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Abstract: In this article we report on the spectroscopic and adsorptive studies done on Ce(III)-based 

MOF possessing, upon desolvation, open metal sites, and a discrete surface area. The Ce-based MOF 

was synthesized from terephthalic acid linker (H2BDC) and Ce3+ cations by the classical 

solvothermal method. Preliminary powder X-ray diffraction analysis showed that the obtained 

materials corresponded to the ones reported by other authors. Spectroscopic techniques, such as 

XAS and in situ FTIR with probe molecules were used. In situ FTIR spectroscopy confirmed the 

successful removal of DMF molecules within the pore system at temperatures above 250 °C. 

Moreover, the use of CO as a probe molecule evidenced the presence of a Ce3+ open metal sites. 

Detailed volumetric and calorimetric CO2 adsorption studies are also reported. 

Keywords: cerium; MOF; terephthalic acid; spectroscopic characterization; adsorption; calorimetry; 

carbon dioxide 

 

1. Introduction 

Cerium is the most abundant lanthanide element present in the earth crust [1,2] and the ores that 

are mined for the extraction of more rare and precious rare earth elements (REEs) are also rich in Ce; 

thus, its cost is relatively low. Its oxide, CeO2, commonly named ceria, is particularly relevant for 

redox chemistry, being a catalyst for oxidation and reduction reactions [3], for example, combustion 

catalysis [4] and photocatalysis [3]. 

Ce-based MOFs have recently created interest in the scientific community. General features that 

can be drawn from looking at the current published literature are the following: (i) both Ce3+ and Ce4+ 

oxidation states can be used in the synthesis of MOFs [5–9]; (ii) synthetic conditions for Ce3+-

containing MOFs tends to be harsher than Ce4+ [5,6,10]; (iii) usually, Ce4+ starting reagents may be 

reduced to Ce3+ during the synthesis [11,12]; (iv) Ce3+ materials more frequently have peculiar 

structures, while Ce4+ tends to give rise to MOFs with the same structure as other 4+ cations (e.g., Zr4+ 

or Hf4+) [5–7,13,14]. Their thermal stability is generally lower than their Zr4+ counterparts [7,8,14,15]. 

As a possible application of Ce MOFs as redox catalysts, Smolders et al. [8] reported the successful 

use of Ce4+-UiO-67 in the aerobic oxidation of benzylic alcohol to benzaldehyde mediated by TEMPO 

(2,2,6,6-Tetramethylpiperidinyloxyl). Furthermore, Ethiraj et al. [5] reported the use of a Ce3+-based 

MOF for the selective capture and storage of CO2, obtaining high figures of merit of capacity and 

separation. 

The present work reports on the synthesis, spectroscopic characterization, and adsorption 

properties of Ce3+-based MOFs with terephthalic acid (H2BDC) as the linker. This material has been 

already introduced in the literature by D’Arras et al. [11], who discovered it and suggested its crystal 



Inorganics 2020, 8, 9 2 of 10 

 

structure in the as-synthesized form, together with the characterization of the thermal properties. 

However, the porosity of the material has not been studied, indeed, here we report on its adsorption 

properties, examined through spectroscopic techniques (XAS and in situ FTIR) and adsorption 

isotherms. 

2. Results and Discussion 

Ce5(BDC)7.5(DMF)4 MOF [16] optimized synthesis is reported in the Supplementary Materials. 

The Ce5(BDC)7.5(DMF)4 PXRD pattern was coincident with the one reported by D’Arras et al. [11]. The 

hypothesized structure was taken from Reference [11] and it is reported in Figure 1, for clarity. The 

asymmetric unit of crystalline structure shows chains of five independent cerium atoms arranged 

linearly and surrounded by BDC2− and DMF molecules (see Figure 1a). The two terminal atoms of the 

group are coordinated by eight oxygen atoms in a distorted square antiprismatic shape: six oxygen 

atoms belong to BDC2− and two oxygen atoms to DMF molecules, while the “central” three cerium 

atoms are coordinated with nine oxygens, all coming from the ligands, in an uncommon distorted 

shape. There are mono-dimensional or 1D channels formed in the structure parallel to the Ce chains 

along the crystallographic 11̅0 direction. As depicted in Figure 1b, these micropores are mainly 

occupied by the coordinated DMF molecules, which protrude into the pores. The surface area and 

porosity of the material were clarified by the N2 adsorption experiments (vide infra). 

