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ABSTRACT

In this paper two main topics are covered: a new model
for melodic fragments or indexes and its embedding in
MX, the new XML-based format currently undergoing the
IEEE standardization process, in order to take advantage
of its structural layer in a MIR-oriented perspective. Our
goal is to show how music information retrieval meth-
ods can be improved by the use of particular melodic
invariants coming from graph theoretic tools applied to
melodies in order to catch more musical transformations
than other methods as, for example, permutations of sub-
fragments. This approach to the melodic similarity prob-
lem leads to associate a musical graph to each melodic
segment in order to extract MIR-useful invariant quanti-
ties.

Keywords: MX, XML metadata, music information re-
trieval, structural layer, invariants, melodic similarity, mu-
sical graphs.

1. INTRODUCTION

The importance of music information retrieval in large
musical databases increases as increase the number and
dimension of multimedia databases.

Music can take advantage from XML languages be-
cause of its intrisically layered structure (cfr. [17]), from
audio to structural information. Unfortunatly there is
currently no defined, independent standard for represent-
ing music information that can describe and process all
the different layers which characterize music information.
For each layer of music information, there is one or more
accepted standards (e.g. MIDI for performances, NIFF
for notation and so on) and/or one or more proprietary
formats. None of them can be suitably applied to other
layers (cfr. [18]).

XML provides an effective way to represent multi-
media information at different levels of abstraction and
XML metadata provide useful tools for the retrieval pro-
cesses. The IEEE ”Definition of a Commonly Accept-
able Musical Application Using the XML Language”
project has been developing an XML application defining
a standard language for symbolic music representation.
The language is a meta-representation of music informa-
tion for describing and processing said music infromation
within a multilayered environment, for achieving integra-

tion among structural, score, MIDI, and digital sound lev-
els of representation.

Furthermore, the proposed standard should integrate
music representation with already defined and accepted
common standards.

The standard will be accepted by any kind of software
dealing with music information, e.g. score editing, OMR
systems, music performance, musical databases, and com-
position and musicological applications.

1.1. The MX structure

In MX, the new XML-based format MX currently under-
going the IEEE standardization process, music informa-
tion is represented according to a multi-layered structure
and to the concept of space-time construct. Infact, mu-
sic information can be structured by a layer subdivision
model, as shown in Fig. 1.
Each layer is specific to a different degree of abstraction in
music information: General, Structural, Music Logic, No-
tational, Performance and Audio. [1] gives an exhaustive
description of this format and the issue of the integration
between MX and other formats is covered in [3].
The main advantage of MX is the richness of its descrip-
tive features, which are based on other commonly ac-
cepted encodings aimed at more specific descriptions.

The multi-layered music information structure is kept
together by the concept of spine. Spine is a structure
that relates time and spatial information (cfr. Fig. 2),
where measurement units are expressed in relative format.
Through such a mapping, it is possible to fix a point in a
layer instance (e.g. Notational) and investigate the corre-
sponding point in another one (e.g. Performance or Au-
dio).

The Structural layer contains explicit descriptions of
music objects together with their causal relationships,
from both the compositional and musicological point of
view, i.e. how music objects can be described as transfor-
mation of previously described music objects.

A particular structural object is Theme which repre-
sent exactly the concept of musical theme of the particular
piece (or part of it) under consideration. Theme objects
may be whether the output of an automatic segmentation
process or the result of a musicological analysis.

Therefore a



The main advantage of MX is the richness of our descriptive format, which
is based on other commonly accepted encodings aimed at more specific descrip-
tions.

Fig. 1. (a) Music information layers and (b) relations among them

Considering music structure as a multi-layered information, we need a sort
of glue to keep together the heterogeneous contributions that compose it. Ac-
cordingly, we introduced the concept of spine. Spine is a structure that relates
time and spatial information (see Figure 2), where measurement units are ex-
pressed in relative format. Through such a mapping, it is possible to fix a point
in a layer instance (e.g. Notational) and investigate the corresponding point in
another one (e.g. Performance or Audio).

2.1 A MX encoding example

In the following, we provide a series of significant portions of MX encoding
the different layers, together with some comments for demonstration purpose.
The complete DTD of MX 1.5 format is available at http://www.computer.org/-
standards/1599/par.htm

The Logic layer contains information referenced by all other layers, and rep-
resents what the composer intended to put in the piece. It is composed of two
elements: i) the Spine description, used to mark the significant events in order
to reference them from the other layers and ii) the LOS (Logically Organized
Symbols) element, that describes the score from a symbolic point of view (e.g.,
chords, rest). The second example below illustrates how notes, chords and rests
can be represented in MX notation.

Figure 1. (a) Music information layers and (b) relations
among them

Fig. 2. Spine: relationships between Notational, Performance and Audio layer

<spine>
<event id="e0" timing="0" hpos="NULL"/>
...

</spine>

<measure number="1">
<voice ref="violin_1">
<rest event_ref="v1_e0" staff_ref="staff_1">
<duration den="1" num="2"/>
</rest>
<chord event_ref="v1_e1">
<notehead staff_ref="staff_1">
<pitch step="C" octave="6"/>
<duration num="1" den="2"/>
</notehead>
</chord>

</voice>
</measure>

The Structural layer contains explicit descriptions of music objects together with
their causal relationships, from both the compositional and musicological point
of view, i.e. how music objects can be described as a transformation of previously
described music objects. The Notational layer links all possible visual instances
of a music piece. Representations can be grouped in two types: notational and
graphical. A notational instance is often in a binary format, such as NIFF or
Enigma, whereas a graphical instance contains images representing the score.
Usually, the latter is in a binary format too (e.g., a JPEG image or a PDF file),
but it can also be a vector image encoded in SVG. The information contained in
this layer is tied to the spatial part of the Spine structure, allowing its localiza-
tion. The Performance layer lies between Notational and Audio layers. File formats
grouped in this level encode parameters of notes to be played and parameters of
sounds to be created by a computer preformance. This layer supports symbolic
formats such as MIDI, Csound or SASL/SAOL files. Finally, the Audio layer de-
scribes properties of the source material containing music audio information. It
is the lowest level of the layered structure.

