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Background: Self-consistent Green’s function theory has recently been extended to the basic formalism needed
to account for three-body interactions [Carbone, Cipollone, Barbieri, Rios, and Polls, Phys. Rev. C 88, 054326
(2013)]. The contribution of three-nucleon forces has so far been included in ab initio calculations on nuclear
matter and finite nuclei only as averaged two-nucleon forces.
Purpose: We derive the working equations for all possible two- and three-nucleon terms that enter the expansion
of the self-energy up to the third order, thus including the interaction-irreducible (i.e., not averaged) diagrams
with three-nucleon forces that have been previously neglected.
Methods: We employ the algebraic diagrammatic construction up to the third order as an organization scheme
for generating a nonperturbative self-energy, in which ring (particle-hole) and ladder (particle-particle) diagrams
are resummed to all orders.
Results: We derive expressions of the static and dynamic self-energy up to the third order, by taking into account
the set of diagrams required when either the skeleton or nonskeleton expansions of the single-particle propagator
are assumed. A hierarchy of importance among different diagrams is revealed, and a particular emphasis is
given to a third-order diagram [see Fig. 2(c)] that is expected to play a significant role among those featuring an
interaction-irreducible three-nucleon force.
Conclusion: A consistent formalism to resum at infinite order correlations induced by three-nucleon forces in the
self-consistent Green’s function theory is now available and ready to be implemented in the many-body solvers.
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I. INTRODUCTION

Three-body interactions play a prominent role in deter-
mining the behavior of strongly interacting quantum systems
[1]. For instance, three-nucleon forces (3NFs) are necessary
to reproduce the saturation of infinite matter as well as to
determine the structure and location of the driplines in neutron
rich isotopes. Hence, they have been implemented in most of
the post-Hartree-Fock approaches that are currently used to
study medium mass isotopes, such as self-consistent Green’s
function (SCGF) theory [2,3], the coupled cluster method [4,5],
and the in-medium similarity renormalization group [6,7]. In
all of these methods, one typically proceeds by performing a
normal ordering of the Hamiltonian, or a similar averaging, so
that the dominant effect of 3NFs can be taken into account as an
effective nucleon-nucleon force (2NF). Advances of the above
many-body methods, with the concurrent introduction of chiral
two- and three-nucleon interactions, based on the symmetries
of QCD [8,9], have led recently to remarkable successes
in nuclear ab initio theory [10–12]. Presently, the major
sources of error in first-principle predictions originate from
uncertainties of the nuclear Hamiltonian [10,13]. However, the
expected progress in the next-generation realistic interactions
will eventually require further developments of the many-body
formalisms.

The SCGF theory is a quantum many-body method that
has been extensively applied to both condensed matter and
nuclear systems [2,14–19]. This approach relies on the solution
of the Dyson equation, which is an exact restatement of
the many-body Schrödinger equation, and it allows for a

diagrammatic expansion with respect to the nuclear inter-
action. However, for nuclear structure and reaction studies,
a perturbative expansion is not sufficient due to the strong
nature of the nuclear force and the importance of the long-
range correlations, which affect the propagation of nucleons
inside the medium. In practice, one must resort to an efficient
method in which entire classes of correlations are resummed
nonperturbatively.

For this purpose, a major challenge is to find a scheme
capable of organizing the rapidly increasing number of Feyn-
man diagrams entering the computation of Green’s functions,
especially when 3NFs and many-nucleon interactions are
present. Ideally, one should include different classes of Feyn-
man diagrams at all orders, i.e., in a nonperturbative way; at the
same time, one needs to keep under control the computational
resources required by the many-body problem, even for those
post-Hartree-Fock approaches scaling polynomially with the
number of nucleons. A powerful tool complying with these
requirements has been devised 30 years ago in the Green’s
function theory applied to quantum chemistry. It is referred
to as the algebraic diagrammatic construction (ADC) method
[20,21]. Born as a way to include third-order self-energy dia-
grams that are necessary to reproduce affinities and ionisation
energies, the ADC also allows the infinite resummation of
specific classes of diagrams, such as the ladder and ring series.
The general procedure is to impose the correct spectral repre-
sentation of the self-energy and to require that its perturbative
expansion is also consistent with the Feynman diagram series
up to a given order n. The spectral representation implies
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that diagrams up to order n are actually taken as “seeds” for
all-order resummations. This generates a hierarchy of many-
body truncations, labeled as ADC(n), that contains selected
relevant terms, it is nonperturbative and can be systematically
improved.

The aim of this paper is to derive the entire set of working
equations for the ADC(3) self-energy, when 3NFs are present.
The general formalism and diagrammatic rules for the SCGF
theory with three-body interactions has been developed in
Ref. [22]. There, it was shown that the number of Feynman
diagrams to be calculated can be reduced by introducing av-
eraged effective interactions (similarly to the normal ordering
strategy mentioned above), so that one needs to consider only
interaction-irreducible diagrams. Using the resulting effective
2NFs, a set of applications of the SCGF was put forward with
computations of binding energies [3,23], spectral distributions
and radii [12,24] for closed subshell isotopes of medium-
mass. For the nuclear matter case, saturation properties of
chiral forces and other thermodynamical aspects have also
been studied [25]. Moreover, current efforts are devoted to
describing the one-nucleon scattering on a nucleus within the
same framework [26].

While Ref. [22] introduced the set of self-energy diagrams
up to third order, the necessary formalism for extending them
to a nonperturbative approach has not yet been derived. We fill
this gap here by deriving explicit expressions of the ADC(3)
based on the Feynman diagrams derived thereof. For this
purpose we revisit the SCGF formalism in Sec. II, with special
emphasis on how 3NFs are incorporated in the self-energy
expansion. Section III discusses the ADC method at order n,
i.e., ADC(n), and we derive the working equations at second
and third order, ADC(2) and ADC(3), in full detail. In our
derivation, a hierarchy of importance among different self-
energy diagrams emerges naturally: it is based on intermediate
excitation energies embedded in each diagram and on the
relative importance between 2N and 3NFs. For the ADC(3),
we present in Sec. III diagrams that contain only two-particle-
one-hole (2p1h) and two-hole-one-particle (2h1p) interme-
diate states with effective 2NFs and interaction-irreducible
3NFs. These diagrams are displayed in Fig. (2) below and
are the dominant contributions to ADC(3). We also present
additional equations for a subset of diagrams with 3p2h and
3h2p intermediate states, chosen from the different topologies
appearing at third order. This will give a general overview of the
formalism up to n = 3. All the remaining parts of the ADC(3)
equations, which complete the diagrams with 3p2h and 3h2p
configurations, are given in Appendix A. In Appendix B we
display the angular momentum coupled form for the leading
contributions of Fig. 2. The diagram in Fig. 2(c) has not yet
been included in calculations, but it could be added to current
numerical implementations and it is expected to be the most
important among those with an irreducible 3NF. In Appendix C
we derive additional nonskeleton Feynman diagrams for both
the static and dynamic self-energy that need to be included in
non-self-consistent calculations. The entire set of equations
derived up to ADC(3) informs our conclusions, which are
drawn in Sec. IV.

II. SCGF FORMALISM WITH 3NFS

Many-particle Green’s functions, also known in the lit-
erature as propagators or correlation functions, are at the
heart of the SCGF formalism. The simplest Green’s function
is the one-body (1B) propagator describing the in-medium
propagation of a particle or a hole, which are, respectively,
created and annihilated by field operators a

†
β and aα in the

quantum states β and α [27,28]:

gαβ(t − t ′) = − i

h̄

〈
�A

0

∣∣T [aα(t)a†
β(t ′)]

∣∣�A
0

〉
. (1)

Here and in the following we use Greek indexes to label the
states of a complete orthonormal single-particle basis {α},
which could be discrete or having a continuous spectrum. The
time interval (t − t ′) of the propagation in Eq. (1) is ordered
according to the action of the time-ordering operator T , which
obeys the Fermi statistics. To describe the propagation of two
particles and two holes, we introduce also the two-body (2B)
Green’s function,

gII
αβ,γ δ(tα,tβ,tγ ,tδ)

= − i

h̄

〈
�A

0

∣∣T [aβ(tβ)aα(tα)a†
γ (tγ )a†

δ (tδ)]
∣∣�A

0

〉
. (2)

For our purposes, we will concentrate on the propagator
of Eq. (1), which is defined with respect to the exact A-body
ground state |�A

0 〉. The latter is the lowest eigenstate of the
Schrödinger problem,

Ĥ
∣∣�A

n

〉 = EA
n

∣∣�A
n

〉
. (3)

The Lehmann representation of the Green’s function is
obtained by Fourier transforming Eq. (1) to the energy plane.
It contains the relevant information on the single-particle
dynamics,

gαβ(ω) =
∑

n

〈
�A

0

∣∣aα

∣∣�A+1
n

〉〈
�A+1

n

∣∣a†
β

∣∣�A
0

〉
h̄ω − (

EA+1
n − EA

0

) + iη

+
∑

k

〈
�A

0

∣∣a†
β

∣∣�A−1
k

〉〈
�A−1

k

∣∣aα

∣∣�A
0

〉
h̄ω − (

EA
0 − EA−1

k

) − iη
. (4)

In the reminder of this text we will use the following
shorthand notation for the quasiparticle energies, given by the
poles in Eq. (4),

ε+
n ≡ (

EA+1
n − EA

0

)
ε−
k ≡ (

EA
0 − EA−1

k

)
, (5)

which are the experimentally observed one-nucleon addition
and removal energies. Likewise, we will use X n

β and Yk
α to

mark the transition amplitudes for the addition and removal of
a particle, respectively. And we will use Z i

α to collect all of
them:

Z i=n,k
α ≡

{(
X n

α

)∗ ≡ 〈
�A

0

∣∣aα

∣∣�A+1
n

〉
Yk

α ≡ 〈
�A−1

k

∣∣aα

∣∣�A
0

〉
,

(6)
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with the index i referring to both forward-in-time (n) and
backward-in-time (k) processes. The first (second) overlap
integral in Eq. (6) is related to the probability of adding
(removing) a particle to (from) a orbital α in a system with
A particles. The vectors Z i (in the basis {α}) form the
overcomplete set of the eigenstates of the Dyson equation.
Thus, they are also referred to as “Dyson orbitals.”

The 1B Green’s function Eq. (4) is completely determined
by solving the Dyson equation,

gαβ(ω) = g
(0)
αβ (ω) +

∑
γ δ

g(0)
αγ (ω)
�

γδ(ω)gδβ(ω), (7)

which is a nonlinear equation defining the irreducible self-
energy 
�

γδ(ω), where medium effects on the particle prop-
agation are encoded. It corresponds to a set of irreducible
Feynman diagrams, i.e., diagrams that cannot be divided in
subdiagrams by cutting one propagator line. The distinction
between the unperturbed propagator g

(0)
αβ (ω) and the correlated

one gαβ(ω) in Eq. (7) results from the expansion with respect
to the interparticle interaction: g

(0)
αβ (ω) is then the zeroth-order

term in the expansion, that is the propagator with respect to the
reference state; i.e.,

g
(0)
αβ (t − t ′) = − i

h̄

〈
φA

0

∣∣T [aα(t)a†
β(t ′)]

∣∣φA
0

〉
. (8)

From the derivation of the 1B propagator equation of mo-
tion, one can find the explicit separation of the irreducible self-
energy in a part which is local in time 
∞

αβ (static self-energy),
and a energy-dependent part 
̃αβ(ω) (dynamic self-energy),
containing the contributions from dynamical excitations in the
system:


�
αβ(ω) = 
∞

αβ + 
̃αβ(ω). (9)

While 
∞
αβ accounts for the averaged (mean-field) inter-

action seen by a particle, 
̃αβ(ω) encodes the coupling of a
single-particle state with the collective configurations made
by surrounding nucleons. In the continuum regime the full
self-energy describes the interaction of the nucleon projectile
with a target nucleus. In this respect, 
�

αβ(ω) is investigated
as the microscopic counterpart of the dispersive optical model
potentials [29].

Before proceeding with the application of the ADC formal-
ism to the self-energy, we present in the next section the main
features of the approach based on effective interactions, which
allows a simplification of the diagrammatic expansion when
both two- and many-body forces are included.

A. Formalism with effective forces
and interaction-irreducible terms

Let us consider first the nuclear Hamiltonian Ĥ with a
kinetic energy part T̂ and interaction operators in the 2NF and
3NF sector, denoted with V̂ and Ŵ , respectively,

Ĥ = T̂ + V̂ + Ŵ . (10)

Within post Hartree-Fock approaches, it is customary to divide
the Hamiltonian into two parts, Ĥ = Ĥ0 + Ĥ1, with Ĥ0 being
the uncorrelated part and Ĥ1 the residual interaction. In this

way, strongly interacting fermions are treated as a system
of independent nucleons affected by an auxiliary mean-field
potential Û , included in the definition of Ĥ0 = T̂ + Û . The Ĥ0

defines the reference state to which the residual interaction Ĥ1

is added perturbatively. In the second quantization formalism
the Hamiltonian reads

Ĥ =
∑
αβ

h
(0)
αβ a†

αaβ −
∑
αβ

Uαβ a†
αaβ + 1

4

∑
αγ
βδ

Vαγ,βδ a†
αa†

γ aδaβ

+ 1

36

∑
αγ ε
βδη

Wαγ ε,βδη a†
αa†

γ a†
εaηaδaβ, (11)

where h
(0)
αβ ≡ Tαβ + Uαβ is a one-body Hamiltonian and Vαγ,βδ

and Wαγε,βδη are the antisymmetrized matrix elements of 2NFs
and 3NFs, respectively.

The Greek indexes α,β,γ, . . . label a complete set of single-
particle states which define the model space used in practical
computations. In most cases, one chooses this basis as the
eigenstates of the unperturbed Hamiltonian Ĥ0, with the eigen-
values ε0

α . Then, h
(0)
αβ = ε0

αδα,β and the spectral representation,

Eq. (4), for unperturbed propagator g
(0)
α,β(ω) becomes diagonal.

However, in this work we keep the most general case and the
basis {α} will be different from the one defining the reference
state.

The expansion of the self-energy 
̃αβ(ω) in Eq. (9) involves
terms with individual contributions of the 1B potential, but
also of 2NFs and 3NFs from Eq. (11). Of course, also
terms containing combinations of different interactions are
possible. The number of diagrams allowed by the Feynman
diagrammatic rules is growing fast with the order of the
expansion. A useful strategy is to consider only interaction-
irreducible diagrams. Diagrams are considered interaction-
reducible if splitting interaction vertex in two parts results
in two disconnected diagrams. This happens when some (but
not all) of the fermion lines leaving one interaction vertex
eventually return to it. If the interaction vertex which is cut
had only one fermionic line looping over it, then all the
linked diagrams can be included effectively by averaging the
interaction vertex with a 1B Green’s function. Alternatively,
when the cut interaction vertex had two fermionic lines the
averaging is performed with a 2B Green’s function and so on.
This process of averaging reduces the order of the interaction:
for instance, a 2NF interaction vertex averaged on a 1B Green’s
function gives rise to an effective 1B operator.

In Ref. [22] it is shown that diagrammatic series can be re-
duced to a smaller set of diagrams by excluding all interaction-
reducible diagrams. The averaging procedure described above
amounts to define an effective Hamiltonian up to 3NFs,

H̃1 = Ũ + Ṽ + Ŵ , (12)

where Ũ and Ṽ represent effective interaction operators.
As long as only interaction-irreducible diagrams are consid-
ered, the use of H̃1 is equivalent to the interaction-reducible
expansion based on Eq. (11) (see Sec. II of Ref. [22] for details).
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Explicit expressions for effective 1B and 2N interaction
operators are

Ũ =
∑
αβ

Ũαβ a†
αaβ, (13)

with

Ũαβ = −Uαβ +
∑
γ δ

Vαγ,βδ ρδγ + 1

4

∑
γ ε
δη

Wαγ ε,βδη �δη,γ ε, (14)

and

Ṽ = 1

4

∑
αγ
βδ

[
Vαβ,γ δ +

∑
εη

Wαβε,γ δη ρηε

]
a†

αa
†
βaδaγ , (15)

where, in the averaging of 2NFs and 3NFs, one- and two-
body reduced density matrices of the many-body system are
produced,

ρδγ = 〈
�A

0

∣∣ a†
γ aδ

∣∣�A
0

〉 = −ih̄ gδγ (t − t+), (16)

�δη,γ ε = 〈
�A

0

∣∣ a†
γ a†

εaηaδ

∣∣�A
0

〉 = ih̄ gII
δη,γ ε(t − t+). (17)

The two-body density of Eq. (17) is obtained when the
opportune limits are taken in the time arguments of the 2B
Green’s function in Eq. (2).

We note that when the irreducible self-energy is computed
with the effective Hamiltonian of Eq. (12), a portion of the
many-body effects is incorporated in the interactions, which
become system dependent. This is done in a systematic way
and the procedure is in principle superior to the usual normal
ordering approach. Here the density matrices ρ and � entering
the contraction of the interaction vertex are obtained from the
true correlated propagators; i.e., they are not computed from
the reference state.

The separation of a simple unperturbed Hamiltonian Ĥ0

from Eq. (11) is instrumental to any approach based on
perturbation theory (or on all-orders resummations): it allows
us to define a reference state upon which a perturbative series
is constructed and it also leads to the expansion of the Green’s
function in Feynman diagrams. Nevertheless, the auxiliary
potential Û eventually cancels from the SCGF formalism.
Considering the decomposition of Eq. (9), the irreducible
static self-energy 
∞

αβ is given exactly by the 1B effective
interaction [22]:


∞
αβ = Ũαβ . (18)

Since Û is added to the definition of the reference propagator
g(0) but subtracted in Eq. (14), it eventually cancels out exactly
from the Dyson equation [see Eq. (28)]. The dynamic self-
energy 
̃αβ(ω) can still depend on the auxiliary potential
through the perturbative expansion in g

(0)
αβ (ω). However, in

the full self-consistent approach, the perturbative series is
restricted to skeleton diagrams where fully correlated propaga-
tors gαβ(ω) replace the uncorrelated ones. Thus, the partition
of the Hamiltonian into a uncorrelated part and residual part
is completely lost in the exact SCGF formalism and one may
think of the correlated propagator as playing the role of an
improved reference state.

(a) (b)

FIG. 1. One-particle irreducible, skeleton, and interaction-
irreducible self-energy diagrams appearing at second order in the
expansion of Eq. (9), using the effective Hamiltonian of Eq. (12).
The wiggly lines represent the 2N effective interaction of Eq. (15),
while the long-dashed lines represent the interaction-irreducible
3NF Ŵ .

For the irreducible self-energy, all one-particle irreducible,
skeleton and interaction-irreducible diagrams up to third order
have been derived in Ref. [22]. Within the skeleton expansion,
i.e., when single-particle propagators are correlated, the irre-
ducible self-energy up to the third order is given by the exact
static part, Eq. (18), the two second-order diagrams of Fig. 1,
and the 17 third-order diagrams of Figs. 2 and 6. In this case,
the energy-dependent part of the self-energy contains only
effective 2NFs and irreducible 3NFs as interaction insertions.
Note that because of Eq. (15), the contribution of Fig. 1(a)
actually corresponds to four separate diagrams if expressed
in terms of the bare Hamiltonian Eq. (10), of which three are
interaction reducible [22]. Likewise, many more reducible di-
agrams would appear at third order. Without propagator renor-
malization, when one considers the diagrammatic expansion
with reference propagators g

(0)
αβ (ω) as internal fermionic lines,

other diagrams with different topologies must be included
to take into account explicitly additional correlations in both
the static and dynamic part of the self-energy. These terms
contain also nonskeleton diagrams that include Ũ and are
presented in Appendix C.

In Fig. 1 we show the only two one-particle irreducible,
skeleton, and interaction-irreducible diagrams at second order.
These diagrams imply different sets of intermediate state

(a) (b)

(c)

FIG. 2. As described in the caption of Fig. 1 but for the third-order
diagrams with only 2p1h and 2h1p intermediate state configurations.
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configurations (ISCs), which are multiparticle-multihole, or
multihole-multiparticle, excitations produced by the interac-
tion and propagating within the nuclear medium. The diagram
in Fig. 1(a) involves two-particles–one-hole (2p1h) and two-
holes–one-particle (2h1p) ISCs, but it is computed with the
2N effective interaction Eq. (15) instead of the original 2NF.
Hence, it contains contributions form the 3NF Ŵ .

The diagram in Fig. 1(b) arises instead from an interaction-
irreducible 3NF. There are two reasons to assume that this
contribution is less important than the one in Fig. 1(a): first,
3NFs are generally weaker than corresponding 2NFs (typically,
〈Ŵ 〉 ≈ 1

10 〈V̂ 〉 for nuclear interactions [8,30]); second, the dia-
gram in Fig. 1(b) involves 3p2h and 3h2p ISCs, which involve
higher excitation energies and therefore they are expected to
play a minor role at the Fermi surface due to phase space
arguments.

