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Background: Self-consistent Green’s function theory has recently been extended to the basic formalism needed
to account for three-body interactions [A. Carbone, A. Cipollone, C. Barbieri, A. Rios, and A. Polls, Phys. Rev.
C 88, 054326 (2013)]. The contribution of three-nucleon forces has so far been included in ab initio calculations
on nuclear matter and finite nuclei only as averaged two-nucleon forces.

Purpose: We derive the working equations for all possible two- and three-nucleon terms that enter the expansion
of the self-energy up to the third order, thus including the interaction-irreducible (i.e., not averaged) diagrams
with three-nucleon forces that have been previously neglected.

Methods: We employ the algebraic diagrammatic construction up to the third order as an organization scheme
for generating a non perturbative self-energy, in which ring (particle-hole) and ladder (particle-particle) diagrams
are resummed to all orders.

Results: We derive expressions of the static and dynamic self-energy up to the third order, by taking into account
the set of diagrams required when either the skeleton or nonskeleton expansions of the single-particle propagator
are assumed. A hierarchy of importance among different diagrams is revealed, and a particular emphasis is
given to a third-order diagram (see Fig. that is expected to play a significant role among those featuring an
interaction-irreducible three-nucleon force.

Conclusion: A consistent formalism to resum at infinite order correlations induced by three-nucleon forces in the
self-consistent Green’s function theory is now available and ready to be implemented in the many-body solvers.

I. INTRODUCTION

Three-body interactions play a prominent role in de-
termining the behaviour of strongly interacting quantum
systems [I]. For instance, three-nucleon forces (3NFs)
are necessary to reproduce the saturation of infinite mat-
ter as well as to determine the structure and location of
the driplines in neutron rich isotopes. Hence, they have
been implemented in most of the post-Hartree-Fock ap-
proaches that are currently used to study medium mass
isotopes, such as self-consistent Green’s function (SCGF)
theory [2), 3], the coupled cluster method [4, 5], and the
in-medium similarity renormalization group [6, [7]. In all
of these methods, one typically proceeds by performing a
normal ordering of the Hamiltonian, or a similar averag-
ing, so that the dominant effect of 3NFs can be taken into
account as an effective nucleon-nucleon force (2NF). Ad-
vances of the above many-body methods, with the con-
current introduction of chiral two- and three-nucleon in-
teractions, based on the symmetries of QCD [8, 0], have
led recently to remarkable successes in nuclear ab ini-
tio theory [I0HI2]. Presently, the major sources of error
in first-principle predictions originate from uncertainties
of the nuclear Hamiltonian [10, 13]. However, the ex-
pected progress in the next-generation realistic interac-
tions will eventually require further developments of the
many-body formalisms.

The SCGF theory is a quantum many-body method
that has been extensively applied to both condensed mat-
ter and nuclear systems [2, [T4HI9]. This approach relies
on the solution of the Dyson equation, which is an exact
restatement of the many-body Schrodinger equation and
it allows for a diagrammatic expansion with respect to
the nuclear interaction. However, for nuclear structure

and reaction studies, a perturbative expansion is not suf-
ficient due to the strong nature of the nuclear force and
the importance of the long-range correlations, which af-
fect the propagation of nucleons inside the medium. In
practice, one must resort to an efficient method in which
entire classes of correlations are resummed non pertur-
batively.

For this purpose, a major challenge is to find a scheme
capable of organizing the rapidly increasing number of
Feynman diagrams entering the computation of Green’s
functions, especially when 3NFs and many-nucleon in-
teractions are present. Ideally, one should include dif-
ferent classes of Feynman diagrams at all orders, i.e.
in a nonperturbative way; at the same time, one needs
to keep under control the computational resources re-
quired by the many-body problem, even for those post-
Hartree-Fock approaches scaling polynomially with the
number of nucleons. A powerful tool complying with
these requirements has been devised 30 years ago in the
Green’s function theory applied to quantum chemistry.
It is referred to as the algebraic diagrammatic construc-
tion (ADC) method [20} 2I]. Born as a way to include
third-order self-energy diagrams that are necessary to re-
produce affinities and ionisation energies, the ADC also
allows the infinite resummation of specific classes of di-
agrams, such as the ladder and ring series. The general
procedure is to impose the correct spectral representa-
tion of the self-energy and to require that its perturbative
expansion is also consistent with the Feynman diagram
series up to a given order n. The spectral representation
implies that diagrams up to order n are actually taken as
“seeds” for all-order resummations. This generates a hi-
erarchy of many-body truncations, labelled as ADC(n),
that contains selected relevant terms, it is non perturba-



tive and can be systematically improved.

The aim of this paper is to derive the entire set of work-
ing equations for the ADC(3) self-energy, when 3NF's are
present. The general formalism and diagrammatic rules
for the SCGF theory with three-body interactions has
been developed in Ref. [22]. There, it was shown that
the number of Feynman diagrams to be calculated can
be reduced by introducing averaged effective interactions
(similarly to the normal ordering strategy mentioned
above), so that one needs to consider only interaction-
irreducible diagrams. Using the resulting effective 2NFs,
a set of applications of the SCGF was put forward with
computations of binding energies [3| 23], spectral distri-
butions and radii [I2] 24] for closed subshell isotopes of
medium-mass. For the nuclear matter case, saturation
properties of chiral forces and other thermodynamical
aspects have also been studied [25]. Moreover, current
efforts are devoted to describing the one-nucleon scatter-
ing on a nucleus within the same framework [26].

While Ref. [22] introduced the set of self-energy di-
agrams up to third order, the necessary formalism for
extending them to a nonperturbative approach has not
yet been derived. We fill this gap here by deriving ex-
plicit expressions of the ADC(3) based on the Feynman
diagrams derived thereof. For this purpose we revisit
the SCGF formalism in Sec. [T} with special emphasis on
how 3NFs are incorporated in the self-energy expansion.
Section [[IT] discusses the ADC method at order n, i.e.
ADC(n), and we derive the working equations at second
and third order, ADC(2) and ADC(3), in full detail. In
our derivation, a hierarchy of importance among different
self-energy diagrams emerges naturally: it is based on in-
termediate excitation energies embedded in each diagram
and on the relative importance between 2N and 3NFs.
For the ADC(3), we present in Sec. [[I]]diagrams that con-
tain only two-particle-one-hole (2plh) and two-hole-one-
particle (2hlp) intermediate states with effective 2NFs
and interaction-irreducible 3NFs. These diagrams are
displayed in Fig. below and are the dominant contri-
butions to ADC(3). We also present additional equations
for a subset of diagrams with 3p2h and 3h2p intermedi-
ate states, chosen from the different topologies appearing
at third order. This will give a general overview of the
formalism up to n=3. All the remaining parts of the
ADC(3) equations, which complete the diagrams with
3p2h and 3h2p configurations, are given in Appendix [A]
In Appendix [B] we display the angular momentum cou-
pled form for the leading contributions of Fig. . The
diagram in Fig. [2c| has not yet been included in calcula-
tions, but it could be added to current numerical imple-
mentations and it is expected to be the most important
among those with an irreducible 3NF. In Appendix [C]
we derive additional nonskeleton Feynman diagrams for
both the static and dynamic self-energy that need to be
included in non self-consistent calculations. The entire
set of equations derived up to ADC(3) informs our con-
clusions, which are drawn in Sec. [V}

II. SCGF FORMALISM WITH 3NFS

Many-particle Green’s functions, also known in the lit-
erature as propagators or correlation functions, are at
the heart of the SCGF formalism. The simplest Green’s
function is the one-body (1B) propagator describing the
in-medium propagation of a particle or an hole, which are
respectively created and annihilated by field operators al
and a, in the quantum states § and o [27] 28]:
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Here and in the following we use Greek indexes to label
the states of a complete orthonormal single-particle ba-
sis {a}, which could be discrete or having a continuous
spectrum. The time interval (¢t — ') of the propagation
in Eq. is ordered according to the action of the time-
ordering operator 7, which obeys the Fermi statistics. To
describe the propagation of two particles and two holes,
we introduce also the two-body (2B) Green’s function,
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For our purposes, we will concentrate on the propaga-

tor of Eq. , which is defined with respect to the exact

A-body ground state |¥3'). The latter is the lowest eigen-

state of the Schrodinger problem,
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The Lehmann representation of the Green’s function is
obtained by Fourier transforming Eq. to the energy
plane. It contains the relevant informations on the single-
particle dynamics,
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In the reminder of this text we will use the following
shorthand notation for the quasiparticle energies, given

by the poles in Eq. ,
en = (By* — EgY)

e, = (By = E{ 7). ()

which are the experimentally observed one-nucleon addi-
tion and removal energies. Likewise, we will use X7 and
y{; to mark the transition amplitudes for the addition

and removal of a particle, respectively. And we will use
Z} to collect all of them:
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with the index i referring to both forward-in-time (n)
and backward-in-time (k) processes. The first (second)
overlap integral in Eq. @ is related to the probability
of adding (removing) a particle to (from) a orbital « in
a system with A particles. The vectors Z¢ (in the basis
{a}) form the overcomplete set of the eigenstates of the
Dyson equation. Thus, they are also referred to as ‘Dyson
orbitals’.

The 1B Green’s function Eq. is completely deter-
mined by solving the Dyson equation,

+2}m

which is a nonlinear equation defining the irreducible
self-energy ¥, (w), where medium effects on the particle
propagation are encoded. It corresponds to a set of ir-
reducible Feynman diagrams, i.e. diagrams that cannot
be divided in sub-diagrams by cutting one propagator
line. The distinction between the unperturbed praga—

Jap(w) = (W)gsp(w),  (7)

tor g( )(w) and the correlated one gog(w) in Eq. (7)) re-
sults from the expansion with respect to the inter-particle
interaction: gg)g (w) is then the zeroth-order term in the
expansion, that is the propagator with respect to the ref-

erence state, i.e.
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From the derivation of the 1B propagator equation of
motion, one can find the explicit separation of the irre-
ducible self-energy in a part which is local in time 205

(static self-energy), and a energy dependent part iag(w)
(dynamic self-energy), containing the contributions from
dynamical excitations in the system:

TEa(w) = £ + Sagw). (9)

While %57 accounts for the averaged (mean-field) in-
teraction seen by a particle, iaﬂ (w) encodes the coupling
of a single-particle state with the collective configurations
made by surrounding nucleons. In the continuum regime
the full self-energy describes the interaction of the nu-
cleon projectile with a target nucleus. In this respect,

+p(w) is investigated as the microscopic counterpart of
the dispersive optical model potentials [29].

Before proceeding with the application of the ADC for-
malism to the self-energy, we present in the next section
the main features of the approach based on effective in-
teractions, which allows a simplification of the diagram-
matic expansion when both two- and many-body forces
are included.

A. Formalism with effective forces and
interaction-irreducible terms

Let us consider first the nuclear Hamiltonian H with
a kinetic energy part 7' and interaction operators in the

2NF and 3NF sector, denoted with Vand W respectively,
H=T+V+W. (10)

Within post Hartree-Fock approaches, it is customary to
divide the Hamiltonian into two parts, H = Hy + Hi,
with Hy being the uncorrelated part and H; the residual
interaction. In this way, strongly interacting fermions
are treated as a system of independent nucleons affected
by an auxiliary mean-field potential U, included in the
definition of Hy = T'+ U. The Hy defines the reference
state to which the residual interaction H; is added per-
turbatively. In the second quantization formalism the
Hamiltonian reads then,
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where h((fﬁ) =T,3 + Uyp is a one-body Hamiltonian and
Var,ps and W gsy are the antisymmetrized matrix el-
ements of 2NFs and 3NFs, respectively.

The Greek indexes «,f3,7,...label a complete set of
single-particle states which define the model space used
in practical computations. In most cases, one chooses
this basis as the eigenstates of the unperturbed Hamil-
tonian Hy, with the eigenvalues €. Then, h(o) =¢e%ap
and the spectral representation, Eq. (4 . for unperturbed
propagator g( ) ( ) becomes diagonal. However, in this
work we keep the most general case and the basis {a} will
be different from the one defining the reference state.