Figure 2. Spine: relationships between Notational, Per-
formance and Audio layer

content-based information retrieval method cannot leave
aside the possibility of explot the presence of new specific
metadata specifically oriented to retrieval in order to im-
prove processes and algorithms.

We’ll return to this subject in the section 5 after the in-
troduction of the graph model of thematic fragments (TFs)
for music information retrieval processes.

1.2. Music information retrieval

The increase of files size and number makes the teatment
of musical themes like pure sequences of bytes quite im-
possible (cfr. [5] and [6]). On the contrary, it is necessary
to consider the peculiar characteristic of the musical con-
text, in other words we are in need of a model.

We are first going to analyse two approaches known in
literature: Lerdahl & Jackendoff’s grammars and Tenney
& Polansky’s metrics. Then we will propose a new ap-
proach based on graph theory. This allows a more precise
and fast retrieval and facilitates the recognition of some
particular transformation a musical theme could have un-
dergone, like traspositions or inversions.

2. RELATED WORK

XML is an effective way to describe music information.
Nowadays, there is a number of good dialects to encode
music by means of XML, such as MusicXML, MusiXML,
MusiCat, MEI, MDL (cfr. [3] for a thorough discussion).
In particular, we have at least two good reasons to men-
tion MusicXML. MusicXML is a comprehensive way to
represent symbolic information. As a consequence, Mu-
sicXML was integrated in a number of commercial pro-
grams. Among them, it’s worthwhile to cite one of the
leading applications for music notation: Coda Music Fi-
nale. One of the key advantages of MusicXML over
other XML-based formats is represented by its popular-
ity in the field of music software. However, all the en-
coding formats we listed before are not interested in se-
mantic descriptions of metadata. In MPEG-7 context, cur-
rently there are initiatives to integrate OWL ontologies
in a framework opportunely developed for the support of
ontology-based semantic indexing and retrieval of audio-
visual content. This initiative follows the Semantic Level
of MPEG-7 MDS (Multimedia Description Schemas ),
and TV-Anytime standard specifications for metadata de-
scriptions. Despite of MX Semantic Layer, MPEG-7 Se-
mantic Level describes music information from the real
world perspective, giving the emphasis on Events, Ob-
jects, Concepts, Places, Time in narrative worlds and Ab-
straction. Therefore, MPEG-7 ontology is only aimed at
the description of music performance and not of score in-
formation, as in the case of MX. You can find a complete
discussion of these topics in [4].

Genre, an intrinsic property of music, is probably one
of the most important descriptor used to classify music



archives. Traditionally, genre classification has been per-
formed manually but many automatical approaches are
provided by the state of art. In [2], three different cat-
egories of genre classification are proposed: i) manual
approch based on human knowledgment and culture; ii)
automatic approch based on automatic extraction of au-
dio features; iii) automatic approch based on objective
simliraty measures. Taxonomy use is the main difference
beetwen the two automatic approaches: in the first a given
taxonomy is necessary, in the second is not required. In
MX, we have tried to classify genres by an OWL ontol-
ogy, in order to get a taxonomy as flexible as possible and
capturing the complexity of real world genre classifica-
tions.

Although important in music information retrieval,
genre classification is not the main topics of this paper.
Here we are interested in the more specific retrieval of
musical themes independently from their possible classi-
fication in one or another genre.

However the treatment of musical themes cannot leave
aside semantic considerations [5] [6] about the particu-
lar context in which we operate. Themes aren’t pure se-
quences of bytes or symbols; on the contrary, they repre-
sent relationships among scale degrees.

Most music information retrieval methods adopt a
functional approach, that is to say they treats musical
themes like functions and therfore they base similarity
function on metrics in functional spaces. Unfortunatly,
doing so we loose the underlying relalationships between
consecutive notes, wich could be very important from a
musicological point of view to find affine similarities be-
tween themes [15]. Functional models bases more or
less on metrics like Tenney & Polansky’s [9] [8]. They
founded on the concept of morphology, substantially a fi-
nite sequence of comparable elements.

In this context melodies are finite sequences, i.e. func-
tions defined on a finite subset of N and whose values are
in mono (Q) or n-dimensional (Qn) spaces, according to
the characterizing parameters. Thus, distance concepts are
those erhedited by metrics defined on (discrete) functional
spaces.

The measure of those distances involves the creation,
the recognition and the analysis of variations and trasfor-
mation of morphological parameters like pitches, onsets,
harmonic relations, sequences of timbre related values
and, more generally, any kind of observable related to
melody.

As pointed out by Tenney [8], we have to distinguish
between statistical and morphological properties. Gener-
ally, statistical are global and time independent, like the
mean value or standard deviation of a parameter, while
morphological characteristics are described by the ’pro-
file’ of parameters and depend on elements ordering. It is
also possible to use statistic measures of parametric pro-
file as parameters at a higher level (hierarchy of profiles);
in this way we can analyse the melodic profile at different
levels by the application of different metrics.

