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Abstract 
 

Glioblastomas (GBMs) is a malignant type of central nervous system tumours and its presentation 

is almost 80% of all malignant primary brain neoplasia. This kind of tumour is highly invasive 

infiltrating the white matter area and is confined to the central nervous with a very poor patient 

outcome survival around 10 months. Of the existing treatment approaches, Convection Enhanced 

drug Delivery (CED) offers several advantages for the patient but still suffers from significant 

shortcomings. 

Enhanced Delivery Ecosystem for Neurosurgery in 2020 (EDEN2020) is a European project 

supported with a new catheter development as the key project point in an integrated technology 

platform for minimally invasive neurosurgery. Due to the particular anatomy and size, sheep (Ovis 

aries) have been selected as experimental large animal model and a new Head Frame system 

MRI/CT compatible has been made and validated ad hoc for the project. In order to understand 

experimentally the best target point for the catheter introduction a sheep brain DTI atlas has been 

created. Corticospinal tract (CST), corpus callosum (CC), fornix (FX), visual pathway (VP) and 

occipitofrontal fascicle (OF), have been identified bilaterally for all the animals. Three of these white 

matter tracts, the corpus callosum, the fornix and the corona radiata, have been selected to 

understand the drugs diffusion properties and create a computational model of diffusivity inside the 

white matter substance. The analysis have been conducted via Focused Ion Beam using scanning 

Electron Microscopy combined with focused ion beam milling and a 2D analysis and 3D 

reconstruction made. The results showed homogeneous myelination via detection of ~40% content 

of lipids in all the different fibre tracts and the fibrous organisation of the tissue described as 

composite material presenting elliptical tubular fibres with an average cross-sectional area of circa 

0.52μm2 and an estimated mean diameter of 1.15μm. 

Finally, as the project is currently ongoing, we provided an overview on the future experimental 

steps focalised on the brain tissue damage after the rigid catheter introduction 
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Project overview 
 

Brain diseases cost the European Economy approximately 35% of the overall disease burden despite 

the high number of all brain diseases, brain tumours are low in terms of prevalence but highly costly 

per patient. It is estimate that the cost per patient in brain tumours is 33900 euros [16-18]. The 

world age-standardised incidence rate of malignant brain tumour for Italy has been estimated at 6.2 

per 100,000 in men and 4.2 in women [19].  

Psychotic/affective disorders and addiction are the leading source of expenditures (€18.7 billion), 

followed by neurological (€12.4 billion) and neurosurgical disorders (€ 1.0 billion). Direct medical 

costs are the leading cost item for psychiatric and neurosurgical disorders, direct non-medical costs 

for dementia and indirect costs for neurological disorders. However, important cost categories are 

missing for several disorders, for example direct non-medical costs could not be included for brain 

tumours and the costs of stroke, brain tumour and trauma are even grossly underestimated as being 

based on incidence[20].  

Glioblastomas (GBMs) is a malignant type of central nervous system tumours and its presentation 

is almost 80% of all malignant primary brain neoplasia[21]. 

This kind of tumour is highly invasive infiltrating the white matter area and they are confined to the 

central nervous, showing no metastases. 

Due to this high infiltration tissue rate there is no standard of care in the major of cases and long-

term survival statistics remain poor due to recurrence and the unavoidable side effects of repeat 

systemic therapies. In literature is reported as after first-line treatment, virtually all glioblastoma 

patients experience disease progression after a median of survival of 7 to 10 months[22].  

 Their treatment generally involves a combination of ablative therapy (e.g. radiotherapy), systemic 

therapy (e.g. chemotherapy), surgical resection, and localized drug delivery. 

Of the existing treatment approaches[23], Convection Enhanced drug Delivery (CED) offers several 

advantages for the patient, however the CED procedure still suffers from significant shortcomings. 

 

Enhanced Delivery Ecosystem for Neurosurgery in 2020 (EDEN2020) is a European project 

supported by the European Union’s EU Research and Innovation programme Horizon 2020 under 

grant agreement n° 688279.  
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The main aim of EDEN2020 is to provide a step change in the treatment of brain disease by delivering 

an integrated technology platform for minimally invasive neurosurgery focusing on the integration 

of different technologies: 

-  pre-operative MRI and diffusion-MRI imaging; 

- intra-operative ultrasounds; 

-  robotic assisted catheter steering;  

- brain diffusion modelling;  

- robotics assisted neurosurgical robotic product (Neuromate®). 

 

EDEN2020 is built around two parallel research threads, the first focused on a clinical investigation 

of diffusion, encompassing experiments and computational modelling, and the other on 

technological development of the catheter and catheter controller, intelligent planner, real-time 

intra-operative visualisation and tracking, and in vivo diagnostics via flexible access. 

Clinical research activities workflow has been validated in a staged approach throughout the project 

three sequential animal trials: ex vivo experiments to fine tune system performance and procedural 

work flow; in vivo ovine trials to ascertain feasibility of the system under realistic operating 

conditions; in vivo study to evaluate and verify system performance in a clinical setting. 

The present PhD thesis has been part of the clinical research area focused on sheep as animal model. 

Due to the high level of the project regarding neurosurgery in large animal model, some technical 

issues about the surgical tools customized for our purposes were presented. For this reason the first 

step of my PhD has been focused on “Development and in-vivo Assessment of a Novel MRI-

Compatible Stereotactic System for the Ovine Animal Model”.  

Once the head frame system has been validated the animal model has been studied under 

anatomical MRI and DTI in order to create a sheep brain atlas, summarized in the manuscript: “In 

vivo diffusion tensor magnetic resonance tractography of the sheep brain: an atlas of the ovine 

white matter fiber bundles”. 

Further aim in EDEN 2020 is to understand the drugs diffusion properties and create a 

computational model of diffusivity. To achieve this, the brain tissue has been modelled on the base 

of white matter microstructure. The third year of my PhD has been focused on the study of white 

matter samples via FIB-SEM microscope and 3D reconstruction of axons bundles for different sheep 

white matter tracts presented in “Cytoarchitecture of commissural, association and projection 

fibres: a comparative study”.  
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In summary, the following thesis has been realized in a way to follow all the procedural steps carried 

out during the conduction of my PhD. The thesis is divided in two main chapters, the former after a 

brief overview about EDEN2020 project, is focalized on the animal model, why has been selected 

and his anatomical skull, brain and vascular features. 

The latter is about the technical work resulting from project workflow. This area in subdivided in 

sub-chapters for each work presented as scientific journal papers. 

The thesis ends focusing on further work related to EDEN2020 project which is ongoing during the 

PhD thesis submission. Here is presented the rational method to study and analyse the brain tissue 

damage during the catheter surgical insertion procedure. A minor additional work related to the 

PhD period is also presented. An ovine brain slicer has been created and proposed as innovative 

tool for ovine animal model brain sampling. 
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Chapter 1 
 

EDEN2020  
 

Enhanced Delivery Ecosystem for Neurosurgery in 2020 (EDEN2020) is a European project 

supported by the European Union’s EU Research and Innovation programme Horizon 2020 under 

grant agreement n° 688279.  

The main aim of EDEN2020 is to provide a step change in the treatment of brain disease by delivering 

an integrated technology platform for minimally invasive neurosurgery focusing on the integration 

of different technologies: 

-  pre-operative MRI and diffusion-MRI imaging; 

- intra-operative ultrasounds; 

-  robotic assisted catheter steering;  

- brain diffusion modelling;  

- robotics assisted neurosurgical robotic product (Neuromate®). 

 

To achieve the project’s objectives the consortium is composed by different research institutions 

and companies working together providing different technical and clinical skills. 

University of Milan is part of this research consortium with the veterinary team as active part in the 

experimental phases with ex vivo and in vivo trials on sheep as animal model. 

 

Brain diseases cost the European Economy approximately 35% of the overall disease burden despite 

the high number of all brain diseases, brain tumours are low in terms of prevalence but highly costly 

per patient. It is estimate that the cost per patient in brain neoplasia is 33900 euros [16-18]  

Glioblastomas (GBMs) is a malignant type of central nervous system tumours and its presentation 

is almost 80% of all malignant primary brain cancers[21]. 

Currently the World Health Organization classified gliomas from 1 to 4th on the base of 

histopathological criteria described by degree of undifferentiation, anaplasia and 

aggressiveness[24]. 

Glioblastoma results as 82% of case in malignant glioma and it is characterised by high cellularity 

mitotic activity, vascular proliferation and necrosis. Typical of this neoplasia is a high pleomorphic 

rate giving the common name of glioblastoma multiforme. 
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This kind of tumour is highly invasive infiltrating the white matter area and they are confined to the 

central nervous, showing no metastases. 

 

Due to this high infiltration tissue rate there is no standard of care in the major of cases and long-

term survival statistics remain poor due to recurrence and the unavoidable side effects of repeat 

systemic therapies. In literature is reported as after first-line treatment, virtually all glioblastoma 

patients experience disease progression after a median of survival of 7 to 10 months[22].  

 Their treatment generally involves a combination of ablative therapy (e.g. radiotherapy), systemic 

therapy (e.g. chemotherapy), surgical resection, and localized drug delivery. 

White matter tracts are critical to the treatment of glioblastoma because they can be incorporated 

into imaging to define cancer extents; they determine the limits of surgical resection; they may 

provide pathways for the spread of disease; and they have markedly different diffusion 

characteristics than grey matter. 

Of the existing treatment approaches[23], Convection Enhanced drug Delivery (CED) offers several 

advantages for the patient, including minimal access, circumvention of the blood-brain-barrier 

(BBB), which limits the degree of absorption of drugs delivered systemically[25], and better chronic 

disease management, thanks to the ability to alter the drug regime over time, as the lesion adapts 

and develops resistance. In CED, drugs are delivered directly to the neoplasia or resected site. A 

catheter attached to a drug reservoir is inserted into the target and a pressure gradient (“convection 

enhanced”) improves diffusion into the tissue[26]. 

However the CED procedure still suffers from significant shortcomings, including reflux (the drug 

flowing back towards the surface via the pathway generated by the catheter during the insertion 

process), inaccurate catheter placement (due to brain shift and tissue deformation) and limited drug 

distribution within the substrate at the point of delivery[26]. 

Over the past 15 years, neurosurgery has been characterized by a fast growth in the advancement 

and clinical adoption of new imaging modalities as high resolution brain topology information from 

Computer Tomography (CT) and Magnetic Resonance Imaging (MRI). Diffusion tensor imaging (DTI) 

is a form of diffusion weighted MRI that assesses physiological water directionality and motion, 

providing images of important white matter tracts within the Central Nervous System (CNS)[27]. 

Information from DTI has been noted to give an high impact in the neuro-oncology patient outcomes 

thanks to the improvement in the identification of resection boundaries with better accuracy than 

MRI alone; highlighting substantial subcortical connections and preserve it, allowing the re-
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organization of the CNS and a better patient outcomes in terms of both life expectancy and quality 

of life[28].  

While DTI offers excellent pre-operative imaging to support patient-specific planning for both 

resection and targeted delivery of therapeutics, intra-operative brain shift following bone flap 

elevation (correlated to the extent of deliquoration occurring due gravitational forces) affects the 

spatial relationship between the key anatomical regions; and instrument-tissue interactions further 

disrupt the mapping process. Consequently, while open resection provides an adequate workspace 

for the surgeon to adapt to the changing anatomy, all minimally invasive instruments used in current 

neurosurgical practice (for e.g. biopsy, electrical stimulation, drug delivery systems, etc.) are guided 

via rigid cannulas and thus constrained to lie on a straight insertion path. The complexity of white 

matter tracts and the profound effect that has on key therapeutic choices (location, approach 

direction, insertion trajectory) justifies the need for a new technology platform for minimally 

invasive neurosurgery, which is what EDEN2020 aims to provide. 

The new catheter development is the key project point, indeed the catheter concept is based on a 

steerable multi-segment catheter designed to follow precisely adaptive curvilinear trajectories. 

While the catheter EDEN2020 cannot be readily compared to other commercial systems, since none 

exist in the needle steering field to date, the placement accuracy and repeatability figures for the 

catheter are compared to rigid placement of a rigid needle of equal size and shape, placed via 

conventional stereotactic frame. 

In summary, EDEN2020 aim is to address the remaining limitations by developing a technology 

platform for the accurate delivery of pharmaceutical agents to lesions within the brain. 
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Animal model 
 

3R rules had a huge impact in the animal model sciences. In 1959, William Russell and Rex Burch 

published "The Principles of Humane Experimental Technique". They proposed that if animals were 

to be used in experiments, every effort should be made to Replace them with non-sentient 

alternatives, to Reduce to a minimum the number of animals used, and to Refine experiments which 

used animals so that they caused the minimum pain and distress. Refinement can also be achieved 

by moving from species that are considered more sentient to those less sentient. 

