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We present results for charge form factors, the point-proton, charge, and single-nucleon momentum distributions
of 4He and 16O obtained within the self-consistent Green’s function approach. The removal of the center-of-mass
contribution for both nuclei has been performed by using a METROPOLIS Monte Carlo algorithm in which the
center-of-mass coordinate can be exactly subtracted from the optimal reference state wave function generated
during the self-consistent Green’s function calculations. The spectral functions of the same two nuclei have been
used to compute inclusive electron-nucleus cross sections. The formalism adopted is based on the factorization of
the spectral function and the nuclear transition matrix elements. This allows us to provide an accurate description
of nuclear dynamics and to account for relativistic effects in the interaction vertex. When final-state interactions
for the struck particle are accounted for, we find nice agreement between the data and the theory for the inclusive
electron-16O cross section. The results lay the foundations for future applications of the self-consistent Green’s
function method, in both closed and open shell nuclei, to neutrino data analysis.

DOI: 10.1103/PhysRevC.98.025501

I. INTRODUCTION

The current and next generations of neutrino oscillation
experiments require nuclear physics calculations of the struc-
ture and electroweak properties of atomic nuclei supplemented
by quantified theoretical uncertainties [1–3]. The Deep Un-
derground Neutrino Experiment (DUNE) will exploit liquid
argon time-projection chambers (TPCs) to test charge parity
(CP) violation in the lepton sector and to shed light on the
neutrino mass hierarchy. Hence, nuclear theories able to tackle
genuine open-shell nuclei, such as argon, will be critical to the
reconstruction of the initial neutrino energy.

The self-consistent Green’s function (SCGF) approach
is an ab initio method in which the optical potential and
spectral functions are calculated covering the full spectra of
both nucleon attachment and removal (i.e., both close and
far forms of the Fermi surface) [4–9]. The self-consistency
feature means that the input information about the ground
state and excitations of the systems no longer depends on
a user-defined reference state but instead it is taken directly
from the computed correlated propagator. The SCGF method
has recently been reformulated within Gorkov’s theory that
allows it to address open-shell nuclei [10–12]. Within this
approach, the description of pairing correlations characterizing
open-shell systems is achieved by breaking particle number
symmetry. The method was extended to include three-body
interactions in Ref. [13,14]. Modern two- and three-nucleon
chiral forces can be fully exploited within this formalism.
Because of these features, SCGF theory is a prime tool for
providing the nuclear structure input necessary to calculate
electroweak properties of nuclei. However, its performance in
predicting lepton-nucleus reactions with chiral nuclear forces
is still to be assessed.

In this work, we use the saturating next-to-next-to-leading-
order (NNLO) interaction denoted as NNLOsat [15] and

calculate the SCGF spectral functions of 4He and 16O. We ob-
tain their point density, charge density, and single-momentum
distribution. All calculations are performed expanding on an
harmonic oscillator basis and the dependence of the results on
the oscillator parameters is investigated. For light nuclei, such
as 4He, spurious contributions of the center of mass in the
calculated wave functions can be sizable in the model spaces
exploited by SCGF and other post-Hartree-Fock methods.
While it is possible to show that the center of mass effectively
decouples from the relative motion for sufficiently large spaces
[16], subtracting its effect from the calculated wave function
and spectral functions is a long-standing nontrivial issue.
Here, we address this problem by performing a Monte Carlo
integration in which the center-of-mass component is exactly
subtracted from the wave function.

In the high momentum transfer region of neutrino-nucleus
scattering, the formalism based on spectral function and fac-
torization of the nuclear transition matrix elements allows us to
combine a fully relativistic description of the single-nucleon
interaction vertex with an accurate treatment of nuclear dy-
namics [17,18]. In order to apply any theoretical model in the
neutrino data analysis, it is fundamental to validate it against
the large body of electron scattering data.

This work has to be considered as a first step in this
direction. In fact, we present an extensive comparison with the
experimental data of the electromagnetic double differential
cross sections of 4He and 16O scattering, which was obtained
by exploiting the corresponding SCGF spectral functions.
The predictions for 16O are important for the data analysis
of Super-Kamiokande, in which a water Cherenkov detector
to study neutrinos produced from different sources is used.
A detailed analysis of theoretical uncertainties would also
require studies of the dependence of the nuclear Hamiltonian
at different resolution scales. This will be a subject of future
work.
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In Sec. II, we briefly review the SCGF formalism and the
links of propagators with the one-body density distribution and
other quantities of experimental interest. Section III is devoted
to the derivation of the electron-nucleus cross section within
the impulse approximation (IA) in which the factorization of
the nuclear transition matrix elements is assumed. Final-state
interactions (FSI) involving the struck particle are treated as
corrections. They are included using the convolution approach
of Refs. [19,20]. In Sec. IV, we present results for the point
density, charge density, and single-momentum distribution of
4He and 16O. In addition, the inclusive electromagnetic cross
sections of these two nuclei, obtained using the associated
SCGF spectral functions, are compared with the experimental
data and the role played by FSI is discussed. Conclusions are
drawn in Sec. V.