The expansion of the self-energy X,s5(w) in Eq.
involves terms with individual contributions of the 1B
potential, but also of 2NFs and 3NFs from Eq. .
Of course, also terms containing combinations of differ-
ent interactions are possible. The number of diagrams
allowed by the Feynman diagrammatic rules is growing
fast with the order of the expansion. A useful strategy
is to consider only interaction-irreducible diagrams. Dia-
grams are considered interaction-reducible if splitting in-
teraction vertex in two parts results in two disconnected
diagrams. This happens when some (but not all) of the
fermion lines leaving one interaction vertex eventually re-
turn to it. If the interaction vertex which is cut had only
one fermionic line looping over it, then all the linked dia-
grams can be included effectively by averaging the inter-
action vertex with a 1B Green’s function. Alternatively,
when the cut interaction vertex had two fermionic lines
the averaging is performed with a 2B Green’s function
and so on. This process of averaging reduces the order
of the interaction: for instance, a 2NF interaction ver-
tex averaged on a 1B Green’s function gives rise to an
effective 1B operator.

In Ref. [22] it is shown that diagrammatic series can
be reduced to a smaller set of diagrams by excluding all



interaction-reducible diagrams. The averaging procedure
described above amounts to define an effective Hamilto-
nian up to 3NFs,

H=U+V+W, (12)

where U and V represent effective interaction operators.
As long as only interaction-irreducible diagrams are con-
sidered, the use of H; is equivalent to the interaction-
reducible expansion based on Eq. (see Sec. II of
Ref. [22] for details).

Explicit expressions for effective 1B and 2N interaction
operators are:
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where, in the averaging of 2NFs and 3NF's, one- and two-
body reduced density matrices of the many-body system
are produced,

psy = (Uilalas|V§) = —ihgs,(t—tT), (16)
F&me = <\IJ64| G’I/azanals |\II()4> = Zhgg;ry,'ye(t - t+> . (17)

The two-body density of Eq. is obtained when the
opportune limits are taken in the time arguments of the
2B Green’s function in Eq. .

We note that when the irreducible self-energy is com-
puted with the effective Hamiltonian of Eq. (12)), a por-
tion of the many-body effects is incorporated in the inter-
actions, which become system dependent. This is done
in a systematic way and the procedure is in principle su-
perior to the usual normal ordering approach. Here the
density matrices p and I' entering the contraction of the
interaction vertex are obtained from the true correlated
propagators, i.e. they are not computed from the refer-
ence state.

_The separation of a simple unperturbed Hamiltonian
Hy from Eq. is instrumental to any approach based
on perturbation theory (or on all-orders resummations):
it allows us to define a reference state upon which a per-
turbative series is constructed and it also leads to the
expansion of the Green’s function in Feynman diagrams.
Nevertheless, the auxiliary potential U eventually cancels
from the SCGF formalism. Considering the decomposi-
tion of Eq. (9), the irreducible static self-energy X% is
given exactly by the 1B effective interaction [22):

(b)
FIG. 1.  One-particle irreducible, skeleton and interaction-
irreducible self-energy diagrams appearing at second order in
the expansion of Eq. @, using the effective Hamiltonian of
Eq. . The wiggly lines represent the 2N effective inter-

action of Eq. , while the long-dashed lines represent the
interaction-irreducible 3NF W.

(a)

Since U is added to the definition of the reference prop-
agator ¢(¥ but subtracted in Eq. , it eventually can-
cels out exactly from the Dyson equation (see Eq. (28)).
The dynamic self-energy iag(w) can still depend on the
auxiliary potential through the perturbative expansion
in géoﬁ) (w). However, in the full self-consistent approach,
the perturbative series is restricted to skeleton diagrams
where fully correlated propagators g,s(w) replace the un-
correlated ones. Thus, the partition of the Hamiltonian
into a uncorrelated part and residual part is completely
lost in the exact SCGF formalism and one may think of
the correlated propagator as playing the role of an im-
proved reference state.

For the irreducible self-energy, all one-particle irre-
ducible, skeleton and interaction-irreducible diagrams up
to third order have been derived in Ref. [22]. Within
the skeleton expansion, i.e. when single-particle prop-
agators are correlated, the irreducible self-energy up to
the third order is given by the exact static part, Eq. ,
the two second-order diagrams of Fig. [, and the 17
third-order diagrams of Figs. 2] and [6] In this case, the
energy-dependent part of the self-energy contains only
effective 2NFs and irreducible 3NFs as interaction inser-
tions. Note that because of Eq. , the contribution of
Fig.[1a] actually corresponds to four separate diagrams if
expressed in terms of the bare Hamiltonian , of which
three are interaction reducible [22]. Likewise, many more
reducible diagrams would appear at third order. Without
propagator renormalization, when one considers the dia-
grammatic expansion with reference propagators gg)ﬁ) (w)
as internal fermionic lines, other diagrams with different
topologies must be included to take into account explic-
itly additional correlations in both the static and dy-
namic part of the self-energy. These terms contain also
nonskeleton diagrams that include U and are presented
in Appendix [C]

In Fig. |l we show the only two one-particle irre-
ducible, skeleton and interaction-irreducible diagrams
at second order. These diagrams imply different sets
of intermediate state configurations (ISCs), which are
multiparticle-multihole, or multihole-multiparticle, ex-
citations produced by the interaction and propagating
within the nuclear medium. The diagram in Fig. in-
volves two-particles—one-hole (2p1h) and two-holes—one-
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FIG. 2. As described in the caption of Fig. [1| but for the
third-order diagrams with only 2plh and 2h1lp intermediate
state configurations.

particle (2hlp) ISCs, but it is computed with the 2N
effective interaction Eq. instead of the original 2NF.

Hence, it contains contributions form the 3NF w.

The diagram in Fig. arises instead from an
interaction-irreducible 3NF. There are two reasons to as-
sume that this contribution is less important than the
one in Fig. first, 3NF's are generally Weaker than cor-
responding 2NFS (typically, < W >~ & < V > for nu-
clear interactions [8] B0]); second, the diagram in Fig. [l
involves 3p2h and 3h2p ISCs, which involve higher exci-
tation energies and therefore they are expected to play a
minor role at the Fermi surface due to phase space argu-
ments.

By the same token, we may expect that the three di-
agrams shown in Fig. are the dominant ones among
the 17 one-particle irreducible, skeleton, and interaction-
irreducible self-energy diagrams appearing at third or-
der in the expansion of ¥,g(w). While all diagrams in
Fig. involve 2plh and 2h1p ISCs, those in Figs. and
contain only effective 2NFs. These two diagrams have
been already included in actual calculations for nuclear
matter and for finite nuclei [3, 24} 25| BIH33].

B. Solution of the Dyson equation as a matrix
eigenvalue problem

The ADC is a systematic approach to calculate non-
perturbative approximations to the self-energy. Once the
latter is known, we still need to solve the Dyson equation
to obtain the propagator, as explained below.

Without loss of generality, the dynamical part of the
self-energy ¥,p(w) can be written in the Lehmann rep-

resentation, similar to Eq. . Specifically, we write,

1
Ya M, M,
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23
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with Ej>j, (Egy/) being energies of noninteracting ISCs,
M;, (Nax) coupling matrices, and C;;; (Dy;) in-
teraction matrices for the forward-in-time (backward-
in-time) self-energy.  Coupling matrices link initial
and final single-particle states of the propagator to
ISCs, while interaction matrices are those parts of the
self-energy diagrams that represent interactions among
ISCs alone (see also Fig. |3). It follows that inter-
action matrices contain at most one interaction ver-
tex and are not linked to the single-particle states
of the model space. We use Latin letters as a col-
lective indices to label ISCs: In particular, we use
i for any general configuration, while j,j" (k, k") de-
note forward-in-time multiparticle-multihole (backward-
in-time multihole-multiparticle) configurations. In the
following, we will consider explicitly 2plh, 3p2h, 2h1p,
and 3h2p ISCs, which are included in Eq. . For this
purpose, we set the shorthand notation,

r S5 (nla na, kB)
" = (na,ns, ke) o
_ g J (20)
q = (n1,n2,n3,ka,ks)
¢ = (ng,n7,ns, ko, ko)
for forward-in-time terms, and
S (k17k27n3)
! ka, k
s = (kg ks, mo) ko & (21)
u = (k1, ko, k3, ng,n5)
u' = (ke, k7, ks, ng,n10)

for backward-in-time terms, where n; (k;) refer to the
particle (hole) indices of the propagator, Eq. . For
instance, Mo = My, n, ky)a connects a single-particle
state of index « to an intermediate state composed by a
2plh configuration, whereas more complicated coupling
matrices such as Myo = M, ny g ka,ks)a iDVOlve 3p2h
configurations. As one moves to higher orders beyond
ADC(3) more complex multi-particle-multi-hole states
appear in Eq. , eventually covering the complete
space of ISCs.

To better clarify how the ADC building blocks are as-
sociated to perturbation theory, we show in Fig. [3| the
diagrammatic decomposition for two of the Goldstone
contributions that arise from the self-energy Feynman
diagram of Fig. The expressions for the coupling and
interactions matrices can be read directly form the ana-
lytic expression of each Goldstone diagram. See Ref. [2]
for a detailed pedagogical discussion.



FIG. 3. Decomposition of Goldstone diagrams in terms of
interaction and coupling matrices. Two (out of the six) Gold-
stone diagrams that arise from the self-energy Feynman dia-
gram of Fig. are shown. Diagram (a) contains the inter-
action matrix C3 (see Eq. . linked to two lowest order
coupling matrices MSL (see Eq. ( . ). Diagram (b) contains
only coupling matrices and includes the second-order correc-
tion M&EC) reported in Eq. .

In virtue of the Pauli principle, the expressions for
coupling and interaction matrices can (and should) be
made antisymmetric with respect to permutation of any
two particle or any two hole indexes. This results nat-
urally from the antisymmetry of the interaction matrix
elements, Eq. , and by including a complete set of
diagrams at each order, which generates all possible per-
mutations [21, [34]. Using the antisymmetry, it is pos-
sible to restrict the sums in Eq. to sets of ordered
single-particle indices, defining for instance (ny < na, k3),
(n1 < mns <mns,kq < ks), and so on. This is very impor-
tant for practical implementations, owing to a substantial
reduction of the dimension of the Dyson matrix, Eq.
below. On the other hand, manipulations such as cou-
pling the angular momenta of ISCs is better performed

J

in the general case of unrestricted summations. There-
fore, we will present all the working equations without
assuming ordered indexes, as given by the notation of
Eqgs. and . One can always apply ordered sum-
mation by removing the relevant symmetry factors to the
expressions given in Sec. [[I] and in the Appendices.

ISC energies are diagonal matrices in these indexes.
For nucleon addition, with M + 1 particles and M holes,
(M + 1)pMh, we have,

E;, =E;7 =diag(e), +ef, +---+ef, +er

e, (22)

nn

while for the nucleon removal ISC,

Eg =Ef = diag(ey, +ep, + - e, Ten, .,

mef et — e (23)

To solve for the 1B propagator of Eq. , it is useful to
recast the Dyson equation in matrix form, which allows
a more efficient computation of 1B propagator eigenval-
ues. To see this point, we have to start again from the
Dyson equation and regard the 1B propagator Eq.
as a meromorphic function on the complex energy plane.
This function has simple poles and residues given by one-
nucleon addition (or removal) energies and transition am-
plitudes, respectively. We can then find a relation among
the transition amplitudes of Eq. @, by extracting them
as residues of the propagator in the Dyson equation. This
gives,

By using the decomposition of Eq. we obtain the relation,
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which contains both forward-in-time and backward-in-time solutions of the propagator. In the last equality of Eq. (| .

we have introduced the vectors W’ and Wk, defined as

i 1
Wi = Wi (w ’hw o Z |jiw]l (E> +C) ‘ ZM s 25 - ) (26)
and
= 1 i
Wi = Wi (w ‘hw e Z lﬁw]l (E<+ D) N ;Nkfé Z5 o ) (27)

respectively. These vectors are introduced to recast the Dyson equation as a large scale eigenvalue problem whose

diagonalization gives the eigenspectra of the |[UA+1) and |‘I/‘,37

1) systems and the transition amplitudes of the 1B



propagator. By recoupling Egs. —, we obtain:
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where the eigenmatrix is referred to as ‘Dyson matrix’
and it is independent of fAw. The zero entries mean
that the forward-in-time and backward-in-time sectors
are coupled together only through single particle states,
and the dots stay for the self-energy terms with ISCs
beyond the 3p2h and 3h2p configurations.

Equation is an energy-independent eigenvalue
problem, whereas the components W? of the eigenvectors
are functions of the corresponding eigenvalue ¢;, as it is
apparent from definitions (2627). The diagonalization of
the Dyson matrix yields all the poles of the propagator
at once, while the normalization of the i-th eigenvector
is given by

SIZ i+ il =1 (29)
@ J k

In a self-consistent calculation, the elements of the Dyson
matrix Eq. depend on the quasiparticle energies and
amplitudes, ¢; and Z. Thus, they require an iterative
solution. The large number of poles in the dressed prop-
agator, see Eq. (4), implies a severe growth in the di-
mension of the Dyson matrix at each iteration, as ex-
plained in Sec. IITA of Ref. [35]. This can be handled by
projecting the space of intermediate configurations into
smaller Krylov subspaces, using Lanczos-type algorithms
with multiple pivots [35].

