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Background: Self-consistent Green’s function theory has recently been extended to the basic formalism needed
to account for three-body interactions [Carbone, Cipollone, Barbieri, Rios, and Polls, Phys. Rev. C 88, 054326
(2013)]. The contribution of three-nucleon forces has so far been included in ab initio calculations on nuclear
matter and finite nuclei only as averaged two-nucleon forces.

Purpose: We derive the working equations for all possible two- and three-nucleon terms that enter the expansion
of the self-energy up to the third order, thus including the interaction-irreducible (i.e., not averaged) diagrams
with three-nucleon forces that have been previously neglected.

Methods: We employ the algebraic diagrammatic construction up to the third order as an organization scheme
for generating a nonperturbative self-energy, in which ring (particle-hole) and ladder (particle-particle) diagrams
are resummed to all orders.

Results: We derive expressions of the static and dynamic self-energy up to the third order, by taking into account
the set of diagrams required when either the skeleton or nonskeleton expansions of the single-particle propagator
are assumed. A hierarchy of importance among different diagrams is revealed, and a particular emphasis is
given to a third-order diagram [see Fig. 2(c)] that is expected to play a significant role among those featuring an
interaction-irreducible three-nucleon force.

Conclusion: A consistent formalism to resum at infinite order correlations induced by three-nucleon forces in the
self-consistent Green’s function theory is now available and ready to be implemented in the many-body solvers.
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I. INTRODUCTION

Three-body interactions play a prominent role in deter-
mining the behavior of strongly interacting quantum systems
[1]. For instance, three-nucleon forces (3NFs) are necessary
to reproduce the saturation of infinite matter as well as to
determine the structure and location of the driplines in neutron
rich isotopes. Hence, they have been implemented in most of
the post-Hartree-Fock approaches that are currently used to
study medium mass isotopes, such as self-consistent Green’s
function (SCGF) theory [2,3], the coupled cluster method [4,5],
and the in-medium similarity renormalization group [6,7]. In
all of these methods, one typically proceeds by performing a
normal ordering of the Hamiltonian, or a similar averaging, so
that the dominant effect of 3NFs can be taken into account as an
effective nucleon-nucleon force (2NF). Advances of the above
many-body methods, with the concurrent introduction of chiral
two- and three-nucleon interactions, based on the symmetries
of QCD [8,9], have led recently to remarkable successes
in nuclear ab initio theory [10-12]. Presently, the major
sources of error in first-principle predictions originate from
uncertainties of the nuclear Hamiltonian [10,13]. However, the
expected progress in the next-generation realistic interactions
will eventually require further developments of the many-body
formalisms.

The SCGEF theory is a quantum many-body method that
has been extensively applied to both condensed matter and
nuclear systems [2,14—19]. This approach relies on the solution
of the Dyson equation, which is an exact restatement of
the many-body Schrédinger equation, and it allows for a
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diagrammatic expansion with respect to the nuclear inter-
action. However, for nuclear structure and reaction studies,
a perturbative expansion is not sufficient due to the strong
nature of the nuclear force and the importance of the long-
range correlations, which affect the propagation of nucleons
inside the medium. In practice, one must resort to an efficient
method in which entire classes of correlations are resummed
nonperturbatively.

For this purpose, a major challenge is to find a scheme
capable of organizing the rapidly increasing number of Feyn-
man diagrams entering the computation of Green’s functions,
especially when 3NFs and many-nucleon interactions are
present. Ideally, one should include different classes of Feyn-
man diagrams at all orders, i.e., in a nonperturbative way; at the
same time, one needs to keep under control the computational
resources required by the many-body problem, even for those
post-Hartree-Fock approaches scaling polynomially with the
number of nucleons. A powerful tool complying with these
requirements has been devised 30 years ago in the Green’s
function theory applied to quantum chemistry. It is referred
to as the algebraic diagrammatic construction (ADC) method
[20,21]. Born as a way to include third-order self-energy dia-
grams that are necessary to reproduce affinities and ionisation
energies, the ADC also allows the infinite resummation of
specific classes of diagrams, such as the ladder and ring series.
The general procedure is to impose the correct spectral repre-
sentation of the self-energy and to require that its perturbative
expansion is also consistent with the Feynman diagram series
up to a given order n. The spectral representation implies
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that diagrams up to order n are actually taken as “seeds” for
all-order resummations. This generates a hierarchy of many-
body truncations, labeled as ADC(n), that contains selected
relevant terms, it is nonperturbative and can be systematically
improved.

The aim of this paper is to derive the entire set of working
equations for the ADC(3) self-energy, when 3NFs are present.
The general formalism and diagrammatic rules for the SCGF
theory with three-body interactions has been developed in
Ref. [22]. There, it was shown that the number of Feynman
diagrams to be calculated can be reduced by introducing av-
eraged effective interactions (similarly to the normal ordering
strategy mentioned above), so that one needs to consider only
interaction-irreducible diagrams. Using the resulting effective
2NFs, a set of applications of the SCGF was put forward with
computations of binding energies [3,23], spectral distributions
and radii [12,24] for closed subshell isotopes of medium-
mass. For the nuclear matter case, saturation properties of
chiral forces and other thermodynamical aspects have also
been studied [25]. Moreover, current efforts are devoted to
describing the one-nucleon scattering on a nucleus within the
same framework [26].

While Ref. [22] introduced the set of self-energy diagrams
up to third order, the necessary formalism for extending them
to a nonperturbative approach has not yet been derived. We fill
this gap here by deriving explicit expressions of the ADC(3)
based on the Feynman diagrams derived thereof. For this
purpose we revisit the SCGF formalism in Sec. II, with special
emphasis on how 3NFs are incorporated in the self-energy
expansion. Section III discusses the ADC method at order n,
i.e., ADC(n), and we derive the working equations at second
and third order, ADC(2) and ADC(3), in full detail. In our
derivation, a hierarchy of importance among different self-
energy diagrams emerges naturally: it is based on intermediate
excitation energies embedded in each diagram and on the
relative importance between 2N and 3NFs. For the ADC(3),
we present in Sec. III diagrams that contain only two-particle-
one-hole (2p1h) and two-hole-one-particle (2A1p) interme-
diate states with effective 2NFs and interaction-irreducible
3NFs. These diagrams are displayed in Fig. (2) below and
are the dominant contributions to ADC(3). We also present
additional equations for a subset of diagrams with 3 p2h and
3h2 p intermediate states, chosen from the different topologies
appearing at third order. This will give a general overview of the
formalism up to n = 3. All the remaining parts of the ADC(3)
equations, which complete the diagrams with 3p2h and 3h2p
configurations, are given in Appendix A. In Appendix B we
display the angular momentum coupled form for the leading
contributions of Fig. 2. The diagram in Fig. 2(c) has not yet
been included in calculations, but it could be added to current
numerical implementations and it is expected to be the most
important among those with an irreducible 3NF. In Appendix C
we derive additional nonskeleton Feynman diagrams for both
the static and dynamic self-energy that need to be included in
non-self-consistent calculations. The entire set of equations
derived up to ADC(3) informs our conclusions, which are
drawn in Sec. IV.

II. SCGF FORMALISM WITH 3NFS

Many-particle Green’s functions, also known in the lit-
erature as propagators or correlation functions, are at the
heart of the SCGF formalism. The simplest Green’s function
is the one-body (1B) propagator describing the in-medium
propagation of a particle or a hole, which are, respectively,
created and annihilated by field operators a; and a, in the
quantum states § and « [27,28]:
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Here and in the following we use Greek indexes to label the
states of a complete orthonormal single-particle basis {«},
which could be discrete or having a continuous spectrum. The
time interval (¢ — ¢’) of the propagation in Eq. (1) is ordered
according to the action of the time-ordering operator 7, which
obeys the Fermi statistics. To describe the propagation of two
particles and two holes, we introduce also the two-body (2B)
Green’s function,
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For our purposes, we will concentrate on the propagator
of Eq. (1), which is defined with respect to the exact A-body
ground state |\Il6“). The latter is the lowest eigenstate of the
Schrodinger problem,
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The Lehmann representation of the Green’s function is
obtained by Fourier transforming Eq. (1) to the energy plane.
It contains the relevant information on the single-particle
dynamics,
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In the reminder of this text we will use the following
shorthand notation for the quasiparticle energies, given by the
poles in Eq. (4),

& = (E} — Ef)
g = (Ef — EXT), (5)

which are the experimentally observed one-nucleon addition
and removal energies. Likewise, we will use X} and ygg to
mark the transition amplitudes for the addition and removal of
a particle, respectively. And we will use Z! to collect all of
them:
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with the index i referring to both forward-in-time (n) and
backward-in-time (k) processes. The first (second) overlap
integral in Eq. (6) is related to the probability of adding
(removing) a particle to (from) a orbital ¢ in a system with
A particles. The vectors Z' (in the basis {a}) form the
overcomplete set of the eigenstates of the Dyson equation.
Thus, they are also referred to as “Dyson orbitals.”

The 1B Green’s function Eq. (4) is completely determined
by solving the Dyson equation,

gap(®) = g4)() + Z (@) T} s(@)gsp(@), (D)

which is a nonlinear equation defining the irreducible self-
energy X7,(w), where medium effects on the particle prop-
agation are encoded. It corresponds to a set of irreducible
Feynman diagrams, i.e., diagrams that cannot be divided in
subdiagrams by cutting one propagator line. The distinction
between the unperturbed propagator g;?; (w) and the correlated
one gug(w) in Eq. (7) results from the expansion with respect
to the interparticle interaction: ggg (w) 1s then the zeroth-order
term in the expansion, that is the propagator with respect to the
reference state; i.e.,

g;%)(f -1 = —%(d)é|T[aa(t)a;(t’)]‘¢6*), ®)

From the derivation of the 1B propagator equation of mo-
tion, one can find the explicit separation of the irreducible self-
energy in a part which is local in time %73 (static self-energy),
and a energy-dependent part Ea,g(a)) (dynamlc self-energy),
containing the contributions from dynamical excitations in the
system:
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While Egz accounts for the averaged (mean-field) inter-

E(‘;ﬂ(a)) =

action seen by a particle, iaﬁ(a}) encodes the coupling of a
single-particle state with the collective configurations made
by surrounding nucleons. In the continuum regime the full
self-energy describes the interaction of the nucleon projectile
with a target nucleus. In this respect, X74(w) is investigated
as the microscopic counterpart of the dispersive optical model
potentials [29].

Before proceeding with the application of the ADC formal-
ism to the self-energy, we present in the next section the main
features of the approach based on effective interactions, which
allows a simplification of the diagrammatic expansion when
both two- and many-body forces are included.

A. Formalism with effective forces
and interaction-irreducible terms

Let us consider first the nuclear Hamiltonian H with a
kinetic energy part 7" and interaction operators in the 2NF and
3NF sector, denoted with V and W, respectively,

H=T+V+W. (10
Within post Hartree-Fock approaches, it is customary to divide
the Hamiltonian into two parts, A= HO + H,, with HO being
the uncorrelated part and H, the residual interaction. In this

way, strongly interacting fermions are treated as a system
of independent nucleons affected by an auxiliary mean-field
potential U, included in the definition of I:Io =T+ U.The ﬁo
defines the reference state to which the residual interaction H,
is added perturbatively. In the second quantization formalism
the Hamiltonian reads
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where hfg = Ty + Uyp is aone-body Hamiltonian and Vy,, gs
and W,y gsy are the antisymmetrized matrix elements of 2NFs
and 3NFs, respectively.

The Greek indexes «, 8,y, . . . label a complete set of single-
particle states which define the model space used in practical
computations. In most cases, one chooses this basis as the
eigenstates of the unperturbed Hamiltonian Hy, with the eigen-

values 0. Then, hgg = £%8, p and the spectral representation,

Eq. (4), for unperturbed propagator gg)}; (w) becomes diagonal.
However, in this work we keep the most general case and the
basis {a} will be different from the one defining the reference
state. _

The expansion of the self-energy X,s(w) in Eq. (9) involves
terms with individual contributions of the 1B potential, but
also of 2NFs and 3NFs from Eq. (11). Of course, also
terms containing combinations of different interactions are
possible. The number of diagrams allowed by the Feynman
diagrammatic rules is growing fast with the order of the
expansion. A useful strategy is to consider only interaction-
irreducible diagrams. Diagrams are considered interaction-
reducible if splitting interaction vertex in two parts results
in two disconnected diagrams. This happens when some (but
not all) of the fermion lines leaving one interaction vertex
eventually return to it. If the interaction vertex which is cut
had only one fermionic line looping over it, then all the
linked diagrams can be included effectively by averaging the
interaction vertex with a 1B Green’s function. Alternatively,
when the cut interaction vertex had two fermionic lines the
averaging is performed with a 2B Green’s function and so on.
This process of averaging reduces the order of the interaction:
for instance, a 2NF interaction vertex averaged on a 1B Green’s
function gives rise to an effective 1B operator.

In Ref. [22] it is shown that diagrammatic series can be re-
duced to a smaller set of diagrams by excluding all interaction-
reducible diagrams. The averaging procedure described above
amounts to define an effective Hamiltonian up to 3NFs,

H=U+V+W, (12)
where U and V represent effective interaction operators.
As long as only interaction-irreducible diagrams are consid-
ered, the use of H; is equivalent to the interaction-reducible
expansion based on Eq. (11) (see Sec. I of Ref. [22] for details).
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Explicit expressions for effective 1B and 2N interaction
operators are

U=> Uspalap, (13)
af
with
~ 1
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12 ye
3n
and
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55
where, in the averaging of 2NFs and 3NFs, one- and two-
body reduced density matrices of the many-body system are
produced,

psy = (¥('|alas |W') = —ih g5, (1 — 1), (16)
Tsnye = (V' alalayas [W§) =ing{l . —1%). 17

The two-body density of Eq. (17) is obtained when the
opportune limits are taken in the time arguments of the 2B
Green’s function in Eq. (2).

