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Abstract. Let G be a finite group, and let cs(G) denote the set of sizes of

the conjugacy classes of G. The prime graph built on cs(G), that we denote by
∆(G), is the (simple undirected) graph whose vertices are the prime divisors

of the numbers in cs(G), and two distinct vertices p, q are adjacent if and only
if pq divides some number in cs(G). A rephrasing of the main theorem in [8]

is that the complement ∆(G) of the graph ∆(G) does not contain any cycle of

length 3. In this paper we generalize this result, showing that ∆(G) does not

contain any cycle of odd length, i.e., it is a bipartite graph. In other words, the
vertex set V(G) of ∆(G) is covered by two subsets, each inducing a complete

subgraph (a clique). As an immediate consequence, setting ω(G) to be the

maximum size of a clique in ∆(G), the inequality |V(G)| ≤ 2ω(G) holds for
every finite group G.

1. Introduction

An intriguing aspect of Finite Group Theory is the relationship between the
structure of a (finite) group G and the arithmetical structure of certain sets of
positive integers associated to G. This general issue has attracted the interest of
many authors, who investigated several variations on the theme over the past few
decades; however, among the arithmetical data that can be considered in connection
with a finite group G, one of the most significant and most studied is certainly the
set cs(G), whose elements are the sizes of the conjugacy classes of G (we refer the
reader to the survey [4]).

A useful tool that has been introduced in order to analyze the arithmetical
structure of cs(G), is the prime graph built on this set: this is the simple undirected
graph ∆(G) whose vertex set V(G) consists of the prime divisors of the numbers
in cs(G), and whose edge set E(G) contains {p, q} ⊆ V(G) if and only if pq divides
some number in cs(G). One of the relevant problems in this context is to understand
which graph-theoretical properties of ∆(G) are reflected and influenced by the group
structure of G.

As a general remark, the graph ∆(G) tends to have “many” edges, an instance
of this fact being highlighted by Theorem A of [8]: given a finite group G, for every
choice of three (pairwise distinct) vertices of ∆(G), two among them are adjacent
in ∆(G). Recalling now that the complement graph ∆(G) of ∆(G) is defined as the
graph having the same vertex set, in which two vertices are adjacent if and only
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if they are not adjacent in ∆(G), the aforementioned statement can be expressed
as follows: for every finite group G, the graph ∆(G) does not contain any cycle of
length 3. Note that several features of the graph ∆(G), such as the bound of 3 for
the diameter in the connected case, or the structure of the non-connected case as
the union of two complete subgraphs, follow at once by the above result (though
they were known before [8] was published).

In the present paper, we prove the following extension of the main theorem of [8].

Theorem A. Let G be a finite group. Then the graph ∆(G) does not contain any
cycle of odd length.

A first consequence of Theorem A is that the graph ∆(G) cannot contain any
pentagon as an induced subgraph; this follows from the fact that the vertices of such
an induced subgraph would be vertices of a cycle of length five in the complement
graph ∆(G).

Furthermore, the conclusion of Theorem A is equivalent to the fact that ∆(G)
is a bipartite graph. Going back to the graph of our interest, that is ∆(G), we
can therefore conclude that two cliques (i.e., subsets of V(G) inducing complete
subgraphs) are always enough to “cover” all the vertices of ∆(G).

Corollary B. Let G be a finite group. Then the vertex set of ∆(G) can be
partitioned into two subsets, each inducing a clique of ∆(G).

The above corollary yields that, given any subset of V(G), at least half the
elements of this subset are pairwise adjacent in ∆(G); in particular, denoting by
ω(G) the clique number (i.e., the maximum size of a clique) of ∆(G), we obtain
what follows.

Corollary C. Let G be a finite group. Then the inequality |V(G)| ≤ 2ω(G) holds.

Another important set of positive integers that can be linked to a finite group
G, and that has been widely studied in the same spirit as here discussed, is the set
cd(G) whose elements are the degrees of the irreducible complex characters of G. It
is well known that there are deep similarities between results concerning cs(G) and
cd(G), and this is the case also for the problems considered in this paper. In fact,
the character-degree analog of [8, Theorem A] is a celebrated theorem by P.P. Pálfy
(see [10]), but it holds only for solvable groups. Similarly, the results of this paper
have a transposition (with identical statements, but using very different arguments
and methods; see [1]) to the context of character degrees for solvable groups. On the
other hand, the character-degree analogs of Theorem A and Corollary C without the
solvability restriction look more articulate, and are treated in [2] and [3] respectively.

To close with, in the following discussion every group is tacitly assumed to be
a finite group, and the classification of finite non-abelian simple groups is used via
Theorem 9 of [5].

2. Preliminaries

If x is an element of the group G, we denote by xG the conjugacy class of x in
G, and by π(xG) the set of the prime divisors of |xG| = [G : CG(x)].

