```
S. Chen,,\(^{1,2,3, *}\) J. Lee,,\({ }^{1, \dagger}\) P. Doornenbal, \({ }^{2}\) A. Obertelli, \({ }^{4,2,5}\) C. Barbieri, \({ }^{6}\) Y. Chazono, \({ }^{7}\) P. Navrátil, \({ }^{8}\) K. Ogata, \({ }^{7}\)
```

 T. Otsuka,,\({ }^{2,9,10}\) F. Raimondi, \({ }^{11}\) V. Somà, \({ }^{4}\) Y. Utsuno, \({ }^{12,9}\) K. Yoshida, \({ }^{12,7}\) H. Baba, \({ }^{2}\) F. Browne, \({ }^{2}\) D. Calvet, \({ }^{4}\)
 F. Château, \({ }^{4}\) N. Chiga, \({ }^{2}\) A. Corsi, \({ }^{4}\) M. L. Cortés, \({ }^{2}\) A. Delbart, \({ }^{4}\) J.-M. Gheller, \({ }^{4}\) A. Giganon, \({ }^{4}\) A. Gillibert, \({ }^{4}\)
 C. Hilaire, \({ }^{4}\) T. Isobe, \({ }^{2}\) J. Kahlbow, \({ }^{5,2}\) T. Kobayashi, \({ }^{13}\) Y. Kubota, \({ }^{2,14}\) V. Lapoux, \({ }^{4}\) H.N. Liu, \({ }^{4,15,5}\)
 T. Motobayashi, \({ }^{2}\) I. Murray, \({ }^{16,2}\) H. Otsu, \({ }^{2}\) V. Panin, \({ }^{2}\) N. Paul, \({ }^{4}\) W. Rodriguez, \({ }^{17,2}\) H. Sakurai, \({ }^{2,18}\)
 M. Sasano, \({ }^{2}\) D. Steppenbeck, \({ }^{2}\) L. Stuhl, \({ }^{14}\) Y.L. Sun,,\({ }^{4,5}\) Y. Togano, \({ }^{19}\) T. Uesaka, \({ }^{2}\) K. Wimmer, \({ }^{18}\) K. Yoneda, \({ }^{2}\)
 N. Achouri, \({ }^{4}\) O. Aktas, \({ }^{15}\) T. Aumann, \({ }^{5,20}\) L. X. Chung, \({ }^{21}\) F. Flavigny, \({ }^{16}\) S. Franchoo, \({ }^{16}\) I. Gašparić, \({ }^{22,2}\)
 R.-B. Gerst, \({ }^{23}\) J. Gibelin, \({ }^{24}\) K. I. Hahn, \({ }^{25}\) D. Kim, \({ }^{25,2}\) T. Koiwai, \({ }^{18}\) Y. Kondo, \({ }^{26}\) P. Koseoglou, \({ }^{5,20}\) C. Lehr, \({ }^{5,2}\)
 B. D. Linh, \({ }^{21}\) T. Lokotko, \({ }^{1}\) M. MacCormick, \({ }^{16}\) K. Moschner, \({ }^{23}\) T. Nakamura, \({ }^{26}\) S. Y. Park, \({ }^{25,2}\) D. Rossi, \({ }^{5}\)
 E. Sahin, \({ }^{27}\) D. Sohler, \({ }^{28}\) P.-A. Söderström, \({ }^{5}\) S. Takeuchi, \({ }^{26}\) H. Törnqvist, \({ }^{5,20}\) V. Vaquero, \({ }^{29}\) V. Wagner, \({ }^{5,2}\)
 S. Wang, \({ }^{30}\) V. Werner, \({ }^{5}\) X. Xu, \({ }^{1}\) H. Yamada, \({ }^{26}\) D. Yan, \({ }^{30}\) Z. Yang, \({ }^{2}\) M. Yasuda, \({ }^{26}\) and L. Zanetti \({ }^{5,2}\)
 \({ }^{1}\) Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
 \({ }^{2}\) RIKEN Nishina Center, Wako, Saitama 351-0198, Japan
 ${ }^{3}$ School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
${ }^{4}$ IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
${ }^{5}$ Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
${ }^{6}$ Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
${ }^{7}$ Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047, Japan
${ }^{8}$ TRIUMF, 4004 Westbrook Mall, Vancouver, BC, V6T 2A3, Canada
${ }^{9}$ Department of Physics and Center for Nuclear Study, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
${ }^{10}$ Instituut voor Kern- en Stralingsfysica, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium
${ }^{11}$ ESNT, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
${ }^{12}$ Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195, Japan
${ }^{13}$ Department of Physics, Tohoku University, Sendai 980-8578, Japan
${ }^{14}$ Center for Nuclear Study, University of Tokyo, RIKEN campus, Wako, Saitama 351-0198, Japan
${ }^{15}$ Department of Physics, Royal Institute of Technology, SE-10691 Stockholm, Sweden
${ }^{16}$ Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France
${ }^{17}$ Universidad Nacional de Colombia, Sede Bogota, Facultad de Ciencias, Departamento de Fisica, Bogotá 111321, Colombia
${ }^{18}$ Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
${ }^{19}$ Department of Physics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 172-8501, Japan
${ }^{20}$ GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
${ }^{21}$ Institute for Nuclear Science and Technology, VINATOM, P.O. Box 5T-160, Nghia Do, Hanoi, Vietnam
${ }^{22}$ Ruđer Bošković Institute, Bijenička cesta 54,10000 Zagreb, Croatia
${ }^{23}$ Institut für Kernphysik, Universität zu Köln, 50923 Köln, Germany
${ }^{24}$ LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, F-14050 Caen, France
${ }^{25}$ Department of Science Education and Department of Physics, Ewha Womans University, Seoul 03760, Korea
${ }^{26}$ Department of Physics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro, Tokyo, 152-8551, Japan
${ }^{27}$ Department of Physics, University of Oslo, N-0316 Oslo, Norway
${ }^{8}$ Institute for Nuclear Research of the Hungarian Academy of Sciences (MTA Atomki), P.O. Box 51, Debrecen H-4001, Hungary
${ }^{29}$ Instituto de Estructura de la Materia, CSIC, 28006 Madrid, Spain
${ }^{30}$ Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
(Dated: June 6, 2019)
Exclusive cross sections and momentum distributions have been measured for quasifree oneneutron knockout reactions from a ${ }^{54} \mathrm{Ca}$ beam striking on a liquid hydrogen target at $\sim 200 \mathrm{MeV} / u$. Significantly larger cross section to the $p_{3 / 2}$ state compared to the $f_{5 / 2}$ state observed in the excitation of ${ }^{53} \mathrm{Ca}$ provides direct evidence to the nature of $N=34$ shell closure. This finding corroborates the arising of a new shell closure in neutron-rich calcium isotopes. Distorted-wave impulse approximation reaction formalism with shell model calculations using the effective GXPF1Bs interaction and $a b$ initio calculations concur our experimental findings. Obtained transverse and parallel momentum distributions demonstrate the sensitivity of quasifree one-neutron knockout in inverse kinematics on a thick liquid hydrogen target with the reaction vertex reconstructed to final state spin-parity assignments.
${ }^{45}$ Nuclear shell structure, as correctly described by ${ }^{47}$ appropriate spin-orbit force [1, 2], embodies the back${ }_{46}$ Mayer and Jensen 70 years ago with the inclusion of an 48 bone of our understanding of the many-body structure
of atomic nuclei. It is characterized by "magic numbers", 105 which correspond to large energy gaps between single- 106 particle orbitals of protons or neutrons. The magic num- 107 bers imply Z or N equal to $2,8,20,28,50,82,126,108$ \ldots.., where Z and N denote, respectively, proton and neu- 109 tron numbers [1, 2]. These "canonical" magic numbers 110 are well established for stable nuclei and nuclei located 111 in their vicinity in the nuclear chart. In the past decades, 112 the front line of nuclear structure physics moved gradu- 113 addition,
these studies, the known set of magic numbers from sta- ${ }_{116}$ ble nuclei may not extend their universality to exotic nu- ${ }_{117}$ clei: certain magic numbers do not manifest themselves 118 in some nuclei [3-7], while new ones seem to emerge in ${ }_{119}$ some others [8-12]. Thus, the possible variations of the 12 magic numbers across the nuclear chart are of current ${ }_{121}$ intense interest $[13,14]$.