By the same token, we may expect that the three diagrams
shown in Fig. 2 are the dominant ones among the 17 one-
particle irreducible, skeleton, and interaction-irreducible self-
energy diagrams appearing at third order in the expansion
of 
̃αβ(ω). While all diagrams in Fig. 2 involve 2p1h and
2h1p ISCs, those in Figs. 2(a) and 2(b) contain only effective
2NFs. These two diagrams have been already included in
actual calculations for nuclear matter and for finite nuclei
[3,24,25,31–33].

B. Solution of the Dyson equation as a matrix
eigenvalue problem

The ADC is a systematic approach to calculate nonpertur-
bative approximations to the self-energy. Once the latter is
known, we still need to solve the Dyson equation to obtain the
propagator, as explained below.

Without loss of generality, the dynamical part of the self-
energy 
̃αβ(ω) can be written in the Lehmann representation,
similar to Eq. (4). Specifically, we write,


̃αβ(ω)=
∑
jj ′

M†
αj

[
1

h̄ω1 − (E> + C) + iη1

]
jj ′

Mj ′β

+
∑
kk′

Nαk

[
1

h̄ω1 − (E< + D) − iη1

]
kk′

N†
k′β,

(19)

with E>
jj ′ (E<

kk′) being energies of noninteracting ISCs, Mjα

(Nαk) coupling matrices and Cjj ′ (Dkk′) interaction matrices for
the forward-in-time (backward-in-time) self-energy. Coupling
matrices link initial and final single-particle states of the
propagator to ISCs, while interaction matrices are those parts
of the self-energy diagrams that represent interactions among
ISCs alone (see also Fig. 3). It follows that interaction matrices
contain at most one interaction vertex and are not linked to
the single-particle states of the model space. We use Latin
letters as a collective indices to label ISCs: In particular,
we use i for any general configuration, while j,j ′ (k,k′)
denote forward-in-time multiparticle-multihole (backward-in-
time multihole-multiparticle) configurations. In the following,
we will consider explicitly 2p1h, 3p2h, 2h1p, and 3h2p ISCs,
which are included in Eq. (19). For this purpose, we set the

(a) (b)

FIG. 3. Decomposition of Goldstone diagrams in terms of in-
teraction and coupling matrices. Two (out of the six) Goldstone
diagrams that arise from the self-energy Feynman diagram of Fig. 2(c)
are shown. Diagram (a) contains the interaction matrix C3N

rr ′ [see
Eq. (63)] linked to two lowest order coupling matrices M(Ia)

rα [see
Eq. (34)]. Diagram (b) contains only coupling matrices and includes
the second-order correction M(IIc)

rα reported in Eq. (57).

shorthand notation,

r ≡ (n1,n2,k3)
r ′ ≡ (n4,n5,k6)
q ≡ (n1,n2,n3,k4,k5)
q ′ ≡ (n6,n7,n8,k9,k10)

⎫⎪⎬⎪⎭ j , j ′ (20)

for forward-in-time terms, and

s ≡ (k1,k2,n3)
s ′ ≡ (k4,k5,n6)
u ≡ (k1,k2,k3,n4,n5)
u′ ≡ (k6,k7,k8,n9,n10)

⎫⎪⎬⎪⎭ k, k′ (21)

for backward-in-time terms, where ni (ki) refer to the par-
ticle (hole) indices of the propagator, Eq. (4). For instance,
Mrα ≡ M(n1,n2,k3)α connects a single-particle state of index α
to an intermediate state composed by a 2p1h configuration,
whereas more complicated coupling matrices such as Mqα ≡
M(n1,n2,n3,k4,k5)α involve 3p2h configurations. As one moves to
higher orders beyond ADC(3) more complex multi-particle-
multi-hole states appear in Eq. (19), eventually covering the
complete space of ISCs.

To better clarify how the ADC building blocks are associ-
ated to perturbation theory, we show in Fig. 3 the diagrammatic
decomposition for two of the Goldstone contributions that
arise from the self-energy Feynman diagram of Fig. 2(c). The
expressions for the coupling and interactions matrices can be
read directly form the analytic expression of each Goldstone
diagram. See Ref. [2] for a detailed pedagogical discussion.

In virtue of the Pauli principle, the expressions for coupling
and interaction matrices can (and should) be made antisym-
metric with respect to permutation of any two-particle or any
two-hole indexes. This results naturally from the antisymmetry
of the interaction matrix elements, Eq. (11), and by including
a complete set of diagrams at each order, which generates all
possible permutations [21,34]. Using the antisymmetry, it is
possible to restrict the sums in Eq. (19) to sets of ordered
single-particle indices, defining for instance (n1 < n2,k3),
(n1 < n2 < n3,k4 < k5), and so on. This is very important for
practical implementations, owing to a substantial reduction
of the dimension of the Dyson matrix, Eq. (28) below. On
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the other hand, manipulations such as coupling the angular
momenta of ISCs is better performed in the general case
of unrestricted summations. Therefore, we will present all
the working equations without assuming ordered indexes,
as given by the notation of Eqs. (20) and (21). One can
always apply ordered summation by removing the relevant
symmetry factors to the expressions given in Sec. III and in the
Appendices.

ISC energies are diagonal matrices in these indexes. For
nucleon addition, with M + 1 particles and M holes, (M +
1)pMh, we have

E>
jj ′ = E>

j = diag
(
ε+
n1

+ ε+
n2

+ · · · + ε+
nM

+ ε+
nM+1

− ε−
k1

− ε−
k2

− · · · − ε−
kM

)
, (22)

while for the nucleon removal ISC,

E<
kk′ = E<

k = diag
(
ε−
k1

+ ε−
k2

+ · · · + ε−
kM

+ ε−
kM+1

− ε+
n1

− ε+
n2

− · · · − ε+
nM

)
. (23)

To solve for the 1B propagator of Eq. (4), it is useful
to recast the Dyson equation in matrix form, which allows
a more efficient computation of 1B propagator eigenvalues.
To see this point, we have to start again from the Dyson
Eq. (7) and regard the 1B propagator Eq. (4) as a meromorphic
function on the complex energy plane. This function has simple
poles and residues given by one-nucleon addition (or removal)
energies and transition amplitudes, respectively. We can then
find a relation among the transition amplitudes of Eq. (6), by
extracting them as residues of the propagator in the Dyson
equation. This gives

Z i
α

(
Z i

β

)† =
∑
γ δ

[
1

h̄ω1 − Ĥ0

]
αγ


∗
γ δ(ω)Z i

δ

(
Z i

β

)† ∣∣
h̄ω=εi

.

(24)

By using the decomposition of Eq. (19) we obtain the
relation,

Z i
α =

∑
γ δ

[
1

h̄ω1 − Ĥ0

]
αγ


∗
γ δ(ω)Z i

δ

∣∣
h̄ω=εi

=
∑

γ

[
1

h̄ω1 − Ĥ0

]
αγ

⎛⎝∑
δ


∞
γ δ Z i

δ +
∑

j

M†
γjW i

j +
∑

k

Nγ kW i
k

⎞⎠∣∣∣∣∣∣
h̄ω=εi

, (25)

which contains both forward-in-time and backward-in-time solutions of the propagator. In the last equality of Eq. (25) we have
introduced the vectors W i

j and W i
k , defined as

W i
j ≡ Wj (ω) |h̄ω=εi

=
∑
j ′

[
1

h̄ω1 − (E> + C)

]
jj ′

∑
δ

Mj ′δ Z i
δ

∣∣
h̄ω=εi

(26)

and

W i
k ≡ Wk(ω) |h̄ω=εi

=
∑
k′

[
1

h̄ω1 − (E< + D)

]
kk′

∑
δ

N†
k′δ Z i

δ

∣∣
h̄ω=εi

, (27)

respectively. These vectors are introduced to recast the Dyson equation as a large scale eigenvalue problem whose diagonalization
gives the eigenspectra of the |�A+1

n 〉 and |�A−1
k 〉 systems and the transition amplitudes of the 1B propagator. By recoupling

Eqs. (25)–(27), we obtain

εi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Z i
α

W i
r

W i
s

W i
q

W i
u

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h
(0)
αδ +
∞

αδ M†
αr ′ Nαs ′ M†

αq ′ Nαu′ · · ·
Mrδ E>

r δrr ′ +Crr ′ 0 Crq ′ 0 · · ·
N†

sδ 0 E<
s δss ′ +Dss ′ 0 Dsu′ · · ·

Mqδ Cqr ′ 0 E>
q δqq ′ +Cqq ′ 0 · · ·

N†
uδ 0 Dus ′ 0 E<

u δuu′ +Duu′ · · ·
...

...
...

...
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Z i
δ

W i
r ′

W i
s ′

W i
q ′

W i
u′

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (28)

where the eigenmatrix is referred to as “Dyson matrix” and
it is independent of h̄ω. The zero entries mean that the
forward-in-time and backward-in-time sectors are coupled
together only through single particle states, and the dots stay
for the self-energy terms with ISCs beyond the 3p2h and 3h2p
configurations.

Equation (28) is an energy-independent eigenvalue prob-
lem, whereas the components W i of the eigenvectors are
functions of the corresponding eigenvalue εi , as it is apparent
from definitions Eqs. (26) and (27). The diagonalization of the

Dyson matrix yields all the poles of the propagator at once,
while the normalization of the ith eigenvector is given by∑

α

∣∣Z i
α

∣∣2 +
∑

j

∣∣W i
j

∣∣2 +
∑

k

∣∣W i
k

∣∣2 = 1. (29)

In a self-consistent calculation, the elements of the Dyson
matrix Eq. (28) depend on the quasiparticle energies and
amplitudes, εi and Z i

α . Thus, they require an iterative solution.
The large number of poles in the dressed propagator, see
Eq. (4), implies a severe growth in the dimension of the
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Dyson matrix at each iteration, as explained in Sec. IIIA of
Ref. [35]. This can be handled by projecting the space of
intermediate configurations into smaller Krylov subspaces,
using Lanczos-type algorithms with multiple pivots [35].

III. GENERAL OUTLINE OF THE ADC(n) METHOD

The irreducible self-energy 
�
αβ(ω) is the object of the ADC

formalism applied in this work. Its expression as a product of
matrices, Eqs. (9) and (19), is the most general analytic form
that is consistent with the causality principle and the known
Lehmann representation.

Our task is then to find expressions for coupling and interac-
tion matrices including the correlations due to 2NFs and 3NFs.

The ADC(n) strategy consists in deriving explicit expressions
of the coupling and interaction matrices by expanding Eq. (19)
in powers of 2NFs and 3NFs and then to compare with the
Goldstone-Feynman expansion up to order n. Formally, we
have

Mjα = M(I)
jα + M(II)

jα + M(III)
jα + · · · , (30)

where the term M(n)
jα is of nth order in the residual Hamiltonian

H1, and similarly for backward-in-time coupling matrices:

Nαk = N(I)
αk + N(II)

αk + N(III)
αk + · · · . (31)

By plugging Eqs. (30) and (31) into Eq. (19), we obtain the
corresponding expansion for the energy-dependent irreducible
self-energy up to third order (first-order contributions are all
included in 
∞

αβ). This is


̃αβ(ω) =
∑

j

M(I)†
αj

[
1

h̄ω − E>
j + iη

]
M(I)

jβ

+
∑

j

M(II)†
αj

[
1

h̄ω − E>
j + iη

]
M(I)

jβ +
∑

j

M(I)†
αj

[
1

h̄ω − E>
j + iη

]
M(II)

jβ

+
∑
jj ′

M(I)†
αj

[
1

h̄ω − E>
j + iη

]
Cjj ′

[
1

h̄ω − E>
j ′ + iη

]
M(I)

j ′β + · · ·

+
∑

k

N(I)
αk

[
1

h̄ω − E<
k − iη

]
N(I)†

kβ

+
∑

k

N(II)
αk

[
1

h̄ω − E<
k − iη

]
N(I)†

kβ +
∑

k

N(I)
αk

[
1

h̄ω − E<
k − iη

]
N(II)†

kβ

+
∑
kk′

N(I)
αk

[
1

h̄ω − E<
k − iη

]
Dkk′

[
1

h̄ω − E<
k′ − iη

]
N(I)†

k′β + · · · , (32)

for both forward-in-time and backward-in-time self-energy
parts. The comparison of the formal expansion of Eq. (32) with
the calculated Goldstone-type diagrams gives the minimal ex-
pressions for interaction and coupling matrices in terms of the
transition amplitudes Z i

α and the one-nucleon addition ε+
n and

removal ε−
k energies of the 1B propagator gαβ(ω) of Eq. (4). By

looking at the expansion in Eq. (32), we see that the third-order
terms containing the interaction matrices Cjj ′ and Dkk′ do

not retain the same analytic form as Eq. (19), which is based on
the Lehmann representation of the propagator itself. To recover
this analytic form in terms of self-energy poles, one must
introduce higher-order terms and perform a resummation of
those diagrams up to infinite order: this resummation is implicit
in Eq. (28) and it gives the nonperturbative character of the
method, which takes into account at all orders several types of
diagrams, particle-particle and hole-hole ladders, and particle-
hole rings, as well as other resummations induced by 3NFs.

A. ADC method at second order: ADC(2)

In this section we present the explicit expressions of cou-
pling and interaction matrices entering the ADC(2) formalism.
The two second-order diagrams shown in Fig. 1 are sufficient
to define the ADC(2) approximation scheme. Coupling and

interaction matrices required to build the ADC(3) are intro-
duced in Sec. III B and Appendix A. Unless otherwise stated,
for coupling and interaction matrices we adopt the Einstein’s
convention of summing over repeated indices for both the
model-space single-particle states (α, β, . . . ) and the particle
and hole orbits (n1, n2, . . . , k1, k2 . . . ). We also use collective
indexes for ISCs according to the notation set in Eqs. (20) and
(21), where appropriate.

We have seen that for a given multiparticle-multihole or
multihole-multiparticle configuration, we can have coupling
matrices at different orders according to the expansions in
Eqs. (30) and (31). Within a given order, coupling matrices
can also differ with respect to the kind of interaction (2NF
and/or 3NF) appearing in the term. For this reason we specify
in the notation an extra superscript distinguishing different
contributions at the same order. For instance, at second order
we will encounter a coupling matrix M(Ia)

rα containing a 2N
interaction linked to a r = (n1,n2,k3) ISC, M(Ib)

qα containing a
3N interaction linked to a q = (n1,n2,n3,k4,k5) ISC, and so
on. The extra superscript with Latin letter corresponds to the
labels of diagrams in the figures.

To illustrate the ADC procedure, we write first the entire
expressions for all the Goldstone terms in each second order
Feynman diagram of Fig. 1. Then we display the formulas of
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(a) (b)

FIG. 4. Diagrams of the self-energy coupling matrices with the
effective 2NF Ṽ (left) and with interaction-irreducible 3NF Ŵ (right).
The coupling matrix (a) connects to the 2p1h ISCs [see Eq. (34)],
while the coupling matrix (b) connects to the 3p2h ISCs [see Eq. (37)].

the coupling matrices that can be singled out from the self-
energy expressions. The equation for the dynamic self-energy
in Fig. 1(a) reads


̃
(1a)
αβ (ω) = 1

2
Ṽαε,γρ

⎡⎢⎢⎢⎣ ∑
n1,n2,

k3

(
X n1

γ X n2
ρ Yk3

ε

)∗X n1
μ X n2

ν Yk3
λ

h̄ω − (
ε+
n1 + ε+

n2 − ε−
k3

) + iη

+
∑

k1,k2,
n3

Yk1
γ Yk2

ρ X n3
ε

(
Yk1

μ Yk2
ν X n3

λ

)∗

h̄ω − (
ε−
k1

+ ε−
k2

− ε+
n3

) − iη

⎤⎥⎥⎥⎦Ṽμν,βλ.

(33)

(a) (b)

FIG. 5. As in Fig. 4 but for backward-in-time coupling matrices
[see Eqs. (35) and (38), respectively].

Being already in the Lehmann form of Eq. (19), we can read
directly from Eq. (33) the forward-in-time contribution to the
ADC(2) coupling matrix,

M(Ia)
rα ≡ 1√

2
X n1

μ X n2
ν Yk3

λ Ṽμν,αλ, (34)

while in the backward-in-time channel we have

N(Ia)
αs ≡ 1√

2
Ṽαλ,μν Yk1

μ Yk2
ν X n3

λ , (35)

that couples the effective 2NF with the 2h1p ISC. It is also
clear that the interaction matrices Cjj ′ and Dkk′ are zero in
ADC(2). The representations of Eqs. (34) and (35) as fragments
of Goldstone diagrams are depicted in Figs. 4(a) and 5(a),
respectively.

The equation for the energy-dependent self-energy with
3NFs in Fig. 1(b) reads


̃
(1b)
αβ (ω) = 1

12
Wαγδ,ξτσ

⎡⎢⎢⎢⎣ ∑
n1,n2,n3,

k4,k5

(
X n1

ξ X n2
τ X n3

σ Yk4
γ Yk5

δ

)∗X n1
μ X n2

ν X n3
λ Yk4

η Yk5
ρ

h̄ω − (
ε+
n1 + ε+

n2 + ε+
n3 − ε−

k4
− ε−

k5

) + iη

+
∑

k1,k2,k3,
n4,n5

Yk1
ξ Yk2

τ Yk3
σ X n4

γ X n5
δ

(
Yk1

μ Yk2
ν Yk3

λ X n4
η X n5

ρ

)∗

h̄ω − (
ε−
k1

+ ε−
k2

+ ε−
k3

− ε+
n4 − ε+

n5

) − iη

⎤⎥⎥⎥⎦Wμνλ,βηρ. (36)

The coupling matrix that links the 3NF to 3p2h ISCs is
found in the diagram of Fig. 1(b) and it is read from Eq. (36).
Its expression is

M(Ib)
qα ≡ 1√

12
X n1

μ X n2
ν X n3

λ Yk4
ρ Yk5

η Wμνλ,αρη, (37)

while the corresponding matrix linked to 3h2p ISCs is

N(Ib)
αu ≡ 1√

12
Wαρη,μνλ Yk1

μ Yk2
ν Yk3

λ X n4
ρ X n5

η . (38)

Equation (38) is also found in the diagram of Fig. 1(b) and in
the second term of Eq. (36). Their representations as fragments
of Goldstone diagrams are depicted in Figs. 4(b) and 5(b).

The four coupling matrices in Eqs. (34), (35), (37), and
(38), along with their complex conjugates, complete the set of
matrices found in the irreducible Goldstone diagrams of the
self-energy at second order, which are given by the first and
fourth rows in Eq. (32). All these matrices enter as building

blocks of the ADC construction at second and third order
in the expansion with respect to the nuclear interaction. To
summarize, the ADC(2) approximation for Eq. (19) requires
the following terms:

M[ADC(2)]
jα =

{
M(Ia)

rα if j = r (2p1h),

M(Ib)
qα if j = q (3p2h),

(39)

N[ADC(2)]
αk =

{
N(Ia)

αs if k = s (2h1p),

N(Ib)
αu if k = u (3h2p),

(40)

C[ADC(2)]
jj ′ = 0, (41)

D[ADC(2)]
kk′ = 0. (42)

There are no interaction matrices Cjj ′ and Dkk′ in the ADC(2),
because coupling matrices are linked directly without any
intermediate interaction insertion. This is not true anymore in
the ADC(3), where matrices M(Ia) and N(Ia) are linked through
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(d) (e) (f) (g)

(h) (i) (j) (k)

(l) (m) (n)

(o) (p) (q)

FIG. 6. As in Fig. 1 but for third-order diagrams that include any 3p2h and 3h2p intermediate state configurations. Together with the
diagrams (a)–(c) of Fig. 2, these are all skeleton and interaction-irreducible contributions present at third order. The labels in each diagram
match the naming used in the text for of the corresponding coupling matrices.

interaction matrices Cjj ′ and Dkk′ , respectively, as it is the case
for the third and sixth lines of Eq. (32).

B. ADC method at third order: ADC(3)

In this section we present explicit expressions of the cou-
pling and interaction matrices entering in the ADC formalism
at third order, for the three diagrams shown in Fig. 2 and for
the four diagrams appearing first in each row of Fig. 6. The
diagrams in Fig. 2 contribute to the block-diagonal entries (rr ′)
and (ss ′) of Eq. (28), corresponding to 2p1h and 2h1p ISCs,
which are the simplest configurations to be excited in the Fock
space. The diagrams depicted in Figs. 2(a) and 2(b) are the
dominant ones at third order, given that only 2N interactions
are present. The diagram in Fig. 2(c) contains instead a 3NF, but

it can nonetheless play a significant role, because its Goldstone
diagrams feature only 2p1h and 2h1p ISCs.

Each row in Fig. 6 collects a different topology of dia-
grams in terms of number of effective 2NFs and interaction-
irreducible 3NFs entering the diagrams. In general, these
diagrams are less important compared to the ones in Fig. 2,
because they feature at least a 3p2h or a 3h2p ISC in all
their Goldstone contributions. For forward-in-time (backward-
in-time) diagrams, topologies in the first and second row
of Fig. 6 couple 2p1h (2h1p) ISCs to 3p2h (3h2p) ISCs.
They are linked by Crq ′ (Dsu′ ) and Cqr ′ (Dus ′ ), accounting for
off-diagonal entries of Eq. (28). Within these two kinds of
topologies, diagrams in the first row contain only one 3NF,
therefore they are expected to be more important than the ones
in the second row, each featuring two 3NFs. Finally, the last two
rows in Fig. 6 introduce the diagonal coupling between ISCs
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with five fermionic lines, 3p2h for forward-in-time diagrams
and 3h2p for backward-in-time diagrams, corresponding re-
spectively to entries (qq ′) and (uu′) of Eq. (28). Again, there
is a hierarchy between the two topologies, with those in the
fourth row being less important due to the presence of three
3NFs.