II. THE SELF-CONSISTENT GREEN’S
FUNCTION APPROACH

The one-body Green’s function is written as a sum of two
different contributions describing the propagation of a particle
and hole state [21]:

gαβ(ω) =
〈
ψA

0

∣∣aα

1
ω −

(
H − EA

0

)
+ iη

a
†
β

∣∣ψA
0

〉

+
〈
ψA

0

∣∣a†
β

1
ω +
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0

)
− iη
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∣∣ψA
0

〉
, (1)

where ψA
0 is the ground-state wave function of A nucleons,

and a†
α and aα are the creation and annihilation operators

in the quantum state α, respectively. The so-called Lehmann
representation results from inserting completeness relations in
Eq. (1). This is
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where |ψA+1
n ⟩ (|ψA− 1

k ⟩) are the eigenstates and EA+1
n (EA− 1

k )
are the eigenvalues of the (A ± 1)-body system. Introducing
the transition amplitudes

(
X n
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〉
,
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and the corresponding quasiparticle energies

ϵ+
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n − EA
0 ,

ϵ−
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0 − EA− 1
k (4)

leads to the more compact expression

gαβ(ω) =
∑

n

(
X n

α

)∗ X n
β

ω − ϵ+
n + iη

+
∑

k

Yk
α

(
Yk

β

)∗

ω − ϵ−
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. (5)

The one-body propagator given in Eqs. (1) and (2) is com-
pletely determined by solving the Dyson equation

gαβ(ω) = g0
αβ(ω) +

∑

γ δ

g0
αγ (ω))⋆

γδ(ω)gδβ(ω) , (6)

where g0
αβ(ω) is the unperturbed single-particle propagator

and )⋆
γδ(ω) is the irreducible self-energy that encodes nuclear

medium effects in the particle propagator [21]. The latter is
given by the sum of two different terms,

)⋆
αβ(ω) = )∞

αβ + )̃αβ(ω) , (7)

where the first one describes the average mean field and
the second one contains dynamic correlations. In practical
calculations, the self-energy is expanded as a function of the
propagator itself, implying that an iterative procedure is re-
quired to solve the Dyson equation self-consistently. The self-
energy can be calculated systematically within the algebraic
diagrammatic construction (ADC) method. The third-order
truncation of this scheme [ADC(3)] yields a propagator that
includes all possible Feynman contributions up to third order
but it further resums infinite series of relevant diagrams in
a nonperturbative fashion [22,23]. Two- and three-nucleon
force contributions are included. A first organization of the
contributions to the self-energy comes by considering the
particle irreducible (PI) and skeleton diagrams. The number
of Feynman diagrams entering the calculation of the Green’s
function rapidly increases when three- or many-body forces are
accounted for. In order to circumvent this problem and reduce
the number of Feynman diagrams to be considered, a useful
strategy is to include only interaction-irreducible diagrams
[13]. For our calculations, we use the following medium-
dependent or effective one- and two-body interactions:

Ũαβ = Uαβ +
∑

δγ

Vαγ ,βδρδγ + 1
4

∑

µνγ δ

Wαµν,βγ δργµρδν,

Ṽαβ,γ δ = Vαβ,γ δ +
∑

µν

Wαβµ,γ δνρνµ , (8)

where U,V , and W label the matrix elements of the one-,
two-, and three-body interactions, respectively. The one-body
density matrix appearing in Eq. (8) reads

ρδγ =
〈
ψA

0

∣∣a†
γ aδ

∣∣ψA
0

〉
. (9)

The use of this averaging procedure allows us to retain only
interaction-irreducible diagrams in the effective interactions
Ũ and Ṽ , while residual contributions that include W can be
safely neglected [24–27]. The expressions of the static and
dynamic self-energy up to third order, including all possible
two- and three-nucleon terms that enter the expansion of
the self-energy, as well as interaction-irreducible (i.e., not
averaged) three-nucleon diagrams have been recently derived
in Ref. [28].