We note that when the irreducible self-energy is computed
with the effective Hamiltonian of Eq. (12), a portion of the
many-body effects is incorporated in the interactions, which
become system dependent. This is done in a systematic way
and the procedure is in principle superior to the usual normal
ordering approach. Here the density matrices p and I" entering
the contraction of the interaction vertex are obtained from the
true correlated propagators; i.e., they are not computed from
the reference state.

The separation of a simple unperturbed Hamiltonian H,
from Eq. (11) is instrumental to any approach based on
perturbation theory (or on all-orders resummations): it allows
us to define a reference state upon which a perturbative series
is constructed and it also leads to the expansion of the Green’s
function in Feynman diagrams. Nevertheless, the auxiliary
potential U eventually cancels from the SCGF formalism.
Considering the decomposition of Eq. (9), the irreducible
§tatic Sf.:lf-energy Tap s given exactly by the 1B effective
interaction [22]:

255 = Usg. (18)

Since U is added to the definition of the reference propagator
2@ but subtracted in Eq. (14), it eventually cancels out exactly
from the Dyson equation [see Eq. (28)]. The dynamic self-
energy Xqg(w) can still depend on the auxiliary potential
through the perturbative expansion in gé(g(w). However, in
the full self-consistent approach, the perturbative series is
restricted to skeleton diagrams where fully correlated propaga-
tors gqp(w) replace the uncorrelated ones. Thus, the partition
of the Hamiltonian into a uncorrelated part and residual part
is completely lost in the exact SCGF formalism and one may
think of the correlated propagator as playing the role of an
improved reference state.

WO,

FIG. 1. One-particle irreducible, skeleton, and interaction-
irreducible self-energy diagrams appearing at second order in the
expansion of Eq. (9), using the effective Hamiltonian of Eq. (12).
The wiggly lines represent the 2N effective interaction of Eq. (15),
while the long-dashed lines represent the interaction-irreducible
3NF W.

For the irreducible self-energy, all one-particle irreducible,
skeleton and interaction-irreducible diagrams up to third order
have been derived in Ref. [22]. Within the skeleton expansion,
i.e., when single-particle propagators are correlated, the irre-
ducible self-energy up to the third order is given by the exact
static part, Eq. (18), the two second-order diagrams of Fig. 1,
and the 17 third-order diagrams of Figs. 2 and 6. In this case,
the energy-dependent part of the self-energy contains only
effective 2NFs and irreducible 3NFs as interaction insertions.
Note that because of Eq. (15), the contribution of Fig. 1(a)
actually corresponds to four separate diagrams if expressed
in terms of the bare Hamiltonian Eq. (10), of which three are
interaction reducible [22]. Likewise, many more reducible di-
agrams would appear at third order. Without propagator renor-
malization, when one considers the diagrammatic expansion
with reference propagators g;%) (w) as internal fermionic lines,
other diagrams with different topologies must be included
to take into account explicitly additional correlations in both
the static and dynamic part of the self-energy. These terms
contain also nonskeleton diagrams that include U and are
presented in Appendix C.

In Fig. 1 we show the only two one-particle irreducible,
skeleton, and interaction-irreducible diagrams at second order.
These diagrams imply different sets of intermediate state

(©)

FIG. 2. Asdescribed in the caption of Fig. 1 but for the third-order
diagrams with only 2p 1k and 24 1 p intermediate state configurations.
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configurations (ISCs), which are multiparticle-multihole, or
multihole-multiparticle, excitations produced by the interac-
tion and propagating within the nuclear medium. The diagram
in Fig. 1(a) involves two-particles—one-hole (2p1k) and two-
holes—one-particle (2h1p) ISCs, but it is computed with the
2N effective interaction Eq. (15) instead of the original 2NF.
Hence, it contains contributions form the 3NF w.

The diagram in Fig. 1(b) arises instead from an interaction-
irreducible 3NF. There are two reasons to assume that this
contribution is less important than the one in Fig. 1(a): first,
3NFs are generally weaker than corresponding 2NFs (typically,
(W) = ll—O(V) for nuclear interactions [8,30]); second, the dia-
gram in Fig. 1(b) involves 3 p2h and 342 p ISCs, which involve
higher excitation energies and therefore they are expected to
play a minor role at the Fermi surface due to phase space
arguments.

By the same token, we may expect that the three diagrams
shown in Fig. 2 are the dominant ones among the 17 one-
particle irreducible, skeleton, and interaction-irreducible self-
energy diagrams appearing at third order in the expansion
of Yqg(w). While all diagrams in Fig. 2 involve 2plh and
2h1 p ISCs, those in Figs. 2(a) and 2(b) contain only effective
2NFs. These two diagrams have been already included in
actual calculations for nuclear matter and for finite nuclei
[3,24,25,31-33].

B. Solution of the Dyson equation as a matrix
eigenvalue problem

The ADC is a systematic approach to calculate nonpertur-
bative approximations to the self-energy. Once the latter is
known, we still need to solve the Dyson equation to obtain the
propagator, as explained below.

Without loss of generality, the dynamical part of the self-
energy X,g(w) can be written in the Lehmann representation,
similar to Eq. (4). Specifically, we write,

Sap@)=Y M, ! M;
T T ol — @ + O +int ]

1
— } Nig:
+D)—inl ],

19)

+ ZN“k[hw]l —(E=<

kk'

with E7, (Ef;,) being energies of noninteracting ISCs, M ¢
(Nui) coupling matrices and C; ;- (Dyy) interaction matrices for
the forward-in-time (backward-in-time) self-energy. Coupling
matrices link initial and final single-particle states of the
propagator to ISCs, while interaction matrices are those parts
of the self-energy diagrams that represent interactions among
ISCs alone (see also Fig. 3). It follows that interaction matrices
contain at most one interaction vertex and are not linked to
the single-particle states of the model space. We use Latin
letters as a collective indices to label ISCs: In particular,
we use i for any general configuration, while j,j (k,k’)
denote forward-in-time multiparticle-multihole (backward-in-
time multihole-multiparticle) configurations. In the following,
we will consider explicitly 2p1h,3p2h,2h1 p,and 342 p ISCs,
which are included in Eq. (19). For this purpose, we set the

MM i

PN

b e
Ta

hand”

(a)

FIG. 3. Decomposition of Goldstone diagrams in terms of in-
teraction and coupling matrices. Two (out of the six) Goldstone
diagrams that arise from the self-energy Feynman diagram of Fig. 2(c)
are shown. Diagram (a) contains the interaction matrix Cfﬁ‘,’ [see
Eq. (63)] linked to two lowest order coupling matrices M [see
Eq. (34)]. Diagram (b) contains only coupling matrices and includes
the second-order correction MI© reported in Eq. (57).

shorthand notation,

r= (nlvnz,kg})
r/ = (n4,n5,k6) ..
q = (n,na,n3,ke,ks) [ 777 (20)
q/ = (n6an7an8,k9,k10)
for forward-in-time terms, and
s = (k1,k2,n3)
! ==
s" = (ks ,ks,n6) K on

u = (ky,kp,k3,nq,ns)
’

u' = (ke,k7,ks,ng,nio)

for backward-in-time terms, where n; (k;) refer to the par-
ticle (hole) indices of the propagator, Eq. (4). For instance,
M, = M, n, k)0 cOnnects a single-particle state of index «
to an intermediate state composed by a 2p1h configuration,
whereas more complicated coupling matrices such as My, =
Mo, .15, ka ks ) INVOLVE 3 p2h configurations. As one moves to
higher orders beyond ADC(3) more complex multi-particle-
multi-hole states appear in Eq. (19), eventually covering the
complete space of ISCs.

To better clarify how the ADC building blocks are associ-
ated to perturbation theory, we show in Fig. 3 the diagrammatic
decomposition for two of the Goldstone contributions that
arise from the self-energy Feynman diagram of Fig. 2(c). The
expressions for the coupling and interactions matrices can be
read directly form the analytic expression of each Goldstone
diagram. See Ref. [2] for a detailed pedagogical discussion.

In virtue of the Pauli principle, the expressions for coupling
and interaction matrices can (and should) be made antisym-
metric with respect to permutation of any two-particle or any
two-hole indexes. This results naturally from the antisymmetry
of the interaction matrix elements, Eq. (11), and by including
a complete set of diagrams at each order, which generates all
possible permutations [21,34]. Using the antisymmetry, it is
possible to restrict the sums in Eq. (19) to sets of ordered
single-particle indices, defining for instance (n; < n,k3),
(n1 < ny < n3,k4 < ks), and so on. This is very important for
practical implementations, owing to a substantial reduction
of the dimension of the Dyson matrix, Eq. (28) below. On

054308-5



FRANCESCO RAIMONDI AND CARLO BARBIERI

PHYSICAL REVIEW C 97, 054308 (2018)

the other hand, manipulations such as coupling the angular
momenta of ISCs is better performed in the general case
of unrestricted summations. Therefore, we will present all
the working equations without assuming ordered indexes,
as given by the notation of Egs. (20) and (21). One can
always apply ordered summation by removing the relevant
symmetry factors to the expressions given in Sec. III and in the
Appendices.

ISC energies are diagonal matrices in these indexes. For
nucleon addition, with M + 1 particles and M holes, (M +
1)pMh, we have

E;, =E; =diag(e; +¢) +---+¢f +¢f

nM+1
—& — &~ — ) (22)
while for the nucleon removal ISC,
Ej = Ef =diag(e,, +¢e +---+¢, + Eloe
—et —eh — =gl ). (23)
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To solve for the 1B propagator of Eq. (4), it is useful
to recast the Dyson equation in matrix form, which allows
a more efficient computation of 1B propagator eigenvalues.
To see this point, we have to start again from the Dyson
Eq. (7) and regard the 1B propagator Eq. (4) as a meromorphic
function on the complex energy plane. This function has simple
poles and residues given by one-nucleon addition (or removal)
energies and transition amplitudes, respectively. We can then
find a relation among the transition amplitudes of Eq. (6), by
extracting them as residues of the propagator in the Dyson
equation. This gives

i vt 1 * i(Zi\T
Z(3) =2 [m] E@Z(Z) ey
ys «
(24)

By using the decomposition of Eq. (19) we obtain the
relation,

(25)

hw:&,’

which contains both forward-in-time and backward-in-time solutions of the propagator. In the last equality of Eq. (25) we have

introduced the vectors W} and W, defined as

Wi = Wi(@) lhome, = Y

J

and

Wi = W) lhome, = )
k/

1 )
P M Z: 26
_ha)]l — (E> —+ C)-H’ 25: J'8 =5 ‘ﬁw:a,v ( )
1 ] .
o1 T= 1T NT, Z; , 27
_ha)]l — (E< + D)—kk’ 25: k's <8 |ﬁw:s,- ( )

respectively. These vectors are introduced to recast the Dyson equation as a large scale eigenvalue problem whose diagonalization
gives the eigenspectra of the |WA+!) and |\Il,f‘_1) systems and the transition amplitudes of the 1B propagator. By recoupling

Egs. (25)-(27), we obtain

where the eigenmatrix is referred to as “Dyson matrix” and
it is independent of Zw. The zero entries mean that the
forward-in-time and backward-in-time sectors are coupled
together only through single particle states, and the dots stay
for the self-energy terms with ISCs beyond the 3 p2h and 3h2p
configurations.

Equation (28) is an energy-independent eigenvalue prob-
lem, whereas the components W of the eigenvectors are
functions of the corresponding eigenvalue ¢;, as it is apparent
from definitions Eqgs. (26) and (27). The diagonalization of the

Zi [ ot M Ny M, Now -\ [ Z
W; M;; Er> 8 +Chp 0 er’ 0 W,l/
Wi N 0 E78,+D,y 0 D,, Wi,
€; ‘. = M E> Wi ) (28)
W, q8 Cor 0 7 %40 +Cqq 0 q’
Wllt NLB 0 DMS’ 0 E; 5uu’ +Duu’ W;’

(

Dyson matrix yields all the poles of the propagator at once,
while the normalization of the ith eigenvector is given by

Yz + Y i+ il =1
o Jj k

In a self-consistent calculation, the elements of the Dyson
matrix Eq. (28) depend on the quasiparticle energies and
amplitudes, ¢; and Z! . Thus, they require an iterative solution.
The large number of poles in the dressed propagator, see
Eq. (4), implies a severe growth in the dimension of the

(29)
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Dyson matrix at each iteration, as explained in Sec. IITA of
Ref. [35]. This can be handled by projecting the space of
intermediate configurations into smaller Krylov subspaces,
using Lanczos-type algorithms with multiple pivots [35].

III. GENERAL OUTLINE OF THE ADC(rn) METHOD

The irreducible self-energy X} ;(w) is the object of the ADC
formalism applied in this work. Its expression as a product of
matrices, Egs. (9) and (19), is the most general analytic form
that is consistent with the causality principle and the known
Lehmann representation.

Our task is then to find expressions for coupling and interac-
tion matrices including the correlations due to 2NFs and 3NFs.

