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The Impact of Family Size and Sibling Structure on the

Great Mexico–U.S. Migration
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Abstract

We investigate how fertility and demographic factors affect migration at the house-
hold level by assessing the causal effects of sibship size and structure on offspring’s
international migration. We use a rich demographic survey on the population of Mex-
ico and exploit presumably exogenous variation in family size induced by biological
fertility and infertility shocks. We further exploit cross-sibling differences to identify
birth order, sibling-sex, and sibling-age composition effects on migration. We find that
large families per se do not boost offspring out-migration. Yet, the likelihood of migrat-
ing is not equally distributed within a household, but is higher for sons and decreases
sharply with birth order. The female migration disadvantage also varies with sibling
composition by age and gender.
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1 Introduction

Demographic pressure is generally recognized to be an important driver of international

migration flows. Previous studies have shown that by increasing population cohort sizes,

high fertility boosts emigration (Hanson and McIntosh, 2010, 2016). The main mechanism

addressed in the literature is shocks to labor supply, which deteriorate domestic labor market

opportunities and increase the incentive for migrating abroad (Borjas, 1987; Hanson, 2004).

These studies focus on the effect of high demographic pressure on the returns to migration, i.e.

on general equilibrium effects in the labor market. However, migration is a costly investment,

necessarily borne by individuals and their families upfront (e.g. Angelucci, 2015). Hence, high

fertility, which translates into a large number of siblings, may alter a household’s ability to

pay for this investment. In this paper, we focus on this mechanism and investigate the extent

to which family size and composition affect the decision to have one or more migrant(s) at

the household level. To this end, we employ a household-level approach and assess whether

sibship size has a causal impact on the individual probability to migrate abroad. We further

assess whether sibling structure (i.e. birth order and sibling composition by age and gender)

play any role in the migration decision within a household.

Our paper complements previous studies that, in using an aggregate (i.e. cohort-level)

approach, are likely to confound the effect of high fertility (and larger cohort sizes) on

returns to migration (general equilibrium effects) with its effect on the ability of households

to invest in migration (household-level effect). Disentangling the two effects is important

in order to better understand the implications of population growth for migration. Indeed,

while a decline in fertility rates, and thus less pressure on the labor market, is likely to

reduce migration, it can simultaneously change the allocation of resources among household

members.1

High fertility may decrease migration at the household level by diluting the per capita

1 The degree to which household structure, rather than the performance of the aggregate economy,
influences intra-family resource allocation in developing contexts has been documented by several seminal
studies such as Rosenzweig (1988) and Rosenzweig and Stark (1989).
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resources available to pay for it or because more family-work is needed at home, e.g., care

for younger children (e.g. Becker and Lewis, 1973). On the other hand, in order to keep

pace, large families may spur investment in the form of migrating household members. Im-

portantly, given the costly and selective nature of international migration, household demo-

graphics may determine who is enabled to leave within the family (e.g. Chen, 2006). This

is because the returns to migration (and perhaps some of the costs) accrue over a period of

time and may depend on a child’s own characteristics as well as those of his / her siblings.

Indeed, in the context of limited resources and high returns to the migration investment,

siblings may become rivals and some children (e.g., girls, or later borns) may have fewer

economic opportunities than their siblings (Garg and Morduch, 1998; Black et al., 2005;

Jayachandran and Kuziemko, 2011).2

Despite great interest in the determinants of international migration and growing con-

cerns about the role of high fertility and demography in spurring migration flows—e.g., from

Africa to Europe today—there is little evidence on the extent to which family size and com-

position affect offspring’s emigration choices.3 This is a significant gap given that migrants

are typically young and gendered, come from high-fertility countries, and leave behind house-

hold members who oftentimes are siblings (Hatton and Williamson, 2003).4 To date, the

literature has mainly focused on the determinants of family migration investigating network

effects (e.g. Winters et al., 2001), the effect of the number of children on parental migration

(e.g. Lindstrom and Saucedo, 2007; Sarma and Parinduri, 2015) or the effect of migration on

fertility (Mayer and Riphahn, 2000; Lindstrom and Saucedo, 2002). There are very few stud-

2 A well-established theoretical literature in economics rationalizes a causal link between children’s eco-
nomic resources and their lifetime opportunities and adult outcomes (Becker and Tomes, 1976; Thomas,
1990).

3 Throughout the paper we use “family size” (i.e., number of children) and “sibship size,” (i.e., number of
siblings) interchangeably, the former from the perspective of the parents, the latter from that of the children.

4 The majority of migrants are young adults who are more likely to have a positive net expected return
to migration due to their longer remaining life expectancy. According to recent UN figures, international
migrants aged 15 to 24 account for 12.5% of total migrants worldwide, and when migrants between the ages
of 25 and 34 are also considered, young migrants represent over 30% of the total (UNDESA, 2011). The
proportion of young migrants is much higher in developing countries and more than doubles when internal
migrants are also considered (UN, 2013).
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ies on the potential impact of one childhood’s family size on individual migration decisions,

and they have generally looked at it while assuming exogenous family sizes. Abramitzky

et al. (2013), for instance, examine the role of inheritance norms in the Norwegian context

during the Age of Mass Migration (1850-1913), showing how the number of brothers (as op-

posed to sisters) positively affects the likelihood of (any type of) sons’ emigration, but only

in land owning families. Stöhr (2015) focuses on siblings’ interactions in migration decisions

(namely on the effect of the number of siblings who migrate), especially in relation to elderly

care provision of those left behind, while controlling for the number of daughters and sons. A

relatively large literature, though, has empirically investigated the role of family size, birth

order and sibling composition (by age and gender) on household investments in other forms

of children’s human capital such as health and education (e.g. Black et al., 2005; Jayachan-

dran and Kuziemko, 2011; Jayachandran and Pande, 2017). In general findings point to little

role of family size on children’s outcomes, while sibling structure and composition have more

significant effects on offspring human capital investment. To the best of our knowledge, we

provide the first empirical assessment of the impact of demographic characteristics of the

origin household, i.e. sibship size and structure, on international migration choices.

We address this question in the context of the Great Mexico-U.S. migration over the

last two decades of the 20th century. Mexico is a highly populated country that, during

a demographic boom, experienced a period of mass migration to the U.S., which gradually

weakened over the years. As reported in several studies using decennial U.S. Census through-

out the 20th century, Mexico-U.S. migration swelled in the 1970s and continued to grow in

the 1980s and 1990s, ranging from 5.2% of Mexico’s national population in 1990 to a peak

of 10.2% in 2005 (Hanson and McIntosh, 2010).5 Importantly, emigration patterns differed

5 To put the Great Mexican migration in historical perspective, it is worth noting that “as a share of
Mexico’s national population, the number of Mexican immigrants living in the U.S. remained at 1.5% from
1960 to 1970, before rising to 3.3% in 1980, 5.2% in 1990, and 10.2% in 2005” (see Hanson and McIntosh,
2010, p.1). In terms of absolute numbers, it is estimated that about 7 million Mexican immigrants entered
the U.S. in the 1990s, 2.2 million did it legally while 4.8 million entered illegally (see Borjas and Katz, 2007;
Card and Lewis, 2007). As a result, the Mexican-born population residing in the United States in 2000
was nearly 9.2 million, accounting for one third of the U.S. foreign-born population. Hence, the Mexican-
born population of the late 20th Century appears historically unprecedented, being both numerically and
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by age and gender, with a dominant share of young males.6 In 1970, Mexico’s fertility rate

stood at about seven children per woman (Cabrera, 1994). The gradual spread of family

planning practices contributed to a fertility transition and by 2005, the number of children

per woman had declined to slightly more than two.7 However, despite abundant evidence on

the potentially significant implications of high fertility rates for child investment and eco-

nomic outcomes, there is no systematic evidence on the impact of family size on migration

decisions.

Using two waves of a large and nationally–representative demographic household survey

in Mexico, we focus on the determinants of migration for young adults in the age range

of 15 to 25. A crucial element in our dataset is the inclusion of information on women’s

completed fertility history, and hence on the total number of biological siblings ever born

into a family, along with individual migration histories. Access to such information is rare,

and perhaps unique, in the migration literature, particularly in combination with a large

sample of young adults and the availability of sources of plausible exogenous variation in

their mothers’ fertility. The ideal experiment, in our context, would be to randomly assign

women to different levels of fertility and then observe their children’s migration outcomes.

The reason lies in the potential endogeneity of parental fertility choices — which arises from

the fact that families who choose to have more (or fewer) children may also be those who

value child out-migration more.8

proportionately larger than any other immigrant influx in the former and following century (Passel et al.,
2012).

6 Using population censuses, Hanson and McIntosh (2010) report (in Figure 2) that a significant propor-
tion of men in Mexico starts migrating around age 15, with emigration increasing sharply until approximately
age 30 and decreasing thereafter, presumably as a result of return migration. By contrast, there is less youth
migration among Mexican women and migration rates are relatively stable over the course of their lives.

7 In 1974, a new population policy was designed in Mexico, with the aim of reducing population growth and
promoting development. The institutional structure established at that time to ensure policy implementation
(the National Population Council-CONAPO) has been expanding geographically and socially ever since
(Zuniga Herrera, 2008).

8 Costs and benefits of migration may be unevenly distributed across both families and siblings within
family, and hence bias the results. Moreover, unobservable parental preferences for children and old-age sup-
port through migration may positively co-vary. Stark (1981) and Williamson (1990), for instance, postulate
that heterogeneity in parental preferences for childbearing and for migration are systematically related, and
in a context such as Mexico where migration cum remittances is an essential lifeline to households of origin,
they are generally positively related.
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Formal identification is achieved by leveraging presumably exogenous variation in women’s

biological fertility (e.g., miscarriage at first pregnancy) and infertility shocks (Agüero and

Marks, 2008; Miller, 2011). Importantly, general equilibrium effects are controlled for by

adding municipality fixed effects in our models (and in some specifications, municipality by

year fixed effects), which capture the impact of demographic pressure on population size and

aggregate labor supply.

Our large dataset and empirical strategy allow us to overcome the problem of separately

identifying family size and birth order effects. We can identify birth order, sibling-sex, and

sibling-age composition effects on migration by estimating family fixed-effects models. Here,

we exploit differences across siblings within the same family, thereby eliminating concerns

that birth order or sibling composition are picking up time-invariant omitted family variables

also affecting family size.9 We are also able to control for mothers’ and children’s birth

cohorts such that birth order effects are only identified from the differential timing of births

within the same family.

We find little evidence that high fertility drives migration choices at the household level.

The positive correlation between the number of siblings and migration vanishes when the

potential endogeneity of sibship size is addressed. Results are robust to several changes in

both the estimation sample and the estimation strategy. Yet, the likelihood of migrating is

not equally distributed across children within a family. We find that older siblings, especially

firstborn sons, are more likely to migrate, while having more sisters than brothers may

increase the chances of migration, particularly among females. This may be because investing

in low parity children lengthens the period of time over which the family expects to reap the

benefits of having a migrant child, hence maximizing net returns (e.g. older siblings ‘cater’ for

the younger siblings). In addition, a son may be more valuable to send abroad as a migrant

than a daughter, given unequal labor market opportunities for different genders. Indeed,

9 Other papers using a similar estimation strategy for different child outcomes include Black et al. (2005),
Kantarevic and Mechoulan (2006), Rosenzweig and Zhang (2009), Black et al. (2016) and Jayachandran and
Pande (2017), among others.
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labor market returns for Mexican men in the U.S. were relatively high in the 1990s (e.g.,

in the agriculture sector) compared to women, who were more likely to be responsible for

chores and family duties at home and also more exposed to (sexual) violence at destination.10

Overall, our results regarding the effects of sibling composition highlight the importance

of the migrant’s family of origin in driving migration decisions and are consistent with a

household’s optimal migration model in which mobility is an investment in the human agent,

but private costs and rewards involve both migrants and non-migrant household members

(Sjaastad, 1962; Stark, 1991).