Definition 1 A morphology is an ordered set of elements
belonging to the same ordered set M . The elements in M
are identified by Mi , i = 1, · · · , L; L = |M |.

Some examples of morphologies are pitch sequences,
rhythm sequences, harmonic sequences, etc. (cfr. [8]
[10]).

Morphological metrics are metrics on morphologies
(metrics on ordered sets).

Definition 2 Given a set S, a function

d : S × S −→ R (1)

is a distance function or a metric if ∀a, b, c ∈ S holds:

1. d(a, b) ≥ 0

2. d(a, b) = 0 iff a = b

3. d(a, b) = d(b, a)

4. d(a, b) ≤ d(a, c) + d(c, b).

(S, d) is called a metric space.

Metrics on spaces of real valued functions are useful
models for morphological metrics. For example, given
two continuous real valued functions f(t) e g(t), defined
on [m,n], there are two intuitive amplitude metrics:

d(f, g) = sup{|f(t)− g(t)|} (sup) (2)

and

d(f, g) =
∫ m

n

|f(t)− g(t)|dt (amplitude) (3)

Working in discrete spaces, the integrals will be re-
placed by sums.

By replacing f(t) and g(t) with their derivatives of any
order, Tenney and Polansky obtained metrics by measur-
ing the mean amplitude difference of the corresponding
rate of changement of the two functions. For discrete
functions the derivative is substituted by the difference
function of first (second, third, · · · ) order. Given two mor-
phologies M , N , of lenght L, the amplitude metrics is:

L∑
i=1

|Mi −Ni| (4)

or, normalized,
L∑

i=1

|Mi −Ni|
L

(5)

Generalizing the concept, it is possible to make an av-
erage of the higher order derivatives, like in the Sobolev
metric:

d(f, g) =
n∑

i=0

[√∫
(f(t)i − g(t)i)2

]
(6)



where i is the order of derivative. An analogous metric is
the L1-version of the previous metric, normalized respect
to the number of derivatives:

d(f, g) =
n∑

i=0

[∫
|f(t)i − g(t)i|

]
n

(7)

then, weighting difference functions, we obtain the
(linear ordered) metric:

d(M,N) =
1∑
α(i)

n∑
i=0

α(i) ·
∑L−i

j=1 |M i
j −N i

j |
L− i

(8)

where i is the order of difference function on M and
N . Obviously the lenght decreases step by step.

Starting from i = 1 implicates the exclusion of the
elements of M and N , so melody tranposition will have
zero distance.

α(i) represents a weight function indexed by the order
of difference function n < L − 1, where L is the lenght
of M and N . The weight function extabilishes the impor-
tance of each order of derivation.

Equation 8 inspired our similarity function by a suit-
able replacement of derivatives with graph powers. As
we’ll show in this process we’ll loose simmetry, so the
resulting similarity function will not be a metric. We’ll
describe it later in detail after the introduction of some
graph theory concepts.

For the sake of completeness, we must cite before the
various reductionistic approaches utilized to mitigate the
obvious mismatches typical of this approach. This meth-
ods lead to reduce musical information into some ”prim-
itive types” and then to compare the reduced fragments
with functional metrics.

A very interesting reductionistic approach refers to
Fred Lerdahl e Ray Jackendoff’s studies. Lerdahl and Jak-
endoff [11] published their researches oriented towards a
formal description of the musical intuitions of a listener
who is experienced in a musical idiom. Their work wasn’t
directly related to MIR, their purpose was the develop-
ment of a formal grammar which could be used to analyze
any tonal composition. However, in case of tematic frag-
ments, it would be possible to reduce the TFs into ”prim-
itive types”, showing formal similarities according to the
defined grammar.

The aim is to describe, in a simplified manner, the
analitic system of the listener, i.e. rules which allow the
listener to segmentates and organizes a hierarchy of mu-
sical events. On this basis, score reductions are applied,
gradually deleting the less significant events. In this way
we can obtain a simplification of the score and in the
meantime we can preserve sufficient information which
allow to mantain recognizability.

The study of these mechanisms allows the construc-
tion of a formal grammar able to describe the fundamen-
tal rules followed by human mind in the recognition of

the underlying structures of a musical piece. Unfortunatly
the grammar construction is very complex and is not free
from ambiguities.

3. BACKGROUND

In this section we’ll give some graph-theoretic definitions
and results which will be used later. We’ll suppose the
reader knows the elementary notions of graph theory; for
reference texts cfr. for example [12] and [13].

In this paper we’ll consider quite only eulerian con-
nected oriented multigraph defined on finite sets. To fix
the notation, now we give some definition.

Definition 3 A graph G is included in a graph G′ if VG ⊆
VG′ and exists a partition P(AG′) of the arrows set of G′,
AG′ , in trails such that the diagram

VG VG′--
iV

AG P(AG′)-- iA

?

?

∂0, ∂1

?

?

∂′0, ∂
′
1

(9)

commute; where i = (iA, iV ) is the usual graph inclu-
sion.

Remark 4 If the partition is the finest one, i.e. all classes
are singleton, the definition collapse to the standard in-
clusion.

Remark 5 The inclusion defined above works with la-
belled graphs. It may be useful enlarging this concept
to the situation where VG is ’quite’ included in VG′ . In
fact in musical graphs is not relevant to preserve the la-
bels because we study objects invariant by musical tran-
formations (i.e. permutation of labels preserving the met-
ric structure defined on VG).

So we will give the next definition.

Definition 6 A graph G is weakly included in a graph H
iff exists a subgraph G′ of H isomorphic to G.