IIT. GENERAL OUTLINE OF THE ADC(n)
METHOD

The irreducible self-energy 7 4 (w) is the object of the
ADC formalism applied in this work. Its expression as

M, N 2
C,, 0 7,

0 D, o | (28)
E; 0.0 +C,y 0 WL,
0 E; 0uu +D,, W

(

a product of matrices, Egs. @ and , is the most
general analytic form that is consistent with the causality
principle and the known Lehmann representation.

Our task is then to find expressions for coupling and in-
teraction matrices including the correlations due to 2NFs
and 3NFs. The ADC(n) strategy consists in deriving ex-
plicit expressions of the coupling and interaction matrices
by expanding Eq. in powers of 2NF's and 3NFs and
then to compare with the Goldstone-Feynman expansion
up to order n. Formally, we have

Mjo =M@+ MO + MUY+ (30)

where the term Mgr;) is of nth order in the residual Hamil-
tonian Hi, and similarly for backward-in-time coupling

matrices:

Nop = NO 4+ N NOD (31)

[0}

By plugging Egs. and into Eq. (19), we obtain
the corresponding expansion for the energy-dependent ir-
reducible self-energy up to third order (first order contri-
butions are all included in ¥3%). This is
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for both forward-in-time and backward-in-time self-
energy parts. The comparison of the formal expansion of
Eq. with the calculated Goldstone-type diagrams,
gives the minimal expressions for interaction and cou-
pling matrices in terms of the transition amplitudes Z?
and the one-nucleon addition ¢, and removal £, energies
of the 1B propagator g,g(w) of Eq. . By looking at the
expansion in Eq. , we see that the third-order terms
containing the interaction matrices C,,» and D, do not
retain the same analytic form as Eq. , which is based
on the Lehmann representation of the propagator itself.
To recover this analytic form in terms of self-energy poles,
one must introduce higher-order terms and perform a re-
summation of those diagrams up to infinite order: this
resummation is implicit in Eq. and it gives the non-
perturbative character of the method, which takes into
account at all orders several types of diagrams, particle-
particle and hole-hole ladders, and particle-hole rings, as
well as other resummations induced by 3NF's.

A. ADC method at second order: ADC(2)

In this section we present the explicit expressions of
coupling and interaction matrices entering the ADC(2)
formalism. The two second order diagrams shown in
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Fig. (1] are sufficient to define the ADC(2) approxima-
tion scheme. Coupling and interaction matrices required
to build the ADC(3) are introduced in Sec. and
Appendix [A] Unless otherwise stated, for coupling and
interaction matrices we adopt the Einstein’s convention
of summing over repeated indices for both the model-
space single-particle states («, 38, ...) and the particle
and hole orbits (n1, na, ..., k1, k2 ...). We also use
collective indexes for ISCs according to the notation set

in Egs. and , where appropriate.

We have seen that for a given multiparticle-multihole
or multihole-multiparticle configuration, we can have
coupling matrices at different orders according to the ex-
pansions in Egs. and . Within a given order,
coupling matrices can also differ with respect to the kind
of interaction (2NF and/or 3NF) appearing in the term.
For this reason we specify in the notation an extra super-
script distinguishing different contributions at the same
order. For instance, at second order we will encounter a
coupling matrix M(Ia) containing a 2N interaction linked
to ar = (n1,ne, ks) ISC, M(Ib) containing a 3N interac-
tion linked to a g = (nl,ng,ng,k4,k5) ISC, and so on.
The extra superscript with Latin letter corresponds to
the labels of diagrams in the figures.

To illustrate the ADC procedure, we write first the entire expressions for all the Goldstone terms in each second
order Feynman diagram of Fig. [l Then we display the formulas of the coupling matrices that can be singled out from
the self-energy expressions. The equation for the dynamic self-energy in Fig. [1a] reads,

1~

(me Xpmyf?’)*)(ﬁl Xf2y§3
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Being already in the Lehmann form of Eq. 7 we can read directly from Eq. the forward-in-time contribution



to the ADC(2) coupling matrix,

M) = \[X"w"?yA v (34)
while in the backward-in-time channel we have
N(Ia) —F=Vali N % yklyk2 an (35)
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that couples the effective 2NF with the 2h1p ISC. It is also clear that the interaction matrices C,;» and Dy, are zero
in ADC(2). The representations of Egs. ) and ( as fragments of Goldstone diagrams are deplcted in Figs.

and [ba] respectively.

The equation for the energy-dependent self-energy with 3NFs in Fig. reads,
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FIG. 4. Diagrams of the self-energy coupling matrices with
the effective 2NF V' (left) and with interaction-irreducible
3NF W (right). The coupling matrix (a) connects to the 2plh

ISCs (see Eq. (34)), while the coupling matrix (b) connects
to the 3p2h ISCs (see Eq. ([37)).

The coupling matrix that links the 3NF to 3p2h ISCs
is found in the diagram of Fig. and it is read from
Eq. (36). Its expression is,

M(Ib) — —X”l X2 X”Byk4y
J12 "

while the corresponding matrix linked to 3h2p ISCs is,

W;LM apn s (37)

by _ 1

au T /12

Equation is also found in the diagram of Fig.|lbland
in the second term of Eq. . Their representations as
fragments of Goldstone diagrams are depicted in Figs. [b|
and BBl

The four coupling matrices in Eqs. , and ,
, along with their complex conjugates, complete the
set of matrices found in the irreducible Goldstone dia-
grams of the self-energy at second order, which are given
by the first and fourth rows in Eq. (32)). All these ma-
trices enter as building blocks of the ADC construction

apn,mrA y ykzy;\% Xn4X7L5 (38)

FIG. 5.  As in Fig. [] but for backward-in-time coupling
matrices (see Egs. and respectively).

at second and third order in the expansion with respect
to the nuclear interaction. To summarize, the ADC(2)
approximation for Eq. requires the following terms,

M) if 2p1h
M[IzDC(Q)] ’E‘ﬁ)) 1 -7 T(p )7 (39)
’ M if j=q (3p2h),
N if k=s (2n1p)
napc@] _ ) Nag ; 0
ok NP if k=u (3h2p), (40)
[ADC(2)] _
C; =0, (41)
DY =0 (42)

There are no interaction matrices C;; and Dy in the
ADC(2), because coupling matrices are linked directly
without any intermediate interaction insertion. This is
not true anymore in the ADC(3), where matrices M{®
and N are linked through interaction matrices Cj ;-

and Dy, respectively, as it is the case for the third and
sixth lines of Eq. .



B. ADC method at third order: ADC(3)

In this section we present explicit expressions of the
coupling and interaction matrices entering in the ADC
formalism at third order, for the three diagrams shown
in Fig. |2| and for the four diagrams appearing first in
each row of Fig. [] The diagrams in Fig. [2] contribute
to the block-diagonal entries (r7’) and (ss’) of Eq. (28),
corresponding to 2plh and 2h1p ISCs, which are the sim-
plest configurations to be excited in the Fock space. The
diagrams depicted in Figs. [2a] and 25| are the dominant
ones at third order, given that only 2N interactions are
present. The diagram in Fig. 2d contains instead a 3NF,
but it can nonetheless play a significant role, because its
Goldstone diagrams feature only 2plh and 2h1p ISCs.

Each row in Fig. [f] collects a different topology of
diagrams in terms of number of effective 2NFs and
interaction-irreducible 3NFs entering the diagrams. In
general, these diagrams are less important compared to
the ones in Fig. [2| because they feature at least a 3p2h
or a 3h2p ISC in all their Goldstone contributions. For
forward-in-time (backward-in-time) diagrams, topologies
in the first and second row of Fig. |§| couple 2plh (2h1p)
ISCs to 3p2h (3h2p) ISCs. They are linked by C,,
(D,,) and C,,. (D, ), accounting for off-diagonal en-
tries of Eq. . Within these two kinds of topologies,
diagrams in the first row contain only one 3NF, there-
fore they are expected to be more important than the
ones in the second row, each featuring two 3NFs. Fi-
nally, the last two rows in Fig. [f] introduce the diagonal
coupling between ISCs with five fermionic lines, 3p2h for
forward-in-time diagrams and 3h2p for backward-in-time
diagrams, corresponding respectively to entries (¢q’) and
(uu') of Eq. . Again, there is a hierarchy between
the two topologies, with those in the fourth row being
less important due to the presence of three 3NF's.

The first four diagrams in each row are assumed as
emblematic for each topology, and treated in the present
section. The remaining coupling and interaction matri-
ces originating from third-order diagrams are given in
Appendix [A]

Coupling and interaction matrices are fully antisym-
metrized with respect to their particle and hole indexes.
To show this explicitly, we introduce the following an-
tisymmetrizer operators. Given a function depending
on up to three particle or hole indexes, i.e. f(i,j,h) =
f(ni,mj,ng) or f(i,5,h) = f(ki, kj, k), the antisymmet-
ric permutation operator of a pair of indexes is intro-

duced,

For 3p2h and 3h2p configurations, it is useful to define
the cyclic permutation operator as

Pijk f(imjv h) = f(l7.77h) +f(h,l,j) -l-f(j,h,i), (44)

and the permutation operator acting on three indexes,
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that is

Aijh f(lajvh) = f(Z,j,h) +f(h727.7) +f<.7a hvz)
- f(%haj) - f(],l7h) - f(hm]vl) (45)

Coupling matrices appearing at third order contain
two interaction operators, which can be the interaction-
irreducible 3NF and/or the effective 2NF. To simplify the
equations, we write in compact form pieces of diagrams
that correspond to the amplitudes appearing in the expo-
nential ansatz of the coupled-cluster wave function [36].
Without assuming the Einstein’s convention of summing
over repeated indices, we write them as,

=)

af

X ﬁaﬁ y;?

+ 3

= (46)
€y — Em

with the effective one-body potential of Eq. ,
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with the effective 2NF of Eq. , and

tn1n2n3 —
kakske —
afy
J72N

X212 X Wy s YELVE VYo

— — — + + +
€y +5k5 —i—zskﬁ —Eny; — Eny — Eng

, (48)

for the terms with the interaction-irreducible 3NF'.

1. ADC(3) matrices for Feynman diagrams in Fig. @

At third order in the ADC, we consider first the subset
of coupling matrices and interaction matrices that are
linked to 2plh and 2hlp ISCs. For these intermediate
configurations, the ADC(3) approximation for Eq.
requires the following terms,

M = M5+ MO L MB) (49)
N(Il? — N(la) n NUIb) n N(Io) , (50)
C,; = CPP, 4 CP! O3 (51)
Dy =Dyl + D% + D3V, (52)

in addition to the ones already introduced by Egs. (39
at second order.

We show now explicit expressions for the right-hand
side of Eqgs. —, and start by presenting coupling
matrices composed by two effective 2NF's connecting to
2pl1h ISCs. By using the definition in Eq. , we have
the matrices,

a 1 nin 5\ * T/
M’E“g ) = ﬁtkikj (yﬁ4y1]fo) y;\cs V/,Ll/,()()\?

(53)
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FIG. 6. As in Fig. [I| but for third-order diagrams that include any 3p2h and 3h2p intermediate state configurations. Together
with the diagrams (a), (b) and (c) of Fig. [2| these are all skeleton and interaction-irreducible contributions present at third
order. The labels in each diagram match the naming used in the text for of the corresponding coupling matrices.

and

1 ~
MU = — (s 20 D5 5" Vi

V2
R R OEA) Tw) G

which is explicitly antisymmetrized with respect to the
ni,ny fermion lines. The two coupling matrices in
Egs. and are found in the Goldstone diagrams
of the terms in Figs. 2a] and as it is clear from their
diagrammatic representations in Figs. and [7b| respec-
tively.

The corresponding coupling matrices in the 2h1p sector

read,

N = Vo AP 2L (55)
and

N = = (Voo Y4022

_NaA,;w yl’fz (X;L“yff’)* tz;l?f) ) (56)

Both matrices in Egs. and are linked to 2h1p
ISCs, as it is clear by considering backward-in-time Gold-
stone terms of diagrams in Figs. and respec-
tively. Their diagrammatic representations are displayed

in Figs. [Sa] and [BD] respectively.