These findings have relevant implications for both policy makers and researchers. Many

observers highlight the importance of the role of demographic pressure in shaping migration

flows from today’s developing countries. As argued by Hanson and McIntosh (2016) while

discussing the contribution of differentials in population growth to international migration in

the long run, “the European immigration context today looks much like the United States did

three decades ago (p.2)”. The main reason for this lies in the socio-demographic features of

both source and host countries, namely low living standards and high population pressure in

both Africa today and Mexico in the past, high income and low fertility in both destination

countries (i.e. Europe and the U.S.). Our analysis provides evidence of the first–order

effects of decreasing fertility on migration choices at the household level. In particular, we

show that an exogenous decrease in the number of children does not necessarily decrease (or

increase) the number of migrants in a family. This finding contributes to understanding the

little impact that fertility-reducing programs (e.g., investments in family planning, sex and

reproductive health) may have on migration decisions at the household level. Such measures

have been endorsed in many developing countries as a policy response to the apparent vicious

circle of high-fertility, poverty, and economic stagnation (Schultz, 2008; Miller and Babiarz,

2016). On the other hand, welfare policies such as pension schemes or old-age support

10 On the basis of data from the 2000 U.S. Census of Population, the annual employment rate of foreign-
born Mexican men was 88.5 percent compared to 56 percent of Mexican women. Hispanic immigrant men
disproportionately worked in agriculture and construction, while Hispanic immigrant women were overrep-
resented in manufacturing and services (Duncan et al., 2006).
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measures may reduce the incentives that push one household member (e.g. the first-born

son) to migrate abroad. Finally, by showing that not all children in a household have

the same likelihood of migrating, our results point to the existence of an intra-household

selection process that may have important implications in terms of individual (child) welfare

and income distribution.

The paper unfolds as follows. Section 2 presents the data and sample selection. The

methodology and empirical strategy are described in Section 3. Section 4 presents our main

results on sibship size effects on migration while Section 5 reports results on the role of birth-

order, gender and sibling composition. Finally, Section 6 summarizes our main findings and

concludes.

2 Data and sample selection

This study uses data from the 1992 and 1997 waves of the Encuesta Nacional de la Dinámica

Demográfica (ENADID), a cross-section survey conducted by the National Institute of Statis-

tics and Geography (INEGI) in Mexico. Each ENADID’s wave surveys more than 50,000

households from all over the country and is representative of the Mexican population. The

dataset is very rich and unique, collecting comprehensive information on women’s fertility as

well as migration history of all household members, in addition to standard socio-economic

characteristics. Importantly, by using detailed demographic information on age (month and

year of birth) and gender of individuals in the same household with the same mother, we

are able to identify all biological families in the sample and recover complete information on

the number and gender of all siblings (including those not currently living in the household

of origin).

The ENADID collects detailed information on fertility for all women aged 15 to 54 at the

time of the survey. Women answer specific questions regarding the number of children they

have given birth to, their gender and birth order, current and past contraceptive use, fertility
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preferences, as well as their socio-economic and marital status. Unlike other studies where

fertility is measured as the number of co-resident children, thanks to this rich dataset, we are

able to precisely measure our key explanatory variable, i.e. the total number of biological

children per woman. Moreover, information in ENADID enables us to identify exogenous

shocks to parental fertility induced by infertility episodes, in addition to miscarriage at first

pregnancy (see Section 3.2 for more details). In line with the extant literature and the medical

definition of infertility, namely the failure to conceive after a year of regular intercourse

without contraception, we restrict our sample to the children of non-sterilized women who

are not currently using contraception or who never did. In so doing, we identify women

with infertility episodes as those who report not using contraception because of infertility

problems (see Agüero and Marks, 2011). This sample selection reduces measurement error

in the definition of infertility as women can only be aware of an infertility condition if they

do not use contraception.11

Our dataset allows us to define household members’ international migration experience

based on three separate questions: (i) whether there is any household member who migrated

abroad (even temporarily) during the five years prior to the survey; (ii) whether any house-

hold member has ever worked in the U.S. or looked for a job while they were in the U.S.

(and the year in which this occurred); and (iii) whether the respondent reports a period of

residence abroad at any point in time prior to the survey. The use of these three different

sources of information for migration episodes ensures that we are able to capture a relevant

part of the international migration phenomenon.12 Overall, in 1997 (1992) almost 18 (15)

percent of households in Mexico reports having a member who migrated abroad.

Since we are interested in the effect of family size on parental investment in offspring’s

migration, we define individual migration episodes as non-tied migration, i.e. we exclude

11 We check the robustness of our results to this sample selection, though, by also including the children of
sterilized women and those using contraception in our sample. We use miscarriage at first birth as a source
of fertility variation in this sample and results (reported in Table A1 in online Appendix A.1) appear to be
unaffected.

12 Other papers on migration using the same data set are Hanson (2004) and Mckenzie and Rapoport
(2007) among others.
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children who experienced episodes of tied-migration (with their parents) and those whose

parents have an international migration experience. We do so for two main reasons. First,

family and individual migration are inherently very different choices and our focus is on the

latter. Second, we exclude parents with migration experiences because parental absence due

to migration may affect fertility and hence generate a reverse causality problem.13

Figure 1 reports the incidence of non-tied migration by age and gender in Mexico showing

that, overall, migrants are highly concentrated (over 70%) in the age range of 15 to 25.

Throughout our analysis, we therefore restrict the sample to this age group. This is also

consistent with the argument that Mexican youngsters finish compulsory schooling and can

potentially enter the labor market at the age of 15, and that beyond the age of 25, they are

more likely to make their own lives apart from their household of origin.

[Figure 1 about here]

One limitation of the data is that, by requesting migration information only for children

who are still considered household members, i.e. those currently present or those who emi-

grated less than five years prior,14 ENADID may introduce a potential sample selection bias

if the children for whom we have information are more (or less) likely to come from larger

families. We address this concern as follows. First, by focusing on migration outcomes in

the age range 15-25, we lessen concerns of household partitioning. In fact, the average age at

first marriage in Mexico during the 90s was between 22 and 23 for females and about 25 for

males (World Bank Gender Statistics).15 Thus, we expect the majority of children for whom

we miss information to be mostly young, married daughters who do not live in extended

families.16 Moreover, Mexico-U.S. migration during the 90s was mostly of a temporary na-

13 We check the robustness of our findings to the inclusion of tied-migrants in the sample (about 13 percent
of the sample) or those for which parents had migration experiences, adding parents’ migration status among
the controls, in the analysis in online Appendix A.4. The results in Table A4 are unaffected.

14 It is worth recalling that ENADID also collects information on migration episodes for temporarily absent
household members, as long as migration occurred in the five years before the survey. Thus, ENADID only
lacks information on permanent or long-term migration for non-household members.

15 http://databank.worldbank.org.
16 This is the reason for the gender imbalance observed in our estimation sample (see Table 1).
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ture, with an average duration of about two years,17 and most migrating children may still

be considered as family members by their parents. Yet, if the probability of being observed

in the data is correlated with family size, the estimated effect of family size on migration

may still be biased. We further investigate this issue in Section 4.3.18

Our final estimation sample includes 26,743 children in the age range of 15 to 25, whose

mothers are 45 years of age on average. The average birth spacing between the first and last

child is 13 years, which is below the minimum age of the individuals we consider (15). This

ensures that, on average, our measure of fertility can be interpreted as completed fertility at

the moment of offspring’s migration.19 In other words, in our estimation sample the child

migration decision occurs when all children are already born. This is important in order

to avoid potential reverse causality issues related to child migration affecting their parents’

fertility (e.g., through remittances).

In our sample of individuals, 5.2 percent are migrants, with male and female migration

rates of 7.07 and 2.92 percent, respectively. In Figure 2 we plot the average migration rate of

boys and girls in our sample by number of children.20 A positive association between sibship

size and the migration of sons clearly emerges. Individual sample characteristics according to

migration status are reported in Table 1. Migrants are mostly male (75 percent) and report

significantly more brothers and sisters than non-migrants. Moreover, migrant children appear

to be slightly older and live in less educated households than non-migrant children. All in

all, Table 1 suggests that child migration may be more frequent in households that are less

well-off, households that also have a higher number of children on average.

[Figure 2 about here]

17 Our computation for migrants of all ages in ENADID.
18 Moreover, in online Appendix A, we run a series of robustness checks—that include sensitivity analyses

on subsamples of sons (Table A2) and younger children (Table A3)—in order to show that our results do
not suffer from sample selection bias induced by new household formation.

19 Our sample does not include children whose mothers are older than 54 years of age (9 percent of the
total population aged 15-25) since fertility information was not collected from them.

20 Since our models estimated at the individual level include household fixed effects, we can only focus on
children coming from households with two or more children. Household-level estimates, including households
with single children, are reported in online Appendix E.
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[Table 1 about here]

3 Empirical strategy and identification

3.1 Identification of sibship size and birth order effects

We are interested in the effects of sibship size and composition on an individual’s likelihood

to migrate. In order to estimate the effect of sibship size, however, we need to control

for the birth order of children (see, for instance, Black et al., 2005). Indeed, if parents

have a preference for their first-born children (i.e. lower parities) and invest comparatively

more resources in them, then a spurious negative correlation between sibship size and human

capital investments may emerge simply because in larger families we find children with higher

birth orders. In other words, the two variables of birth order and sibship size are highly

correlated. In particular, although one can assess the effect of family size on firstborns by

looking at the outcomes of firstborns from families of different sizes, it is not possible to

examine, for instance, the outcome of a fourth-born child when sibship size changes from

two to three, given that fourth born children are only found in larger families.

Bagger et al. (2013) have proposed a theoretically-grounded methodology to disentangle

the two effects. We draw on their idea and employ a similar two-step estimation strategy.

In a first step we estimate the following regression using OLS:

Mij = α0 +
K∑
k=2

α1kboijk + α2Xij + uj + εij (1)

where the outcome variable Mij pertains to the migration status of child i in household j and

is a dichotomous indicator of either current or past migration experiences abroad. boijk is a

dichotomous indicator for the child being of birth order k = 2, ..K where K is the maximum

birth order of children in our sample (top coded at 10 or more) and k = 1 (i.e. firstborn) is

the reference group; Xij is a vector of individual covariates including child gender, age, age

12



squared and cohort indicators (one for each year of birth).21 uj is a family fixed effect, and

εij is an idiosyncratic error.22

The effect of sibship size is captured in equation (1) by the household fixed effects, which

control for any (observed and unobserved) difference between families. The birth order fixed

effects capture the differences in the probability of migration between children of different

orders within the same family. Systematic differences in ages between different parities,

which are likely to affect migration choices, are controlled for by a quadratic polynomial in

child age. Only within-family variation is exploited in these estimates, and the birth order

effects are not contaminated by between-family differences in family sizes, i.e. the fact that

children in larger families also have higher average birth orders.

In the second step, we subtract the birth order effects from the dependent variable,

i.e. we compute the difference N̂M ij = Mij −
∑K

k=1 α̂1kboijk where NM stands for “netted

migration”, and use this as the dependent variable in the second step.23 Hence, the following

equation is estimated:

N̂M ij = β0 + β1Sij + β2Xij + β3Wj + vij (2)

where Sij is sibship size. The coefficient β1 captures the effect on migration of being raised in

a family with sibship size Sij for the average child in that family, i.e. regardless of his / her

birth order. Xij is a vector of individual covariates defined as above and Wj includes family

background characteristics such as the mother’s and father’s age and age squared, and the

mother’s and father’s years of completed education. In some specifications, we also control

for maternal health (chronic diseases), father’s absence from the household (i.e. widowed and

21 We can include a control for both age and birth cohort because we use two cross-section surveys.
22 Another way to disentangle birth order and family size effects has been suggested by Booth and Kee

(2009). They build a new birth order continuous index that purges family size from birth order and use this
to test if siblings are assigned equal shares in the family’s educational resources. Since we prefer to estimate
birth order effects using dichotomous indicators, we follow the approach described in Bagger et al. (2013).

23 Coefficients of all birth order indicators (including firstborns) are recovered using the method described
in Suits (1984), whereby the coefficients on the dummy variables show the extent to which the behavior of
each birth order deviates from the average behavior (of all birth orders).
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divorced single-mother families) and municipality fixed effects. The latter capture rural vs.

urban residence along with many other factors related to different local cultural influences

or socio-economic conditions such as access to contraception, water sanitation, quality of

health care, distance from the U.S. border, etc. Importantly, municipality indicators also

capture the local population size which may be related to the demographic pressure on both

local labor supply and emigration.24 Since the dependent variable has been generated by

a regression, standard errors are corrected by weighting the estimation with the inverse of

the standard error of N̂M ij using Weighted Least Squares (WLS).25 Throughout, standard

errors are clustered at the family level so as to account for potential error correlation across

siblings. We also estimated models with heteroskedasticity-robust standard errors and the

results hold.

If the number of children and investment in child out-migration are both outcomes over

which parents exercise some choice, then the WLS estimate of the sibship size effect in

equation (2) would provide spurious evidence. In other words, parental fertility may be

endogenous with respect to offspring migration.