The first four diagrams in each row are assumed as emblem-
atic for each topology, and treated in the present section. The
remaining coupling and interaction matrices originating from
third-order diagrams are given in Appendix A.

Coupling and interaction matrices are fully antisym-
metrized with respect to their particle and hole indexes. To
show this explicitly, we introduce the following antisym-
metrizer operators. Given a function depending on up to
three particle or hole indexes, i.e., f (i,j,h) ≡ f (ni,nj ,nh) or
f (i,j,h) ≡ f (ki,kj ,kh), the antisymmetric permutation oper-
ator of a pair of indexes is introduced,

Aij f (i,j,h) ≡ f (i,j,h) − f (j,i,h). (43)

For 3p2h and 3h2p configurations, it is useful to define the
cyclic permutation operator as

Pijk f (i,j,h) ≡ f (i,j,h) + f (h,i,j ) + f (j,h,i), (44)

and the permutation operator acting on three indexes, that is

Aijh f (i,j,h) ≡ f (i,j,h) + f (h,i,j ) + f (j,h,i)

− f (i,h,j ) − f (j,i,h) − f (h,j,i). (45)

Coupling matrices appearing at third order contain two
interaction operators, which can be the interaction-irreducible
3NF and/or the effective 2NF. To simplify the equations, we
write in compact form pieces of diagrams that correspond
to the amplitudes appearing in the exponential ansatz of the
coupled-cluster wave function [36]. Without assuming the
Einstein’s convention of summing over repeated indices, we
write them as

t
n1
k2

≡
∑
αβ

X n1
α Ũαβ Yk2

β

ε−
k2

− ε+
n1

, (46)

with the effective one-body potential of Eq. (13),

t
n1n2
k3k4

≡
∑
αβ
γ δ

X n1
α X n2

β Ṽαβ,γ δ Yk3
γ Yk4

δ

ε−
k3

+ ε−
k4

− ε+
n1 − ε+

n2

, (47)

with the effective 2NF of Eq. (15), and

t
n1n2n3
k4k5k6

≡
∑
αβγ
μνλ

X n1
α X n2

β X n3
γ Wαβγ,μνλ Yk4

μ Yk5
ν Yk6

λ

ε−
k4

+ ε−
k5

+ ε−
k6

− ε+
n1 − ε+

n2 − ε+
n3

, (48)

for the terms with the interaction-irreducible 3NF.

1. ADC(3) matrices for Feynman diagrams in Fig. 2

At third order in the ADC, we consider first the subset of
coupling matrices and interaction matrices that are linked to
2p1h and 2h1p ISCs. For these intermediate configurations,
the ADC(3) approximation for Eq. (19) requires the following

(a) (b)

(c)

FIG. 7. Forward-in-time diagrams of the self-energy coupling
matrices in ADC(3). Coupling matrices (a) and (b) correspond to
Eqs. (53) and (54), and they feature two effective 2NFs Ṽ connecting
2p1h ISCs. The coupling matrix (c) contains one effective 2NF Ṽ

and one interaction-irreducible 3NF Ŵ . It connects to 2p1h ISCs and
corresponds to Eq. (57).

terms:

M(II)
jα = M(IIa)

rα + M(IIb)
rα + M(IIc)

rα , (49)

N(II)
αk = N(IIa)

αs + N(IIb)
αs + N(IIc)

αs , (50)

Cjj ′ = Cpp
rr ′ + Cph

rr ′ + C3N
rr ′ , (51)

Dkk′ = Dhh
ss ′ + Dhp

ss ′ + D3N
ss ′ , (52)

in addition to the ones already introduced by Eqs. (39)–(42) at
second order.

We show now explicit expressions for the right-hand side
of Eqs. (49)–(52), and start by presenting coupling matrices
composed by two effective 2NFs connecting to 2p1h ISCs.
By using the definition in Eq. (47), we have the matrices

M(IIa)
rα ≡ 1

2
√

2
t
n1n2
k4k5

(
Yk4

μ Yk5
ν

)∗Yk3
λ Ṽμν,αλ, (53)

and

M(IIb)
rα ≡ 1√

2

(
t
n2n4
k3k5

X n1
μ

(
Yk5

ν X n4
λ

)∗
Ṽμν,αλ

− t
n1n4
k3k5

X n2
μ

(
Yk5

ν X n4
λ

)∗
Ṽμν,αλ

)
, (54)

which is explicitly antisymmetrized with respect to the n1,n2

fermion lines. The two coupling matrices in Eqs. (53) and (54)
are found in the Goldstone diagrams of the terms in Figs. 2(a)
and 2(b), as it is clear from their diagrammatic representations
in Figs. 7(a) and 7(b), respectively.

The corresponding coupling matrices in the 2h1p sector
read

N(IIa)
αs ≡ 1

2
√

2
Ṽαλ,μν X n3

λ

(
X n4

μ X n5
ν

)∗
t
n4n5
k1k2

, (55)

and

N(IIb)
αs ≡ 1√

2

(
Ṽαλ,μν Yk1

μ

(
X n4

ν Yk5
λ

)∗
t
n4n3
k5k2

− Ṽαλ,μν Yk2
μ

(
X n4

ν Yk5
λ

)∗
t
n4n3
k5k1

)
. (56)
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(a) (b)

(c)

FIG. 8. Same as in Fig. 7 but for backward-in-time diagrams.
Coupling matrices (a) and (b) correspond to Eqs. (55) and (56), while
the coupling matrix (c) to Eq. (58).

Both matrices in Eqs. (55) and (56) are linked to 2h1p
ISCs, as it is clear by considering backward-in-time Goldstone
terms of diagrams in Figs. 2(a) and 2(b), respectively. Their
diagrammatic representations are displayed in Figs. 8(a) and
8(b), respectively.

Other coupling matrices containing two effective 2NFs can
be found in Sec. A 1 of Appendix A.

Among coupling matrices containing one effective 2NF
and one interaction-irreducible 3NF, we present here the ones
appearing in the self-energy diagram of Fig. 2(c), that is

M(IIc)
rα ≡ 1

2
√

2
t
n1n2n4
k5k6k3

(
Yk5

μ Yk6
ν X n4

λ

)∗
Ṽμν,αλ (57)

and

N(IIc)
αs ≡ − 1

2
√

2
Ṽαλ,μν

(
X n5

μ X n6
ν Yk4

λ

)∗
t
n5n6n3
k1k2k4

. (58)

Diagrammatic representations of Eqs. (57) and (58) are dis-
played in Figs. 7(c) and 8(c), respectively.

All the other coupling matrices with one 2NF and one 3NF
are collected in Sec. A 2 of Appendix A, while matrices with
two interaction-irreducible 3NFs are presented in Sec. A 3 in
Appendix A.

Now we introduce expressions of the interaction matrices of
Eqs. (51) and (52), containing the Ṽαβ,γ δ and Wαβγ,δελ matrix
elements. For the two cases, we display interaction matrices
appearing in both the forward-in-time and backward-in-time
self-energy Goldstone diagrams of Fig. 2.

The interaction matrix that connects 2p1h ISCs through a
particle-particle (pp) interaction is

Cpp
rr ′ ≡ 1

2X
n1
μ X n2

ν Ṽμν,λρ

(
X n4

λ X n5
ρ

)∗
δk3k6, (59)

while the one connecting through a particle-hole (ph) interac-
tion is

Cph
rr ′ ≡ 1

2A12A45
[
X n1

ν Yk3
ρ Ṽνμ,ρλ

(
X n4

λ Yk6
μ

)∗
δn2n5

]
, (60)

where the action of two permutation operators A12 and A45 is
defined in Eq. (43) and produces four terms.

We present now the corresponding interaction matrices ap-
pearing in backward-in-time self-energy Goldstone diagrams,

namely those that are linked to propagators of hole-particle
kind in diagrams.

We start by the interaction matrix that connects 2h1p ISCs
through a hole-hole (hh) interaction, that is

Dhh
ss ′ ≡ − 1

2

(
Yk1

μ Yk2
ν

)∗
Ṽμν,λρYk4

λ Yk5
ρ δn3n6 , (61)

while the one connecting through a hole-particle (hp) interac-
tion is

Dhp
ss ′ ≡− 1

2A12A45
[(
Yk1

μ X n3
ρ

)∗
Ṽμν,ρλYk4

λ X n6
ν δk2k5

]
, (62)

where permutation operators acting on hole states are defined
in the same way as the one acting on particle states for the
matrix Cph

rr ′ in Eq. (60).
The only interaction matrix that connects 2p1h ISCs

through a 3NF is

C3N
rr ′ ≡ − 1

2X
n1
ν X n2

μ Yk3
ρ Wνμλ,εηρ

(
X n4

ε X n5
η Yk6

λ

)∗
, (63)

which is explicitly antisymmetric in particle indexes, while the
one connecting two 2h1p ISCs through a 3NF is

D3N
ss ′ ≡ − 1

2

(
Yk1

ν Yk2
μ X n3

ρ

)∗
Wνμλ,εηρYk4

ε Yk5
η X n6

λ , (64)

which is also explicitly antisymmetric in hole indexes.

2. ADC(3) matrices for selected Feynman diagrams in Fig. 6

Coupling matrices presented in this section are obtained
from the four Feynman diagrams in the first column of Fig. 6.
Most of these matrices are linked to 3p2h and 3h2p ISCs, with
few exceptions derived from Goldstone diagrams where ISCs
are of 2p1h and 2h1p type. This subset of coupling matrices
at the ADC(3) level is given by

M(II)
jα : M(IId)

qα , M(IId′)
rα , M(IIh)

qα , M(IIh′)
rα , M(IIl)

qα , M(IIo)
qα , (65)

N(II)
αk : N(IId)

αu , N(IId′)
αs , N(IIh)

αu , N(IIh′)
αs , N(IIl)

αu , N(IIo)
αu . (66)

First, we present matrices containing two effective 2NFs.
As before, we display both matrices obtained from forward-
in-time and backward-in-time Goldstone diagrams, denoted
with the notation Mjα and Nαk , respectively.

In Goldstone diagrams of the term in Fig. 6(d), we have

M(IId)
qα ≡

√
3

6
A45P123

[
t
n1n2
k5k6

X n3
μ

(
Yk6

ν

)∗Yk4
λ Ṽμν,αλ

]
, (67)

where the combination of permutation operators performs the
antisymmetrization of the indexes (k4, k5), (n1, n3), and (n2,
n3), according to definitions in Eqs. (43) and (44).

We turn now to coupling matrices containing one effective
2NF and one interaction-irreducible 3NF. In the Goldstone
diagrams of the term in Fig. 6(d) we have also

M(IId′)
rα ≡ −

√
2

4
A12

[
X n1

λ t
n2n4
k5k6

(
Yk5

μ Yk6
ν X n4

ρ

)∗ Yk3
η Wλμν,αηρ

]
.

(68)

In the Goldstone diagrams of the term in Fig. 6(h), we have

M(IIh)
qα ≡

√
3

6
P123

[
t
n1n3n6
k4k5k7

(
Yk7

μ

)∗X n2
ν

(
X n6

λ

)∗
Ṽμν,αλ

]
, (69)
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while in the Goldstone diagrams of the term in Fig. 6(l), we
find

M(IIl)
qα ≡

√
3

12
P123

[
t
n1n2
k6k7

(
Yk6

μ Yk7
ν

)∗X n3
λ Yk4

η Yk5
ρ Wμνλ,αηρ

]
. (70)

For backward-in-time Goldstone diagrams, we can single
out from the term in Fig. 6(d) the coupling matrix

N(IId)
αu ≡

√
3

6
Ṽαλ,μν A45P123

[
Yk1

μ

(
X n6

ν

)∗X n4
λ t

n6n5
k2k3

]
, (71)

and also the following coupling matrix depending on 2N and
3N interactions, i.e.,

N(IId′)
αs ≡

√
2

4
Wαηρ,λμν A12

[
X n3

η

(
Yk4

ρ

)∗Yk1
λ

(
X n5

μ X n6
ν

)∗
t
n5n6
k2k4

]
.

(72)

In Fig. 6(h), we have the backward-in-time the coupling
matrix

N(IIh)
αu ≡

√
3

6
Ṽαλ,μν P123

[(
Yk7

λ X n6
μ

)∗Yk2
ν t

n6n4n5
k1k3k7

]
, (73)

while in Fig. 6(l), we find the coupling matrix

N(IIl)
αu ≡

√
3

12
Wαηρ,μνλ P123

[
X n4

η X n5
ρ

(
X n6

μ X n7
ν

)∗Yk3
λ t

n6n7
k1k2

]
.

(74)

Finally, we introduce coupling matrices containing two
interaction-irreducible 3NFs. In Goldstone diagrams of the
term in Fig. 6(h), we have

M(IIh′)
rα ≡

√
2

8
A12

[
t
n1n4n5
k6k3k7

(
Yk6

μ Yk7
ν

)∗X n2
λ

(
X n4

η X n5
ρ

)∗
Wλμν,αηρ

]
,

(75)

while in Goldstone diagrams of the term in Fig. 6(o), we have

M(IIo)
qα ≡ −

√
3

36
t
n1n2n3
k6k7k8

(
Yk6

μ Yk7
ν Yk8

λ

)∗Yk4
η Yk5

ρ Wμνλ,αηρ, (76)

which is antisymmetric in the indexes n1, n2, n3 and k4,k5.
For backward-in-time Goldstone diagrams, we can single

out from the term in Fig. 6(h) the coupling matrix

N(IIh′)
αs ≡

√
2

8
Wαηρ,μλν A12

[(
Yk4

η Yk5
ρ X n6

μ X n7
ν

)∗Yk2
λ t

n3n6n7
k1k4k5

]
,

(77)

while the matrix

N(IIo)
αu ≡

√
3

36
Wαηρ,μνλ X n4

η X n5
ρ

(
X n6

μ X n7
ν X n8

λ

)∗
t
n6n7n8
k1k2k3

(78)

appears in the Goldstone diagrams relative to Fig. 6(o) and it
is antisymmetric in the indexes k1, k2, k3 and n4, n5.

IV. CONCLUSIONS

We have calculated all possible Feynman diagrams for the
self-energy up to the third order, for an Hamiltonian including
up to three-body interactions. Using these, we have then
derived the complete set of working equations that are needed
to calculate the self-energy nonperturbatively in the ADC(n)
approach at orders n = 2 and 3. While the expansion of the
self-energy is considered perturbatively by including diagrams

featuring up to three interactions, the ADC(3) formalism
expands automatically certain classes of diagrams to infinite
order. In particular, one resums series of ladders, rings,
and interaction-irreducible 3NFs diagrams. As for the usual
ADC(n) computations, the Dyson equation for the 1B propa-
gator can be implemented as a large but energy independent
eigenvalue problem. However, in presence of 3NFs, interme-
diate state configurations of 3p2h and 3h2p type contribute
already at ADC(2) and ADC(3) levels, while they would
appear at ADC(4) and ADC(5) for NN-only interactions.

In showing expressions for both coupling and interaction
matrices, we have organized the equations according to their
importance, using criteria based on the number of excitations
implied by ISCs and the natural hierarchy of many-nucleon
forces. We started by revisiting the most relevant correlations
in terms of 2p1h and 2h1p ISCs. This sector contains the
well-known ADC(3) equations for the original and effective
NN interactions. A new contribution arises from the Feynman
diagram of Fig. 2(c) and involves an interaction-irreducible
3NF (that is, which cannot be expressed as simpler normal
ordered forces). This last term is argued to be less relevant in
virtue of the hierarchy of nuclear forces. Then, we have worked
out the subset of ADC(3) coupling and interaction matrices that
link to the 3p2h and 3h2p sector of ISCs.

While this hierarchy suggests that 3p2h and 3h2p ISCs
may be necessary only for future generations of ab initio
approaches, the diagram of Fig. 2(c) may already have im-
plication for present nuclear Hamiltonians. However, these
conjectures have not yet been checked and knowing the
importance of diagram Fig. 2(c) would give guidance for the
inclusion of further correlations [37].

To provide the ADC formalism in its most general form,
we have released the assumption of a fully self-consistent
expansion and considered also all the additional nonskeleton
diagrams that appear in this case. The resulting corrections
are important (at least conceptually) when calculations are
based on standard reference propagators of mean-field type.
New sets of diagrams appear for both the static and dy-
namic self-energy and have been derived together with the
corresponding contributions in the ADC framework. In total,
four additional Feynman diagrams must be considered in
the ADC(3) dynamic self-energy when one is working with
uncorrelated propagators, while the 1B effective interaction
defining the energy-independent self-energy is decomposed
into 19 Feynman diagrams of different topologies. Hence,
the complete ADC(3) formalism with 3NFs is now available
for the self-energy, either self-consistent (with only skeleton
diagrams) or based on an uncorrelated reference state.

The formalism presented in this work sets the basis for
future advancements of the SCGF approach, especially useful
for studies of nuclear structure where the full inclusion of
realistic three-nucleon interactions is required. The numerical
implementation of the 3p2h and 3h2p sector is a long-term
endeavour that might rely on future supercomputing resources.
At the same time, the case for such improvements in the
many-body truncation will also depend on the performance and
accuracy of future generations of realistic nuclear interactions.
On the other hand, calculating the diagram of Fig. 2(c) involves
only 2p1h and 2h1p ISCs and will not require resources
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beyond present day computer power [38]. Thus, we plan a
follow-up study to investigate this term.
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APPENDIX A: ADC EQUATIONS FOR SELF-ENERGY
AT THIRD ORDER

In this Appendix we give the remaining expressions of the
coupling and interaction matrices that arise from Goldstone
diagrams at third order in the expansion of the self-energy.
The complete list of all terms required to build the ADC(3)
formalism is

M[ADC(3)]
jα = M[ADC(2)]

jα +

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

M(IIa)
rα + M(IIb)

rα + M(IIc)
rα

+ M(IId′)
rα + M(IIh′)

rα + M(IIe′)
rα +M(IIi′)

rα +M(IIr)
rα + M(IIs)

rα if j = r (2p1h),

M(IId)
qα + M(IIh)

qα + M(IIl)
qα + M(IIo)

qα + M(IIe)
qα +M(IIi)

qα

+ M(IIm)
qα +M(IIn)

qα +M(IIp)
qα + M(IIq)

qα + M(IIt)
qα + M(IIu)

qα if j = q (3p2h),

(A1)

N[ADC(3)]
αk = N[ADC(2)]

αk +

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

N(IIa)
αs + N(IIb)

αs + N(IIc)
αs

+ N(IId′)
αs + N(IIh′)

αs + N(IIe′)
αs + N(IIi′)

αs + N(IIr)
αs + N(IIs)

αs if k = s (2h1p),

N(IId)
αu + N(IIh)

αu + N(IIl)
αu + N(IIo)

αu + N(IIe)
αu + N(IIi)

αu

+ N(IIm)
αu + N(IIn)

αu + N(IIp)
αu + N(IIq)

αu + N(IIt)
αu + N(IIu)

αu if k = u (3h2p),

(A2)

C[ADC(3)]
jj ′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Cpp

rr ′ + Cph
rr ′ + C3N

rr ′ + CŨp
rr ′ + CŨh

rr ′ if j = r and j ′ = r ′ (2p1h),

Cp−pph
rq ′ + Ch−hhp

rq ′ + C3N(I)
rq ′ + C3N(II)

rq ′ if j = r (2p1h) and j ′ = q ′ (3p2h),

Cpp
qq ′ + Cph

qq ′ + Chh
qq ′ + C3N(III)

qq ′ + C3N(IV)
qq ′ + C3N(V)

qq ′ + CŨp
qq ′ + CŨh

qq ′ if j = q and j ′ = q ′ (3p2h),

(A3)

D[ADC(3)]
kk′ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Dhh

ss ′ + Dhp
ss ′ + D3N

ss ′ + DŨp
ss ′ + DŨh

ss ′ if k = s and k′ = s ′ (2h1p),

Dh−hhp
su′ + Dp−pph

su′ + D3N(I)
su′ + D3N(II)

su′ if k = s (2h1p) and k′ = u′ (3h2p),

Dhh
uu′ + Dhp

uu′ + Dpp
uu′ + D3N(III)

uu′ + D3N(IV)
uu′ + D3N(V)

uu′ + DŨp
uu′ + DŨh

uu′ if k = u and k′ = u′ (3h2p).