Neutron-rich $p f$ shell nuclei provide us an excellent ${ }_{123}$ region in the nuclear chart to explore these variations. 124 In fact, a possible new magic number at $N=32$ has ${ }_{125}$ been investigated abundantly over the past decades: Ex- ${ }_{126}$ perimental indications were found for Ar in Ref. [15], 127 for Ca in Refs. [11, 16, 17], for Ti in Refs. [18-21], ${ }_{128}$ and for Cr in Refs. [22, 23], by measurements of first 129 2^{+}energies $\left[E\left(2_{1}^{+}\right)\right]$, reduced transition probabilities to ${ }_{130}$ these states $\left[B\left(E 2 ; 0_{\mathrm{gs}}^{+} \rightarrow 2_{1}^{+}\right)\right]$, and mass measure- ${ }_{131}$ ments. More interestingly, by adding only two more 132 neutrons, also a $N=34$ subshell gap was suggested by ${ }_{13}$ some theories [24, 25]. In the framework of tensor-force- ${ }_{134}$ driven shell evolution [14, 24, 26], the formation of the ${ }_{135}$ $N=34$ subshell gap was associated with the $\pi f_{7 / 2}-\nu f_{5 / 2}{ }_{136}$ (proton $f_{7 / 2}$ - neutron $f_{5 / 2}$) nucleon-nucleon attractive in- ${ }_{137}$ teraction [24]. When approaching $Z=20$ from "above", ${ }_{138}$ the strength of the attraction between $\pi f_{7 / 2}$ and $\nu f_{5 / 2}{ }^{139}$ becomes weaker due to the decreasing occupation of the 140 $\pi f_{7 / 2}$ orbital [27]. Consequently, the $\nu f_{5 / 2}$ orbital shifts ${ }_{141}$ up in energy and a sizable energy gap emerges between 142 $\nu p_{1 / 2}$ and $\nu f_{5 / 2}$ at $Z=20[12,27]$. However, such an ${ }_{143}$ $N=34$ subshell gap was not observed experimentally in ${ }_{144}$ $\mathrm{Ti}[20,28]$ and $\mathrm{Cr}[22,23]$ isotopes. First indications for ${ }_{145}$ a sizeable $N=34$ subshell gap in ${ }^{54} \mathrm{Ca}$ were presented by ${ }_{146}$ the measured large $E\left(2_{1}^{+}\right)$[12] and mass measurements 147 of ${ }^{55-57} \mathrm{Ca}$ isotopes [29]. This gap seems preserved in the ${ }_{148}$ argon isotopes [30].