 

 
(a) (b) 

Figure 1. Structure of Ce5(BDC)7.5(DMF)4. (a) Depiction of the asymmetric unit, containing five Ce 

atoms, 18 BDC2-, and four DMF molecules. Cerium, carbon, nitrogen, and oxygen atoms are pale 

yellow, black, blue, and red respectively; hydrogen atoms are omitted for the sake of clarity; (b) a 

view through the 11̅0 direction. Meaningful distances are highlighted. 

The powder diffraction pattern of the as synthesized material, as shown in the synthesis 

development reported in the Supplementary Materials (Figures S1–S3), was compared to the 

calculated powder pattern obtained from the crystal structure reported by D’Arras et al. (Figure S3). 

SEM images of the synthesized powder are available in Figure S4. 

A variable temperature powder X-ray diffraction (VTXRD) experiment in N2 flow in the RT–600 

°C temperature range (see Figure 2) showed that the material maintained the crystallinity until 475 

°C, undergoing some changes in the XRD pattern, especially from 200 to 250 °C (highlighted in blue 

color), which could be due to the solvent removal, as strongly suggested by the TGA measurements 

reported in Figure S5. 

The solution of the crystal structure of the desolvated material was out of the scope of the present 

work. At 500 °C the MOF started decomposing and at 525 °C the formation of broad diffraction peaks 
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due to cerium dioxide was visible. The broadness of the peaks testifies that the particles were 

nanometric in size. Scherrer’s equation [3], corrected by instrumental broadening using a Si standard 

from NIST, suggested a size for the cerium dioxide particles of 5 ± 1 nm. 

 

Figure 2. Variable temperature powder X-ray diffraction (VTXRD) recorded in the RT–600 °C range 

in N2 flow. 

The 3+ oxidation state of Ce in the as-synthesized state and activated at 350 °C material was 

confirmed by means of XAS spectroscopy, in the XANES region comparison with Ce3+ and Ce4+ 

standards. XANES spectra are reported in Figure 3. The 3+ oxidation state was also maintained after 

activation at 350 °C in the He stream directly in the measurement cell, in agreement with the results 

reported by the XPS experiments of D’Arras et al. [11]. 
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Figure 3. Ce L3 edge XANES spectra of Ce5(BDC)7.5(DMF)4 as synthesized and activated at 350 °C, 

compared with CeO2 and Ce(NO3)3·6H2O. 

N2 adsorption volumetric isotherms were measured on the material in order to point out the 

specific surface area and porosity of the MOF. Thermal treatments were performed in vacuo for 3 h 

(a longer time in comparison with those ones performed in case of IR or XRD because of the bigger 

amount of sample) and were made in a consecutive way. From the isotherms reported in Figure 4 it 

is clear that upon the solvent loss (occurring in the 200–250 °C range) N2 adsorption grew 

dramatically, showing microporosity (as the isotherm is a Type I) and higher surface area (more than 

200 m2/g) due to the accessible pores. 

BET and Langmuir adsorption models for the surface area were applied; the results are 

summarized in Table 1. Generally, the reported value can be quite modest for MOF materials, 

compared with typical MOF surface areas (thousands of m2/g) [17]. 

 

Figure 4. N2 Adsorption isotherms at −196 °C measured on Ce5(BDC)7.5(DMF)4. at different activation 

temperatures (150 °C, 200 °C, 250 °C, 350 °C, 450 °C). 
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Table 1. BET and Langmuir surface area for Ce5(BDC)7,5(DMF)4 different temperature treatments. 