(A4)

For the coupling matrices Mjα and Nαk , the list of terms
truncated at the ADC(3) level is composed by sets of ADC(2)
terms, defined in Eqs. (34) and (37) and in Eqs. (35) and
(38) for the forward-in-time and backward-in-time self-energy,
respectively; sets of terms from (IIa) to (IIc) appearing at third
order of the ADC, presented in Eqs. (53), (54), and (57) and
in Eqs. (55), (56), and (58), which contain only 2p1h and
2h1p configurations; and those terms from (IId) to (IIo) with
3p2h and 3h2p ISCs, introduced in Eqs. (67)–(70), (75), and
(76) and in Eqs. (71)–(74), (77), and (78). Other terms with
3p2h and 3h2p ISCs, denoted with superscripts from (IIe) to
(IIq), are defined in Eqs. (A5)–(A20). Moreover, in Eqs. (A1)
and (A2) we find additional terms, that must be added to the
ADC(3) when the single-particle propagator used to construct
self-energy diagrams is uncorrelated, i.e., when one works with
a nonskeleton expansion. For coupling matrices, these addi-
tional terms are denoted with superscripts ranging from (IIr) to
(IIu). Their explicit expressions will be given in Appendix C 2.

Interaction matrices appear at third order in the ADC, as
listed in Eqs. (A3) and (A4). The first three terms thereof
connecting to 2p1h and 2h1p configurations are given in
Eqs. (59), (60), and (63) for forward-in-time diagrams and

in Eqs. (61), (62), and (64) for backward-in-time ones. Other
matrices required to link 3p2h (3h2p) ISCs are denoted by
Cp−pph

rq ′ ,...,C3N(V )
qq ′ (Dh−hhp

su′ , . . . ,D3N(V )
uu′ ). They will be given

below in Eqs. (A21)–(A25) and (A31)–(A35) [Eqs. (A26)–
(A30) and (A36)–(A40)]. Finally, additional four interaction
matrices introduced in Appendix C 2 for the nonskeleton
expansion are specified in Eqs. (A3) and (A4) with the
superscript Ũ .

1. Coupling matrices with two effective 2NFs

In Fig. 6(e) we find the following coupling matrices:

M(IIe)
qα ≡

√
3

6
P123

[
t
n6n3
k4k5

X n1
μ X n2

ν

(
X n6

λ

)∗
Ṽμν,αλ

]
, (A5)

and

N(IIe)
αu ≡

√
3

6
Ṽαλ,μν P123

[(
Yk6

λ

)∗Yk1
μ Yk2

ν t
n4n5
k6k3

]
, (A6)

for the forward-in-time and backward-in-time Goldstone dia-
grams, respectively.
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2. Coupling matrices with one effective 2NF and one interaction-irreducible 3NF

Diagrams in Fig. 6(e) contains also an interaction-irreducible 3NF, therefore another coupling matrix can be obtained from
the corresponding Goldstone diagrams. For the forward-in-time and backward-in-time parts we have

M(IIe′)
rα ≡

√
2

4
t
n4n5
k3k6

X n1
μ X n2

ν

(
Yk6

λ X n4
ρ X n5

η

)∗
Wμνλ,αρη (A7)

and

N(IIe′)
αs ≡

√
2

4
Wαρη,μνλ

(
Yk4

ρ Yk5
η

)∗Yk1
μ Yk2

ν

(
X n6

λ

)∗
t
n3n6
k4k5

, (A8)

respectively.
Also diagrams in the second and third row of Fig. 6 feature coupling matrices with 2NFs and interaction-irreducible 3NFs. We

list them below considering both forward- and backward-in-time contributions. In the Goldstone diagrams of the term in Fig. 6(i)
we have

M(IIi)
qα ≡

√
3

12
A45

[
t
n1n2n3
k5k6k7

(
Yk6

μ Yk7
ν

)∗Yk4
λ Ṽμν,αλ

]
(A9)

and

N(IIi)
αu ≡

√
3

12
A45

[
Ṽαλ,μν X n4

λ

(
X n6

μ X n7
ν

)∗
t
n5n6n7
k1k2k3

]
. (A10)

In the Goldstone diagrams of the term in Fig. 6(m) we can single out the coupling matrices,

M(IIm)
qα ≡

√
3

6
A45 P123

[
t
n1n6
k4k7

(
Yk7

μ

)∗X n2
ν X n3

λ Yk5
η

(
X n6

ρ

)∗
Wμνλ,αρη

]
(A11)

and

N(IIm)
αu ≡

√
3

6
A45P123

[
Wαηρ,μνλ

(
Yk7

η

)∗X n5
ρ

(
X n6

μ

)∗Yk2
ν Yk3

λ t
n4n6
k1k7

]
. (A12)

Finally, in the Goldstone diagrams of the term in Fig. 6(n) we have

M(IIn)
qα ≡

√
3

12
t
n6n7
k4k5

X n1
μ X n2

ν X n3
λ

(
X n6

η X n7
ρ

)∗
Wμνλ,αηρ (A13)

and

N(IIn)
αu ≡

√
3

12
Wαηρ,μνλ Yk1

μ Yk2
ν Yk3

λ

(
Yk6

η Yk7
ρ

)∗
t
n4n5
k6k7

, (A14)

which are both antisymmetric in their particle and hole indexes.

3. Coupling matrices with two interaction-irreducible 3NFs

All the Feynman diagrams in the second and fourth rows of Fig. 6 can contain coupling matrices with two interaction-
irreducible 3NFs. Again, for each different topology we list the expressions for forward-in-time contributions first, followed by
the backward-in-time ones.

In the Goldstone diagrams of the term in Fig. 6(i) we have

M(IIi′)
rα ≡

√
2

12
t
n1n2n4
k5k6k7

(
Yk5

μ Yk6
ν Yk7

λ X n4
ρ

)∗Yk3
η Wμνλ,αηρ, (A15)

which is antisymmetric in the indexes n1and n2, and

N(IIi′)
αs ≡

√
2

12
Wαηρ,λμν X n3

η

(
Yk7

ρ X n4
λ X n5

μ X n6
ν

)∗
t
n4n5n6
k1k2k7

, (A16)

which is antisymmetric in the indexes k1and k2.
In the Goldstone diagrams of the term in Fig. 6(p) we have

M(IIp)
qα ≡

√
3

12
A45 P123

[
t
n1n2n6
k7k8k5

X n3
λ Yk4

η

(
Yk7

μ Yk8
ν X n6

ρ

)∗
Wμνλ,αηρ

]
(A17)

and

N(IIp)
αu ≡ −

√
3

12
Wαηρ,μνλ A45 P123

[
X n4

η

(
Yk8

ρ X n6
μ X n7

ν

)∗Yk3
λ t

n6n7n5
k1k2k8

]
. (A18)
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In the Goldstone diagrams of the term in Fig. 6(q) we can also single out the following coupling matrices,

M(IIq)
qα ≡ −

√
3

12
P123

[
t
n1n6n7
k4k5k8

(
Yk8

μ X n6
η X n7

ρ

)∗X n2
ν X n3

λ Wμνλ,αηρ

]
(A19)

and

N(IIq)
αu ≡

√
3

12
Wαηρ,μνλ P123

[(
Yk7

η Yk8
ρ X n6

μ

)∗Yk2
ν Yk3

λ t
n4n5n6
k1k7k8

]
. (A20)

4. Formulas for 2NF interaction matrices with 3 p2h and 3h2 p configurations

The interaction matrices that we have introduced in Sec. III B do not exhaust the list of all possible terms required for the
ADC(3). A more complicated pattern in terms of ISCs is present in interaction matrices connecting 2p1h and 3p2h ISCs, as for
the forward-in-time terms in the diagrams of Figs. 6(d)–6(g).

In the Feynman diagram of Fig. 6(d) one can find

Cp-pph
rq ′ ≡

√
6

12
A12 A9 10 P678

[
X n2

μ Ṽμν,λρ

(
X n7

λ X n8
ρ Yk10

ν

)∗
δn1n6δk3k9

]
, (A21)

while its complex conjugate term is contained in the diagram of Fig. 6(f).
An interaction matrix connecting the same ISCs as the one in Eq. (A21) is

Ch-hhp
rq ′ ≡

√
6

12
A678

[
Yk3

λ Ṽμν,λρ

(
Yk9

μ Yk10
ν X n8

ρ

)∗
δn1n6δn2n7

]
, (A22)

which is contained in the diagram in Fig. 6(e), while the diagram in Fig. 6(g) contains the complex conjugate of Eq. (A22).
In the self-energy diagrams represented in Figs. 6(l)–6(n), when two 3p2h ISCs interact through a 2NF, we find interaction

matrices of the following form:

Cpp
qq ′ ≡ 1

12
A45 P123 P678

[
X n1

μ X n2
ν Ṽμν,λρ

(
X n6

λ X n7
ρ

)∗
δn3n8δk4k9δk5k10

]
, (A23)

which is composed by 18 terms when all the permutations indicated are taken, and the ones with a particle-hole 2NF connecting
two 3p2h propagators, i.e.,

Cph
qq ′ ≡ 1

12
A45 A9 10 A123 P678

[
X n1

μ Yk4
ρ Ṽμν,ρλ

(
X n6

λ Yk9
ν

)∗
δn2n7δn3n8δk5k10

]
, (A24)

which contains 72 terms when the explicit antisymmetrization with respect to quasiparticle indexes is performed. The interaction
matrices in Eqs. (A23) and (A24) are found in the diagrams in Figs. 6(l) and 6(m), respectively.

A forward-in-time interaction matrix connecting two 3p2h ISCs through a hole-hole 2NF is found in the self-energy diagram
in Fig. 6(n). This has the following expression:

Chh
qq ′ ≡ 1

12
A123

[
Yk4

λ Yk5
ρ Ṽμν,λρ

(
Yk9

μ Yk10
ν

)∗
δn1n6δn2n7δn3n8

]
. (A25)

We present now the corresponding interaction matrices appearing in backward-in-time self-energy Goldstone diagrams. We
remind that these interaction matrices are the ones connecting propagators of multihole-multiparticle type in self-energy diagrams.

We consider first terms contained in Figs. 6(d)–6(g), namely those connecting the 2h1p propagator to the 3h2p propagator.
We find

Dh-hhp
su′ ≡

√
6

12
A12 A9 10 P678

[(
Yk2

μ

)∗
Ṽμν,λρ Yk7

λ Yk8
ρ X n10

ν δk1k6δn3n9

]
, (A26)

which must be combined with another interaction matrix,

Dp-pph
su′ ≡−

√
6

12
A678

[(
X n3

λ

)∗
Ṽμν,λρX n9

μ X n10
ν Yk8

ρ δk1k6δk2k7

]
. (A27)

Interaction matrices in Eqs. (A26) and (A27) are found in the self-energy diagrams of Figs. 6(d) and 6(e), respectively, while
their complex conjugates are contained in the diagrams of Figs. 6(f) and 6(g).

When two 3h2p propagators in a self-energy diagram are connected via ISCs linked to 2NFs, as in diagrams of Figs. 6(l)–6(n),
we have an interaction matrix of the following form:

Dhh
uu′ ≡ − 1

12
A45 P123 P678

[(
Yk1

μ Yk2
ν

)∗
Ṽμν,λρ Yk6

λ Yk7
ρ δk3k8δn4n9δn5n10

]
, (A28)
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contained in the diagram of Fig. 6(l), and another one found when a particle-hole 2NF connects two 3h2p ISCs, i.e.,

Dhp
uu′ ≡ − 1

12
A45 A9 10 A123 P678

[(
Yk1

μ X n4
ρ

)∗
Ṽμν,ρλYk6

λ X n9
ν δk2k7δk3k8δn5n10

]
, (A29)

which appears in the Feynman diagram of Fig. 6(m).
Finally, also a backward-in-time interaction matrix connecting two 3h2p ISCs through a particle-particle 2NF is found in the

self-energy diagram of Fig. 6(n), that is

Dpp
uu′ ≡ − 1

12
A123

[(
X n4

λ X n5
ρ

)∗
Ṽμν,λρ X n9

μ X n10
ν δk1k6δk2k7δk3k8

]
. (A30)

5. Formulas for 3NF interaction matrices with 3 p2h and 3h2 p configurations

The last set of interaction matrices is required to complete the ADC(3), which is given by those terms containing the interaction-
irreducible 3NF.

First, we consider interaction matrices in which the 3NF connects 2p1h ISCs to 3p2h ISCs, as in the diagrams in
Figs. 6(h)–6(k). We find in the diagram of Fig. 6(h),

C3N(I)
rq ′ ≡

√
6

12
A12 P678

[
δn2n7 X n1

λ Yk3
η Wλμν,ρηε

(
X n6

ρ X n8
ε Yk9

μ Yk10
ν

)∗]
, (A31)

and a second 3NF interaction matrix connecting the 2p1h propagator to the 3p2h propagator, requiring an explicit antisym-
metrization only with respect to two particle indexes. Its expression from a Goldstone diagram of Fig. 6(i) reads

C3N(II)
rq ′ ≡

√
6

12
A9 10

[
X n1

λ X n2
ν Wλνμ,ρεη

(
X n6

ρ X n7
ε X n8

η Yk10
μ

)∗
δk3k9

]
. (A32)

Complex conjugate interaction matrices corresponding to Eqs. (A31) and (A32) can be found in the Goldstone diagrams of
Figs. 6(j) and 6(k).

Two 3p2h propagators can be connected in a self-energy diagram via ISCs containing a 3NF. They are contained in
the three self-energy diagrams represented in Figs. 6(o)–6(q). We have then an interaction matrix of the following form in
Fig. 6(o):

C3N(III)
qq ′ ≡ 1

12
A45

[
X n1

λ X n2
ν X n3

μ Wλνμ,ρεη

(
X n6

ρ X n7
ε X n8

η

)∗
δk4k9δk5k10

]
. (A33)

Other 3NF interaction matrices connecting two 3p2h ISCs are found in Fig. 6(p),

C3N(IV)
qq ′ ≡ − 1

12
A45 A9 10 P123 P678

[
X n1

λ X n2
ν Yk5

η Wλνμ,ρεη

(
X n6

ρ X n7
ε Yk10

μ

)∗
δk4k9δn3n8

]
, (A34)

and in Fig. 6(q):

C3N(V)
qq ′ ≡ 1

12
A123 P678

[
X n1

μ Yk4
ε Yk5

η Wμνλ,ρεη

(
X n6

ρ Yk9
ν Yk10

λ

)∗
δn2n7δn3n8

]
. (A35)

We can present now 3NF interaction matrices appearing in backward-in-time self-energy Goldstone diagrams. These
interaction matrices connect hole-particle ISCs in the diagrams, i.e., 2h1p and/or 3h2p propagators. As the corresponding
interaction matrices for the forward-in-time part shown above, they are found in the diagrams of Figs. 6(h)–6(k) and
Figs. 6(o)–6(q).

First, we have the terms

D3N(I)
su′ ≡ −

√
6

12
P12P678

[
δk2k7

(
Yk1

λ X n3
η

)∗
Wλνμ,ρηεYk6

ρ Yk8
ε X n9

ν X n10
μ

]
(A36)

and

D3N(II)
su′ ≡ −

√
6

12
A9 10

[(
Yk1

λ Yk2
ν

)∗
Wλνμ,ρεηYk6

ρ Yk7
ε Yk8

η X n10
μ δn3n9

]
, (A37)

which are found in Figs. 6(h) and 6(i), respectively.
Finally, 3NF interaction matrices can connect two 3h2p ISCs within a self-energy diagram, as in diagrams of

Figs. 6(o)–6(q). Specifically, in Figs. 6(o) and 6(p) we can single out the interaction matrices

D3N(III)
uu′ ≡ 1

12
A45

[(
Yk1

λ Yk2
ν Yk3

μ

)∗
Wλνμ,ρεη Yk6

ρ Yk7
ε Yk8

η δn4n9δn5n10

]
(A38)

and

D3N(IV)
uu′ ≡ − 1

12
A45 A9 10 P123 P678

[(
Yk1

λ Yk2
ν X n5

η

)∗
Wλνμ,ρεη Yk6

ρ Yk7
ε X n10

μ δn4n9δk3k8

]
, (A39)
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respectively. Matrices in Eqs. (A38) and (A39) must be complemented with another backward-in-time interaction matrix that
also connects two 3h2p ISCs. This is given by the expression

D3N(V)
uu′ ≡ 1

12
A123 P678

[(
Yk1

μ X n4
ε X n5

η

)∗
Wμνλ,ρεηYk6

ρ X n9
ν X n10

λ δk2k7δk3k8

]
, (A40)

as it is singled out from the Goldstone diagram corresponding to Fig. 6(q).

APPENDIX B: IRREDUCIBLE SELF-ENERGY IN
ANGULAR MOMENTUM COUPLING FORMALISM

Most implementations of ab initio approaches in nuclear
physics are based on the assumption of a spherical ground state,
so that one can exploit a spherical single-particle basis and the
angular momentum formalism to decouple different channels.
The diagonalization of Eq. (28) can then be performed sep-
arately for each partial wave, and the required computational
resources are significantly reduced. In this Appendix we follow
this path and derive the corresponding working equations for
ADC(3) and 3NFs including up to 2p1h and 2h1p ISCs. The
ADC(3) matrix elements for 2NFs have been discussed in the
past [39] and used in applications for several years [11,40,41].
However, they were never published in detail for the case of
fully dressed propagators. Moreover, we complement them
with the new terms arising from 3NFs. We present them here in
the hope that they might turn out to be useful to practitioners.

In general, a spherical single-particle state with isospin
function χq is given by coupling the spherical harmonic Yl(r̂)
to χ 1

2
, the function of the intrinsic spin of the nucleon,

φβ(
r,σ,τ ) = fnβ lβ (r)
[
Ylβ (r̂) ⊗ χ 1

2
(σ )

]mβ

jβ
χqβ

(τ ), (B1)

with σ and τ being spin and isospin coordinates, respectively.
The collective index β denotes the set of quantum numbers

(nβ,πβ,jβ,mβ,qβ ), where nβ is the principal quantum number,
πβ is the parity corresponding to the orbital angular momentum
lβ , jβ and mβ are the total angular momentum and its projection
along the z axis, and qβ represents the isospin projection. In
this basis, the creation operator a

†
β of the single-particle basis

is the mth
β component of an irreducible tensor of rank jβ :

a
†
β ≡ a

†
nβ ,πβ ,jβ ,mβ,qβ

≡ a
†
b,mβ

, (B2)

where we made use of the notation β = (b,mβ), i.e.,

b ≡ (nβ,πβ,jβ,qβ). (B3)

The destruction operators are dealt with in the same fashion but
we add a phase factor and invert the quantum number m, which
is needed to obtain an irreducible tensor āβ ≡ (−1)jβ+mβ ab,−mβ

.
For particle and hole Dyson orbits, corresponding to the
eigenstates |�A+1

n 〉 and |�A−1
k 〉 of the (A+1)- and (A−1)-body

systems, we use a compact notation analogous to Eq. (B2)
and write n = (ñ,mn) and k = (k̃,mk), with ñ ≡ (nn,πn,jn,qn)
and k̃ ≡ (nk,πk,jk,qk). Using these definitions, the shorthand
notations of Eqs. (20) and (21) can be coupled to total
angular momentum and the overall quantum number M is
separated. This leads us to define r̃ ≡ [(ñ1,ñ2,J12,k̃3),Jr ],
s̃ ≡ [(k̃1,k̃2,J12,ñ3),Js] and so on, where we follow the cou-
pling conventions of Eqs. (B12) and (B13) below.

We now revisit the angular momentum coupling of the
self-energy, when the ground state |�A

0 〉 in Eq. (1) has total
angular momentum and parity Jπ = 0+. For these systems, the
formalism is considerably simplified because the total angular
momentum jn (jk), its projection along the z axis mn (mk)
and the parity πn (πk) of excited states �A+1

n (�A−1
k ) are the

same as the corresponding quantum numbers of the particle
creation (annihilation) tensor operators entering the definition
of the Green’s function, Eq. (1). The total isospin is also
uniquely determined by isospin projections of the reference
state and tensor operators. With our assumption that |�A

0 〉
has Jπ = 0+, the irreducible self-energy in the Dyson Eq. (7)
becomes diagonal in the quantum numbers (π,j,m,q), and it
is independent on m:


�
αβ(ω) = δ

(πjq)
ab δmαmβ


�
ab(ω), (B4)

where we have introduced a compact notation for multiple
Kronecker δ’s:

δ
(πjq)
ab ≡ δπαπβ

δjαjβ
δqαqβ

. (B5)

By applying the Wigner-Eckart theorem to the transition
amplitudes Eq. (6), one finds

X ñ,mn
α = (−1)2jn

δ
(πjq)
añ δmαmn√

2jα + 1

〈
�A+1

ñ

∣∣∣∣a†
a

∣∣∣∣�A
0

〉 ≡ X ñ
a δ

(πjq)
añ δmαmn

(B6)

and

Y k̃,mk
α = (−1)2jk (−1)jα−mα

δ
(πjq)
ak̃

δ−mαmk√
2jα + 1

〈
�A−1

k̃

∣∣∣∣āa

∣∣∣∣�A
0

〉
≡ Y k̃

a (−1)jα−mαδ
(πjq)
ak̃

δ−mαmk
, (B7)

which define the m-independent spectroscopic amplitudes X ñ
a

and Y k̃
a .

Because of rotational invariance of the Hamiltonian, the
2NFs and 3NFs are coupled as m-independent matrix elements
according to

V̄ J
ab,gd = 1√

1 + δab

√
1 + δgd

∑
mαmβ

mγ mδ

(jαjβmαmβ |JM)

× (jγ jδmγ mδ|JM)Ṽαβ,γ δ (B8)

and

W
J1J2J
abl,gdv =

∑
mαmβ

mλ

∑
mγ mδ

mν

(jαjβmαmβ |J1M1)(jγ jδmγ mδ|J2M2)

× (
J1jλM1mλ

∣∣JM
)(

J2jνM2mν

∣∣JM
)
Wαβλ,γ δν .