G ∼= G′ ⊆ H (10)

3.1. Graph complexity

Definition 7 The complexity k(G) of a graph G is the
number of equally oriented spanning trees of G.

The following three propositions evidence the impor-
tance of graph complexity in our model. Their importance
will be more clear in the next section.



Proposition 8 Let H be the graph obtained from a graph
G substituing an arrow a : vi → vj with a couple of
arrows a1 : vi → vk and a2 : vk → vj , with vi, vj , vk ∈
VG. Then

k(H) ≥ k(G). (11)

Proof. Let T be a spanning tree which contains the
arrow a1 : vi → vk. If we replace a with the trail a1a2,
the result from T with the substitution of a by a1 or by
a2 is yet a spanning tree; so the complexity of G can only
increase.

Proposition 9 Let H be the graph obtained from a graph
G of order n(G) adding a vertex vn+1 to VG and replac-
ing an arrow a : vi → vj with the couple of arrows
a1 : vi → vn+1 and a2 : vn+1 → vj . Then

k(H) ≥ k(G). (12)

Proof. We can divide the spanning trees of G
in two classes: X={spanning trees containing a} and
Y={spanning trees which do not contain a}. Obviously
we have k(G) = |X| + |Y |. If α ∈ Y then α ∨ a2 is a
spanning tree of H . Thus the complexity of H is at least
|Y |. Let’s consider a tree β ∈ X . Replacing a by the
trail a1a2 we obtain yet spanning tree. Finally we have
k(H) ≥ |Y |+ |X| = k(G).

Proposition 10 Graph complexity is a monotonic func-
tion respect of the order relation of graph inclusion previ-
ously defined.

Proof. Let G be strongly contained in H . Then, if
VG ⊂ VH , the corollary 8 implies that k(G) ≤ k(H) and
if VG ≤ VH , the corollary 9 implies k(G) = k(H). Now
let G be included weakly in H . The invariance of com-
plexity under isomorphism and the previous case proves
the theorem.

4. THE GRAPH MODEL

Now we are going to describe how to build a graph model
of a TF. We consider a structured set of TF (a database)
and a TF (the query) which has to be compared with every
set-element. This is how to proceed:

1. build a representative graph for every TF

2. work with graphs instead of TF.

In this way, we can recognise a greater number of rel-
evant musical similarities and we can reduce the number
of TF wich should be compared. Moreover, TFs of the
archive which have the same representative graph can be
identified yet.

Let M be a TF of length m = |M | and consider three
characterizing sequences of observable: pitches {hs}s∈I,
lengths {ds}s∈I and accents {bs}s∈I, {I = 1, ...,m}.
Then let (V, d) be a metric space on a finite set of ele-
ment (V ). V and d depends upon the musical system we
are considering.

Now, let’s consider the linear graph Gl obtained by as-
sociating a vertex labelled by hs to every element hs ∈ V
and an oriented arrow as : hs → hs+1 to every couple
(hs, hs+1), so that ∂0a = hs and ∂1a = hs+1.

We can then define a weight function p : AGl
→ Q×Q

by:

p : as → (ds, bs) ∈ Q+ ×Q+ ∀s = 1, ...,m− 1 (13)

where am : hm → h1 and p(am) = (d1, b1).
Then we quotient the vertex set by identifying the ver-

tex with the same label.

Definition 11 Let M be a TF, we call musical graph rep-
resenting M (and we write G(M)) the graph obtained by
the process described above.

Now we are going to analyze the properties of the
graph G(M) representing a TF M.

Proposition 12 Musical graphs are eulerian, connected,
oriented multigraphs.

Proof. The proof is trivial if one considers the con-
struction described above. In fact we have sent every in-
terval of the original TF in an equally oriented arrow. The
melody is a sequence of intervals, so it is clear that such
a sequence represents an oriented trail in the graph which
uses every edge once and once only. The closure of the
trail is imposed by the definition, because we suppose the
last interval being the last note-first note one.

4.0.1. Hamiltonian graphs

Serial music is an important part of contemporary music
and also in diatonic and tonal contexts.

So an important class of TFs are those which corre-
spond to series: they have an interesting interpretation
in our model. In fact, series correspond to hamiltonian
graphs.

The next proposition characterizes the TFs which con-
tains a series.

Proposition 13 A TF M contains a series iff its represen-
tative graph G(M) is hamiltonian.

Proof. In fact, given a series M the resulting graph
is necessarily hamiltonian, because it contains all the in-
tervals of the series. Viceversa an hamiltonian path in G
represents obviously a series M .

Example 14 Let’s consider a dodecaphonic series (cfr.
[19])



G 6¯ 6¯ 6¯ 2¯ 2¯ 2¯ 2¯ 6¯ 6¯ 6¯ 6¯ 2¯

Its representative graph is clearly C12, which is hamil-
tonian.

Remark 15 Cyclic graphs Cn are a trivial example of se-
ries.

4.0.2. Equivalences

One of the reasons why we needed to enlarge the concept
of similarity was the recognition of new kinds of transfor-
mations; particularly we were interested in the permuta-
tion of melodic subfragments. These tranformations are
important not only for musicologic research purposes in
contemporary music but also for investigations in canonic-
imitative music.

Now, let’s analyse two concepts of equivalence of TFs
that will be central in the model.

4.0.3. Euler-equivalence of TFs

An equivalence concept which comes out from the rep-
resentative graph construction is the one concerning the
different trails in the graph.

Definition 16 We say that two TFs are Euler-equivalent
iff they have he same representative graph.

Let’s try to better understand what this could mean
from a musical point of view by some propositions.