(a) (b)

(c)

FIG. 7. Forward-in-time diagrams of the self-energy cou-
pling matrices in ADC(3). Coupling matrices (a) and (b)
correspond to Eqs. and 7 and they feature two effec-
tive 2NFs V connecting 2plh ISCs. The coupling matrix (c)
contains one effective 2NF V and one interaction-irreducible
3NF W. It connects to 2p1h ISCs and corresponds to Eq. .

Q
>
QT

FIG. 8. Same as in Fig. [7] but for backward-in-time dia-
grams. Coupling matrices (a) and (b) correspond to Egs.
and , while the coupling matrix (c) to Eq. .

Other coupling matrices containing two effective 2NF's
can be found in Sec. of Appendix [A]

Among coupling matrices containing one effective 2NF
and one interaction-irreducible 3NF, we present here the
ones appearing in the self-energy diagram of Fig. that
is

c 1 ninan ng\* 17
ML) = 278 MR (VR VI ) Viar,  (57)

and

1 ~ * ymsngn
Ndle) = = A (XSSX;LGy§4) troners (58)

as 2\/5

Diagrammatic representations of Eqgs. and are
displayed in Figs. [T and [8d respectively.
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All the other coupling matrices with one 2NF and one
3NF are collected in Sec.[A2|of Appendix[A] while matri-
ces with two interaction-irreducible 3NFs are presented
in Sec. in Appendix [A]

Now we introduce expressions of the interaction ma-
trices of Egs. and , containing the \7(15775 and
Wagy,sex matrix elements. For the two cases, we dis-
play interaction matrices appearing in both the forward-
in-time and backward-in-time self-energy Goldstone dia-
grams of Fig. [2|

The interaction matrix that connects 2plh ISCs
through a particle-particle (pp) interaction is

CPP, =

rr!

XSIX32‘7HV7)\9(X;\L4X:5)*67€37€6 ) (59)

N | =

while the one connecting through a particle-hole (ph) in-
teraction is
C1l = 5 Ais (0D Vo (50 V) B
(60)
where the action of two permutation operators A2 and
Ays is defined in Eq. and produces four terms.

We present now the corresponding interaction matri-
ces appearing in backward-in-time self-energy Goldstone
diagrams, namely those that are linked to propagators of
hole-particle kind in diagrams.

We start by the interaction matrix that connects 2hlp
ISCs through a hole-hole (hh) interaction, that is

1 ~
DY = 5 OB Vg A Vi 0. (61)

while the one connecting through a hole-particle (hp) in-
teraction is

D?f,E—%Aquxs ((y;’flX;LL")*VW,Myf“XZLGék?kS) ,
(62)
where permutation operators acting on hole states are
defined in the same way as the one acting on particle
states for the matrix Cfﬁ, in Eq. .

The only interaction matrix that connects 2plh ISCs
through a 3NF is

1 n n n n 5 ) *
CiN = _EXU1Xu2y§3 Wopnenp (XL 4Xn5y§6) , (63)

r =

which is explicitly antisymmetric in particle indexes,
while the one connecting two 2hlp ISCs through a 3NF
is

1 n
Dié\'] = _§(y51y52X53)* Wvux\,enpyf4yrlfsx)\6 , (64)

which is also explicitly antisymmetric in hole indexes.

2. ADC(3) matrices for selected



Feynman diagrams in Fig. @

Coupling matrices presented in this section are ob-
tained from the four Feynman diagrams in the first col-
umn of Fig. [0l Most of these matrices are linked to 3p2h
and 3h2p ISCs, with few exceptions derived from Gold-
stone diagrams where ISCs are of 2plh and 2hlp type.
This subset of coupling matrices at the ADC(3) level is
given by

M . Mgnd)_ M), Mgnh)_ M) p g, p o)
Jo (6% Y ey ) (e} ) b

) ro qo ) qo
(65)
Ng}? . Ngid)é Ngid/)' N T g (ITh') g (TT1)., Ngi") . (66)

s~Yau ' Yas vt Tau )

First, we present matrices containing two effective
2NFs. As before, we display both matrices obtained
from forward-in-time and backward-in-time Goldstone
diagrams, denoted with the notation M;, and Ny re-
spectively.

In Goldstone diagrams of the term in Fig. [6d] we have,

M = %A%Pl% (tsez 22 Y PR Viwan )
(67)
where the combination of permutation operators per-
forms the antisymmetrization of the indexes (k4, ks),
(n1, ng) and (ng, n3), according to definitions in
Eqgs. and .
We turn now to coupling matrices containing one ef-
fective 2NF and one interaction-irreducible 3NF. In the
Goldstone diagrams of the term in Fig. [6d] we have also,

\/5 ni4nan ksvike yna\* ik:
ro _T‘A12<X)\ltk52k§ (yMJyVGXpAL) yns

W/\uwanp) . (68>

In the Goldstone diagrams of the term in Fig. [6h] we
have,

V3

MG = 3P (A () A0 (57 Vi)

(69)

while in the Goldstone diagrams of the term in Fig. [6]]
we find,

V3

MU =210t (VoK) X VR VE Wi anp )

12
(70)

For backward-in-time Goldstone diagrams, we can sin-
gle out from the term in Fig. [6d] the coupling matrix,

\/§~ ne\* Pnanen
N =5 Veruw AusPras (VI (X X0

(71)
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and also the following coupling matrix depending on 2N
and 3N interactions, i.e.

V2

Ngid/) ET Wanp,A,uV Ajs (X;Le» (y§4)*y§1 (les XZLG )*
tais) - (72)

In Fig. [6h} we have the backward-in-time the coupling
matrix,

\/§~ ne \* nenans
N{ = Ve P1as ((3’57%6) yfztkfk}fk;) . (73)

while in Fig. [6] we find the coupling matrix,
V3
12
o) (74)

1) _ n n n n7\* vk:
Ngu) = anp,uvA Pras (Xn 4Xp ° (X;L GXV 7) y}\s

Finally we introduce coupling matrices containing two
interaction-irreducible 3NFs. In Goldstone diagrams of
the term in Fig. [6h] we have,

ITh’ _\/§ ninan ke k7 \* yn ng pns\*
M, )=§A12<tkék§kf (Viedm) a5 (X x0)

WAyu,anp) ) (75)

while in Goldstone diagrams of the term in Fig. [60] we
have,

o) V3 niman ke ik voks ke oks
M) = =22t (VRVE IR ) IR V8 Wisans

(76)

that is antisymmetric in the indexes n1, ns, ng and ky4,ks.
For backward-in-time Goldstone diagrams, we can sin-
gle out from the term in Fig. [6h] the coupling matrix

! \/§ n ny vk
N(()gh ) E? anp,pAv A12 ((y1]7€4y/l)€5Xp6Xu 7) yl)f2

i) (77)
while the matrix

Nlo) — ﬁ %%

N4 ns ne nr ng yk LNegN7Ng
au = 5g Wanpuon Xt X0 (X0 X7 X0

kikoks
(78)

appears in the Goldstone diagrams relative to Fig. [6o]and

it is antisymmetric in the indexes k1, ko, k3 and ny, ns.

IV. CONCLUSIONS

We have calculated all possible Feynman diagrams for
the self-energy up to the third order, for an Hamiltonian
including up to three-body interactions. Using these,



we have then derived the complete set of working equa-
tions that are needed to calculate the self-energy non-
perturbatively in the ADC(n) approach at orders n=2
and 3. While the expansion of the self-energy is con-
sidered perturbatively by including diagrams featuring
up to three interactions, the ADC(3) formalism expands
automatically certain classes of diagrams to infinite or-
der. In particular, one resums series of ladders, rings
and interaction-irreducible 3NFs diagrams. As for the
usual ADC(n) computations, the Dyson equation for the
1B propagator can be implemented as a large but energy
independent eigenvalue problem. However, in presence
of 3NFs, intermediate state configurations of 3p2h and
3h2p type contribute already at ADC(2) and ADC(3)
levels, while they would appear at ADC(4) and ADC(5)
for NN-only interactions.

In showing expressions for both coupling and interac-
tion matrices, we have organized the equations according
to their importance, using criteria based on the num-
ber of excitations implied by ISCs and the natural hi-
erarchy of many-nucleon forces. We started by revisit-
ing the most relevant correlations in terms of 2plh and
2h1p ISCs. This sector contains the well-known ADC(3)
equations for the original and effective NN interactions.
A new contribution arises from the Feynman diagram of
Fig. [2c| and involves an interaction-irreducible 3NF (that
is, which cannot be expressed as simpler normal ordered
forces). This last term is argued to be less relevant in
virtue of the hierarchy of nuclear forces. Then, we have
worked out the subset of ADC(3) coupling and interac-
tion matrices that link to the 3p2h and 3h2p sector of
ISCs. While this hierarchy suggests that 3p2h and 3h2p
ISCs may be necessary only for future generations of ab
initio approaches, the diagram of Fig. may already
have implication for present nuclear Hamiltonians. How-
ever, these conjectures have not yet been checked and
knowing the importance of diagram [2d would give guid-
ance for the inclusion of further correlations [37].

To provide the ADC formalism in its most general
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form, we have released the assumption of a fully self-
consistent expansion and considered also all the addi-
tional nonskeleton diagrams that appear in this case. The
resulting corrections are important (at least conceptu-
ally) when calculations are based on standard reference
propagators of mean-field type. New sets of diagrams
appear for both the static and dynamic self-energy and
have been derived together with the corresponding con-
tributions in the ADC framework. In total, four ad-
ditional Feynman diagrams must be considered in the
ADC(3) dynamic self-energy when one is working with
uncorrelated propagators, while the 1B effective interac-
tion defining the energy-independent self-energy is de-
composed into 19 Feynman diagrams of different topolo-
gies. Hence, the complete ADC(3) formalism with 3NFs
is now available for the self-energy, either self-consistent
(with only skeleton diagrams) or based on an uncorre-
lated reference state.

The formalism presented in this work sets the basis for
future advancements of the SCGF approach, especially
useful for studies of nuclear structure where the full in-
clusion of realistic three-nucleon interactions is required.
The numerical implementation of the 3p2h and 3h2p sec-
tor is a long-term endeavour that might rely on future
supercomputing computing resources. At the same time,
the case for such improvements in the many-body trun-
cation will also depend on the performance and accuracy
of future generations of realistic nuclear interactions. On
the other hand, calculating the diagram of Fig. in-
volves only 2plh and 2h1p ISCs and will not require re-
sources beyond present day computer power [38]. Thus,
we plan a follow-up study to investigate this term.
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Appendix A: ADC equations for self-energy at third order

In this Appendix we give the remaining expressions of the coupling and interaction matrices that arise from Gold-
stone diagrams at third order in the expansion of the self-energy. The complete list of all terms required to build the



ADC(3) formalism is

M+ M)+ M

+ M+ MG+ MG MY M + M
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if j=r (2plh),

MIADCE) _ pfADC@l (A1)
MY+ MO+ MY+ M)+ M v
+ M MO MO+ MO+ MY MO i =g (3p2h),
N NG NG
+NOD NG+ NG + N+ NG+ NG if k=s (2h1p),
NIAPCE)] _ NIADCE) (A2)
NG NG + NG+ NG + NG+ NG
NG+ NG+ NG+ NED + NG + N if k=u (3h2p),
CP, 4 CP 4 C3 + Crr/ + CM,/ if j=r and j'=r" (2plh),
—pph h—hh 3N(I 3N(II ep s .
CE?DC@)] C+CLTT er,( ) 4 er,( ) if j=r (2p1h) and j'=q¢ (3p2h), (A3)
C, + Chl 4+ Clt,
3N(III 3N(IV 3N(V U U e .
+ qu/( ) + qu/( )+ qu,( ) + C,y+ C;Jqff if j=q and j'=¢’ (3p2h),
D" + D", + D + DU 4 DU if k=s and k'=s' (2h1p),
DIADCE)] _ D" L ppoeeh 4 Dgiv(l) + Diix(”) if k=s (2h1p) and k'=u' (3h2p), (A4)
kk' -

D" + D!, + D,
L D3NUID | p3NUV)

uu’ uu’

3N(V)

uu’

+D

For the coupling matrices M, and Ny, the list of terms
truncated at the ADC(3) level is Composed by sets of
ADC( ) terms, defined in Egs. and ([37) and in
Eqgs. (35) and (3§ . ) for the forward in- tlme and backward-
in—tlme self energy, respectively; sets of terms from (Ila)
to (Ilc) appearing at third order of the ADC, presented
in Eqgs. , , and and in Egs. )7 , and
, which contain only 2plh and 2h1p configurations;
and those terms from (IId) to (ITo) with 3p2h and 3h2p
ISCs, introduced in Eqgs. (67] . ., and and in
Eqgs. . ., ., and 7 Other terms Wlth 3p2h
and 3h2p ISCs, denoted w1th superscripts from (Ile)
to (IIq) are deﬁned in Egs. (AF)-(A20). Moreover, in
Egs. (A1) and ( . we find additional terms, that must
be added to the ADC(3) when the smgle—partlcle propa-
gator used to construct self-energy diagrams is uncorre-
lated, i.e. when one works with a nonskeleton expansion.
For coupling matrices, these additional terms are denoted
with superscripts ranging from (IIr) to (ITu). Their ex-
plicit expressions will be given in Appendix [C2}

Interaction matrices appear at third order in the

+ Duu’ + Duu’

if k=u and k¥'=u’ (3h2p).