We list some well-known facts that we are going to use. We say that a vertex v
of a graph Γ is isolated if there are no edges of Γ incident to v (i.e. if the degree of
v in Γ is 0).
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As mentioned in the Introduction, for a group G, the graph ∆(G) is defined
as follows: its set of vertices V(G) is the set of the prime numbers dividing some
conjugacy class of G, and two vertices p and q are adjacent in ∆(G) if there is no
conjugacy class of G having size divisible by the product pq.

It is well-known that a prime divisor p does not belong to V(G) if and only if G
has a central Sylow p-subgroup.

If N is a normal subgroup of G then, for any g ∈ G, we have π((gN)G/N ) ⊆
π(gG); also, for x ∈ N , we have π(xN ) ⊆ π(xG). It follows that, if p and q are in
V(N) (resp. in V(G/N)) and they are adjacent in ∆(G), then they are adjacent in
∆(N) (resp. in ∆(G/N)) as well.

The following is well known and easy to prove.

Lemma 2.1. Let G be a group and let x, y ∈ G be such that one of the following
holds:

(a) Either x and y have coprime orders and they commute; or
(b) x ∈ X and y ∈ Y with X and Y normal subgroups of G such that X ∩ Y = 1.

Then π(xG) ∪ π(yG) ⊆ π((xy)G).

Lemma 2.2. If the Fitting subgroup of a group G is trivial, then every vertex of
∆(G) is isolated.

Proof. This follows from [5, Theorem 9]. �

Lemma 2.3. Let G be a group, let p be a non-isolated vertex of ∆(G) and P a
Sylow p-subgroup of G. Then G is p-solvable, P is abelian, [G,P ] has a normal
p-complement K and [K,P ] = K. Furthermore, if there are no elements x in K
such that p ∈ π(xG), then K = 1 and P is normal in G.

Proof. Let q be a vertex adjacent to p in ∆(G). Then by [5, Theorem B], both the
Sylow p-subgroups and q-subgroups of G are abelian and G is {p, q}-solvable with
{p, q}-length 1. So, G is p-solvable and, because P is abelian, the p-length of G is
1.

Let L = Op′
(G); then L has a normal p-complement K, L = KP and [K,P ] =

K. As [G,P ] ≤ [G,L] ≤ L, then K is the p-complement of [G,P ].
Finally, if p 6∈ π(xG) for all x ∈ K, then we get K =

⋃
k∈K CK(P k), which yields

K = [K,P ] = 1 and hence P is normal in G. �

In the next lemma, the assumption ‘abelian’ could in fact be weakened to ‘nilpo-
tent’. However, this extra generality will not be relevant for our purposes.

Lemma 2.4. Let G be a group such that G/F(G) is abelian. Then there exists an
element g ∈ G such that the set of all prime divisors of G/F(G) is contained in
π(gG).

Proof. We observe first that, by factoring out the Frattini subgroup Φ(G) of G, we
can assume that F = F(G) is a direct product of elementary abelian subgroups; in
fact, F can be viewed as a faithful and completely reducible G/F -module (possibly
in “mixed characteristic”). Consider a direct decomposition of F into irreducible
constituents Fi: it will be enough to show that, for every i, there exists x ∈ Fi such
that CG/F (x) = CG/F (Fi). But this is easily seen to be true for every non-trivial
x ∈ Fi, because G/F is abelian. �
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Proposition 2.5. Let G be a group. Assume that p and q are adjacent vertices of
∆(G), and denote by P and Q a Sylow p-subgroup and a Sylow q-subgroup of G,
respectively. Assume further thatM = Op′([G,P ]) is a minimal normal subgroup of
G, and that Q is not normal in G. Then M is abelian and the following conclusions
hold.

(a) G = G/CG(M) is metacyclic, P ≤ F(G) and Q ∩ F(G) = 1.

(b) G = Q N , where N = 〈x ∈ G | q ∈ π(xG)〉.

Proof. We first show that M is abelian. Assume the contrary and let R be the
solvable radical of G. Note that, by Lemma 2.3, there is an element x in the
normal p-complement of [G,P ] (i.e., in M) such that p ∈ π(xG), and there is also
an element y in the normal q-complement of [G,Q] such that q ∈ π(yG). Since
M ∩ R = 1, Lemma 2.1 implies that [G,Q] is not contained in R. Also, clearly
[G,P ] 6≤ R, hence both p and q are vertices of ∆(G/R). But F(G/R) = 1, so,
by Lemma 2.2, ∆(G/R) has no edges, a contradiction. We conclude that M is an
elementary abelian r-group, where r 6= p is a suitable prime.

Now, since [M,P ] = M , coprimality yields CM (P ) = 1. We observe also that
M is not contained in Φ(G); in fact PM is normal in G, and M ≤ Φ(G) would
imply P E G, which in turn yields the contradiction M = [M,P ] ≤ M ∩ P = 1.
Hence we have M ∩Φ(G) = 1, and therefore M is complemented in G.