Proposition 17 A graph is Eulerian iff it is decomposable
in edge-disjoint cycles.

Musically the proposition means that in an equivalence
class there are TFs which admits a common cycle decom-
position.

Example 18 Now, consider the TF (cfr. [20]):

K ˇ ˇ ˇ (ˇ (ˇ ˇ ˇ ˇ ˇ

and let’s permute the cycles with the evidenced start
and stop points (B,A,B) e (B,A,G,A,B):

K ˇ (ˇ (ˇ ˇ ˇ ˇ ˇ ˇ ˇ

The two TFs have exactly the same representative
graph.

Therefore when we consider a particular musical graph
we are really considering all the TFs corresponding to all
the different eulerian circuits of the graph (with fixed start-
ing point)

Musically this means that we identify TFs obtained
by particular permutations of subfragments. We want to
point out that these aren’t arbitrary permutations. Other-
wise there would be no advantages in respect of Tenney &
Polansky’s non ordered interval metrics ([8], [9]).

Is it possible to compute exactly the number of euler-
equivalent TF by the next result.

Proposition 19 Every class of euler-equivalent TFs has
cardinality given by

c ·
n∏

i=1

(d+
i − 1)! (14)

where c is the number of equioriented spanning trees of
the same representative graph.

Proof. The proposition follows from the Cayley theorem.

4.0.4. Equivalence of TFs

Now we give a more general notion of equivalence, which
includes also the standard tranformations of music theory.

Definition 20 Two TFs are equivalent iff their represen-
tative graphs are isomorphic.

Remark 21 Equivalence implies euler-equivalence.

Remark 22 Standard melodic transformations are in-
cluded into the isomorphism definition. In fact isomor-
phism implies an isometry between the metric spaces of
vertices; therefore if we consider for example the standard
equally tempered metric space (S1) it is evident that tran-
formations like transposition and l’inversion are isome-
tries i : V → V .

The retrogradation consists in the inversion of the ori-
entation, so we have just to consider the opposite graph.

4.1. Subgraphs and inclusions

Besides euler-equivalent TFs there is another interesting
class of TF that can be obtained from a given one. The
eulerian subgraphs. In fact it is possible to choice vertex
and arc subsets such that the resulting graph remains eu-
lerian.

Example 23 Consider the two TFs (cfr. [20])

K2 9
16

` (ˇ ˇ 4ˇ ˇ ˇ ˇ ˇ



K2 ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ

K2S ˘ `ˇ (ˇ `ˇ (ˇ ˘

Of course the seconf TF is an eulerian subgraph of the
first one.

This is a quite particular case, which points out how we
can recognise TF inclusions by a simple graph difference.

The necessary condition in this case is that the embel-
lishments must be closed circuits of the graph.

Thus we have the following proposition.

Proposition 24 Let M be a TF and M ′ another TF ob-
tained from M by the addition of closed embellishment to
the notes of M . Then G(M) is an (eulerian) subgraph of
G(M ′).

Now we will define a notion of inclusion using the
”weak inclusion” defined before.

Consider the musical theme (cfr. [20]):

K ˇ ˇ ˇ ˇ
ÃÃ

ˇ ˇ ˇ ˇ ˇ

K ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ

It is clear, musically speaking, that the first TF is a vari-
ation of the second one.

Now we will try to formalize this concept by the next
definition.

Definition 25 We say that a TF A is included in a TF B
if the representative graph of A is weakly included in the
representative graph of B G(A) ⊆ G(B) 6 such that i :
VG(A) → VG(B) is an isometry.

4.2. Necessary conditions

The problem of deciding the inclusion of a TF into another
one, using the ”large” concept of inclusion, moved from
the TFs to their representative graphs.

Teorically it may also be possible to use string match-
ing tecniques, but there are at least three facts which lead
to exclude those methods.

First of all, we should compare all the TFs undisctin-
tively, and this would be particulary heavy from a compu-
tational point of view, expecially real-time.

Another handicap of the sequential approach is the fact
that it’s rigorously note-dipendent, i.e. it depends, in our

graphic language, from vertex labelling. The transforma-
tion of TFs should be not contempled.

At the end, the natural equivalence class of TFs should
be that concerning the isometries between the vertex set
only, excluding permutations of sub-TFs.

Large part of our work consisted in searching for graph
invariants monotonic respect the partial order relation of
inclusion in the graph set defined in 6. Using graph invari-
ants we could consider a TF with all its transformations by
isometries. This process really does not depend on vertex
labelling and so we can consider a TF toghether with all
its transformed ones.

To fasten the inclusion test however it would be neces-
sary to find out a set of good necessary conditions, which
can reduct the set of TFs to compare. Now we will explore
the condition so far identified.

4.2.1. Order and size

The first invariant we are going to consider are graph order
and graph size.

Definition 26 The order and the size of a TF M are the
order n(G) and the size m(G) of the graph G represent-
ing M.

Of course we can observe that:

Remark 27 If G ⊆ H then

n(G) ≤ n(H) m(G) ≤ m(H), (15)

i.e. the number of vertex and the number of arrows in G
have to be less than or equal to their respective in H .

From a musical point of view the condition concern-
ing the arrows is evident (the fragment M(H) must have
more intervals than M(G)). Vertex condition is less triv-
ial. In fact it says that the total number of distinct notes
must increase or remain stationary in an inclusion, so we
could never have a situation like this:

K ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ

K ˇ ˇ ˇ ˇ ˇ
ÃÃ

ˇ ˇ ˇ ˇ

The second fragment includes G, but the first doesn’t.
These fragments aren’t comparable. Moreover our inclu-
sion relation induces a partial order on the musical graph
set.