Treatment 
BET Surface Area 

(m2/g) 

C 

Value 

Langmuir Surface 

Area (m2/g) 

t-Plot Micropore 

Volume (cm3/g) 

150 °C-3 h 3.63 ± 0.09 13.6 6.0 ± 0.2 - 

200 °C-3 h 11.57 ± 0.06 115.9 16.1 ± 0.2 - 

250 °C-3 h 223 ± 2 7110 217.3 ± 0.2 0.072 

350 °C-3 h 212 ± 2 6893 232.9 ± 0.5 0.073 

450 °C-3 h 216 ± 1 26,545 232 ± 0.4 0.075 

As synthesized Ce5(BDC)7.5(DMF)4 showed the typical mid-IR spectrum for a solvated MOF (see 

Figure 5). The typical vibrational fingerprints due to DMF solvent molecules mainly inside the pores 

and to H2O molecules adsorbed from the atmosphere can be recognized: a broad band centered at 

3400 cm−1 due to the hydrogen-bonded H2O molecules and sharp features at frequencies lower than 

3000 cm−1, in the range of the aliphatic C–H stretching mode, and a very intense band centered at 1670 

cm−1, in the range of the carbonyl stretching mode, due to DMF molecules. Upon progressive 

outgassing, also by increasing the temperatures, vibrational signals due to DMF and H2O 

disappeared and the typical spectrum of a carboxylate-based MOF material was shown: very intense 

bands in the 1650–1250 cm−1 range due to carboxylate stretching modes (both symmetrical and 

asymmetrical) and sharp features at frequencies higher than 3000 cm−1, in the range of aromatic C–H 

stretching mode due to BDC2−. 

These data support the VTXRD, TGA (see Figure S5), and SSA experiments and therefore we 

can affirm the material is not destroyed even if activated at 450 °C, maintaining crystallinity and 

surface area, even if its crystal structure undergoes a phase transition that has not been determined 

in this study. 

 

Figure 5. FTIR spectra of Ce5(BDC)7.5(DMF)4 activated at different temperature in vacuo. 

In situ CO adsorption FTIR spectra at −196 °C were recorded on a sample activated at 350 °C for 

1 h (see Figure 6). A pressure of 5 mbar of CO was dosed (black spectrum). The lowest frequency 

peak, at 2131 cm−1, was assigned to the physi-sorbed CO in the pores, as the first one to be desorbed. 

The other two bands at higher frequencies (2161 cm−1 and 2152 cm−1) required more time for complete 

desorption, and for this reason they can be assigned to CO adsorbed on Lewis acidic sites. 

Upon outgassing, the initial activated MOF spectrum was obtained due to the total reversibility 

of CO adsorption. Because the CO vibrational mode on the MOF open metal sites is intermediate 

between metals in oxides and metals grafted in different systems [18,19], the doublet can be assigned 
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to CO adsorbed on Ce3+ sites, since CO interacting with Ce4+ is expected to give bands at frequencies 

higher than 2156 cm−1 [20,21], in agreement also with XANES results. With the crystal structure of the 

desolvated material unknown, we can only hypothesize the presence of at least two different Ce3+ 

probed sites [20–22]. Only two out of the five different cerium atoms among the crystallographic 

asymmetric unit underwent the removal of DMF molecules during activation, however for an in-

depth understanding of the desolvation process more investigation is needed. It is of relevance also 

the overall low intensity of the bands associated with CO adsorption could be due to a low 

accessibility of the uncoordinated sites. In case of FTIR CO adsorption on MOF-76-Ce [5], two quite 

intense bands at 2155 cm−1 and 2149 cm−1, due, respectively, to the probe interacting with one Ce site 

and bridged on two close sites, were reported, testifying the completely different local structure of 

the metal in MOF-76-Ce and in the present Ce5(BDC)7.5(DMF)4. 

 

Figure 6. Background-subtracted CO adsorption FTIR spectra at −196 °C on Ce5(BDC)7.5(DMF)4 

activated at 350 °C for 1 h. 

CO2 volumetric isotherms at various activation temperatures are reported in Figure 7. The same 

powder was heated in vacuo for three hours at the next activation temperature in a consecutive way. 

CO2 uptake showed a clear increase with the activation temperature by reaching a plateau at the 

350–450 °C temperature range, as reported in Figure 7 and Table 2. 

 

Figure 7. CO2 Adsorption isotherms at 25 °C on Ce5(BDC)7.5(DMF)4 at different activation 

temperatures (150 °C, 200 °C, 250 °C, 350 °C, 450 °C).  