Figure 1 displays the three simplest diagrams that enter
the present calculation of the self-energy. These are taken as
“seeds” for an all order resummation that eventually generates
)⋆

αβ(ω). The first contribution is at second order while the last
two are of third order in the expansion of Eq. (7). Note that
for all the considered diagrams, the set of intermediate state
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FIG. 1. One-particle irreducible skeleton and interaction irre-
ducible diagrams with 2p1h intermediate configurations. The wiggly
lines represent the two-body effective interaction of Eq. (8). The
corresponding diagrams for the 2h1p intermediate configurations are
obtained by flipping the orientation of the lines.

configurations corresponds to two-particle–one-hole (2p1h)
and two-hole–one-particle (2h1p) arrangements and that we
use the two-nucleon effective interaction of Eq. (8). Within the
ADC(3) approach, an infinite-order summation of diagrams of
Fig. 1 that includes particle-particle and hole-hole ladders as
well as particle-hole rings is performed. The dynamical part
of the self-energy of Eq. (7) can be rewritten in the Lehmann
representation as

)̃αβ(ω) =
∑

ij ′

D†
αi

[
1

ω − (K + C)

]

ij

D†
jβ , (10)

where K are the unperturbed 2p1h and 2h1p energies, D
coupling matrices, and C interaction matrices for the forward
and backward intermediate states.

The calculations presented in this work have been per-
formed expanding one-, two-, and three-body operators on a
spherical harmonic oscillator basis whose dimension and the
oscillation frequency are denoted by Nmax = max{2n + ℓ}
and h̄., respectively.

The point-proton density distribution can be readily ob-
tained from Eq. (9) and reads

ρp(r) =
∑

αβ

/∗
β(r)/α(r)ραβ , (11)

where /α(r) = ⟨r|α⟩ denotes the harmonic oscillator singe-
particle wave functions and the sum includes only proton
single-particle states. Analogous expressions can be written
for point-neutron and matter density distributions.

The computational cost required to account for the fragmen-
tation of the single-particle propagator into Eq. (10) rapidly
increases with the size of the nucleus and of the model space.
For this reason, an optimized reference state (OpRS) approach
is used to approximate the single-particle propagators entering
in the diagrams of Fig. 1 [8]. The OpRS is taken to be an
independent particle model propagator as

g
OpRS
αβ =

∑

n̸∈F

(
φn

α

)∗
φn

β

ω − ϵ
OpRS
n + iη

+
∑

k∈F

φk
α

(
φk

β

)∗

ω − ϵ
OpRS
k − iη

, (12)

where F represents the set of occupied states and ϵOpRS and
φ are the single-particle energies and wave functions, respec-
tively. The OpRS propagator is chosen to best approximate
the correlated one while keeping a reduced number of poles.
This is achieved by introducing the following moments of the

spectral distribution with respect to energy poles:

M0
αβ =

∑

n

(
X n

α

)∗X n
β +

∑

k

Yk
α

(
Yk

β

)∗
,
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∑

n

(
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)∗X n
β
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n )

+
∑

k

Yk
α
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β

)∗

(EF − ϵ−
k )

, (13)

where EF = (ϵ+
0 + ϵ−

0 )/2 = (EA+1
0 − EA− 1

0 )/2 and the transi-
tion amplitudes are given in Eqs. (3). The quantities in Eq. (13)
are important since they constrain the density distributions,
one-body observables and the Koltun energy sum rule of the
propagator [29]. Hence, we obtain ϵOpRS and φ by requiring
that the OpRS lowest momenta of the spectral distribution
reproduce those of the full calculation, i.e., M

0,OpRS
αβ = M0

αβ

and M
1,OpRS
αβ = M1

αβ [8].
The elastic scattering of a nucleus hit by a probe and

recoiling with a momentum q is described by the elastic form
factor FL(q). Neglecting the small spin-orbit contribution, the
latter is given by

FL(q) = 1
Z

〈
ψA

0

∣∣

⎡

⎣
∑

i ϵi√
1 + Q2

el/(4m2)

⎤

⎦∣∣ψA
0

〉
, (14)

where in the laboratory frame Q2
el = |q|2 − w2

el, ωel =√
|q|2 + m2

A − mA is the energy transfer corresponding to the
elastic scattering, mA is the target nucleus mass, and

ϵi = G
p
E

(
Q2

el

) (1 + τzi
)

2
+ Gn

E

(
Q2

el

) (1 − τzi
)

2
(15)

with G
p
E(Q2

el) and Gn
E(Q2

el) being the proton and neutron
electric form factors, respectively. The elastic form factor
can be rewritten in terms of the Fourier transforms of the
point-proton and nucleon densities as

FL(q) = 1
Z

G
p
E

(
Q2

el

)
ρ̃p(q) + Gn

E

(
Q2

el

)
ρ̃n(q)

√
1 + Q2

el/(4m2)
, (16)

where

ρ̃p,n(q) =
∫

d3r1 . . . d3rA eiq·r1 ψ∗
0 (r1, . . . ,rA)

× 1 ± τz1

2
ψ0(r1, . . . ,rA)

=
∫

d3reiq·rρp,n(r) . (17)

Note that the factor
√

1 + Q2
el/(4m2) in the denominator of

Eq. (16) accounts for relativistic corrections to the charge
operator. Assuming that ρ̃p(q) = ρ̃n(q), the charge distribution
can be written as

ρch(r ′) =
∫

d3q

(2π )3
e− iq·r′

FL(q)

=
∫

d3q

(2π )3
e− iq·r′ 1

Z

[
G

p
E

(
Q2
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(
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√
1 + Q2
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.