Magicity is characterized by the closed-shell formation ${ }_{150}$ at the magic number. Although the measured $E\left(2_{1}^{+}\right){ }_{151}$ by probing the ground state wave function of ${ }^{54} \mathrm{Ca}$ from ${ }_{156}$ the quasifree ${ }^{54} \mathrm{Ca}(p, p n){ }^{53} \mathrm{Ca}$ neutron knock-out reaction ${ }_{157}$ cross sections. In a simple shell model picture, the ${ }^{53} \mathrm{Ca}{ }_{158}$ ground state has the unpaired neutron occupying the ${ }_{159}$ ally to nuclei with large N versus Z imbalance, known 114 were investigated, providing the first direct experimental as exotic nuclei or rare isotopes. As crucial outcome of 115 evidence for the spin-parity assignments of ${ }^{53} \mathrm{Ca}$. ${ }^{04} \nu p_{1 / 2}$ orbital, therefore assigned to spin-parity of $1 / 2^{-} .160$

Two excited states have been observed from previous experiments [12, 31], tentatively assigned to spin-parities of $3 / 2^{-}$and $5 / 2^{-}$, guided mainly by shell model calculations, thus lacking firm experimental verification on their ordering. Population to each final bound state in ${ }^{53} \mathrm{Ca}$ states can be associated with neutron removal from the specific orbital. In this experiment, partial cross sections feeding to individual ${ }^{53} \mathrm{Ca}$ final states were measured. In addition, momentum distributions of the ${ }^{53} \mathrm{Ca}$ residues

The experiment was performed at the Radioactive Isotope Beam Factory (RIBF), operated by the RIKEN Nishina Center and the Center for Nuclear Study, the , University of Tokyo. A ${ }^{70} \mathrm{Zn}$ primary beam was accelerated to $345 \mathrm{MeV} / u$ and impinged on a $10-\mathrm{mm}$-thick ${ }^{9} \mathrm{Be}$ production target placed at the entrance of the BigRIPS 122 fragment separator [32]. Fragmentation products were separated using the $B \rho-\Delta E-B \rho$ method [33]. Beam particles were identified event-by-event based on the measurements of Time-of-Flight (TOF), magnetic rigidity $(B \rho)$ and energy loss (ΔE) [34]. The primary beam intensity was $\sim 240 \mathrm{pnA}$ on average, and the rate of ${ }^{54} \mathrm{Ca}$ in BigRIPS was 7.3 particles/second. The ${ }^{54} \mathrm{Ca}$ beam bombarded the 151(1)-mm-thick liquid hydrogen target of the MINOS device [35] with a center-of-target energy of $216 \mathrm{MeV} / u$. Reaction residues were identified by the SAMURAI spectrometer following a similar method as for BigRIPS [36].

A $300-\mathrm{mm}$-long cylindrical time projection chamber (TPC) was mounted surrounding the target to measure the trajectory of the recoiled proton. The proton trajectory together with the beam track, determined by drift chambers, was used to reconstruct the reaction vertex in the target $[35,36]$. For the ${ }^{54} \mathrm{Ca}(p, p n){ }^{53} \mathrm{Ca}$ channel, the reconstructed vertex position was obtained with a spatial resolution of 5 mm (FWHM) along the beam axis and the efficiency was obtained to be $70(2) \%$, by comparing the γ-spectrum photopeak statistics with and without the coincidence of the vertex [37]. To tag on the final states of ${ }^{53} \mathrm{Ca}$ residues, de-excitation γ-rays were measured by the DALI2 ${ }^{+}$detector array $[38,39]$, which consisted of $226 \mathrm{NaI}(\mathrm{Tl})$ detectors. Detectors in the array were calibrated individually using ${ }^{60} \mathrm{Co},{ }^{137} \mathrm{Cs}$, and ${ }^{88} \mathrm{Y}$ sources. 9 From the simulation of the GEANT4 framework [40], a full-energy peak efficiency of 23% was obtained with addback for $2-\mathrm{MeV} \gamma$-rays emitted by particles moving at $\beta=0.6$. A (relative) 5% discrepancy between the simulation and source calibration was observed and included in the systematic uncertainty of the cross sections.
Considering the neutron separation energy $S_{n}=$ $3190(40) \mathrm{keV}$ of ${ }^{53} \mathrm{Ca}$ [11], final states may include unbound states, which are followed by neutron emission [41]. These beam-velocity neutrons were detected by two large-acceptance plastic scintillator arrays, NeuLAND demonstrator [42] and NEBULA [36, 43], placed

FIG. 1. (a) Doppler-corrected γ-ray spectrum in coincidence with the ${ }^{54} \mathrm{Ca}(p, p n)^{53} \mathrm{Ca}$ channel, fitted with simulated response functions (red) and exponential background (black). (b) Same Doppler-corrected γ-ray spectrum, but in coincidence with a detected neutron. (c) The γ-ray spectrum in coincidence with the $2220-\mathrm{keV}$ transition. The red-hatched area represents the gate used in $\gamma-\gamma$ analysis. (d) Relative energy spectrum of ${ }^{53} \mathrm{Ca}+n$. Dotted line represent the simulated neutron detection efficiency with the scale on right side.