Inorganics 2020, 8, 9 7 of 10 

 

Table 2. Summary of CO2 uptake measurements at 1 bar and 25 °C. 

Treatment 
CO2 Uptake at 1 Bar and 25 °C nads/SLangmuir(1 bar) 

(mol/kg) (cm3/g) STP Weight Percentage (μmol/m2) 

150 °C-3 h 0.1281 2.87 0.56% 21.4 ± 0.7 

200 °C-3 h 0.2728 6.12 1.19% 16.93 ± 0.3 

250 °C-3 h 0.7954 17.83 3.38% 3.660 ± 0.004 

350 °C-3 h 0.8352 18.72 3.55% 3.586 ± 0.008 

450 °C-3 h 0.8301 18.61 3.52% 3.586 ± 0.006 

Calorimetric data, reported in Figure 8, were recorded for the adsorption of CO2 at 30 °C in the 

0–90 mbar range. The adsorbed quantity and the heat released by the adsorption as a function of the 

pressure are plotted, respectively, in Figure 8a,b. Both these curves are nearly Henry-type, as 

confirmed by the first part of our CO2 volumetric adsorption isotherms collected with a different 

instrument at 25 °C (Figure 7). The studied pressure range was too low to observe saturation of the 

adsorbing sites and the temperature difference of 5 °C between these two experiments was due to 

technical requirements. The differential heat of adsorption at low coverages was about 32–33 kJ/mol 

and it is quite typical for the interaction of CO2 with an open-metal site, as in MOF-76-ds [5], HKUST-

1 [23], Mg-MOF-74 [17]. It is worth noting that the differential heat curve (Figure 8c) is characterized 

by an abrupt diminishing with the adsorbed quantity; this can be ascribed to the overall low number 

of strongly coordinating sites present in the desolvated material, as highlighted by our CO FTIR 

experiment (Figure 6). The total reversibility of the adsorption of CO2 upon outgassing at 30 °C was 

testified thoroughly by the perfect recovery of the adsorption properties between the primary and 

secondary adsorption cycles. 

 

Figure 8. (a) Volumetric isotherm (b) calorimetric isotherm and (c) differential heat distribution of 

CO2 adsorption measured at 30 °C on Ce5(BDC)7.5(DMF)4 activated at 350 °C. 

3. Materials and Methods 

The variable temperature X-ray diffraction patterns (VTXRD) were collected with an X’Pert PRO 

MPD diffractometer from PANalytical (Almelo, The Netherlands), working in Bragg–Brentano 

geometry equipped with a Cu Kα source using about 10 mg of sample. Scattered photons were 

revealed by an X’celerator linear detector (PANalytical, Almelo, The Netherlands) equipped with a 

Ni filter to attenuate Kβ. A non-ambient chamber XRK900 from Anton Paar (Graz, Austria) with Be 

windows was used to collect diffractograms as a function of temperature in a flow of dry N2 (20 

mL/min). The temperature program was set to measure a pattern every 25 °C, waiting 25 min at the 

target temperature before collecting the data. The temperature was increased at a rate of 2 °C/min.  

X-Ray absorption spectra at the Ce L3 edge (5723 eV) were collected at the BM23 beamline of the 

European Synchrotron Radiation Facility (ESRF). Data were acquired up to the Ce L2 edge (6164 eV), 
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which limited the EXAFS signal down to k ≈ 10 Å−1.The acquisition step was set to 0.3 eV in the near-

edge region and Δk = 0.035 Å−1 in the EXAFS part of the spectrum. We used three He/N2-filled 

ionization chambers as I0, I1, and I2 detectors, placing chromium foil between I1 and I2 for energy 

calibration. XANES and EXAFS data were analyzed by using the Demeter 0.9.20 package. Sample 

treatment was carried out in an in situ cell under a flow of He (80 mL min−1). During activation, the 

sample was heated to 350 °C after a ramp heating at 4 °C min−1, to then be cooled to 30 °C. 