(

ADC, as listed in Eqgs. (A3) and . The first three
terms thereof Connectmg to 2plh and 2h1p configura-
tions, are given in Eqs. | ), (60]), and (63)) for forward-
in-time diagrams and in qu l.) (62), and for
backward-in-time ones. Other matrices required to link

3p2h (3h2p) ISCs are denoted by Cf;,pph7...703N(V)

a9’
Dh hhp ... 3N(V) . They will be given below in

b .@ i (550G . (20 (0
(A36)- (A4

and Finally, additional four interaction
matrices introduced in Appendix [C 2] for the nonskeleton
expansion are specified in Eqgs. (A3) and (A4]) with the

superscript U.

1. Coupling matrices with two effective 2NF's

In Fig. [6e] we find the following coupling matrices,

V3

M = 2 Pas (572 A0 A2 (5] Vian )+ (45)



and

N(e) — V3
au - 6

Vo Przs (VR ) VRVl ) (A6)

for the forward-in-time and backward-in-time Goldstone
diagrams, respectively.

2. Coupling matrices with one effective 2NF and
one interaction-irreducible 3NF

Diagrams in Fig. [6¢ contains also an interaction-
irreducible 3NF, therefore another coupling matrix can
be obtained from the corresponding Goldstone diagrams.
For the forward-in-time and backward-in-time parts we
have,

IIe’) __ \/5 n4n n n k n n *
MU = Yo e (VR0 ) Wisapn
(A7)
and
1Ie’) _ \/5 ; 5\ * 1 o ng\*1N3n
NG = = Wapnuon 0 V07) Vi V02 (5 135

(AS)
respectively.

Also diagrams in the second and third row of Fig. [g]
feature coupling matrices with 2NFs and interaction-
irreducible 3NFs. We list them below considering both
forward- and backward-in-time contributions. In the
Goldstone diagrams of the term in Fig. [61] we have,

am _ V3

Mia” =15

A45 (tZ;]?;]:L: (y56y57)* y;\m Vyu,a)\) )
(A9)
and
i \/g 17 n n ny\* yNsNgn
NIW = §A45 (Va/\,uv XX X)) tkfk;k;) :
(A10)
In the Goldstone diagrams of the term in Fig. we
can single out the coupling matrices,

m \/g nin * vn n
M((]IOE ) = ?«445 P12z (tk;kf (y57) R

Yhs (X/;ze)*ww,apn) : (A11)
and
m _ V3 .
N = ?A457)123 (Wanpur(VF7) X0
(o) Wyt (A12)

Finally, in the Goldstone diagrams of the term in
Fig. [6n] we have,

M(Hn) _ é {rent

ni ynz yns ng pnr)*
qa = 9 kaks Xu A XY (Xn Xp ) Wwnanp

(A13)

16

and

N — V3

k1 yyka ok ke k7 ) *
o T 12 anp,pvA yu1yugy)\3 (yn6y07) tzg;flf ’
(A14)
that are both antisymmetric in their particle and hole

indexes.

3. Coupling matrices with two
interaction-irreducible 3NF's

All the Feynman diagrams in the second and fourth
rows of Fig. [6] can contain coupling matrices with two
interaction-irreducible 3NFs. Again, for each different
topology we list the expressions for forward-in-time con-
tributions first, followed by the backward-in-time ones.

In the Goldstone diagrams of the term in Fig. [61] we
have,

y V2 ) *
ML = ﬁtZ;Z;IZ4 (yﬁ°yfﬁy§7)(;4) VEWaaane »
(A15)
which is antisymmetric in the indexes niand ns, and

N(Hi’) _ \@

= 7W
as 12

anp,Apy ng (y§7X;4X:5 ) )*thgszG ’
(A16)
which is antisymmetric in the indexes kijand k.

In the Goldstone diagrams of the term in Fig. [6p] we
have,

\/g ninan, n ne \*
M =35 Ass Puos (1AL 0 D) (Ve
VV/w)\,anp) ) (A17)
and

V3
12

k}3 nentns
y}\ tklkgk)g ) N

Ngip) =-— anp,uv Aas Pias (&74 (y§8 XpoX))"

(A18)

In the Goldstone diagrams of the term in Fig. [6q] we
can also single out the following coupling matrices,

Ilq) _ \/g ninen k ne ynr\* yn n
MY = - 1o P12s (tkikfk; (Ve x,m) a2 e
VV;WA,anp) ) (Alg)
and
\/g ng\ *
N((quILq) Eﬁ anp,pvA P123 ((yyl;7y§8XM6) y,lj2y§3

e ). (A20)



4. Formulas for 2NF interaction matrices with 3p2h
and 3h2p configurations

The interaction matrices that we have introduced in
Sec. [[ITB] do not exhaust the list of all possible terms
required for the ADC(3). A more complicated pattern in
terms of ISCs is present in interaction matrices connect-
ing 2plh and 3p2h ISCs, as for the forward-in-time terms
in the diagrams of Figs. [6dl[6g}

In the Feynman diagram of Fig. [6d] one can find,

— \/6 ne 17 n n *
qu/pph ET2-A12 AQ 10 P678 (‘XM 2 Vuv,)\p(‘){)\ 7Xp 83}510)

5ﬂ1n65k3k9) ) (AQl)
while its complex conjugate term is contained in the di-
agram of Fig. [61

An interaction matrix connecting the same ISCs as the

one in Eq. (A21)) is

I \/6 1V n *
Cﬁq/th EﬁAGWS (yfa Vuy,)\p (yﬁgyykm Xp s)

5”1”65n2n7) ’ (A22)
which is contained in the diagram in Fig. while the
diagram in Fig. [6g] contains the complex conjugate of
Eq. .

In the self-energy diagrams represented in Figs.
when two 3p2h ISCs interact through a 2NF, we find
interaction matrices of the following form:

1 17 n. *
Co EEA% P123 Pers (X,Z“ A2 Vi ap (XY X]T)

v

6”3"85k4k95k5k10) ) (A23)
which is composed by 18 terms when all the permutations
indicated are taken, and the ones with a particle-hole
2NF connecting two 3p2h propagators, i.e.

1 17 n *
Cﬁﬁ}/ 55«445 Ag10 A123 Pers (Xfly,lf“ Vi (X6 VEo)

5n2n75n3n85k5k10> ) (A24)
that contains 72 terms when the explicit antisymmetriza-
tion with respect to quasiparticle indexes is performed.
The interaction matrices in Egs. (A23)) and are
found in the diagrams in Figs. [6] and respectively.

A forward-in-time interaction matrix connecting two
3p2h ISCs through a hole-hole 2NF is found in the self-
energy diagram in Fig. This has the following expres-
sion,

1 - T7 *
ch EEA123 (y§4y,lf° Vi (VR0 V10)

5n1n65n2n75n3n8> . (A25)
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We present now the corresponding interaction matrices
appearing in backward-in-time self-energy Goldstone dia~
grams. We remind that these interaction matrices are the
ones connecting propagators of multihole-multiparticle
type in self-energy diagrams.

We consider first terms contained in Figs. [6dH6g

namely those connecting the 2h1p propagator to the 3h2p
propagator. We find,

— \/6 * 17 n
D?u/hhp Eﬁflu Ag 10 Pers ((JJI’?) Viwap y§7y§8 xjo

5k1k6 6713719) ’ (A26)

which must be combined with another interaction matrix,

Dpjpph _ @
su 12

Asg7s ((X;LS )* vyy,)\pxgg X;10y585k1k65k2k7> .
(A27)

Interaction matrices in Eqgs. (A26]) and (A27) are found
in the self-energy diagrams of Figs. [6d] and respec-

tively, while their complex conjugates are contained in
the diagrams of Figs. [6]] and [6g}

When two 3h2p propagators in a self-energy diagram
are connected via ISCs linked to 2NF's, as in diagrams of
Figs. we have an interaction matrix of the following
form,

1 ~
D', = — EA45 P123 Pers ((y51y52)* Viwap y§6y§7
5k3k86n4n96n5n10) ) (A28)

contained in the diagram of Fig. [6], and another one
found when a particle-hole 2NF connects two 3h2p ISCs,
i.e.

1
D", = - 13445 Ao 10 Ar2s Pors ((y,’fl?f;“)* Viw,px

yé\% erlg 6k2k76k3k86n5’ﬂ10) ) (A29)
which appears in the Feynman diagram of Fig.

Finally, also a backward-in-time interaction matrix
connecting two 3h2p ISCs through a particle-particle
2NF is found in the self-energy diagram of Fig. that
is

1 n ns\* 17 n n
D =— E-Alzi‘a ((X,\4Xp *)* Viwnp X0 X0

u/

Oky kg 5k2k75k3k8> . (A30)

5. Formulas for 3NF interaction matrices with 3p2h
and 3h2p configurations

The last set of interaction matrices is required to com-
plete the ADC(3), which is given by those terms contain-
ing the interaction-irreducible 3NF.



First we consider interaction matrices in which the
3NF connects 2p1h ISCs to 3p2h ISCs, as in the diagrams

in Figs. We find in the diagram of Fig. [6]

V6 "
Cicj]\[([ _7»’412 Pers <5n2n7 X)\ lyf?“ W)\H’/vlﬂle

<X£6X£8y59y51°>*) : (A31)
and a second 3NF interaction matrix connecting the 2plh
propagator to the 3p2h propagator, requiring an explicit
antisymmetrization only with respect to two particle in-
dexes. Its expression from a Goldstone diagram of Fig.
reads,

f n n
CiéV(II) _7-/49 10 (X IX 2 W)u/u,pen

(XXX V) O, ) (AB2)

Complex conjugate interaction matrices corresponding to
Egs. and (A32) can be found in the Goldstone
diagrams of Figs. [6]] and [6k}

Two 3p2h propagators can be connected in a self-
energy diagram via ISCs containing a 3NF. They are
contained in the three self-energy diagrams represented
in Figs. [60{6gf We have then an interaction matrix of the
following form in Fig. [60}

C2;\/((111 .A45 (an an Xn W/\yu pen (an Xn7an)
5k4k96k5k10> : (A?’S)

Other 3NF interaction matrices connecting two 3p2h
ISCs are found in Fig. [6p}

Czév(lv) *A45 Ag 10 P123 Pers (an XYk
Wiv,pen (X;?G Xemy;’:m) 5k4k95"3"8> )
(A34)
and in Fig. [6qt
Czé\,{(v =1 A123 Pers (mek4yk v pen
<X”6aﬂ“9y’“°> nanrOnans )« (A35)

We can present now 3NF' interaction matrices appear-
ing in backward-in-time self-energy Goldstone diagrams.
These interaction matrices connect hole-particle ISCs in
the diagrams, i.e. 2hlp and/or 3h2p propagators. As
the corresponding interaction matrices for the forward-
in-time part shown above, they are found in the diagrams

of Figs. and Figs.

First we have the terms,

V6 nayr
DI = = Y0P Pors (Susty (4 7%) Waspene

yfs yéksx;w Xllno) , (A36)
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and

f )
Dgi\{(ﬂ) ./49 10 ((y;\ﬁ yﬁﬂz) Wawsupen

ygﬁy?yj? 0 Gy ) (A37)
which are found in Figs. [6h] and [61 respectively.