Hence, to clearly identify the relationship between sibship size and migration, an ex-

ogenous source of variation in family size is required. The ENADID allows us to identify

self-reported infertility from specific questions. Similarly to Agüero and Marks (2008) we

construct an indicator variable for infertility (i.e. the inability to conceive) that takes the

value of one if a woman reports she is not currently using any contraception method (includ-

ing natural ones) because of infertility, and zero otherwise. Two things are worth noting.

First, the fact that a woman is not currently using contraception because of her inability to

get pregnant does not imply that fertility impairments were also present during most part

of her reproductive life. This means that we can observe large family sizes also for women

24 This is to say that our identification strategy is able to isolate the within-family dimension of the impact
of fertility on migration from the general equilibrium effect of population size. In some more data-demanding
specifications reported in online Appendix B we also control for municipality-year fixed effects.

25 See, for instance, Lewis and Linzer (2005). We also run estimates using White robust standard errors
and the results of the analysis are unaffected.
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reporting infertility problems. Hence, our indicator is closer to the medical definition of

‘secondary infertility’, i.e. a reduction in the ability to conceive or to carry a pregnancy to

a live birth, than to ‘primary infertility’, i.e. the condition of women who never had a live

birth. Second, in our sample of women who are not using contraception due to infertility,

the largest share is represented by those who never used it (89%), while the share of women

who stop using it because of infertility is relatively low (11%). The ENADID also enables

us to build a second indicator variable that equals one if a woman experienced a miscarriage

at first pregnancy (‘fertility shock’) and zero otherwise.26 These two shocks are used in an

instrumental variable (IV) strategy (implemented with Two-stage least squares, 2SLS).27

The first-stage equation is

Sij = γ0 + γ1Zj + γ2Xij + β3Wj + uij (3)

where uij is an idiosyncratic error term and Zj is a dichotomous indicator for secondary

infertility or miscarriage experienced by the mother of the potential migrant. The second-

stage equation is:

N̂M ij = β0 + β1Ŝij + β2Xij + β3Wj + vij (4)

where everything is defined as for equation (2), with the exception of Ŝij which comes from

the estimation of equation (3).

The two-step procedure reported above is based on household fixed effects and therefore

26 Miscarriages or spontaneous abortions typically refer to any loss of pregnancy that occurs before the
20th week of pregnancy.

27 Other studies have considered different instruments such as twin births (e.g. Rosenzweig and Wolpin,
1980; Angrist and Evans, 1998; Càceres-Delpiano, 2006) and sibling-sex composition (e.g. Angrist and Evans,
1998; Fitzsimons and Malde, 2014). Those instruments, however, are not suitable either for our data or for
the Mexican context. Twin births cannot be used because we do not have administrative data, and although
we make use of a large survey, we observe twin births only in 1.3 percent of families in our estimation sample.
Sibling-sex composition is not suitable to the Mexican context because, for its very nature, it is likely to
affect fertility of parents who desire a small number of children. The idea behind the instrument is indeed
that parents have an extra child just because they are not happy with the gender of those they already have
(i.e. the group of compliers). This typically happens in Mexico when early parities are all females because
parents have a son bias. However, average family size in Mexico is very large in our estimation period, the
probability of having at least one son is also high, hence the instrument is unlikely to be relevant for a large
share of the population.
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can only be applied to households with more than one child. An alternative way to proceed is

to estimate the migration equation using the household instead of the individual as the unit

of analysis,28 which enables us to retain in the estimation sample single-child households.29

In so doing we are able to check the robustness of our baseline estimates to changes in the

estimation sample and the estimation strategy. Indeed, focusing on the total number of

migrants in the household as a function of total fertility, we do not need to control for birth

order effects and we can use a standard instrumental variables procedure. Thus, we estimate

a specification as follows:

mj = γ0 + γ1nj + γ2Wj + vj (5)

where the dependent variable is the number of children in the age range 15-25 who

ever migrated in household j and the independent variable of interest is nj, i.e. the total

number of children in household j. The coefficient γ1 captures the increase in the number of

migrants associated with a unitary increase in family size. Like in the child-level estimates,

Wj includes family background characteristics such as the mother’s and the father’s age, age

squared, and years of completed education, mother’s age at first pregnancy, an indicator for

the father not being in the household and municipality fixed effects; vj is an household-level

error term. This specification is estimated both with OLS and with 2SLS in online Appendix

E.

3.2 Instruments’ relevance, exogeneity and exclusion restriction

For our identification strategy to be valid, the two instruments must satisfy three conditions—

i.e. relevance, exogeneity, and the exclusion restriction assumption—which are discussed

below.

4.2.1 Relevance

28 More precisely, our unit of analysis are biological children in the same household.
29 Thus, in these estimates we also include individuals who do not have siblings, and look at whether they

are more (less) likely to migrate than individuals with siblings.
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Infertility or sub-fertility conditions have been already used in the economic literature to

estimate the effect of the number of children and fertility timing on mothers’ labor market

outcomes in both advanced and developing countries (see, for instance, Agüero and Marks,

2008; Schultz, 2008; Agüero and Marks, 2011). We leverage on the same source of exogenous

variation in sibship size to identify its causal effect on children’s migration. Table 3 reports

the incidence of infertility and miscarriage shocks in our (individual and household-level)

estimation samples. Data clearly show a monotonic negative association between infertility

and sibship size. For instance, while 13.4 percent and 11.4 percent of women with family sizes

equal to one or two, respectively, have experienced an infertility condition, the incidence falls

to 3.5 percent for women with seven children or more. A negative relationship also emerges

between miscarriage and sibship size, although it is non–monotonic. More direct evidence

on the instruments’ relevance is reported in the 2SLS first stages.

4.2.2 Exogeneity

There is evidence that infertility is largely independent of the background characteristics

of infertile women. For example, variables such as the father’s social status and parity have

been shown to be unrelated to observed heterogeneity in fertility (Joffe and Barnes, 2000).

In an article summarizing the epidemiological literature regarding the role of lifestyle factors

(cigarette smoking, alcohol and caffeine consumption, exercise, BMI, and drug use) in female

infertility, Buck et al. (1997) conclude that few risk factors have been assessed or identified

for secondary infertility. In addition, using U.S. data, education, occupation, and race have

been shown to be unrelated to impaired fecundity (Wilcox and Mosher, 1993).

Also miscarriages have been used to identify fertility tempo and quantum effects on

women’s labor market outcomes (Hotz et al., 2005; Miller, 2011; Bratti and Cavalli, 2014).

By their nature, miscarriages should have a negative effect on total fertility, and in our

context on sibship size.30 Their exogeneity is generally supported by the medical literature.

For example, a few papers using administrative data, in which rich labor market and health

30 Casterline (1989) stresses that in most societies pregnancy losses produce a reduction of fertility of
5-10% from the levels expected in the absence of miscarriages.
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data are merged, show that in general miscarrying is not significantly associated with worse

labor market outcomes (e.g., work absences) before miscarriage (Karimi, 2014; Markussen

and Strøm, 2015). Only two etiological factors for miscarriage are recognized by different

authors in the obstetrics literature, i.e. uterine malformations and the presence of balanced

chromosomal rearrangements in parents (Plouffe et al., 1992). The latter though, are unlikely

to be correlated with women’s attitudes towards offspring’s migration.

For both biological shocks a potential threat to identification may come from moth-

ers’ general health conditions, as these conditions may affect both fertility and child out-

migration. Moreover, ill health might also be related to high levels of alcohol or tobacco

consumption that have been observed to correlate with miscarriage (Garc̀ıa-Engùıanos et al.,

2002) or to obesity, which might reduce fecundity (Gesink Law et al., 2007).31 We seek to

attenuate these concerns by including controls for mothers’ chronic illness and disabilities in

our estimation models, as women who heavily consume alcohol, tobacco, drugs or who are

obese are also more likely to have developed chronic conditions.

The number of miscarriages generally increases with the number of pregnancies (which

depends in turn on desired fertility) and this could potentially generate a spurious positive

correlation between the number of miscarriages and observed fertility. For this reason, we

consider only miscarriages that occurred at the first pregnancy (Miller, 2011).

A possible way to support the exogeneity assumption is to regress women’s characteristics

on the biological shocks and show that the latter are not statistically significant predictors

of the former (see, for instance, Agüero and Marks, 2011). However, these tests are infor-

mative only if women’s predetermined characteristics are considered as dependent variables.

Unfortunately, given the cross-sectional nature of the data, most women’s characteristics

provided in ENADID are measured at the time of the survey and may be considered as

outcome variables (e.g., parents’ marital status, income, labor market participation, etc.).

Regressing them on the biological shocks would be equivalent to running reduced form mod-

31 Other behavioral factors mentioned in Garc̀ıa-Engùıanos et al. (2002) are caffeine, drugs consumption,
and induced abortions.
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els for the effect of fertility (level or timing) on such variables. In fact, we might expect

significant coefficients for many of them, as fertility is likely to affect marriage duration and

dissolution (Kjaer et al., 2014; Bellido et al., 2016), earnings (Miller, 2011; Lundborg et al.,

2017) or labor supply (Angrist and Evans, 1998; Agüero and Marks, 2008), just to mention

some. That said, we can implement such tests for a subsample of women, namely those still

living with their mothers.32 For these women we test whether infertility and fertility shocks

are systematically associated with their mothers’ (or parents’) background characteristics,

which are predetermined to maternal biological shocks. This test is possible thanks to the

ENADID large sample size, unique features of ENADID demographic data that allow us to

match women’s shocks with their parents’ characteristics and institutional features of Mexico

where living in extended households is not rare.33 We estimate a woman’s likelihood to have

sub-fertility episodes or miscarriage at first pregnancy as a function of parental background

variables, while controlling for women’s age, birth cohort dummies and municipality indi-

cators. Despite the limitations of this exercise, since women cohabiting with their mothers

cannot be considered as a random sample, Table 2 reports regression coefficients for both

shocks, which are consistent with the literature and support the argument that infertility

or sub-fertility conditions are randomly assigned and independent of the characteristics of

women’s family of origin.

[Table 2 about here]

Finally, as a last check of exogeneity of fertility and infertility shocks, for each child we

compute the average biological shock at the level of the mother’s municipality of residence

(excluding his / her mother’s own shock) and regress the individual shocks on these averages.

If infertility shocks are as good as randomly assigned to women, we expect these municipality

averages not to be significant predictors of individual shocks. Indeed, municipality averages

may capture factors such as local sanitation and health conditions, social norms towards

32 That is those for which we have parents’ characteristics.
33 Alternatively, the literature has been using (rare) long-spanning longitudinal data, which allow to link

the childhood (background) family characteristics to grown-up children’s outcomes (Joffe and Barnes, 2000).
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voluntary abortion or access to illegal abortion, all factors that may also be correlated with

children’s attitudes towards migration, hence undermining our identification strategy (see

Fletcher and Wolfe, 2009). The coefficients of the regression of individual infertility on

municipality average infertility is 0.097 (p−value = 0.36), and the one of miscarriage at first

pregnancy on the municipality average of the same variable is 0.064 (p−value = 0.62).34

In both cases, these results show that biological shocks are unlikely the be driven by time-

varying municipality-level unobservables.

4.2.3 Exclusion restriction

For our instruments to be valid, in addition to exogeneity, they have to satisfy the exclu-

sion restriction assumption, i.e. fertility and infertility shocks have an impact on children’s

migration only through sibship size. For this reason, in the child migration equation we

control for many variables that may act as confounding factors and for those that may be

affected by the instruments while also having a direct effect on children’s migration. Among

these variables, we include the mother’s age, age at first pregnancy, education, marital status

and the husband’s characteristics (age, education and absence). In particular, while parental

education may directly influence fertility, it also acts as a proxy for household well-being and

poverty. Yet, in a set of robustness checks we include additional controls for household eco-

nomic conditions, namely municipality by year (1992 or 1997) fixed effects and municipality

by parental education fixed effects (see online Appendix B).