J

Z M(I)l

~ 1
Zap () = [m
J

1
+ M(H)I
Z o —E7 +in

1
(I)T
+Z |:ha)—Ej+in

D
+ZN(xk|: —E<—ln]N

+ZN3}3[

kk'

for both forward-in-time and backward-in-time self-energy
parts. The comparison of the formal expansion of Eq. (32) with
the calculated Goldstone-type diagrams gives the minimal ex-
pressions for interaction and coupling matrices in terms of the
transition amplitudes Z!, and the one-nucleon addition &;" and
removal ¢, energies of the 1B propagator g,s(w) of Eq. (4). By
looking at the expansion in Eq. (32), we see that the third-order
terms containing the interaction matrices C;;» and Dy, do

not retain the same analytic form as Eq. (19), which is based on
the Lehmann representation of the propagator itself. To recover
this analytic form in terms of self-energy poles, one must
introduce higher-order terms and perform a resummation of
those diagrams up to infinite order: this resummation is implicit
in Eq. (28) and it gives the nonperturbative character of the
method, which takes into account at all orders several types of
diagrams, particle-particle and hole-hole ladders, and particle-
hole rings, as well as other resummations induced by 3NFs.

A. ADC method at second order: ADC(2)

In this section we present the explicit expressions of cou-
pling and interaction matrices entering the ADC(2) formalism.
The two second-order diagrams shown in Fig. 1 are sufficient
to define the ADC(2) approximation scheme. Coupling and

:|M
1
(I) (I)T
M| —————
] +Z |:hw—E]> +in

1
coo| —
:| M |:ha)—E7,+i17

Df

(D

iB

)
+ZNak|: _E< in]Dkk/l:

The ADC(n) strategy consists in deriving explicit expressions
of the coupling and interaction matrices by expanding Eq. (19)
in powers of 2NFs and 3NFs and then to compare with the
Goldstone-Feynman expansion up to order n. Formally, we
have
—_MD (I (I
Mla_Mja+Mja+Mja + -, (30)
where the term Mi’fx) is of nth order in the residual Hamiltonian
H,, and similarly for backward-in-time coupling matrices:

Nor = NG + N+ NEP + €29

By plugging Eqgs. (30) and (31) into Eq. (19), we obtain the
corresponding expansion for the energy-dependent irreducible
self-energy up to third order (first-order contributions are all
included in X5 ) This is

an
jB

}M

O
7B +-

}M

7
1
NOF L SN N
; o= [+ 2 =
i
m]NW o (32)

(

interaction matrices required to build the ADC(3) are intro-
duced in Sec. III B and Appendix A. Unless otherwise stated,
for coupling and interaction matrices we adopt the Einstein’s
convention of summing over repeated indices for both the
model-space single-particle states («, 8, . ..) and the particle
and hole orbits (ny, n, ..., ki, ky ...). We also use collective
indexes for ISCs according to the notation set in Egs. (20) and
(21), where appropriate.

We have seen that for a given multiparticle-multihole or
multihole-multiparticle configuration, we can have coupling
matrices at different orders according to the expansions in
Egs. (30) and (31). Within a given order, coupling matrices
can also differ with respect to the kind of interaction (2NF
and/or 3NF) appearing in the term. For this reason we specify
in the notation an extra superscript distinguishing different
contributions at the same order. For instance, at second order
we will encounter a coupling matrix M{® containing a 2N
interaction linked to a r = (n,n,,k3) ISC M(qlg) containing a
3N interaction linked to a ¢ = (n1,n,,n3,k4,ks) ISC, and so
on. The extra superscript with Latin letter corresponds to the
labels of diagrams in the figures.

To illustrate the ADC procedure, we write first the entire
expressions for all the Goldstone terms in each second order
Feynman diagram of Fig. 1. Then we display the formulas of
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W \“\ - _\X\ﬁf_ _ _\%X/
[0 [0
() (b)

FIG. 4. Diagrams of the self-energy coupling matrices with the
effective 2NF V (left) and with interaction-irreducible 3NF W (right).
The coupling matrix (a) connects to the 2p1h ISCs [see Eq. (34)],
while the coupling matrix (b) connects to the 3 p2h ISCs [see Eq. (37)].

the coupling matrices that can be singled out from the self-
energy expressions. The equation for the dynamic self-energy
in Fig. 1(a) reads

L, | 50 LTI A
oE,Yp — .
2 — hw—(s,fl +8,T2—5k3)+1n
ks

T (@) =

ykl ykz Xm (ykl ykz XVM) -

5 B
ha)— ek +é&, — 8,7:)—”; P

2
ki,ka,
n3

(33)
|

W \k - _M_ _ _\AX/H/
[0 [0
(=) (b)

FIG. 5. As in Fig. 4 but for backward-in-time coupling matrices
[see Egs. (35) and (38), respectively].

Being already in the Lehmann form of Eq. (19), we can read
directly from Eq. (33) the forward-in-time contribution to the
ADC(2) coupling matrix,

;w aks (34)

ro

1
M(Ia) = anany
NG
while in the backward-in-time channel we have

Ng?) = % oA, LY y/’?yfzx”% (35)
that couples the effective 2NF with the 2h1p ISC. It is also
clear that the interaction matrices C;;; and Dy are zero in
ADC(2). Therepresentations of Eqs. (34) and (35) as fragments
of Goldstone diagrams are depicted in Figs. 4(a) and 5(a),
respectively.

The equation for the energy-dependent self-energy with
3NFs in Fig. 1(b) reads

n1 yn, yn ks\* vn yn, pn 5
(XS‘X#XUW’;W(;S) Xulxvz‘;yksyil;z;yg

E(lb)( )_ TA Wayd.tto — — -
o nl%q:”% hw—(8;+8,t+gyj;—gk4_gk5)+ln
kaoks
ykgyk3 Xm X"s yklykz yks s Xn5)*
+ Z ( e Wuvk,ﬂnp- (36)

ki,ka ks,
ng,ns

The coupling matrix that links the 3NF to 3p2h ISCs is
found in the diagram of Fig. 1(b) and it is read from Eq. (36).
Its expression is

1
M(Ib) _ .X;TX;’ZXnSykAyk

while the correspondmg matrix linked to 342 p ISCs is

VA, 0PN (37)

NI = \/%me Yaybysxmxrs.  (38)
Equation (38) is also found in the diagram of Fig. 1(b) and in
the second term of Eq. (36). Their representations as fragments
of Goldstone diagrams are depicted in Figs. 4(b) and 5(b).

The four coupling matrices in Egs. (34), (35), (37), and
(38), along with their complex conjugates, complete the set of
matrices found in the irreducible Goldstone diagrams of the
self-energy at second order, which are given by the first and
fourth rows in Eq. (32). All these matrices enter as building

T
— (e, e, + 6 —&h —&8) —in

(

blocks of the ADC construction at second and third order
in the expansion with respect to the nuclear interaction. To
summarize, the ADC(2) approximation for Eq. (19) requires
the following terms:

M(Ia) if j=r(Q2plh
M[ADC(Z)] @ J=r2plh), (39)
M( ) if j = q (3p2h),
N[ADC(Z)] N(iz) if k =s (2h1p), 40)
NI if k = u (3h2p),
C[éPC(Z)l =0, 41
D,[:,t,D C@I = . (42)

There are no interaction matrices C;; and Dy in the ADC(2),
because coupling matrices are linked directly without any
intermediate interaction insertion. This is not true anymore in
the ADC(3), where matrices M and N are linked through
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o
o
{
)

(0) (p)

(a)

FIG. 6. As in Fig. 1 but for third-order diagrams that include any 3p2h and 3h2p intermediate state configurations. Together with the
diagrams (a)—(c) of Fig. 2, these are all skeleton and interaction-irreducible contributions present at third order. The labels in each diagram
match the naming used in the text for of the corresponding coupling matrices.

interaction matrices C ;7 and Dy, respectively, as it is the case
for the third and sixth lines of Eq. (32).

B. ADC method at third order: ADC(3)

In this section we present explicit expressions of the cou-
pling and interaction matrices entering in the ADC formalism
at third order, for the three diagrams shown in Fig. 2 and for
the four diagrams appearing first in each row of Fig. 6. The
diagrams in Fig. 2 contribute to the block-diagonal entries (rr”)
and (ss”) of Eq. (28), corresponding to 2p1h and 2h1p 1SCs,
which are the simplest configurations to be excited in the Fock
space. The diagrams depicted in Figs. 2(a) and 2(b) are the
dominant ones at third order, given that only 2N interactions
are present. The diagram in Fig. 2(c) contains instead a 3NF, but

it can nonetheless play a significant role, because its Goldstone
diagrams feature only 2p1h and 2k 1 p ISCs.

Each row in Fig. 6 collects a different topology of dia-
grams in terms of number of effective 2NFs and interaction-
irreducible 3NFs entering the diagrams. In general, these
diagrams are less important compared to the ones in Fig. 2,
because they feature at least a 3p2h or a 3h2p ISC in all
their Goldstone contributions. For forward-in-time (backward-
in-time) diagrams, topologies in the first and second row
of Fig. 6 couple 2plh (2h1p) ISCs to 3p2h (3h2p) ISCs.
They are linked by C,, (Dy,/) and C,,- (D,), accounting for
off-diagonal entries of Eq. (28). Within these two kinds of
topologies, diagrams in the first row contain only one 3NF,
therefore they are expected to be more important than the ones
in the second row, each featuring two 3NFs. Finally, the last two
rows in Fig. 6 introduce the diagonal coupling between ISCs
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with five fermionic lines, 3 p2h for forward-in-time diagrams
and 3h2p for backward-in-time diagrams, corresponding re-
spectively to entries (¢¢’) and (uu’) of Eq. (28). Again, there
is a hierarchy between the two topologies, with those in the
fourth row being less important due to the presence of three
3NFs.

The first four diagrams in each row are assumed as emblem-
atic for each topology, and treated in the present section. The
remaining coupling and interaction matrices originating from
third-order diagrams are given in Appendix A.

Coupling and interaction matrices are fully antisym-
metrized with respect to their particle and hole indexes. To
show this explicitly, we introduce the following antisym-
metrizer operators. Given a function depending on up to
three particle or hole indexes, i.e., f(i,j,h) = f(n;,n;,n;) or
f@,j,h) = f(k;,k;j,ky), the antisymmetric permutation oper-
ator of a pair of indexes is introduced,

For 3p2h and 3h2p configurations, it is useful to define the
cyclic permutation operator as

and the permutation operator acting on three indexes, that is

Coupling matrices appearing at third order contain two
interaction operators, which can be the interaction-irreducible
3NF and/or the effective 2NF. To simplify the equations, we
write in compact form pieces of diagrams that correspond
to the amplitudes appearing in the exponential ansatz of the
coupled-cluster wave function [36]. Without assuming the
Einstein’s convention of summing over repeated indices, we
write them as

X0 Ugp Vi

=y -, (46)
&, — &n,
af 2
with the effective one-body potential of Eq. (13),
n ny 17 K 7k
t/’(“l:lZ = Z Xﬂthﬁz Vaﬁ,y& yy3y64 (47)
= &, + &, — Em — ny
y$
with the effective 2NF of Eq. (15), and
- X X5 0 Weapy o Vi VY
s = Y e Py SRERIRI SL (48)

by ke + &y T &, — Eny — Eny — En;
VA

for the terms with the interaction-irreducible 3NF.

1. ADC(3) matrices for Feynman diagrams in Fig. 2

At third order in the ADC, we consider first the subset of
coupling matrices and interaction matrices that are linked to
2plh and 2h1p ISCs. For these intermediate configurations,
the ADC(3) approximation for Eq. (19) requires the following

(a) (b)

FIG. 7. Forward-in-time diagrams of the self-energy coupling
matrices in ADC(3). Coupling matrices (a) and (b) correspond to
Egs. (53) and (54), and they feature two effective 2NFs 1% connecting
2p1h ISCs. The coupling matrix (c) contains one effective 2NF 1%
and one interaction-irreducible 3NF W. It connects to 2 p 1k ISCs and
corresponds to Eq. (57).

terms:
MY, = MY+ MGY + MG, (49)
NG = N9+ NI 4+ N, (50)
Cy =Clh+Cll+C), (51)
Dy =D + D" + DY, (52)

in addition to the ones already introduced by Eqs. (39)—(42) at
second order.

We show now explicit expressions for the right-hand side
of Egs. (49)—(52), and start by presenting coupling matrices
composed by two effective 2NFs connecting to 2p1h ISCs.
By using the definition in Eq. (47), we have the matrices

1 nin * i~
Mo = /5 ks (VEVEYVE Vi (53)

and

1 .
MY = — (53 X0 (V8 0) Vi

ro ﬁ L
— i X ) Vian), (54)

which is explicitly antisymmetrized with respect to the ny,n;
fermion lines. The two coupling matrices in Egs. (53) and (54)
are found in the Goldstone diagrams of the terms in Figs. 2(a)
and 2(b), as it is clear from their diagrammatic representations
in Figs. 7(a) and 7(b), respectively.

The corresponding coupling matrices in the 2A41p sector
read

; 1 5 n3 n ns)* pnan
NS;“) = m whur Xy (XMAXUS) tk|4k25’ (35)
and
1 ~
b & n ks\* . n n3
Nt(xlf ) = E(Vak,/«w y}LI (Xv4y)ns) tk54k2

_ Vak,;w yl/iz (X;M ;fs)* t]:l:]z,%). (56)
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QT
>
<

(a) (b)

FIG. 8. Same as in Fig. 7 but for backward-in-time diagrams.
Coupling matrices (a) and (b) correspond to Eqs. (55) and (56), while
the coupling matrix (c) to Eq. (58).

Both matrices in Egs. (55) and (56) are linked to 2klp
ISCs, as it is clear by considering backward-in-time Goldstone
terms of diagrams in Figs. 2(a) and 2(b), respectively. Their
diagrammatic representations are displayed in Figs. 8(a) and
8(b), respectively.