Finally, 3NF interaction matrices can connect two 3h2p
ISCs within a self-energy diagram, as in diagrams of
Figs. Specifically, in Figs. [60] and [6p] we can single

out the interaction matrices,

Dii[/(III) _7/445 ((yflyszyﬁe’)* W)\l/p.,pen y§6y57y7’78

Onang 5n5n10) ) (A38)

and
D) = A45 Ag 10 P123 Pers ((y’,\clyfz X))

W)\U;L,pén yp(}yéw)(ﬁm 5n4n95k3k3) ) (A39)

respectively. Matrices in Eqgs. (A38) and (A39) must
be complemented with another backward-in-time inter-

action matrix that also connects two 3h2p ISCs. This is
given by the expression,

3N(V)

uu’

**«4123 Pers ((yﬁlXeM X0%)* Waua, pen

ysﬁ)@ng)(,(“o 5k2k75k3k8> , (A40)

as it is singled out from the Goldstone diagram corre-
sponding to Fig. [6q]

Appendix B: Irreducible self-energy in angular
momentum coupling formalism

Most implementations of ab initio approaches in nu-
clear physics are based on the assumption of a spher-
ical ground state, so that one can exploit a spherical
single-particle basis and the angular momentum formal-
ism to decouple different channels. The diagonalization
of Eq. can then be performed separately for each
partial wave, and the required computational resources
are significantly reduced. In this Appendix we follow this
path and derive the corresponding working equations for
ADC(3) and 3NFs including up to 2plh and 2hlp ISCs.
The ADC(3) matrix elements for 2NFs have been dis-
cussed in the past [39] and used in applications for several
years [11l 40, 41]. However, they were never published
in detail for the case of fully dressed propagators. More-
over, we complement them with the new terms arising
from 3NFs. We present them here in the hope that they
might turn out to be useful to practitioners.

In general, a spherical single-particle state with isospin
function x4, is given by coupling the spherical harmonic



Yi(7) to x1, the function of the intrinsic spin of the nu-
cleon,

63(7, 0, 7) = Fnt (M[Y1a (7) © x4, ()] xqu () (B1)
with ¢ and 7 being spin and isospin coordinates, respec-
tively.

The collective index S denotes the set of quantum num-
bers (ng, 73, jg, mga, ), where ng is the principal quan-
tum number, 7g is the parity corresponding to the orbital
angular momentum Ig, jg and mg are the total angular
momentum and its projection along the z axis, and gz
represents the isospin projection. In this basis, the cre-
ation operator a, of the single-particle basis is the mtﬁh
component of an irreducible tensor of rank jg:

=+

i — 4
g = Ong,mp.55,ms.q8 — Sbmp * (B2)

where we made use of the notation 8 = (b,mg), i.e.
b= (ng,mp,js:4p) - (B3)

The destruction operators are dealt with in the same
fashion but we add a phase factor and invert the quan-
tum number m, which is needed to obtain an irre-
ducible tensor ag = (—1)#*"say _,,,. For parti-
cle and hole Dyson orbits, corresponding to the eigen-
states |WAHY) and [¥271) of the (A+1)- and (A-1)-
body systems, we use a compact notation analogous to
Eq. (B2) and write n = (7,m,) and k = (k,my), with
7= (M, T, Jin> @n) and k = (ng, Tx, ji, qx). Using these

J
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definitions, the shorthand notations of Eqs. and
can be coupled to total angular momentum and the over-
all quantum number M is separated. This leads us to
deﬁne r= [(ﬁl, ﬁQ, J12, kg), Jr], s = [(kl, kQ, J12, ng)7 JS]
and so on, where we follow the coupling conventions of
Egs. and below.

We now revisit the angular momentum coupling of
the self-energy, when the ground state |W{') in Eq.
has total angular momentum and parity J"=0". For
these systems, the formalism is considerably simplified
because the total angular momentum j, (jx), its pro-
jection along the z axis m, (my) and the parity m,
(1) of excited states UAT! (U£1) are the same as the
corresponding quantum numbers of the particle creation
(annihilation) tensor operators entering the definition of
the Green’s function, Eq. . The total isospin is also
uniquely determined by isospin projections of the refer-
ence state and tensor operators. With our assumption
that |[U{') has J™=07, the irreducible self-energy in the
Dyson equation becomes diagonal in the quantum
numbers (7, j,m, q), and it is independent on m:

5 5(@) = 85778,y Ty (@) (B4)

where we have introduced a compact notation for multi-
ple Kronecker deltas:

By applying the Wigner-Eckart theorem to the transition amplitudes from Eq. @, one finds:

(5(qu)5

Xg}vmn — (_1)2jn afi_ “Mamn

V2ja +1
and
5(”]11)

— (_1)20k(_1)Ja—ma _ak
(~1)¥+(-1) —

—MaMg

k
Yk

557" = Srma O s Oats - (B5)
(W ol |94 = X6 b, (B6)
(g [04) = VE(-1pn 55 (B7)

which define the m-independent spectroscopic amplitudes X and y{f.
Because of rotational invariance of the Hamiltonian, the 2NFs and 3NFs are coupled as m-independent matrix

elements according to

— 7 1

Vabgd = E (Jadsmams|JM)(jyjamyms|J M) Vag s (B8)
v1+ 6(117 \V 1+ 6gd %QZZ@
176
and
W£Z{;;U = § § (Jadsmamg|Ji M1)(jyjsmyme|JaMa) (JyjaMyma|J M) (Jog, Mom, |TM)Weags ~50 - (B9)

MaMpg MAyMs
my my

Note that we chose to properly normalize the matrix elements of V in Eq. (B8) but not those of W. When considering
the Goldstone diagrams that result from Fig. it is also convenient to recouple the angular momenta of the 3NF in
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the particle-particle-hole channel:

WIS = — 3 S (GadsmameslJi M) (Gysmyms] Ja Ma)
MaMg MAyMs
my my
X(Juja My = m|TM) (Jagy My — ma | TM)(=) =" (=) " W, 5 (B10)

The matrix elements W can be transformed into the W(®P") form by using the Pandya relation [42):

. . Jl j)\ J ’
Wi = ()220 322 4 1) { P } Wonlai (B11)
J/ 1%

1. General J-coupling conventions for ISCs

The ADC coupling and interaction matrices derived in earlier sections already separate naturally in terms of the
parity and isospin (i.e., charge differences with respect to the ground state |¥Z')). To decouple the Dyson eigenvalue
problem according to Eq. , we then need to recouple the ISCs to total angular momentum. In this Appendix we
are going to consider only the ADC contributions arising from Feynman diagrams of Fig.[2] Thus, we need to specify
an angular momentum coupling convention for 2plh and 2hlp ISCs. As usual, the particular choice of coupling may
introduce particular phases and factors in the equations but the final result of the Dyson diagonalization, Eq. ,
does not depend on these.

For 2plh coupling matrices we define the coupled elements of My, as

o ) i 1+ 05,5
> Gnndina™Mny My | J12Mi2) (Jrz g, Mazmg, | Jo My) Mo = 65706, a1, \/ % M, (B12)

Mny Mngy
mks

with the parity m, = (—1)1 7+ the charge ¢, = q1 + ¢2 — g3 and the total angular momentum J, of the 2p1h ISC
7 = [(1, Mg, J12, k3), J,-]. For the backward-in-time 2h1p matrix Nz, we write:

o , , 1+ 07,7
> G dba ke My | Ji2 Ma2) (J12ing Maziin, | Js Mo)Nas = 05706, \/ % Nos (B13)

’I’I’L[Cl mk2
Mng

with the charge ¢, = q1 + g2 — g3 and the total angular momentum J; of the 2h1p ISC § = [(/2:17 ko, Jio, n3), Js]. The

interaction matrices C;;» and Dy, are coupled in the same way. For 2plh matrix elements C,,/, we have

ST Gnadna™ay Mg |12 Mi2) (Jr2jis Mizmiey | M) (i iy Moy | a5 Mas ) (Jas g Masmig | o My ) C, o

My Mgy My Mg

mkS mks
i 14 0a,5 1+ b5iging
=000, 0, V—  Cir ,/72 e (B14)

And for the 2h1p matrix elements D :

DD Gkadkamu My |12 Mio) (Jizgng Miomng | T M) (ki i My Mg | Jas Mas ) (Ja5 g Magming | Jo My )D

mkl 7nk2 mk4mk5

Mg Mg
. [T+ 0, ; [T+ 6; ;
= 5£§/]q)5MsMs/ 7;1]% Dy 7;4]% : (B15)

Equations (B14)) and (B15) define the coupled C.~ and Dy that are independent of M, and M;, respectively. With
the above definitions, the unperturbed energies for each ISC do not depend on the angular momentum coupling and
their expressions, Eqs. and 7 remain unchanged. For example:

E;w = diag{e} +ef — egg} . (B16)

Note that the coupling and interaction matrices introduced in Secs. [[IT A] and [[IT B] are explicitly antisymmetric for the
exchanges in any of the particle (n1, ng, ns, ...) or any of the hole (k1, ko, k3, ...) indices. They are nevertheless defined
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assuming unrestricted sum over all indexes. In practical calculations, one can drop the symmetry factors of 1/ V2 for
2pl1h (2h1p) ISCs and restrict the sums over the fist two indexes, ny < nz (k1 < k2). In angular momentum coupling
formalism one has similarly ordered sums—n; < 1o and k'1 < kz in this case—and factors such as /(1 + 07, 71,)/2
are to be dropped. Thus, we separated these factors already in the definitions ( - -

With the above deﬁmtlons and assuming ordered sums, the dynamic self-energy of Eq. . can be decoupled as

1 1
M r! Nas N N*/
Z " s — (B0 + o) + 5*; "B + D) —in P
1 i
= Y 0V My; 0 : 057V 8y, My
FROMy M, hw — (Edrm + Cw)(squ Om, M, +in
, 1 ,
+ 88T95,,., 11, Nas 85 Ni
35 %MS, hw — (Ezdss + D~~')5§?q)5MSMS, —in ’
, 1 ,
_ 5(77311)6m m 5(7qu)M* 6(W,jq>Mf/
ab amp ; aF o — (EF(SFF’ + C;,:/) +in br b

1 .
STIDN 5 SN,
" Z, hw — (Bsbss + Dgyr) —in bs

— 5(7rjq)§mam3 Sap(w), (B17)
which proves the energy dependent part of Eq. (B4) and defines the m-independent irreducible self-energy %%, (w).

2. Angular momentum coupling of the ADC(3) equations

We are now in the position to give expressions for the coupling and interaction matrices resulting from the diagrams
of Figs. [T[]and 2] in the angular momentum formalism.

a. Coupling matrices with 2plh ISCs

The simplest 2plh coupling matrix is Mg{jﬁ, Eq. , and it appears already at the ADC(2) level. Using the
definition (B12)), we obtain

a S . o
MU = A(jny s g J12) A1z, g J) (—1)FeHika =12 212
Ja
anénfﬁf X"Qév’{ﬂgq (- 1)Jn1+yn2—J12Xn15(mq)Xn25£TJl§ ; Z
X Ve V1 +0a Vi#6 (ria) (B18)
m; VIF Gom/1T+ 6717, : Lotk
with the usual “hat ” notation
J=2j+1 (B19)
and the triangular condition
1 iflj—Jj1<J<ji+j,
A(g, 5", J) = (B20)
0 otherwise.

The Mgo{a) contribution from Eq. lj becomes

. . . 1 atirg—J1z J n n
MO = Ay s T12) Az s Jp) L 02 S S A G i) 75
L+ 0aisz o ka<ks 9<d
SR5 1

(y§45(7;jq) ygsat(lzﬁﬁ ( 1)]k4+]k —J1s yk45(7r]f1) yksé(ﬂjfﬁ)
gRa 5
X

(1 —|—5,;4,55) \/1 +5gd

V23214 ba yksél(,jj” ., (B21)
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where we have coupled the angular momenta of the 2p2h amplitude, Eq. 7 as follows:

Z;Z;J = Z (jnljn'zmnlmnz|JM)(jk3jk4mk3mk4|J - M) (71)J7M tZ;I’;f
Mk m
D AP — (1)t g 3
m<v 1+ 6mv
g<d
% ks §(730) yka s(7iq) g +ik, —J Vks §(T30) kg 5(750)
X Viv.gd Ve Ogua” Va*Oar, — (=1)7ratra=T Y600 Yo ! (B22)
e +er —en —em, VI+6,s
4 3
The Mggb) of Eq. in the angular momentum coupled representation is given by
. . e g i 1
Mgalb) = A(]nu]nza JlQ)A(J12a.7k3? JT)(_l)ja—HkS JlZAii Z Z Z (2J2 + 1)(2J3 + 1)
Ja \/1+(5ﬁ1ﬁ2 ]%4&5 7nlv Jo Js3
Jny Jka J2
< [ (DI S Gy Ty g p XSS G2 (V5SS 0000 /T 0V VT B
J12 Jis Jr
jnz jk:4 JZ
=S gy T3 dns p XSSP (e (V0D A ST T Sy Vi VT Gaa | (B23)
J12 Js Jr

which is explicitly antisymmetrized with respect to the ny, ny indexes.