A threat to the exclusion restriction assumption comes from the fact that miscarriage is

a stressful event impacting negatively on women’s mental wellbeing. In principle, this may

impair children’s geographical mobility for two reasons. The shock may create an emotional

bond inducing children to stay close to their mothers, or emotionally distressed mothers may

need more support at home, in both cases negatively affecting children’s likelihood of migra-

tion. Unfortunately, ENADID does not provide information on respondents’ mental health

status and we cannot directly control for it. At the same time, this threat is less relevant

34 Standard errors are clustered by municipality. Only children with mothers living in municipalities for
which there are at least ten women in our baseline estimation sample are included in these regressions.
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in our case. Indeed, we only exploit miscarriage at first pregnancy and since migration is

measured for children aged 15 or more, such negative psychological shocks on mothers must

persist for more than 15 years and to several childbirths to bias our results. However, an

empirical check of the existence of direct effects of mother’s emotional distress on children’s

migration is reported in online Appendix D and shows the lack of such effects.35

4.2.3 Measurement error

There is a potential issue of measurement error with the miscarriage instrument, since

women may be unaware of miscarriages if they happen very early in the pregnancy36, may

fail to recall them (this may hold especially for older women, although mothers in our sample

are not older than 54) or just avoid reporting them as they are painful events. Misreport-

ing may affect the strength of the instrument but we do not expect any specific pattern of

correlation between it and parents’ attitudes towards child out-migration conditional on the

observables (including a quadratic polynomial in maternal age). Finally, as it was formu-

lated in the ENADID, the question does not distinguish between voluntary and involuntary

abortions. Thus, some of the reported abortions may be actually voluntary, even though

induced abortion was illegal and Mexico had the strictest anti-abortion legislation in Latin

America during the period under consideration. For women who voluntary have an abortion,

the instrument would be endogenous. However, there is no evident sign in our data that a

relevant share of the recorded abortions could be voluntary. For instance, Catholic women in

our sample do not tend to abort significantly less than other women (information on religion

is available in the 1997 wave only): incidence of abortion is 4.6 percent in the former group

and 4.8 percent in the latter.37

35 We test for the potential direct effects of miscarriage on child migration, via the emotional distress
that a traumatic event such as miscarriage can cause to the mother, drawing on the work of van den Berg
et al. (2017). The authors show that a child’s death represents one the largest losses that an individual can
face and has adverse effects on parents’ labor income, employment status, marital status and hospitalization.
Similarly, we include child death and the duration of the pregnancy that ended in a miscarriage or a stillbirth
as controls in the child migration equation, but we do not find ‘grief’ effects on migration. This analysis is
reported in online Appendix D (Table D1).

36 In this case, however, the effect on completed fertility is probably negligible.
37 In case the instrument is substantially contaminated by voluntary abortions, we would expect IV

estimates to be biased in the same direction as OLS. Indeed, omitting subscripts and in the models without
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4 Results on family size

4.1 First-step estimation of birth order effects

We start by estimating the impact of birth order on individual migration controlling for

household fixed effects, as specified in equation (1). The within-family estimator sweeps

out all parental- and family-level heterogeneity, including sibship size. Moreover, family

fixed effects account for omitted family-specific unobservable factors simultaneously affect-

ing fertility and child migration. The first column of Table 4 reports estimates with a linear

specification of birth order on the full sample, whereas in column (2) we allow for a more flex-

ible specification by adding birth-order-specific dichotomous indicators. Regressions control

for individual age and gender plus child’s birth cohort dummies (one for each year of birth).38

Indeed, child age is correlated with birth order and it is also likely to have a (non-linear)

relationship with migration (which is why we include the age quadratic term).

First, in column (1) we observe that, after controlling for household fixed effects, birth

order and individual characteristics, females are significantly less likely to migrate than

males by 3.6 percentage points (p.p.). Moreover, the birth order point estimate is negative

and statistically significant. Column (2) shows that the effect is non-linear and starts to be

economically meaningful from children of birth order 3, who are 2.1 p.p. less likely to migrate

than firstborns. Although this appears to be a small effect in absolute value, it represents

an approximately 40 percent decrease in the probability of migration at the sample average

(5.2 percent migration rate). The coefficients for the following birth orders are larger in

absolute value and peak for birth orders 9 and 10 or more (-16.6 and -20 p.p. respectively).

We also estimated (1) by allowing interactions between gender and birth order indicators,

controls, if we define as M = β0 + β1S + v the migration equation, where M and S are child migration
status and sibship size, respectively, and S = γ0 + γ1Z + u the sibship size equation (the first stage) and Z
the instrument (abortion), β1,OLS = β1 +Cov(S, v)/V ar(S) while β1,IV = β1 +Cov(Z, v)/Cov(Z, S), where
Cov(Z, S) < 0 and sign(Cov(S, v)) = −sign(Cov(Z, v)). In case, for instance, unobserved mother’s total
desired fertility is positively correlated with children’s migration and a substantial share of abortions are
voluntary, both OLS and IV will be similarly upward biased.

38 By including child age and cohort dummies, with household fixed effects we are also de facto controlling
for birth spacing between siblings.
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but interaction terms are never statistically significant (see Section 5 for discussion). Thus

we use the specification without gender interactions to implement the two-step procedure as

described below.

[Table 4 about here]

4.2 Sibship size effect: WLS and 2SLS results at the individual-

level

By applying the two-step procedure described above, we now turn to the estimation of

the sibship size effects. We report the WLS estimates as a benchmark model, where the

dependent variable is ‘netted migration’ (see Section 3.1).39 The number of siblings is tallied

as the number of currently living biological brothers and sisters of each child.40 The first

column of Table 5 reports WLS results for a linear specification including sibship size. The

highly significant coefficient implies that, on average and after controlling for birth order

effects in the first step, adding one sibling is associated with a 1.1 p.p. higher likelihood

of migrating for young adults (+17 percent at the sample mean). The same effect holds

once we include individual level controls, namely child gender, age, age squared and years

of birth indicators (column 2). In column (3) we estimate the same model as above by

allowing for differential effects by child gender. The significant negative coefficient for the

interaction term indicates that females’ likelihood to migrate increases less due to sibship

size with respect to males. Specifically, one extra sibling raises the migration probability

more for sons than for daughters by 0.8 p.p. In columns (4) to (7), we run the same

regressions above while adding further parental, household and geographical-level controls

39 The inverse of the standard errors of ‘netted migration’ are used as weights.
40 Those currently deceased are excluded from our definition of siblings. This is done for two reasons: (i)

70 percent of deceased children in our sample died before the first year of life, 90 per cent of them before the
second one; (ii) the focus of our analysis is not on very young children so that we need to take into account
siblings who actually ‘had enough time’ to compete over household resources, and exclude accordingly infant
deaths. In online Appendix C (Tables C1–C4) we report robustness checks related to concerns about the
endogeneity of our definition of sibship size and birth order and estimate models based on ever-born children,
i.e. currently alive or deceased, and the results do not change.
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in order to account for potential confounding factors of the relationship between family size

and offspring’s migration. Specifically, in column (4) and (5) we include parental covariates,

which may predict completed fertility and affect child migration, namely mother’s years of

birth indicators, age at first pregnancy, chronic illness, single status (i.e. widow, divorced,

single de facto), father’s decade of birth indicators, mothers’ and father’s (quadratic) age and

years of schooling.41 In column (6) and (7) we further add municipality fixed effects that,

conditional on family size, control for population size along with many other local factors

related to different cultural or economic conditions, which may have an effect on fertility

and migration (e.g., employment rates, migration intensity, access to contraception, social

services, etc.). Overall, the sibiship size effect is essentially unchanged when we control for

all of the aforementioned factors, and the same holds for the differential effect by gender.

[Table 5 about here]

Yet, as noted in the methodological section, the coefficients on sibship size reported in

Table 5 are still likely to be biased, even when a rich set of demographic and economic controls

is included. This is so as fertility may be endogenous with respect to child out-migration.

Thus, we employ an IV approach and exploit the arguably exogenous fertility variation

generated by episodes of infertility and miscarriage. Since these events can vary the actual

family size from the desired one, we use infertility shocks and miscarriage at first pregnancy to

identify the effect of sibship size on child out-migration. In Table 6 we present 2SLS estimates

and the two-step methodology, as outlined above, to estimate equation (4). In column (1)

we instrument sibship size with an indicator variable for infertility shocks taking value one

if the woman declares she is not using contraception because she is infertile. In column (2),

instead, we report results using a woman’s experience of miscarriage on her first pregnancy

as an instrument. Eventually, in column (3) we present results using both instruments in an

41 We are de facto also controlling for mother’s age at delivery, which is a linear combination of child’s age
and mother’s age. As far as parental controls are concerned, we have more missing information for fathers
than it is the case for mothers. As to keep the sample size constant, we further include a dummy variable
for missing paternal information
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overidentified model. Throughout all models, the first stage results point to a strong and

highly significant relationship between infertility / fertility shocks and completed fertility. In

particular, children whose mothers experienced an infertility shock have a reduction in their

sibship size of nearly 0.5 (t = −5.2) with an F−statistic of 26.9 (column 1). The negative

impact of miscarriage on sibship size is similar in magnitude (−0.437) with an F−statistic

of 19.13 (column 2). Also the F−statistic of the joint significance of the instruments in the

over-identified model is as high as 23.37 (column 3).42 The sibship size effects estimated using

2SLS are always economically small. In the models using miscarriage, infertility and both

instruments the effect of increasing sibship size by one changes the likelihood of migration

by 0.4, -1.8 and -0.5 percentage points, respectively. Although, due to our sample size,

these estimates are not ‘precisely estimated zeros’ (i.e. very small statistically significant

coefficients) they are zeros in economic terms. The lack of significance does not appear

to be due to imprecision related with a weak instruments problem. For all models, the

Anderson-Rubin F−statistic (robust to weak instruments) cannot reject that the coefficient

on the instrument is zero in the reduced form. Interestingly, the point estimate of the effect of

sibship size on child migration obtained with the miscarriage instrument (which might include

voluntary abortions) is lower than the one obtained with the infertility instrument, which we

consider to be less affected by endogeneity issues, and much lower than the OLS estimate, a

fact that is inconsistent with the premise that induced abortions include a substantial share

of total abortions (see Section 3.2).

Even though in all specifications we control for parental education, in online Appendix

B (Tables B1 and B2) we show that our results are robust to the inclusion of a number of

additional controls for household economic conditions, namely municipality by time fixed

effects and municipality by parent’s education fixed effects.

[Table 6 about here]

42 The Hansen J−statistic does not reject the ‘validity’ of the instruments (i.e. orthogonality to the the
error term and correct exclusion from the main equation) in the overidentified model.
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The two instruments we used may act on different compliers. We expect miscarriage at

first pregnancy to hit especially women with very high desired fertility. Indeed, in Mexico

in the 1990s there was generally a long time span between a woman’s first pregnancy and

the end of her fertile life, during which women could reach their desired number of children.

Only women who desired a very large family size were prevented from attaining their target

by a miscarriage experienced at first pregnancy. By contrast, compliers with the infertility

instrument may be in principle more evenly distributed across different desired family sizes.

Since ENADID data do not provide the exact timing of the infertility shock, we are unable

to check the age it occurs and the family size’ margin the instrument is mainly relevant

for. Yet, Table 3 suggests that infertility is more prevalent in (ex-post) smaller families.

Accordingly, finding (in Table 6) similar results using instruments with potentially different

compliers is reassuring in terms of the external validity of our estimates.

In Table 7 we report results of the same 2SLS regressions as above while testing the sibship

size differential effect by gender in the pooled sample with interaction terms.43 Results do

not point to any significant difference in the impact of sibiship size between boys and girls,

as it turns out to be insignificant for both (columns 1-3). When using miscarriage as an

instrument, though, we cannot draw strong conclusions as the F−statistic for the interacted

endogenous variable is rather low (4.27, column 2). However, even in this case the Anderson-

Rubin F−statistic confirms that we cannot reject the hypotheses of sibship size not affecting

child migration.

[Table 7 about here]

Overall, findings in this section point to the negligible role of family size on children’s

migration outcomes. The comparison between the OLS and the IV estimates indicates an

upward bias in the former. According to our estimates the correlation between family size

and child migration observed in the data is driven by unobservable variables which make

43 The interaction effect sibship size×female is instrumented using the interaction instrument×female,
where the instrument is infertility or miscarriage depending on the specification.
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some families more prone to both have more children and more migrant children. Such

variables may include, for instance, risk aversion and preferences for income diversification.

Indeed, higher fertility may be a way for parents to diversify the sources of old-age income

support and child migration a way to spatially diversify household production.

As outlined in Section 3.1, household-level estimates enable us to include single-child

households in the estimation sample and use a standard 2SLS procedure. They can be

therefore considered as a robustness check to changing the composition of the sample and

the estimation strategy. The results are reported in online Appendix E (Tables E1 and E2)

and confirm those of the individual level analysis.