The choice for the most accurate animal model for EDEN2020 has begun with the analysis of the 

project aim. EDEN2020 project has been focused on the validation of an integrated technology 

platform for minimally invasive neurosurgery. To achieve this aim a proper animal model must be 

taken in consideration 

In respect of the 3R rules and in order to obtain the best translational value, large animal models 

have been contemplated as better models then small models as mouse, rat, rabbit, even though 

small-animal models are usually favourited due to low cost, ease of care, and the possibilities for 

high work rate. While they are still valuable for answering some basic research questions, the 

translation of therapeutic approaches from bench to bed is usually unsuccessful. Thus, there is a 

growing awareness that therapies should be tested in large-animal models prior to clinical 

application[29].  

Besides, murine models are characterized by smooth (lissencephalic) neocortex. Accordingly, the 

gyrification index (GI), which is defined as the ratio of total neocortical surface area (including sulci) 

to superficially exposed neocortical surface area, the measurements of GI range from lissencephaly  

has a GI rate of 1.00 quite distant for Humans (GI = 2.56)[30]. 

The rabbit brain is counted among the lissencephalic brain type in contrast to the gyrencephalic one 

and it is characterized by a GI of 1.2. 

Other animal model with a proper gyrencephalic brain as domestic animals, dogs and cats, are not 

been used as for their brain size but even for an ethical restriction. Considering the relationship 

between brain and spinal cords and the ratio of brain to head mass non-human primates are most 

similar to humans compare with quadrupeds which are characterized by brain and spinal cord long 
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axes parallel while in humans have a right angle [31] but for ethical reason have been excluded from 

the animal model considerations. 

In light of this restrictions showed before, large animals models seem to have better characteristic 

then other animal models (figure1). 

Pig as animal model has been used in neuroscience [32, 33] but the anatomical features in the skull 

create some limitations. The anterior pig head has a plane forehead and vertex that end in a high 

crest where the neck muscles are inserted. Laterally, the vertex is limited by the parietal bone, 

reducing the brain access area to a small square[34]. Additionally minipig breeds and domestic pig 

have a fast growth index if compared with sheep, with an average daily weight grain for Large White-

Landrace reported to be between 734 and 992 g/day in the first six months of life[35] reaching the 

adult stage (1-2 years in age) at more than 300 Kg[32]. Last minipig and pig models at 3-6 months 

develop a sizeable frontal sinus that pneumatizes all of the dorsolateral part of the skull[36], thus 

becoming impracticable for application in neurosurgery experiments and chronic postoperative 

management[37] 

Due to their particular anatomy and size, sheep (Ovis aries) have been largely used as experimental 

large animal models in a multitude of specialities in biomedical research varying from 

orthopaedics[38], traumatic brain injury[39] and neurological disorders[40]. 

In terms of neuroanatomical similarities, sheep exhibits many resemblances to the human regarding 

electroencephalographic elements [41], neuroradiological features [42], neurovascular 

structure [43] and skull ovine anatomy is close to humans in regards to thickness, porosity and the 

curvature of the calvarium (figure1-2)[1]. 

In light of these characteristics cadaveric sheep brains have been largely used as teaching material 

for mammalian cerebral anatomy  [44] and several neurosurgical techniques have been developed 

and tested through this neurosurgical model. Hamamcioglu et al. described a laboratory dissection 

of cranial nerves in the posterior fossa[45]. Another cranial approach proposed in ovine model has 

been the orbital surgery simulation by Altunrende et al.[46] 

In the field of paediatric neurosurgery, training in the area of craniosynostosis can be very useful in 

familiarizing the thickness of the calvarial and facial bone being similar to that found in paediatric 

patients[47].  

Ovine model has been even used for neuro-oncological training, where Kamp et al. simulated 

cerebral masses in cadaveric sheep brains using an agar-agar and ink solution[48]. 
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Figure 1 Magnetic resonance of Human, Sheep, Pig brain. A) Medial sagittal acquisition of Human brain B)  Ovine Brain 
C) Pig Brain. Note the different thickness and curvature of the calvarium[5, 6] 

For these reasons sheep fitted mostly the anatomical features to perform EDEN2020 project and it 

has been considered as ideal animal model for the experimental protocol. 
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Figure 2 Brain mass in animal models [1, 2] 
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The head Anatomy 
 

In the beginning of my PhD project the study of the skull anatomy has played a fundamental role in 

order to understand and plan all the following procedural steps  in this research.  

The sheep cranium has been analysed and each features studied trying to find the best points for 

the head frame system development and underline the best technical point for craniotomy finding 

the subsequent surgical scenario. For these reasons here below is presented a detailed anatomical 

dissertation on sheep head anatomy. 

The skull is a dynamic structure composed by flat bones characterised by fibrous sutures at the 

edges of them which allow cranium expansion during the brain growth. 

The cranium is composed of seven flat bones of which five are unequal; the occipital, parietal, 

frontal, sphenoid and ethmoid; one only, the temporal, is double. These bones circumscribe the 

cranium cavity which communicates behind with the spinal canal, and lodges the brain. (figure 3) 

Sheep is characterized by a long gestation time of 145 days and during its intrauterine life has an 

early calvarial bone formation. The prolonged time gestation of the lamb allows indeed a complete 

suture fusion in utero[49]. 

During the embryogenesis the skull development can be shared in three different phases: neuro-

cranium, dermato-cranium and splanchno-cranium. The neuro cranium creates a cavity fulfilled by 

all the brain except the telencephalon. The dermato-cranium is composed by the cranii vault bones 

and the nose bones. The splanchnocranium is composed by the maxillary bones and the scheletric 

structures from the pharyngeal arch mesenchyme. 

During the embryogenesis the neurocranium appear as mesenchymal dense structure located under 

the brain and as epithelial sensing capsules (olfactory, optic and otic). These capsules chondrificate 

together forming a ventral-cranial structure to the immature brain. Lateral processes are created by 

a dorsal development of this formation, following the brain shape modifications. Numerous bone 

centres for sphenoid, occipital, vomer and ethmoid creation are then made. These ossification 

centres with cartilaginous tissues forms the endochondral bones. 

At the same time the encephalic mesenchyma and the dorsal ectoderm tissue create the 

intramembranous bone formation of the cranial vault and just when all the bones development 

relations are right the splanchno-cranii can begin its ossification.[50] The earliest distinct centre of 
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ossification is the mandible, which appear at day 39th, and is rapidly followed by the pre-maxilla, 

maxilla and the tectum posticum. At day 41 the supra occipital ossification centre is noted followed 

by the frontal, zygomatic bone at day 43 and premaxilla, parietal and squamosal bone at day 46. 

The exoccipital, basi occipital and basi sphenoid centres are created at day 47 and pre-sphenoid and 

periotic at day 48. 

The growth process appear accelerate at day 61 when the vertebral column ossification centres are 

presents and at day 68 both tympanic ring and the squama of the temporal bones are defined[51].  

The prolonged time gestation of the lamb allow a complete suture fusion in utero [49].  In adult 

sheep sutures are, from back to forward, the lamboid, sagittal, coronal and interfrontal suture. 

Lamboid suture is the junction between the superior border of the occipital bone and the posterior 

borders of the parietal bones. The sagittal suture divides the parietal bones, the coronal sutures 

separates the frontal and the parietal bones  and the interfrontal suture is located between the 

paired frontal bones and it is the analogous of the metopic suture in humans[52].   
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Figure 3 Sheep skull anatomy. A) lateral view B) Caudal view C) Frontal view. Each skull bone is presented 
with a different colour ring.  Frontal bone (Red), Parietal (Blue), Occipital( Grey),  Temporal (White), Nasal 
(Yellow), Lacrimal (Black), Zygomatic (Purple) and Maxilla (Light Blue)  

 

B 
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Occipital Bone 
 

The occipital bone occupies the superior extremity of the head and it is bent at a right angle in front 

and behind. It is composed by an external and an internal face and a circumference which brings it 

into contact with the adjoining cranial bones; the latter is subdivided into two anterior lateral 

borders, two posterior lateral borders, an anterior and posterior salient angle, and two lateral 

reentering angles. 

The external face is divided into three portions by the double flexure of the bone and on the median 

line shows the external occipital tuberosity. This protuberance forms the culminating point of the 

head and divides the anterior and superior parts of the external face of the bone.  

The occipital foramen or foramen magnum, is a large orifice which establishes a communication 

between the cranial cavity and spinal canal.  

The occipital bone is composed on its side by a high crest occupying the top of the head and prolongs 

laterally and descends medially continuing with the superior root of the zygomatic process and the 

mastoid crest of the temporal bone. In parallel of this crest a second line prolongs on the base of 

the styloid process. Close to these is defined a posterior recti muscles insertion. 

The external surface of the basilar process is a laterally convex surface. It is a narrow and thick bone 

prolongation that meet the sphenoid bone. 

The internal surface is concave and it is composed by an area forming the roof of the cerebral cavity 

and below it the superior face of the basilar process. On foramen magnum sides the internal orifice 

of the condyloid foramen is presented. 

The anterior lateral borders are thick, and are united by suture with the parietal bone, and with the 

tuberous portion of the temporal bone by the harmonia suture. The posterior lateral borders are 

sharp and form the sides of the basilar process helping to create the foramen lacerum basis cranii.  

The anterior angle interlocks in the parietal bone. The posterior angle is thick and forms the summit 

of the basilar process and it is united by suture with the body of the sphenoid. The lateral re-entering 

angles are occupied by the petrous portion of the temporal bone[53, 54]. 
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The parietal bone 
 

The parietal bone is a wide and thin bone forming the roof of the cranial cavity. It is characterized 

by no sinuses and it is bounded above by the occipital bone, below by the frontal and laterally by 

the two temporal bones. 

The external face is convex and it exhibits two curved crests which terms with the parietal ridges 

and join each other superiorly continuing with the anteroposterior ridge of the occipital bone. They 

below diverge and proceed joining the supra-orbital process.  

The surface is divided into three portions: two lateral areas, which are rough and traversed by 

vascular channels, forms part of the temporal fossa; the third is in the middle and it is plane and 

smooth. 

The internal face is concave, covered by digital impressions, and grooved by small vascular canals. 

On each side it is composed by an excavation elongated transversely where a venous sinus is located 

and where opens the parieto-temporal canal. The internal face is continued frontally by a median 

crest and two other crests rise from the sides of this eminence and descend to the sphenoid bone 

dividing the cerebral from the cerebellar cavity. 

The superior border is thick and has an irregular surface, it articulates with the occipital bone. The 

inferior border, slightly concave, and deeply dentated. The other borders are thin and are composed 

by two portions. The inferior is articulated by suture with the squamous portion of the temporal 

bone and the superior, which is curved inwards towards the centre of the cranial cavity. The latter 

portion of the lateral border is in contact with the anterior face of the petrous portion of the 

temporal bone[53, 54]. 

 

The frontal bone 
 

The frontal is a flat quadrilateral bone with the sides bent in the middle at an acute angle in order 

to meet the wings of the sphenoid bone.  

It is bounded above by the parietal bone, ventrally by the nasal and lacrimal bones and on each side, 

by the temporal bones. The external face is divided into a middle and two lateral regions. The first 
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gives rise on each side a long process, flattened above and below, which curves backward, forming 

the orbital arch. 

The external face of this process is convex and roughened; the internal face is smooth and concave, 

and forms part of the orbital fossa. Its posterior border continues with the corresponding parietal 

ridge, and externally with the superior border of the zygomatic process. The anterior border concurs 

in the formation of the orbital margin; the summit is thickened and denticulated and is united to 

the zygomatic process of the temporal bone while the base is wide and is traversed by an opening 

termed the supra-orbital foramen. The two lateral regions of the external face of the frontal bone 

participates to form the orbits. 

The internal face of the frontal bone is concave and is divided into two unequal parts by a transverse 

ridge, corresponding to the anterior border of the cribriform plate of the ethmoid bone.  

The superior face is the most extensive and it exhibits on the median line, a slight crest which is 

continuous dorsally with the median ridge of the parietal bone, and below, with the crista-galli 

process.  

On the sides the superior surface receives the wing of the sphenoid bone. The inferior part joins on 

the median line the perpendicular plate of the ethmoid. It forms the bottom of the nasal cavities 

and presents laterally two large openings which lead to the frontal sinuses that are prolonged until 

the line passing to the back side of the orbital cavity. 

The superior border is in contact with the parietal and squamous portion of the temporal bone.  

The inferior border joins the nasal bones through the medium and laterally articulates with the 

lacrimal bone. The lateral borders, thin and irregular, present two notches: one, the superior , 

named incisura sphenoidalis, is occupied by the wing of the sphenoid bone. The other forms the 

orbital foramen which opens into the cranium close to the ethmoid fossa[53, 54]. 