4.2.2. The complexity

Another significative invariant is the number of spanning
trees of the graph representing the TF. At the graph level,
an embellishment is obtained by the substitution of an ar-
row with an equioriented trail of the same total weight,
with the same beginning and end vertex.

Consider the simplest variation: the insertion of one
note.

Example 28 In this fragment

K44
v1

ˇ
v2

ˇ
v3

ˇ` ˇ ˇ` ˇ ˇ ˇ ˇ

the first note of the alla lombarda rhythm, correspond-
ing to vertex v2 is the embellishment of the line

K44
v1

ˇ
v3

ˇ ˇ ˇ ˇ

So, in the correspondent graph we have:

• first fragment: the arrows a1 = (v1, v2) and a2 =
(v2, v3)

• second fragment: the arrow b1 = (v1, v3)

where |b1| = |a1|+ |a2|.

In this example, vertex v2 has minimum degree (v+ =
v− = 1), i.e. there are no other trails passing trough it, be-
cause we wanted to point out the non decreasing property
of graph complexity in the substitution of M2 with M1.

In fact the second fragment (M2) has k(G(M2)) span-
ning tree and if we replace the arrow b1 with the trail a1a2

such trees continue to span the graph (M1).

This fact pointed out by the example helds also with
added vertex belonging to the first graph. Let’s better for-
malize this fact with the following definition.

Definition 29 The complexity k(M) of a TF M is the
complexity of its representative graph g(M) (cfr. def. 7).

We would remind that

Remark 30 The complexity of a graph is equal to the
number of spanning trees of the graph

Proposition 31 Let M be a TF and M ′ a variation of M
obtained by the insertion of notes. So we have k(M) ≤
k(M ′).

Proof. At the representative-graph level, the process
which transforms M in M ′ consists of a substitution of
oriented arrows by oriented trails. In this way the proposi-
tion follows from the 8 and 9.

4.2.3. The degree sequence

Of course the inclusion of a TF M in another TF M ′ im-
plies that the number of corresponding notes can only in-
crease.

Definition 32 The degree sequence of a TF M is the va-
lence sequence of its representative graph G(M).

Proposition 33 If a TF M is included into another TF
M ′ then the respective valence sequences are such that

di(M) ≤ di(M ′) , ∀i ∈ I (16)

Proof. The proposition follows by the definition of inclu-
sion of TFs.

4.3. The metric on VG

By definition, given a musical graph G, the set VG is a
metric space.

It’s really important considering the note set only as a
metric space as we are interested in invariant objects of all
musical transformations. The lonely really important facts
are the distance ratios between the notes.

Certainly, the most general possible transformation in
our context is an arbitrary permutation of nodes; however
this may cause an outgoing of the isometry set. Then, even
a learned listener should run into serious difficulties in
recognising such a transformation. Similarly, if we think
of changing the rhythm, the probabilities of recognise the
TF should tend to zero.

We would remind at this point the musical transforma-
tion that a TF can undergo:

1. transposition;

2. specular inversions;

3. retrogradations.

Thus it is possible to give a necessary condition for the
inclusion that will have a great relevance in recognising
those transformations:

Proposition 34 If a TF M is contained into another TF
M ′ then the inclusion function iVG(M)

VG(M) VG(M ′)--
iVG

AG(M) P(AG(M ′))-- iAG

?

?

∂0, ∂1

?

?

∂′0, ∂
′
1

(17)

is an isometry.

Proof. The proposition is obvious using the definition of
(weak) inclusion and the definition of musical tranforma-
tions.



4.4. The power graph

Let’s consider the TFs (cfr. [20])

KS ˇ ˇ ˇ
v1

ˇ
v3

ˇ ˇ ˇ ˇ

KS ˇ ˇ ˇ
v1

(ˇ
v2

(ˇ
v3

ˇ ˇ ˇ ˇ

They differ by a passing note (closure of the third). At
the graph level we can observe that the arrow a1 : v1 →
v3, wich is present in the first graph, is replaced by two
arrows a1 : v1 → v2 and a2 : v2 → v3 in the second one,
so a trail of lenght 2 replaced an arrow.

Let’s remember the transitive closure operation.

Definition 35 Let G be a graph. We call transitive closure
of G the graph G such that VG = VG and AG contains all
and only the arrows such that:

ai = bibj ∧ ∂1bi = ∂0bj , bi, bj ∈ AG (18)

Remark 36 The transitive closure is an internal unary
operation on the set of eulerian graphs; in fact we can
observe that:

Proposition 37 If G is an eulerian graph of size m, then
G is also eulerian of size 2m.

Proof. Given an eulerian cycle in G, the arrows of G are
the arrows of G plus a number of arrows equal to the num-
ber of couple of adjacent arrows of G. Thus is obvious
that

∣∣G∣∣ = 2m. By construction, the graph resulting from
a closure operation on an eulerian graph is obviously eu-
lerian.

From a musical point of view the operation consists of
an union of two TFs: M(G) and the TF obtained from
M(G) taking all the notes of M(G) but proceeding by
jumps.

Iterating the process we can obtain the k-th powers of
a graph.

Definition 38 We call k-th power Mk of a TF M(G) the
TF whose representative graph is obtained from the graph
G(M) iterating (k-1) times the transitive closure opera-
tion.

The interesting result which comes out from those def-
initions is the next proposition.