(18)
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The probability of finding a nucleon in the nucleus with
momentum k is proportional to its momentum distribution. The
latter can be written in terms of the one-body density matrix
of Eq. (9) as

n(k) =
∑

αβ

/̃∗
β(k)/̃α(k)ραβ , (19)

where /̃α(k) is the Fourier transform of the harmonic oscillator
wave function

/̃α(k) =
∫

d3r eik r/α(r) . (20)

The momentum distribution is normalized as∫
d3k n(k)/(2π )3 = N , with N being the number of either

protons Z or neutrons (A − Z).
The subtraction of the center-of-mass contribution from the

wave function is a long-standing issue affecting a number of
nuclear many-body approaches relying on a single-nucleon
basis expansions. While for medium and heavy nuclei this cor-
rection can be safely neglected, the center-of-mass contribution
strongly affects the results of light nuclei, such as 4He. In order
to address this problem, we developed a METROPOLIS Monte
Carlo (MMC) code, analogous to the one used in variational
Monte Carlo studies [30], that allows us to single out the center-
of-mass contribution to the wave function in the calculation
of the charge density and the momentum distribution. The
wave function we used for the MMC is the Slater determinant
obtained from the OpRS calculation, |ψV ⟩ = |ψOpRS

0 ⟩. At
variance with the fully correlated propagator of Eq. (5), the use
of the unperturbed gOpRS (i.e., a Slater determinant) allows for a
unique definition of the wave function. The spatial integrals of
Eqs. (17), (19), and (20) have been performed using METROPO-
LIS Monte Carlo techniques [31]. A sequence of points in
the 3A-dimensional space denoted by R = {r1, . . . ,rA} are
generated by sampling from the probability distribution

P (R) =
∣∣ψOpRS

0 (R)
∣∣2

. (21)

At each step of the calculation, the center-of-mass contribution
to the wave function is subtracted, computing the wave function
and the expectation value in the intrinsic coordinates given by

r̃i = ri − Rc.m., Rc.m. = 1
A

∑

i

ri . (22)

Hence, the identification of the intrinsic contribution is easily
achieved within quantum Monte Carlo (QMC) algorithms
[32–35], since we always have access to the set of 3A
coordinates of the constituent nucleons.

III. THE IMPULSE APPROXIMATION AND
CONVOLUTION APPROACH

In the one-photon-exchange approximation, the double
differential electron-nucleus cross section takes the form

d2σ

dEe′d.e′
= α2

q4

Ee′

Ee

LµνW
µν , (23)

where ke = (Ee,ke) and ke′ = (Ee′ ,ke′ ) are the laboratory four-
momenta of the incoming and outgoing electrons, respectively;

α ≃1/137 is the fine structure constant, d.e′ is the differential
solid angle in the direction of ke′ , and q = ke − ke′ = (ω,q) is
the four-momentum transfer. The leptonic tensor is given by

Lµν = 2
(
k

µ
e′k

ν
e + kµ

e kν
e′ − gµνke′ke

)
. (24)

The hadronic tensor is written in terms of matrix elements of
the nuclear current operator between the target ground state
and the hadronic final states as

Wµν =
∑

f

〈
ψA

0

∣∣Jµ†(q)
∣∣ψA

f

〉〈
ψA

f

∣∣J ν(q)
∣∣ψA

0

〉

× δ(4)(P0 + q − Pf ) , (25)

where |ψA
0 ⟩ and |ψA

f ⟩ denote the initial and final hadronic states
with four-momenta P0 = (E0,p0) and Pf = (Ef ,pf ), while
J (q) is the electromagnetic nuclear current operator.

At relatively large momentum transfer, |q| ! 500 MeV,
the impulse approximation (IA) can be safely applied. Within
this approximation, the interaction between the struck nucleon
and the spectator (A − 1) particles is neglected [18,36]. The
nuclear current operator reduces to a sum of one-body terms,
J (q) =

∑
i ji(q), and the hadronic final state factorizes as

|f ⟩ → |p⟩ ⊗
∣∣ψA− 1

f

〉
. (26)

In the above equation, |p⟩ denotes the final-state nucleon
with momentum p, while |ψA− 1

f ⟩ describes the (A − 1)-body
spectator system. Its energy and recoiling momentum are fixed
by energy and momentum conservation, yielding

EA− 1
f = ω + EA

0 − e(p) , PA− 1
f = q − p . (27)