 

The ethmoid bone 
 

The ethmoid bone is located on the limit between the cranium and the face, enclosed between the 

frontal, the sphenoid, the vomer, the palatine and the supermaxillary bones. It is composed of three 

portions: a perpendicular lamina and two lateral masses. 
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The Perpendicular Lamina of the ethmoid bone is located in the mesian plane and flattened on both 

sides, presenting two faces, a left and right, and four borders. The faces are covered by the pituitary 

membrane characterized posteriorly by small sinuous crests.  

The superior border looks towards the centre of the cranial cavity and constitutes the crista-galli 

process. It is concave and prolonged in front and above by the median crest of the frontal bone.  

The inferior border is continuous with the cartilaginous plate which separates the nasal cavities.  

The anterior border is consolidated with the vertical septum which separates the frontal sinuses. 

The posterior border is joined above to the median plate which divides the sphenoidal sinuses into 

two compartments and below, it is fixed with the vomer bone. 

The lateral masses of the ethmoid bone are two large pyriform tuberosities placed on each side of 

the perpendicular lamina. Each of these is formed by the ethmoidal cells, numerous thin osseous 

plates curved into small convolutions, which are largely developed and forms the olfactory antrum.  

The external surface of each ethmoidal mass is divided into an internal, making part of the nasal 

cavities and the external which forms the walls of the frontal and maxillary sinuses.  

Internally, the lateral masses are composed by diverging canals which opens inferiorly into the nasal 

cavities. 

The base of each lateral mass is composed by the cribriform plate of the ethmoidal bones giving 

passage to the ethmoidal. 

The summit of each lateral mass is formed by the inferior extremity of the ethmoidal cells, which is 

directed downwards, towards the nasal cavities[53, 54].  

 

Sphenoid bone 
 

The sphenoid bone is situated behind the cranium, between the occipital, ethmoidal, palatine, 

vomer, pterygoid, frontal, and temporal bones. 

It is a flattened and curved bone with its middle part named the body thick and tapers on the sides 

prolonging ventrally forming the wings.  
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The external surface is convex, externally the body continues with the basilar process, and dorsally 

it is characterized by muscular imprints. On the sides there is the pterygoid fissure, directed 

dorsoventrally, and continues by the pterygoid canal which opens into the orbital hiatus. The 

pterygoid process articulates with the palatine and pterygoid bones, and it is crossed by the 

pterygoid canal. 

Dorsally is located the superior orifice of the sub-sphenoidal foramen and cranially is located the 

orbital hiatus, a vestibule with the principal branch of the subsphenoidal canal, the three supra-

sphenoidal canals, the vidian and optic canals, and the orbital opening. 

The internal face is concave and on the median line join the crista galli by a small projection. The  

optic fossa ventrally offer the superior orifice of the optic foramen to reach the orbital hiatus. The 

supra-sphenoidal or pituitary fossa is named the sella turcica. Sella turcica is a depression 

characterized posteriorly by a curved lamina forming with its extremities the posterior clinoid 

processes. 

Ventro caudally the sphenoid bone is composed by a fossa which the mastoid lobule of the brain is 

located. between this fossa and the sella turcica are presented two vertical fissures. One internal, 

named the cavernous sinus and one external which is dedicated for the passage of a large nervous 

branch. 

These two fissures open near to the three supra-sphenoidal canals junction. 

The superior of these is the foramen lacerum orbitale while the other fissure is the foramen 

rotundum opening into the orbital hiatus. The third fissure is a small one named foramen patheticum 

and opens above the optic foramen.  

The superior border is concave and articulates with the summit of the basilar process. Two notches 

per sides defines the foramen lacerum basis cranii. The internal notch is named carotid canal. It is 

the narrowest and it is accepts the passage of its the internal carotid artery. The external notch is 

named foramen ovale, it is wider than the carotid canal and it is crossed by the inferior maxillary 

nerve. Outside is located the foramen spinosum which is narrow notch for the middle meningeal 

artery. All these fissures are composed by a fibro-cartilaginous substance that partially fills them. 

The inferior border is concave and it is divides in a middle and two lateral sections. The first section 

is thick, and it is formed by the inferior extremity of the body. This part is characterized by two large 
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cavities belonging to the sphenoidal sinus. These cavities are separated from one another by a 

vertical osseous plate.  

The lateral section is part of the circumference of the sphenoid wings and help the formation of the 

orbital foramen.  

The lateral borders are thin and convex taking part of the wings while the rest of the lateral border 

is thick and articulate with the squamous portion of the temporal bone[53, 54]. 

 

The temporal bone 
 

The temporal bones limit the cranial cavity laterally and it is articulated with the occipital, parietal, 

frontal, sphenoidal, malar bones and with the inferior maxilla and the hyoid bone. Each temporal 

bones is divided into two pieces, one forming the squamous portion and the other forming the 

petrous portion. 

The squamous portion is a flattened portion with a convex external face, and it is marked by some 

muscular imprints, vascular fissures, and openings which penetrate the parieto-temporal canal. 

It forms part of the temporal fossa and gives origin to the zygomatic process at the base of which 

there is concave surface belonging to the temporal fossa and behind there is the articular surface 

of the maxillary bone.  

The temporo- maxillar articulation is composed of the glenoid cavity and the maxillar condyle. The 

glenoid cavity is limited by the supra-condyloid process against which the maxillary condyle remain 

in passive position.  

The external face of the zygomatic process is smooth and convex while the internal is concave, 

smooth and bordered outwards by the temporal fossa.   

The internal face of squamous portion of the temporal bone is divided in two parts by a channel 

which terminates above the supra-condyloid process and creates the parieto-temporal canal.   

The superior part of this parts has a triangular form and it is articulates by a suture with the external 

face of the petrous portion. The inferior part is bigger and shows the cerebral impressions.  
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The anterior border is in relation with the parietal and frontal bones. The posterior border 

articulates with the sphenoid bone and at the level of the supra-condyloid process is characterized 

by the external auditory canal.  

Dorsally, the two borders unite at the summit articulating with the occipital bone. 

The petrous portion contains two systems of cavities which are the middle ear and internal ear. The 

external surface of this temporal portion is circumscribed anteriorly by the occipital bone, laterally 

by the parietal bone and the internal face of the temporal. It forms a quadrangular pyramid with a 

turned downwards base. 

The anterior face is united by harmonia suture to the parietal bone and the posterior face join in 

the same way the occipital bone. The external face lies against the squamous portion of the bone 

while the internal face form the lateral wall of the cerebellar cavity.  

Internally it is composed by the meatus auditorius internus 

Important is the mastoid crest, a thick crest which after joining the superior root of zygomatic 

process continues with the occipital bone ending with the mastoid process for muscular insertion. 

This border is traversed by  the mastoid fissure which passes under the squamous portion and enters 

the parieto-temporal canal. 

The second important structure is the internal crest which divide the cerebral and cerebellar cavities 

of the cranium ang gives the attachment to the tentorium cerebelli. 

The Base is composed by the external auditory hiatus and the external auditory canal which 

penetrates the middle ear.  

Dorsally it is composed by the pre-mastoid foramen and the external orifice of the aqueduct of 

Fallopius while ventrally it composed by the styloid process for the tensor palati muscle and the 

Eustachian tube. 

The styloid process is a long, thin process which shows the styloid foramen that enters the cavity of 

the tympanum. 

The mastoid portion constitutes almost entirely the base of the temporal pyramid and which is part 

of it the external auditory canal, the mastoid process which is hardly distinct form the crest, the 

sheath of the hyoid prolongation, and the styloid process[53, 54]. 
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Paranasal Sinuses anatomy 
 

Nasal cavity is considered as a cylindrical cavity, divided by a midline nasal septum. Each side is 

characterized by maxillary sinuses and anteriorly by frontal sinus and sphenoidal and lacrimal 

sinuses which are grouped in the paranasal sinuses (figure 4). 

The role of the paranasal sinuses is not yet clarified even if different hypothesis are considered as 

the decrease in the skull weight,  humidify and heat the inspired air, protection against trauma[55]. 

 

Maxillary sinus 
 

Maxillary sinus is in relation with maxilla and zygomatic bone, it begins from the second premolar 

tooth and extends reaching the infraorbital foramen while its base touch the rostro-ventral part of 

the orbital rim[56]. This sinus is divided by the infraorbital canal in a medial chamber, called palatinal 

sinus, and lateral chambers, the larger named maxillary sinus proper [57, 58] 

 

Frontal sinus 
 

Frontal sinus is characterized mainly by the frontal bone and rostrally with lacrimal bone and 

caudally with parietal bone.  

This sinus extends from the second molar teeth line to 2 cm caudal to the posterior orbits limit. 

Laterally is limited by a line passing the orbital rim. 

Frontal sinus is an air filled space between two layers of cortical bones which are the external cortex 

and the internal cortex that forms part of the endocranial cavity surface. The main aim of this sinus 

it to protect the vital cranial structures via shock absorption[59]  

 Differently from horned animals in sheep the frontal sinus in characterized by few septa. Medially 

this sinus is divided by the inter frontal septum in two different compartments, medial and lateral 

one. Lateral compartment is bigger than the medial and communicate with the middle nasal meatus 

by a naso-frontal opening. The medial section is subdivided in a rostral and caudal sub-

compartments which are in communications with the dorsal conchal sinus and maxillary sinus by 

conch frontal opening and fronto maxillary opening respectively[56].  
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Figure 4: Sheep head sinuses CT. The acquisition are presented in cranial-caudal presentation where A is the 
most anterior plane and D posterior. In figure A can be observed the lateral chamber of the maxillary sinus 
(1) and medial chamber of the maxillary sinus (2). In figure B is localized the lacrimal sinus (3), lateral 
compartment of rostral frontal sinus (4), Intermediate compartment of rostral frontal sinus (5), medial 
compartment of rostral frontal sinus (6). In figure C can be observed the postorbital diverticulum of the 
caudal group of compartments of frontal sinus (7) and the middle group of compartments of frontal sinus 
(8). In figure D is presented the postorbital diverticulum of the caudal group of compartments of frontal 
sinus (7) and the nuchal diverticulum of the caudal group of compartments of frontal sinus (9) 
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Lacrimal sinus 
 

Lacrimal sinus is a small sinus which extends in the lacrimal bones, in a rostrodorsal position to the 

orbital cavity[60]. Ventrally is limited by the nasolacrimal duct and is separated from the frontal 

sinus by a fine bony septum[56]. 

This sinus is in communication with the maxillary sinus via the maxilla lacrimal opening. 

 

Sphenoidal sinus 
 

The sphenoidal sinus is a small cavity contained in the body of sphenoid bone. Each of two sinuses 

are divided chambers not in communication[56]. 
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Cerebral anatomy and morphology 
 

Ovine cerebral hemispheres, similarly to human one, are divided in four lobes. The superior face of 

each hemisphere is convex and it is covered by the frontal and parietal bone of the skull. The 

external surface is covered by the squamous part of the temporal bone, the parietal and the frontal 

bone and the sphenoid ala bones while the inferior is located on the sphenoid bone.  

The frontal, parietal, temporal and occipital lobes distinguish the morphological cerebral anatomy 

and are characterized. The convolutions are part of cerebral cortex and are limited by sulci, also 

named fissures. 

Sheep is characterized by a long gestation time of 140-150 days after which the new born is 

behaviourally mature. The foetus brain surface at 60 days of gestation is lissencephalic but from the 

66th day begin to form the first impression of the suprasylvian gyrus.[61]  

Embryologically the brain surface development begins with the fissure appearance followed by the 

sulci. Cortical adult sheep brain is characterized by cerebral convolutions, named also gyri, limited 

by sulci also named fissures. Gyrification is a process that maximize the number of cell bodies and 

minimize the distance between them in consequence of the limited space of the skull. The degree 

of gyrification seems to increase with the brain size and seems to be consequence of the brain 

growth in a restricted space, the skull, with limited degree of freedom in its modification[62]. 

Alternative hypothesis about gyri formation consider the tension developed by fibre tracts which 

connect different cortical areas[63]. Other hypotheses consider the developmental mechanisms of 

the cortex [64] or the relation between the thickness of supragranular versus infragranular layer of 

the cortex as cause of gyrification [65]. 