181 decaying to the ground state. No further transition was 182 observed below S_{n}, thus no more bound states are ex183 pected to be populated in addition to the two excited 184 states and the ground state.
185 A significant ratio of the events for Fig. 1(a) were found 186 to have a neutron detected by the NeuLAND+NEBULA 187 array. The γ-ray spectrum from these events [Fig. 1(b)] 188 exhibited a very different γ-ray transition ratio from the 189 original spectrum. The two-body relative energy for ${ }_{190}{ }^{53} \mathrm{Ca}+n$, reconstructed from the momentum vectors of 191 the fragment and the neutron, is shown in Fig. 1(d). 192 These events originate from the inelastic excitation pro193 cess beyond the $S_{n}=3.84(7) \mathrm{MeV}$ of ${ }^{54} \mathrm{Ca}$ [11] followed 194 by neutron emission, ${ }^{54} \mathrm{Ca}\left(p, p^{\prime}\right){ }^{54} \mathrm{Ca}^{*} \rightarrow{ }^{53} \mathrm{Ca}+n$, mixed 195 in the neutron knock-out channel, and as such were sub196 tracted in cross section and momentum distribution. The 197 discussion about unbound states of ${ }^{54} \mathrm{Ca}$ [44] is beyond 198 the purpose of this Letter.
199 Determined inclusive and exclusive cross sections for 200 the ${ }^{54} \mathrm{Ca}(p, p n){ }^{53} \mathrm{Ca}$ reaction are summarized in Tab. I, 201 for which the component to the ground state was ex202 tracted by subtracting the two excited states from the 203 inclusive cross section. Furthermore, contributions from 204 the ${ }^{54} \mathrm{Ca}\left(p, p^{\prime}\right){ }^{54} \mathrm{Ca}^{*} \rightarrow{ }^{53} \mathrm{Ca}+n$ channel were subtracted 205 using the fitted peak intensities corrected with the $1 n$ 206 detection efficiency from simulation. This channel con207 tributes $7(3) \%, 1.1(3) \%$ and $44(11) \%$ for the $1 / 2^{-}, 3 / 2^{-}$ 208 and $5 / 2^{-}$states in the mixed data.

Evidently, the cross section of 19.1(12) mb for the 2220${ }_{210} \mathrm{keV}$ final state is about 20 times larger than the one for 211 the $1738-\mathrm{keV}$ final state. In a simple picture with the $f_{5 / 2}$ 212 orbital well above the $p_{3 / 2}$ and $p_{1 / 2}$ orbitals, the ground ${ }_{213}$ state of ${ }^{54} \mathrm{Ca}$ has completely filled neutron $p_{3 / 2}$ and $p_{1 / 2}$ 214 orbitals, and an empty $f_{5 / 2}$ orbital. This results in the 215 dominance of $3 / 2^{-}$and $1 / 2^{-}$states in ${ }^{53} \mathrm{Ca}$ populated 216 following the ${ }^{54} \mathrm{Ca}(p, p n)$ reaction. Obtained cross secat zero degree, about 11 m and 14 m downstream of 217 tions are consistent with this picture and the tentative 62 the target, respectively. The NeuLAND array con- 2 63 sisted of 400 modules ($5 \times 5 \times 250 \mathrm{~cm}^{3}$ each) in 8 lay- 20 54 ers, while the NEBULA array consisted of 120 modules $65\left(12 \times 12 \times 180 \mathrm{~cm}^{3}\right.$ each $)$ and arranged in a two-wall configuration. The total $1 n$ detection efficiency of the com7 bined array was obtained from simulation.

The Doppler-corrected γ-ray spectrum in coincidence ${ }^{224}$ with the ${ }^{54} \mathrm{Ca}(p, p n){ }^{53} \mathrm{Ca}$ channel is shown in Fig. 1(a). ${ }^{22}$ Add-back analysis was performed if at least two crys 226 (arget. For parallel momentum, a resolution of $40 \mathrm{MeV} / \mathrm{c}$ tals within a 15 cm radius of each other's center de- ${ }^{227}$ (sigma) was obtained from the unreacted ${ }^{54} \mathrm{Ca}$ beam. tected a γ-ray. The spectrum was fitted in the range 228 The uncertainty of the reaction vertex position was also of $1200-3000 \mathrm{keV}$ with simulated DALI2 ${ }^{+}$response func- ${ }^{229}$ considered and taken into account when convolving the tions added on an exponential background. Two peaks 230 resolution to theoretical predicted momentum distribu175 were fitted at $1738(17)$ and $2220(13) \mathrm{keV}$, respectively, ${ }_{231}$ tions. The momentum distributions for the two excited while no coincidence was observed between them from the ${ }_{232}$ states were extracted by fitting the γ-ray spectra in co-$\gamma-\gamma$ analysis [Fig. 1(c)]. These two peaks were consistent ${ }_{233}$ incidence with the selection of $40 \mathrm{MeV} / \mathrm{c}$-width sections with the previously reported transitions from the β-decay 234 of the inclusive momentum distribution. study [31] and the in-beam γ-ray study [12], where they 235 Fig. 2(a) illustrates the inclusive parallel momentum o were placed in parallel, from two excited states directly 236 distributions for the ($p, p n$) and $p p^{\prime} \rightarrow n$ channels. The

FIG. 2. (a) Inclusive parallel momentum distributions of the ${ }^{53} \mathrm{Ca}$ residues for ${ }^{54} \mathrm{Ca}(p, p n){ }^{53} \mathrm{Ca}$ channel (black) and ${ }^{54} \mathrm{Ca}\left(p, p^{\prime}\right){ }^{54} \mathrm{Ca}^{*} \rightarrow{ }^{53} \mathrm{Ca}+n$ channel (red, amplitude $\times 10$ for display). The dot-dashed line shows the intrinsic resolution of the setup. Exclusive momentum distributions for (b) g.s., (c) $2220-\mathrm{keV}$ and (d) $1738-\mathrm{keV}$ states, compared with calculated DWIA distributions assuming $1 n$ removal from p and f orbitals. The distribution for the g.s. was extracted by subtracting the ones of excited states from the inclusive distribution. The shapes of momentum distributions calculated using overlap functions from shell model (Ref.[45]) as presented here are similar to those using $a b$ initio self-consistent Green's function (SCGF) theory as described later.