Proposition 39 Let M and M ′ be two TFs. M ′ contains
a variation of M by adding single notes if and only if ex-
ists an isometry i : VG(M) ↪→ VH(M ′) such that the equa-
tion

G \H \ (H \G)2 = ∅ (19)

is satisfied.

Proof. If M ′ contains a variation of M which is obtained
by adding no more than one note between two consecu-
tive notes of M so we will therefore have a graph inclu-
sion i : G(M) ↪→ H(M ′) such that the set AH will be
partitionable in classes formen by trails η such that:

η = iA(a) = h, h ∈ AH (20)

or
η = iA(a) = h1h2 , (21)

with ∂1h1 = ∂0h2 hi ∈ (AH \Ai(G))

In the first case we have η ∈ AH ∩ Ai(G) though in the
second case η ∈ A(H\i(G))2 . So the 19 is satisfied.

Vice versa, if exists an isometry i : VG(M) ↪→ VH(M ′)

such that it satisfies the 19, we’ll have G\H ⊆ (H \G)2;
hence ∀a ∈ i(AG) will be:

a ∈ AH ∩Ai(G) ∨ a = h1h2 , (22)

with ∂1h1 = ∂0h2 hi ∈ (AH \Ai(G))

Hence we can partition AH following the definition.
Finally we’ve obtained an operative sufficient and nec-

essary condition for the inclusion which can be usefully
implemented into an algorithm for the recognition of the
inclusions.

4.5. Similarity function

Now let’s give the notion of similarity function between
graphs which will be useful to estimate the similarity be-
tween two TFs.

Definition 40 Let M and M ′, M ≤ M ′, be two TFs
with representative graphs G = G(M) and H = H(M).
Then, given r ∈ N, we call r similarity function ordine r
between M and M ′ the function:

σ(M,M ′) = σ(G, H) =

= max
φ

r∑
i=1

αi

|G| −
∣∣G \Hi \Hi−1

∣∣
|G|

(23)

where H0 = ∅, αi are positive coefficients which depend
upon the weight assigned to the different trail lenghts and
φ varies among all the possible isometries from VG to VH .

Remark 41 The function 1/σ isn’t a metric on the set of
TFs, because σ(M,M ′) 6= σ(M ′,M) .

Example 42 Let’s consider the two fragments (cfr. [20]):

G2S (ˇ ˇ ˇ ˇ ˇ 4ˇ (ˇ

G2S ˇ ˇ ˇ ˇ ˇ ˇ
ĎĎĎĎ

ˇ



G2 ˇ ˇ 4ˇ
ŁŁŁŁ̌

ˇ ˇ ˇŁŁŁŁ̌

The first TF (A) is clearly contained in the second (B)
and the function which realizes the max is the identity
function. Let’s calculate the similarity function with r = 1
and α1 = α2 = 1. We have:

σ(A,B) =
1
7

+
6
7

= 1 (24)

5. MODEL IMPLEMENTATION IN MX

5.1. MX layers

XML organizes information in a hierarchic structure, so
MX represents each layer as a secondary branch of the
source element. We are not interested here in describing
all MX layers, for a complete treatment of the subject, see
for example [1]. We’ll limit our description to the struc-
tural layer, after a short overview of the general layer.

<!ELEMENT mx (general, structural?,
logic, notational?,
performance?, audio?)

>

5.1.1. General

In this layer musical information is described as a whole. It pro-
vides a general description of a musical piece and contains infor-
mation about possible connected instances. This is its definition:

<!ELEMENT general (description, casting?,
related_files?, analog_media?,
notes?, rights?)

>
<!ELEMENT description (work_title?,

work_number?, movement_title,
movement_number?, genre?,
author*)

>
<!ELEMENT genre (genre_spec+)>
<!ELEMENT genre_spec EMPTY>
<!ATTLIST genre_spec

name CDATA #REQUIRED
description CDATA #IMPLIED
weight CDATA #IMPLIED

>
<!ATTLIST author
type CDATA #IMPLIED
>
<!ELEMENT author (#PCDATA)>
<!ELEMENT work_title (#PCDATA)>
<!ELEMENT work_number (#PCDATA)>
<!ELEMENT movement_title (#PCDATA)>
<!ELEMENT movement_number (#PCDATA)>
<!-- description of the music event (genre,

date, place); -->
<!ELEMENT casting EMPTY>
<!-- casting information;-->
<!ELEMENT related_files (related_file+)>
<!-- the table of related music data files,

referring to all layers, with one or more
files for the summarization of each layer;
-->
<!-- the table of related multimedia data
files, such as images, videos, and the like;
-->
<!ATTLIST related_file
file_name CDATA #REQUIRED
file_format \%formats; #REQUIRED
encoding_format \%formats; #REQUIRED
file_size_byte CDATA #IMPLIED
>
<!ELEMENT related_file EMPTY>
<!ELEMENT analog_media EMPTY>
<!-- the table of related analog media;-->
<!-- technical information about related
import/export/restoring/cataloguing/
other operations;-->
<!ELEMENT notes EMPTY>
<!-- general notes.-->

5.1.2. Structural

The structural level of information was developed to con-
tain the explicit description of musical objects and their
causal relationships, both from musicological and compo-
sitional points of view. That is to say musical objects can
be described as transformations of previously described
musical objects. Those objects are usually the results of
segmentation processes made by diferent musicologists
toghether with their own different musical points of wiew,
or also by an automatic score segmenter like Scoreseg-
menter (cfr [7]).

This is a kind of description that shows causality con-
nections instead of temporal connections. The information
contained in this layer doesn’t refer to temporal ordering
and absolute time instances; on the contrary it describes
the causal relationships by transformations and displace-
ments of musical object in the score, as they come out
from the analysis/synthesis framework.