Cortical surface can be analysed using the gyrification index [66] which is the measure of the degree 

of folding and it is calculate as ratio between the total outer cortical surface and the superficially 

exposed part of the outer diameter. It has been noted that gyrification increase with the brain size 

up to the brain approximately 530g and cortical folding of mammals increases with decreasing 

cortical thickness in an order specific scaling. Thinner cortices allow for smaller and more numerous 

gyri, which results in more intense cortical folding relative to brain weight. Sheep is characterized 

by 2.29 of gyrification ratio with an adult weight brain approximately of  118 grams index [66] 
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The gyri and sulci are natural extensions of the subarachnoid space. The brain surface can be 

characterized by major or minor gyri (g.) with their sulcal spaces. Sulci (s.) can be long or short and 

can be resumed in four main type as large primary sulci (e.g arcuate), short primary sulci (e.g rhinal), 

short sulci composed by several branches and short free supplementary sulci. (figure 5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 sheep brain sulci and giri. (A) Dorsal perspective detailing the various lobes (abbreviated 
‘L.’), sulci (abbreviated ‘s.’), and gyri (abbreviated ‘g.’) (B) The lateral perspective (C) Frontal 
perspective.[3, 7] 
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Dorsal surface 
 

The dorsal surface of the brain is characterized by one transverse fissure (f.), the sylvian, one 

transverse sulcus, cruciatus, five longitudinal sulci, coronalis, lateralis, entolateralis, ectolateralis 

and suprasylvius and one diagonal sulcus. 

The sulcus entolateralis lies close to the f. longitudinalis parallel to the s. lateralis with which can 

terminate joining it or end turning on the medial border of the hemisphere. The s. lateralis begin 

from the median border of the hemisphere and ends sometimes joining the r. occipitotemporalis. 

Anyway any reduction in length of s. lateralis is compensated by change in ectolateralis. 

The s. ectolateralis is located between the lateralis and suprasylvius finishing cranially close to the 

s. ansatus. The caudal portion of s. ectolateralis reach the caudal pole of the hemisphere and its 

pathway is limited by the s. suprasylvius. 

The suprasylvius is located close to the lateral border of the hemisphere and create an arch dorsally 

to the dorsal ramus of the Sylvius and approach or join the s. ansatus. The s. suprasylvius is 

characterized by a ventral ramus which is connected with s. posticus. The caudal ends of s. 

suprasylvius sometimes is made of a bifurcation which the dorsal ramus may join the s. ectolateralis 

while the ventral rami join the s. posticus[3, 67]. 

 

Rostral surface 
 

The rostral surface is characterized by transverse and horizontal sulci. The transverse sulci are 

composed by cruciatus and splenialis sulci while the coronalis, presylvius, diagonalis sulci are part 

of the transverse sulci. 

The ansatus sulcus extends from the longitudinalis fissure to the suprasylvius sulcus but not join it 

thanks to a curved gyrus.  

The sulcus coronalis begin caudally to the sulcus ansatus and continues cranially with a lateral ramus 

which sometimes can be combined with a medial ramus. The lateral ramus lies parallel with the 

rostral end of the presylvian sulcus. 
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The olfactory sulcus is visible just when the olfactory tract and bulb are removed or depressed. The 

sulcus rostralis is located on the medial border of the hemisphere between the sulcus ansatus and 

the cranial end of the hemisphere. 

The sulcus diagonalis is located laterally in the cranial part of the hemisphere. It begins close to the 

pars dorsalis of the sylvian fissure and extend to the s. coronalis. The sulcus diagonalis can be 

characterized sometimes by a ventral ramus[3, 67]. 

 

Lateral surface 
 

The lateral surface is composed by horizontal fissures mostly with main exception of the sylvius 

fissure which is vertical. The sylvius fissure is composed by three portions, pars dorsalis which 

occasionally bifurcaters, pars anterior and the pars posterior. The pars dorsalis, is named processus 

acuminis Krueg and sometimes can be characterized by a bifurcation with two additional branches. 

The dorsal branch of this bifurcation can reach the s. suprasylvius while the ventral one can join the 

s. diagonalis. The ventral part of sylvius fissure is characterized by a caudal and a ventral branch 

which the latter reach the rhinalis sulci.  

Presylvian sulcus begin ventrally to the ventral branch of the anterior ramus of the f. Sylvius and 

continues with a ventro-medal direction. It extends until the hemisphere rostral pole where joins a 

branch of s. coronalis or terminates in the rostral hemisphere extremity keeping a parallel line with 

the lateral ramus of s. coronalis. 

The suprasylvian sulcus is the major sulcus in the lateral hemisphere surface. It also named arcuate 

sulcus thanks to its curved pathway which begins cranially to the pars dorsalis of the s, Sylvius and 

ends in the caudal pole of the hemisphere. It can be divided into a pars anterior, a pars media and 

a pars posterior. The pars anterior can be divided in two branches named anterior and ventral 

ramus. The pars media is in continue with to the s. ansatus. The pars anterior usually is characterized 

by a bifurcation in an anterior ramus and a ventral ramus.  

The sulcus diagonalis is characterized by a ventromedial pathway. It begins caudally to the pars 

dorsalis of the Sylvius fissure and extend close to the s. coronalis ending close to the Sylvius fissure. 

The sulcus posticus begins with its anterior ramus rostrally to the f. Sylvius and ends ventrally to the 

ventral ramus of pars media of s. Suprasylvius[3, 67]. 
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The caudal surface 
 

The caudal surface is characterized mainly by the s. rhinalis which can ends into the lateral surface 

and can continue joining the s. suprasylvius or with a more medial course into ending with the s. 

lateralis. These differences in the s. rhinalis ending depends on the enxtension of the occipito-

temporalis sulcus. The occipito-temporalis sulcus pathway is located parallel and between the 

retrosplenialis and rhinalis sulci[67].  

 

Sheep brain cortex 
 

Cerebral cortex origins from the ependyma cells which migrate radially in association with the 

astroglial cells of the embryonic telencephalon. The cells are topographically organized in register, 

they have ventricular and subventricular progenitors and keep the same topographical relationships 

during the migration. This migration occurs at the same time and in the same way in both 

dorsolateral aspects of the lateral ventricles. 

Every time neurons reach the cortical plate are separate in different layer, five layers structure in 

sheep [3]. The six-layer areas comprise a first peripheral layer, a second layer with sparse small 

pyramidal cells, a third layer of sparse large pyramidal cells, a fifth layer of gigantic pyramidal cells, 

and a sixth layer with spindle cells [68]. 

When the last neurons migrate from the ventricular plate to the surface the brain surface is smooth 

and giving to brain a similar aspect in all mammals during these early stages. Once all the neurons 

migration is completed gyrigenesis can begins forming all the gyri and sulci structures typical for 

each specie[69]. 

The motor cortex and somatosensory cortex lie in the frontal lobes parallel to the interhemispheric 

fissure, differently respect humans which the somatosensory cortex lies in the parietal lobes and 

are divided by central sulcus. 

Another difference between human and sheep motor cortex is that sheep motor cortex is not 

divided in pre motor or supplemental motor cortex. 

Sheep motor cortex is localized in the superior frontal gyrus of the frontal lobe and bounded in the 

rostral-caudal direction by the cruciate sulcus in the frontal lobe and the coronal sulcus in the medial 
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lateral direction. In literature has been observed great variability in the localization of sheep motor 

cortex area. For example the functional location in the motor cortex of the forelimb has been largely 

studied but the results shows different outcomes (figure 6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The cytoarchitectural studies of the motor cortex showed that main location of pyramidal cells is in 

superior frontal gyrus[70, 71]. Piramydal cells extended form superior frontal gyrus to the medial 

surface of the middle frontal gyrus [3]. The cells structure is different depending from the area 

Figure 6 Sheep motor cortex. Functional mapping transcribed from six studies describing the sheep motor cortex 
using direct[3] showed by Maracci[7], Ziehen[2], Simpson[12], Bianchi[13], Bagley[14] and Grovum[15] 
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analysed. Indeed middle frontal gyrus is characterized by different cell structure with fewer, smaller 

pyramidal cells then the superior frontal gyrus. 

The anterior extremities of the superior frontal gyrus is characterized by a lower concentration of 

pyramidal cells which gradual reduction at the limits of the superior frontal gyrus. 

Electrical stimulation studies showed that pyramidal cells were located prevalent along both 

surfaces of the coronal sulcus and fewer on the medial face of the superior frontal gyrus.[70-72] 

Cortical sensory area is located in the frontal lobe of the brain. The mechanosensory projections 

form the peripheral receptors to the sensory cerebral cortex in mammalian are species specific. In 

literature it is reported that the behavioural specializations are reflected by variants in 

mechanosensory projections, indeed fundamental is the relation between the animal and the 

environment and how the animal get information from and respond to it[9]. 

Ovine specie is characterized by two typical properties which are the predominance of ipsilateral 

then contralateral projections and the higher number of projections form the mouth area than the 

body and limbs one even though the huge difference between the surface body area represented. 

The locations of projections to the sensory cerebral cortex is characterized by a somatotopic 

organization. The cortical area in question is located between the ansate, anterior suprasylvian, 

coronal and diagonal sulci. Important anatomical consideration is given to the coronal sulcus which 

is considered the board between the motor and the somatosensory area. (Figure 7) 

The projections, connected mainly with the sensory thalamic nuclei, are divided in two major 

groups; ipsilateral and contralateral. Ipsilateral developed from the lips and nose area which are the 

predominantly represent on the sensory cortex. Cranially to the diagonal sulcus is located the teeth, 

dental pad and tongue to the region[9]. 

Projections from contralateral head and body are located on the anterior suprasylvian sulcus where 

in the posterior area are located the projections from the postcranial body. 

Elecrophysiological studies have shown that the first somatosensory area (SI) is located between 

the coronal, diagonal, and the anterior suprasylvian sulcus while the second somatosensory area 

(SII) is located on the posterior wall of the suprasylvian sulcus.[72] 
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Figure 7 Sheep brain sensory cortex [9] 
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The vascular anatomy 
 

Arterial brain anatomy 
 

The carotid arteries arise by a common trunk from the right axillary artery and along his pathway it 

gives the thyroid and the laryngeal branch. Then it is divided in occipital artery and continues with 

the external carotid. Important for this specie is that the internal carotid is absent and in young 

animal is poorly developed[73] (figure 8). 

The occipital artery supplies the anterior muscles of the head and a small meningeal branch placed 

under the dura mater enters the cranium by the foramen lacerum basis cranii passing into the 

condyloid foramen. This branch is bend on the back connecting with the anterior extremity of the 

collateral artery of the spine at the superior foramen of the atlas. 

The occipital artery passing the condyloid foramen sending into the parieto-temporal canal a small 

branch dedicated to the dura mater. Along its pathway the occipital artery joins the rete mirabile 

once entered into the cranial cavity 

The external carotid artery finishes with the superficial temporal and internal maxillary artery. Along 

his route gives the pharyngeal artery, the lingual artery, the maxillary artery and the posterior 

auricular artery. The stylomastoid arteriole arises from the posterior auricular artery followed by 

the concho-muscular branches and a mastoid artery which enters via the temporo-parietal canal, 

giving two branches. The external branch is dedicated to the temporal muscle and then joins deeper 

with the temporal arteries. The internal branch is considered as a meningeal artery and goes to the 

falx cerebri and the tentorium cerebri. 

 A later branch of external carotid is a small maxillo-muscular artery which is divided in the internal 

pterygoid and the subcutaneous muscles. 

The superficial temporal artery is the last bifurcation of the external carotid artery and it is divided 

in three branches which are the anterior auricular artery, the middle temporal artery and the 

transverse artery of the face.  

The internal maxillary artery doesn’t pass the subsphenoidal canal because this passage in sheep 

does not exist, and form this arise different branches: inferior dental artery, the spheno-spinous 

artery which enter via oval foramen in the cranium cavity and forms the rete mirabile. Another 
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branch from the internal maxillary artery is the posterior deep temporal artery, the interior deep 

temporal artery, the buccal artery, the ophthalmic artery. The ophthalmic artery in sheep is a long 

artery, longer than in the other animals which pass the orbital foramen dividing in a supra-orbital 

branch and a fasciculus of muscular and ciliary arteries.  

As note before the rete mirabile is characterized by three originating arteries. One of these, the 

spheno-spinous artery, arises from the internal maxillary at the same point as the inferior dental 

artery, and enters cranium through foramen ovale. The other two originating arteries arise from 

internal maxillary in common with the ophthalmic artery and pass backwards through a supra-

sphenoidal canal.  

The rete mirabile is a small area located under the dura mater, on the side of the sella Turcica, within 

the superior maxillary nerve. It is composed by a multitude of fine arterial divisions which 

anastomose with each other. Its inferior extremity, passing into the supra-sphenoidal canal, receives 

the generating arteries. The posterior extremity, covered by the clinoid process, is in communication 

with the spheno-spinous artery. Its middle area crosses the dura mater and gives a large posterior 

branch going to the interpeduncular fossa. After this branch the internal carotid continues ventrally 

to the optic tract and reach the optic chiasma where is then divided in the middle cerebral artery 

and then it continues as anterior cerebral artery. The anterior cerebral artery continues cranially 

reaching the longitudinal fissure anastomosing with the opposite one forming a fine vessels network 

replacing the anterior communicating artery. The anterior cerebral artery terminates dividing into 

the corpus callosum artery and into a marginal artery. The posterior communicating arteries makes 

a semicircle around the midbrain anastomosing each other cranially to the pons. These arteries are 

much larger in sheep than in other species as results of the brain blood supply is made mainly by 

carotids in ovine.[74, 75] 

The vertebral artery contribution in the brain arterial network is absent. The basilar artery makes a 

small anastomosis with the vertebral one and reducing in caliber reaching the vertebral artery. 