Other coupling matrices containing two effective 2NFs can
be found in Sec. A 1 of Appendix A.

Among coupling matrices containing one effective 2NF
and one interaction-irreducible 3NF, we present here the ones
appearing in the self-energy diagram of Fig. 2(c), that is

M = st (v a)’ Vivar (57

and

1 = * _nsnen
W= WA (A Xme Vi) i (58)
Diagrammatic representations of Eqs. (57) and (58) are dis-
played in Figs. 7(c) and 8(c), respectively.

All the other coupling matrices with one 2NF and one 3NF
are collected in Sec. A2 of Appendix A, while matrices with
two interaction-irreducible 3NFs are presented in Sec. A3 in
Appendix A.

Now we introduce expressions of the interaction matrices of
Eqs. (51) and (52), containing the V,g s and Wyg,, s, matrix
elements. For the two cases, we display interaction matrices
appearing in both the forward-in-time and backward-in-time
self-energy Goldstone diagrams of Fig. 2.

The interaction matrix that connects 2p1h ISCs through a
particle-particle (pp) interaction is

Cll = LI XV (A X0) St (59)

while the one connecting through a particle-hole (ph) interac-
tion is
Cfr}f = %A12A45 [X]j“ y:;} Vvu,pk (X)'Luyl]?)*anzns]s (60)

where the action of two permutation operators .4, and Ays is
defined in Eq. (43) and produces four terms.

We present now the corresponding interaction matrices ap-
pearing in backward-in-time self-energy Goldstone diagrams,

namely those that are linked to propagators of hole-particle
kind in diagrams.

We start by the interaction matrix that connects 2i1p ISCs
through a hole-hole (hh) interaction, that is

D = — L (VO V)V oV VS 8 (61)

while the one connecting through a hole-particle (Ap) interac-
tion is

DY =L ApAs[(VE X)) Vi n Vi X810t ] (62)

where permutation operators acting on hole states are defined
in the same way as the one acting on particle states for the
matrix C”* in Eq. (60).

The only interaction matrix that connects 2plh ISCs
through a 3NF is

CN = =L X2V Wy cnp (XX V), (63)

which is explicitly antisymmetric in particle indexes, while the
one connecting two 241 p ISCs through a 3NF is

D)) = =S (VI VRXE) Won e VYR XL, (64)

which is also explicitly antisymmetric in hole indexes.

2. ADC(3) matrices for selected Feynman diagrams in Fig. 6

Coupling matrices presented in this section are obtained
from the four Feynman diagrams in the first column of Fig. 6.
Most of these matrices are linked to 3p2h and 342 p ISCs, with
few exceptions derived from Goldstone diagrams where ISCs
are of 2p1h and 2h1 p type. This subset of coupling matrices
at the ADC(3) level is given by

D) |, ng1d) (11d") (ITh) (TTh') (111) (ITo)
M;, - MUY, MED, MUY, MR, MUY, MUY, (65)

Nl(j}() . N(Hd) N((,gd/)’ N(IIh) NEYISIh’)7 N(III) NE‘(ILO)' (66)

au ou ou

First, we present matrices containing two effective 2NFs.
As before, we display both matrices obtained from forward-
in-time and backward-in-time Goldstone diagrams, denoted
with the notation M, and N, respectively.

In Goldstone diagrams of the term in Fig. 6(d), we have

V3
6
where the combination of permutation operators performs the
antisymmetrization of the indexes (k4, ks), (n1, n3), and (n,,

n3), according to definitions in Egs. (43) and (44).

We turn now to coupling matrices containing one effective
2NF and one interaction-irreducible 3NF. In the Goldstone
diagrams of the term in Fig. 6(d) we have also

J2
e

MU = 2= AusProa [ X0 (VEY Vi Vv ). (67)

MU = A OV P W)
(68)
In the Goldstone diagrams of the term in Fig. 6(h), we have

\/g ninsn * ne \* 17
My = = Pis[i (V) P (X)) Vv ], (69)
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while in the Goldstone diagrams of the term in Fig. 6(1), we
find

\/§ nn n
MU = s [ () VA W] 00)

For backward-in-time Goldstone diagrams, we can single
out from the term in Fig. 6(d) the coupling matrix

\/5 o * 514  Neh
NG = g Voo AssPis [V (A7) X55]. - 7
and also the following coupling matrix depending on 2N and
3N interactions, i.e.,

‘ 2
N = Y2 W A (05) 98 (o) ]

(72)
In Fig. 6(h), we have the backward-in-time the coupling

matrix
\/§ ad k- ¥
N[(llih) = ? oA, LY P123[(yA7X£6)*y52t216/:1;5]7 (73)

while in Fig. 6(1), we find the coupling matrix

V3

oy _ ny yn ne yn7 Y~ iks hen

N((M) = E It PIZS[X,?4X,OS(XN(XV7) A;tklék;]'
(74)

Finally, we introduce coupling matrices containing two
interaction-irreducible 3NFs. In Goldstone diagrams of the
term in Fig. 6(h), we have

V2

Y * *
Mg = = An[igls Ve 2 (A5 Wawanp

(75)
while in Goldstone diagrams of the term in Fig. 6(0), we have
Mo — _étmnzns

qa 36 kek7ks

(yl]iﬁy&yfs)*y,]?yﬁs W/ka,anp» (76)

which is antisymmetric in the indexes n, ny, n3 and kq,ks.
For backward-in-time Goldstone diagrams, we can single
out from the term in Fig. 6(h) the coupling matrix

V2

N((?gh/) = g enp.uhy A12[(yr];4y£5 X,ff’/'\f:”)* fztl:lﬁli(}:]’
7
while the matrix
V3
36
appears in the Goldstone diagrams relative to Fig. 6(o) and it
is antisymmetric in the indexes k1, k», k3 and n4, ns.

(IIo) _ n. ns n n ng\* .nening
N, = N, ok /'\.’,]4/\?[)‘(/'\,’MG/'\,’VU\,’A ) U ks (78)

IV. CONCLUSIONS

We have calculated all possible Feynman diagrams for the
self-energy up to the third order, for an Hamiltonian including
up to three-body interactions. Using these, we have then
derived the complete set of working equations that are needed
to calculate the self-energy nonperturbatively in the ADC(n)
approach at orders n = 2 and 3. While the expansion of the
self-energy is considered perturbatively by including diagrams

featuring up to three interactions, the ADC(3) formalism
expands automatically certain classes of diagrams to infinite
order. In particular, one resums series of ladders, rings,
and interaction-irreducible 3NFs diagrams. As for the usual
ADC(n) computations, the Dyson equation for the 1B propa-
gator can be implemented as a large but energy independent
eigenvalue problem. However, in presence of 3NFs, interme-
diate state configurations of 3p2h and 3h2p type contribute
already at ADC(2) and ADC(3) levels, while they would
appear at ADC(4) and ADC(5) for NN-only interactions.

In showing expressions for both coupling and interaction
matrices, we have organized the equations according to their
importance, using criteria based on the number of excitations
implied by ISCs and the natural hierarchy of many-nucleon
forces. We started by revisiting the most relevant correlations
in terms of 2plh and 2h1p ISCs. This sector contains the
well-known ADC(3) equations for the original and effective
NN interactions. A new contribution arises from the Feynman
diagram of Fig. 2(c) and involves an interaction-irreducible
3NF (that is, which cannot be expressed as simpler normal
ordered forces). This last term is argued to be less relevant in
virtue of the hierarchy of nuclear forces. Then, we have worked
out the subset of ADC(3) coupling and interaction matrices that
link to the 3p2h and 3h2 p sector of ISCs.

While this hierarchy suggests that 3p2h and 3h2p ISCs
may be necessary only for future generations of ab initio
approaches, the diagram of Fig. 2(c) may already have im-
plication for present nuclear Hamiltonians. However, these
conjectures have not yet been checked and knowing the
importance of diagram Fig. 2(c) would give guidance for the
inclusion of further correlations [37].

To provide the ADC formalism in its most general form,
we have released the assumption of a fully self-consistent
expansion and considered also all the additional nonskeleton
diagrams that appear in this case. The resulting corrections
are important (at least conceptually) when calculations are
based on standard reference propagators of mean-field type.
New sets of diagrams appear for both the static and dy-
namic self-energy and have been derived together with the
corresponding contributions in the ADC framework. In total,
four additional Feynman diagrams must be considered in
the ADC(3) dynamic self-energy when one is working with
uncorrelated propagators, while the 1B effective interaction
defining the energy-independent self-energy is decomposed
into 19 Feynman diagrams of different topologies. Hence,
the complete ADC(3) formalism with 3NFs is now available
for the self-energy, either self-consistent (with only skeleton
diagrams) or based on an uncorrelated reference state.

The formalism presented in this work sets the basis for
future advancements of the SCGF approach, especially useful
for studies of nuclear structure where the full inclusion of
realistic three-nucleon interactions is required. The numerical
implementation of the 3p2h and 3h2p sector is a long-term
endeavour that might rely on future supercomputing resources.
At the same time, the case for such improvements in the
many-body truncation will also depend on the performance and
accuracy of future generations of realistic nuclear interactions.
On the other hand, calculating the diagram of Fig. 2(c) involves
only 2plh and 2h1p ISCs and will not require resources
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beyond present day computer power [38]. Thus, we plan a
follow-up study to investigate this term.
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MU+ MU+ M

d’ Ih’ 1Ie’ it 1 1Is
+MED + MU + MU +MED +MEY + MY

[ADC(3)] __ [ADC(2)]
MAPEOT = mlA

APPENDIX A: ADC EQUATIONS FOR SELF-ENERGY
AT THIRD ORDER

In this Appendix we give the remaining expressions of the
coupling and interaction matrices that arise from Goldstone
diagrams at third order in the expansion of the self-energy.
The complete list of all terms required to build the ADC(3)
formalism is

if j =r 2plh),

1Id ITh 111 11 11 1Ii
MG + MGV + MO + MY + MO M)

1L 11 (Ip) (Ilq) 11 1T
+ MO MU +Mge” + Mg + MG + MY

N+ NI NI

4+ NI 4 NI N@Ie) Ny NID 4 Nl

[ADC(3)] _ ny[ADC(2)]
Nak - Nak +

NGO -+ NJP -+ NED - NI -+ N+ N

II 1T
+NUI™ + NOD 4 NG + NG + N+ NOw

CP” 4 CP 4 CN 4+ CYP 4 U

[ADC(3)] __ p—pph h—hhp 3N 3N
ClaPedt = et ¢l M e+ O

I hp 3N Up Uh
Dss’ + Dss’ + Dss’ + Dss’ + DSS’
ADC(3 h—hh —pph 3N 3N(I
D}ck’ ©)]] =1{D np + Dfu/[’[’ + Dm,() + Dsu’( )

su’

uu’

For the coupling matrices M, and Ny, the list of terms
truncated at the ADC(3) level is composed by sets of ADC(2)
terms, defined in Eqgs. (34) and (37) and in Egs. (35) and
(38) for the forward-in-time and backward-in-time self-energy,
respectively; sets of terms from (Ia) to (Ilc) appearing at third
order of the ADC, presented in Egs. (53), (54), and (57) and
in Eqgs. (55), (56), and (58), which contain only 2plh and
2h1p configurations; and those terms from (IId) to (Ilo) with
3p2h and 3h2 p ISCs, introduced in Egs. (67)—-(70), (75), and
(76) and in Eqgs. (71)-(74), (77), and (78). Other terms with
3p2h and 3h2p ISCs, denoted with superscripts from (Ile) to
(Ilg), are defined in Eqgs. (AS5)—(A20). Moreover, in Egs. (A1)
and (A2) we find additional terms, that must be added to the
ADC(3) when the single-particle propagator used to construct
self-energy diagrams is uncorrelated, i.e., when one works with
a nonskeleton expansion. For coupling matrices, these addi-
tional terms are denoted with superscripts ranging from (Ilr) to
(ITu). Their explicit expressions will be given in Appendix C 2.

Interaction matrices appear at third order in the ADC, as
listed in Egs. (A3) and (A4). The first three terms thereof
connecting to 2plh and 2hlp configurations are given in
Egs. (99), (60), and (63) for forward-in-time diagrams and

pp ph hh 3N(II) 3N(IV) 3N(V) Up n
qu/ + qu, + qu, + qu/ + qu/ + qu, + qu, + qu,

hh hp pp 3NID) 3INIV) 3N(V) l7p Ul
Duu’ + Duu’ + Duu’ + D + Duu’ + Duu’ + D + Duul’

(AD)
if j =q (3p2h),
ifk =5 (2h1p),
(A2)
ifk =u (3h2p),
if j=rand j/ =1 2plh),
if j =r 2plh)and j = ¢’ 3p2h), (A3)
if j =¢q and j' = q' 3p2h),
ifk =sand k' =s' 2hlp),
ifk=s (hlp)and k' = u’ (3h2p), (A4)

ifk = u and k' = u’ 3h2p).

uu’

(

in Egs. (61), (62), and (64) for backward-in-time ones. Other
matrices required to link 3p2h (3h2p) ISCs are denoted by
crorrt LY @it DAY, They will be given
below in Eqs. (A21)-(A25) and (A31)—(A35) [Egs. (A26)-
(A30) and (A36)—(A40)]. Finally, additional four interaction
matrices introduced in Appendix C2 for the nonskeleton
expansion are specified in Eqs. (A3) and (A4) with the
superscript U.