(B9)
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Note that we chose to properly normalize the matrix elements of V̄ in Eq. (B8) but not those of W. When considering the Goldstone
diagrams that result from Fig. 2(c), it is also convenient to recouple the angular momenta of the 3NF in the particle-particle-hole
channel:

W
(pph)J1J2J

abl−1,gdv−1 = −
∑
mαmβ

mλ

∑
mγ mδ

mν

(
jαjβmαmβ

∣∣J1M1
)(

jγ jδmγ mδ

∣∣J2M2
)

× (J1jλM1 − mλ|JM)(J2jνM2 − mν |JM)(−)jν−mν (−)jλ−mλWαβν,γ δλ. (B10)

The matrix elements W can be transformed into the W (pph) form by using the Pandya relation [42]:

W
(pph)J1J2J

abl−1,gdv−1 = −(−)2jν+2jλ+2J
∑
J ′

(2J ′ + 1)

{
J1jλ J
J2jνJ

′

}
W

J1J2J
′

abv,gdl . (B11)

1. General J-coupling conventions for ISCs

The ADC coupling and interaction matrices derived in earlier sections already separate naturally in terms of the
parity and isospin (i.e., charge differences with respect to the ground state |�A

0 〉). To decouple the Dyson eigenvalue problem
according to Eq. (B4), we then need to recouple the ISCs to total angular momentum. In this Appendix we are going
to consider only the ADC contributions arising from Feynman diagrams of Fig. 2. Thus, we need to specify an angular
momentum coupling convention for 2p1h and 2h1p ISCs. As usual, the particular choice of coupling may introduce
particular phases and factors in the equations but the final result of the Dyson diagonalization, Eq. (28), does not depend
on these.

For 2p1h coupling matrices we define the coupled elements of Mr̃a as

∑
mn1 mn2

mk3

(
jn1jn2mn1mn2

∣∣J12M12
)(

J12jk3M12mk3

∣∣JrMr

)
Mrα ≡ δ(πjq)

ar δmαMr

√
1 + δñ1ñ2

2
Mr̃a, (B12)

with the parity πr = (−1)l1+l2+l3 , the charge qr = q1 + q2 − q3 and the total angular momentum Jr of the 2p1h ISC
r̃ = [(ñ1,ñ2,J12,k̃3),Jr ]. For the backward-in-time 2h1p matrix Nαs̃ , we write

∑
mk1 mk2

mn3

(
jk1jk2mk1mk2

∣∣J12M12
)(

J12jn3M12mn3

∣∣JsMs

)
Nαs ≡ δ(πjq)

as δmα−Ms

√
1 + δk̃1 k̃2

2
Nas̃ , (B13)

with the charge qs = q1 + q2 − q3 and the total angular momentum Js of the 2h1p ISC s̃ = [(k̃1,k̃2,J12,ñ3),Js]. The interaction
matrices Cjj ′ and Dkk′ are coupled in the same way. For 2p1h matrix elements Crr ′ , we have

∑
mn1 mn2

mk3

∑
mn4 mn5

mk6

(
jn1jn2mn1mn2

∣∣J12M12
)(

J12jk3M12mk3

∣∣JrMr

)(
jn4jn5mn4mn5

∣∣J45M45
)(

J45jk6M45mk6

∣∣Jr ′Mr ′
)
Crr ′

= δ
(πjq)
rr ′ δMrMr′

√
1 + δñ1ñ2

2
Cr̃ r̃ ′

√
1 + δñ4ñ5

2
. (B14)

And for the 2h1p matrix elements Dss ′ :

∑
mk1 mk2

mn3

∑
mk4 mk5

mn6

(
jk1jk2mk1mk2

∣∣J12M12
)(

J12jn3M12mn3

∣∣JsMs

)(
jk4jk5mk4mk5

∣∣J45M45
)(

J45jn6M45mn6

∣∣Js ′Ms ′
)
Dss ′

= δ
(πjq)
ss ′ δMsMs′

√
1 + δk̃1 k̃2

2
Ds̃ s̃ ′

√
1 + δk̃4 k̃5

2
. (B15)
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Equations (B14) and (B15) define the coupled Cr̃ r̃ ′ and Ds̃ s̃ ′ that are independent of Mr and Ms , respectively. With the above
definitions, the unperturbed energies for each ISC do not depend on the angular momentum coupling and their expressions,
Eqs. (22) and (23), remain unchanged. For example,

Er̃ r̃ ′ = diag
{
ε+
ñ1

+ ε+
ñ2

− ε−
k̃3

}
. (B16)

Note that the coupling and interaction matrices introduced in Secs. III A and III B are explicitly antisymmetric for the exchanges in
any of the particle (n1, n2, n3,...) or any of the hole (k1, k2, k3,...) indices. They are nevertheless defined assuming unrestricted sum
over all indexes. In practical calculations, one can drop the symmetry factors of 1/

√
2 for 2p1h (2h1p) ISCs and restrict the sums

over the fist two indexes, n1 < n2 (k1 < k2). In angular momentum coupling formalism one has similarly ordered sums—ñ1 � ñ2

and k̃1 � k̃2 in this case—and factors such as
√

(1 + δñ1 ñ2 )/2 are to be dropped. Thus, we separated these factors already in the
definitions Eqs. (B12)–(B15).

With the above definitions, and assuming ordered sums, the dynamic self-energy of Eq. (19) can be decoupled as


̃αβ(ω) =
∑
rr ′

M∗
αr

1

h̄ω − (Erδrr ′ + Crr ′ ) + iη
Mr ′β +

∑
ss ′

Nαs

1

h̄ω − (Esδss ′ + Dss ′ ) − iη
N∗

s ′β

=
∑

r̃ r̃ ′ Mr Mr′

δ(πjq)
ar δmαMr

M∗
ar̃

1

h̄ω − (Er̃δr̃r̃ ′ + Cr̃ r̃ ′ )δ(πjq)
rr ′ δMrMr′ + iη

δ
(πjq)
br ′ δmβMr′ Mr̃ ′b

+
∑

s̃ s̃ ′ Ms Ms′

δ(πjq)
as δmα−Ms

Nas̃

1

h̄ω − (Es̃δs̃s̃ ′ + Ds̃ s̃ ′ )δ(πjq)
ss ′ δMsMs′ − iη

δ
(πjq)
bs ′ δmβ−Ms′ N

∗
bs̃ ′

= δ
(πjq)
ab δmαmβ

[∑
r̃ r̃ ′

δ(πjq)
ar M∗

ar̃

1

h̄ω−(Er̃δr̃r̃ ′ + Cr̃ r̃ ′) + iη
δ

(πjq)
br ′ Mr̃ ′b+

∑
s̃ s̃ ′

δ(πjq)
as Nas̃

1

h̄ω − (Es̃δs̃s̃ ′+Ds̃ s̃ ′ ) − iη
δ

(πjq)
bs ′ N∗

bs̃ ′

]

≡ δ
(πjq)
ab δmαmβ


̃ab(ω), (B17)

which proves the energy dependent part of Eq. (B4) and defines the m-independent irreducible self-energy 
�
ab(ω).

2. Angular momentum coupling of the ADC(3) equations

We are now in the position to give expressions for the coupling and interaction matrices resulting from the diagrams of Figs. 1
and 2 in the angular momentum formalism.

a. Coupling matrices with 2 p1h ISCs

The simplest 2p1h coupling matrix is M(Ia)
rα , Eq. (34), and it appears already at the ADC(2) level. Using the definition Eq. (B12),

we obtain

M(Ia)
r̃a ≡ �

(
jn1 ,jn2 ,J12

)
�

(
J12,jk3 ,Jr

)
(−1)jα+jk3 −J12

Ĵ12

ĵα

×
∑
m�v

l

X ñ1
m δ

(πjq)
mn1 X ñ2

v δ
(πjq)
vn2 − (−1)jn1 +jn2 −J12X ñ1

v δ
(πjq)
vn1 X ñ2

m δ
(πjq)
mn2√

1 + δvm

√
1 + δñ1ñ2

V̄
J12
mv,al

√
1 + δal Y k̃3

l δ
(πjq)
lk3

, (B18)

with the usual “hat” notation

ĵ ≡
√

2j + 1 (B19)

and the triangular condition

�(j,j ′,J ) =
{

1 if |j − j ′| � J � j + j ′,
0 otherwise. (B20)
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The M(IIa)
rα contribution from Eq. (53) becomes

M(IIa)
r̃a ≡ �

(
jn1 ,jn2 ,J12

)
�

(
J12,jk3 ,Jr

) (−1)jα+jk3 −J12√
1 + δñ1ñ2

Ĵ12

ĵα

∑
k̃4 � k̃5

∑
g � d

l

�
(
jk4 ,jk5 ,J12

)
t
ñ1ñ2,J12

k̃4 k̃5

×
[
Y k̃4

g δ
(πjq)
gk4

Y k̃5
d δ

(πjq)
dk5

− (−1)jk4 +jk5 −J12 Y k̃4
d δ

(πjq)
dk4

Y k̃5
g δ

(πjq)
gk5

]∗(
1 + δk̃4 k̃5

)√
1 + δgd

V̄
J12
gd,al

√
1 + δal Y k̃3

l δ
(πjq)
lk3

, (B21)

where we have coupled the angular momenta of the 2p2h amplitude, Eq. (47), as follows:

t
ñ1ñ2,J

k̃3 k̃3
≡

∑
mn1 mn2
mk3 mk4

(
jn1jn2mn1mn2

∣∣JM
)(

jk3jk4mk3mk4

∣∣J − M
)

(−1)J−M t
n1n2
k3k4

=
∑
m � v
g � d

X ñ1
m δ

(πjq)
mn1 X ñ2

v δ
(πjq)
vn2 − (−1)jn1 +jn2 −J X ñ1

v δ
(πjq)
vn1 X ñ2

m δ
(πjq)
mn2√

1 + δmv

× V̄ J
mv,gd

ε−
k̃4

+ ε−
k̃3

− ε+
ñ1

− ε+
ñ2

Y k̃3
g δ

(πjq)
gk3

Y k̃4
d δ

(πjq)
dk4

− (−1)jk3 +jk4 −J Y k̃3
d δ

(πjq)
dk3

Y k̃4
g δ

(πjq)
gk4√

1 + δrs

. (B22)

The M(IIb)
rα of Eq. (54) in the angular momentum coupled representation is given by

M(IIb)
r̃a ≡ �

(
jn1 ,jn2 ,J12

)
�

(
J12,jk3 ,Jr

)
(−1)jα+jk3 −J12

Ĵ12

ĵα

1√
1 + δñ1ñ2

∑
k̃4 ñ5

∑
mv
l

∑
J2J3

(2J2 + 1)(2J3 + 1)

×
⎛⎝(−1)−jn1 −jn2 +J12

⎧⎨⎩
jn1 jk4 J2

jn2 J3 jn5

J12jk3 Jr

⎫⎬⎭X ñ1
m δ(πjq)

mn1
t
ñ2ñ5,J3

k̃4 k̃3

[
Y k̃4

v δ
(πjq)
vk4

X ñ5
l δ

(πjq)
ln5

]∗ √
1 + δgmV̄

J2
vm,al

√
1 + δad

−
⎧⎨⎩

jn2 jk4 J2

jn1 J3 jn5

J12jk3 Jr

⎫⎬⎭X ñ2
m δ(πjq)

mn2
t
ñ1ñ5,J3

k̃4 k̃3

[
Y k̃4

v δ
(πjq)
vk4

X ñ5
l δ

(πjq)
ln5

]∗ √
1 + δgmV̄

J2
vm,al

√
1 + δad

⎞⎠, (B23)

which is explicitly antisymmetrized with respect to the ñ1, ñ2 indexes.
The coupling matrix M(IIc)

rα of Eq. (57) is implied by the diagram of Fig. 2(c). This is the first term that contains an interaction-
irreducible 3NF and it has the following form:

M(IIc)
r̃a ≡ �

(
jn1 ,jn2 ,J12

)
�

(
J12,jk3 ,Jr

) ∑
J56 J ′

∑
k̃5 � k̃6

ñ4

∑
v � m

l

�
(
jk5 ,jk6 ,J56

)
�

(
jn4 ,J56,jα

) (−1)jn4 +jα−J56+2J ′√
1 + δñ1ñ2

Ĵ56

ĵα

(2J ′ + 1)

×
{
jk3 J12jα

jn4J56J
′

}
t
ñ1ñ2ñ4,J12J

′

k̃5 k̃6 k̃3,J56

[
Y k̃5

m δ
(πjq)
nk5

Y k̃6
v δ

(πjq)
vk6

−(−1)jk5 +jk6 −J56 Y k̃5
v δ

(πjq)
vk5

Y k̃6
m δ

(πjq)
mk6

]∗(
1 + δk̃5 k̃6

)√
1 + δmv

(
X ñ4

l δ
(πjq)
ln4

)∗
V̄

J56
mv,al

√
1 + δal, (B24)

which is expressed in terms of the 3p3h amplitude Eq. (48). In the angular momentum form, this is

t
ñ1ñ2ñ4,J12J

′

k̃5 k̃6 k̃3,J56
≡

∑
g � d

rs
t � p

X ñ1
g δ

(πjq)
gn1 X ñ2

d δ
(πjq)
dn2

− (−1)jn1 +jn2 −J12X ñ1
d δ

(πjq)
dn1

X ñ2
g δ

(πjq)
gn2

(1 + δgd )

X ñ4
r δ

(πjq)
rn4 W

J12J56J
′

gdr,tps Y k̃3
s δ

(πjq)
sk3

ε−
k̃3

+ ε−
k̃5

+ ε−
k̃6

− ε+
ñ1

− ε+
ñ2

− ε+
ñ4

× Y k̃5
t δ

(πjq)
tk5

Y k̃6
p δ

(πjq)
pk6

− (−1)jk5 +jk6 −J56Y k̃5
p δ

(πjq)
pk5

Y k̃6
t δ

(πjq)
tk6

(1 + δtp)
. (B25)
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b. Coupling matrices with 2h1 p ISCs

The backward-in-time contributions to the self-energy involve ISCs with 2h1p. The angular momentum representation for the
ADC(2) coupling matrix, Eq. (35), is

N(Ia)
as̃ ≡ �

(
jk1 ,jk2 ,J12

)
�

(
J12,jn3 ,Js

)
(−1)jα−mα (−1)jα−jn3 −J12

Ĵ12

ĵα

×
∑
m � v

l

√
1 + δalV̄

J12
al,mv

Y k̃1
m δ

(πjq)
mk1

Y k̃2
v δ

(πjq)
vk2

− (−1)jk1 +jk2 −J12 Y k̃1
v δ

(πjq)
vk1

Y k̃2
m δ

(πjq)
mk2√

1 + δvm

√
1 + δk̃1 k̃2

X ñ3
l δ

(πjq)
ln3

. (B26)

The ADC(3) ladder term coupling matrix of Eq. (55) becomes

N(IIa)
as̃ ≡ �

(
jk1 ,jk2 ,J12

)
�

(
J12,jn3 ,Js

)
(−1)jα−mα

(−1)jα−jn3 −J12√
1 + δk̃1 k̃2

Ĵ12

ĵα

∑
ñ4 � ñ5

∑
g � d

l

�
(
jn4 ,jn5 ,J1

)√
1 + δalV̄

J12
al,gd

×X ñ3
l δ

(πjq)
ln3

[
X ñ4

g δ
(πjq)
gn4 X ñ5

d δ
(πjq)
dn5

− (−1)jγ +jδ−J12 X ñ4
d δ

(πjq)
dn4

X ñ5
g δ

(πjq)
gn5

]∗√
1 + δgd

(
1 + δñ4ñ5

) t
ñ4ñ5,J12

k̃1 k̃2
, (B27)

and the corresponding particle-hole channel, Eq. (56), is

N(IIb)
as̃ ≡ �

(
jk1 ,jk2 ,J12

)
�

(
J12,jn3 ,Js

)
(−1)jα−mα

(−1)jα−jn3 −J12√
1 + δk̃1 k̃2

Ĵ12

ĵα

∑
ñ4 k̃5

∑
mv
l

∑
J2J3

(2J2 + 1)(2J3 + 1)

×
⎛⎝(−1)−jk1 −jk2 +J12

⎧⎨⎩
jk1 jn4 J2

jk2 J3 jk5

J12jn3 Js

⎫⎬⎭√
1 + δalV̄

J2
al,vm

√
1 + δvm

[
X ñ4

v δ(πjq)
vn4

Y k̃5
l δ

(πjq)
lk5

]∗ Y k̃1
m δ

(πjq)
mk1

t
ñ4ñ3,J3

k̃2 k̃5

−
⎧⎨⎩

jk2 jn4 J2

jk1 J3 jk5

J12jn3 Js

⎫⎬⎭√
1 + δalV̄

J2
al,vm

√
1 + δvm

[
X ñ4

v δ(πjq)
vn4

Y k̃5
l δ

(πjq)
lk5

]∗ Y k̃2
m δ

(πjq)
mk2

t
ñ4ñ3,J3

k̃1 k̃5

⎞⎠, (B28)

which is explicitly antisymmetrized with respect to the k̃1, k̃2 indices.
Finally, the coupling matrix N(IIc)

αs of Eq. (58) is found in the backward-in-time diagram of Fig. 2(c) and contains a 3NF. It has
the following form in the angular momentum coupling representation:

N(IIc)
as̃ ≡ �

(
jk1 ,jk2 ,J12

)
�

(
J12,jn3 ,Js

) ∑
J45J ′

∑
ñ4 � ñ5

k̃6

∑
v � m

l

�
(
jn5 ,jn6 ,J56

)
�

(
J56,jk4 ,jα

)

× (−1)jα−mα
(−1)jα+2jn3 +jk4 −J56+2J ′√

1 + δk̃1 k̃2

Ĵ12

ĵα

(2J ′ + 1)

{
jn3J45J

′

jk4 J12jα

}√
1 + δalV̄

J56
al,mv

×
[
X ñ5

m δ
(πjq)
mn5 X ñ6

v δ
(πjq)
vn6 − (−1)jn5 +jn6 −J56 X ñ5

v δ
(πjq)
vn5 X ñ6

m δ
(πjq)
mn6

]∗(
1 + δñ5ñ6

)√
1 + δmv

(
Y k̃4

l δ
(πjq)
lk4

)∗
t
ñ5ñ6ñ3,J56J

′

k̃1 k̃2 k̃4,J12
. (B29)

c. Interaction matrices with 2 p1h and 2h1 p ISCs

The interaction matrix Cr̃ r̃ ′ can connect 2p1h propagators through particle-particle, particle-hole, and 3NFs, according to the
terms

Cr̃ r̃ ′ ≡ Cpp

r̃r̃ ′ + Cph

r̃r̃ ′ + C3N
r̃r̃ ′ , (B30)

which have been introduced in Eqs. (59), (60), and (63), respectively.
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The particle-particle interaction matrix results from the diagram in Fig. 2(a). Using the coupling convention of Eq. (B14), we
have

Cpp

r̃r̃ ′ ≡ �
(
jn1 ,jn2 ,J12

)
�

(
J12,jk3 ,Jr

)
�

(
jn4 ,jn5 ,J12

)
�

(
J12,jk6 ,Jr

)
× δJ12J45δk̃3 k̃6

∑
m � v
l � p

X ñ1
m δ

(πjq)
mn1 X ñ2

v δ
(πjq)
vn2 − (−1)jn1 +jn2 −J12X ñ1

v δ
(πjq)
vn1 X ñ2

m δ
(πjq)
mn2√

1 + δñ1ñ2

√
1 + δmv

× V̄
J12
mv,lp

[
X ñ4

l δ
(πjq)
ln4

X ñ5
p δ

(πjq)
pn5 − (−1)jn4 +jn5 −J12 X ñ4

p δ
(πjq)
pn4 X ñ5

l δ
(πjq)
ln5

]∗√
1 + δlp

√
1 + δñ4ñ5

. (B31)

The particle-hole Cph

r̃r̃ ′ comes from the ring diagram in Fig. 2(b), which contains four terms owing to the antisymmetrization
specified in Eq. (60),

Cph

r̃r̃ ′ ≡ �
(
jn1 ,jn2 ,J12

)
�

(
J12,jk3 ,Jr

)
�

(
jn4 ,jn5 ,J45

)
�

(
J45,jk6 ,Jr

)1

2

∑
m v
p l

∑
J

Ĵ12 Ĵ45 (2J + 1)√
1 + δñ1ñ2

√
1 + δñ4ñ5

×
⎛⎝⎧⎨⎩jn1 jn2J12

jn5 J jk3

J45jk6 Jr

⎫⎬⎭X ñ2
v δ(πjq)

vn2
Y k̃6

p δ
(πjq)
pk6

√
1 + δmvV

J
mv,pl

√
1 + δpl

[
X ñ5

l δ
(πjq)
ln5

Y k̃3
m δ

(πjq)
mk3

]∗
δñ1ñ4

− (−1)jn1 +jn2 −J12

⎧⎨⎩jn2 jn1J12

jn5 J jk3

J45jk6 Jr

⎫⎬⎭X ñ1
v δ(πjq)

vn1
Y k̃6

p δ
(πjq)
pk6

√
1 + δmvV

J
mv,pl

√
1 + δpl

[
X ñ5

l δ
(πjq)
ln5

Y k̃3
m δ

(πjq)
mk3

]∗
δñ2ñ4

− (−1)jn4 +jn5 −J45

⎧⎨⎩jn1 jn2J12

jn4 J jk3

J45jk6 Jr

⎫⎬⎭X ñ2
v δ(πjq)

vn2
Y k̃6

p δ
(πjq)
pk6

√
1 + δmvV

J
mv,pl

√
1 + δpl

[
X ñ4

l δ
(πjq)
ln4

Y k̃3
m δ

(πjq)
mk3

]∗
δñ1ñ5

+ (−1)jn1 +jn2 −J12 (−1)jn4 +jn5 −J45

⎧⎨⎩jn2 jn1J12

jn4 J jk3

J45jk6 Jr

⎫⎬⎭X ñ1
v δ(πjq)

vn1
Y k̃6

p δ
(πjq)
pk6

√
1 + δmvV

J
mv,pl

√
1 + δpl

[
X ñ4

l δ
(πjq)
ln4

Y k̃3
m δ

(πjq)
mk3

]∗
δñ2ñ5

⎞⎠.