FIG. 3. The same as Fig. 2 for transverse momentum distributions.
${ }_{243}$ cross sections, the distribution for the ground state was 244 extracted by subtracting the excited state distributions 245 from the inclusive one. The error bars in the plot are 246 dominated by statistical errors. The results of transverse 247 momentum distributions are illustrated in Fig. 3 with the 248 same panel arrangement as Fig. 2.
249 Experimental results were confronted with calculated 250 single-particle cross sections (σ_{sp}) and momentum dis251 tributions of neutron removal from $p_{1 / 2}, p_{3 / 2}, f_{5 / 2}$ or252 bitals populating each final state in ${ }^{53} \mathrm{Ca}$ using the dis253 torted wave impulse approximation (DWIA) model [46, 254 47]. In this DWIA approach, already applied in earlier 255 works [48-50], the single-particle wave function and the 256 nuclear density of ${ }^{54} \mathrm{Ca}$ were calculated using the single257 particle potential by Ref. [45], with the depth tuned to 258 reproduce the experimental energies. Optical potentials 259 for the distorted waves in initial and final states were 260 constructed by the microscopic folding model [51], em261 ploying the Melbourne g-matrix $N N$ interaction [52] and 262 the calculated nuclear density. Finally, the Franey-Love 263 effective interaction [53] was implemented for the $p n$ in${ }_{264}$ teraction. The ground state (Fig. 2 and 3 (b)) and the 265 2220-keV distribution (Fig. 2 and 3 (c)) were well repro266 duced by the DWIA calculated p curve, providing evi267 dence for the $l=1$ assignments of these states. However, 268 the low intensity and low peak-to-background ratio of 269 the $1738-\mathrm{keV}$ transition resulted in large error bars, not 270 permitting distinction between p or f curves for parallel 271 momentum, while for transverse momentum, the experi272 mental data fitted better with an f wave.
${ }_{273}$ The single-particle cross sections, σ_{sp}, calculated in the ${ }_{274}$ DWIA and averaged along the thick target are shown in ${ }_{275}$ Table I, allow to extract the spectroscopic factors, $C^{2} S$, 276 as ratios with the measured cross sections. A system277 atic uncertainty of 15% was considered for the calculated ${ }_{278} \sigma_{\mathrm{sp}}$ [47]. The DWIA $\sigma_{\text {sp }}$ are consistent with the results 279 from the transfer to the continuum model [54, 55]. This ${ }_{280}$ leads to spectroscopic factors of $2.2(2)(3), 3.1(2)(5)$, and ${ }_{281} 0.23(7)(3)$ for the first $1 / 2^{-}, 3 / 2^{-}$, and $5 / 2^{-}$states, re282 spectively. The first error indicates the statistical error ${ }_{283}$ from the data, while the second error comes from the un284 certainty of σ_{sp}. Large p strength and little f strength are 285 observed in low excitation states of ${ }^{53} \mathrm{Ca}$ from the one286 neutron removal from ${ }^{54} \mathrm{Ca}$, providing strong evidence to 287 the nature of $N=34$ shell closure.
${ }_{288}$ The present salient closed-shell feature can be studied 289 in more detail by confronting it with theoretical inclu290 sive and exclusive cross sections. They are obtained by 291 combining the σ_{sp} values discussed above with $C^{2} S$ val292 ues from the shell-model or by the $a b$ initio calculations 293 described below.
294 For shell-model studies of Ca isotopes, the GXPF1 295 family of effective interactions [25] has often been used. 296 For example, the measurement of $E\left(2_{1}^{+}\right)$in Ref. [12] were 297 compared to calculations with the GXPF1Br interac98 tion [56]. Here we introduce the GXPF1Bs interaction,

TABLE I. Inclusive and exclusive cross sections (in mbarn) for the ${ }^{54} \mathrm{Ca}(p, p n){ }^{53} \mathrm{Ca}$ reaction ($\sigma_{-1 n}$), compared with theoretical values $\left(\sigma_{-1 n}^{\mathrm{th}}\right)$ using the calculated single-particle cross sections (σ_{sp}) from the DWIA framework and spectroscopic factors $\left(C^{2} S\right)$ from SM. The $\sigma_{-1 n}^{\mathrm{th}}$ of $a b$ initio calculations are obtained with microscopic OFs (instead of Ref.[45]) as described in text. The assigned J^{π} and the corresponding neutron removal orbitals are also given.

	J^{π}	-1n	$\sigma_{-1 n}$	$\begin{gathered} \text { DWIA } \\ \sigma_{\mathrm{sp}} \end{gathered}$	SM			$\mathrm{NNLO}_{\text {sat }}$			$N N+3 N(\ln \mathrm{l})$		
					$\mathrm{E}_{\mathrm{x}}(\mathrm{keV})$	$C^{2} S$	$\sigma_{-1 n}^{\text {tr }}$	$\mathrm{E}_{\mathrm{x}}(\mathrm{keV})$	$C^{2} S$	$\sigma_{-1 n}^{\text {th }}$	$\mathrm{E}_{\mathrm{x}}(\mathrm{keV})$	$C^{2} S$	$\sigma_{-1 n}^{\mathrm{th}}$
g.s.	$1 / 2^{-}$	$p_{1 / 2}$	15.9(17)	7.27	0	1.82	13.2	0	1.56	11.3	0	1.58	11.6
2220(13)	$3 / 2^{-}$	$p_{3 / 2}$	19.1(12)	6.24	2061	3.55	22.2	2635	3.12	18.5	2611	3.17	17.0
1738(17)	$5 / 2^{-}$	$f_{5 / 2}$	1.0(3)	4.19	1934	0.19	0.8	1950	0.01	0.1	2590	0.02	0.1
Inclusive			36.0(12)				36.2			29.9			28.7