1. Coupling matrices with two effective 2NFs

In Fig. 6(e) we find the following coupling matrices:

e \/E nen n n n i
M;I(i) = ?,PIZS [tk:k: ‘)(;L]Xv 2(')()Lﬁ)* V;w,a)»]a (AS)
and
V3o ! nan
NG = 2 T PR VRV AR a0

for the forward-in-time and backward-in-time Goldstone dia-
grams, respectively.
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2. Coupling matrices with one effective 2NF and one interaction-irreducible 3NF

Diagrams in Fig. 6(e) contains also an interaction-irreducible 3NF, therefore another coupling matrix can be obtained from
the corresponding Goldstone diagrams. For the forward-in-time and backward-in-time parts we have

V2,

M) = V20 2 0 (XY Wi (A7)
and
NG = 57 Wepn o (V' V57) VR () (A8)
respectively.

Also diagrams in the second and third row of Fig. 6 feature coupling matrices with 2NFs and interaction-irreducible 3NFs. We
list them below considering both forward- and backward-in-time contributions. In the Goldstone diagrams of the term in Fig. 6(i)
we have

i \/§ ninan * 7
My = > Ass 10y (VDY) W Vi (A9)
and
i \/5 7 n n ny\*  nsnen
NI = o A [V (X0 207) " 1isee]. (A10)
In the Goldstone diagrams of the term in Fig. 6(m) we can single out the coupling matrices,
\/g nn n
ML = S Aus Puos [0 (V1) X2V (X)W ] (A1)
and
V3 aen
NG = == AasPras [Weanp o (07) 5 (X)W V0. (A12)

Finally, in the Goldstone diagrams of the term in Fig. 6(n) we have

\/g nen ny yny pn3 ne yn7\*
Mfilfin) = Etkfk; X/LIXUZXX (Xn (’Xp7) W/AV*’O’W (Al3)

and

NG nan
N(()tlbltn) = ﬁ anp, vk yﬁ] y‘/}fz )]\(3 (y)l;(,yl:)* tk:k757 (A14)

which are both antisymmetric in their particle and hole indexes.

3. Coupling matrices with two interaction-irreducible 3NFs

All the Feynman diagrams in the second and fourth rows of Fig. 6 can contain coupling matrices with two interaction-
irreducible 3NFs. Again, for each different topology we list the expressions for forward-in-time contributions first, followed by
the backward-in-time ones.

In the Goldstone diagrams of the term in Fig. 6(i) we have

M(Ili’) = \/_5 ninang

fa ! = Ty ek (Ve V0V X04) V5 Wi canp- (A15)

which is antisymmetric in the indexes njand n,, and

11’ ﬁ k * 6
N = 3 W 2 (O 0020 5 (A16)
which is antisymmetric in the indexes kjand k;.

In the Goldstone diagrams of the term in Fig. 6(p) we have

\/§ ninang N3 sk, k7 ks yne\*
MY = 5 Aus Puos [0 X0 V3 (V0 V) Wi ] (A17)
and
NP — _\/g 1% Aus P 7 (Pks ne ) k3 nenins Al8
au = anp, v Y345 123[ n (yp uw v ) yk tk]kzkg ] ( )

12
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In the Goldstone diagrams of the term in Fig. 6(q) we can also single out the following coupling matrices,

\/§ ningn n n7\* yn n
M;Igl) = _EPIB [tk4lk5(}cg7 (y/]is‘X?76XP7) X ZXA3 Wuvk,anp] (A19)
and
ﬁ * ngnsn
NG = 5 Wanp.o Pras [0 V5 2 VRV ] (A20)

4. Formulas for 2NF interaction matrices with 3p2h and 342 p configurations

The interaction matrices that we have introduced in Sec. III B do not exhaust the list of all possible terms required for the
ADC(3). A more complicated pattern in terms of ISCs is present in interaction matrices connecting 2p 1k and 3 p2h ISCs, as for
the forward-in-time terms in the diagrams of Figs. 6(d)-6(g).

In the Feynman diagram of Fig. 6(d) one can find

. NG ~ ; .
qu/pph = EA]Z Ao 10 Pers [ X2 Viwap (A7 X5 VN0) 8p,ms Stk |- (A21)
while its complex conjugate term is contained in the diagram of Fig. 6(f).
An interaction matrix connecting the same ISCs as the one in Eq. (A21) is

winp N6 o T e\ K
er/ P = EA678 I::y)\3 V;w,lp (yﬁgyfmxps) 8n|n(‘8n2n7]7 (A22)

which is contained in the diagram in Fig. 6(e), while the diagram in Fig. 6(g) contains the complex conjugate of Eq. (A22).
In the self-energy diagrams represented in Figs. 6(1)-6(n), when two 3 p2h ISCs interact through a 2NF, we find interaction
matrices of the following form:

1 7 n *
Cog = 1545 Pros Pers [ X2 Vi (X0 X07) Sy Skako Skshro | (A23)

which is composed by 18 terms when all the permutations indicated are taken, and the ones with a particle-hole 2NF connecting
two 3 p2h propagators, i.e.,

1 - o
CZZ/ = E-A45 Ao 10 Ar23 Pers [X Va4 Viw o (V) Sy Snang Ssio | (A24)

which contains 72 terms when the explicit antisymmetrization with respect to quasiparticle indexes is performed. The interaction
matrices in Eqs. (A23) and (A24) are found in the diagrams in Figs. 6(1) and 6(m), respectively.

A forward-in-time interaction matrix connecting two 3 p2h ISCs through a hole-hole 2NF is found in the self-energy diagram
in Fig. 6(n). This has the following expression:

1 ~ *
CZZ’ = E‘Al% [yiuyl;s VMVJLP (y{?yf‘“) 8”1"68'!2"78"3118]' (A25)
We present now the corresponding interaction matrices appearing in backward-in-time self-energy Goldstone diagrams. We
remind that these interaction matrices are the ones connecting propagators of multihole-multiparticle type in self-energy diagrams.
We consider first terms contained in Figs. 6(d)-6(g), namely those connecting the 241 p propagator to the 342 p propagator.
We find

i V6 e )
D" = 22 A1z Ao 10 Pers [(VF) Voo V1 VR Stk B (A26)
which must be combined with another interaction matrix,
. NG ek
DL = =S5 Aas[(6°) Vi X0 X0 V) 85181 (A27)

Interaction matrices in Eqgs. (A26) and (A27) are found in the self-energy diagrams of Figs. 6(d) and 6(e), respectively, while
their complex conjugates are contained in the diagrams of Figs. 6(f) and 6(g).

When two 342 p propagators in a self-energy diagram are connected via ISCs linked to 2NFs, as in diagrams of Figs. 6(1)-6(n),
we have an interaction matrix of the following form:

1 ~
DZZ/ = _E.A45 Pl23 P678 [(y/lil y{fz)* V//.v,kp y)/feyl: 5k3k36n4n95n5n|0]a (A28)
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contained in the diagram of Fig. 6(1), and another one found when a particle-hole 2NF connects two 3h2p ISCs, i.e.,

1 ~
Dﬁﬁ = EA45 Ao 10 Ai23 Pers [(y,li' X;"')* V;w,pky)}fbX:95k2k78k3k38n5n10]a (A29)

which appears in the Feynman diagram of Fig. 6(m).
Finally, also a backward-in-time interaction matrix connecting two 342 p ISCs through a particle-particle 2NF is found in the
self-energy diagram of Fig. 6(n), that is
1

DY = — AR [(] 2005) Vi X020 X085k St Skt - (A30)

5. Formulas for 3NF interaction matrices with 3p2h and 342 p configurations

The last set of interaction matrices is required to complete the ADC(3), which is given by those terms containing the interaction-
irreducible 3NF.

First, we consider interaction matrices in which the 3NF connects 2plh ISCs to 3p2h ISCs, as in the diagrams in
Figs. 6(h)-6(k). We find in the diagram of Fig. 6(h),

V6
12
and a second 3NF interaction matrix connecting the 2p1h propagator to the 3p2h propagator, requiring an explicit antisym-
metrization only with respect to two particle indexes. Its expression from a Goldstone diagram of Fig. 6(i) reads

3N _ \/_5

4 12

Complex conjugate interaction matrices corresponding to Eqs. (A31) and (A32) can be found in the Goldstone diagrams of
Figs. 6(j) and 6(k).

Two 3p2h propagators can be connected in a self-energy diagram via ISCs containing a 3NF. They are contained in

the three self-energy diagrams represented in Figs. 6(0)-6(q). We have then an interaction matrix of the following form in
Fig. 6(0):

CIY = 2= A1 Pers [Buun, X VK Waguw,pe (A0 X8 Yo Yko)™], (A31)

Ao 10 [X" X0 Wi pen (X0 X2 XS VR0) 7 8y, |- (A32)

1 ny yn n ne yn7 yns\*
N = T3 A [ 002X Wi pen (00 X0 X0) " 81ty Skt - (A33)
Other 3NF interaction matrices connecting two 3 p2h ISCs are found in Fig. 6(p),
1 I ny ne yn *
Cog' ' = =5 A Agio Pias Pors [ X ALV Wiy pen (X, X7 V30) " Bty S . (A34)
and in Fig. 6(q):
1 *
C;Z(V) =1 Ai23 Pers [X,Z"yf“y§5 Wova, pen (Xgﬁyfgyfm) 8n2n76n3n8]. (A35)

We can present now 3NF interaction matrices appearing in backward-in-time self-energy Goldstone diagrams. These
interaction matrices connect hole-particle ISCs in the diagrams, i.e., 2h1p and/or 3h2p propagators. As the corresponding
interaction matrices for the forward-in-time part shown above, they are found in the diagrams of Figs. 6(h)-6(k) and
Figs. 6(0)-6(q).

First, we have the terms

V6 .
D0 = —EPans [t (V" X70)" Wi, pne Yy VE X A0 | (A36)
and
V6 .
DN = —<5 Ao [( V) W pen Y VI VI X108, ], (A37)

which are found in Figs. 6(h) and 6(i), respectively.
Finally, 3NF interaction matrices can connect two 3h2p ISCs within a self-energy diagram, as in diagrams of
Figs. 6(0)-6(q). Specifically, in Figs. 6(o) and 6(p) we can single out the interaction matrices

1
D, = A [( K VYR Wi pen Vo VE VS 0851 ] (A38)
and
1
Df,ﬁ’,(w) = —5A45 Ao 10 Pi23 Pers [(y;]fl Yk Xy';s)*WAvu,per] ylgﬁyf X Snans Stk | (A39)
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respectively. Matrices in Eqs. (A38) and (A39) must be complemented with another backward-in-time interaction matrix that

also connects two 342 p ISCs. This is given by the expression

uu’

I ) )
DNV = EAm Pe1s [(y,li' X:“X;S) W/ka,peny/];GX\jngA " kot Sksks |

(A40)

as it is singled out from the Goldstone diagram corresponding to Fig. 6(q).

APPENDIX B: IRREDUCIBLE SELF-ENERGY IN
ANGULAR MOMENTUM COUPLING FORMALISM

Most implementations of ab initio approaches in nuclear
physics are based on the assumption of a spherical ground state,
so that one can exploit a spherical single-particle basis and the
angular momentum formalism to decouple different channels.
The diagonalization of Eq. (28) can then be performed sep-
arately for each partial wave, and the required computational
resources are significantly reduced. In this Appendix we follow
this path and derive the corresponding working equations for
ADC(3) and 3NFs including up to 2p1h and 2h1p ISCs. The
ADC(3) matrix elements for 2NFs have been discussed in the
past [39] and used in applications for several years [11,40,41].
However, they were never published in detail for the case of
fully dressed propagators. Moreover, we complement them
with the new terms arising from 3NFs. We present them here in
the hope that they might turn out to be useful to practitioners.

In general, a spherical single-particle state with isospin
function y, is given by coupling the spherical harmonic Y;(7)
to X1 the function of the intrinsic spin of the nucleon,

$p(F,0,7) = fu,1, (N[ Y;,(F) ® X%(G)]Zﬂ Xgs (D), (BD)
with o and t being spin and isospin coordinates, respectively.

The collective index 8 denotes the set of quantum numbers
(ng,mg, jg,mp,qp), where ng is the principal quantum number,
7 is the parity corresponding to the orbital angular momentum
lg, jp and mg are the total angular momentum and its projection
along the z axis, and gg represents the isospin projection. In

this basis, the creation operator a; of the single-particle basis
is the m%’ component of an irreducible tensor of rank jg:

T T _ 1
Ap = gy, jsmp.qs — Gbmp> (B2)
where we made use of the notation 8 = (b,mg), i.e.,
b= (np.7p,jpqp): (B3)

The destruction operators are dealt with in the same fashion but
we add a phase factor and invert the quantum number m, which
isneeded to obtain anirreducible tensor dg = (— etmsay, 5
For particle and hole Dyson orbits, corresponding to the
eigenstates |WA+!) and [ W ~') of the (A+1)- and (A—1)-body
systems, we use a compact notation analogous to Eq. (B2)
and write n = (7i,m,,) and k = (k,my), withii = (n,,, 7, jn-qn)
and k = (ny, ., Jk»qx)- Using these definitions, the shorthand
notations of Eqgs. (20) and (21) can be coupled to total
angular momentum and the overall quantum number M is
separated. This leads us to define 7 = [(711,7i2, J12,k3), J) ],
5= [(E1,§2,J12,ﬁ3),J$] and so on, where we follow the cou-
pling conventions of Egs. (B12) and (B13) below.