At the moment there isn’t a definitive standard for this
layer and our efforts are expecially directed towards the
definition of a common acceptable standard. In this frame-
work we belive that the introduction in this MX layer of
MIR-oriented metadata, for example attributes of Theme
could score an important goal in MIR problem. The main
topic of this article deals with the introduction of melodic
invariant quantities. Infact we belive that the graph model
of musical fragments would be very useful in MIR pro-
cesses because it provides necessary conditions for the in-
clusion of thematic fragments. It would be certainly possi-
ble to introduce more attributes corresponding to different
formal approaches, like statistical ones, not considered by
us.
Now we list the part of DTD related to the structural layer,
which implements also the concept of melodic theme.

<!-- Structural Layer -->



<!ELEMENT structural (analysis*, PN*)>

<!-- Melodic themes -->
<!ELEMENT analysis (theme*, segment*,

transformation*,
relationship*)

>
<!ATTLIST theme

id ID #REQUIRED
ordinal CDATA #IMPLIED
desc CDATA #IMPLIED

>
<!-- Desc attribute provides a textual
description of the theme.
Ordinal attribute describes the possible
numeric characterization of the theme.
It should be encoded in roman numbers:
I, II, III, IV, V, etc (e.g. I and II
themes in a Sonata.) -->

<!ELEMENT theme (occurrence+)>
<!ELEMENT occurrence (thm_desc?,

thm_spine_ref+,
(transposition | inversion
| retrogradation)*)

>
<!ATTLIST occurrence

id ID #REQUIRED
>

<!ELEMENT thm_spine_ref EMPTY>
<!-- This element is needed for
generalization of theme representation,
since there could be themes split in
different sequences of notes belonging
to the same part or even to different
parts.-->
<!ATTLIST thm_spine_ref

spine_start_ref IDREF #REQUIRED
spine_end_ref IDREF #REQUIRED
part_ref IDREF #REQUIRED
voice_ref IDREF #REQUIRED

>
<!ELEMENT thm_desc (#PCDATA)>
<!ELEMENT transposition EMPTY>
<!-- Interval is an integer number,
indicates the interval of transposition
and its iterpretation is related to the
type attribute. When type is real interval
indicates the distance in semitones,
otherwise it indicates distance
in tonal scale.
-->
<!ATTLIST transposition

type (real | tonal) #REQUIRED
interval CDATA #REQUIRED

>
<!ELEMENT inversion EMPTY>
<!-- Staffstep attribute must have the
same interpretation as the staff_step
attribute of noteheads. -->
<!ATTLIST inversion

type (real | tonal) #REQUIRED

staff_step CDATA #REQUIRED
>
<!ELEMENT retrogradation EMPTY>

<-- Invariants are quantities that
refer to a theme and do not vary
even if the theme is transformed
by canonical transformations -->

<!ELEMENT theme (invariants?)>
<!ELEMENT invariants (order, size, complexity)>
<!ELEMENT order (#PCDATA)>
<!ELEMENT size (#PCDATA)>
<!ELEMENT complexity (#PCDATA)>

<!-- Petri Nets -->
<!ELEMENT PN EMPTY>
<!ATTLIST PN

file_name CDATA #REQUIRED
>
<!-- Segments -->
<!ATTLIST relationship

id ID #REQUIRED
segmentAref IDREF #REQUIRED
segmentBref IDREF #REQUIRED
transformationref IDREF #REQUIRED

>
<!ELEMENT relationship EMPTY>
<!ATTLIST segment
id ID #REQUIRED
>
<!ELEMENT segment (segment_event+)>
<!ELEMENT transformation EMPTY>
<!ATTLIST transformation

id ID #REQUIRED
description CDATA #REQUIRED
gis CDATA #IMPLIED

>
<!ATTLIST segment_event

id_ref IDREF #REQUIRED
>

5.1.3. Invariant representation

As we described in the analysis the model, there are vari-
ous necessary conditions for the inclusion of TFs.

The inclusion-monotone invariants play an important
role in the retrieval process and are necessary in order to
delete any comparison which could surely fail.

Those quantities, which preserve their values even if
the fragment changes by the application of isometries, are
extremely useful to deal with themes toghether with all
their transformations. This is the reason why we propose
their embedding into the structural layer of MX.

In the XML formalism, an invariant should have the
form of a subelement of a Theme: this mainly for visibil-
ity and better retrieval reasons.



6. SUMMARY AND CONCLUSION

Invariants reveal themselves as useful tools in MIR pro-
cesses in order to reduce improductive comparisons, ex-
pecially in the exact match case. MX seems to be the ideal
framework in which invariants should be embedded be-
cause of the presence of a structural layer. This permits to
associate to a thematic fragment all its invariant quantities
in a very natural way.

In particular, the graph model presented here enlarge
the similarity class of tematic fragments in respect of other
models known in literature. Moreover, it is clear that the
more a TF presents variety in melodic and interval con-
struction the smaller becomes its euler-equivalence class.
Viceversa, TFs with repetitions tends to be more similar,
increasing the cardinality of their eulerian class, so the
graph model results coherent with the common musical
intuition.

7. FUTURE WORK

The approach to MIR by invariants can be developed to-
wards the enrichment of the invariant family derived from
graphs or from other models. In particular, the graphical
approach can be developed towards numerous directions,
first of all the increasing of the number and the power of
necessary conditions which are musically significant. Ef-
forts have to be made in the direction of the integration of
the rhythm and accentual dimensions into the model.
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