4.3 Sample selection bias from new household formation

In this Section, we carry out a direct check for the potential sample selection bias induced

by new household formation. We are able to analyze migration decision only of children

who are considered as members of the household (i.e. those who are present or emigrated

less than five years ago). If a new household formation (i.e. the child leaving the parental

home and start living alone or forming his / her own family) is associated with the number of

siblings, our estimates would not be representative of the effect of family size on migration for

the whole population of children but only for children cohabiting with their parents or who

are current household members. To check if this is the case, we estimate a LPM in which

the dependent variable is a dichotomous indicator for a child’s not being observed in the

household (‘absent child’). Even for the ‘absent children’ some individual level information

can be recovered, namely gender, birth order and age, from the mother’s fertility history, so

that we can include in the estimated equation exactly the same controls as in the migration

equation. First, in column (1) of Table 8, we estimate a reduced form LPM in which we

include all the controls of the migration equation except sibship size, but we also include

the two excluded instruments used for sibship size (miscarriage and infertility conditions).

We interpret the test for the joint significance of the coefficients on the two instruments as
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evidence about the role of family size on a child’s choice to permanently leave his / her origin

household. Finding statistically significant coefficients on the instruments would generate

concerns that estimates could be affected by a sample selection bias. We do a similar exercise

in column (2) of Table 8 in which we use 2SLS, and test for the significance of family size

on the ‘absent child’ equation. In both cases, we can reject the null hypothesis that family

size is a significant driver of a child’s probability of being included in the sample used to

estimate the decision to migrate abroad.

[Table 8 about here]

5 Gender and sibling composition

5.1 Migration outcomes as a function of gender and birth order

In column (1) and (2) of Table 4 (see Section 4.1), we show that an individual’s probability

to migrate decreases with birth order. While this is consistent with a household optimal

migration model where family’s returns from migration decrease with child parity, in this and

the reminder sections of the paper we present more compelling tests on whether migration

chances are distributed unevenly—e.g. by age and gender—across children within the same

family. Indeed, within a household resources allocation framework, low-parity children may

be more likely to migrate because the family has more time to reap the benefits of migration.

However, it may still be argued that first-born children are better off with respect to other

forms of human capital investments as well. For example, earlier parities may have benefited

from higher pre-natal or post-natal parental investments, having shared household resources

with fewer siblings, and this may affect the returns to migration. Thus, here we explore the

gendered pattern of migration in order to test the hypothesis of the low-parity advantage.

In column (3) and (4) of Table 4 we report results by adding interaction effects between

birth order and gender to the models.44 The interactions of being female with birth order

44 As our two-step procedure relies on household fixed effects, when estimating separate regressions by
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dummies are not statistically significant, suggesting that the birth-order gradient in child

migration is not statistically different between boys and girls. Yet, the latter holds for all

parities but for firstborns: in column (2) the female main effect shows that female firstborns

are significantly less likely to migrate than male firstborns. Overall, these estimates suggest

that the chances of migration are not equally distributed across children within the same

family. Low-parity children are, in general, more likely to migrate but a firstborn daughter

is significantly less likely to migrate than a firstborn son by about 3 p.p. (which means

a reduction in the probability of migration of roughly 60 percent at the sample average

migration rate). Finding a significant effect on the interaction between first-parity and gender

suggests that it is unlikely that parents decide to invest in migration of the firstborns only,

irrespective of gender (first-born bias). Also gender turns out to be a significant factor, and in

particular (first-born) boys may have higher migration returns than their female peers. This

is consistent with a male-dominated Mexican migration phenomenon, as shown by different

data (e.g., Cerrutti and Massey, 2001). Yet, while parental investment in (low-parity) boys

is still a rational choice when returns to migration in the U.S. labor market are higher (or

moving costs are lower) for boys than for girls, these findings are also consistent with the

argument that parents may just value (low parity) sons more than daughters (preference for

sons). Hence, in the next and last sub-section, we estimate the same migration equations as

above by allowing for a separate effect of sibling composition from the individual gender and

birth-order variables. If migration choices are driven by birth-parity or son preference, we

should find no separate effect of sibling composition. On the contrary, a significant effect of

sibling composition variables on the likelihood to migrate points to the existence of an intra-

household migration selection process within which some children may have systematically

more chances to migrate than others.

gender only families with at least two sons and at least two daughters can be included in the estimates
for males and females, respectively. In order to avoid such a sample selection, we rather adopt a pooled
estimation including interaction effects with gender.
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5.2 Migration outcomes as a function of gender and sibling-sex

composition

Our estimates so far show that gender is a robust predictor of migration in Mexican families

and, ceteris paribus, boys—especially firstborns—are systematically more likely to migrate

abroad than girls. In practice, this means that if migration is costly and not all children

are in the position to migrate, a pro-eldest-son migration bias may lead to a situation in

which children compete for household resources in order to migrate and such ‘rivalry’ can

yield gains to having relatively more older sisters than brothers (Garg and Morduch, 1998).

Thus, in order to explore the scope of sibling rivalry by age and gender, we test how sibling

composition influences child migration by running two sets of regressions as reported in

Table 9. First, we estimate migration equations on the full sample of children as a function

of the number of their older brothers, while controlling for both family and birth order

fixed effects (i.e., conditioning on the number of both siblings and older siblings), child

gender, (a quadratic polynomial in) age and cohort dummies. Results in column (1) show

that, ceteris paribus, having an older brother (sister) instead of an older sister (brother)

decreases (increases) the migration probability by 1.4 p.p. (t = 3.6). This result points to a

significant role of the gender and age composition of siblings in children’s migration outcomes,

consistently with a household-level migration strategy. Moreover, the sibling composition

effect does not differ significantly by the gender of the child, suggesting that older siblings’

sex composition equally matters for boys and girls (column 2).

[Table 9 about here]

Yet, we further exploit the gendered migration pattern and the fact that siblings are likely

to migrate in order of birth to test whether females pay a toll for higher migration returns for

boys. We do so by including a control for having a next-born brother in the household fixed

effects regressions on the pooled-sample (with and without interactive effects), as above.

If a child has at least one younger sibling, the gender of his / her next-born sibling is
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random and a comparison of children with next-born brothers with children with next-born

sisters, while controlling for older siblings composition, can identify the effect of the sibling’s

gender.45 Results in columns (3) and (4) in Table 9 show that, conditional on older siblings’

composition, having a next-born brother does not play any role for sons, but reduces the

likelihood to migrate for girls with respect to boys by 1.2 p.p. (t = −2). This result suggests

that sibling composition by gender and age plays a significant role in the determinants of

migration decisions within the household. More specifically, from our results it seems that

a daughter with a next-born brother is less likely to migrate than a girl with a next-born

sister. In other words, when parents face the costly decision whether to send a daughter

abroad, they seem to prefer to invest in the migration of her next-born brother (if there is

one). Similarly, by allowing children’s agency, it may be that young women are less likely to

offering themselves as migrants if they have a next-brother.

All in all, our results are consistent with an optimal household migration strategy where

private costs and returns of migration are shared among all siblings. Indeed, a low-parity

Mexican boy in the 90s may be more valuable to send as a household migrant abroad than

a girl. In addition, the opportunity cost of sending girls abroad may be higher because they

usually take care of chores and family duties at home or are in charge of being close to parents

in their elderly age. Hence, social norms or practices combined with market returns on the

migration investment may explain the male-dominated pattern of Mexico-U.S. migration

and document—similarly to other developing contexts—that young females tend to have

less access to human capital investment and enhancing economic opportunities than it is the

case for males.

45 A similar empirical strategy is employed by Vogl (2013) to study sibling rivalry over arranged marriages
in South Asia.
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6 Conclusions

In this paper we provide novel and rigorous evidence on the extent to which international

labor mobility is affected by the demographic characteristics of the migrant’s household

of origin. Migration is largely a youth phenomenon occurring in households that seldom

dispatch all or most of their children to work abroad. With capital market imperfections

and high migration costs, the ‘resource dilution’ hypothesis predicts that a larger sibship size

will decrease the chances of an offspring migrating. Yet, in relatively poor contexts, parents

are likely to depend on their grown-up children for the provision of care and income, and

migration opportunities can significantly contribute to the living arrangements of elderly

parents.

We use data on teenagers and young adults from a rich household survey to examine

the causal effects of sibship size, birth order and sibling composition on migration outcomes

in Mexico. Mexican migration, mainly to the U.S., is an enduring flow that accounts for

one third of total U.S. immigration and one-tenth of the entire population born in Mexico.

Importantly, migration patterns in the 90s differed by age and gender, with a significant

fraction of Mexican males migrating between the ages of 15 and 25.

Our large dataset allows us to overcome the limitations of small samples of children,

and it includes detailed information on both women’s fertility and the migration histories

of household members. We find no evidence that larger families have a causal impact on

migration. The positive link between family size and migration breaks down when potential

endogeneity is addressed using biological fertility and infertility shocks. On the other hand,

we find differences in the chances of migration between siblings within the same family.

Older siblings, especially firstborn males, are more likely to migrate, while having relatively

more older brothers than sisters systematically decreases the likelihood of migration for all

children. Yet, girls, but not boys, are less likely to migrate when their next parity is a male.

Our findings are consistent with an optimal household migration model in which parents

maximize returns to migration when deciding on whether to have one or more of their
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children move abroad. Large family size per se does not constitute a significant push factor

in the migration choice, whilst gender, birth order and sibling composition have much more

influence on the migration outcome. In particular, in resource-scarce contexts, out-migration

of girls can be viewed as less economically rewarding and more socially costly to parents, with

the result that boys end up having more economic opportunities than girls, even through

migration.

These results contribute to the migration literature by shedding new light on the signif-

icant role of both the family dimension and demographic factors in the migration decision

problem. Labor mobility, especially from poor to rich settings, is one of the most important

ways through which young adults can expand their productivity and earning potentials. The

type of family-based migration that occurred from Mexico to the U.S. during the 1990s is

of considerable and growing importance for many of today’s developing countries (e.g., in

Asia and Africa) where both migration and fertility rates are substantial (e.g., Hatton and

Williamson, 2003). Despite the easily observable association between high fertility rates and

migration, we provide evidence that large families are unlikely to be a systematic driver of

migration at the household level.

Understanding the link between fertility and migration is also relevant today since many

governments in developing countries have attempted to curb population growth as a means

of increasing the average human capital investment and possibly reducing migration (e.g.,

China and India, the world’s two most populous countries, have experimented with different

family planning policies to control family size). Yet, although our empirical findings do not

point to a causal link between family size and migration, they hint to the fact that parental

returns from offspring migration may play a role in lifetime fertility choices. Moreover, by

showing that not all children within the family have the same chances to migrate, our findings

point to the existence of an optimal intra-household selection process into migration. This

is so as in contexts of scarce resources and weak formal safety nets, children may be a key

social security valve for parents such that high migration opportunities to rich countries may
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increase the value of children (some more than others, e.g., low-parity sons). Hence, effective

family welfare measures or the development of credit and insurance markets may lead to a

reduction in both migration and fertility, and perhaps less gender inequality.

Eventually, it is worth noting that our analysis seeks to address endogeneity concerns

related to fertility resorting to women’s sub-fertility conditions, miscarriage and stillbirth

events, and we have reported several pieces of evidence consistent with the validity of the

instruments we used. Moreover, quite reassuringly, the evidence based on different instru-

ments, which act on different compliers, and on an over-identified model, all lead to the

same conclusion. Yet, there might some remaining concerns that our instruments are not

completely exogenous, or have direct effects on child migration. For this reason, given the

paucity of the research investigating the causal effects of family size on children’s migra-

tion, it would be important to build more evidence, on other countries and / or using other

sources of presumably exogenous variation in fertility (e.g., fertility control programs for

which a treatment and a comparison group can be clearly identified) to assess the external

validity of our findings.
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Figure 1: Distribution of Mexican individual (non-tied) migration by age and gender
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Source: Our computations on ENADID, 1992 and 1997.