where the $\nu f_{5 / 2}^{2}$ pairing matrix element is shifted by - ${ }_{342}$ regulators and it has yielded promising results for iso-
0.4 MeV from the GXPF1Br value so that the $\nu f_{7 / 2}^{2}$ and ${ }^{343}$ $\nu f_{5 / 2}^{2}$ pairing matrix elements can be better factorized ${ }^{344}$ by the orbital occupation number, $(2 j+1)$. We there- ${ }^{345}$ fore use the GXPF1Bs interaction, although there are no ${ }^{346}$ notable differences from GXPF1Br results. The results ${ }^{347}$ are shown in Table I. The remarkable agreement between ${ }^{348}$ the calculated cross sections and the experimental values ${ }^{349}$ supports the tensor-force-driven $N=34$ magicity.
It is interesting to note that the $E\left(2_{1}^{+}\right)$of ${ }^{54} \mathrm{Ca}$ is ${ }^{35}$ 0.5 MeV lower than that of ${ }^{52} \mathrm{Ca}$, one may expect that ${ }^{352}$ the closed shell structure is more broken in ${ }^{54} \mathrm{Ca}$ than in ${ }^{353}$ ${ }^{52} \mathrm{Ca}$. The shell-model calculated spectroscopic factor for ${ }^{35}$ the $\nu p_{1 / 2}$ orbital in ${ }^{54} \mathrm{Ca}$ ground state is 91% of the max- ${ }^{35}$ imum value, being larger than the corresponding 89% for ${ }^{356}$ the $\nu p_{3 / 2}$ orbital in the ${ }^{52} \mathrm{Ca}$ ground state. This clearly ${ }^{357}$ suggests a better subshell closure of $N=34$ than $N=32$. ${ }^{358}$ We can compare the present 91% to the experimental one ${ }_{359}$ of ${ }^{48} \mathrm{Ca}$ reported as 92% [57]. Thus, the subshell closure ${ }_{360}$ at $N=34$ for ${ }^{54} \mathrm{Ca}$ can be identified comparable with the ${ }_{361}$ well-established one at $N=28$ for ${ }^{48} \mathrm{Ca}$. We stress that ${ }^{362}$ although the $E\left(2_{1}^{+}\right)$value provides a global landscape, it ${ }_{363}$ can be misleading due to a "local" refined behavior. In 364 the present case, this is explained by the repulsive contri- ${ }_{365}$ bution from the tensor force to the $\nu p_{1 / 2}^{2}$ pairing matrix ${ }_{366}$ element, which lowers the $E\left(2_{1}^{+}\right)$without disturbing the ${ }^{\mathbf{3 6 7}}$ closed shell formation. This reinforces the necessity of ${ }^{368}$ the reaction experiments like this work, and a similar ${ }^{369}$ experiment on ${ }^{52} \mathrm{Ca}$ is of interest.

Theoretical cross sections were also computed us- ${ }^{371}$ ing microscopic $C^{2} S$ and overlap functions (OFs) ob- ${ }^{372}$ tained from $a b$ initio self-consistent Green's function ${ }^{373}$ (SCGF) theory [58]. SCGF calculations were performed ${ }^{37}$ in a model space containing up to 14 harmonic oscil- ${ }^{375}$ lator shells and employed the third-order algebraic di- ${ }^{37}$ agrammatic construction scheme [59], which has been ${ }^{37}$ shown to provide precise results in light and medium- ${ }^{37}$ mass nuclei $[60,61]$. Two different $N N+3 N$ chiral in- ${ }^{379}$ teractions were employed: the $\mathrm{NNLO}_{\text {sat }}$ introduced in ${ }^{\mathbf{3 8 0}}$ Ref. [62] has provided accurate predictions of nuclear ${ }^{381}$ radii in several recent state-of-the-art $a b$ initio calcula- 382 tions $[61,63,64]$. The second Hamiltonian is the newly 383 developed $N N+3 N(\operatorname{lnl})$ with both local and nonlocal $3 N$ 384

In SCGF theory, one-nucleon removal energies and $C^{2} S$ as well as associated OFs are directly obtained from the spectral representation of the single-particle GF [58]. $C^{2} S$ and OFs are then inserted in the DWIA calculation together with the phenomenological optical potential and $p n$ interaction. Although this does not lead yet to fully $a b$ initio cross sections, it allows to test consistent $a b$ initio ingredients in the reaction model. A similar method was used in Ref.[66]. In Ref.[66] the resulting rms 3 radii of the OFs were checked on the experimental ones and readjusted to overcome the problems related to the known underestimation of radii with the standard chiral interactions. Since the present interactions yield a much improved description of these observables, no rescaling was necessary here and unmodified OFs were employed.