In light of these anatomical consideration the circle of Willis, which is important as  potential 

collateral pathway at the base of brain, in ovine animals is composed by the internal carotid arteries 

along its course, cranially by anterior fine plexus of vessels, caudally by the posterior communicating 

artery which is a posterior branch of internal carotid artery and by the basilar artery.[76]  
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Venous system 

 

The dura mater is composed by sinuses which are vascular spaces situated between the meninges 

or meninx and bones which form the walls of the cerebro-spinal sheath and excavated on the inner 

surface of these bones. They are composed by an epithelial layer which lies on dura mater meninx 

or on the bone tissue. The sinuses are opened without valves and are characterized by trabeculae 

or Willissi cordae which have a vale-like shape and a functional role to prevent reverse blood flows 

[77] 

The main brain sinuses of the dura mater are four and are the falx cerebri sinus, two cavernous 

sinuses and the ventral occipital sinus. 

 The sinus of the falx cerebri, also known as dorsal sagittal sinus, collects blood from the dorsal part 

of the brain and it is located in the falx cerebri, begin close to the crista galli process of the ethmoid 

bone and run backwards and finish on the internal occipital protuberance. It received the ethmoidal 

veins cranially, the dorsal cerebral veins laterally and the diploic and meningeal veins dorsally. 

Figure 8 Ovine cerebral circulation diagram. The dotted line indicates that the internal carotid does not 
persist in the adult[2, 4] 
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Dorsal cerebral veins are connected to the dorsal sagittal sinus via lateral dorsal cerebral veins 

expansions containing the arachnoid granulations for cerebrospinal fluid drainage. 

 The dorsal sagittal sinus received even the straight sinus and it is characterized by a bifurcation, 

named confluence of sinus, in the bilateral transverse sinus. The straight sinus is created from the 

splenium of corpus callosi by the confluence of the great cerebral veins ventrally ant the vein of 

corpus callosum dorsally. It drains in the dorsal sagittal sinus before the formation of the confluence 

sinuses.  

Transverse sinus is located inside the tentorium of cerebellum and it is the continuum of the dorsal 

sagittal sinus. This sinus is characterized by a transverse groove and terminates dividing in the 

temporal and sigmoid sinuses. 

The temporal sinus is larger than sigmoid one and continue in a rostroventral direction. It is located 

in the temporal canal and it emerged as the emissary vein of the retroarticular foramen and joined 

maxillary vein and pterygoid plexus. The sigmoid sinus continues in a caudoventral direction, joined 

the emissary vein of the condylar foramen. Ifs branches finally drains into the occipital vein and 

basilar sinus[78]. 

The cavernous sinuses are part of the ventral sinus system with the ventral petrosal sinus and the 

ventral occipital sinus. The cavernous sinuses are characterized by a plexiform structure and are 

located right and left occupying the internal face of the sphenoid bone, close to the sella turcica. 

They spread from the foramen orbitorotundum to the dorsum sellae. This sinus empties via emissary 

vein to extracranial pterygoid plexus while caudally continue with the central petrosal sinus and 

before the jugular foramen it makes anastomosis with the latter sinus.  

The ventral occipital sinus is located close to the occipital foramen magnum. Cranially this sinus is 

linked with the posterior extremity of the cavernous sinuses while caudally they continue with the 

spinal sinuses. The ventral occipital sinus indeed open into the internal vertebral venous plexus and 

into the emissary vein of hypoglossal vein. The hypoglossal vein and the emissary veins coming from 

the jugular foramen join together forming a plexus structure which in human is described as anterior 

condylar confluent.[43]  

In addition to these main sinuses other minor sinuses are presents in the sheep brain. Important is 

consider the temporal sinus which is create by the cranial union of the transverse sinuses. The 
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temporal sinus enter the temporal meatus and then is divided in two different vessels which 

emerged from the retroarticular foramen joining the maxillary vein. 

On the brain surface the venous system creates a rich network with the main branches go into the 

dura mater sinuses. Mainly these reach the transverse sinus but few of these gain the cavernous 

sinuses while the cerebellum and medulla ablongata veins passes to the petrosal and occipital 

sinuses. 

They join into one of the main internal brain vein, Galeni vena, which is located dorsally to the corpus 

callosum, receives the superficial veins of the internal hemispheres face and reach the interlobular 

fissures entering into the back of the middle sinus. 

The median and transverse sinuses effluent pathway is made by parieto-temporal confluents which 

are located in canals along the mastoid artery. These commences terminates at level of the supra-

condyloid eminence and open in the temporal veins, giving a branch which pass the foramen 

lacerum. 

The pterygoid veins and the anterior radicles of the occipital veins drain via the subsphenoidal 

confluents which develop from the sphenoid bone and basilar process to the condyloid fossa. They 

are in communication with the cavernous sinus in their middle portion. Anteriorly they finished with 

a dead end and caudally communicate with the occipital sinuses via the condyloid foramina. 

 The common jugular vein is the major vessel in the ovine neck/head anatomy characterized by circa 

7.4 mm in diameter followed by the internal jugular vein of 4.4 mm. The proper larger brain veins 

in sheep decrease in dimensions with the transverse sinus characterized by circa 2.5 mm of 

diameter, dorsal sagittal sinus with 2.4 mm in the caudal portion reaching 1.2 mm on the distal 

section. The cruciate sulcal vein is reported with 1.1 mm in diameter[4]. 

Dorsal sagittal sinus is the longer venous brain vessel with a length of circa 6,5 cm, followed by the 

temporal sinus with 2,5 cm and the straight sinus with 9 mm of length[78]. 

In relation with the motor cortex the dorsal sagittal sinus lies close to the midline, the motor cortex 

is reported to be drained by major draining venous pathway coursing along the vertex of the brain 

in the midline, forming just behind the frontal sinus anteriorly to join the confluence of sinuses 

posteriorly. The sensory area located more laterally than the motor one is more drained by the 

dorsal cerebral veins [79]. (figure 9) 
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Figure 9 Dorsal venous brain vessels 

A) Schematic presentation on the dorsal venous brain ramification. 1) transverse sinus 2) Straight sinus 3) 

Dorsal cerebral veins 5) Ethmoid veins [4] 

B) Vascular anatomy and motor, sensitive cortex. The motor cortex is presented by the red area while the 

sentive cortex by the yellow one[8] 
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Aim of the study 
 

The topics addressed in the chapter 1 of the present thesis deal with the animal model analysis for 

EDEN2020 project. 

From the analysis of EDEN2020 aims the focus has been shifted to the different animal models used 

in research analysing large animal models as ideal translational model for the project. Relevance has 

been given to the skull and brain morphology in order to simulate perfectly the clinical scenario 

composed by imaging study and surgical scenario. With a view to obtain the finest translational 

model from bench to bedside sheep has been selected thanks to the large gyrencephalic human like 

brain, able to provide important and improved translational clinical data related to the 

neuroanatomical structures compared to rodent models.  

Three different analysis on sheep as animal model have been included in this doctorate thesis. All 

of these analysis have been prepared and presented as journal papers in the following chapter 2.  

I. The first concerns the development and validation of the head frame system helmet for 

ovine species. The objective of the work was to develop the design and validate a new 

CT/MRI compatible head frame system and software (manuscript under submission).  

II. The second study is related to the MRI and DTI analysis in sheep. The aim of the work was 

to establish the in vivo tractography atlas in order to reconstruct the white matter fibre 

bundles of the ovine brain, underling with DTI tractography reconstruction of the major 

white matter tracts as Corticospinal Tract (CST), Corpus Callosum (CC), Fornix (FO), visual 

pathway (VP) and occipitofrontal fascicle (OF) (manuscript published, frontiers in veterinary 

science DOI: 10.3389/fvets.2019.00345). 

III. A further white matter related study included in this PhD thesis concerns the microscopic 

white matter samples analysis. White matter samples have been studied via FIB-SEM 

microscope and 3D reconstruction of axons bundles. In order to analyse the same structures 

find during DTI analysis CC, FO has been sampled. The CST has been sampled at level of 

corona radiata (CR) for practical issue indeed CST originates from the cerebral cortex and 

travels via CR, posterior limb of the internal capsule (PLIC), and pons (manuscript under 

submission). 

 

https://doi.org/10.3389/fvets.2019.00345
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Since the doctorate thesis consist of studies on different topics but all gathered in the EDEN2020 

aims, the purpose of this work was to bring new information into the scientific literature about 

sheep as animal model in neuroscience and neurosurgical scenario. The data acquired during the 

works presented in my PhD has been produced following the EDEN2020 project which proceed 

going along the primary aim on a new catheter development as the main project goal in an 

integrated technology platform for minimally invasive neurosurgery. 
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Chapter 2 
 

Research Papers 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The papers published/submitted were reported keeping the reference style indicated by the guidelines of 

each Journal 
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Development and in-vivo Assessment of a Novel MRI-Compatible Stereotactic System for 

the Ovine Animal Model 

(The manuscript reported here is ready to be submitted) 
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Abstract 

 

Background. The brain of sheep has primarily been used in neuroscience as an animal model 

because of its similarity to the human brain, in particular if compared to other models such as the 

lissencephalic rodent brain. Moreover, their docile behaviour en- ables easy handling of the animal, 

as well as post-surgical management with respect to other animal models (e.g. mouse, minipigs, 

etc.). Their brain size also makes sheep an ideal model for the development of neurosurgical 

techniques using conventional clinical CT/MRI scanners, and stereotactic systems for neurosurgery. 

New Method. In this study, we present the design and validation of a new CT/MRI compatible head 

frame for the ovine model and software, with its assessment under two real clinical scenarios. 

Results. Ex-vivo and in-vivo trial results report an average linear displacement of the ovine head 

frame during conventional surgical procedures of 0.81mm for ex-vivo trials and 0.68mm for in-vivo 

tests, respectively. 
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Comparison with Existing Methods. Only a few stereotactic head frame systems for the ovine 

model have been used in research to date, and these missed key features for translation to other 

clinical settings, in particular due to the lack of MRI compatibility. 

Conclusions. The ex-vivo and in-vivo  trial results demonstrate the robustness of the  head frame 

system and its suitability to be employed within a real clinical setting. 

Keywords: sheep model. stereotactic. head frame. animal model. 
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1. Introduction 

Over the past three decades, translational biomedical researches have seen the use of ovine models 

for different applications, ranging from orthopedics [1], traumatic brain in- jury studies [2], and 

neurological diseases [3], to more specific studies such for Alzheimer’s disease [4] and epilepsy [5]. 

Both the large size of the ovine brain as well as anatomical features of the skull mean the ovine 

model is an ideal candidate in conventional stereo- tactic techniques for deep brain stimulation, as 

shown by Stypulkowski et al. for the thalamus [6], and more recently, on the hippocampus [7]. 