The coupling matrix MSEC) of Eq. is implied by the diagram of Fig. This is the first term that contains an
interaction-irreducible 3NF and it has the following form:

M(IIc) A(j sy J12) A (12 sy I ) Z Z Z A( T RYNG B (—l)j"4+ja7c]56+2,]/ j56
Fa = Inys Ings J12 125 Jks» Jr Jks> Jker J56 Ina> J565 Ja =
56 J' ks <kg vSM \/m Ja
Fe 1
. . yfc;,(s(ﬂ'jQ) yfcgé(ﬂ'j‘I) —(—1)IksFirg—JIs6 y}}sé(ﬂ'jq) ykﬁé(ﬂ-jq) *
% Jks J12 Ja frfiafia,JiaJ’ m “nks v Yokg ( ) v ks m Omke
jn4 J56 J’ kskeks,Jse (1 + 6];5];0) m
X(szél(gjq))*vnﬁfaz V14 dars (B24)
which is expressed in terms of the 3p3h amplitude Eq. . In the angular momentum form, this is

(27" +1)

Xgﬁlééﬂq) XC’?Z&(”N) . (_1)jnl+jn2_J12X£L16(7rjq) ngLQégﬂq) Xf‘lé(”jQ) WJ12J5GJ/ y§35(m‘q)

tﬁlﬁzfu,JuJ’ — 2 : dno dny N4 gdr,tps sks
kskoks,Jse - - = - _ _F _ + _ -+
= (14 04q) € T 65 T4, ~ i — a, ~ Chy
s
t<p
];5 (mjq) fCG (mjq) — (_1\Jk=sFtIks—I56 l~€5 (7jq) ];6 (7jq)
YOy Yyt — (C)e e e d T Vi O (B25)

(1 + 5tp)

b.  Coupling matrices with 2hlp ISCs

The backward-in-time contributions to the self-energy involve ISCs with 2h1p. The angular momentum represen-
tation for the ADC(2) coupling matrix, Eq. , is:

o ‘ - N
N = AQk, s s T12) A(J12, fing s ) (—1)de e (1) =ina L’f
~ :))7’;“115(”‘1) yqu%z(;(ﬂjq) —(—1)ikr ke =Tz y515<qu) yrlizd(ﬁjQ) I
% Z /1 T 6alVa{}72nv mkq vka ( ) vk mkso A/lnsél(n;zq) (B26)

m<wv \/1 + dum \/1 + 61517;2
l
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The ADC(3) ladder term coupling matrix of Eq. becomes

: . . ) A 1)Ja—dng—J12 J
N = Ak, G, J12) A (12, g, Ja) (—1)7 L e DD Alnasdngs J1) V1+8aV2,

Vv L+ 5]91"’2 ‘70‘ fy<ns g<d
l

i g(mia) yiis 5(mia) tjs—Jiz yhas(TiQ) i (wq))
Wgny Xy %0, 1)dvtis— 12 X6 X 56
Xnaé(ﬂjq ( gna dns ( ) dna 475,12 (B27)

fna V1 +0ga(1 + 7yms) kakz

and the corresponding particle-hole channel, Eq. , is

. . . . ]a Jng —J12 J
N = A s, T12) Az, g Jo) (— 1y 1) 2SS @k s )

1+ 65
+ k1 ko fig Eos mlv JaJs

Jk Jna J2
x| (1)t 8 G T g 0 VT 0V VI S (XH0GTO V00 )" Yl a0 e
J12 Jns Js
Jka Jna J2
=S i Js ks ¢ VT Bat Vil VI G (XTSI Y60 ) Yo () gianesds | (B28)
J12 Jng Js

which is explicitly antisymmetrized with respect to the l~€1, ko indices.

Finally, the coupling matrix NEXI&I,C) of Eq. is found in the backward-in-time diagram of Fig. |2c| and contains a
3NF. It has the following form in the angular momentum coupling representation:

N = AQiky ke J12) A (12, g s ) Y DT> Alngsdng: J56) A(Js6, kg Jo)

JasJ! a<ns v<m
kg l

1)Ja+2ing +ikg —Js6+2J" | Jn
YR VI8V,
1 + 5]61]62 .]CK jk4 J12 .]Oé

(252 2070500 — (1) ina o0 X760 270 6(70) )
(1 + 67L5ﬁ6) V14 O

X (_1)ja_mo¢

kq 5(mjq) fisens,JseJ’
x (i ) refons el (Bag)

c. Interaction matrices with 2plh and 2h1p ISCs

The interaction matrix C;; can connect 2plh propagators through particle-particle, particle-hole and 3NFs, ac-
cording to the terms

C.v =C% + CM, + Cw, ) (B30)

which have been introduced in Egs. , , and , respectively.
The particle-particle interaction matrix results from the diagram in Fig. Using the coupling convention of

Eq. (B14)), we have:
ng/ = A(]Tn 7jn27 JlQ)A(J127jk3a Jr)A(jn47jn5, JlQ)A(‘]127jkm J )
Z X §ira) sztgqggq) (— 1)Jn1+ynz—Jan15(mq) X”Qéﬁlg

m<wv \/1 + 6ﬁ1ﬁ2 \/1 + 5m'u
1<p

X0.115 45 61}3 ke

Xn4 6(”%1) Xno(s(ﬂ'J‘I) ( 1)],14 +ing —J12 X”“ 6(7;&‘1) Xn5 5(7‘7‘1)
XV‘]12 ln4 P ln5

mu,lp \/1 +5lp\/1 +5ﬁ4ﬁ5

(B31)
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The particle-hole Ci};, comes from the ring diagram in Fig. which contains four terms owing to the antisym-
metrization specified in Eq. ,

ng/ = A(j'n«l 7jn27 JlQ)A(J127jk3a JT)A(jnujnsa J45)A(J45vjksa JT)

Z Jiz Jus (2 +1)
— 1+ 0,5, /1 + Onsing

NN
=2V

Jna Jna J12
| § ne T s 0 RO VR SVl T Bt (K60 VR )
Jas Jke Jr
Jns Jna J12
= (e L G Ty XD YIS T Vil /T Ot (720000 V505 ) b,
Ja5 Jrg JIr
Jna Jna J12
(DI T Gy 6 X200 VRN T 8V /T B (140730 V20T ) b,
Ja5 Jrg JIr
_|_(_1)jn1 +ing —J12 (_1)jn4 +ing —Jas
Jns Jna J12
o 9y LA A TS /T (A9 ) 0, ) o0
Ja5 Jrg JIr

The 3NF interaction matrix in Eq. (B30) reads,

C?Q’[ = A(.]Yn 7jn2a ‘]12)A(J127j1€3a JT)A(jnujnsa J45)A(J457jk6’ J’F)
Xﬁl&(ﬁrﬁ) ng(;mq) _ (_1)jn1+jn27J12X53151()7;LJ1‘Q) Xfﬁg(s(ﬂjw ~35(7rjq)

mna k
X%g VI 8z (14 Gmo) ks
l D

oy o) T (X350 o8I0 (—1)inating s i1 590 s 50 )
mul=1,gdp=1 (1+ 6,44) /1 T Onai
where we have the 3NF coupled in the pph channel from Eq. (B10)).

The backward-in-time interaction matrix Dy can connect the 2h1lp propagators through hole-hole, hole-particle
and backward-in-time 3NFs, according to,

(Vhestnye (B33)

D, =D + D! + DY, (B34)

with the three matrices on the right-hand side introduced in Egs. , , and , respectively.
The hole-hole interaction matrix resulting from the diagram in Fig. [2a] reads,

D) = — Ak, s J12) A(T12, Gngs T5) AlGas Jis s J12)A(J12, g )

(y[;l 55;"’1;1) y{:’ﬁg 51()7];2‘1) _ (71)]1-,1 +Jkg —J12 y{:ﬂ 51()7];.1‘1) nyCnQ 57(17]‘;12(1)) .

X011 a5 Onsne Y v
B m<v \/1+6gd\/1+6/~€11~€2 g
I<p
L Y — oty -
\/1+5tp\/1+5;}41}5 ’

while D}S}g results from the ring diagram in Fig. |2b|and contains four different terms owing to the antisymmetrization



specified in Eq. :

. . . . 1 Ny
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Finally, the backward-in-time 3NF interaction matrix in Eq. (B34)) is given by

D3 = — Ak Jras J12) A(J12, Gings J) AUkss Ggs J15) A(Jas, g Js)
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Appendix C: Self-energy without renormalization of
the propagators

This Appendix discusses how the ADC(3) equations
need to be modified when one releases the assumption of
full self-consistency. This is the case for most of appli-
cations in quantum chemistry and also for state-of-the-
art nuclear structure studies, where fully dressed prop-
agators become too complex to be able to expand the
dynamic self-energy X,5(w). In the latter case, one is
forced to implement self-consistency only at the level of
the static self-energy, Eq. , while Eqgs. — that
generate the dynamic part are based on an uncorrelated
(bare) propagator (this is the so—called ‘sc0’ approxima-
tion introduced and discussed in Ref. [35]). Without self-
consistency, one needs to follow the standard perturba-
tion approach and to expand the self-energy in terms
of reference mean-field propagators. This means that
nonskeleton diagrams also need to be added to the per-
turbative expansion that is used to constrain the ADC(n)
interaction and coupling matrices. For calculations up

/14 (5];4]25(1 + 5tp)

oks_ xfog(mia) - (B3T)

pne

(

to order n=3, there are substantially two consequences.
First, Eq. for the static self-energy must be re-
expressed in terms of the reference propagator as shown
in Appendix One does this by expanding both the
(correlated) 1B and 2B density matrices, pog and I'as 45,
with the inclusion of nonskeleton terms. The three terms
of Eq. still generate the skeleton diagrams of Fig. |§|
but now there are 16 additional higher order contribu-
tions in terms of the effective forces U and V', as shown
in Figs. [T2] and [I4] below. Note that a few of these dia-
grams are of skeleton type and they should be included
also when U is calculated self-consistently. They result
from the skeleton expansion of the 2B Green’s function
and density matrix (see Egs. and (17)) and will be
identified further below. Second, the dynamic self-energy
receives four third-order nonskeleton diagrams that are
obtained by inserting the (first-order term of the) 1B
operator into the uncorrelated fermionic lines that form
the diagrams of the dynamic self-energy at second order.
These are derived in Section [C2and they generate addi-
tional contributions to the ADC(3) equations. It is useful
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FIG. 9. Diagrammatic representation of the first-order part
U (zigzag line) of the effective 1B interaction of Eq.
Fermionic lines here denote uncorrelated propagators. Dotted
lines denote the 1B potential Uag, while short (long) dashed
lines denote 2N (3N) interactions. This is the fist term of the
expansion of Eq. and it is given in full by Eq. ,

v
(\/\/\): *-----9 + o———o———O
FIG. 10. Diagrammatic representation of v given by
Eq. (C5). This is the first-order term in the expansion of

Eq. (C3)) of the effective 2N interaction.

to note that these additional terms cancel exactly when
one chooses a Hartree-Fock (HF) state as the reference
(but not in the general case).

In the following, we will consider the expansion with
respect to the uncorrelated propagator g(o)(w) that is
associated with a mean-field reference state |¢7'). Hence,
we redefine the transition amplitudes of the unperturbed
(A 4 1)-body systems, denoted by |¢(4+D), as follows:

_ ) (X0 = (o laalen )

Zimmh = " C1
{Y£E< AT, |6 (©1

which build the reference propagator similarly to Eq. .
In general, to obtain the ADC(3) approximation for such
reference state, one only needs to substitute the ampli-
tudes from Eq. @ in the expressions for Egs. (A1))-(A4)
with the corresponding ones from Eq. . Note that,
differently from the true Dyson eigenstates of Eq. @, the
orbitals n and k of Eq. form a complete orthonor-
mal set. Thus, the great advantage in using a mean-field
reference state is that the numbers of particle and hole
states is drastically reduced and, in fact, tractable. In the
following we will consider the most general case in which
these orbits are different from the model space basis {a},
then the Z!, give the unitary transformation between the
two sets. In standard applications of perturbation the-
ory it is customary to identify the basis {a} with the un-

J
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perturbed orbits of the reference state. One can always
reduce to this particular case by substituting X7 — dpq
and Y* — 8., which recovers the expressions reported
in Refs. [20] 21].