Using the factorization ansatz and inserting a single-nucleon
completeness relation, the matrix element of the current oper-
ator can be written as
〈
ψA

0

∣∣Jµ
∣∣ψA

f

〉
→

∑

k

〈
ψA

0

∣∣[∣∣k⟩ ⊗
∣∣ψA− 1

f

〉]
⟨k|

∑

i

j
µ
i |p⟩ . (28)

Substituting the last equation in Eq. (25), the contribution to
the hadron tensor is given by

Wµν(q,ω) =
∑

p,k

∑

f,i

⟨k|jµ
i
†|p⟩⟨p|j ν

i |k⟩

×
〈
ψA

0

∣∣[∣∣ψA− 1
f

〉
⊗ |k⟩

][ 〈
ψA− 1

f

∣∣ ⊗ ⟨k|
]∣∣ψA

0

〉

× δ
(
ω − e(p) − EA− 1

f + EA
0

)
. (29)

Momentum conservation in the single-nucleon vertex implies
p = k + q. The one-body current operator can be written as

j
µ
i =

[
F1iγ

µ + i
F2i

2m
σµνqν

]
(30)

where

F1,2i =
(
FS

1,2 + FV
1,2τzi

)

2
, (31)

and FS(V ) = Fp ± Fn. The latter are defined in terms of the
electric and magnetic form factors via

FS
1 = GS

E + τGS
M

1 + τ
,

F S
2 = GS

M − GS
E

1 + τ
, (32)
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where τ = − q2/(4m2). Finally, using the identity

δ
(
ω − e(p) − EA− 1

f + EA
0

)

=
∫

dE δ(ω + E − e(p)) δ
(
E + EA− 1

f − EA
0

)
, (33)

we can rewrite the hadron tensor as

Wµν(q,ω) =
∫

d3k

(2π )3
dEPh(k,E)

m2

e(k)e(k + q)

×
∑

i

⟨k|jµ
i
†|k + q⟩⟨k + q|j ν

i |k⟩

× δ(ω + E − e(k + q)) , (34)

where the factors m/e(k) and m/e(k + q) have to be included
to account for the implicit covariant normalization of the four-
spinors of the initial and final nucleons in the matrix elements
of the relativistic current.

The hole spectral function

Ph(k,E) =
∑

f

∣∣〈ψA
0

∣∣[|k⟩ ⊗
∣∣ψA− 1

f

〉]∣∣2

× δ
(
E + EA− 1

f − EA
0

)
(35)

gives the probability distribution of removing a nucleon with
momentum k from the target nucleus, leaving the residual
(A − 1) system with an excitation energy E. Note that in
Eq. (34) we neglected Coulomb interactions and the other
(small) isospin-breaking terms and made the assumption,
largely justified in the case of closed-shell nuclei, that the
proton and neutron spectral functions are identical.

Rewriting the nuclear matrix element as

[ 〈
ψA− 1

f

∣∣ ⊗ ⟨k|
]∣∣ψA

0

〉
=

∑

α

Yk
α/̃α(k)

=
∑

α

/̃α(k)
〈
ψA− 1

f

∣∣aα

∣∣ψA
0

〉
, (36)

we recover the more familiar expression of the spectral function
written as the imaginary part of the Green’s function describing
the propagation of a hole state

Ph(k,E) = 1
π

∑

αβ

/̃∗
β(k)/̃α(k)

× Im
〈
ψA

0

∣∣a†
β

1
E + (H − EA

0 ) − iϵ
aα

∣∣ψA
0

〉
. (37)

In the kinematical region in which the interactions between
the struck particle and the spectator system cannot be ne-
glected, the IA results have to be modified to include the effect
of FSI. Following Refs. [19,20], the multiple scatterings that
the struck particle undergoes during its propagation through the
nuclear medium are taken into account through a convolution
scheme. The IA responses are folded with a function fk+q,

normalized as
∫ +∞

−∞
dωfk+q(ω) = 1 . (38)

The double differential cross section is then given by
(

d2σ

dEe′d.e′

)

FSI

=
∫

d3k

(2π )3
dE

∫
dω′ fk+q(ω − ω′)

× m

e(k)
m

e(k + q)
Ph(k,E)

α2

q4

Ee′

Ee

× Lµν

∑

i

⟨k|
(
j

µ
i

)†|k + q⟩⟨k + q|j ν
i |k⟩

× δ(ω′ + E − ẽ(k + q))θ (|k + q| − pF ).

(39)

In the last equation, we modified the energy spectrum of the
struck nucleon

ẽ(k + q) = e(k + q) + U (tkin(k + q)) (40)

by considering the real part of the optical potential U derived
from the Dirac phenomenological fit of Ref. [37]. This allows
to describe the propagation of the knocked-out particle in the
mean-field generated by the spectator system.