Stereotactic methods have been widely used in other large animal models such as the pig. For 

instance, Bjarkam et al.[8] developed a stereotactic procedure which enables MRI guided isocentric 

stereo- taxy, and White et al.[9] established a method for stereotactic delivery of catheters and 

electrodes for reaching deep targets in the brain. Stereotactic procedures have been devel- oped 

even in sheep for neurosurgical purposes, such as in Oheim et al. [10] for the intra- 

cerebroventricular application of leptin into the lateral ventricle. The stereotactic surgical approach 

has also been used for continuous monitoring of the electroencephalographic activity through the 

insertion of needles, as shown by Perentos et al. [11]. Despite these studies, to our knowledge, 

only a few stereotactic head frames were shown to be compat- ible with the conventional Leksell 

Stereotactic System© .  Most of the head frames were employed in studies with pig models [9, 12], 

with a design that could not easily be scaled to the ovine model, and was not suitable for clinical 

use, as reported by Oheim et al. [10]. The present work focuses on the design of a new headframe 

system (HFS) for the ovine model, suitable for MRI and CT studies, as previously shown for a 

different animal model by White et al. [9]. The new HFS was developed following clinical 

requirements 

for neurosurgical applications. The work presents the validation of the HFS under a real clinical 

setting, firstly with an assessment ex-vivo and subsequently, during in-vivo trials. 
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2. Materials and methods 

 

2.1 Head Frame System: requirements 

The following main design requirements were deemed necessary for the Head Frame System to 

perform safely and correctly under a real clinical setting: 

a)to be compatible and safe for use within a Magnetic Resonance Imaging (MRI) system 

b)to be suitable for use within a Computerised Tomography (CT) scanner 

c)with a footprint small enough to fit within the bore of a conventional MRI unit  

d)with a structure capable of being fixed firmly on a stretcher for easy transportation  

e)with a head fixation system capable of withstanding forces and torques caused by the motion of 

the body of the animal during sedation, neurosurgical procedures and transportation. 

f)with a design capable of following conventional clinical procedures during general anaesthesia 

such as blood sampling, mucosa checking and nasogastric tube introduction 

 

2.2 Head Frame System: design 

The HFS represented in Figure 1 and 2 was designed to clamp an ovine head to a Cosman-Roberts-

Wells (CRW) stereotactic frame. The ovine head frame weights 5,25 Kg, with a measured footprint 

of 360 x 350 mm, and can accommodate an ovine head within a workspace of 180 x 280 mm. As 

shown in the highlight (6) of Figure 2, clamping is achieved through the tightening of two opposing 

head pins onto the zygomatic arches of the ovine skull.  Additional rotational support is provided 

by  a mouth  clamp (7) (in Figure 2), which bonds the upper pallet and nose arch. The system has 

been designed with adjustable headpins and a mouth clamp to accommodate a range of different 

head sizes without impacting on the rigidity of the fixturing. Interchangeable support pillars allow 

an adjustable height between the u-frame and the support base. These features enable the ovine 

head to be placed in the isocenter of the MRI scanning volume, while still ensuring patient airways 

remain clear. 
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Frame-based stereotactic procedures are facilitated through CRW arc systems that can be clamped into the 

novel frame using the same kinematic interface present on CRWs universal compact head rings. The relative 

position between the kinematics and head pins has been designed to align the brain of the ovine head in 

the centre of the working volume of a CRW frame. A removable bespoke localiser arch (5)  featuring  seven 

fiducial spheres is used to co-register the coordinate system of the MRI or CT scanner with the coordinate 

system of the CRW stereotactic frame. The fiducial spheres are aligned with the ovine head to ensure 

proper distribution over the ovine brain. 

 

 

 

 

Figure 1: Rendering of the new Head frame System with arc fiducials for MR/CT registrations 

 

2.3 Head Frame System: ex-vivo validation 

 

A set of ex-vivo trials, and subsequently in-vivo trials following the 3R rules of [13], were 

performed to assess the HFS under a real clinical setting. Four additional spherical radiopaque 

markers 8 mm in diameter (BrainLab AG., Germany), fixed by titanium screws onto the skull, were 

used to assess any possible motion of the ovine head during all of the different phases (sedation, 

transportation, surgery). These four additional markers were screwed randomly in four anatomical 

areas (one marker per area): on the frontal bone, on the occipital bone, on the anterior orbits 

bone and on the posterior dorsal orbits bone, as shown in Figure 3. 
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Figure 2: Render top view of the new Head Frame System with highlight of ovine head pins. Headframe 

footprint of A: 360mm and B: 350mm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                Table 1: Parts of the Head Frame with materials used for the manufacturing 

 

Part n. Description Materials 

(1) Support base Nylon 

(2) Support pillar Acetal 

(3) U-frame PU 

(4) Mouth clamp Acetal, PEEK and Nylon 

(5) Bespoke localiser Nylon with CT/MR fiducials 

(6) Ovine head pins PU, PEEK and acetal 

(7) as in for (4) PEEK 
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For both sets of trials, pre-and post-operative CT imaging sequences were acquired with a clinical 

system (GE Healthcare CT system, 16 slices helical scan). The imaging sequences were acquired 

with standard display field of view (DFOV), matrix of 512x512, slice thickness of 0, 625 mm, 120 

kilovolt (KV), 22 milliampere (mA), pitch 0, 562 : 1 and 1/s tube rotation. 

The images were collected using a soft tissue algorithm provided within the software of the 

scanner. 

 

Figure 3: ex-vivo surgical scenario after burr hole drilling. In  the picture are noted three of the four  fiducial spheres 

 

 

2.3.1 Ex-vivo trials 

Eight female adults, 70kg, Ovis Aries sheep Bergamasca heads were used for the assessment of 

the HFS in the ex-vivo test. Each ovine head was comprehensive of the neck up to the C3 vertebra. 

Head Fixation.  As per HFS design features, the sheep head was fixed using two pins clamped 

against the zygoma bone,  without any skin incisions.   The mouth bar was placed under the hard 
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palate and the nose clamp was pressed against the nasal bone. To replicate the sheep’s body, a 

foam box was placed underneath he neck and secured to the HFS via velcro straps. 

 

 The head frame system was connected to a medical spinal stretcher (MRI and CT compatible) via 

plastic zip ties. 

 

Figure 4: in-vivo clinical setting of live ovine model with the head frame system during a CT acquisition 

 

 

Surgical planning and surgical procedure. 

 

Planning software and registration. A conventional neurosurgical procedure which sees the 

insertion of a straight, rigid needle to reach a predefined target (e.g. a deep lesion) was used as a 

mock of the real clinical scenario. The target location was identified by the surgeon from an atlas 

of the ovine white matter bundle [14], establishing the point in the corticospinal tract. The surgical 

procedure started with a pre-operative CT scan, after the ovine head was fixed onto the Head 

Frame as described in the previous section. The needle trajectories were planned using a modified 
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version of a commercial neu- rosurgical software application, the neuroinspireTM 
( Renishaw inc.), 

designed to register the new Head Frame System with the CRW frame. 

 

 

 

Figure 5: Screenshot of the neuroinspire TM, Renishaw inc- registration arc-fiducials of the HFS with the CRW frame 

 

The software uses 7 fiducials spread along a removable circular arc used to register the HFS with 

the CRW frame. As shown in Figure 5, the front-end interface provides the CT image of the head 

frame with a widget showing the displacement of the fiducials within the arc. The user registers 

each fiducial by selecting each one by one on the top- left widget. Once a fiducial is selected, a 

circular marker appears on the medical image in correspondence with the position estimate of the 

selected fiducial on the medical image. In a subsequent step, the user refines the position of the 

circular marker on the medical image, by moving it using orthogonal zoomed views, as shown on 

the right widget of Figure 5. Once registration of all seven markers is complete, further registration 

of different image modalities can be performed automatically by the software. In the example 

shown in Figure 6, a standard stereotactic ovine MRI reference template [15] was registered to the 

CT scan, and a Diffusion Tensor Imaging MR tractography reconstruction of the ovine corticospinal 

tracts was integrated in the planning [14], as part of the multi-modal planning tools exploited in the 

EDEN2020 project (www.eden2020.eu). As targets, one point for each corticospinal tract (two 

targets per trial) was selected. In a final step, the user planned suitable trajectories for the tool by 



57 
 

selecting the entry point location on the skull and the target location according to a given clinical 

case. An example is shown in Figure 6. 

 

Figure 6: Screenshot of the Neuroinspire TM, Renishaw inc- during the planning of rigid catheter insertion 

 

 

The area of surgical access was identified approximately 15mm cranially to the coronal suture line 

and roughly 10mm laterally to the metopic suture line. Ideally, the entry point area had a flat 

surface above the corticospinal tracts in a zone which was free from significant vessels. Once the 

area was identified and selected on the software, a set of coordinates on the CRW stereotactic 

system were provided. The CRW was then assembled on the top plate of the HFS, and a 

verification shaft tool was used to match the entry point shown in the software. Once the entry 

point was verified, it was marked on the skull using a pencil to facilitate the drilling phase. To 

match the real clinical setting, drilling was performed using a conventional neurosurgical 

perforator 14mm in diameter ( CODMAN® Disposable Perforator 14mm- Drill: ANSPACH® EMAX® 2 

Plus System by DePuy Synthes). Following the neurosurgical procedure, the head frame system was 

moved to the CT scanner for postoperative image acquisition. The data acquired were analyzed to 

measure any head displacement after initial placement and first CT scanning. 
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2.4. In-vivo trials 

After a clinical evaluation of the Head Frame system using ex-vivo samples, the HFS was validated 

in-vivo. All animals were treated under the European Communities Council Directive (2010/63/EU), 

adhering to the laws and regulations on animal welfare enclosed in D.L.G.S. 26/2014 and approved 

by the Italian Health Department with authorization n◦ 635/2017. 

Animal anesthesia. A total of four sheep ovis aries (average 70 kg ,all female, one year old) were 

used in this study. The animals were under general anaesthesia for all of the procedures described 

in the following sections. Animals were inducted via intravenous administration of Diazepam 0, 25 

mg/Kg + Ketamine 5 mg/Kg, intubated and then maintained under general anesthesia with 

isoflurane 2% and oxygen 2L/m. Two peripheral venous accesses in right and left auricular veins 

were set for each sheep and urinary catheterization performed. 

In-vivo procedure. The in-vivo trials procedure was carried out as follow: 

 

Step 1:A general anaesthesia is administered to the animal, as described above 

Step 2:The sheep is located on a spinal stretcher (acrylonitrile butadiene styrene, ABS stretcher, 

Millenia, Ferno) and it is secured in a prone position on a vacuum mattress with extended legs, via 

two straps. 

Step 3:The HFS is placed onto the stretcher and secured using a bespoke fixture system Step 4:The 

animal head is fixed into the HFS and additional fiducial markers mounted 

in the same anatomical areas as in the ex-vivo trials. 

Step 5:Acquisition of the first CT imaging sequence (CT-pre) at facility A Step 6:Acquisition of a pre-

operative MRI volume at facility B 

Step 7:The sheep undergoes the surgical procedure (auth n ◦ 635/2017) at facility A Step 8:A 

second CT imaging sequence is recorded (post-CT) at facility A 
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3. Results 

3.1 Image Analysis for linear motion of the ovine head 

The following imaging process was carried out using 3DSlicer [16], while the assess- ment of the 

linear motion of the ovine head within the Head Frame System during the procedures (ex-vivo 

and in-vivo trials), expressed as the Target Registration Error of the four AFM, was carried out using 

bespoke software in Matlab (version 2018b, Mathworks Inc). The steps were as follows: 

CT pre-operative (CT-pre) and post-operative sequences (CT-post) were loaded into the 3DSlicer 

software 

An intensity filter was applied to the series between W 3000 HU and WL 600 HU, range where 

arch fiducials of the HFS and the Additional Fiducials Marker (AFM) have maximum intensity 

Two meshes, one for pre-operative images (PreOP-Mesh) and one for post-operative images 

(PostOP-Mesh), were generated PreOP-Mesh and PostOP-Mesh were registered using the 

Iterative Closest Point algorithm (ICP- algorithm Tolerances: 0.01mm translation, 0.05deg rotation) 

ap- plied to the centroids of the fiducials of the Bespoke localiser (see n.5 on Table 1) 

The output of the registration process defines a transformation matrix T 

The Centroids of AFMs in the PreOP and PostOP Meshes were extracted using a bespoke 

algorithm, and identified respectively as CAFM pre and CAFM post 

The transformation T was applied to each CAFM pre to generate the corresponding 

centroid on the PostOP reference frame.  These fiducials were defined as ĈAFM pre. 8.The Target 

Registration Error was calculated as in [17] by using CAF Mpre and 

ĈAFM pre, with mean (Π) and standard deviation (σ) of TREs defined as follow: 

                                                                        

 

The results for the ex-vivo and in-vivo tests are reported in the Table 2 and 3 respectively. The 

average linear motion for the ex-vivo trials was 0.81 ± 0.54 mm., while for the in-vivo trials was 
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0.68 ± 0.61 mm. The average RMSE for Arc Fiducial registration Error (FRE) for both tests was: 0.46 

± 0.12, inline with results of [9] using the software described in Section 3.2.1. 