(B32)

The 3NF interaction matrix in Eq. (B30) reads

C3N
r̃r̃ ′ ≡ �

(
jn1 ,jn2 ,J12

)
�

(
J12,jk3 ,Jr

)
�

(
jn4 ,jn5 ,J45

)
�

(
J45,jk6 ,Jr

)
×

∑
m � v

l

∑
g � d

p

X ñ1
m δ

(πjq)
mn1 X ñ2

v δ
(πjq)
vn2 − (−1)jn1 +jn2 −J12X ñ1

v δ
(πjq)
vn1 X ñ2

m δ
(πjq)
mn2√

1 + δñ1ñ2 (1 + δmv)
Y k̃3

l δ
(πjq)
lk3

×W
(pph) J12J45J

′

mvl−1,gdp−1

[
X ñ4

g δ
(πjq)
gn4 X ñ5

d δ
(πjq)
dn5

− (−1)jn4 +jn5 −J45X ñ4
d δ

(πjq)
dn4

X ñ5
g δ

(πjq)
gn5

]∗

(1 + δgd )
√

1 + δñ4ñ5

(
Y k̃6

p δ
(πjq)
pk6

)∗
, (B33)

where we have the 3NF coupled in the pph channel from Eq. (B10).
The backward-in-time interaction matrix Ds̃ s̃ ′ can connect the 2h1p propagators through hole-hole, hole-particle and backward-

in-time 3NFs, according to

Ds̃ s̃ ′ ≡ Dhh
s̃s̃ ′ + Dhp

s̃s̃ ′ + D3N
s̃s̃ ′ , (B34)

with the three matrices on the right-hand side introduced in Eqs. (61), (62), and (64), respectively.
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The hole-hole interaction matrix resulting from the diagram in Fig. 2(a) reads

Dhh
s̃s̃ ′ ≡ −�

(
jk1 ,jk2 ,J12

)
�

(
J12,jn3 ,Js

)
�

(
jk4 ,jk5 ,J12

)
�

(
J12,jn6 ,Js

)
× δJ12J45δñ3ñ6

∑
m � v
l � p

[
Y k̃1

m δ
(πjq)
mk1

Y k̃2
v δ

(πjq)
vk2

− (−1)jk1 +jk2 −J12Y k̃1
v δ

(πjq)
vk1

Y k̃2
m δ

(πjq)
nk2

]∗√
1 + δgd

√
1 + δk̃1 k̃2

V̄
J12
mv,lp

× Y k̃4
l δ

(πjq)
lk4

Y k̃5
p δ

(πjq)
pk5

− (−1)jk4 +jk5 −J12Y k̃4
p δ

(πjq)
pk4

Y k̃5
l δ

(πjq)
lk5√

1 + δtp

√
1 + δk̃4 k̃5

, (B35)

while Dhp

s̃s̃ ′ results from the ring diagram in Fig. 2(b) and contains four different terms owing to the antisymmetrization specified
in Eq. (62):

Dhp

s̃s̃ ′ ≡ �
(
jk1 ,jk2 ,J12

)
�

(
J12,jn3 ,Js

)
�

(
jk4 ,jk5 ,J45

)
�

(
J45,jn6 ,Js

)1

2

∑
gd
tp

∑
J

(−1)2jk6 −2jk3
Ĵ12 Ĵ45 (2J + 1)√
1 + δk̃1 k̃2

√
1 + δk̃4 k̃5

×
⎛⎝⎧⎨⎩jk1 jk2 J12

jk5 J jn3

J45jn6 Js

⎫⎬⎭[
Y k̃2

m δ
(πjq)
mk2

X ñ3
p δ(πjq)

pn3

]∗√
1 + δmvV

J
vm,pl

√
1 + δpl Y k̃5

l δ
(πjq)
lk5

X ñ6
v δ(πjq)

vn6
δk̃1 k̃4

− (−1)jk1 +jk2 −J12

⎧⎨⎩jk2 jk1 J12

jk5 J jn3

J45jn6 Js

⎫⎬⎭[
Y k̃1

m δ
(πjq)
mk1

X ñ3
p δ(πjq)

pn3

]∗√
1 + δmvV

J
vm,pl

√
1 + δpl Y k̃5

l δ
(πjq)
lk5

X ñ6
v δ(πjq)

vn6
δk̃2 k̃4

− (−1)jk4 +jk5 −J45

⎧⎨⎩jk1 jk2 J12

jk4 J jn3

J45jn6 Js

⎫⎬⎭[
Y k̃2

m δ
(πjq)
mk2

X ñ3
p δ(πjq)

pn3

]∗√
1 + δmvV

J
vm,pl

√
1 + δpl Y k̃4

l δ
(πjq)
lk4

X ñ6
v δ(πjq)

vn6
δk̃1 k̃5

+ (−1)jk1 +jk2 −J12 (−1)jk4 +jk5 −J45

⎧⎨⎩jk2 jk1 J12

jk4 J jn3

J45jn6 Js

⎫⎬⎭[
Y k̃1

m δ
(πjq)
mk1

X ñ3
p δ(πjq)

pn3

]∗√
1 + δmvV

J
vm,pl

√
1 + δpl Y k̃4

l δ
(πjq)
lk4

X ñ6
v δ(πjq)

vn6
δk̃2 k̃5

⎞⎠.

(B36)

Finally, the backward-in-time 3NF interaction matrix in Eq. (B34) is given by

D3N
s̃s̃ ′ ≡ −�

(
jk1 ,jk2 ,J12

)
�

(
J12,jn3 ,Js

)
�

(
jk4 ,jk5 ,J45

)
�

(
J45,jn6 ,Js

)
×

∑
m � v

l

∑
g � d

p

(
Y k̃1

m δ
(πjq)
mk1

Y k̃2
v δ

(πjq)
vk2

− (−1)jk1 +jk2 −J12Y k̃1
v δ

(πjq)
vk1

Y k̃2
m δ

(πjq)
mk2

)∗√
1 + δk̃1 k̃2

(1 + δgd )

[
X ñ3

l δ
(πjq)
ln3

]∗

×W
(pph) J12J45J

′

mvl−1,gdp−1

Y k̃4
g δ

(πjq)
gk4

Y k̃5
d δ

(πjq)
dk5

− (−1)jk4 +jk5 −J45Y k̃4
d δ

(πjq)
gk4

Y k̃5
g δ

(πjq)
gk5√

1 + δk̃4 k̃5
(1 + δtp)

X ñ6
p δ(πjq)

pn6
. (B37)

APPENDIX C: SELF-ENERGY WITHOUT
RENORMALIZATION OF THE PROPAGATORS

This Appendix discusses how the ADC(3) equations need
to be modified when one releases the assumption of full
self-consistency. This is the case for most of applications
in quantum chemistry and also for state-of-the-art nuclear
structure studies, where fully dressed propagators become too
complex to be able to expand the dynamic self-energy 
̃αβ(ω).
In the latter case, one is forced to implement self-consistency
only at the level of the static self-energy, Eq. (18), while
Eqs. (A1)–(A4) that generate the dynamic part are based on
an uncorrelated (bare) propagator (this is the so–called “sc0”

approximation introduced and discussed in Ref. [35]). Without
self-consistency, one needs to follow the standard perturbation
approach and to expand the self-energy in terms of reference
mean-field propagators. This means that nonskeleton diagrams
also need to be added to the perturbative expansion that is used
to constrain the ADC(n) interaction and coupling matrices.
For calculations up to order n = 3, there are substantially
two consequences. First, Eq. (14) for the static self-energy
must be re-expressed in terms of the reference propagator as
shown in Appendix C 1. One does this by expanding both the
(correlated) 1B and 2B density matrices, ραβ and �αβ,γ δ , with
the inclusion of nonskeleton terms. The three terms of Eq. (14)
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+= +

FIG. 9. Diagrammatic representation of the first-order part Ũ (1)

(zigzag line) of the effective 1B interaction of Eq. (13). Fermionic
lines here denote uncorrelated propagators. Dotted lines denote the
1B potential Uαβ , while short (long) dashed lines denote 2N (3N)
interactions. This is the fist term of the expansion Eq. (C2) and it is
given in full by Eq. (C4).

still generate the skeleton diagrams of Fig. 9 but now there
are 16 additional higher order contributions in terms of the
effective forces Ũ and Ṽ , as shown in Figs. 12 and 14 below.
Note that a few of these diagrams are of skeleton type and they
should be included also when Ũ is calculated self-consistently.
They result from the skeleton expansion of the 2B Green’s
function and density matrix [see Eqs. (14) and (17)] and
will be identified further below. Second, the dynamic self-
energy receives four third-order nonskeleton diagrams that are
obtained by inserting the (first-order term of the) 1B operator
into the uncorrelated fermionic lines that form the diagrams
of the dynamic self-energy at second order. These are derived
in Section C 2 and they generate additional contributions to
the ADC(3) equations. It is useful to note that these additional
terms cancel exactly when one chooses a Hartree-Fock (HF)
state as the reference (but not in the general case).

In the following, we will consider the expansion with
respect to the uncorrelated propagator g(0)(ω) that is associated
with a mean-field reference state |φA

0 〉. Hence, we redefine
the transition amplitudes of the unperturbed (A ± 1)-body
systems, denoted by |φ(A±1)〉, as follows:

Zi=n,k
α ≡

{(
Xn

α

)∗ ≡ 〈
φA

0

∣∣aα

∣∣φA+1
n

〉
Y k

α ≡ 〈
φA−1

k

∣∣aα

∣∣φA
0

〉
,

(C1)

which build the reference propagator similarly to Eq. (4).
In general, to obtain the ADC(3) approximation for such
reference state, one only needs to substitute the amplitudes
from Eq. (6) in the expressions for Eqs. (A1)–(A4) with the
corresponding ones from Eq. (C1). Note that, differently from
the true Dyson eigenstates of Eq. (6), the orbitals n and k of
Eq. (C1) form a complete orthonormal set. Thus, the great ad-
vantage in using a mean-field reference state is that the numbers
of particle and hole states is drastically reduced and, in fact,
tractable. In the following we will consider the most general
case in which these orbits are different from the model space
basis {α}, then the Zi

α give the unitary transformation between
the two sets. In standard applications of perturbation theory it is
customary to identify the basis {α} with the unperturbed orbits
of the reference state. One can always reduce to this particular
case by substituting Xn

α → δnα and Y k
α → δkα , which recovers

the expressions reported in Refs. [20,21].

+=

FIG. 10. Diagrammatic representation of Ṽ (1) given by Eq. (C5).
This is the first-order term in the expansion Eq. (C3) of the effective
2N interaction.

FIG. 11. As described in the caption of Fig. 9 but for the second-
order term Ũ (2).

1. Static self-energy

Equation (14) for the 1B effective interaction is exact and
it is given in terms of correlated 1B and 2B propagators: for
this reason, practical calculations (such as the above mentioned
sc0 approach) may follow an iterative procedure to “dress” the
propagator and evaluate self-consistently the first-order static
irreducible self-energy. Alternatively, one can consider the
explicit expansion of 
∞

αβ in terms of uncorrelated propagators.
This should be done up to the same order n that matches the
ADC(n) truncation for 
̃αβ(ω). Thus, we expand the effective
interaction Ũ as follows:

Ũ =
∑
αβ

(
Ũ

(1)
αβ + Ũ

(2)
αβ + Ũ

(3)
αβ + · · · )a†

αaβ. (C2)

In a similar fashion, one considers the expansion (up to
second order) of Ṽ , that is

Ṽ =
∑
αβ,γ δ

(
Ṽ

(1)
αβ,γ δ + Ṽ

(2)
αβ,γ δ + · · · )a†

αa
†
βaδaγ . (C3)

The first-order term in Eq. (C2) is given by the expression in
Eq. (14) once correlated propagators are substituted with bare
ones. It is composed by the three diagrams represented in Fig. 9
and can be written in terms of one-body reduced density matrix,
ρ

(0)
αβ = −ih̄g

(0)
αβ (t − t+), which is the uncorrelated version of

Eq. (16). We have

Ũ
(1)
αβ = −Uαβ +

∑
γ δ

Vαγ,βδ ρ
(0)
δγ + 1

4

∑
γ δ
εη

Wαγ ε,βδη ρ
(0)
δγ ρ(0)

ηε .

(C4)

Similarly, the explicit expression for the matrix element Ṽ (1)
αβ,γ δ

is depicted in Fig. 10. It can be directly read from Eq. (15)
once the correlated fermionic loop is substituted with an
uncorrelated one:

Ṽ
(1)
αβ,γ δ = Vαβ,γ δ +

∑
εη

Wαβε,γ δη ρ(0)
η,ε . (C5)

FIG. 12. As described in the caption of Fig. 9 but for the second-
order term Ũ (2) rewritten in terms of Ṽ (1).
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The second-order term Ũ (2) is composed by eight different Feynman diagrams that can be grouped into four by using the
effective interaction Ũ (1):

Ũ
(2)
αβ = −ih̄

∫
dω

2π

∑
εη
γ δ

[
Vαγ,βδ +

∑
εη

Wαγ ε,βδη ρ(0)
ηε

]
g

(0)
δε (ω)g(0)

ηγ (ω)Ũ (1)
εη + (ih̄)3

4

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π

×
∑
εηνδ
γ λμρ

Wαγ ε,βδη g(0)
νγ (ω1)g(0)

δρ (ω2)g(0)
λε (ω3)g(0)

ημ(ω1 + ω3 − ω2)

[
Vρμ,νλ +

∑
εη

Wρμε,νλη ρ(0)
ηε

]
, (C6)

with the corresponding diagrams displayed in Fig. 11. The terms in Eq. (C6) can be further reduced by using the effective 2NF
at the first order,

Ũ
(2)
αβ = −ih̄

∫
dω

2π

∑
εη
γ δ

Ṽ
(1)
αγ,βδ g

(0)
δε (ω)g(0)

ηγ (ω)Ũ (1)
εη

+ (ih̄)3

4

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π

∑
εηνδ
γ λμρ

Wαγ ε,βδη g(0)
νγ (ω1)g(0)

δρ (ω2)g(0)
λε (ω3)g(0)

ημ(ω1 + ω3 − ω2)Ṽ (1)
ρμ,νλ, (C7)

as depicted in Fig. 12.
When the integration over the frequencies is performed, the second-order term Ũ (2) becomes

Ũ
(2)
αβ =

∑
εη
γ δ

Ṽ
(1)
αγ,βδ Ũ (1)

εη

[∑
n1k2

(
X

n1
δ

)∗
Xn1

ε Y k2
η

(
Y k2

γ

)∗

−(
ε+
n1 − ε−

k2

) + iη
−

∑
k1n2

Y
k1
δ

(
Y k1

ε

)∗(
Xn2

η

)∗
Xn2

γ

−(
ε−
k1

− ε+
n2

) − iη

]

+ 1

4

∑
εηνδ
γ λμρ

Wαγ ε,βδη

⎡⎢⎢⎢⎣∑
n1n2
k3k4

(
Xn1

ν X
n2
λ Y k3

ρ Y k4
μ

)∗
Xn1

γ Xn2
ε Y

k3
δ Y k4

η

−(
ε+
n1 + ε+

n2 − ε−
k3

− ε−
k4

) + iη
−

∑
k1k2
n3n4

Y k1
ν Y

k2
λ Xn3

ρ Xn4
μ

(
Y k1

γ Y k2
ε X

n3
δ Xn4

η

)∗

−(
ε−
k1

+ ε−
k2

− ε+
n3 − ε+

n4

) − iη

⎤⎥⎥⎥⎦Ṽ
(1)
ρμ,νλ. (C8)

Note that the last term on the right-hand side of Eq. (C8) corresponds the last diagram in Fig. 12 and it is of skeleton type. This
is the second-order contribution to 
∞

αβ that would appear also in the self-consistent expansion.
As we discussed above, it is customary in several practical applications to assume for the model space the very same orbits

that diagonalize the unperturbed Hamiltonian, Ĥ0, and define the reference state. In this case the amplitudes Eq. (C1) become
diagonal in the two indexes i and α. Similarly, one may chose an HF reference state and in this case the term Ũ (1) vanishes
because of the specific definition of the HF potential [as it is obvious from Eq. (C4)]. Whether or not it is convenient to take these
assumptions—and in particular which is the best reference state to use–depends of the specific computational approach and on
the specific system one needs to solve. For completeness, we give the example of how Eq. (C8) would simplify if both these
assumptions are made:

Ũ
(2)
αβ =

⎡⎣1

4

∑
μ,ν /∈F

∑
ρ,λ∈F

Vρλ,μν

1

(ε−
ρ + ε−

λ − ε+
μ − ε+

ν ) + iη
Wαμν,βρλ + Wαρλ,βμν

1

(ε−
ρ + ε−

λ − ε+
μ − ε+

ν ) + iη
Vμν,ρλ

⎤⎦, (C9)

where we have used the notations ∈F (/∈F ) to restrict the sums over occupied (unoccupied) orbits.
For the second-order term Ṽ

(2)
αβ,γ δ in the expansion of Eq. (C3), we have the three diagrams on the right-hand side of Fig. 13

with the following expressions:

Ṽ
(2)
αβ,γ δ = ih̄

∫
dω

2π

∑
εη
λμ

Wαβε,γ δη g(0)
με (ω)g(0)

ην (ω)Uνμ − ih̄

∫
dω

2π

∑
εην
λμρ

Wαβε,γ δη g(0)
με (ω)g(0)

ην (ω)ρ(0)
λρ Vνρ,μλ

− ih̄

2

∫
dω

2π

∑
εηνσ
λμρτ

Wαβε,γ δη g(0)
με (ω)g(0)

ην (ω)Wνλσ,μρτρ
(0)
ρλρ(0)

τσ

= −ih̄

∫
dω

2π

∑
εη
νμ

Wαβε,γ δη g(0)
με (ω)g(0)

ην (ω)Ũ (1)
νμ , (C10)
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where in the last equality we have written a more compact expression for Ṽ (2) by using the first term in the expansion of Ũ . The
integration over the frequency in Eq. (C10) gives the expression of Ṽ (2) in terms of the uncorrelated transition amplitudes:

Ṽ
(2)
αβ,γ δ =

∑
εη
μν

Wαβε,γ δη

[∑
n1k2

(
Xn1

μ Y k2
ν

)∗
Xn1

ε Y k2
η

−(
ε+
n1 − ε−

k2

) + iη
−

∑
k1n2

Y k1
μ Xn2

ν

(
Y k1

ε Xn2
η

)∗

−(
ε−
k1

− ε+
n2

) − iη

]
Ũ (1)

νμ , (C11)

which is zero in the specific case of an HF reference state, due to Ũ (1) vanishing.
The expansion of Ũ in Eq. (C2) contains also the term Ũ

(3)
αβ composed by the 14 contributions shown in Fig. 14. By using the

same Feynman rules applied for the terms at second and third order (see Appendix A of Ref. [22]), one can derive the expressions
for those fourteen diagrams. Here we give the final equations after all integrals over the frequencies have been performed.
Using the compact notation for npnh coupled cluster amplitudes of Eqs. (46)–(48) and assuming Einstein’s summing convention
throughout, they are listed below according to the order of appearance in Fig. 14:

Ũ
(3)
αβ (14a) = Ṽ

(1)
αγ,βδ

(
X

n1
δ

)∗
Xn2

γ t
n1
k3

(
t
n2
k3

)∗ − Ṽ
(1)
αγ,βδ

(
Y k2

γ

)∗
Y

k1
δ t

n3
k2

(
t
n3
k1

)∗

+ Ṽ
(1)
αγ,βδ Ũ (1)