We can now apply [6, Proposition 3.1]. First we get CG(M) ∩ Q E G, thus
Q acts non-trivially on M . So, by part (a) of that proposition, G = G/CG(M)
is a subgroup of the semilinear group Γ(rn) (where rn = |M |), and P lies in the
subgroup Γ0(rn) of Γ(rn) consisting of the multiplication maps; in particular, G
is metacyclic. Observe also that q cannot divide the order of G0 = G ∩ Γ0(rn),
as otherwise, since this subgroup acts fixed-point freely on M , every non-trivial
element of M would have a G-conjugacy class of size divisible by pq. Now, by
part (b) of [6, Proposition 3.1], every element of M is centralized by a conjugate of
Q in G, and a counting argument (see [7, Lemma 3.5]) yields that |Q| divides n,

(|Q|, rn−1) = 1 and that (rn−1)/(rn/|Q|−1) divides the order of G0. So claim (b)
follows by [6, Proposition 2.6].

Finally, we observe that rn−1 has a primitive prime divisor. In fact, if this is not
the case, then either rn = 26 or n = 2 and r is a Fermat prime. But, by the above
paragraph, q = 2 implies that r = 2 and this is a contradiction as the Sylow q-
subgroups of G are abelian. On the other hand, if q = 3, then (26−1)/(22−1) = 21
divides |G0|, again a contradiction.

Hence, an application of [7, Lemma 3.7] yields G0 = F(G), and claim (a) is
proved.

�

3. Proof of Theorem A

In this section we prove Theorem A, whereas the proofs of Corollaries B and C
are omitted because these results are immediate consequences of Theorem A. In our
proof we will consider some extra structure on certain induced subgraphs of ∆(G),
by introducing a suitable orientation; the reader can find in [9] another context in
which a similar idea has been exploited.

Theorem A. Let G be a group. Then the complement graph on class sizes ∆(G)
does not contain any cycle of odd length.
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Proof. Assume, working by contradiction, that in ∆(G) there exists a cycle

Γ : p1 − p2 − · · · − pd−1 − pd − p1
whose length d is odd. We denote by W = {p1, p2, . . . , pd} the set of vertices of Γ.

For every i ∈ {1, 2, . . . , d}, we choose a Sylow pi-subgroup Pi of G and, recall-
ing Lemma 2.3, we denote by Ki the normal pi-complement of the commutator
subgroup [G,Pi].

Let X be the subset of W consisting of vertices pi such that Pi E G, which is
equivalent to Ki = 1, and we set Y = W \X. Finally, we denote by Λ the subgraph
of Γ induced on the set Y .

We will reach a contradiction in a series of steps.

Step 1. If pa, pb are adjacent vertices of Λ, then one of the two subgroups Ka

and Kb properly contains the other.

Proof. Let N = Ka ∩ Kb, G = G/N and assume by contradiction that both Ka

and Kb are non-trivial. Applying Lemma 2.3 to the group G, we see that there

exist both an element x ∈ Ka and an element y ∈ Kb such that pa ∈ π(xG) and

pb ∈ π(yG). Hence, by Lemma 2.1 the product papb divides |(xy)G|, which implies
that pa and pb are not adjacent vertices of ∆(G), a contradiction.

We conclude that (say) Ka = N , whence Ka ≤ Kb. Also, if L is a normal
subgroup of G such that Ka/L is a chief factor of G, then we can apply Proposi-

tion 2.5 to the group G/L, obtaining that Ĝ = G/CG(Kpa
/L) has a normal Sylow

pa-subgroup, and a non-trivial Sylow pb-subgroup intersecting F(Ĝ) trivially. In
particular, the roles of pa and pb are not symmetric, and therefore the inclusion of
Ka in Kb must be proper. �

As a consequence of Step 1, we can define an orientation of the graph Λ as
follows; if Ka contains Kb, then we replace the edge pa− pb with the arc having pa
as the first vertex, and pb as the second vertex; thus, we write pa → pb. We denote

by Λ̂ the digraph obtained from Λ in this way.

Step 2. Let pa, pb ∈ Y such that pa → pb is an arc of Λ̂, and consider a normal
subgroup L of G with L ≤ Kb and such that V = Kb/L is a chief factor of G.

Then, setting G = G/CG(V ) and Na = 〈x ∈ G | pa ∈ π(xG)〉, by Proposition 2.5
we get that V is elementary abelian and the following conclusions hold.

(a) G is metacyclic, Pb ≤ F(G) and Pa ∩ F(G) = 1.
(b) G = Pa Na.

Step 3. If pa − pb − pc is a path in Λ, then the arcs pa − pb and pb − pc have

opposite orientations in Λ̂.