 

Trial n. Π± σ[mm] Arc FRE [rmse] 

1 0.93 ± 0.7 0.73 

2 1.07 ± 0.86 0.28 

3 0.81 ± 0.45 0.55 

4 1.04 ± 0.26 0.49 

5 0.55 ± 0.15 0.46 

6 0.95 ± 0.9 0.38 

7 0.71 ± 0.05 0.29 

8 0.46 ± 0.09 0.44 

 

                                                                                Table  2:  Results of ex-vivo trials 

 

 

 

 

 

 

 

                              

                                                                                 Table  3:  Results of in-vivo trials 

 

 

 

 

 

Trial n. Π± σ[mm] Arc FRE [rmse] 

1 0.35 ± 0.13 0.53 

2 0.75 ± 0.18 0.59 

3 0.74 ± 0.56 0.41 

4 0.83 ± 0.1 0.44 



61 
 

3.2 MRI compatibility test 

 

MRI compatibility testing of the prototype was evaluated in an MRI scanner (Philips Achieva 1.5T, 

Philips Healthcare, The Netherlands) as in [18]. The prototype was installed at the centre of the 

field of view as shown in Figure 7, with a standard MR cylindrical phantom containing a saline 

solution of nickel sulfate (NISO4 + 6H2O/2.62g N aCl) placed inside the Head Frame.  A T1-

weighted volumetric scan was acquired by  using a three-dimensional fast-field-echo (3D-T1 FFE) 

sequence with the following pa- rameters: repetition time/echo time (TR/TE) 20ms, /, 3.7ms; flip 

angle 40◦; voxel size 0.667×0.667×1.4 mm; SENSE factor R = 2. We tested two cases: the first case 

with only the phantom and the second case, with the Phantom and the Head Frame placed inside 

the bore of the MR scanner. Coronal slices were used in this evaluation. An example slice from the 

image set is reported in Figure 8: the image shows no geometrical imaging distortion caused by the 

Head Frame. The data analysis was carried out following the National Electrical Manufacturers 

Association (NEMA) procedures [19] standard assuming a statistically and spatially uniform 

distribution of noise. 

                                       

                        Figure 7: MR test setup with the Head Frame placed inside the bore of the machine  

 



62 
 

Two regions of interests (ROIs) of 50 × 50 pixels were selected as shown in Figure 8: one region 

inside the tissue phantom, and a second region outside the tissue phantom and far from the Head 

Frame. The noise was computed for all images, covering the whole footprint of the Head Frame, 

individually, and then averaged. The first image set, image set A (with only the phantom inside the 

MRI) was considered as the baseline, of which SNR is reported in Figure in red. The total variation 

of the SNR for image set B (with Head Frame - blu line in Figure 9) was 1255.2 (−41.9%- red line). 

The average SNR value for the baseline was 2160.8, which was calculated as reported in [20, 21, 

22]. 

A sample slice of the full imaging sequences are reported in Figure 10 and Figure 11 respectively 

the sequence without the Head Frame and with the Head Frame, while a render of the MR 

Volumes in both cases are reported in Figure 12. 

 

 

 

                               

Figure 8: Slice n.20 on MR set with phantom and Head Frame. Bottom-right shadows is water moist 

over part of the Head Frame structure. 
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Discussion 

Sheep has been employed as the animal model for translational applications in a range of studies 

including epilepsy [5], neuropsychiatrics [23], traumatology [2], cardio- vascular [24] and 

neurological diseases [3]. The ovine brain size features gyrencephalic sulci as in the human brain, 

showing better modelling characteristics when compared to lissencephalic rodent brain [25]. Even if 

primate brains are anatomically and functionally more similar to human brains, their use is limited 

due to the strict ethical constraints 

[26] [27]. The pig animal model seems to be the most used in neuroscience [28] [29], but aspects of 

their skull anatomy should be considered. For instance, the anterior pig head has a planar forehead 

and vertex that end in a high crest where the neck muscles are inserted. Laterally, the vertex is 

limited by the parietal bone, reducing the accessible brain area to a small square, as shows in [30]. 

Additionally, minipig breeds and domestic pig have a fast growth index if compared with sheep, 

with an average daily weight gain for Large White-Landrace reported to be between 734 and 992 

g/day in the first six months of life [31], reaching the adult stage (1-2 years in age) at more than 

300 Kg [28]. 

 

 

 

 

 

 

 

 

 

                           

Figure 9: SNR for dataset A (red line - without Head Frame) and for dataset B (blue line - with Head  Frame). 

Market points are SNR of the Figure 8 and Figure 9, respectively with value 2636 and 2378 (−9.78%) 
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                                                  Figure 10: MRI sequence with only the phantom (slice n.35). 

 

 

                         

Figure 11: MRI sequence with phantom and Head Frame (slice n.35). The image report a visible 

attenuation of SNR (as reported in Figure 9) but without geometrical distorsion 
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Figure 12: MRI Volume Render: on the left, only the phantom while on the right, the phantom and the 

Head Frame. In the latter, wet tissue placed over the Head Frame to enhance the visualisation.  

 

Last, minipig and pig models at 3-6 months develop a sizeable frontal sinus that pneumatizes all of 

the dorsolateral part of the skull [12], thus becoming impracticable for application in neurosurgery 

experiments [11] and chronic postoperative management. The sheep skull bone anatomy is 

distinguished by less skull cap convexity than human and primates [32], requiring a bespoke head 

frame design to be used in near investigation studies. 

In literature, previous studies [10, 11, 33] have used an experimental stereotactic frame which is 

not applicable in a clinical setting because the lack of MRI compatibility involves the use of a 

specific brain atlas which could lead to inaccuracy during the surgi- cal procedure, this latter 

bolstered by the variability within the ovine species. Frameless stereotactic systems could be 

employed to overcome the variability issue during the sur- gical procedure, however, the cost 

associated to neuronavigation systems are significant [34]. Dhawan et al. [35] demonstrated that 

these two stereotactic methods have equiva- lent accuracy, thus frame-based systems could be 

more cost-effective for animal studies, especially in the context of interventional MR studies, 

which are becoming increasingly popular in related literature. In light of these findings, framed 

systems facilitate animal management during general anaesthesia by supporting the head in a 

fastened position during the surgical procedure and transportation (e.g. between the surgical room 

and the CT or MRI suite). Last, amid frame systems it is possible to avoid using bone fiducials, 

which in a research situation are employed on the same day of the surgical procedure, with 

additional stress to the animal. 
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Conclusion 

In this work, we present a novel head frame system for the ovine model, to address several clinical 

requirements of translational studies, such as CT/MRI compatibility, compatibility with a 

conventional human stereotactic CRW frame, robustness during the surgical procedure and 

robustness against the anatomical variability which is inherent in the sheep model. The system 

described in this study may benefit future research projects using sheep as an animal model. 
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Abstract 

 

Diffusion  Tensor  Magnetic  Resonance  Imaging  (DTI)  allows  to  decode  the  mobility  of  water 

molecules in cerebral tissue, which is highly directional along myelinated fibres. By integrating the 

direction of highest water diffusion through the tissue, DTI Tractography enables a non-invasive 

dissection of brain fibre bundles. As such, this technique is a unique probe for in vivo characterization 

of white matter architecture. Unravelling the principal brain texture features of preclinical models 

that are   advantageously   exploited   in   experimental   neuroscience   is   crucial   to   correctly 

evaluate investigational findings and to correlate them with real clinical scenarios. Although 

structurally similar to the human brain, the gyrencephalic ovine model has not yet been 

characterized by a systematic DTI study. Here we present the first in vivo sheep (ovis aries) 

tractography atlas, where the course of the main white matter fibre bundles of the ovine brain has 

been reconstructed. In the context of the  EU’s Horizon EDEN2020 project, in vivo brain MRI protocol 

for ovine animal models was optimized on a 1.5T scanner. High resolution conventional MRI scans 

and Diffusion Tensor Imaging (DTI) sequences (b-value=1000 s/mm2, 15 directions) were acquired 

on ten anesthetized sheep ovis aries, in order to define the diffusion features of normal adult 

ovine brain tissue. Topography of the ovine cortex was studied and DTI maps were derived, to 

perform DTI tractography reconstruction of the corticospinal tract (CST), corpus callosum (CC), 

fornix (FX), visual pathway (VP) and occipitofrontal fascicle (OF), bilaterally for all the animals. Binary 

masks of the tracts were then coregistered and reported in the space of a standard stereotaxic 

ovine reference system, to demonstrate the consistency of the fibre bundles and the minimal 

inter-subject variability in a unique tractography atlas. 

Our results determine the feasibility of a protocol to perform in vivo DTI tractography of the sheep, 

providing a reliable reconstruction and 3D rendering of major ovine fibre tracts underlying 

different neurological  functions.  Estimation  of  fibre  directions  and  interactions  would  lead  

to  a  more comprehensive understanding of the sheep’s brain anatomy, potentially exploitable 

in preclinical experiments, thus representing a precious tool for veterinaries and researchers. 
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1. Introduction 

 

The organization of white matter microstructure and brain connections can be depicted in vivo 

by Diffusion Tensor Imaging (DTI), an advanced Magnetic Resonance (MR) technique which provides 

a unique probe to noninvasively quantify the directional, anisotropic mobility of water molecules 

within tissues (Basser and Pierpaoli, 1996). In cerebral white matter, water mobility is hindered 

along the main direction of the fibres by the multiple layers of myelin around the axons; therefore, 

the principal axis of the diffusion tensor aligns with the predominant fibre orientation within the 

tissue (Winston, 2012;Le Bihan, 2014). One of the most important applications of DTI technique is 

MR  tractography, or fibre-tracking, a method that can be used for the virtual dissection of the 

relevant  myelin-sheathed fibre bundles within the brain. MR tractography is the process of 

integrating fibre orientations within tissue into a trajectory connecting remote brain areas, 

starting from anatomical seed regions and following the directions of highest water diffusion until 

stopping criteria are met (Mori and van Zijl, 2002). 

DTI and tractography have broadened the understanding of the white matter pathways hidden 

within the brain tissue, complementing anatomical information from conventional MRI. 

Furthermore, the increasing exploitation of these technique in clinical studies has revealed their 

great potential for understanding healthy and pathological brain anatomy in humans, paving the 

way toward their application also in preclinical animal models. Therefore, translational 

researchers are increasingly embracing these techniques for a comprehensive description of 

white matter fiber distribution in healthy animals as well as to study developmental pathologies, 

exposure to teratogens, or the effects of malnutrition and hypoxia in the prenatal environment 

(Oguz et al., 2012). 

Remarkably, the evaluation of brain structural and ultrastructural features with DTI in preclinical 

models offers the possibility of validating the imaging-derived information by comparing them 

to histological sections with precise spatial correlation, once the animals have been sacrificed. 

Different animal models have been investigated with DTI, such as ferrets (Hutchinson et al., 

2016;Hutchinson et al., 2017), rats (Li et al., 2011;Van Camp et al., 2012), tree shrew (Dai et al., 2017) 

and mice (Harsan et al., 2010;Jiang and Johnson, 2010). Nonetheless, it is worth of note that most 

of DTI studies on larger animals have been performed on formalin-fixed brain sections and not in 

vivo, thus potentially invalidating the diffusion properties of brain tissue. This has been the case 
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of studies on non-human primates (Makris et al., 2010;Rane et al., 2010;Uematsu et al., 2017), 

dolphins (Berns et al., 2015), dogs (Jacqmot et al., 2013;Anaya Garcia et al., 2015) and cats 

(Takahashi et al., 2011). 

On the other hand, the application of DTI and tractography has been extremely deficient in 

other species considered as relevant models in translational research, including sheep. Sheep offer 

a great degree  of  research  translatability  into  basic  brain  functions  as  they  have  a  long  

lifespan, have rudimentary and well-established housing demands and are safer than primates 

to be managed in experimental settings, especially because they do not have hands to interfere 

with equipment (Perentos et al., 2017). Most importantly, the gyrencephalic ovine brain is 

anatomically and functionally more similar to human brain if compared to the lissencephalic 

brain of rodents and rabbits, due to its relatively large size and the presence of sulci (Finnie, 

2001). Further similar features to humans are evident in electroencephalographic records, 

neuroradiological features, and neurovascular structures (Morosanu et al., 2019), thus making the 

ovine model of particular relevance in the field of experimental neuroscience. For example, it has 

been studied in the context of epilepsy (Stypulkowski et al., 2014), neuropsychiatry (Nestler and 

Hyman, 2010), traumatic brain injury (Dai et al., 2018) and neurodegenerative diseases 

(Karageorgos et al., 2016;Reid et al., 2017). The similarities between caudate, putamen and 

substantia nigra in the sheep and human brains, in fact, provide a valuable and valid tool for 

modelling basal ganglia diseases (Murray et al., 2019). Intriguingly, studies recently demonstrated 

neurofibrillary accumulation in normal aged sheep, extremely similar to the tau deposits associated 

to Alzheimer’s disease (AD) in humans, so that researchers are now testing the fitness of the ovine 

for future genetic manipulation to generate AD animal model (Reid et al., 2017). 

Furthermore, due to these similarities with human brain, the ovine model can be particularly 

valuable in the context of neurosurgical research to test new devices and peri-operative 

technologies. In this scenario, the possibility to explore in vivo the imaging features of the ovine 

brain becomes relevant for pre-surgical planning and intraoperative neuronavigation. Despite the 

growing interest in using sheep as a model of large mammals with complex central nervous system, 

comprehensive ovine MRI studies are rather limited, presumably because they are hardly feasible 

and require a well-organized and specialized multidisciplinary team (Capitanio and Emborg, 2008). 

