; Fry 1996). This model
does not assume anything about the distribution and mass of
dark matter halos or their connection with galaxies. In this
scheme one assumes that galaxies are biased at birth and then
they follow the flow of matter without merging, in other terms
they behave as test particles dragged around by the surround-
ing density fluctuations. Because the acceleration on galaxies
is the same as that on the dark matter, the gravitational evolu-
tion after formation will tend to bring the bias closer to unity,
as described by Fry (1996) and Tegmark & Peebles (1998).
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Table 4. Best fitting parameters and the corresponding x? values for
various biasing models.

Model Best fitting parameters x*/d.of.
Conserving  bs(z=1.4) = 1.28 £ 0.03 2
Merging M =24x%x102h"M, 55

Star forming M = (32+3)x10°"'M, 0.7

The evolution of the bias is given by (e.g., Tegmark &
Peebles 1998)

D(zr)
D(z)

where by is the bias at the formation time zz.

An alternative picture for the bias evolution, which explic-
itly takes into account galaxy merging, has been proposed by
Mo & White (1996) who gave analytical prescriptions for com-
puting the bias of halos using the Press & Schechter formalism.

If we explicitly assume that galaxies can be identified with
dark matter halos, an approximate expression for the biasing
of all halos of mass > M existing at redshift z (but which col-
lapsed at redshift greater than the observation redshift, see dis-
cussion in Matarrese et al. 1997) is given by

bx)=1+br—1) 37)

b(M,z) =1+ l( 0 1)

o \c2(M,z) (38)

where 6. ~ 1.69 is the linear overdensity of a sphere which
collapses in an Einstein-de Sitter Universe and o(M, z) is the
linear rms fluctuations on scales corresponding to mass M at
the redshift of observation.

The third model is also framed within the peaks-biasing for-
malism. It assumes that the distribution of galaxies with lumi-
nosity > L is well traced by halos with mass > M, and predicts
the biasing of objects that just collapsed at the redshift of ob-
servation (e.g., Blanton et al. 2000). In this star forming model,

e

b(M,z) =1+ m

(39)
represents the biasing of galaxies that formed in a narrow time
interval around redshift z(i.e., galaxies which experienced re-
cent star formation at redshift 7).

Clearly the above models, are based on a set of theoretical
ingredients which represent a crude approximation of the com-
plex multiplicity of physical phenomena entering the cosmic
recipe of galaxy biasing. In this context, our goal is to inves-
tigate the robustness of the simplifying assumptions on which
theoretical models are based, and explore the validity or limits
of their underlying physical motivations.

Theoretical predictions are compared to observations
(VVDS data plus the local normalization derived from 2dFGRS
data) in Fig. 16. The best fitting parameters for each model are
evaluated using a y? statistics and are quoted, together with the
corresponding minimum y? value of the fit, in Table 4.

The best fitting galaxy conserving model is obtained when
the bias at birth is bg(zr = 1.4) = 1.28 + 0.03 and the corre-
sponding normalized y?-value is 3 = 2. As shown in Fig. 16
the redshift evolution predicted by this model is much weaker
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than suggested by data. Thus, the gravitational debiasing is a
physical mechanism that alone may not fully explain the ob-
served redshift evolution of the biasing, in the sense that it sig-
nificantly underpredicts the rate of evolution.

The redshift evolution is more pronounced in the merging
model (specifically, in Fig. 16, we show the bias evolution of
galaxies hosted in halos having mass M > 2.4 x 10'2 ™' M,).
While this model successfully describes the redshift depen-
dence of the biasing of halos (Mo & White 1996; Somerville
et al. 2001) it poorly accounts for the redshift evolution of the
bias of galaxies (with Mp < —20 + 5logh) between z = 0
and z = 1.5 which is slower than predicted (,y,zv = 5.5 for
the best fitting model). Thus, although merging is an important
mechanism for describing the evolution of matter clustering,
our result implies that merging processes affect galaxies in a
less dramatic way than halos. Since in the Press & Schechter
formalism halos are required to merge instantaneously in big-
ger units at the redshift of observation, our result would imply,
also, that the merger time-scales of galaxies is different from
that of halos. Moreover, selecting galaxies with a fixed lumi-
nosity threshold may not correspond, over such a wide z range
as that investigated here, to selecting halos above a given fixed
mass threshold. In this sense our result would be suggestive of
evolution in the mass-to-light ratio as a function of time.