Adsorption isotherms were collected on an ASAP 2020 apparatus from Micromeritics (Norcross, 

GA, USA) using a liquid nitrogen bath at −196 °C, albeit CO2 isotherms were collected filling the same 

dewar vessel with water at 25 °C. About 150 mg of sample was heated in dynamic vacuum at 350 °C 

for 3 h prior to measuring the isotherm. Langmuir fit was made in the 0.05 < p/p0 < 0.2 range, while 

the BET analysis was carried out in a very low-pressure region, as prescribed by the so-called 

Rouquerol rules [24], in order to obtain a positive C value. 

FTIR spectra were collected on a Nicolet 6700 from Thermo Scientific (Waltham, MA, USA) 

equipped with an MCT detector in the 4000–400 cm−1 range with a resolution of 2 cm−1. The sample 

was prepared by pressing a thin self-supporting pellet (10 mg of sample) and using a vacuum line 

and a jacketed IR cell of local construction capable of cooling down the sample with liquid nitrogen 

and permitting the dosing of probe molecules (i.e., CO). The experiment was run by activating the 

pellet in dynamic vacuum at 350 °C for 1 h, then dosing about 15 mbar of CO on the sample to record 

spectra during cooling to the liquid nitrogen temperature, desorption, and then heating back to RT. 

Adsorption heats were measured simultaneously with the adsorption isotherms by means of a 

C80 Tian-Calvet microcalorimeter from Setaram (Caluire-et-Cuire, France) at a temperature of 30 °C, 

coupled with a glass vacuum line of local construction. The procedure is thoroughly described in 

references [25,26], and in this case required thermal activation under dynamic vacuum at 350 °C for 

3 h, then an overnight outgassing at 30 °C in the calorimeter before measuring the primary and the 

secondary adsorption runs in order to determine the non-desorbable (irreversible) fraction. 

4. Conclusions 

The synthesis of Ce5(BDC)7.5(DMF)4 was successful, starting from Ce(NO3)3∙6H2O and H2BDC in 

solvothermal conditions in DMF at 140 °C. We obtained the same crystal structure reported by 

D’Arras et al. [11] using a Ce3+ source directly, conversely to the previous contribution. The thermal 

stability (up to 475 °C in an inert atmosphere) previously observed by D’Arras et al. [11] was 

confirmed by our VTXRD and TGA measurements. Differently from D’Arras et al. [11] we found a 

discrete surface area due to microporosity through N2 adsorption isotherms at −196 °C (about 220 

m2/g) after thermal activation in the 250–450 °C range. XAS confirmed the presence of Ce3+ in the 

material also after desolvation. FTIR spectroscopy confirmed the successful removal of DMF within 

the pore system at temperatures above 250 °C, and by means of low-temperature CO adsorption 

evidenced the presence of a Ce3+ open metal sites. The interaction of the desolvated material with CO2 

was characterized by volumetric and calorimetric measurements, finding a modest capacity of 

adsorption (about 3.5 wt % at 1 bar and 25 °C) but a relevant enthalpy (32–33 kJ/mol) for the very first 

dose, compatible with the presence of open metal sites. This work can open the way to a deep 

understanding and description of this MOF crystal structure and phase changes upon activation. 

Supplementary Materials: The following are available online at www.mdpi.com/2304-6740/8/2/9/s1, Figure S1: 

Diffractograms of 1, 3, 4, and 6 batches: adopted solvent and metal to ratio (M:L) are reported, Figure S2: 

Diffractograms of 8, 12, 19 batches: reaction conditions are reported, Figure S3: Diffractograms of batch 19 and 

the MOF reported by D’Arras et al., Figure S4: SEM images of Ce5(BDC)7.5(DMF)4 MOF. Part (b) reports a 

magnification of a portion reported in part (a), Figure S5: TGA in N2 (solid line) and dry (dash-dotted line) air 

flow of Ce5(BDC)7.5(DMF)4 MOF, Figure S6: Magnitude of the Fourier transform of k2 χ(k) EXAFS signal (phase 

uncorrected) at different temperatures of Ce5(BDC)7.5(DMF)4. 2.74 < k < 9.874 Å −1 range for the transform is used, 

Figure S7: Background subtracted CO2 adsorption FTIR spectra at RT on Ce5(BDC)7.5(DMF)4 activated 350 °C for 

1 h. 
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