εη Ũ (1)
μν

{ (
Xn1

ν Xn2
η Y k3

ε

)∗
Xn1

γ Xn2
μ Y

k3
δ[ − (

ε+
n1 − ε−

k3

) + iη
][ − (

ε+
n2 − ε−

k3

) + iη
] −

(
Y k1

γ Y k2
μ X

n3
δ

)∗
Y k1

ν Y k2
η Xn3

ε[ − (
ε−
k2

− ε+
n3

) − iη
][ − (

ε−
k1

− ε+
n3

) − iη
]

+
(
X

n1
δ Xn2

η Y k3
γ

)∗
Xn1

ε Xn2
μ Y k3

ν[ − (
ε+
n2 − ε−

k3

) + iη
][ − (

ε+
n1 − ε−

k3

) + iη
] −

(
Y k1

μ Y k2
ε Xn3

ν

)∗
Y k1

η Y
k2
δ Xn3

γ[ − (
ε−
k1

− ε+
n3

) − iη
][ − (

ε−
k2

− ε+
n3

) − iη
]}; (C12a)

Ũ
(3)
αβ (14b) = Ṽ

(1)
αγ,βδ

[(
X

n1
δ Y k2

γ

)∗
t
n1
k2

− (
t
n2
k1

)∗
Xn2

γ Y
k1
δ

]
; (C12b)

Ũ
(3)
αβ (14c) = −1

2
Ṽ

(1)
αγ,βδ

[(
X

n2
δ

)∗
Xn1

γ

(
t
n1n3
k4k5

)∗
t
n2n3
k4k5

+ (
Y k2

γ

)∗
Y

k1
δ

(
t
n4n5
k1k3

)∗
t
n4n5
k2k3

]
− 1

2
Ṽ

(1)
αγ,βδ V

(1)
μτ,νζ

{(
Xn2

ν

)∗
Xn1

μ Xn2
γ Xn3

τ Y
k4
ζ Y

k5
δ[ − (

ε−
k5

− ε+
n2

) − iη
] (

t
n1n3
k4k5

)∗ +
(
Y k1

γ Y k2
μ Y k3

τ X
n4
δ X

n5
ζ

)∗
Y k1

ν[ − (
ε−
k1

− ε+
n4

) − iη
] t

n4n5
k2k3

}

− 1

2
Ṽ

(1)
αγ,βδ Ṽ (1)

εσ,ηρ

{(
X

n1
δ Xn2

η Xn3
ρ Y k4

γ Y k5
σ

)∗
Xn1

ε[ − (
ε−
k4

− ε+
n1

) − iη
] t

n2n3
k4k5

+
(
Y k1

ε

)∗
Y

k1
δ Y k2

η Y k3
ρ Xn4

γ Xn5
σ[ − (

ε−
k1

− ε+
n4

) − iη
] (

t
n4n5
k2k3

)∗
}

; (C12c)

Ũ
(3)
αβ (14d) = 1

12
Ṽ

(1)
αγ,βδ

[ − (
X

n2
δ

)∗
Xn1

γ

(
t
n1n3n4
k5k6k7

)∗
t
n2n3n4
k5k6k7

− (
Y k1

γ

)∗
Y

k2
δ

(
t
n5n6n7
k2k3k4

)∗
t
n5n6n7
k1k3k4

]
+ 1

12
Ṽ

(1)
αγ,βδ Wχηε,λνμ

{(
X

n1
λ

)∗
Xn1

γ Xn2
χ Xn3

η Xn4
ε Y

k5
δ Y k6

ν Y k7
μ[ − (

ε+
n1 − ε−

k5

) + iη
] (

t
n2n3n4
k5k6k7

)∗ +
(
Y k1

γ Y k2
χ Y k3

η Y k4
ε X

n5
δ Xn6

ν Xn7
μ

)∗
Y

k1
λ[ − (

ε+
n5 − ε−

k1

) + iη
] t

n5n6n7
k2k3k4

}

+ 1

12
Ṽ

(1)
αγ,βδ Wσζθ,τρκ

{(
X

n1
δ Xn2

τ Xn3
ρ Xn4

κ Y k5
γ Y

k6
ζ Y

k7
θ

)∗
Xn1

σ[ − (
ε+
n1 − ε−

k5

) + iη
] t

n2n3n4
k5k6k7

+
(
Y k1

σ

)∗
Y

k1
δ Y k2

τ Y k3
ρ Y k4

κ Xn5
γ X

n6
ζ X

n7
θ[ − (

ε+
n5 − ε−

k1

) + iη
] (

t
n5n6n7
k2k3k4

)∗
}

;

(C12d)

Ũ
(3)
αβ (14e) = 1

4

∑
εηνδ
γ λμρ

Wαγ ε,βδη

⎡⎢⎢⎢⎣∑
n1n2
k3k4

(
Xn1

ν X
n2
λ Y k3

ρ Y k4
μ

)∗
Xn1

γ Xn2
ε Y

k3
δ Y k4

η

−(
ε+
n1 + ε+

n2 − ε−
k3

− ε−
k4

) + iη
−

∑
k1k2
n3n4

Y k1
ν Y

k2
λ Xn3

ρ Xn4
μ

(
Y k1

γ Y k2
ε X

n3
δ Xn4

η

)∗

−(
ε−
k1

+ ε−
k2

− ε+
n3 − ε+

n4

) − iη

⎤⎥⎥⎥⎦Ṽ
(2)
ρμ,νλ; (C12e)

Ũ
(3)
αβ (14f) = Wαγε,βδη

[(
X

n1
δ Xn2

η Y k3
γ Y k4

ε

)∗
t
n1
k3

t
n2
k4

+ (
X

n1
δ Y k3

γ

)∗
Xn2

ε Y k4
η t

n1
k3

(
t
n2
k4

)∗

+ (
Y k2

ε Xn4
η

)∗
Y

k1
δ Xn3

γ t
n4
k2

(
t
n3
k1

)∗ + Y
k1
δ Y k2

η Xn3
γ Xn4

ε

(
t
n4
k2

)∗(
t
n3
k1

)∗]
; (C12f)

Ũ
(3)
αβ (14g) = −1

2
Wαγε,βδη

[ − (
Xn1

η

)∗
Xn2

ε Xn3
γ Y

k5
δ t

n1
k4

(
t
n3n2
k5k4

)∗ + (
Y k2

ε Y k3
γ X

n5
δ

)∗
Y k1

η

(
t
n4
k1

)∗
t
n5n4
k3k2

]
− 1

2
Wαγε,βδη U (1)

σχ

{
−

(
Xn1

η Xn2
χ X

n3
δ Y k4

ε Y k5
γ

)∗
Xn1

σ[ − (
ε+
n1 + ε+

n3 − ε−
k4

− ε−
k5

) + iη
] tn3n2

k5k4
+

(
Y k1

σ

)∗
Y k1

η Y k2
χ Y

k3
δ Xn4

γ Xn5
ε

ε−
k1

+ ε−
k3

− ε+
n4 − ε+

n5 + iη

(
t
n4n5
k3k2

)∗
}

− 1

2
Wαγε,βδη Ṽ

(1)
μλ,νρ

{
−

(
Xn1

ρ Xn3
ν Y k5

μ

)∗
Xn1

ε X
n2
λ Xn3

γ Y k4
η Y

k5
δ[ − (

ε+
n1 + ε+

n3 − ε−
k4

− ε−
k5

) + iη
] (tn2

k4

)∗ +
(
Y k1

ε Y
k2
λ Y k3

γ Xn4
η X

n5
δ

)∗
Y k1

ρ Y k3
ν Xn5

μ

ε−
k1

+ ε−
k3

− ε+
n4 − ε+

n5 + iη
t
n4
k2

}
; (C12g)
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Ũ
(3)
αβ (14h) = −1

2
Wαγε,βδη

[ − (
Xn1

η X
n3
δ Y k5

γ

)∗
Xn2

ε

(
t
n2
k4

)∗
t
n3n1
k5k4

+ (
Y k2

ε

)∗
Y k1

η Y
k3
δ Xn5

γ t
n4
k2

(
t
n5n4
k3k1

)∗]
− 1

2
Wαγε,βδη Ũ (1)

σχ

{
−

(
Xn2

χ

)∗
Xn1

σ Xn2
ε Xn3

γ Y k4
η Y

k5
δ[ − (

ε+
n2 + ε+

n3 − ε−
k4

− ε−
k5

) + iη
] (tn3n1

k5k4

)∗ +
(
Y k1

ε Y k2
σ Y k3

γ Xn4
η X

n5
δ

)∗
Y k1

χ

ε−
k1

+ ε−
k3

− ε+
n4 − ε+

n5 + iη
t
n5n4
k3k2

}

− 1

2
Wαγε,βδη Ṽ

(1)
μλ,νρ

{
−

(
Xn1

η Xn2
ρ X

n3
δ Y k4

ε Y k5
γ

)∗
X

n1
λ Xn3

μ Y k5
ν[ − (

ε+
n1 + ε+

n3 − ε−
k4

− ε−
k5

) + iη
] tn2

k4
+

(
Y

k2
λ Y k3

μ Xn5
ν

)∗
Y k1

ρ Y k2
η Y

k3
δ Xn4

ε Xn5
γ

ε−
k2

+ ε−
k3

− ε+
n4 − ε+

n5 + iη

(
t
n4
k1

)∗
}

;

(C12h)

Ũ
(3)
αβ (14i) = 1

8
Wαγε,βδη

[(
X

n2
δ Xn4

η

)∗
Xn1

γ Xn3
ε

(
t
n1n3
k5k6

)∗
t
n2n4
k5k6

+ (
Y k1

γ Y k3
ε

)∗
Y

k2
δ Y k4

η

(
t
n5n6
k2k4

)∗
t
n5n6
k1k3

]
+ 1

8
Wαγε,βδη Ṽ

(1)
τσ,ζχ

{
+

(
X

n1
ζ Xn3

χ

)∗
Xn1

γ Xn2
τ Xn3

ε Xn4
σ Y

k5
δ Y k6

η[ − (
ε+
n1 + ε+

n3 − ε−
k5

− ε−
k6

) + iη
] (tn2n4

k5k6

)∗ +
(
Y k1

γ Y k2
τ Y k3

ε Y k4
σ X

n5
δ Xn6

η

)∗
Y

k1
ζ Y k3

χ

ε−
k1

+ ε−
k3

− ε+
n5 − ε+

n6 + iη
t
n5n6
k2k4

}

+ 1

8
Wαγε,βδη Ṽ

(1)
μλ,νρ

{
+

(
Xn1

ν X
n2
δ Xn3

ρ Xn4
η Y k5

γ Y k6
ε

)∗
Xn2

μ X
n4
λ[ − (

ε+
n2 + ε+

n4 − ε−
k5

− ε−
k6

) + iη
] t

n1n3
k5k6

+
(
Y k2

μ Y
k4
λ

)∗
Y k1

ν Y
k2
δ Y k3

ρ Y k4
η Xn5

γ Xn6
ε

ε−
k2

+ ε−
k4

− ε+
n5 − ε+

n6 + iη

(
t
n5n6
k1k3

)∗
}

;

(C12i)

Ũ
(3)
αβ (14j) = 1

2
Wαγε,βδη

[(
X

n1
δ Y k4

γ

)∗
Xn2

ε Y k5
η

(
t
n2n3
k5k6

)∗
t
n1n3
k4k6

+ (
Y k2

ε Xn5
η

)∗
Y

k1
δ Xn4

γ

(
t
n4n6
k1k3

)∗
t
n5n6
k2k3

]
+ 1

2
Wαγε,βδη Ṽ

(1)
μλ,νρ

{ (
Xn1

ν Y k4
μ

)∗
Xn1

γ X
n2
λ Xn3

ε Y
k4
δ Y k5

ρ Y k6
η[ − (

ε+
n1 + ε+

n3 − ε−
k4

− ε−
k6

) + iη
] (tn3n2

k6k5

)∗ +
(
Y k1

γ Y
k2
λ Y k3

ε X
n4
δ Xn5

ρ Xn6
η

)∗
Y k1

ν Xn4
μ

ε−
k2

+ ε−
k3

− ε+
n5 − ε+

n6 + iη
t
n6n5
k3k2

}

+ 1

2
Wαγε,βδη Ṽ

(1)
τσ,ζχ

{ (
X

n1
δ Xn2

η Xn3
χ Y k4

γ Y k5
ε Y k6

σ

)∗
Xn2

τ Y
k5
ζ[ − (

ε+
n1 + ε+

n2 − ε−
k4

− ε−
k5

) + iη
] tn1n3

k4k6
+

(
Y k2

τ X
n5
ζ

)∗
Y

k1
δ Y k2

η Y k3
χ Xn4

γ Xn5
ε Xn6

σ

ε−
k1

+ ε−
k2

− ε+
n4 − ε+

n5 + iη

(
t
n4n6
k1k3

)∗
}

;

(C12j)

Ũ
(3)
αβ (14k) = 1

4
Wαγε,βδη

[
Y

k1
δ Y k5

η Xn2
γ Xn7

ε

ε+
n2 + ε+

n7 − ε−
k1

− ε−
k5

− iη

(
Y k1

ν Y k5
κ Xn2

ρ

)∗
Wνκπ,ρθφXn3

π Y
k6
θ Y

k4
φ

(
t
n3n7
k4k6

)∗

− (
Y k2

γ X
n1
δ Xn5

η

)∗
Xn7

ε t
n1n3n5
k2k4k6

(
t
n3n7
k4k6

)∗ + Xn2
γ

(
Y k7

ε

)∗
Y

k1
δ Y k5

η

(
t
n2n4n6
k1k3k5

)∗
t
n4n6
k3k7

+ Xn2
γ Xn7

ε Y
k1
δ Y k5

η

(
t
n2n4n6
k1k3k5

)∗ Xn6
μ Xn7

τ Y k3
σ

(
X

n7
λ

)∗

ε+
n2 + ε+

n7 − ε−
k1

− ε−
k5

− iη
Ṽ

(1)
μτ,λσ

+ (
Y k2

γ Y k7
ε X

n1
δ Xn5

η

)∗ Xn1
ν Xn5

κ

(
Y k3

π

)∗
Y k2

ρ

(
X

n6
θ X

n4
φ

)∗

ε+
n1 + ε+

n5 − ε−
k2

− ε−
k7

− iη
Wνκπ,ρθφt

n4n6
k3k7

−
(
Y k2

γ Y k7
ε X

n1
δ Xn5

η

)∗

ε−
k2

+ ε−
k7

− ε+
n1 − ε+

n5 + iη
t
n1n3n5
k2k4k6

(
Y k6

μ Y k4
τ

)∗
Ṽ

(1)
μτ,λσ Y

k7
λ

(
Xn3

σ

)∗
]

; (C12k)

Ũ
(3)
αβ (14l) = 1

4
Wαγε,βδη

[
Xn2

γ Xn5
ε Y

k1
δ Y k7

η

ε+
n2 + ε+

n5 − ε−
k1

− ε−
k7

+ iη

(
t
n2n4n5
k1k3k6

)∗(
Y k7

μ

)∗
Xn4

τ Ṽ
(1)
μτ,λσ Y

k6
λ Y k3

σ

+
(
Y k2

γ Y k5
ε X

n1
δ Xn7

η

)∗

ε−
k2

+ ε−
k5

− ε+
n1 − ε+

n7 + iη
Xn1

ν

(
Y k6

κ Y k3
π

)∗
Wνκπ,ρθφY k2

ρ Y
k5
θ

(
X

n4
φ

)∗
t
n4n7
k3k6

− Xn2
γ Xn5

ε Y
k1
δ

(
Xn7

η

)∗(
t
n2n4n5
k1k3k6

)∗
t
n4n7
k3k6

+ (
Y k2

γ X
n1
δ Y k5

ε

)∗
Y k7

η t
n1n3n6
k2k4k5

(
t
n3n6
k4k7

)∗

− Xn2
γ Xn5

ε Y
k1
δ Y k7

η

ε+
n2 + ε+

n5 − ε−
k1

− ε−
k7

+ iη

(
Y k1

ν

)∗
Xn6

κ Xn3
π Wνκπ,ρθφ

(
Xn2

ρ X
n5
θ

)∗
Y

k4
φ

(
t
n3n6
k4k7

)∗

−
(
Y k2

γ Y k5
ε X

n1
δ Xn7

η

)∗

ε−
k2

+ ε−
k5

− ε+
n1 − ε+

n7 + iη
t
n1n3n6
k2k4k5

Xn7
μ

(
Y k4

τ

)∗
Ṽ

(1)
μτ,λσ

(
X

n6
λ Xn3

σ

)∗
]

; (C12l)
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Ũ
(3)
αβ (14m) = 1

4
Wαγε,βδη

[(
X

n1
δ Y k5

γ

)∗
Xn2

ε Y k6
η

(
t
n2n3n4
k6k7k8

)∗
t
n1n3n4
k5k7k8

+ (
Y k2

ε Xn6
η

)∗
Y

k1
δ Xn5

γ

(
t
n5n7n8
k1k3k4

)∗
t
n6n7n8
k2k3k4

]
+ 1

4
Wαγε,βδη Wνκπ,ρθφ

{(
Xn2

ρ Y k6
ν

)∗
Xn1

ε Xn2
γ Xn3

κ Xn4
π Y k5

η Y
k6
δ Y

k7
θ Y

k8
φ[ − (

ε+
n1 + ε+

n2 − ε−
k5

− ε−
k6

) + iη
] (

t
n1n3n4
k5k7k8

)∗

+
(
Y k1

ε Y k2
γ Y k3

κ Y k4
π Xn5

η X
n6
δ X

n7
θ X

n8
φ

)∗
Y k2

ρ Xn6
ν

ε−
k1

+ ε−
k2

− ε+
n5 − ε+

n6 + iη
t
n5n7n8
k1k3k4

}

+ 1

4
Wαγε,βδη Wμτχ,λσζ

{(
X

n1
δ Xn2

η Xn3
σ X

n4
ζ Y k5

γ Y k6
ε Y k7

τ Y k8
χ

)∗
Xn2

μ Y
k6
λ[ − (

ε+
n1 + ε+

n2 − ε−
k5

− ε−
k6

) + iη
] t

n1n3n4
k5k7k8

+
(
Y k2

μ X
n6
λ

)∗
Y

k1
δ Y k2

η Y k3
σ Yζ

k4Xn5
γ Xn6

ε Xn7
τ Xn8

χ

ε−
k1

+ ε−
k2

− ε+
n5 − ε+

n6 + iη

(
t
n5n7n8
k1k3k4

)∗
}

; (C12m)

Ũ
(3)
αβ (14n) = 1

24
Wαγε,βδη

[(
X

n2
δ Xn4

η

)∗
Xn1

γ Xn3
ε

(
t
n1n3n5
k6k7k8

)∗
t
n2n4n5
k6k7k8

+ (
Y k2

γ Y k4
ε

)∗
Y

k1
δ Y k3

η

(
t
n6n7n8
k1k3k5

)∗
t
n6n7n8
k2k4k5

]
+ 1

24
Wαγε,βδη Wνκπ,ρθφ

{(
X

n1
δ Xn2

ρ Xn3
η X

n4
θ X

n5
φ Y k6

γ Y k7
ε Y k8

π

)∗
Xn1

ν Xn3
κ[ − (

ε+
n1 + ε+

n3 − ε−
k6

− ε−
k7

) + iη
] t

n2n4n5
k6k7k8

+
(
Y k2

ν Y k4
κ

)∗
Y k1

ρ Y
k2
δ Y

k3
θ Y k4

η Y
k5
φ Xn6

γ Xn7
ε Xn8

π

ε−
k2

+ ε−
k4

− ε+
n6 − ε+

n7 + iη

(
t
n6n7n8
k1k3k5

)∗
}

+ 1

24
Wαγε,βδη Wμτχ,λσζ

{(
X

n2
λ Xn4

σ

)∗
Xn1

μ Xn2
γ Xn3

τ Xn4
ε Xn5

χ Y
k6
δ Y k7

η Y
k8
ζ[ − (

ε+
n2 + ε+

n4 − ε−
k6

− ε−
k7

) + iη
] (

t
n1n3n5
k6k7k8

)∗

+
(
Y k1

γ Y k2
μ Y k3

ε Y k4
τ Y k5

χ X
n6
δ Xn7

η X
n8
ζ

)∗
Y

k1
λ Y k3

σ

ε−
k1

+ ε−
k3

− ε+
n6 − ε+

n7 + iη
t
n6n7n8
k2k4k5

}
. (C12n)

Together with the last term of Eq. (C8), the third-order
diagrams in Figs. 14(e) and 14(i)–14(n) are skeleton and
therefore they would need to be included in a fully self-
consistent ADC(3) formulation. Note, however, that Eq. (C8)
and Fig. 14(e) reduce to a single contribution if the full Ṽ ,
from Eq. (15), is used. Again, choosing an HF state as the
unperturbed reference would force the diagrams of Figs. 14(a)
and 14(f)–14(h) to vanish.

2. Dynamic self-energy

When a self-consistent formulation is possible, some of
the correlation effects beyond mean field are already included
through the use of dressed reference propagators. However,

FIG. 13. As described in the caption of Fig. 10 but for the second-
order term Ṽ (2).

for a reference state that is not dressed, additional nonskeleton
diagrams contribute to the energy-dependent self-energy at
third and higher orders. Hence, their contributions should be
added to the ADC(n) equations.