In Fig. 16 we also show the expected redshift evolution for
the star forming model for halos of M > 3.2 x 10" A='M,,.
In this case, the agreement between model and observations is
better (,y,zv = 0.7). Clearly this does not mean that we are ana-
lyzing a sample of objects that just collapsed and formed stars
at the time they were observed; as a matter of fact the model
cannot capture all the physical processes shaping the biasing
relation. Moreover, the low value fitted for the mass thresh-
old is somewhat unrealistic for the bright objects we are con-
sidering. Notwithstanding, Blanton et al. (2000) already noted
that the prediction of this biasing model is not much different
from the biasing evolution expected for the general population
of galaxies in a hydrodynamical simulation of the large scale
structure.

Our analysis seems to suggest the apparent need of more
complex biasing models that better approximate the observed
biasing evolution. Understanding our results completely, how-
ever, will require more discriminatory power in the data, and,
thus, a larger VVDS sample.

9. Summary and conclusions

Deep surveys of the Universe provide the basic ingredients
needed to compute the probability distribution function of
galaxy fluctuations and to constrain its evolution with cosmic
time. The evolution of the galaxy PDF may shed light onto the
general assumption that structures grows via gravitational col-
lapse of density fluctuations that are small at early times. When
this statistic is combined with analytical CDM predictions for
the PDF of mass, useful insights into the biasing function relat-
ing mass and galaxy distributions can be obtained.

In this paper, we have explored the potentiality of this
approach by analyzing the first-epoch data of the VVDS
survey. This is the largest, purely flux-limited sample of
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spectroscopically measured galaxies, currently available in a
continuously connected volume and with a robust sampling up
to redshifts z ~ 1.5. The VVDS is probing the high redshift
domain at / < 24 in the VVDS-02h-4 field with the same sam-
pling rate of pioneer surveys of the local Universe such as the
CFA (at z ~ 0) and, more recently, the 2dFGRS (at z ~ 0.1).

Particular attention has been paid to assess the complete-
ness of the VVDS sample and to test the statistical reliability
of the PDF of VVDS galaxy fluctuations. In particular:

a) by applying the VVDS observational selection functions to
GALICS semi-analytical galaxy simulations we have ex-
plored the region of the parameter space where the PDF of
VVDS-like densities traces in a statistically unbiased way
the parent underlying PDF of the real distribution of galaxy
overdensities.

b) we have reconstructed the VVDS galaxy density field on
different scales R = [5, 8, 10] h~'Mpc by correcting the
density estimator for various VVDS selection functions.
The final density map for the flux-limited sample has
been Wiener filtered in order to minimize the shot-noise
contribution.

By studying the PDF of galaxies in the high redshift Universe
we have found that the peak of the galaxy PDF systematically
shifts to lower density contrasts as a function of redshift and
that the probability of observing underdense regions is greater
at z ~ 0.7 than it was at z ~ 1.5. Both these effects provide
strong supporting evidence for the standard assumption that the
large scale structure is the result of the gravitational growth of
small primordial density fluctuations in an expanding universe.

First, within the paradigm of gravitational instability, the
assembling process of the large-scale structures is thought to
be regulated by the interplay of two competing effects: the ten-
dency of local self-gravity to make overdense regions collapse
and the opposite tendency of global cosmological expansion
to move them apart. A key signature of gravitational evolution
of density fluctuations in an expanding Universe is that under-
dense regions, experiencing the cosmological matter outflow,
occupy a larger volume fraction at present epoch than in the
early Universe. Secondly, both these effects, the peak shift and
the development of a low density tail, could indicate the exis-
tence of a time-evolving biasing between matter and galaxies,
since galaxy biasing, systematically increasing with redshift,
offers a natural mechanism to re-map the galaxy PDF into pro-
gressively higher intervals of density contrasts.