Figure 2: Migration rate by family size
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Source: Our computations on ENADID, 1992 and 1997. The figures report the share of migrants by family
size and gender with 95% confidence intervals. Statistics are shown for the sample of individuals for which
we have two or more siblings and we can include household fixed effects in the estimates.
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Table 1: Sample characteristics by migration status

Non-migrants Migrants p−values
(A) (B) (A)-(B)

Individual-level characteris-
tics
Age 18.878 20.982 0.000
Female 0.458 0.250 0.000
N. of siblings 5.071 5.869 0.000
Birth order 1 0.181 0.192 0.300
Birth order 2 0.231 0.225 0.555
Birth order 3 0.178 0.178 0.978
Birth order 4 0.137 0.154 0.077
Birth order 5 0.102 0.102 0.993
Birth order 6 0.071 0.073 0.781
Birth order 7 0.046 0.041 0.343
Birth order 8 0.028 0.021 0.100
Birth order 9 0.014 0.009 0.121
Birth order 10+ 0.011 0.006 0.107

Household-level characteris-
tics
Mother’s age 44.612 46.171 0.000
Mother’s age at first preg-
nancy

20.030 19.699 0.182

Mother’s years of schooling 4.091 3.452 0.010
Mother chronic illness 0.023 0.008 0.131
Single mother 0.185 0.188 0.896
Father’s age 48.799 52.207 0.000
Father’s years of schooling 4.931 3.789 0.059

Note. Source: ENADID, 1992 and 1997. The estimation sample includes individuals aged 15–25 whose
mothers are not using contraceptive methods. The sample comprises 1,394 migrants and 25,349 non-migrant
individuals.
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Table 2: Correlations between infertility shocks and women’s background variables
(1) (2)

Dependent variable: Infertility Miscarriage at first pregnancy

Mother’s age 0.009 0.013
(0.006) (0.010)

Mother’s age squared -0.000 -0.000
(0.000) (0.000)

Mother’s age at first pregnancy -0.000 0.001
(0.000) (0.001)

Mother’s years of schooling 0.001 0.000
(0.001) (0.001)

Single mother -0.006 -0.005
(0.006) (0.013)

Mother chronic illness -0.026*** 0.027
(0.008) (0.032)

Father’s age -0.001 -0.009
(0.005) (0.013)

Father’s age squared 0.000 0.000
(0.000) (0.000)

Father’s years of schooling 0.001 0.001
(0.001) (0.001)

Individual (quadratic) age YES YES
Individual’s year of birth indicators YES YES
Mother’s cohort dummies YES YES
Father’s cohort dummies YES YES
Municipality indicators YES YES

Observations 4,268 4,268
R-squared 0.101 0.059

Note. The dependent variable is a dichotomous indicator of the woman having experienced an infertility
episode (column 1) or miscarriage at first birth (column 2). The model is estimated using OLS. The esti-
mation sample includes women who had at least one pregnancy and who are considered members of their
mother’s household in ENADID’s 1992 and 1997 waves. Robust standard errors in parentheses. *,** and
*** denote statistical significance at 10, 5 and 1 percent level, respectively.
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Table 3: Incidence of fertility and infertility shocks by sibship size

Individual sample Household sample
Incidence of shock (%) Incidence of shock (%)

sibship size % infertility miscarriage sibship size % infertility miscarriage

0 3.69 13.37 5.05
1 4.59 11.56 6.03 1 9.84 11.43 6.80
2 12.16 8.33 5.38 2 16.88 7.48 5.20
3 14.20 5.45 4.06 3 15.96 5.16 4.02
4 14.68 5.12 4.05 4 13.66 4.30 3.86
5 13.54 4.00 5.55 5 11.20 3.73 4.71

6+ 40.82 3.94 3.68 6+ 28.76 3.51 3.44
100.00 100.00

Note. The table reports the incidence of fertility and infertility shocks in the estimation samples used in the
individual-level (see Section 4.2) and the household-level analysis (see online Appendix E), respectively.
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Table 4: Birth order effects on child’s migration status

Variables (1) (2) (3) (4)

female -0.036*** -0.035*** -0.032*** -0.031***
(0.003) (0.003) (0.006) (0.007)

birth order -0.019*** -0.019***
(0.003) (0.003)

birth order 2 -0.002 0.002
(0.005) (0.006)

birth order 3 -0.021*** -0.023***
(0.007) (0.008)

birth order 4 -0.038*** -0.034***
(0.010) (0.011)

birth order 5 -0.068*** -0.070***
(0.013) (0.014)

birth order 6 -0.086*** -0.077***
(0.016) (0.017)

birth order 7 -0.112*** -0.103***
(0.019) (0.020)

birth order 8 -0.136*** -0.140***
(0.022) (0.023)

birth order 9 -0.161*** -0.166***
(0.026) (0.028)

birth order 10+ -0.199*** -0.188***
(0.030) (0.033)

birth order, female -0.001
(0.001)

birth order 2, female -0.011
(0.009)

birth order 3, female 0.005
(0.010)

birth order 4, female -0.010
(0.010)

birth order 5, female 0.006
(0.011)

birth order 6, female -0.018
(0.012)

birth order 7, female -0.017
(0.015)

birth order 8, female 0.010
(0.018)

birth order 9, female 0.012
(0.024)

birth order 10+, female -0.022
(0.027)

age 0.020** 0.021** 0.020** 0.021**
(0.009) (0.009) (0.009) (0.009)

age squared 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)

Year of birth indicators YES YES YES YES
Household fixed effects YES YES YES YES

Observations 26,743 26,743 26,743 26,743
R-squared 0.050 0.052 0.050 0.053

Note. The dependent variable is a dichotomous indicator of the child’s migration status. The model is estimated using OLS.
Sibship size is absorbed by household fixed effects. Standard errors clustered at the household level in parentheses. *,** and
*** denote statistical significance at 10, 5 and 1 percent level, respectively.
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Table 5: Sibship size effect on child’s ‘netted migration’ status: WLS estimates
Variables (1) (2) (3) (4) (5) (6) (7)

N. siblings 0.011*** 0.011*** 0.014*** 0.010*** 0.013*** 0.010*** 0.013***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

N. siblings × female -0.008*** -0.007*** -0.006***
(0.001) (0.001) (0.001)

female -0.038*** -0.036*** -0.033*** -0.031*** -0.033*** -0.031***
(0.003) (0.006) (0.003) (0.006) (0.003) (0.003)

Individual’s controls NO YES YES YES YES YES YES
Mother’s controls NO NO NO YES YES YES YES
Father’s controls NO NO NO YES YES YES YES
Municipality indicators NO NO NO NO NO YES YES

Observations 26,743 26,743 26,743 26,743 26,743 26,743 26,743
R-squared 0.013 0.054 0.055 0.177 0.178 0.202 0.203

Note. The dependent variable is ‘netted migration’ (see Section 3). The model is estimated using Weighted
Least Squares (weights are the inverse of the standard errors of ‘netted migration’). Individual’s controls
include year of birth indicators, age, age squared; mother’s controls include year of birth indicators, age
and age squared, age at first pregnancy, years of schooling, indicators for mother’s chronic illness and being
single; father’s controls include decade of birth indicators, age and age squared, years of schooling. Standard
errors clustered at the household level in parentheses. *,** and *** denote statistical significance at 10, 5
and 1 percent level, respectively.
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Table 6: Sibship size effect on child’s ‘netted migration’ status: 2SLS estimates
Variables (1) (2) (3)

Second stage
N. siblings 0.004 -0.018 -0.005

(0.014) (0.023) (0.012)
female -0.033*** -0.033*** -0.033***

(0.003) (0.003) (0.003)

IV: infertility miscarriage overidentified
Anderson-Rubin F−statistic 0.073 0.686 0.389

[0.787] [0.407] [0.678]
Hansen J−statistic 0.737

[0.391]

First stage — N. siblings
infertility -0.494*** -0.491***

(0.095) (0.095)
miscarriage -0.437*** -0.433***

(0.10) (0.10)
female -0.032 -0.032 -0.033

(0.024) (0.024) (0.024)
Angrist-Pischke F−statistic instrument(s) 26.90 19.13 23.37

Individual’s controls YES YES YES
Mother’s controls YES YES YES
Father’s controls YES YES YES
Municipality indicators YES YES YES

Observations 26,743 26,743 26,743

Note. The dependent variable is ‘netted migration’ (see Section 3). Observations are weighted by the inverse
of the standard error of ‘netted migration’ because the dependent variable is estimated. The list of control
variables is the same as in Table 5. Standard errors clustered at the household level in parentheses. P−values
are reported in brackets. *,** and *** denote statistical significance at 10, 5 and 1 percent level, respectively.

47



Table 7: Child gender and sibship size effect on child’s ‘netted migration’ status: 2SLS
estimates

Variables (1) (2) (3)

Second stage
N. siblings 0.005 -0.065 -0.007

(0.016) (0.048) (0.015)
N. siblings × female -0.005 0.112 0.005

(0.013) (0.079) (0.013)
female -0.032*** -0.064*** -0.034***

(0.004) (0.022) (0.005)

IV: infertility miscarriage overidentified
Anderson-Rubin F−statistic 0.074 2.210 1.150

[0.928] [0.110] [0.331]
Hansen J−statistic 4.399

[0.111]

First stage — N. siblings
infertility -0.567*** -0.564***

(0.109) (0.108)
infertility × female 0.168 0.169

(0.115) (0.115)
miscarriage -0.453*** -0.450***

(0.117) (0.117)
miscarriage × female 0.037 0.038

(0.106) (0.105)
female -0.041 -0.033 -0.043*

(0.025) (0.025) (0.025)
Angrist-Pischke F−statistic instrument(s) 28.62 11.98 15.68

First stage — N. siblings × female
infertility 0.125*** 0.125***

(0.038) (0.038)
infertility × female -0.694*** -0.691***

(0.131) (0.131)
miscarriage -0.067 -0.068

(0.044) (0.043)
miscarriage × female -0.261** -0.254*

(0.131) (0.130)
female 0.292*** 0.269*** 0.303***

(0.03) (0.03) (0.031)
Angrist-Pischke F−statistic instrument(s) 26.93 4.27 13.83

Individual’s controls YES YES YES
Mother’s controls YES YES YES
Father’s controls YES YES YES
Municipality indicators YES YES YES

Observations 26,743 26,743 26,743

Note. The dependent variable is ‘netted migration’ (see Section 3). Observations are weighted by the inverse
of the standard error of ‘netted migration’ because the dependent variable is estimated. The list of control
variables is the same as in Table 5. Standard errors clustered at the household level in parentheses. P−values
are reported in brackets. *,** and *** denote statistical significance at 10, 5 and 1 percent level, respectively.
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Table 8: The effect of family size on being an ‘absent child’

Variables (1) (2)
OLS 2SLS

infertility -0.013
(0.010)

miscarriage 0.002
(0.011)

N. siblings 0.015
(0.015)

F−statistic instruments(a) 0.838
IV: - overidentified
Anderson-Rubin F−statistic 0.838

[0.433]
Hansen J−statistic 0.875

[0.350]

Individual’s controls YES YES
Mother’s controls YES YES
Father’s controls YES YES
Municipality indicators YES YES

Observations 34,852 34,852

Note. The dependent variable is a dichotomous indicator of the child’s not being observed in the household
of origin (‘absent child’). The model is estimated using OLS in column (1) and two-stage least squares in
column (2). The list of control variables is the same as in Table 5. Standard errors clustered at the household
level in parentheses. (a) F− statistic for the joint test that infertility and miscarriage are zero in the ‘absent
child’ equation. *,** and *** denote statistical significance at 10, 5 and 1 percent level, respectively.
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Table 9: Siblings’ composition effect on child’s migration status: OLS estimates
Variables (1) (2) (3) (4)

N. older brothers -0.014*** -0.014*** -0.017*** -0.016***
(0.004) (0.004) (0.004) (0.005)

female -0.028*** -0.026*** -0.022*** -0.016***
(0.003) (0.005) (0.005) (0.006)

N. older brothers × female -0.002 -0.002 -0.003
(0.002) (0.002) (0.002)

Next brother -0.005 0.001
(0.004) (0.004)

Next brother × female -0.012**
(0.006)

Age, age squared YES YES YES YES
Birth order fixed effects YES YES YES YES
Year of birth indicators YES YES YES YES
Household fixed effects YES YES YES YES

Observations 26,743 26,743 26,743 26,743
Number of hid 10,139 10,139 10,139 10,139
R-squared 0.053 0.053 0.053 0.053

Note. The dependent variable is a dichotomous indicator of the child’s migration status. The model is
estimated using OLS. Sibship size is absorbed by household fixed effects. Standard errors clustered at the
household level in parentheses. *,** and *** denote statistical significance at 10, 5 and 1 percent level,
respectively.
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Appendix to “The Impact of Family Size and Sibling

Structure on the Great Mexico-U.S. Migration”
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A Appendix: Robustness checks

As described in Section 2, we restrict our sample to children of mothers for whom we have

information on arguably exogenous variation in fertility (i.e. miscarriage and infertility

shocks). Here, we run the same analysis on the full sample of women, i.e. we include children

of sterilized women and of women using contraceptives, in order to address potential concerns

related to sample selection. Moreover, ENADID provides information on the migration

status only for children cohabiting with their parents and for those temporarily absent but

still considered as household members. In order to lessen the concerns with the potential

selection bias this may introduce, we make a number of further sensitivity checks by changing

the composition of the estimation sample.