Altogether, $a b$ initio and shell-model results give a remarkably consistent interpretation of the measured cross sections and the resulting energies and $C^{2} S$ strongly reinforce the experimental spin assignments. Nevertheless, there are some discrepancies. The SCGF computes the eigenstates of ${ }^{53} \mathrm{Ca}$ either as neutron removal (addition) energies from ${ }^{54} \mathrm{Ca}$ (to ${ }^{52} \mathrm{Ca}$). Tab. I shows energies, $C^{2} S$ and $\sigma_{-1 n}^{\text {th }}$ for the ${ }^{54} \mathrm{Ca}-1 n$ case that is relevant to the present study. The $a b$ initio $C^{2} S$ are consistently lower than the GXPF1 ones due to coupling to collective excitations that are excluded from SM valence spaces [67]. 370 Thus, correlation effects for the dominant $1 / 2^{-}$and $3 / 2^{-}$ 371 hole states are more complete in SCGF. Conversely, the $5 / 2^{-}$is not a dominant hole state and requires config3 uration mixing contributions that are better accounted for by the SM. Both chiral interactions overestimate the $1 / 2^{-}-3 / 2^{-}$energy splitting at around 2.6 MeV . If, instead, we perform SCGF calculations for neutron addi7 tion to ${ }^{52} \mathrm{Ca}$, both the ground and $5 / 2^{-}$states of ${ }^{53} \mathrm{Ca}$ $\%$ are dominant quasiparticle orbits and their energy dif9 ference is evaluated accurately. In this case, $\mathrm{NNLO}_{\text {sat }}$ and $N N+3 N(\operatorname{lnl})$ predict 1.40 and 1.99 MeV respectively, 1 with the latter being now closer to experiment.

In summary, inclusive and exclusive cross sections from 3 the ${ }^{54} \mathrm{Ca}(p, p n){ }^{53} \mathrm{Ca}$ reaction at $216 \mathrm{MeV} / u$ were mea4 sured based on the in-beam γ technique at RIBF. For
the first time, both the exclusive parallel and transverse momentum distributions for quasifree knock-out reaction from a proton target were measured, providing experimental evidence for the orbital angular momentum assignments in ${ }^{53} \mathrm{Ca}$. The measured cross sections to the $p_{3 / 2}$ state of ${ }^{53} \mathrm{Ca}$ is about 20 times larger than the one to the $f_{5 / 2}$ state. Such little f wave component ${ }^{44}$ in the ground state of ${ }^{54} \mathrm{Ca}$ provides direct evidence of ${ }^{44}$ the $N=34$ subshell closure. The experimental data were reproduced by the DWIA reaction model together with structure input from the shell-model calculation using GXPF1Bs interaction and ab initio calculations with $\mathrm{NNLO}_{\text {sat }}$ and $N N+3 N(\operatorname{lnl})$ interactions. By comparing with the calculated σ_{sp}, the experimental spectroscopic factors were obtained to be $2.2(2)(3), 3.1(2)(5)$ and $0.23(7)(3)$ for the $1 / 2^{-}, 3 / 2^{-}$and $5 / 2^{-}$states, concluding good $N=34$ magicity.

We would like to express our gratitude to the RIKEN Nishina Center accelerator staff for providing the stable and high-intensity beam and to the BigRIPS team for operating the secondary beams. We are thankful to ${ }^{4}$ Dr. M. Gomez-Ramos for discussion on reaction models. S. C. acknowledges the support of the IPA program at RIKEN Nishina Center. J. L. acknowledges the support from Research Grants Council (RGC) of Hong Kong with grant of Early Career Scheme (ECS-27303915). K. O., K. Y. and Y. C. acknowledge the support from Grants-inAid of the Japan Society for the Promotion of Science under Grants No. JP16K05352. Y. L. S. acknowledges the support of Marie Skłodowska-Curie Individual Fellowship (H2020- MSCA-IF-2015-705023). V. V. acknowledges support from the Spanish Ministerio de Economía y Competitividad under Contract No. FPA2017-84756-C4-2-P. L.X.C. and B.D.L. would like to thank MOST for its support through the Physics Development Program Grant No. ĐTĐLCN.25/18. D. R. acknowledges the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under grant SFB1245. D. S. was supported by projects No. GINOP-2.3.3-15-2016-00034 and No. NKFIH-NN114454. I. G. has been supported by HIC for FAIR and Croatian Science Foundation under projects no. 1257 and 7194. K. I. H., D. K. and S. Y. P. acknowledge the support from the NRF grant funded by the Korea government (No. 2016K1A3A7A09005580 and 2018R1A5A1025563). This work was also supported by the United Kingdom Science and Technology Facilities Council (STFC) under Grants No. ST/P005314/1 and No. ST/L005816/1, and by NKFIH (128072). The development of MINOS were supported by the European ${ }^{49}$ Research Council through the ERC Grant No. MINOS258567. Green's function calculations were performed using HPC resources from the DiRAC Data Intensive service at Leicester, UK (funded by the UK BEIS via STFC capital grants ST/K000373/1 and ST/R002363/1 and STFC DiRAC Operations grant ST/R001014/1) and 50 from GENCI-TGCC, France (Project A0050507392). and Particle Physics 43, 024009 (2016).
[28] S. N. Liddick, P. F. Mantica, R. V. F. Janssens, et al., Phys. Rev. Lett. 92, 072502 (2004).
[29] S. Michimasa, M. Kobayashi, Y. Kiyokawa, S. Ota, et al., Phys. Rev. Lett. 121, 022506 (2018).
[30] H. N. Liu, A. Obertelli, P. Doornenbal, C. A. Bertulani, G. Hagen, J. D. Holt, G. R. Jansen, T. D. Morris,
A. Schwenk, R. Stroberg, et al., Phys. Rev. Lett. 122, 545 072502 (2019).
[31] F. Perrot, F. Maréchal, C. Jollet, P. Dessagne, et al., 547 Phys. Rev. C 74, 014313 (2006).
[32] T. Kubo et al., Prog. Theor. Exp. Phys. 2012 (2012), 10.1093/ptep/pts064.