(

We now revisit the angular momentum coupling of the
self-energy, when the ground state |\Il(‘)“) in Eq. (1) has total
angular momentum and parity J” = 0. For these systems, the
formalism is considerably simplified because the total angular
momentum j, (ji), its projection along the z axis m,, (my)
and the parity 7, (r;) of excited states \ll,f“ (\IJ{‘_') are the
same as the corresponding quantum numbers of the particle
creation (annihilation) tensor operators entering the definition
of the Green’s function, Eq. (1). The total isospin is also
uniquely determined by isospin projections of the reference
state and tensor operators. With our assumption that |W¢')
has J® = 07, the irreducible self-energy in the Dyson Eq. (7)
becomes diagonal in the quantum numbers (7, j,m,q), and it
is independent on m:

S25(@) = 85V S mmy Zip (@), (B4)

where we have introduced a compact notation for multiple
Kronecker 6’s:

wja) _
8y " = 8m,my8, 75 0gugs- (B5)

By applying the Wigner-Eckart theorem to the transition
amplitudes Eq. (6), one finds

. ) S(Jqu)B - .
M, __ ¢ 1\2Jjn _an MMy A+l 1 A = ¥ (TE]fI)
on _( 1) 2ja I I (\Ijn } |aa | |lIJ0 ) Xa San 8mamn
(B6)
and

3 (jq)
Vi = (P e

_ ik o —mg 2(Tjq)
= yf(—l)j 8‘1];](] a—mamka (B7)

—M oMy

(Wi llaa|[wg)

which define the m-independent spectroscopic amplitudes X7
and VX,

Because of rotational invariance of the Hamiltonian, the
2NFs and 3NFs are coupled as m-independent matrix elements
according to

_ 1
Vo= o jsmamp|J M
ab,gd mm ”%1:3(] ]ﬂ ﬂ' )
myms
x (jy jsm,ms|J M) Vg s (B8)
and
Wl = 3" Gadpmamg| i M)y jsmyms| Ja M)

MmeMg Myns
my nmy

x (J1jaMym; | I M) (T jy Mam, | T M) Wags, 50
(B9)
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Note that we chose to properly normalize the matrix elements of V in Eq. (B8) but not those of W. When considering the Goldstone
diagrams that result from Fig. 2(c), it is also convenient to recouple the angular momenta of the 3NF in the particle-particle-hole
channel:

hJJoJ .. ..
WPDIl = — NN (Jadpmamp| M) (jy jsmyms| 2 M)
Mmemmpg My, s
m;, m,
x (1 jpMy — my | I M)(J2ju My — my | I MY(=)7 7" (=)™ Weg,, s (B10)

The matrix elements W can be transformed into the WP?") form by using the Pandya relation [42]:

. Jijp I\ wordi
Wl Vel = —(= il %m0+ 1){ i J,}Wai,v’:!dl- (BI1)
J/

1. General J-coupling conventions for ISCs

The ADC coupling and interaction matrices derived in earlier sections already separate naturally in terms of the
parity and isospin (i.e., charge differences with respect to the ground state |¥¢')). To decouple the Dyson eigenvalue problem
according to Eq. (B4), we then need to recouple the ISCs to total angular momentum. In this Appendix we are going
to consider only the ADC contributions arising from Feynman diagrams of Fig. 2. Thus, we need to specify an angular
momentum coupling convention for 2plh and 2h1p ISCs. As usual, the particular choice of coupling may introduce
particular phases and factors in the equations but the final result of the Dyson diagonalization, Eq. (28), does not depend
on these.

For 2p1h coupling matrices we define the coupled elements of Mz, as

; [T+ 85,5
Z (jnl jnzmnlmnz |J12M12) (J12jk3 M12mk3 |Jer)Mra = 8((;:'](1)5,,1“/1/1, le Mfav (B]2)

My My
Mis

with the parity 7, = (—=1)i*+5 | the charge ¢, = g + g2 — ¢3 and the total angular momentum J, of the 2plh ISC
7 = [(fi1,712, J12,k3), J.]. For the backward-in-time 221 p matrix Nz, we write

| 1+ 8z
Z (jk]jkzmklmkz |-112M12)(J12jn3 M12mn3 |Js MS)NDtS = 535”)5%—% % Nafs (B13)

mkl me
mn3

with the charge ¢; = q1 + ¢» — ¢3 and the total angular momentum J; of the 221 p ISC§ = [(121 o, J 12,713), J;]. The interaction
matrices C;; and Dy are coupled in the same way. For 2p1h matrix elements C,,, we have

Z Z (Jiny dna M, 0y | J12 M12) (J12.jis Mot | Je M) (g JinsPng Mg | Jas Maas ) (Jas jig Mastg | T M, ) Cp e

My My My Mg
Mpy Mig

=5£7:qu)3M,M,/ #CW /%_ (B14)

And for the 2k 1 p matrix elements Dy :

Z Z (Ji Jo ey miy | J12M12) (T2 s Mo | Ty M) (g s Mg ks | Jas Mis ) (Jas jing Masig | Jy My ) Dy

My My mk4mk5
Mpy My

: 1+ 8t 1+
= 858y m, \/ % Dy \/ % (B15)
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Equations (B14) and (B15) define the coupled C; and D;y that are independent of M, and Mj, respectively. With the above
definitions, the unperturbed energies for each ISC do not depend on the angular momentum coupling and their expressions,
Egs. (22) and (23), remain unchanged. For example,

E:» = diag{s,f[I +<9;2 — ek:} (B16)

Note that the coupling and interaction matrices introduced in Secs. III A and III B are explicitly antisymmetric for the exchanges in
any of the particle (n1, ny, n3,...) or any of the hole (ki, k», k3,...) indices. They are nevertheless defined assuming unrestricted sum
over all indexes. In practical calculations, one can drop the symmetry factors of 1/ /2 for2p1h (2h1p) ISCs and restrict the sums
over the fist two indexes, n; < n, (k; < k). In angular momentum coupling formalism one has similarly ordered sums—i1; < 7i
and k; < k, in this case—and factors such as . /(1 + 85, 7,)/2 are to be dropped. Thus, we separated these factors already in the
definitions Egs. (B12)-(B15).

With the above definitions, and assuming ordered sums, the dynamic self-energy of Eq. (19) can be decoupled as

Sup(@) =Y M, ! M5+ > N ! N*
T S b — (b + Coy i S o — (Euby + D) —in

rr’

= Z 87D, 1 SIS, My
FF M, M, M fla)—(E S5 +C"”’)8(njq)8MM,+l77 br M,
1 4
+ 5(71/‘1)8 +—M,Naz i 5(7;,”)8 . NE,
ﬁz . m — (Es8ss +D§§’)5§ZM)5MSMS/ —in b mp—My=3bs
. 1 |
- a(n‘]q)g”’ " g(mq) S(U/M)M 3(”14) (ﬂjq)N
“ ' Z M o= Erdr + Gy in +Z o~ (B Dy —in P 0
= al(lzjq)smamg iab(a))v (B17)

which proves the energy dependent part of Eq. (B4) and defines the m-independent irreducible self-energy X7, (w).

2. Angular momentum coupling of the ADC(3) equations

We are now in the position to give expressions for the coupling and interaction matrices resulting from the diagrams of Figs. 1
and 2 in the angular momentum formalism.

a. Coupling matrices with 2p1h ISCs

The simplest 2 p 1k coupling matrix is M) Eq. (34), and it appears already at the ADC(2) level. Using the definition Eq. (B12),
we obtain

~

.. . o Jn
M = A (s jnss J12) A(12, kg Iy ) (= 1) et =2 22

Jo
an(s(ﬂ]lq)‘)(‘nz(sl()ﬂélﬁ _ (_l)j,,lJrj,,zf‘/]z‘)(nl8(”]‘1))(%25(”]2‘]) J ’ tia)
% m mn v n mn m:)za /1+6aly387'[ , (B18)
m< \/1 + avm\/l + 87111”12 ! Ptk

l

with the usual “hat” notation
i=V2j+1 (B19)

and the triangular condition

RV LI VA A VA I S

AG.JT) = {O otherwise. (B20)
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The M{!!® contribution from Eq. (53) becomes

A . (=Dftia=In . ,
M;IaIa) = A(]il[7]n27J12)A(1127]k37‘Ir)— Z Z ]k47]k5aJ12) ti:”ig: e
1 + 8"1)12 .]Ot /} < k5g <d

I

B s (Tiq) k (wq) + Jio ok (njq) ks s(Tjq)
5 [yg48gk4 Vst — (= 1)JA4 Jks=J12 Yy 46 y 55gk5 ] 7 m kzg(ﬁlﬂl) (B21)
(1 + 8];4];5) /1 + Sgd gd al a lks

where we have coupled the angular momenta of the 2 p2h amplitude, Eq. (47), as follows:

J __ . . .. J—M
t]:';]:l; = Z (J,“j,,zm,,lmnz’JM)(jk31k4mk3mk4|J —M) (—1) t::kr:z
My My
Mgy My

Xyﬁlsirfr{]q) leizal(}?;éq) _ (_l)j"l +in, —J X"‘(S,(f,r,{q) Xnga%{f)

V1T Sy

m< v
g<d
J & s (Tiq) )k (ﬂjq) jkn kg —J VK3 ST ks s(Ti9)
8 vagd ygzag,“ y45 — (—1)mTk y{;adh yg45gk4 (B22)

- ¥
&, T &, — a — Ea VA

4

The M of Eq. (54) in the angular momentum coupled representation is given by

. f1
MG = Ay J12) A (i, ik o Sy ) (= D™ 22— N NN 2+ 1D2J5 + 1)
1+5ﬁ'ﬁ2 kyiis mv D3
) ) jnl jk4 J2
X (_1)7Jn]71n2+‘]]2 jn2 Js jns X:zIS%Iq) tflvfls 3 [ykASSIZ‘I) ana(ﬂjq)] \/1 ¥ ng Vu{; al\/l + 84a
J12Jjiy Ir
Jny Jis J2
— i, 3 s an:z(gr(;rn]?q) tplfts A [yk45(njq) ans(rrm)] \/1 + 8em ijrfl al\/l +84a |1, (B23)
J12jiks Iy

which is explicitly antisymmetrized with respect to the 7, /i, indexes.
The coupling matrix MU of Eq. (57) is implied by the diagram of Fig. 2(c). This is the first term that contains an interaction-
irreducible 3NF and it has the following form:

M(Hc) Josdms 12 le,Jk , Jk s Jkes I56 ) A Jny > J565 Jo ) ——————
( nysJn ) 3 % k5§(6 U;n 59JKe ) ( ng 0‘) m ]a

i 1

. . ks «(TJq) ke (TJq) ks + ke — - ks (77 q) ik (n )
{]k3 leja} fll,ﬁzﬁ“leJ' [ymSSnqu yvéauk({q _(_1)Jk5+jk6 * yvssvkiq ym6 mkjf,q ] (X’M(S(ﬂ]l])) JS@ m (B24)
Gy Is6d” | Fskoks.Jss (1 +812512<,) m Ing mv.al ,

which is expressed in terms of the 3 p3h amplitude Eq. (48). In the angular momentum form, this is

(— 1)]n4 +ja—J56+2J" JS()

Xn,a(ﬂjq) ana(ﬂjtﬁ (—])]"1""]"2_]12)(”]8(7[”) ana(ﬂjq) X”“(S(ﬂjq) WJDJ%J y§38(7qu)

fyiiafig, JinJ' _ 2 : 8ni dn; dn, rng gdrtps sk
kskeks, Jse _ _ et _ ot
i<d (1 + 8¢a) 6, +e +er —ei —ef —e;
rs
t<p
ks o (Tjq) ~ske (Tiq) ke +jke —J56 Voks (ﬂ/q) ko (ﬂ/q)
Fs (I Who i) _ (_ 1y it —ls0 ks sUTI) ki o 5)

(I +8p)
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b. Coupling matrices with 2h1p ISCs
The backward-in-time contributions to the self-energy involve ISCs with 241 p. The angular momentum representation for the
ADC(2) coupling matrix, Eq. (35), is

S

’ . L J
N = Aty Jias J12) A (T2 g Js ) (= 1) M (=1 )Ja I =2 %
, yk1 (ﬂqu) yl;za(zjlﬁ _ (_])jk1+j"2_1‘2 yl?lS(ZjQ) ykza(ﬂk]q) io)
x V148,V Ok Yo" Bu vk Tmomh X”’S’”". B26
Z 1 Val,mv \/1 ¥ Svm\/l i 8/;]];2 In3 ( )

m< v
!

The ADC(3) ladder term coupling matrix of Eq. (55) becomes

1) e—iny—J12 J _
N(Ha) (Jkp]kvaIZ) (JIZaan’ )( 1)./0( ma(;ﬁ; 12 Z Z Jm;v.]ns"]l 1464 Vajlli,d
kyky Ja

g <iisg<d
i

fig s(TJq) s o(Tjq) g o(Tjq) iis o(Tiq)
[X 45gn{;q X, 577” (=1yrth=le X, 4‘Sdn]q X '8 mq] (s, Jia (B27)

< T
m( + 87i4ﬁ5) 1

and the corresponding particle-hole channel, Eq. (56), is

. Jo—Jny—J12
N(Hb) = A(]k] 9]k21J12) (J]25jn31‘]s) (_1)]“_"1“(1)—3l 112 Z Z Z (2.]2 + 1)(213 + 1)

\ 1+8~‘]€2 ]zx fisks mv g3

l

jk] jn4 J2

X (_1)7jk17jk2+112 jkz Ia jk5 1+801Vajlzvm 1+ Sum [Xm(ggiq)ykss(ﬂjq)] yr];]s;fkjlq) ]:;4]2:3 J3
J12jn3 Js
jkzjn4 JZ
— i T3 s (VT4 8t V1 B [ X2 SIO VST O] Yoos 0 geme s (B28)
J12jn3 J.Y

which is explicitly antisymmetrized with respect to the ki, &, indices.
Finally, the coupling matrix N{! of Eq. (58) is found in the backward-in-time diagram of Fig. 2(c) and contains a 3NF. It has

the following form in the angular momentum coupling representation:

N(HC) (jkl’szvJIZ) -]127]!13’ Z Z Z Jilsvjne’J56)A(J56’jk4’ja)

JasJ' fiy <iisv<m
ke 1

. 1)t 2iny iy —Js6+2J’ j
X (— 1)/« (=D
V14, Jo
[X;zs 85;;[]5‘1) Xfé&(ﬁéw — (- 1)}:;5 +Jng — 56 an 5(”}‘1) )(na(sfyfr{?] (yk45(”’q))* t"s"o”z Jsed! (B29)
I .