This last interpretation is confirmed by our measurements
of the evolution properties of the second and third moments of
the galaxy PDF. We find that i) the rms amplitude of the fluctua-
tions of bright VVDS galaxies is with good approximation con-
stant over the full redshift baseline investigated. Specifically
we have shown that, in redshift space, og for galaxies brighter
than Mj, = —20 + 5logh has a mean value of 0.94 + 0.07 in
the redshift interval 0.7 < z < 1.5; ii) the third moment of the
PDF, i.e., the skewness, increases with cosmic time. Its value
at z ~ 1.5 is nearly 20 lower than measured locally by the
2dFGRS. Both these results, when compared to predictions of
linear and second order perturbation theory, unambiguously in-
dicate that galaxy biasing is an increasing function of redshift.
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Exploiting the sensitivity of the galaxy PDF to the spe-
cific form of the mass-galaxy mapping, we have derived
the redshift-, density-, and scale-dependent biasing function
b(z, 6, R) between galaxy and matter fluctuations in a ACDM
Universe, by analyzing the Jacobian transformation between
their respective PDFs. Particular attention has been paid to de-
vise an optimal strategy so that the comparison of the PDFs
of mass and galaxies can be carried out in an objective and
accurate way. Specifically, we have corrected the lognormal
approximation, which describes the mass density PDF, in or-
der to take into account redshift distortions induced by galaxy
peculiar velocities at early cosmic epochs where the mapping
between redshifts and comoving positions is not linear. In this
way, theoretical predictions can be directly compared to obser-
vational quantities derived in redshift space.

Without a priori parameterizing the form of the biasing
function, we have shown its general non trivial shape, and
studied its evolution as a function of cosmic epoch. Our main
results about biasing in the high redshift Universe can be
summarized as follows:

i) we detect non-linear effects in the biasing relation. The ra-
tio between the quadratic and linear term of the biasing ex-
pansion (cf. Eq. (39)) is different from zero at a confidence
level greater than 3¢ in all the redshift bins and for all the
smoothing scales probed. This result confirms a general
prediction of CDM-based hierarchical models of galaxy
formation (e.g., Sigad et al. 2000; Somerville et al. 2001).
Such non-linear distortions of the biasing function are not
observed locally in the 2dFGRS sample, although indirect
evidence of a non-linear bias at z ~ 0 exists (Benoist et al.
1999, Baugh et al. 2004).

ii) The biasing function rises sharply in underdense regions

(the local slope is b(d) > 1) indicating that below some

finite mass density threshold the formation efficiency of
galaxies brighter than Mp < —20 + 5logh drops to zero.
This threshold shifts towards higher values of the mass den-
sity field as the luminosity or the redshift of the galaxy pop-
ulation increases.

We do not observe the imprints of scale-dependency in the
biasing function a behavior in agreement with results de-
rived from more local surveys at z ~ 0 (Verde et al. 2002).
By representing the biasing function in linear approxima-
tion, we have found that the linear biasing parameter by
evolves with cosmic time: it appears that we live in a
special epoch in which the galaxy distribution traces the

underlying mass distribution on large scales (by ~ 1),

while, in the past, the two fields were progressively dis-
similar and the relative biasing systematically higher. The
difference between the value of by at redshift z ~ 1.5
and z ~ O for a population of galaxies with luminosity
Mp < =20 + 5logh is significant at a confidence level
greater than 30 (AbL ~ 0.5 = 0.14). In this interval, the
essential characteristics of the time evolution of the linear
bias are well described in terms of the phenomenological
relationship by, = 1 + (0.03 £ 0.01)(1 + 7)33+06,
v) Over the redshift baseline investigated, the rate of bias-
ing evolution is a function of redshift: z ~ 0.8 is the

iif)

iv)
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characteristic redshift which marks the transition from a
“minimum-evolution” late epoch to an early period where
the biasing evolution for a population of Mg < -20 +
5log h galaxies is substantial (~33 + 18% between redshift
0.8 and 1.5).

vi) Brighter galaxies are more strongly biased than less lumi-
nous ones at every redshift and the dependence of biasing
on luminosity at z ~ 0.8 is in good agreement with what is
observed in the local Universe.
By comparing our results to predictions of theoretical mod-
els for the biasing evolution, we have shown that the galaxy
conserving model (Fry 1996) and halo merging (Mo &
White 1996) model offer a poor description of our data.
This result could suggest that the gravitational debiasing
and the hierarchical merging of halos may not be the only
physical mechanisms driving the evolution of galaxy bias-
ing across cosmic epochs. At variance with these results,
the star forming model (Blanton et al. 2000) seems to de-
scribe better the observed redshift evolution of the linear
biasing factor.