33] T. Kubo, Nucl. Instrum. Methods Phys. Res., Sect. B 55 204, 97 (2003).
[34] N. Fukuda, T. Kubo, T. Ohnishi, N. Inabe, H. Takeda, 55 D. Kameda, and H. Suzuki, Nucl. Instrum. Methods 554 Phys. Res., Sect. B 317, Part B, 323 (2013).
[35] A. Obertelli, A. Delbart, S. Anvar, L. Audirac, G. Au- 55 thelet, H. Baba, B. Bruyneel, D. Calvet, F. Château, 55 A. Corsi, et al., Eur. Phys. J. A 50, 8 (2014).
[36] T. Kobayashi et al., Nucl. Instrum. Methods Phys. Res., ${ }^{55}$ Sect. A 317, Part B, 294 (2013), \{XVIth\} International 560 Conference on ElectroMagnetic Isotope Separators and 561 Techniques Related to their Applications, December 2-7, 562 2012 at Matsue, Japan.
[37] C. Santamaria, A. Obertelli, S. Ota, M. Sasano, 564 E. Takada, et al., Nuclear Instruments and Methods in 565 Physics Research Section A: Accelerators, Spectrometers, 56 Detectors and Associated Equipment 905, 138 (2018).
[38] S. Takeuchi, T. Motobayashi, Y. Togano, M. Matsushita, N. Aoi, K. Demichi, H. Hasegawa, and H. Murakami, Nucl. Instrum. Methods Phys. Res., Sect. A 763, 596 (2014).
[39] I. Murray et al., RIKEN Accel. Prog. Rep. 51, 158 (2018).
[40] S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[41] J. Lee et al., to be published.
[42] T. Aumann, Technical Report for the Design, Construction and Commissioning of NeuLAND: The HighResolution Neutron Time-of-Flight Spectrometer for R3B, Tech. Rep. (FAIR, 2011).
[43] T. Nakamura and Y. Kondo, Nucl. Instrum. Methods Phys. Res., Sect. B 376, 156 (2016), proceedings of ${ }_{58}$ the \{XVIIth\} International Conference on Electromagnetic Isotope Separators and Related Topics (EMIS2015), Grand Rapids, MI, U.S.A., 11-15 May 2015.
[44] F. Browne et al., to be published.
[45] A. Bohr and B. Mottelson, I, 1 (1999).
[46] K. Ogata, K. Yoshida, and K. Minomo, Phys. Rev. C
583

92, 034616 (2015).
[47] T. Wakasa, K. Ogata, and T. Noro, Prog. Part. Nucl. Phys. 96, 32 (2017).
[48] L. Olivier et al., Phys. Rev. Lett. 119, 192501 (2017).
[49] Z. Elekes et al., Phys. Rev. C 99, 014312 (2019).
50 [50] R. Taniuchi, C. Santamaria, P. Doornenbal, A. Obertelli, K. Yoneda, et al., Nature 569, 53 (2019).

2 [51] M. Toyokawa, K. Minomo, and M. Yahiro, Phys. Rev. C 88, 054602 (2013).
[52] K. Amos, P. Dortmans, H. von Geramb, S. Karataglidis, and J. Raynal, Adv. Nucl. Phys. 25, 275 (2000).
[53] M. A. Franey and W. G. Love, Phys. Rev. C 31, 488 (1985).
[54] M. Gomez-Ramos, private communication.
[55] A. M. Moro, Phys. Rev. C 92, 044605 (2015).
[56] Y. Utsuno, T. Otsuka, Y. Tsunoda, N. Shimizu, M. Honma, T. Togashi, and T. Mizusaki, "Recent advances in shell evolution with shell-model calculations," in Proceedings of the Conference on Advances in Radioactive Isotope Science (ARIS2014), https://journals.jps.jp/doi/pdf/10.7566/JPSCP.6.010007.
[57] J. Lee, M. B. Tsang, and W. G. Lynch, Phys. Rev. C 75, 064320 (2007).
[58] C. Barbieri and A. Carbone, Lect. Notes Phys. 936, 571 (2017).
[59] F. Raimondi and C. Barbieri, Phys. Rev. C 97, 054308 (2018).

2 [60] A. Cipollone, C. Barbieri, and P. Navrátil, Phys. Rev. C 92, 014306 (2015).
4 [61] T. Duguet, V. Somà, S. Lecluse, C. Barbieri, and
575 P. Navrátil, Phys. Rev. C 95, 034319 (2017).
[62] A. Ekström, G. R. Jansen, K. A. Wendt, G. Hagen, T. Papenbrock, B. D. Carlsson, C. Forssén, M. HjorthJensen, P. Navrátil, and W. Nazarewicz, Phys. Rev. C 91, 051301 (2015).
[63] R. Garcia Ruiz et al., Nature Physics (2016), 10.1038/nphys3645.
[64] V. Lapoux, V. Somà, C. Barbieri, H. Hergert, J. D. Holt, and S. R. Stroberg, Phys. Rev. Lett. 117, 052501 (2016).
584 [65] V. Somà, F. Raimondi, et al., in preparation.
585 [66] F. Flavigny, A. Gillibert, L. Nalpas, A. Obertelli, N. Kee-
586 ley, et al., Phys. Rev. Lett. 110, 122503 (2013).
87 [67] C. Barbieri, Phys. Rev. Lett. 103, 202502 (2009).