First, Section A.1 reports both WLS and IV estimates on the full sample, i.e. including

children of sterilized women and of women using contraceptives, by using miscarriage at

first birth as instrument. Table A1 shows that the estimated effect of sibship size is −0.024

(s.d.=0.017) very close to our baseline estimate of −0.018 (s.d.=0.023) in Table 6.

In Section A.2 we run a sample sensitivity check by focusing on the male (sons) subsample,

since according to the data boys tend to marry and hence leave their parents’ household later

compared to girls. In Section A.3 we focus on a sample of individuals aged 15 to 20 as a

further robustness check: only few individuals are expected to be out of their origin household

in this age group. Moreover, since we are able to recover migration patterns of all individuals

who left in the five years prior to the survey, our measure of migration is very precise (very

few individuals leave alone before age 15 and can be considered as permanent migrants) at

the cost of a smaller sample size. In both cases, the estimation results are very similar to

those commented in the main text, although some coefficients are less precisely estimated.

Finally, Section A.4 addresses the biases potentially generated by the exclusion from the

estimation sample of parents migrated in the past and episodes of children’s tied migration.

We include in the estimation sample children with parents who ever migrated abroad, adding

in the regressions an extra control (i.e. a dichotomous indicator) for parental migration.
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Table A4 confirms the statistically insignificant effect of sibship size on child migration when

endogeneity is addressed.

A.1 Sample including sterilized women and those using contra-

ceptives

Table A1: Sibship size effect on child’s ‘netted migration’ status: WLS and 2SLS estimates
(1) (2)

Variables WLS 2SLS

N. siblings 0.005*** -0.024
(0.001) (0.017)

female -0.031*** -0.031***
(0.002) (0.002)

(0.133)

First stage — N. siblings
miscarriage -0.421***

(0.084)
Angrist-Pischke F−statistic instrument(s ) 25.33

Individual’s controls YES YES
Mother’s controls YES YES
Father’s controls YES YES
Municipality indicators YES YES

Observations 40,008 40,008

Note. The sample includes also children of sterilized women and women using contraceptives. The dependent
variable is ‘netted migration’ (see Section 3). Observations are weighted by the inverse of the standard error
of ‘netted migration’ because the dependent variable is estimated. Individual’s controls include year of birth
indicators, age, age squared; mother’s controls include year of birth indicators, age and age squared, age at
first pregnancy, years of schooling, indicators for mother’s chronic illness and being single; father’s controls
include decade of birth indicators, age and age squared, years of schooling. Standard errors clustered at
the household level in parentheses. P−values are reported in brackets. *,** and *** denote statistical
significance at 10, 5 and 1 percent level, respectively.
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A.2 Sons

Table A2: Sibship size effect on sons’ ‘netted migration’ status: WLS and 2SLS estimates
(1) (2) (3) (4)

Variables WLS 2SLS 2SLS 2SLS

N. siblings 0.012*** 0.004 -0.051 -0.016
(0.001) (0.019) (0.036) (0.017)

IV: — infertility miscarriage overidentified
Anderson-Rubin F−statistic 0.0355 2.567 1.315

[0.850] [0.109] [0.268]
Hansen J−statistic 2.175

[0.140]

First stage — N. siblings
infertility -0.549*** -0.547***

(0.110) (0.109)
miscarriage -0.441*** -0.438***

(0.117) (0.117)
Angrist-Pischke F−statistic instrument(s) 25.13 14.19 20.38

Individual’s controls YES YES YES YES
Mother’s controls YES YES YES YES
Father’s controls YES YES YES YES
Municipality indicators YES YES YES YES

Observations 14,777 14,777 14,777 14,777
R-squared 0.242

Note. The dependent variable is ‘netted migration’ (see Section 3). Observations are weighted by the inverse
of the standard error of ‘netted migration’ because the dependent variable is estimated. Individual’s controls
include year of birth indicators, age, age squared; mother’s controls include year of birth indicators, age
and age squared, age at first pregnancy, years of schooling, indicators for mother’s chronic illness and being
single; father’s controls include decade of birth indicators, age and age squared, years of schooling. Standard
errors clustered at the household level in parentheses. P−values are reported in brackets. *,** and ***
denote statistical significance at 10, 5 and 1 percent level, respectively.
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A.3 Age group 15-20

Table A3: Sibship size effect on children’s age 15-20 ‘netted migration’ status: WLS and
2SLS estimates

(1) (2) (3) (4)
Variables WLS 2SLS 2SLS 2SLS

Second stage
N. siblings 0.005*** 0.005 -0.012 -0.002

(0.001) (0.014) (0.020) (0.011)
female -0.024*** -0.024*** -0.025*** -0.025***

(0.003) (0.003) (0.003) (0.003)

IV: — infertility miscarriage overidentified
Anderson-Rubin F−statistic 0.146 0.377 0.257

[0.702] [0.539] [0.773]
Hansen J−statistic 0.515

[0.473]

First stage — N. siblings
infertility -0.455*** -0.452***

(0.102) (0.102)
miscarriage -0.412*** -0.408***

(0.105) (0.105)
Angrist-Pischke F−statistic instrument(s) 19.78 15.43 17.82

Individual’s controls YES YES YES YES
Mother’s controls YES YES YES YES
Father’s controls YES YES YES YES
Municipality indicators YES YES YES YES

Observations 18,707 18,707 18,707 18,707

Note. The dependent variable is ‘netted migration’ (see Section 3). Observations are weighted by the inverse
of the standard error of ‘netted migration’ because the dependent variable is estimated. Individual’s controls
include year of birth indicators, age, age squared; mother’s controls include year of birth indicators, age
and age squared, age at first pregnancy, years of schooling, indicators for mother’s chronic illness and being
single; father’s controls include decade of birth indicators, age and age squared, years of schooling. Standard
errors clustered at the household level in parentheses. P−values are reported in brackets. *,** and ***
denote statistical significance at 10, 5 and 1 percent level, respectively.
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A.4 Tied and parents’ migration

Table A4: Sibship size effect on child’s ‘netted migration’ status: WLS and 2SLS estimates
(1) (2) (3) (4)

Variables WLS 2SLS 2SLS 2SLS

N. siblings 0.012*** -0.000 -0.002 -0.001
(0.001) (0.013) (0.019) (0.011)

IV: — infertility miscarriage overidentified
Anderson-Rubin F-statistic 0.000680 0.0134 0.00707

[0.979] [0.908] [0.993]
Hansen J-statistic 0.006

[0.936]

First stage — N. siblings
infertility -0.566*** -0.560***

(0.089) (0.088)
miscarriage -0.489*** -0.482***

(0.092) (0.092)
Angrist-Pischke F−statistic instrument(s) 40.66 28.24 35.06

Individual’s controls YES YES YES YES
Mother’s controls YES YES YES YES
Father’s controls YES YES YES YES
Municipality indicators YES YES YES YES

Observations 30,977 30,977 30,977 30,977

Note. The dependent variable is ‘netted migration’ (see Section 3). Compared to the estimates in Tables
5 and 6 in the main text, we retain in the estimation sample also children that experienced tied migration
with their parents, or whose parents had previous migration experiences. Observations are weighted by the
inverse of the standard error of ‘netted migration’ because the dependent variable is estimated. Individual’s
controls include year of birth indicators, age, age squared; mother’s controls include year of birth indicators,
age and age squared, age at first pregnancy, years of schooling, indicators for mother’s chronic illness, being
single and a dummy for past migration experiences; father’s controls include decade of birth indicators, age
and age squared, years of schooling and a dummy for past migration experiences. Standard errors clustered
at the household level in parentheses. P−values are reported in brackets. *,** and *** denote statistical
significance at 10, 5 and 1 percent level, respectively.
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B Appendix: Poverty and further identification threats

In developing countries women’s infertility conditions may partly depend on material poverty,

which affects women’s health. Failing to control for economic conditions may represent

a threat to our IV estimates because poverty is also likely to affect children’s migration

status. In the baseline estimates of Section 4.2 we took into account this potential threat

by including some strong correlates of individual or household poverty, such as parents’

educational levels, age and municipality fixed effects. In this Section, we run supplementary

checks by estimating models including municipality by (ENADID) wave fixed effects and

municipality by parent’s education fixed effects (years of education of the most educated

parent, either the mother of the father, are interacted with municipality indicators). We

report both OLS and 2SLS estimates.

Table B1 shows that the OLS estimates are not sensitive to the inclusion of additional

proxies for poverty and family wealth, suggesting that the income and wealth channels are

unlikely to be the main sources of the OLS upward bias.

2SLS results are reported in columns (1) and (2) of Table B2, respectively. They also

serve as checks of potential concerns related to the miscarriage at first pregnancy instrument,

which may also be affected by women’s living standards. The results confirm the robustness

of our 2SLS estimates of family size effects to including alternative proxies of household

poverty.
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Table B1: Robustness of WLS estimates of the effect of sibship size on child’s ‘netted mi-
gration’ status to various proxies of poverty

Variables (1) (2)

N. siblings 0.006*** 0.006***
(0.001) (0.001)

Municipality×Wave indicators YES NO
Municipality× parents’ education indicators NO YES
Individual’s controls YES YES
Mother’s controls YES YES
Father’s controls YES YES
Municipality indicators YES YES

Observations 26,743 26,743

Note. The dependent variable is ‘netted migration’ (see Section 3). Observations are weighted by the inverse
of the standard error of ‘netted migration’ because the dependent variable is estimated. Individual’s controls
include year of birth indicators, age, age squared; mother’s controls include year of birth indicators, age
and age squared, age at first pregnancy, years of schooling, indicators for mother’s chronic illness and being
single; father’s controls include decade of birth indicators, age and age squared, years of schooling. Standard
errors clustered at the household level in parentheses. P−values are reported in brackets. *,** and ***
denote statistical significance at 10, 5 and 1 percent level, respectively.
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Table B2: Robustness of 2SLS estimates of the effect of sibship size on child’s ‘netted mi-
gration’ status to various proxies of poverty

Variables (1) (2)

Second stage
N. siblings -0.009 -0.009

(0.011) (0.011)

IV: overidentified overidentified
Anderson-Rubin F−statistic 0.666 0.603

[0.514] [0.547]

Hansen J−statistic 0.827 0.822
[0.363] [0.365]

First stage — N. siblings
infertility -0.552*** -0.546***

(0..092) (0.089)
miscarriage -0.470*** -0.439***

(0.096) (0.095)
Angrist-Pischke F−statistic instrument(s) 30.83 30.05

Municipality×Wave indicators YES NO
Municipality× parents’ education indicators NO YES
Individual’s controls YES YES
Mother’s controls YES YES
Father’s controls YES YES
Municipality indicators YES YES

Observations 26,743 26,743

Note. The dependent variable is ‘netted migration’ (see Section 3). Observations are weighted by the inverse
of the standard error of ‘netted migration’ because the dependent variable is estimated. Individual’s controls
include year of birth indicators, age, age squared; mother’s controls include year of birth indicators, age
and age squared, age at first pregnancy, years of schooling, indicators for mother’s chronic illness and being
single; father’s controls include decade of birth indicators, age and age squared, years of schooling. Standard
errors clustered at the household level in parentheses. P−values are reported in brackets. *,** and ***
denote statistical significance at 10, 5 and 1 percent level, respectively.
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C Appendix: Sibship size including deceased children

Table C1: Birth order effects on child’s ‘netted migration’ status

Variables (1) (2) (3) (4)

female -0.035*** -0.035*** -0.031*** -0.031***
(0.003) (0.003) (0.005) (0.007)

birth order -0.017*** -0.016***
(0.003) (0.003)

birth order×female -0.001
(0.001)

birth order 2 -0.003 0.001
(0.005) (0.006)

birth order 3 -0.013* -0.016*
(0.007) (0.008)

birth order 4 -0.031*** -0.030***
(0.010) (0.011)

birth order 5 -0.057*** -0.055***
(0.012) (0.013)

birth order 6 -0.076*** -0.070***
(0.015) (0.016)

birth order 7 -0.091*** -0.081***
(0.017) (0.018)

birth order 8 -0.120*** -0.116***
(0.020) (0.022)

birth order 9 -0.133*** -0.143***
(0.023) (0.025)

birth order 10+ -0.164*** -0.158***
(0.027) (0.029)

birth order 2, female -0.010
(0.010)

birth order 3, female 0.006
(0.010)

birth order 4, female -0.002
(0.011)

birth order 5, female -0.003
(0.011)

birth order6, female -0.013
(0.012)

birth order 7, female -0.023*
(0.014)

birth order 8, female -0.007
(0.016)

birth order 9, female 0.022
(0.019)

birth order 10+, female -0.012
(0.019)

age 0.022** 0.022** 0.022** 0.022**
(0.009) (0.009) (0.009) (0.009)

age squared 0.000 -0.000 0.000 -0.000
(0.000) (0.000) (0.000) (0.000)