IV. RESULTS

Our calculations have been performed using the NNLOsat
chiral interaction [15], which was specifically designed to
accurately describe both binding energies and nuclear radii of
midmass nuclei [38,39]. In Fig. 2 we analyze the convergence
of the SCGF-ADC(3) point-proton densities of 4He with
respect to the oscillator frequency (h̄.) and the size of the
model space (Nmax). The different lines almost superimpose,
indicating that for h̄. ≈20 MeV and Nmax ! 11 the cal-
culation converges and no longer depends on the oscillator
parameters. The density calculated from the OpRS is also
displayed. The nice agreement with the SCGF-ADC(3) curves
follows from the requirement that the overlap functions in the

FIG. 2. Point proton densities in 4He, as predicted by NNLOsat.
The dashed (blue) line corresponds to the OpRS derived for Nmax =
11 and h̄. = 20 MeV. The other lines have been obtained using the
SCGF full propagator for Nmax = 11, 13 and h̄. = 20, 22 MeV.
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FIG. 3. Charge densities of 4He. The (green) dots have been
obtained using the “sum-of-Gaussians” parametrization of the charge
densities given in Ref. [40]. The dashed (red) line refers to the QMC
calculation of Ref. [41] that used the AV18+UIX two- and three-body
interactions. The dot-dashed (blue) line corresponds to the same
OpRS propagator shown in Fig. 2, while in the short-dashed (black)
line the center-of-mass contamination has been subtracted from the
OpRS wave function by means a MMC calculation.

OpRS propagator are chosen to approximate at best the true
(correlated) one-body density.

The charge densities in 4He can be obtained from the
point-proton densities through Eqs. (17) and (18). In Fig. 3, we
compare the experimental charge density determined through
the “sum of Gaussians” parametrization given in Ref. [40] with
those obtained from the QMC results of Ref. [41] and from the
OpRS calculated in the present work. For the latter, we display
both the result already shown in Fig. 2 and the distribution
obtained after subtracting the center-of-mass effect with the
MMC algorithm outlined in Sec. II. When the center-of-
mass contamination is subtracted, we obtain the short-dashed
(black) line. The comparison with the total OpRS results,
corresponding to the dot-dashed (blue) line, clearly shows that
for 4He the center-of-mass contribution is sizable and cannot be
neglected. The use of the intrinsic wave function yields a strong
enhancement of the charge density, which turns out to be very
close to the QMC result. Note that the discrepancy between
the experiment and the intrinsic OpRS and QMC calculations
is motivated by the absence of the two-body meson exchange
current contributions. These are known to have little effect on
larger nuclei such as 16O but their inclusion is fundamental in
order to correctly reproduce the 4He elastic form factor, from
which the charge densities are extracted [30,41–43].

In Fig. 4, we compare the results for the charge elastic form
factor for 4He obtained within three many-body approaches in
which different interactions have been used. It is visible that up
to q = 3 fm− 1 the removal of the center-of-mass contamination
enhances the strength and improves the agreement between the
OpRS and the QMC and the calculations of Ref. [44]. For larger
values of the momentum, we found some discrepancies in both
the OpRS calculations.

For medium-mass nuclei, the center-of-mass corrections
turn out to be less significant. This is clearly visible in Fig. 5
where we compare the full charge SCGF density calculated
at the ADC(3) level with the intrinsic OpRS calculation. The

FIG. 4. Charge elastic form factor for 4He. The solid (light green
and pink) lines correspond to the calculation of Ref. [44] where
chiral two- and three-body interactions at N2LO have been used for
R0 = 1.0 fm and R0 = 1.2 fm coordinate-space cutoffs, respectively.
The uncertainty bands include the statistical MC uncertainties added
in quadrature to the uncertainty from the truncation of the chiral
expansion. The dashed (red) line is obtained within QMC Ref. [44]
while the dot-dashed (blue) and short-dashed (black) line refers to the
OpRS calculation with and without the center-of-mass contamination.
The shaded area indicates the statistical MC uncertainty. Experi-
mental data are from an unpublished compilation by Sick, based on
Refs. [45–48].

construction of the 16O wave function is more complicated
than in the 4He case where only the s-shell orbital has to be
accounted for in the OpRS approximation. For this reason,
the subtraction of the center-of-mass contribution required the
use of a more sophisticated MC code. The charge density
distribution obtained using the total and the intrinsic wave
functions slightly differs and there is an overall nice agreement
also with the QMC calculations. Both the SCGF-ADC(3) and
the OpRS intrinsic results correctly reproduce the experimental
points, confirming the goodness of the NNLOsat potential,
which was fitted to reproduce the experimental radius of 16O.