X (1 n 5;,5;%) TTs. Iy e

jngJ45J, J.
’ 1+68,V:7
{jk4‘]12joc Ot Vat.mo

kikaka,J12

c. Interaction matrices with 2plh and 2h1p ISCs
The interaction matrix Cz» can connect 2p1h propagators through particle-particle, particle-hole, and 3NFs, according to the
terms
Crr =C +CIL + C3Y (B30)

7P

which have been introduced in Egs. (59), (60), and (63), respectively.
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The particle-particle interaction matrix results from the diagram in Fig. 2(a). Using the coupling convention of Eq. (B14), we
have

Cpp’ = A(]nl ajnzale)A(J12vjk3aJr)A(jn4ajn53J12)A(J125jk57Jr)

s s N Amowmh XY — (e e ST s Y
X J12J45 ks ke Z \/1 + 871 il «/1 + 3mv
1n2

m< v
I<p
Xflzt(s(ﬂ'jq) Xﬁ58(ﬂjq) — (—1)Jnatins=I12 Xﬁ48(7f111) Xﬁsa(ﬂjlﬁ *
e LA O T = DR XSy A0 (B31)
mu,lp \/1 —+ (Slp\/l + 8ﬁ4;,5 .

The particle-hole C;’Fh, comes from the ring diagram in Fig. 2(b), which contains four terms owing to the antisymmetrization
specified in Eq. (60),

Jio Jas 2T + 1)
+ 8,7, \/1 + 8iaynis

1
C;’?;ﬁ = A(jn]ajnzaJIZ)A(levjkg7JV)A(jmujns7J45)A(J457jk67‘]r)E ZZ 1
mv J \/
pl

jﬂljnz ‘112 - . z ; i j k j
s 9 o (S0 V0T BV T S8 Y05 B
45 Jke Jr
L j"2j”l']12 ~ . T o(Tiq) J fis o(Tjq) ks o(Tjq)T*
_(—1)'1"1+h2_ : {/"15 ] {;3 X;115§)Z{q) ypﬁapk{,q meu,pzm[%"mzn!q yms(smk]aq] S’bﬁ“
45 Jks Jr
i . J jn]jnz‘]lz _ . % o(Tjq) J fis (Tjq) ks o(Tjq)7*
— . . n
_(_1)1114+Jn5 15 §n4 J {;(3 Xvnz(gl()%q) ypaapkéq m‘/mv’plm[x] 451,14” ym35ka3q] 6ﬁ1ﬁ5
45 Jke Jr
g ng +ns — . J:"Zj”‘J.lz it §(miq) ke s (Ti@) J iia (Tq) ok (i) T*
+(_1)j,,l+j,12— 12(_1)1»14+/»15_ 45 ‘]]m J {;(3 X:ll(ggrtljlq) ypéspkéq mvznu,pl\/W[Xl 45[n4]q ym38mkj3q ] 5ﬁzﬁs
45 Jkg Jr
(B32)
The 3NF interaction matrix in Eq. (B30) reads
C;;{'\’[ = A(jnl’jnz’JIZ)A(le’jkB’J’)A(j"4’j"5’J45)A(J45,jk6,Jr)
x> A i A8 — (Ve S0 ST Lty
e VI 81+ 80) '
! P
[ s sTID 2075 §UTD _(_yinaFins—Jas g0 §OID s sTIOTE
o s [Xg S X040 R NS (B33)

mvl—!,gdp~! (1 —+ Sgd)m

where we have the 3NF coupled in the pph channel from Eq. (B10).
The backward-in-time interaction matrix Dy can connect the 211 p propagators through hole-hole, hole-particle and backward-
in-time 3NFs, according to

Dy =D + D + DY, (B34)

with the three matrices on the right-hand side introduced in Egs. (61), (62), and (64), respectively.
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The hole-hole interaction matrix resulting from the diagram in Fig. 2(a) reads

hh
D!

mkl

yr]ila(ﬂjq) yfzs(ﬂj‘ﬁ _

vk,

= — Ak ks J12) A(J120 Jins o I5) A g ks s J12) A(J124 Jing - I )

(_1)jkl+jk2—112y51357]:{4) yrliz(gr(lgq)]*

‘7112

X81121458ﬁ3716 E :

m< v
I<p

i . _ . S ~ . I3 .
5 yl 431(]7;Jq) yﬁsagzq) _ (_1)]k4+]k5 ley11§43(n1q) yz 581(,7;”)

mu,lp

\/1 + Sgd\/l + 81}1122

phy (B35)

V148, /T+ 8.1 ’

while Di’f results from the ring diagram in Fig. 2(b) and contains four different terms owing to the antisymmetrization specified

in Eq. (62):

SSs

D'’ = Ak Jios I12) A(T124ding s I5) A Gk s - Ja5) A (Jas s ing» .

A)l Z Z(_l)ijf,—ij3
2 i

Jia Jus QT + 1)
VI 85,/ + 8

tp
Iada T2 L s J s §(I4) e 5 (i)
x | 3 s I g (VRO X 8GIOT T4 S Vil i/ T+ 81 VS0 X850 81,
J45]n(, Js
o Jo Ji J12 b D) e < i) J ks o(Tjq) 2siig o(nj
— (= 1)utin=Io s T ns [yml(gkalq X;”Sj%q)] 1+5vaUm’pl\/T5,,/y1551ksfq ngsgéqwgza
J45jn(, Js
o Ju Ji 12 b D) s < i) 7H ; Fu s(T@) oiig st
_(_1)1k4+1k57 45 Jk4 J an [ym28mkaq X;,”(Sg;j%q)] 1+8mvvum,pl\/raply1481k4jq lelﬁSl()Ziq) 8];17;5
J45jn¢, Js
. L Jie Jin 12 b ) o i) ; F <TI0 e (i
+(_1)J"l+]/‘2_ 12(_1)}k4+]k5_ 45 ‘]]k4 J]}:g [yml(gmkll‘l X;za%j}@)] ]—I—(vavvm!plmyl“(slqu X;’GSI()E‘]) 3/}2125
45 Jne Vs
(B36)
Finally, the backward-in-time 3NF interaction matrix in Eq. (B34) is given by
D3 = — Ak i J12) A1z s Is) Ay s Ja5) A (Jis g Js)
gy GRS~ MBS
NETTETN) L
m<vg<d "
l 4
s (Ti) ~ s (TIq) ¢ q\jks e —Jas ks o(Tjq) ~sks o (Tjq)
x WP i)' Ve'Ogrw Vadai — CDMTHTYy S0y Vo XTostia), (B37)
mvl=1 gdp popne

APPENDIX C: SELF-ENERGY WITHOUT
RENORMALIZATION OF THE PROPAGATORS

This Appendix discusses how the ADC(3) equations need
to be modified when one releases the assumption of full
self-consistency. This is the case for most of applications
in quantum chemistry and also for state-of-the-art nuclear
structure studies, where fully dressed propagators become too
complex to be able to expand the dynamic self-energy X,g(w).
In the latter case, one is forced to implement self-consistency
only at the level of the static self-energy, Eq. (18), while
Egs. (A1)—(A4) that generate the dynamic part are based on
an uncorrelated (bare) propagator (this is the so—called “sc0”

V148 (1 +81p)

approximation introduced and discussed in Ref. [35]). Without
self-consistency, one needs to follow the standard perturbation
approach and to expand the self-energy in terms of reference
mean-field propagators. This means that nonskeleton diagrams
also need to be added to the perturbative expansion that is used
to constrain the ADC(n) interaction and coupling matrices.
For calculations up to order n = 3, there are substantially
two consequences. First, Eq. (14) for the static self-energy
must be re-expressed in terms of the reference propagator as
shown in Appendix C 1. One does this by expanding both the
(correlated) 1B and 2B density matrices, pug and Iyg 5, With
the inclusion of nonskeleton terms. The three terms of Eq. (14)
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oW

M e e = O

FIG. 9. Diagrammatic representation of the first-order part U"
(zigzag line) of the effective 1B interaction of Eq. (13). Fermionic
lines here denote uncorrelated propagators. Dotted lines denote the
1B potential U,g, while short (long) dashed lines denote 2N (3N)
interactions. This is the fist term of the expansion Eq. (C2) and it is
given in full by Eq. (C4).

still generate the skeleton diagrams of Fig. 9 but now there
are 16 additional higher order contributions in terms of the
effective forces U and V, as shown in Figs. 12 and 14 below.
Note that a few of these diagrams are of skeleton type and they
should be included also when U is calculated self-consistently.
They result from the skeleton expansion of the 2B Green’s
function and density matrix [see Eqs. (14) and (17)] and
will be identified further below. Second, the dynamic self-
energy receives four third-order nonskeleton diagrams that are
obtained by inserting the (first-order term of the) 1B operator
into the uncorrelated fermionic lines that form the diagrams
of the dynamic self-energy at second order. These are derived
in Section C2 and they generate additional contributions to
the ADC(3) equations. It is useful to note that these additional
terms cancel exactly when one chooses a Hartree-Fock (HF)
state as the reference (but not in the general case).

In the following, we will consider the expansion with
respect to the uncorrelated propagator g (w) that is associated
with a mean-field reference state |¢6‘). Hence, we redefine
the transition amplitudes of the unperturbed (A £ 1)-body
systems, denoted by [¢pA%D) as follows:

ik _ {(Xz)* = (40’ |aw| ")
“ vk = (o aa|oq)-

which build the reference propagator similarly to Eq. (4).
In general, to obtain the ADC(3) approximation for such
reference state, one only needs to substitute the amplitudes
from Eq. (6) in the expressions for Eqgs. (A1)—(A4) with the
corresponding ones from Eq. (C1). Note that, differently from
the true Dyson eigenstates of Eq. (6), the orbitals n and k of
Eq. (C1) form a complete orthonormal set. Thus, the great ad-
vantage in using a mean-field reference state is that the numbers
of particle and hole states is drastically reduced and, in fact,
tractable. In the following we will consider the most general
case in which these orbits are different from the model space
basis {a}, then the Z!, give the unitary transformation between
the two sets. In standard applications of perturbation theory it is
customary to identify the basis {o} with the unperturbed orbits
of the reference state. One can always reduce to this particular
case by substituting X/, — &, and Y§ —> ko, Which recovers
the expressions reported in Refs. [20,21].

(CDH

7
AN = o--me b o= = — (Y
FIG. 10. Diagrammatic representation of V! given by Eq. (C5).

This is the first-order term in the expansion Eq. (C3) of the effective
2N interaction.

o O
O O 0o
-— - - -— - -
FIG. 11._As described in the caption of Fig. 9 but for the second-
order term U®.

1. Static self-energy

Equation (14) for the 1B effective interaction is exact and
it is given in terms of correlated 1B and 2B propagators: for
this reason, practical calculations (such as the above mentioned
sc0 approach) may follow an iterative procedure to “dress” the
propagator and evaluate self-consistently the first-order static
irreducible self-energy. Alternatively, one can consider the
explicit expansion of X °§ in terms of uncorrelated propagators.
This should be done up to the same order n that matches the
ADC(n) truncatlon for Emg (w). Thus, we expand the effective
interaction U as follows:

U Z (l)

In a similar fashion, one considers the expansion (up to
second order) of V, that is

v v v® T
V= Z (Vaﬂy5+V st )a agasay.
ap,ys

U3 +08) +--)alag. (€2

(€3)

The first-order term in Eq. (C2) is given by the expression in
Eq. (14) once correlated propagators are substituted with bare
ones. Itis composed by the three diagrams represented in Fig. 9
and can be written in terms of one-body reduced density matrix,
,0;0) = —ih g(O)(t — tT), which is the uncorrelated version of
Eq (16). We have

1

77 (1) 0) ) (©

O = —Usp + § Vays Py + 3 >~ Waye.psn iy LY.
$

€n

()

Similarly, the explicit expression for the matrix element V(}g)

is depicted in Fig. 10. It can be directly read from Eq. (15)
once the correlated fermionic loop is substituted with an
uncorrelated one:

=) 0
Vapys = Vapys + Z Wapeysn 02
€n

(C5)

v
e v gu M
AAEIRVAVIVIV 5 VS SE R VA

FIG. 12. As described in the caption of Fig. 9 but for the second-
order term U® rewritten in terms of V(.