1. Static self-energy

Equation for the 1B effective interaction is exact
and it is given in terms of correlated 1B and 2B propaga-
tors: for this reason, practical calculations (such as the
above mentioned sc0 approach) may follow an iterative
procedure to “dress” the propagator and evaluate self-
consistently the first-order static irreducible self-energy.
Alternatively, one can consider the explicit expansion of

ap In terms of uncorrelated propagators. This should
be done up to the same order n that matches the ADC(n)
truncation for iag (w). Thus, we expand the effective in-

teraction U as follows:

T (1) 772 773 i

U= (05 +0% +09 +... Jakas.  (C2)
aB

In a similar fashion, one considers the expansion (up
to second order) of V, that is

= =1 =(2
V= Z (Viﬂ)ﬁé + VOEB)KY(S +... )a‘;aga(;av . (C3)
af,yd

The first-order term in Eq. is given by the expres-
sion in Eq. once correlated propagators are substi-
tuted with bare ones. It is composed by the three dia-
grams represented in Fig.[0land can be written in terms of
one-body reduced density matrix, pgz = fihggg (t—t1),

which is the uncorrelated version of Eq. . We have

. 3 o, 1 3 0
UO(tB) = —Uap + V(I’Y;B(S pz(ify) + Z Wa76766n p((s'Y)p"('](z) ’
Y8 gl
en
(C4)

‘70%) s is depicted in Fig. |10, It can be directly read from

Eq. once the correlated fermionic loop is substituted
with an uncorrelated one:

(1
ViBns = Vagns + D Wapensn L2 -

€n

Similarly, the explicit exssion for the matrix element

(C5)

The second-order term U®) is composed by eight different Feynman diagrams, that can be grouped into four by
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T® . ) — e — _Q
00 0 o¢

FIG. 11. As described in the caption of Fig. EI but for the second-order term U ).

7o
i) v oW M
AVAVAL S ‘\/\/\/\(:}’\/\/\x e - N -
FIG. 12. As described in the caption of Fig. |§| but for the second-order term U® rewritten in terms of V().
using the effective interaction U
(2) dw
0% = —in / z

dwl

0 ~
ay,B6 + Z Wa'ye Bén pne ‘| g((Sg)( ) 1(7(’))1) (w)Ue(le)

d(.dg d(.dg

0 0
avesn 99 (1) g% (w2)gs (w3) g% (w1 + ws — wa) | Viwr + 3 Wewnn 02|

€n

AP

(C6)

with the corresponding diagrams displayed in Fig. The terms in Eq. (C6) can be further reduced by using the
effective 2NF at the first order,

rr(2) _ v (0)
Uaﬁ - h/ Z ay,B8 966 )gm( )U(l

dwl dw2 dwg

ave,Bon gw (wl)gf;(,? (w2>95\5) (W3)97(792 (w1 +ws — wz)‘N/p(i,),,,\ ) (C7)

enu6
YALP

as depicted in Fig. B
When the integration over the frequencies is performed, the second order term U becomes

ni\x vn * k * no\* Y ne
7 (X XY (V) YR () (o) X
Ua Z SCE DY 1 > e (C8)
n1ko _(5”1 o €k2) +n k1na _<5k1 - 5"2) —1m
1 (X'm Xn2yk3 Yk4)*X7L1 an Yk3yk4 Ykl Yk2Xn3XTL4 (Ykl YkQXngX»,M)* )
+ Z Z Wa'ye,ﬁén Z — — &7 — Z _ 7t _ Vp(,u,)u)\
envé n1n2 (6”1 + 5”2 5]63 €k4) + ”’ k1ko (€k1 + €k2 Eng — 5714) ”’
YALP kaka nany

Note that the last term on the right hand side of Eq. corresponds the last diagram in Fig. [12|and it is of skeleton
type. This is the second-order contribution to %77 that would appear also in the self-consistent expansion.

As we discussed above, it is customary in several practical applications to assume for the model space the very
same orbits that diagonalize the unperturbed Hamiltonian, Hy, and define the reference state. In this case the
amplitudes become diagonal in the two indexes i and «. Similarly, one may chose an HF reference state and in
this case the term U1 vanishes because of the specific definition of the HF potential (as it is obvious from Eq. )
Whether or not it is convenient to take these assumptions—and in particular which is the best reference state to
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FIG. 13. As described in the caption of Fig. [10| but for the second-order term Ve,

use—depends of the specific computational approach and on the specific system one needs to solve. For completeness,
we give the example of how Eq. (C8|) would simplify if both these assumptions are made:

af #VZ¢F p;F pA v e +e; — 5?5 _ E;r) i auv,Bp ap,Buv (Ep tes - 6;{ — Erj) Fin w,p

(C9)
where we have used the notations € F' (¢ F') to restrict the sums over occupied (unoccupied) orbits.

For the second-order term V( ) 45 0 the expansion of Eq. , we have the three diagrams on the right-hand side
of Fig. [I3] with the following express1ons

~(2 dw
7O —in / ZWQ&WM )0 (@)U — i / S Woasenan 92 ()90 @00 Vi r

env
App
/ Z Waﬁé,vén g,L(Le)( )97(7(1)/)( )Wu)\a ,up'rp;)\ PS-OU)
Nipr
o fdw
- _m/ﬁz Wapgeon 9;(2)( )94 (w )UIEL) ) (C10)
€n
v

where in the last equality we have written a more compact expression for v by using the first term in the expansion
-»

of U. The integration over the frequency in Eq. (C10) gives the expression of V® in terms of the uncorrelated
transition amplitudes:

O S W (z

ni k2

Uy (C11)

vy

(an ykz) Xm Yk2 Ykl X7 (Ykl an)

(821 - EkQ) + ”7 kzn: Ekl Enz) - “7
uv
which is zero in the specific case of an HF reference state, due to v vanishing.

The expansion of U in Eq. 1] contains also the term U 0(33) composed by the 14 contributions shown in Fig.
By using the same Feynman rules applied for the terms at second and third order (see Appendix A of Ref. [22]), one
can derive the expressions for those fourteen diagrams. Here we give the final equations after all integrals over the
frequencies have been performed. Using the compact notation for npnh coupled cluster amplitudes of Egs. —
and assuming Einstein’s summing convention throughout, they are listed below according to the order of appearance

in Fig.
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FIG. 14. As described in the caption of Fig. |§| but for the third-order term U®.
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Together with the last term of Eq. (C8)), the third-order diagrams in Figs. and are

skeleton and therefore they would need to be included in a fully self-consistent ADC(3) formulation. Note, however,

that Eq. (C8)) and the diagramreduce to a single contribution if the full IN/, from Eq. , is used. Again, choosing
an HF state as the unperturbed reference would force the diagrams of Figs. and to vanish.

2. Dynamic self-energy

When a self-consistent formulation is possible, some of
the correlation effects beyond mean field are already in-
cluded through the use of dressed reference propagators.
However, for a reference state that is not dressed, ad-
ditional nonskeleton diagrams contribute to the energy-
dependent self-energy at third and higher orders. Hence,
their contributions should be added to the ADC(n) equa-
tions.

Specifically, at the ADC(3) level, the one-particle irre-
ducible and interaction-irreducible diagrams considered
for the energy-dependent self-energy in Sec. [[Il] and Ap-
pendix [A]must be complemented with the four Feynman
diagrams of Fig. Diagrammatically, they are obtained
by inserting the first-order 1B effective interaction U
of Fig. [0] into the second-order diagrams of Fig.[I} Since
we are not considering four and higher orders here, only
the UM needs to be included for ADC(3).

In this case, the ADC(3) expansion of the self-energy
matrices that appear in Eq. is enriched with addi-
tional coupling corrections. These are already listed in

(

Eqs. (A1) and (A2)), respectively for the forward-in-time
and backward-in-time cases, and they are repeated here
for completeness:

MY + M if j=r (2p1h),

11
M = (C13)
MY + MUY if j=q (3p2h),
NI NS if k=g (2h1p),
NUD — (C14)

N L N0 S5¢ kg (302p).

Also for the interaction matrices, the nonskeleton expan-
sion is enriched by additional C;;; and Dy matrices.



(r) (s)

(t)

FIG. 15. Third-order nonskeleton diagrams of the dynamic
self-energy, complementing the ones in Figs. 2] and [f] for the
general ADC(3), not based on a self-consistent reference prop-
agator. Zigzag lines represent the effective 1B interaction of

Eq. .

These terms are included in Eqgs. (A3{A4) and are:

ﬁp Uh
C'rr’ + Crr’

if j=r and j'=r' (2p1h),

Cji = Cg;f + ng}f if j=q and j'=¢' (3p2h),
0 otherwise,
(C15)
DZ’} + Dsﬁsz,) if k=s and k'=s" (2hlp),
Dy = Dgﬁ + D,’Zﬁ% if k=u and k¥'=u’ (3h2p),

0 otherwise.
(C16)

a. ADC(8) terms with 2plh and 2hlp ISCs

By following the same procedure used to find the
expressions of the coupling matrices containing 2NFs
and/or 3NFs, we can derive the analogous expressions
of Mj, and N, containing one U insertion, and ex-
pressed in terms of the uncorrelated transition ampli-

tudes of Eq. (C1J).
From the Goldstone-Feynman diagrams in Figs.
and we find,

L XmiWyk i

IIr) _ [ ) % vk

M'(ra ) = ﬁ-"h? ;]; 1E+ (YJM) X;L Y)\3 Vp,u,a)\a
4 n1

(C17)

33

and
na 77Dy k
1 XU Y™ >
ML = Z =2 XX Vivan,
Ek3 — Eny
(C18)
respectively.

The 2plh interaction matrices in Eq. (C15) are
U 1 ry N4\ *
Oyt = 3 A s X UL (X3 BBk - (C19)
and

~ _1 ~
clh = 7.,4121/5’“3U,(Y(1;)(Yf“)* SpiniOngns - (C20)

In the backward-in-time Goldstone diagrams of
Figs. and one finds the coupling matrices,

T 1 = Xn4[7(115)Y§k1 * n
N(QI; ) = EVQ)HMVA]Q%# (XZLL‘I) YVkQXA3
1 T4
(C21)
and
n3 77 (1) y ka
1~ XU LY,

NI = T yhiyks(yhr | (022)

Vax
N
V2 €, — Ens

while the corresponding interaction matrices in Eq. (C16))
connecting 2h1p ISCs, are

~ 1 *~
DU! = 5 A1z Ais (V)7) UV SrysOnans (€23

and

P

== (C24)

Avz (XY USY X7 61,1, Ok -

Equations (C17)-(C24])) above are third-order terms

composed by effective 1B interaction and effective 2NFs.
In the next section we proceed by introducing the set of
expressions with effective 1B interaction and 3NF's, which
connect 3p2h and 3h2p ISCs.



b. ADC(3) terms with 3p2h and 3h2p ISCs
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The Goldstone-Feynman diagrams of Figs. and involve 3p2h and 3h2p ISCs. They contain the coupling
matrices that complete the expressions for M, and N, when the reference state adopted has not be calculated

self-consistently.
The working equations for the forward-in-time coupling matrices are,

-1 X"lﬁ(l)Yk6
I1t) Y 670 ke\* vn n k k
M‘(mt) B \/ﬁ73123 €k, 15+ (Vo) X2 XYY Wip,ann »
6 ny
and
1 Xnﬁﬁ(l)ykf)
M = e XXX (X) W

= Ags——
“ V12 €y — Eng

while the interaction matrices in Eq. (C15)) connecting two 3p2h ISCs are,
op _ 1 i 77(1) [ yrngyx
qu/ = EA123A457D678 X'y U»yé (X§ ) 51’7,271767’7,377,8 6k4k96k5k10 9

and

U -1 s77(1 *
C([]]q}} = §A45A9 10A123 '}/'(;ko U»E,(;) (nyklo) 571177,6571277,7671377,85164](}9 .

(C25)

(C26)

(C27)

(C28)

Expressions for the backward-in-time coupling matrices, containing one effective 1B interaction and one interaction-

irreducible 3NF insertion, are

r7(1)y ks
| Xy
NUY = Wy ppPras ——0 2 (X 7o) *ykeyks X1 x5 C29
au \/ﬁ QAT pvp 5;;—5;{6 ( u) P A T ( )
and
r7(1)y ke
-1 XU Y,
(IIu) — Y T8 78 kiv kayks yn ke *
Nau = ,712 a)\n,uupA45 6];6 — 6;55 Y,u IYV 2va 3X)\4(Yn 6) ’ (030)
while the interaction matrices in Eq. (C16)) connecting two 3h2p ISCs are
~ 1 —
U 1
Duf/ = 75-’445-/49 10A123 (ng)* U»E/(S) XZ/LIO 6k1k65k2k76k3k35n4n9 ) (031)
and
- 1 . (1
DY = EA123A45P678 (Yn,kl) Un(,(;) Y Sty Ok ks Ornamo Ong o - (C32)
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