Proof. Assume, without loss of generality, that pa → pb → pc is an oriented path

in Λ̂. Then, considering a chief factor V = Kc/L of G, by Step 2 we have that
G = G/CG(V ) is metacyclic, Pc ≤ F(G) and Pb ∩ F(G) = 1. Hence Lemma 2.4
yields that Pa ≤ F(G) and hence [G,Pa] is a pa-group. It follows that Ka, the
pa-complement of [G,Pa], is trivial, a contradiction as Ka contains Kb 6= 1. �

Step 4. For i ∈ {1, 2, . . . , d}, if pi ∈ X, then both pi−1 and pi+1 are in Y (i.e.,
pi−1 and pi+1 are vertices of Λ).
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Proof. Assume that p and q are two consecutive vertices of Γ, and that {p, q} ⊆ X.
So, for P ∈ Sylp(G) and Q ∈ Sylq(G), both P and Q are normal in G and, since p

and q are adjacent in ∆(G), it follows that G = CG(P )∪CG(Q). Therefore, either
P or Q is central in G, a contradiction. �

Step 5. If q ∈ X, pa, pb ∈ Y and q − pa − pb is a path in Γ, then in Λ̂ there is
the arc pa ← pb (i.e. pa is the end-point of the arc).

Proof. Let Q ∈ Sylq(G); as q ∈ X, then Q E G and C = CG(Q) E G. Assume,

working by contradiction, that the edge pa − pb of Λ is oriented in Λ̂ as pa → pb.
We consider a normal subgroup L of G with L ≤ Kb and such that V = Kb/L is a
chief factor of G, and we write G = G/CG(V ). We observe that Na ≤ C, where Na

is the subgroup of G generated by the element having conjugacy class size multiple
of pa, because q is adjacent to pa in ∆(G). Hence, Step 2 yields G = CPa. In

particular, there exists an element x ∈ C such that pa ∈ π(xG).
As a consequence, we claim that CG(V ) is contained in C. In fact, set U =

CG(V ) ∩ C, and observe that pa divides the size of the conjugacy class of xU in
G/U ; if now U 6= CG(V ), then we can choose an element y ∈ CG(V ) \ C and
conclude, by Lemma 2.1(b), that pa divides the size of the conjugacy class of xyU
in G/U . Therefore, pa divides |(xy)G| as well; on the other hand, clearly xy does
not lie in C, hence also q divides |(xy)G|. This contradiction proves our claim.

From G = CPa and CG(V ) ≤ C, we hence deduce G = CPa. Thus Q0 =
[Q,Pa] = [Q,G] is normal in G and Q0 6= 1. Moreover, for every y ∈ Q0 \ {1}, we
have pa ∈ π(yG).

Now, as V = Kb/L is abelian, we clearly have Kb ≤ CG(V ), thus Kb ≤ C.
Furthermore, |V | is a t-power for some prime t 6= q, since otherwise C would lie in
CG(V ) and thus C would be trivial, against what observed in the first paragraph of
the proof of this step. By Lemma 2.3 applied to G/L, there are t-elements w ∈ Kb

such that pb ∈ π(wG). Hence, Lemma 2.1(a) yields the contradiction that papb
divides |(yw)G| for every y ∈ Q0 \ {1}. �

Step 6. X is non-empty, and the connected components of Λ are paths with an
odd number of vertices.

Proof. First, we show that the set X is non-empty. In fact, if X = ∅, then Λ̂ is
an orientation of the full cycle Γ and hence it has an odd number of arcs. But

this, by elementary counting, implies that there is in Λ̂ at least an oriented path
pa → pb → pc, which is impossible by Step 3. So, X 6= ∅.

By Step 4, no two vertices in X are consecutive vertices of the cycle Γ, thus, in
particular, Λ is not the empty graph. In order to prove that each of its connected
components has an odd number of vertices, we show that it has an even number
of edges. Assuming that the connected component Λ0 of Λ has an odd number

of edges, then by Step 3 one of the two extreme vertices of Λ̂0 (where Λ̂0 is the

corresponding subdigraph of Λ̂) cannot be the end-point of the corresponding arc

of Λ̂0, against Step 5. �

Step 7. The final contradiction.

Let Λ1, . . . ,Λc be the connected components of Λ. By Step 4 we have c = |X|,
whereas Step 6 yields that |Λi| is an odd number for every i ∈ {1, . . . , c}. Now, we
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see that

d = |X|+ |Y | = c+

c∑
i=1

|Λi|

is congruent to 2c modulo 2, i.e., d is even, against our assumptions. This is the
final contradiction that completes the proof. �
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Università degli Studi di Firenze, viale Morgagni 67/a, 50134 Firenze, Italy.
E-mail address: dolfi@math.unifi.it

Emanuele Pacifici, Dipartimento di Matematica F. Enriques,
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