054308-24



ALGEBRAIC DIAGRAMMATIC CONSTRUCTION FORMALISM ... PHYSICAL REVIEW C 97, 054308 (2018)

The second-order term U U is composed by eight different Feynman diagrams that can be grouped into four by using the
effective interaction U1:

) dw (lh) dw dw, da)3
Ugg = =it / 3 |:V0f%/38 + 2 Wayepn p;?}gaz(w)gw TS + f ‘ /
€n €n

X Z Waye Bén g(O)(a)l)g(O)(a)Z)g(O)(a)3)g(O)(wl + w3 — C()2)|: P VA + Z Wpue VAN /0,75 i| (C6)
€nvé €n
yAup

with the corresponding diagrams displayed in Fig. 11. The terms in Eq. (C6) can be further reduced by using the effective 2NF
at the first order,

dw
05 =-in | 3 Z .5 80 @8 @)U

(lFl)3

da) dw, [dws
f : / / D Waye psn 80185, (@2)8) (@3)gi(@1 + w3 — ) V) ;. 7

envd
yiup

as depicted in Fig. 12.
When the integration over the frequencies is performed, the second-order term U U@ becomes

X3) xmyk(vk Yy (vh)* (xm2) X
R S o
€n

—(ed, — &) +in i~ —(e, — &) —in

y$

(XmXPylyk) xnxmyfyk Yhyexmxm (vhykxy xm)”

1
(D
o ) Wayepsy | ) e L N PR S L YT (C8)
4 ~ —~ —(eh + &, — &, —8k4) +in — (&, + &, — &y — &ny) — in
Yiup k3ka n3ng

Note that the last term on the right-hand side of Eq. (C8) corresponds the last diagram in Fig. 12 and it is of skeleton type. This
is the second-order contribution to zgg that would appear also in the self-consistent expansion.

As we discussed above, it is customary in several practical applications to assume for the model space the very same orbits
that diagonalize the unperturbed Hamiltonian, Hy, and define the reference state. In this case the amplitudes Eq. (C1) become
diagonal in the two indexes i and «. Similarly, one may chose an HF reference state and in this case the term U UD vanishes
because of the specific definition of the HF potential [as it is obvious from Eq. (C4)]. Whether or not it is convenient to take these
assumptions—and in particular which is the best reference state to use—depends of the specific computational approach and on
the specific system one needs to solve. For completeness, we give the example of how Eq. (C8) would simplify if both these
assumptions are made:

~ 1 1
(2)
= E E V W, + W, V S C9
0‘5 /t v¢F p,AeF o ( o E)T 8; - 83) in ek o (8; SA_ - 8; - EnJ;r) in e )

where we have used the notations € F' (¢ F') to restrict the sums over occupied (unoccupied) orbits.
For the second-order term Vofﬂ)y s in the expansion of Eq. (C3), we have the three diagrams on the right-hand side of Fig. 13
with the following expressions:

dw . dw
Vi ys = il / Z Wepe,yon 8 2(@)g (@)U, — ih / 2N Waeyon 80@)8 @00 Vi

env
Ap
/ Z Waﬂe yén g(O)(w)g(O)(w) Wore LUPT pp)L pf:?y)
envo
rupt
= —ih f d—“’Z Wape.yon 80 ()82 (@)T)), (C10)
27 Yon éue VL
€n
v
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where in the last equality we have written a more compact expression for Vo by using the first term in the expansion of U. The
integration over the frequency in Eq. (C10) gives the expression of V® in terms of the uncorrelated transition amplitudes:

oW (C11)

vy

~ Xmyk) xmyk yhxr(yhxn)®
VOEZ) — W, ( w v e 'n w2 \Lte Ay

B.yd ; Be.ydn [% _( ;l*‘l _gk_z)—}—in %—(Sk_l —8;:—2)—1'17
nv

which is zero in the specific case of an HF reference state, due to oo vanishing.

The expansion of U in Eq. (C2) contains also the term 60([3) composed by the 14 contributions shown in Fig. 14. By using the
same Feynman rules applied for the terms at second and third order (see Appendix A of Ref. [22]), one can derive the expressions
for those fourteen diagrams. Here we give the final equations after all integrals over the frequencies have been performed.
Using the compact notation for npnh coupled cluster amplitudes of Egs. (46)—(48) and assuming Einstein’s summing convention
throughout, they are listed below according to the order of appearance in Fig. 14:

Uagp (1400 = Vo)) s (X5) X200 (0)" = Vi s (1) V00 (1)

ny yna *yrny yno vk n3\* n
+\70£:,)/35 ﬁe(}])ﬁl()v) § (XVLX,7 Yek3) Xylezyai _ _ (Y;(;Y;]?Xja?) YlfﬂYZ/QXes+ |
’ [ = (ei =) +in][ = (en, — &) +in] [ = (e, —&m) —in][ = (e, — &) —in]
X"lxnzyk3 *anxnzykg, Ykl Ykzxn3 *Ykl Yk2X113
+ +(57r;.y) e+/4 u7 S 7(M+e .v) Ul ri y+ : }; (C12a)
[ (em =) +in][ = (e — &) +in] [ = (e —&m) —in][ = (e, — &) —in]
O 146) = V) s [(X5 V)" = (53) X329 (C12b)

U (14c) = —%V;‘y{ sl (X52) X0 (1) 12 + (YR v (o) e ]
_1‘7(1) " (XC‘Z)*XZIX’;ZX?Y{’“YS"S (t"]m)*“' v nans
[— (e —&h) —in] 7% [ (er =) —in] *

leay s !(xg“x;;zxgzyyyj;s)*xm (Y)Y vy xm xns

(Yhylykxgixp) vk
2 ay,Bs 7 ut,ve

€

0 7)) L Cl12
) ay,B8 Veonp [_ (Sk—4 _ 82_1) _ i”/] kyks [_ (‘Sk_l _ SI;) _ iﬁ] (k2k3 ) } ( c)

~ 1~
3) _ (€3] ny\* nin3ng\* nonsn ki \*vka (,nsnen7\* nsnen
Upp (14d) = Vo os[ = (X52) X (1) 1t — (Y1) Y32 (o) vy |

E ay,Bs
* ks v ke vk ky vk vks yk *yvk
+i~<1) W (X XXX Xy ykeyl (e (Yhykykykxys xnoxm) Y)\]tnsﬂsm
€,AV — . — .
2 e O T e ) ] [ (e o) +in] A
ks vke v k7\* ki \* vk vk vk vk 6
N lon W ) (X5 XX XYY, Yy T) X0 P (Y)Y YRy oyl XX xy ey,
12 «v.ps otd.Tox [_ (8;[1 _ 8/;) +i77] kskeks [_ (8;{5 — Sk_l) +i77] kaksks )
(C12d)
ks yvka\* yvksyk ky yka ki yk *
5O 140) 1 w (XpXPYbyl) Xn XYy Yoy Xm X (Yhyk Xy xne) 0 o
op (140) = 4 Z aye.pon Z T S _Z — ot pui (C12¢)
envs nins _(8”1 + Eny — 8k3 - 8k4) + In kiks _(Skl + Skz —&ny — 5”4) -1
yipp k3ka n3ng
U (148) = Waye poy [(X5' XYOYR) 0002 + (X5 Y0) XS (102)"
(VX X )+ VYR XX (1) (1) T (120
~ 1
05 (14) = —5Wape oy [ = (X ) XEXPYS )+ (VXX 00 (1) 115
n3vky yvks\* ki \* vk vk vk
_lW Ul _ (XZ‘X;2X53Y€4YVS) X5 n3ny (Yal) YUIYX2Y53X;4X25 (t”4n5)*
2 aye,pon ox [ ksky ksky

e e S
— (em + e, — € — aks) +in] &, T &, = Eny — &y 1)

(Yhylykxmxp) yhykxn

1 7 n
— Wayepsn V.3 " tk;}; (C12g)

2 HA,vp

7 ks \* yvr 2 ky vk
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Together with the last term of Eq. (C8), the third-order
diagrams in Figs. 14(e) and 14(i)-14(n) are skeleton and
therefore they would need to be included in a fully self-
consistent ADC(3) formulation. Note, however, that Eq. (C8)
and Fig. 14(e) reduce to a single contribution if the full V,
from Eq. (15), is used. Again, choosing an HF state as the
unperturbed reference would force the diagrams of Figs. 14(a)
and 14(f)—-14(h) to vanish.

2. Dynamic self-energy

When a self-consistent formulation is possible, some of
the correlation effects beyond mean field are already included
through the use of dressed reference propagators. However,

FIG. 13._Asdescribed in the caption of Fig. 10 but for the second-
order term V®.

[— (e, + &l — e, — &) +in)]

(ko)

}, (C12n)

(

for a reference state that is not dressed, additional nonskeleton
diagrams contribute to the energy-dependent self-energy at
third and higher orders. Hence, their contributions should be
added to the ADC(n) equations.

Specifically, at the ADC(3) level, the one-particle irre-
ducible and interaction-irreducible diagrams considered for the
energy-dependent self-energy in Sec. IIl and Appendix A must
be complemented with the four Feynman diagrams of Fig. 15.
Diagrammatically, they are obtained by inserting the first-order
1B effective interaction U of Fig. 9 into the second-order
diagrams of Fig. 1. Since we are not considering four and higher
orders here, only the UV needs to be included for ADC(3).

In this case, the ADC(3) expansion of the self-energy
matrices that appear in Eq. (28) is enriched with addi-
tional coupling corrections. These are already listed in
Egs. (Al) and (A2), respectively, for the forward-in-time
and backward-in-time cases, and they are repeated here for
completeness:

Mﬁlollr) + M%S) if j =r (2plh),
M%) = {M(Ht) + M 'fJ' =q (3p2h) (€13
qu qa ry=4q P ’
NUD 4 NI i g = 5 2h1p),
Nt = 1l | i g (C14)
N(()(ut) + Nf)tuu) lfk =u (3h2p)
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FIG. 14. As described in the caption of Fig. 9 but for the third-order term e,

Also, for the interaction matrices, the nonskeleton expansion
is enriched by additional C;; and Dy matrices. These terms
are included in Eqs. (A3) and (A4) and are

CU7 €U if j = rand j' = 2plh),
P4l if j =g and j' = ¢’ Gp2n), (€19

0 otherwise,

Cjjy =

DU + D77 ifk = sand k' = 5’ 2h1p),
if k =uand k' = u' (3h2p), (C16)

0 otherwise.

Dkk’ = Dﬁp + Dguh’

uu’

a. ADC(3) terms with 2p1h and 2h1p ISCs

By following the same procedure used to find the expres-
sions of the coupling matrices containing 2NFs and/or 3NFs,
we can derive the analogous expressions of Mj, and Ny
containing one U insertion and expressed in terms of the
uncorrelated transition amplitudes of Eq. (C1).

From the Goldstone-Feynman diagrams in Figs. 15(r) and
15(s), we find

B xm W yks

MU = -1 A r378

ka\* vio vks 07
\/z &L, —gt (Y/LA) XY Viwar,  (C17)
4 m

and
1 XnUYs

(Ils) na\* 7
MY = g XX () T, (€C19

respectively.
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FIG. 15. Third-order nonskeleton diagrams of the dynamic self-
energy, complementing the ones in Figs. 2 and 6, for the general
ADC(3), not based on a self-consistent reference propagator. Zigzag
lines represent the effective 1B interaction of Eq. (C4).

The 2p1h interaction matrices in Eq. (C15) are

clr —A12A4SXIU“)( 5Y Bans Skakes (C19)

and
Uh
Crr -

AIZY’“U<“(Yk6) 81y Sroms - (C20)

In the backward-in-time Goldstone diagrams of Figs. 15(r)
and 15(s) one finds the coupling matrices,

1 X}’l4L7(16)Y6kI
IIr) __ Y )4 * vk
N;SGZT AL W(X;y) Ylexm o (c21)
1 4
and
1~ Xn;ﬁ(l)YkA
N =~ L yhiyk(vf)t, (C22)

\/E ak, uvé‘];_—(e‘;;
while the corresponding interaction matrices in Eq. (C16)
connecting 2h1p ISCs are

~ 1 .~
DUl = S AR Ass (YE) U YS* StoksBnang (C23)

and

U -1 n3\*ry n

DY’ = —-An (X3) TS X 8ttt (C24)
Equations (C17)—(C24) above are third-order terms com-

posed by effective 1B interaction and effective 2NFs. In the

next section we proceed by introducing the set of expressions

with effective 1B interaction and 3NFs, which connect 3p2h

and 3h2p ISCs.

b. ADC(3) terms with 3p2h and 3h2p ISCs

The Goldstone-Feynman diagrams of Figs. 15(t) and 15(u)
involve 3p2h and 3h2p ISCs. They contain the coupling
matrices that complete the expressions for Mj, and Ny,
when the reference state adopted has not be calculated self-
consistently.

The working equations for the forward-in-time coupling
matrices are

ny 77D yke
Iy — —1 XVI Uy& YB

P13
qo Ty - T
12 Ekﬁ — &n

(Yho)* X”’X"*Y"“Y’“ Wi i

(C25)
and
1 Xn(,U(l) ks
() — yé 5 Vn.Xme Yk“ an, w
qa mA45 8k5 8n+6 ( ) VP, 0D s
(C26)

while the interaction matrices in Eq. (C15) connecting two
3p2h ISCs are

cYr = A123A45P678X 'U(l)( ) Snany Onsng Okyko Okskro

q9
(C27)

and
Cot = A45A910A123Y Uy g (YE0) " 80,08 Sy Skt
(C28)

Expressions for the backward-in-time coupling matrices,
containing one effective 1B interaction and one interaction-
irreducible 3NF insertion, are

X" (1) ki
aw _ 1 rlnls

ko vk
w = 75 i P123— = (Xe) YRy XX

kT 8"6
(C29)
and
1 (18) 5k6
NS,EU) ' ) A45 )4 Yk1 Ykz Yk; Xm Yk6
> .10p Ek(, ek ( )
(C30)

while the interaction matrices in Eq. (C16) connecting two
3h2p ISCs are

~ 1 v .
D,l,]f = _EA45A910A123 (Xx35) UJ(,lg) X1 811k Okaks Sty Oy

(C31)
and
U 1 * ~(1) vk
D)) = EA123A45P678 (Y5 T53 Y5 Stk Stk gy gy -
(C32)
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