FIG. 5. Charge densities in 16O. The (green) dots and the dashed
(red) line are the same as Fig. 3. The short-dashed (green) line
corresponds to the full SCGF density calculated at the ADC(3)
level, while the solid (black) and dot-dashed (blue) line refers to the
OpRS calculation with and without the center-of-mass contamination,
respectively.
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FIG. 6. Charge elastic form factor for 16O. The solid (light green)
and (violet) lines correspond to the calculation of Ref. [43] for
R0 = 1.0 fm and R0 = 1.2 fm coordinate-space cutoffs, respectively.
The uncertainty bands include the statistical MC uncertainties added
in quadrature to the uncertainty from the truncation of the chiral
expansion. The dashed (red) line is obtained within QMC Ref. [43]
while the dot-dashed (black) refers to the SCGF results calculated
at the ADC(3) level. The shaded area indicates the statistical MC
uncertainty. Experimental data are from Ref. [40].

Figure 6 displays the charge elastic form factor for 16O. In
this case, we find an excellent agreement between the SCGF,
the QMC calculations, and the experimental data. The results
of Ref. [43] for two different values of the coordinate cutoffs
are also shown.

In Fig. 7, we benchmark the intrinsic and uncorrected OpRS
single-nucleon momentum distribution of 4He with the QMC
calculation of Ref. [41]. The OpRS result, corresponding to the
dashed (blue) line, correctly follows that of the dressed ADC(3)
propagator, although the agreement is not as close as in Fig. 2.
Note that also in this case the subtraction of the center-of-mass
component has a sizable effect, which is crucial for recovering
the agreement with the intrinsic QMC results.

The 16O single-nucleon momentum distributions obtained
within the SCGF-ADC(3) and QMC approach are compared

FIG. 7. Momentum distributions of 4He. The dashed (red) line
corresponds to the QMC calculation [41], the dotted (green) curve
has been obtained using the SCGF-ADC(3) propagator, while the
short-dashed (blue) and solid (black) lines correspond to the total and
intrinsic OpRS results, respectively.

FIG. 8. Computed momentum distributions of 16O. The dashed
(red) and solid (black) lines are obtained within QMC [41] and SCGF-
ADC(3) approaches, respectively. In the lower panel, a logarithmic
scale has been used to demonstrate the weak tail at large momenta that
arises from the soft chiral interaction adopted in the SCGF-ADC(3)
calculation.

in Fig. 8. The differences displayed in the tails of the single-
nucleon momentum distributions are clearly visible in the
lower panel of Fig. 8, where the logarithmic scale has been
used. The dashed (red) line, corresponding to the QMC
calculation, is found to be above the SCGF-ADC(3) results
for high momenta. This has to be ascribed to the different
potentials used. In fact, the NNLOsat is much softer than the
AV18+UIX potential adopted in the QMC study. The use
of a hard potential implies the presence of stronger high-
momentum components in the nuclear wave function. While
the QMC momentum distribution exhibits a long tail extending
to p > 1 GeV, the softer potential adopted in our calculations
strongly reduce the SCGF-ADC(3) momentum distribution in
the high-momentum region. In the upper panel, we observe
an enhancement of the SCGF-ADC(3) results with respect to
the QMC calculation. This can be understood by recalling
that the QMC and SCGF-ADC(3) momentum distribution
are normalized to the number of nucleons. In order for the
normalization condition to be satisfied, the missing strength in
the tails of the NNLOsat curve has to be compensated by an
enhancement in the low-momentum region.

Figure 9 shows the electron-4He inclusive double-
differential cross sections at different values of Ee and θe.
The curves are obtained from the full SCGF-ADC(3) spectral
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FIG. 9. Double-differential electron-4He cross sections for different values of incident electron energy and scattering angle. The dotted
(red) curve have been obtained using the SCGF-ADC(3) propagator while the solid (green) and dashed (black) line corresponds to the total and
the intrinsic OpRS results, respectively. The experimental data are taken from Ref. [49].

function, from its OpRS approximation and from the intrinsic
OpRS. The SCGF-ADC(3) cross section represented by the
dashed (red) line is quenched with respect to the solid (green)
line that refers to the uncorrected OpRS. This has to be
attributed to the different behavior of the curves displayed in
Fig. 7. While the OpRS wave functions are built to reproduce
the lowest energy momenta of the ADC(3) propagator—which
optimizes the quasiparticle energies and strength near the
Fermi surface—this leaves small discrepancies in the single-
nucleon momentum distribution. The comparison between
the solid (green) and dashed (black) curve clearly shows
that the subtraction of the center-of-mass component from
the wave function leads to a reduction of the width and an
enhancement of the quasielastic peak. Since this strongly