After splitting the first-epoch redshift catalog into red and

blue volume-limited subsamples, we have found that the

red sample is systematically a more biased tracer of mass
than the blue one in every redshift interval investigated, but
the relative biasing between the two populations is nearly
constant in the redshift range 0.7 < z < 1.5 (b'/b* ~

1.4 £0.1), and comparable with local estimates. Moreover,

we have found that the bright red subsample is biased with

respect to the general red population in the same way as
the bright sample of blue objects is biased with respect to

the global blue population thus indicating that biasing as a

function of luminosity might be, at first order, independent

of color.

ix) Because the VVDS and various EROS samples are not yet
large enough, the bias of our sample of bright and moder-
ately red objects at z ~ 1 is not statistically dissimilar from
that expected for EROS of similar luminosity, even if the
EROS biasing appears to be systematically larger.

Vii)

Viii)

One key aspect of this paper is the measure of evolution in the
distribution properties of galaxy overdensities from a contin-
uous volume sampled with the same selection function over
a wide redshift baseline. As our volume sampled is still lim-
ited, errors in the analysis presented in this paper are dominated
by cosmic variance. The technique presented here will be ap-
plied to a larger sample as the VVDS observational program
progresses.
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Appendix A

Here we describe the application of the Wiener filtering tech-
nique to deconvolve the noise signature from the VVDS den-
sity map. We de-noise data in Fourier space, noting, however,
that an equivalent filtering can be directly applied in real space
(e.g., Rybicki & Press 1992; Zaroubi et al. 1995).

Let us assume that the observed smoothed density field
do(x), and the true underlying density field dt(x), smoothed
on the same scale, are related via

do(x) = or(x) + e(x), (40)

where €(x) is the local contribution from shot noise (see
Eq. (8)). The Wiener filtered density field, in Fourier space,
is

3r(k) = F(k)o(k), (41)
B GO
T = G + errpam) @

where brackets denote statistical averages and where P (k) =
(2m)73(|é*(k)|) is the power spectrum of the noise. Assuming
ergodic conditions for the noise, we can derive its power spec-
trum as P.(k) = (2m)73|&(k)|?.

The Power spectrum of the underlying theoretical density
distribution of galaxies, smoothed with the window F and tak-
ing into account the VVDS geometrical constraints, can be de-
rived from Eq. (5). Specifically, the theoretical overdensity field
smoothed on a certain scale R, which is sampled by an ideal-
ized survey with no selection functions, is

_1 D _ 1) 4 |r—rp|_
(Mnmzﬁgp(rzw d R )1. (43)

If we assume that this density field is periodic on same vol-
ume V, having, for example, the same geometry of the VVDS
survey, its Fourier transform is

~ 1 i oop 1 .
K k — -~ 1k.riF - ,k.rd3
T(k) 5 Ei T , er r

where the mean theoretical galaxy density p may be estimated
averaging over sufficiently large volumes the VVDS data cor-
rected for selection functions and sampling rate (see Eq. (6)).

In Eq. (44), n; represent the occupation numbers of the in-
finitesimal cells dr; in which the VVDS volume can be parti-
tioned (n; = 0 or 1) and the sum is intended over all the cells
of the survey volume. The Fourier transform of the smoothing
window function F with which the discontinuous galaxy den-
sity field is regularized is, in the case of a Top-Hat spherical
smoothing filter,

(44)

Fr=3 sin(kR) B cos(kR)

(kR)? (kR)?