Specifically, at the ADC(3) level, the one-particle irre-
ducible and interaction-irreducible diagrams considered for the
energy-dependent self-energy in Sec. III and Appendix A must
be complemented with the four Feynman diagrams of Fig. 15.
Diagrammatically, they are obtained by inserting the first-order
1B effective interaction Ũ (1) of Fig. 9 into the second-order
diagrams of Fig. 1. Since we are not considering four and higher
orders here, only the Ũ (1) needs to be included for ADC(3).

In this case, the ADC(3) expansion of the self-energy
matrices that appear in Eq. (28) is enriched with addi-
tional coupling corrections. These are already listed in
Eqs. (A1) and (A2), respectively, for the forward-in-time
and backward-in-time cases, and they are repeated here for
completeness:

M(II)
jα =

{
M(IIr)

rα + M(IIs)
rα if j = r (2p1h),

M(IIt)
qα + M(IIu)

qα if j = q (3p2h),
(C13)

N(II)
αk =

{
N(IIr)

αs + N(IIs)
αs if k = s (2h1p),

N(IIt)
αu + N(IIu)

αu if k = u (3h2p).
(C14)
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FIG. 14. As described in the caption of Fig. 9 but for the third-order term Ũ (3).

Also, for the interaction matrices, the nonskeleton expansion
is enriched by additional Cjj ′ and Dkk′ matrices. These terms
are included in Eqs. (A3) and (A4) and are

Cjj ′ =

⎧⎪⎪⎨⎪⎪⎩
CŨp

rr ′ + CŨh
rr ′ if j = r and j ′ = r ′ (2p1h),

CŨp
qq ′ + CŨh

qq ′ if j = q and j ′ = q ′ (3p2h),

0 otherwise,

(C15)

Dkk′ =

⎧⎪⎪⎨⎪⎪⎩
DŨh

ss ′ + DŨp
ss ′ if k = s and k′ = s ′ (2h1p),

DŨp
uu′ + DŨh

uu′ if k = u and k′ = u′ (3h2p),

0 otherwise.

(C16)

a. ADC(3) terms with 2 p1h and 2h1 p ISCs

By following the same procedure used to find the expres-
sions of the coupling matrices containing 2NFs and/or 3NFs,
we can derive the analogous expressions of Mjα and Nαk

containing one Ũ insertion and expressed in terms of the
uncorrelated transition amplitudes of Eq. (C1).

From the Goldstone-Feynman diagrams in Figs. 15(r) and
15(s), we find

M(IIr)
rα ≡ −1√

2
A12

Xn1
γ Ũ

(1)
γ δ Y

k4
δ

ε−
k4

− ε+
n1

(
Y k4

μ

)∗
Xn2

ν Y
k3
λ Ṽμν,αλ, (C17)

and

M(IIs)
rα ≡ 1√

2

Xn4
γ Ũ

(1)
γ δ Y

k3
δ

ε−
k3

− ε+
n4

Xn1
μ Xn2

ν

(
X

n4
λ

)∗
Ṽμν,αλ, (C18)

respectively.
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(r) (s)

(t) (u)

FIG. 15. Third-order nonskeleton diagrams of the dynamic self-
energy, complementing the ones in Figs. 2 and 6, for the general
ADC(3), not based on a self-consistent reference propagator. Zigzag
lines represent the effective 1B interaction of Eq. (C4).

The 2p1h interaction matrices in Eq. (C15) are

CŨp
rr ′ = 1

2
A12A45 Xn1

γ Ũ
(1)
γ δ

(
X

n4
δ

)∗
δn2n5δk3k6, (C19)

and

CŨh
rr ′ = −1

2
A12Y

k3
δ Ũ

(1)
γ δ

(
Y k6

γ

)∗
δn1n4δn2n5 . (C20)

In the backward-in-time Goldstone diagrams of Figs. 15(r)
and 15(s) one finds the coupling matrices,

N(IIr)
αs ≡ 1√

2
Ṽαλ,μνA12

Xn4
γ Ũ

(1)
γ δ Y

k1
δ

ε−
k1

− ε+
n4

(
Xn4

μ

)∗
Y k2

ν X
n3
λ (C21)

and

N(IIs)
αs ≡ −1√

2
Ṽαλ,μν

Xn3
γ Ũ

(1)
γ δ Y

k4
δ

ε−
k4

− ε+
n3

Y k1
μ Y k2

ν

(
Y

k4
λ

)∗
, (C22)

while the corresponding interaction matrices in Eq. (C16)
connecting 2h1p ISCs are

DŨh
ss ′ = 1

2
A12A45

(
Y k1

γ

)∗
Ũ

(1)
γ δ Y

k4
δ δk2k5δn3n6 (C23)

and

DŨp
ss ′ = −1

2
A12

(
X

n3
δ

)∗
Ũ

(1)
γ δ Xn3

γ δk1k4δk2k5 . (C24)

Equations (C17)–(C24) above are third-order terms com-
posed by effective 1B interaction and effective 2NFs. In the
next section we proceed by introducing the set of expressions
with effective 1B interaction and 3NFs, which connect 3p2h
and 3h2p ISCs.

b. ADC(3) terms with 3 p2h and 3h2 p ISCs

The Goldstone-Feynman diagrams of Figs. 15(t) and 15(u)
involve 3p2h and 3h2p ISCs. They contain the coupling
matrices that complete the expressions for Mjα and Nαk ,
when the reference state adopted has not be calculated self-
consistently.

The working equations for the forward-in-time coupling
matrices are

M(IIt)
qα ≡ −1√

12
P123

Xn1
γ Ũ

(1)
γ δ Y

k6
δ

ε−
k6

− ε+
n1

(
Y k6

μ

)∗
Xn2

ν Xn3
ρ Y

k4
λ Y k5

η Wμνρ,αλη

(C25)

and

M(IIu)
qα ≡ 1√

12
A45

Xn6
γ Ũ

(1)
γ δ Y

k5
δ

ε−
k5

− ε+
n6

Xn1
μ Xn2

ν Xn3
ρ Y

k4
λ

(
Xn6

η

)∗
Wμνρ,αλη,

(C26)

while the interaction matrices in Eq. (C15) connecting two
3p2h ISCs are

CŨp
qq ′ = 1

12
A123A45P678 Xn1

γ Ũ
(1)
γ δ

(
X

n6
δ

)∗
δn2n7δn3n8δk4k9δk5k10

(C27)
and

CŨh
qq ′ = −1

12
A45A9 10A123 Y

k5
δ Ũ

(1)
γ δ

(
Y k10

γ

)∗
δn1n6δn2n7δn3n8δk4k9 .

(C28)
Expressions for the backward-in-time coupling matrices,

containing one effective 1B interaction and one interaction-
irreducible 3NF insertion, are

N(IIt)
αu ≡ 1√

12
Wαλη,μνρP123

Xn6
γ Ũ

(1)
γ δ Y

k1
δ

ε−
k1

− ε+
n6

(
Xn6

μ

)∗
Y k2

ν Y k3
ρ X

n4
λ Xn5

η

(C29)

and

N(IIu)
αu ≡ −1√

12
Wαλη,μνρA45

Xn5
γ Ũ

(1)
γ δ Y

k6
δ

ε−
k6

− ε+
n5

Y k1
μ Y k2

ν Y k3
ρ X

n4
λ

(
Y k6

η

)∗
,

(C30)

while the interaction matrices in Eq. (C16) connecting two
3h2p ISCs are

DŨp
uu′ = − 1

12
A45A9 10A123

(
X

n5
δ

)∗
Ũ

(1)
γ δ Xn10

γ δk1k6δk2k7δk3k8δn4n9

(C31)
and

DŨh
uu′ = 1

12
A123A45P678

(
Y k1

γ

)∗
Ũ

(1)
γ δ Y

k6
δ δk2k7δk3k8δn4n9δn5n10 .

(C32)

[1] H.-W. Hammer, A. Nogga, and A. Schwenk, Rev. Mod. Phys.
85, 197 (2013).

[2] C. Barbieri and A. Carbone, in An Advanced Course in Com-
putational Nuclear Physics: Bridging the Scales from Quarks
to Neutron Stars, edited by M. Hjorth-Jensen, M. P. Lombardo,
and U. van Kolck, Lecture Notes in Physics Vol. 936 (Springer,
Berlin, 2017), pp. 571–644.

[3] A. Cipollone, C. Barbieri, and P. Navrátil, Phys. Rev. Lett. 111,
062501 (2013).

[4] G. Hagen, T. Papenbrock, M. Hjorth-Jensen, and D. J. Dean,
Rep. Prog. Phys. 77, 096302 (2014).

[5] S. Binder, P. Piecuch, A. Calci, J. Langhammer, P.
Navrátil, and R. Roth, Phys. Rev. C 88, 054319
(2013).

054308-30

https://doi.org/10.1103/RevModPhys.85.197
https://doi.org/10.1103/RevModPhys.85.197
https://doi.org/10.1103/RevModPhys.85.197
https://doi.org/10.1103/RevModPhys.85.197
https://doi.org/10.1103/PhysRevLett.111.062501
https://doi.org/10.1103/PhysRevLett.111.062501
https://doi.org/10.1103/PhysRevLett.111.062501
https://doi.org/10.1103/PhysRevLett.111.062501
https://doi.org/10.1088/0034-4885/77/9/096302
https://doi.org/10.1088/0034-4885/77/9/096302
https://doi.org/10.1088/0034-4885/77/9/096302
https://doi.org/10.1088/0034-4885/77/9/096302
https://doi.org/10.1103/PhysRevC.88.054319
https://doi.org/10.1103/PhysRevC.88.054319
https://doi.org/10.1103/PhysRevC.88.054319
https://doi.org/10.1103/PhysRevC.88.054319


ALGEBRAIC DIAGRAMMATIC CONSTRUCTION FORMALISM … PHYSICAL REVIEW C 97, 054308 (2018)

[6] K. Tsukiyama, S. K. Bogner, and A. Schwenk, Phys. Rev. Lett.
106, 222502 (2011).

[7] H. Hergert, S. Bogner, T. Morris, A. Schwenk, and K.
Tsukiyama, Phys. Rep. 621, 165 (2016).

[8] E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, Rev. Mod.
Phys. 81, 1773 (2009).

[9] R. Machleidt and D. Entem, Phys. Rep. 503, 1 (2011).
[10] K. Hebeler, J. Holt, J. Menéndez, and A. Schwenk, Annu. Rev.

Nucl. Part. Sci. 65, 457 (2015).
[11] C. Barbieri, J. Phys.: Conf. Ser. 529, 012005 (2014).
[12] V. Lapoux, V. Somà, C. Barbieri, H. Hergert, J. D. Holt, and

S. R. Stroberg, Phys. Rev. Lett. 117, 052501 (2016).
[13] A. Calci and R. Roth, Phys. Rev. C 94, 014322 (2016).
[14] C. Barbieri and W. H. Dickhoff, Phys. Rev. C 68, 014311 (2003).
[15] W. Dickhoff and C. Barbieri, Prog. Part. Nucl. Phys. 52, 377

(2004).
[16] G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601

(2002).
[17] F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 237

(1998).
[18] W. von Niessen, J. Schirmer, and L. Cederbaum, Comput. Phys.

Rep. 1, 57 (1984).
[19] D. Danovich, Wiley Interdisc. Rev.: Comput. Mol. Sci. 1, 377

(2011).
[20] J. Schirmer, Phys. Rev. A 26, 2395 (1982).
[21] J. Schirmer, L. S. Cederbaum, and O. Walter, Phys. Rev. A 28,

1237 (1983).
[22] A. Carbone, A. Cipollone, C. Barbieri, A. Rios, and A. Polls,

Phys. Rev. C 88, 054326 (2013).
[23] V. Somà, A. Cipollone, C. Barbieri, P. Navrátil, and T. Duguet,

Phys. Rev. C 89, 061301 (2014).
[24] A. Cipollone, C. Barbieri, and P. Navrátil, Phys. Rev. C 92,

014306 (2015).
[25] A. Carbone, A. Polls, and A. Rios, Phys. Rev. C 88, 044302

(2013).

[26] A. Idini and C. Barbieri, Acta Phys. Pol. B 88, 273 (2017).
[27] W. Dickhoff and D. Van Neck, Many-body Theory Exposed!:

Propagator Description of Quantum Mechanics in Many-body
Systems, EBSCO ebook academic collection (World Scientific,
Singapore, 2005).

[28] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-
Particle Systems (McGraw-Hill, Boston, 1971).

[29] S. J. Waldecker, C. Barbieri, and W. H. Dickhoff, Phys. Rev. C
84, 034616 (2011).

[30] P. Grangé, A. Lejeune, M. Martzolff, and J.-F. Mathiot, Phys.
Rev. C 40, 1040 (1989).

[31] V. Somà and P. Bozek, Phys. Rev. C 78, 054003 (2008).
[32] K. Hebeler and A. Schwenk, Phys. Rev. C 82, 014314

(2010).
[33] K. Hebeler, S. K. Bogner, R. J. Furnstahl, A. Nogga, and A.

Schwenk, Phys. Rev. C 83, 031301 (2011).
[34] V. Somà, T. Duguet, and C. Barbieri, Phys. Rev. C 84, 064317

(2011).
[35] V. Somà, C. Barbieri, and T. Duguet, Phys. Rev. C 89, 024323

(2014).
[36] I. Shavitt and R. Bartlett, Many-Body Methods in Chemistry

and Physics: MBPT and Coupled-Cluster Theory, Cambridge
Molecular Science (Cambridge University Press, Cambridge,
2009).

[37] F. Raimondi and C. Barbieri (unpublished).
[38] F. Raimondi and C. Barbieri, Proceedings of the International

Conference “Nuclear Theory in the Supercomputing Era (NTSE
2016),” edited by A. M. Shirokov and A. I. Mazur (Pacific
National University, Khabarovsk, Russia, 2018).

[39] O. Walter and J. Schirmer, J. Phys. B: At. Mol. Phys. 14, 3805
(1981).

[40] C. Barbieri, Phys. Lett. B 643, 268 (2006).
[41] C. Barbieri, D. Van Neck, and W. H. Dickhoff, Phys. Rev. A 76,

052503 (2007).
[42] S. P. Pandya, Phys. Rev. 103, 956 (1956).

054308-31

https://doi.org/10.1103/PhysRevLett.106.222502
https://doi.org/10.1103/PhysRevLett.106.222502
https://doi.org/10.1103/PhysRevLett.106.222502
https://doi.org/10.1103/PhysRevLett.106.222502
https://doi.org/10.1016/j.physrep.2015.12.007
https://doi.org/10.1016/j.physrep.2015.12.007
https://doi.org/10.1016/j.physrep.2015.12.007
https://doi.org/10.1016/j.physrep.2015.12.007
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1146/annurev-nucl-102313-025446
https://doi.org/10.1146/annurev-nucl-102313-025446
https://doi.org/10.1146/annurev-nucl-102313-025446
https://doi.org/10.1146/annurev-nucl-102313-025446
https://doi.org/10.1088/1742-6596/529/1/012005
https://doi.org/10.1088/1742-6596/529/1/012005
https://doi.org/10.1088/1742-6596/529/1/012005
https://doi.org/10.1088/1742-6596/529/1/012005
https://doi.org/10.1103/PhysRevLett.117.052501
https://doi.org/10.1103/PhysRevLett.117.052501
https://doi.org/10.1103/PhysRevLett.117.052501
https://doi.org/10.1103/PhysRevLett.117.052501
https://doi.org/10.1103/PhysRevC.94.014322
https://doi.org/10.1103/PhysRevC.94.014322
https://doi.org/10.1103/PhysRevC.94.014322
https://doi.org/10.1103/PhysRevC.94.014322
https://doi.org/10.1103/PhysRevC.68.014311
https://doi.org/10.1103/PhysRevC.68.014311
https://doi.org/10.1103/PhysRevC.68.014311
https://doi.org/10.1103/PhysRevC.68.014311
https://doi.org/10.1016/j.ppnp.2004.02.038
https://doi.org/10.1016/j.ppnp.2004.02.038
https://doi.org/10.1016/j.ppnp.2004.02.038
https://doi.org/10.1016/j.ppnp.2004.02.038
https://doi.org/10.1103/RevModPhys.74.601
https://doi.org/10.1103/RevModPhys.74.601
https://doi.org/10.1103/RevModPhys.74.601
https://doi.org/10.1103/RevModPhys.74.601
https://doi.org/10.1088/0034-4885/61/3/002
https://doi.org/10.1088/0034-4885/61/3/002
https://doi.org/10.1088/0034-4885/61/3/002
https://doi.org/10.1088/0034-4885/61/3/002
https://doi.org/10.1016/0167-7977(84)90002-9
https://doi.org/10.1016/0167-7977(84)90002-9
https://doi.org/10.1016/0167-7977(84)90002-9
https://doi.org/10.1016/0167-7977(84)90002-9
https://doi.org/10.1002/wcms.38
https://doi.org/10.1002/wcms.38
https://doi.org/10.1002/wcms.38
https://doi.org/10.1002/wcms.38
https://doi.org/10.1103/PhysRevA.26.2395
https://doi.org/10.1103/PhysRevA.26.2395
https://doi.org/10.1103/PhysRevA.26.2395
https://doi.org/10.1103/PhysRevA.26.2395
https://doi.org/10.1103/PhysRevA.28.1237
https://doi.org/10.1103/PhysRevA.28.1237
https://doi.org/10.1103/PhysRevA.28.1237
https://doi.org/10.1103/PhysRevA.28.1237
https://doi.org/10.1103/PhysRevC.88.054326
https://doi.org/10.1103/PhysRevC.88.054326
https://doi.org/10.1103/PhysRevC.88.054326
https://doi.org/10.1103/PhysRevC.88.054326
https://doi.org/10.1103/PhysRevC.89.061301
https://doi.org/10.1103/PhysRevC.89.061301
https://doi.org/10.1103/PhysRevC.89.061301
https://doi.org/10.1103/PhysRevC.89.061301
https://doi.org/10.1103/PhysRevC.92.014306
https://doi.org/10.1103/PhysRevC.92.014306
https://doi.org/10.1103/PhysRevC.92.014306
https://doi.org/10.1103/PhysRevC.92.014306
https://doi.org/10.1103/PhysRevC.88.044302
https://doi.org/10.1103/PhysRevC.88.044302
https://doi.org/10.1103/PhysRevC.88.044302
https://doi.org/10.1103/PhysRevC.88.044302
https://doi.org/10.5506/APhysPolB.48.273
https://doi.org/10.5506/APhysPolB.48.273
https://doi.org/10.5506/APhysPolB.48.273
https://doi.org/10.5506/APhysPolB.48.273
https://doi.org/10.1103/PhysRevC.84.034616
https://doi.org/10.1103/PhysRevC.84.034616
https://doi.org/10.1103/PhysRevC.84.034616
https://doi.org/10.1103/PhysRevC.84.034616
https://doi.org/10.1103/PhysRevC.40.1040
https://doi.org/10.1103/PhysRevC.40.1040
https://doi.org/10.1103/PhysRevC.40.1040
https://doi.org/10.1103/PhysRevC.40.1040
https://doi.org/10.1103/PhysRevC.78.054003
https://doi.org/10.1103/PhysRevC.78.054003
https://doi.org/10.1103/PhysRevC.78.054003
https://doi.org/10.1103/PhysRevC.78.054003
https://doi.org/10.1103/PhysRevC.82.014314
https://doi.org/10.1103/PhysRevC.82.014314
https://doi.org/10.1103/PhysRevC.82.014314
https://doi.org/10.1103/PhysRevC.82.014314
https://doi.org/10.1103/PhysRevC.83.031301
https://doi.org/10.1103/PhysRevC.83.031301
https://doi.org/10.1103/PhysRevC.83.031301
https://doi.org/10.1103/PhysRevC.83.031301
https://doi.org/10.1103/PhysRevC.84.064317
https://doi.org/10.1103/PhysRevC.84.064317
https://doi.org/10.1103/PhysRevC.84.064317
https://doi.org/10.1103/PhysRevC.84.064317
https://doi.org/10.1103/PhysRevC.89.024323
https://doi.org/10.1103/PhysRevC.89.024323
https://doi.org/10.1103/PhysRevC.89.024323
https://doi.org/10.1103/PhysRevC.89.024323
https://doi.org/10.1088/0022-3700/14/20/006
https://doi.org/10.1088/0022-3700/14/20/006
https://doi.org/10.1088/0022-3700/14/20/006
https://doi.org/10.1088/0022-3700/14/20/006
https://doi.org/10.1016/j.physletb.2006.10.054
https://doi.org/10.1016/j.physletb.2006.10.054
https://doi.org/10.1016/j.physletb.2006.10.054
https://doi.org/10.1016/j.physletb.2006.10.054
https://doi.org/10.1103/PhysRevA.76.052503
https://doi.org/10.1103/PhysRevA.76.052503
https://doi.org/10.1103/PhysRevA.76.052503
https://doi.org/10.1103/PhysRevA.76.052503
https://doi.org/10.1103/PhysRev.103.956
https://doi.org/10.1103/PhysRev.103.956
https://doi.org/10.1103/PhysRev.103.956
https://doi.org/10.1103/PhysRev.103.956