affects the cross section in all the kinematical setups that we
considered, we applied FSI corrections only to the intrinsic
OpRS calculation. In order to do it, we follow the approach
outlined in Sec. III, with the difference that the optical potential
has been disregarded in the energy-conserving δ function since
to the best of our knowledge neither the 3H-p nor the 3He-n
optical potentials are present in the literature. The results are
shown in Fig. 10. The convolution of the OpRS cross section
with the folding function of Eq. (38) leads to a redistribution of
the strength, which quenches the peak and enhances the tails.
For Ee = 300 MeV, θ = 60◦, and Ee = 500 MeV, θ = 34◦ the
OpRS intrinsic calculation overestimates the data. Moreover,
in all the kinematical configurations under consideration, the
position of the quasielastic peak is not correctly reproduced.
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FIG. 10. Same double-differential cross sections as in Fig. 9 but only for the intrinsic OpRS calculation. The solid (black) line corresponds
to neglecting FSI, while the dashed (green) one has been obtained including FSI corrections.

This is likely to be ascribed to the approximate procedure
we adopted to account for FSI effects; i.e., we neglected the
real part of the optical potential. Its inclusion would shift
the cross section toward lower values of ω, possibly improving
the agreement with the experimental data.

In Fig. 11, we compare the experimental data of the inclusive
double-differential electron-16O cross sections as computed
from the fully correlated SCGF-ADC(3) spectral function. In
the dashed (green) curve, FSI effects have been implemented in
full, yielding a very nice agreement with the data. In particular,
the inclusion of the real part of the optical potential in the
final-state nucleon energy shifts the cross sections toward lower
values of ω and the quasielastic-peak position is correctly
reproduced.

V. CONCLUSIONS

We used the ab initio SCGF approach to compute the single-
particle propagators of closed shell 4He and 16O nuclei. The
calculations were based on the the NNLOsat chiral interaction
since this is capable of describing simultaneously binding
energies and nuclear radii of medium-mass nuclei. We have
gauged the residual center-of-mass contribution to the 4He
wave function by developing a MMC algorithm which exploits
the OpRS single-particle propagator. The resulting intrinsic
charge density in 4He has been computed and compared with
both the QMC calculation of Ref. [41] and the experimental
data. The subtraction of the center-of-mass contribution turns
out to be crucial in order to obtain correct predictions for
this light nucleus. The same pattern has also been observed
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FIG. 11. Double-differential electron-16O cross sections for different values of incident electron energy and scattering angle. The solid (red)
line corresponds to the SCGF-ADC(3) results and the dashed (green) one has been obtained by including FSI corrections. The experimental
data are taken from Ref. [49].

in the single-nucleon momentum distribution; while the total
OpRS sizably underestimates the QMC calculation, a very nice
agreement is found between the QMC and the results from the
intrinsic OpRS.

In the analysis of the charge density in 16O, the full
SCGF-ADC(3) calculation has been compared with the ex-
perimental curve. Since the radius of this nucleus has been
used to fit the NNLOsat potential, the nearly perfect agreement
with the empirical charge density is not surprising. However,
the very good comparison with experimental cross sections
corroborates the choice of the interaction for future studies
of lepton-nucleus scattering. The origin of the discrepancies
between the single-nucleon momentum distributions obtained
from SCGF-ADC(3) and QMC approaches has to be attributed
to the softness of the NNLOsat interaction. Although the two
approaches provide very similar results in the region of low
and moderate momentum, the use of a hard potential, such
as AV18+UIX, implies a stronger nuclear interaction between
large momenta. This manifests itself in the appearance of very-
high-momentum tails in the momentum distribution which are
not as pronounced for the NNLOsat chiral force.

We employed the IA approach to perform the calculation of
inclusive electromagnetic cross sections, which exploits SCGF
spectral functions. The electron-4He double-differential cross
section corresponding to the intrinsic OpRS wave function
sizably differs from the OpRS in which the contamination
of the center of mass is still present. This indicates that the
spurious effect of the center of mass cannot be neglected in

light nuclei. For this reason, we restricted the discussion of FSI
effects to the sole OpRS intrinsic calculations. We observed
that the convolution with the folding function of Refs. [19,20]
yields a redistribution of the strength of the cross section.
However, disregarding the real part of the optical potential in
the energy-conserving δ function prevents a good agreement
with the data for the different kinematical setup analyzed.

Fully satisfactory results have been obtained for the
electron-16O double differential cross section, where the IA
calculation has been supplemented by FSI. Our findings
indicate that the SCGF approach provides accurate predictions
for medium-mass nuclei and their interaction with an electron
probe. The extension to the electroweak sector will be the
subject of a future work. Moreover, exploiting the Gorkov
formalism, we will be able to provide valuable results for
open-shell nuclei [50], which will be crucial in the data analysis
of future neutrino experiments, such as DUNE.
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