Year of birth indicators YES YES YES YES
Household fixed effects YES YES YES YES

Observations 26,743 26,743 26,743 26,743
Number of households 10,139 10,139 10,139 10,139
R-squared 0.050 0.052 0.050 0.052

Note. The dependent variable is a dichotomous indicator of the child’s migration status. The model is estimated using OLS.
Sibship size is absorbed by household fixed effects. Standard errors clustered at the household level in parentheses. *,** and
*** denote statistical significance at 10, 5 and 1 percent level, respectively.
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Table C2: Sibship size effect on child’s ‘netted migration’ status: WLS estimates
Variables (1) (2))

N. siblings 0.010*** 0.013***
(0.001) (0.001)

N. siblings × female -0.007***
(0.001)

female -0.032*** -0.030***
(0.003) (0.003)

Individual’s controls YES YES
Mother’s controls YES YES
Father’s controls YES YES
Municipality indicators YES
Weighted YES YES

Observations 26,743 26,743
R-squared 0.204 0.206

Note. The dependent variable is ‘netted migration’ (see Section 3). The model is estimated using WLS (the
weights are the inverse of the standard errors of ‘netted migration’). Individual’s controls include year of
birth indicators, age, age squared; mother’s controls include year of birth indicators, age and age squared,
age at first pregnancy, years of schooling, indicators for mother’s chronic illness and being single; father’s
controls include decade of birth indicators, age and age squared, years of schooling. Standard errors clustered
at the household level in parentheses. *,** and *** denote statistical significance at 10, 5 and 1 percent
level, respectively.
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Table C3: Sibship size effect on child’s ‘netted migration’ status: 2SLS estimates
Variables (1) (2) (3)

Second stage
N. siblings 0.002 -0.015 -0.005

(0.014) (0.024) (0.013)
female -0.032*** -0.033*** -0.032***

(0.003) (0.003) (0.003)

IV: infertility miscarriage overidentified
Anderson-Rubin F−statistic 0.0229 0.433 0.232

[0.880] [0.510] [0.793]
Hansen J−statistic 0.419

[0.517]

First stage — N. siblings
infertility -0.475*** -0.472***

(0.095) (0.095)
miscarriage -0.411*** -0.407***

(0.10) (0.10)
Angrist-Pischke F−statistic instrument(s) 25.01 17.78 21.70

Individual’s controls YES YES YES
Mother’s controls YES YES YES
Father’s controls YES YES YES
Municipality indicators YES YES YES

Observations 26,743 26,743 26,743

Note. The dependent variable is ‘netted migration’ (see Section 3). Observations are weighted by the inverse
of the standard error of ‘netted migration’ because the dependent variable is estimated. Individual’s controls
include year of birth indicators, age, age squared; mother’s controls include year of birth indicators, age
and age squared, age at first pregnancy, years of schooling, indicators for mother’s chronic illness and being
single; father’s controls include decade of birth indicators, age and age squared, years of schooling. Standard
errors clustered at the household level in parentheses. P−values are reported in brackets. *,** and ***
denote statistical significance at 10, 5 and 1 percent level, respectively.
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Table C4: Child gender and sibship size effect on child’s ‘netted migration’ status: 2SLS
estimates

Variables (1) (2) (3)

Second stage
N. siblings 0.002 -0.065 -0.006

(0.016) (0.057) (0.015)
N. siblings × female -0.001 0.105 0.007

(0.013) (0.084) (0.013)
female -0.032*** -0.059*** -0.034***

(0.004) (0.022) (0.004)

IV: infertility miscarriage overidentified
Anderson-Rubin F−statistic 0.0115 1.577 0.797

[0.989] [0.207] [0.527]
Hansen J−statistic 2.925

[0.232]

First stage — N. siblings
infertility -0.557*** -0.555***

(0.107) (0.107)
infertility × female 0.168 0.190*

(0.115) (0.114)
miscarriage -0.390*** -0.387***

(0.113) (0.113)
miscarriage × female 0.046 -0.046

(0.106) (0.102)
Angrist-Pischke F−statistic instrument(s) 31.59 5.74 19.49

First stage — N. siblings × female
infertility 0.135*** 0.136***

(0.039) (0.038)
infertility × female -0.689*** -0.686***

(0.134) (0.134)
miscarriage -0.066 -0.068

(0.044) (0.044)
miscarriage × female -0.287** -0.280**

(0.131) (0.130)
Angrist-Pischke F−statistic instrument(s) 40.51 4.55 17.22

Individual’s controls YES YES YES
Mother’s controls YES YES YES
Father’s controls YES YES YES
Municipality indicators YES YES YES

Observations 26,743 26,743 26,743

Note. The dependent variable is ‘netted migration’ (see Section 3). Observations are weighted by the inverse
of the standard error of ‘netted migration’ because the dependent variable is estimated. Individual’s controls
include year of birth indicators, age, age squared; mother’s controls include year of birth indicators, age
and age squared, age at first pregnancy, years of schooling, indicators for mother’s chronic illness and being
single; father’s controls include decade of birth indicators, age and age squared, years of schooling. Standard
errors clustered at the household level in parentheses. P−values are reported in brackets. (a) The number
of siblings is demeaned before taking the interaction. *,** and *** denote statistical significance at 10, 5
and 1 percent level, respectively.
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D Appendix: Pyschological effects of miscarriage

As already mentioned in Section 3.2, miscarriage may be a traumatic event, creating a special

bond between a mother and her children or a higher need for care, which may reduce the

likelihood of offspring migration. Although we do not have measures of mother’s mental

health, in this section we seek to shed light on this issue.

In a recent paper van den Berg et al. (2017) show that a child’s death represents one the

largest losses that an individual can face and has adverse effects on parents’ labor income,

employment status, marital status and hospitalization. Based on that paper, we assume

that a child death should produce more negative psychological effects on mothers than a

miscarriage. We also assume that a miscarriage later in the pregnancy should produce

more emotional distress than an early miscarriage (i.e. the intensity of the child-mother

bond depends on the duration of the interrupted pregnancy). We test for ‘grief’ effects by

including in the 2SLS regressions an indicator variable for child death and, alternatively,

the duration of the interrupted pregnancy because of stillbirth as control variables.1 The

coefficients on both variables, which are reported in column (1), (2) and (4) to (7) of Table

D1, respectively, are not statistically significant. Finally, in column (3) of Table D1, we

leverage on the fact that we have two excluded instruments and run an overidentification

test, which is based on the validity of the infertility instrument. In particular, we include

the miscarriage indicator only in the second stage of a just-identified model. The coefficient

on miscarriage is not statistically significant in the second stage, and suggests that it does

not have a direct effect on child migration over and above the effect on family size, identified

by infertility shocks. All these checks suggest that the direct effect of miscarriage on child

migration is not a major issue in our analysis.

1 In line with the medical definition, stillbirth episodes are different from miscarriages: the former refer
to a loss between the sixth and the ninth month, while the latter to a loss during the first five months of
pregnancy.
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Table D1: Threats to identification: Effect of ‘grief’ on child’s ‘netted migration’ status
(1) (2) (3) (4) (5) (6) (7)

Instrument: Infertility Miscarriage Overidentified model

N. children 0.004 0.004 0.004 -0.018 -0.018 -0.005 -0.005
(0.014) (0.014) (0.014) (0.023) (0.022) (0.012) (0.012)

female -0.033*** -0.033*** -0.033*** -0.033*** -0.033*** -0.033*** -0.033***
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

child death (dummy) -0.001 -0.002 -0.002
(0.004) (0.004) (0.004)

months of stillbirth -0.000 -0.001 -0.000
(0.000) (0.001) (0.001)

miscarriage 0.010
(0.011)

Individual’s controls YES YES YES YES YES YES YES
Mother’s controls YES YES YES YES YES YES YES
Father’s controls YES YES YES YES YES YES YES
Municipality indicators YES YES YES YES YES YES YES

Observations 26,743 26,743 26,743 26,743 26,743 26,743 26,743

Note. The dependent variable is ‘netted migration’ (see Section 3). In this table we investigate the psy-
chological costs of miscarriage. In column (1) we add an indicator for a child death, in column (2) we add
the duration of stillbirth, and in column (3) we leverage the fact that we have two instruments and use a
just-identified model in which miscarriage is included in the second stage of 2SLS and infertility status is
used as the excluded instrument. *,** and *** denote statistical significance at 10, 5 and 1 percent level,
respectively.
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E Appendix: Household-level estimates

Results of the household level estimates are reported in Table E1. Column (1) shows that a

unit increase in the number of children is associated with an average increase in the number

of migrants of 0.02 (t = 12.3). Column (2) reports the 2SLS estimate using the infertility

instrument. The first stage shows a reduction of -0.753 (t = −12.1) in the total number of

children per woman who experienced an infertility shock, with an F−statistic of 145.4. The

first-stage coefficient is a bit higher in magnitude than the one obtained in the child-level

estimates (-0.5), probably because of the inclusion of one-child households in the estimation.

Indeed, women with only one child are those who may have suffered from more severe sub-

fertility conditions and for whom the instrument is likely to be stronger (see Table 3 in the

main text). In spite of the higher strength of the instrument, the second stage does not show

any evidence of a statistically significant effect of fertility on migration. Column (3) reports

the 2SLS results using the variation in the number of children generated by miscarriage.

Also in this case the first-stage coefficient is highly statistically significant and negative,

with an F−statistic of about 45. The negative impact of miscarriage on total fertility is

smaller than the one exerted by infertility, yet it is quite large and precisely estimated, i.e.

-0.476 (t = −6.7). Like for the previous instrument, also in this case no significant effect is

detected in the second stage. The same happens in the overidentified model in column (4).

In Table E2 we report the estimates of the same model as above while using an indicator

for the household having at least one migrant child as dependent variable and results do not

change.

These findings are consistent with those reported in Section 4.2, pointing to a positive

correlation between family size and migration, but excluding a causal effect of the former on

the latter. Also in this case, as with individual-level estimates, the larger magnitude of OLS

estimates relative to the IV ones points to an upward biased estimate because of endogeneity,

i.e. families more likely to send young migrants abroad tend to have more children.
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Table E1: Family size effect on the number of migrants: Household-level estimates
(1) (2) (3) (4)

Variables OLS 2SLS 2SLS 2SLS

Second stage
N. children 0.020*** -0.004 -0.031 -0.011

(0.002) (0.015) (0.031) (0.014)

IV: — infertility miscarriage overidentified
Anderson-Rubin F−statistic 0.0783 1.050 0.553

[0.780] [0.306] [0.575]
Hansen J−statistic 0.657

[0.418]

First stage — N. children
infertility -0.753*** -0.750***

(0.062) (0.062)
miscarriage -0.476*** -0.469***

(0.071) (0.071)
Angrist-Pischke F−statistic instrument(s) 145.4 45.05 96.20

Mother’s controls YES YES YES YES
Father’s controls YES YES YES YES
Municipality indicators YES YES YES YES

Observations 18,217 18,217 18,217 18,217

Note. The dependent variable is the total number of children in the household who ever migrated. Mother’s
controls include year of birth indicators, age and age squared, age at first pregnancy, years of schooling,
indicators for mother’s chronic illness and being single; father’s controls include decade of birth indicators,
age and age squared, years of schooling. P−values are reported in brackets. *,** and *** denote statistical
significance at 10, 5 and 1 percent level, respectively.
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Table E2: Family size effect on having at least a migrant child: Household-level estimates
(1) (2) (3) (4)

Variables OLS 2SLS 2SLS 2SLS

Second stage
N. children 0.012*** 0.001 -0.016 -0.003

(0.001) (0.010) (0.020) (0.009)

IV: — infertility miscarriage overidentified
Anderson-Rubin F−statistic 0.008 0.640 0.324

[0.928] [0.424] [0.723]
Hansen J−statistic 0.580

[0.446]

First stage — N. children
infertility - 0.753*** -0.750***

(0.062 ) (0.062)
miscarriage -0.476*** -0.469***

(0.071) (0.071)
Angrist-Pischke F−statistic instrument(s) 145.42 44.95 96.17

Mother’s controls YES YES YES YES
Father’s controls YES YES YES YES
Municipality indicators YES YES YES YES

Observations 18,217 18,217 18,217 18,217

Note. The dependent variable is a dummy for the household having at least one migrant child. The list
of control variables is the same as in Table E1. P−values are reported in brackets. *,** and *** denote
statistical significance at 10, 5 and 1 percent level, respectively.
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