: (45)

In order to obtain an estimate of the quantity (5%(k)) that en-
ters the Wiener filter definition (Eq. (42)), we compute the en-
semble average of the squares of the modulus of the Fourier

amplitudes (Eq. (44)) and obtain
O1(k)S1(K)) = | i (e &K IELE,
+W W, —pV Zi(ni)eik"'FkW,j,
—pV Zj(ﬂj)ﬁik/'rfﬁi, Wi
where

mm:ifﬁm%

v (46)

The mean value of the occupation number is given by (Peebles
1980)

(ninj) = p*Erd’rj[1 + &ri = r))]
(ni)* = () = pdr;

where the correlation function may be expressed via the Fourier
conjugates

f ChP(R)e kT 47)

1
&(rij) = np

mm:ff@m#ﬁ (48)

We convert the sums into integrals over the occupation cells
taking into account the specific VVDS geometry and obtain

1)y = |Fi [ &k P(k)G(k — k') (49)
+H APV + W1 - Fo)? (50)
were
Ne L Wi — 1R
Gk-k)= (2ﬂ)3|W(k k). (51)

Note that, in the idealized conditions of a survey of infinite
spatial extension (V — o0) and no smoothing applied to data
the previous expression reduces to

(6%(k)y = 2n)*P(K')6P (k — k). (52)

Given the quasi pencil-beam nature of the first season VVDS
data, however, the sample of the § field can be described,
to a good approximation, as confined to a cylinder of length
L (aligned along the redshift direction) and radius R. In this
case the Fourier transform of the survey window function (cf.
Eq. (46)) is given by

Ji(k R)
kR

L
2

We = jof 342 (53)

where jj and J; are the spherical and first kind Bessel functions
JKi +kL
The convolution integral on the right hand side of Eq. (50)

can then be evaluated as follows (e.g., Kaiser & Peacock 1991;
Fisher et al. 1993)

and where k =

3717 ’ ’ _i ~ 2 — I_J
f EK PG - k) = = f du iy -3 )Fw)

Tt o0
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Fig. A.1. The overdensity distribution reconstructed on a scale R =
8 h™'Mpc and in two different redshift intervals using the GtALICS
semi-analytical simulation (see Sect. 4.1) is plotted as a function of
log(1 + &,). The dashed line represent the distribution of overdensities
traced by simulated galaxies with M < —15+51og h. The shaded area
(dotted line) represents the observed overdensity distribution i.e., the
distribution recovered after applying to the simulation the VVDS flux
limit (/ < 24) and all the underlying VVDS instrumental selection ef-
fects (see Sect. 4.1). The solid line represent the distribution of density
contrasts after correcting the observed distribution with the Wiener
technique.

where V = nR?L is the volume of the cylinder and where

0o \/ / 2047
F(x)zf P(M]Jl(x)dx'.
0

- (54)

x/

Note that the theoretically expected variance of the density field
in the VVDS volume is derived in real comoving space. Thus,
we have corrected the theoretical predictions (cf. Eq. (50)) in
order to take into account redshift space distortions induced by
galaxy peculiar velocities (see discussion in Sect. 5).
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We compute the galaxy density field on a regular Cartesian
grid of spacing 0.5 h~'Mpc using the smoothing scheme pre-
sented in Eq. (5). The resulting 3D density map is then Fourier
transformed in redshift slices having line-of-sight dimensions
dz = 0.1. This partition strategy is implemented in order to de-
scribe consistently, using cylindrical approximations, the deep
survey volume of the VVDS (whose comoving transversal di-
mensions are an increasing function of distance.) The Wiener
filter at each wave-vector position is then computed by using
Eq. (50). Finally, as described in Sect. 3, we select only the
Wiener filtered density fluctuations recovered in spheres hav-
ing at least 70% of their volume in the 4-passes, VVDS-02h-4
field.

In Fig. A.1 we use the GALICS semi-analytical simulation
(see Sect. 4.1), to show the effect of the Wiener filter on the
reconstructed galaxy density field. As Fig. A.1 shows, the net
effect of the correction is to shift towards low-values the den-
sity contrasts having low signal-to-noise ratio (by definition ¥
is always smaller than unity). Figure A.1 shows that i) at the
same density, the effects of the correction are bigger at high
redshift where the density field is noisier due to the increasing
sparseness of a flux-limited sample, and ii) at the same redshift
the Wiener filter mostly affects the low-density tail of the dis-
tribution where the counts within the TH window are small.
It is also evident from Fig. A.l that, in the density interval
—1 < log(1 + 6,) < 1, the Wiener filtered distribution offers a
better approximation of the underlying PDF, than the observed
(uncorrected) overdensity distribution.