The main efforts have been focused on defining MRI templates and atlases of the ovine brain based 

on conventional T1- and T2-weighted MR  images,  and  to  build  up  a  standard  stereotaxic  ovine  
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reference  system  (Ella  and  Keller, 2015;Nitzsche et al., 2015;Ella et al., 2017). On the other 

hand, advanced MR imaging studies including DTI on sheep are even rarer and on a small number 

of animals. To our knowledge, the only work on the applicability of DTI on living healthy sheep has 

been conducted by Lee et al., on a limited sample of 6 sheep (Lee et al., 2015). They exploited 

functional MRI (fMRI) to visualize the sensorimotor and visual cortex activated by external sensory 

stimuli, then performed DTI tractography to reconstruct corticospinal tract and optic radiations 

starting from the activated cortical areas (Lee et al., 2015). Despite representing a step forward for 

advanced MRI of the ovine models, a comprehensive 

analysis of the ovine white matter organization using DTI is still lacking. Furthermore, an ovine 

population-averaged MR tractography atlas within a stereotaxic space has not been reported yet. 

Hence, the aim of the present work is to demonstrate the feasibility and reproducibility of 

DTI tractography in living sheep by reconstructing the main white matter fibre bundles of the ovine 

brain. 

Moreover, the registration of every tract of all the animals were performed and the integration of 

these population-averaged tractography data within a standard stereotaxic ovine reference system 

(Nitzsche et al., 2015) was implemented to generate the first healthy sheep brain tractography atlas 

in vivo. 

 

2     Materials and Methods 

 

2.1 Study population and ethics 

 

A total of ten adult female adult sheep ovis aries (Bergamasca, weight = 72,2 ± 5,4 kg) were used 

in this  study,  carried  on  in  the  context  of  the  European  Union’s  EU  Horizon  EDEN2020 project 

(https://www.eden2020.eu/) that has the final aim of testing an integrated technology platform 

for minimally invasive brain surgery on ovine models. Sheep have been selected due to their 

anatomy, physiology, and neurological development. The choice of female gender was due to the 

size, weight and to the social behaviour characterized by a low agonist component, favoring housing 

and handling. 

http://www.eden2020.eu/)
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For all subjects, a detailed clinical and physiological score was daily reported in an ad-hoc ethogram 

(Supplementary Table 1). The sheep were fasted but with free access to water 24 hours prior to 

each imaging session. All animals were treated in accordance with the European Communities 

Council directive (2010/63/EU), to the laws and regulations on animal welfare enclosed in D.L.G.S. 

26/2014. 

Ethical approval for this study was obtained by the Italian Health Department with authorization n 

136 635/2017. 

 

2.2 Anesthesia and in vivo MR Imaging 

Animals were anesthetized via the intravenous administration of Diazepam 0,25 mg/Kg + Ketamine 

5 mg/Kg, intubated and then maintained under general anesthesia with isoflurane 2% and oxygen 

2L. 

They were transported to the imaging facility and placed in prone position, with the head located in 

a MRI-compatible headframe (Renishaw®) specifically made for the EDEN2020 project. MR imaging 

was performed on a 1.5T clinical scanner (Achieva, Philips Healthcare) in a veterinary imaging facility 

[Fondazione La Cittadina Studi e Ricerche Veterinarie, Romanengo (CR), Italy]. Small and medium 

flex coils fixed over both hemispheres were used. Diffusion Tensor Imaging (DTI) data were obtained 

from all the animals by using a single-shot echo planar sequence with parallel imaging (SENSE factor 

R=2). Diffusion gradients were applied along 15 non-collinear directions, using a b-value of 1000 

s/mm2. The detailed imaging parameters for DTI were: TR/TE 6700 ms/84 ms; acquisition isotropic 

voxel size 2 × 2 × 2 mm; 45 slices. Two signal averages (NSA=2) were obtained, for a total scan time 

of 5 minutes 34 seconds. A T1-weighted volumetric scan was also acquired from each animal by using 

a three-dimensional fast-field-echo (3D-T1 FFE) sequence with the following parameters: TR/TE 25 

ms/5 ms; flip angle 40°; voxel size 0.667 × 0.667 × 1.4 mm; SENSE factor R=2; 150 slices; acquisition 

time 8 min 40 s. All the MRI sequences were oriented perpendicular to the longitudinal axis of 

the scanner.   Other   structural/anatomical   MR   imaging   sequences   were   acquired   for   purpose 

of neuronavigation in the context of the EDEN2020 project, including T2-weighted turbo spin-

echo (TSE),  three-dimensional  high-resolution  time-of-flight  (TOF)  MR  angiography,  

Susceptibility- Weighted  Imaging  (SWI)  and  phase-contrast  images  (PCA)  for  MR  venography.  

The  detailed parameters of these sequences are listed in Supplementary Table 2, but they were 

not used for the herein presented study. 
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2.3 DTI data analysis and tractography reconstructions 

 

 

Figure 1 – DTI-derived maps for a representative ovine brain 

Computed maps of diffusion (mm2/s x 10-3) are shown in gray scale (upper row) and color LUT (Look Up Tables) 

display (lower row). (A) The Axial Diffusivity (AD) map shows the diffusion along the principal axis of the 

diffusion tensor. (B) The Radial Diffusivity (RD) map shows the diffusion perpendicular to the main axis of the 

tensor. Notably, low values in correspondence of the ovine internal capsule indicate the dominance of the 

principal direction in that region. (C) The Mean Diffusivity (MD) map shows the the orientation-averaged 

apparent diffusivity, averaged on the diffusion orientations. (D) The Fractional Anisotropy (FA) map shows the 

scalar value of the fraction of anisotropic diffusion over the total diffusion, and range between 0 and 1 (upper 

row). From the combination of the FA and principal eigenvector ε1, color maps are derived with conventional 

color-coding (Pajevic and Pierpaoli, 1999) (lower row), displaying fibers with rostral-caudal (R-C) direction in 

blue, fibers with dorsal-ventral (D-V) direction in green, and fibers with medial-lateral (M-L) in red. 

 
 
 

DTI data were analyzed with the Philips IntelliSpace Portal software platform, version 8.0 (Philips 

Healthcare, Best, The Netherlands). DTI datasets were firstly corrected for motion artifacts by 

applying affine  alignment  of  each  diffusion-weighted  image  to  the  b  = 0  image,  then  the  DTI  

sequence  was aligned to the volumetric T1 sequence by means of the Local Correlation tool of the 

Philips IntelliSpace Portal software platform v8.0. Diffusion tensor element were calculated and 

diagonalized at each voxel using  the  MR  Diffusion  tool  of  the  Intellispace  Portal  software  

platform,  obtaining  the  three eigenvectors (ε1, ε2, ε3), and diffusivities (1, 2, 3) along these 

vectors. From these, Mean Diffusivity (MD), Axial Diffusivity (AD), Radial Diffusivity (RD) and 
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Fractional Anisotropy (FA) maps were computed for each sheep (Figure 1). MD is a measure of the 

orientation-averaged apparent diffusivity within a voxel, while AD and RD respectively measure 

water diffusion parallel and perpendicular to the main axis of the tensor. The Fractional Anisotropy 

(FA) map describes the degree of diffusion anisotropy within a voxel, being a scalar value between 

0 and 1. From the combination of the FA and principal eigenvector ε1, color maps were generated 

with conventional color-coding (Pajevic and Pierpaoli, 1999). Color-coded FA maps emphasizes the 

directionality of diffusion by displaying fibers with rostral-caudal (R-C) direction in blue, fibers with 

dorsal-ventral (D-V) direction in green, and fibers with medial-lateral (M-L) in red (Figure 1D). 

Whole brain deterministic tractography was performed using the MR Fiber Trak tool of the 

IntelliSpace Portal software through the fiber assignment by continuous tracking algorithm, with 

an FA threshold of 0.15 and an angle threshold of 27°. Inclusive and exclusive seed regions-of-

interest (ROIs) were manually delineated on the color-coded FA maps for a virtual dissection of the 

main ovine white matter tracts. High resolution T1-weighted volumetric images were superimposed 

to the color-coded FA maps to facilitate the identification of the main anatomical structures in the 

sheep. For each tract, seed ROIs were placed in different anatomical positions according to the 

different fiber tracts in consensus by an expert neuroradiologist (A.C. with 15 years of experience in 

DTI tractography reconstructions), a PhD student in neuroimaging (V.P., with two years of 

experience in DTI tractography analysis) and a PhD student in veterinary sciences with a specific 

training on anatomical dissection of ovine brain (M.T., with  four  years  of  experience).  White  

matter  tracts  were  identified  on  the  basis  of  the  ovine neuroanatomical  literature  (Clarke  

and Whitteridge, 1976;Bortolami and Callegari, 2001;Barone 2010;Ozdemir, 2015;John et al., 

2017), human DTI atlas (Wakana et al., 2004;Catani and Thiebaut de Schotten,  2008)  and  gross  

dissections  of  ovine  brain  (Grisham,  2006).  ROIs  were  selected  to encompass the tract cross-

section and were labelled as inclusive for start tracking, both in forward ad in backward directions 

(Figure 2A-E). Raw tracts resulting from the first tracking procedure were then refined  on  the  basis  

of  anatomical  knowledge,  by  removing  eventual  contaminating  fibers with exclusion ROIs (Figure 

2F). Five eloquent white matter tracts were reconstructed bilaterally in each sheep:  corticospinal  

tract  (CST),  corpus  callosum  (CC),  visual  pathway  (VP),  fornix  (FX)  and occipitofrontal fasciculus 

(OF). These tracts were chosen as they represent the main fiber bundles of the ovine brain, that 

can be reconstructed for neurosurgical planning purposes in typical in vivo DTI studies. Fiber tracts 

were finally displayed as volumes in different colors, and were overlaid as binary masks onto the 

T1-weighted volumetric images of each sheep, previously coregistered with the DTI 
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sequence. These binary images were saved in the Surgical Navigation-compatible DICOM (Digital 

Imaging and Computing in Medicine) format of the Intellispace software. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – Location of the ROIs for tractography reconstructions 

Seed regions-of-interest (ROIs) for each tract were manually delineated on the color-coded directional FA 

maps. From these ROIs the deterministic tractography algorithm started reconstructing ovine WM tracts. The 

ROIs were contoured in precise anatomical positions selected to encompass the tract cross-section, according to 

the location of different fiber tracts. (A) ROIs for CST tractography reconstruction were placed on the 

transverse plane. The first ROI was placed in the genu of the internal capsule, that it is known to comprehend 

the ovine pyramidal tract and is found between the caudate nucleus and the putamen. The other ROI included 

the ventral mesencephalic plane, where the pons is located. (B) ROIs for CC tractography reconstruction were 

placed on the sagittal plane. ROIs were carefully positioned on two slices to contain a section of the fiber tract of 

interest in 3D space. In particular, the corpus callosum at the level of septum pellucidum was contoured by a ROI 

extending from the infrasplenial sulcus to the genual sulcus. (C) ROIs for VP tractography reconstruction were 

placed on the transverse plane. The ROI including the chiasm was set between the rostral encephalic 

longitudinal fissure and the posterior tuber cinereum. The optic radiations are known to run in the retrolentiform 

portion of the internal capsule and to diverge caudally before reaching the occipital cortex. Thus, a ROI has 

been placed just above the caudal portion of the lateral ventricle. (D) ROIs for FX tractography reconstruction 

were placed on the transverse plane. The first ROI encompassed the white matter medial to the genu of the 

internal capsule, rostral to the anterior horns of the lateral ventricles. The other ROI has been contoured 

posteriorly to the optic chiasm, external to the rostral arm of the internal capsule. (E) ROIs for OF tractography 

reconstruction were placed on the transverse plane. The rostral ROI was placed in the orbital gyrus, just 

posterior to the olfactory bulbs. The caudal ROI has been placed just above the caudal portion of the lateral 

ventricle, exactly as for the optic radiations that are known to be closely surrounded by the OF fibers. (F) 

Example of raw CC and FX tracts resulting from the first tracking procedures, that were successively refined by 
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inserting exclusion ROIs that allowed the removal of spurious fibers. 

 

2.4 Ovine Brain Tractography Atlas creation 

 

For each sheep, the DICOM images of the T1-weighted volumetric series and of the coregistered 

tracts’ binary masks were converted to the NIfTI (Neuroimaging Informatics Technology Initiative) 

format using the dcm2nii tool (https://people.cas.sc.edu/rorden/mricron/dcm2nii.html). The 

whole brain of each sheep was extracted from the original T1-weighted volumetric images using the 

FMRIB Software Library (FSL, University of Oxford, https://fsl.fmrib.ox.ac.uk/fsl/) brain extraction 

tool (BET). Then, the original T1-weighted volumetric series of each sheep was registered to the 

publicly available T1- weighted stereotaxic ovine brain template developed by (Nitzsche et al., 

2015) by using an affine transformation with the FLIRT tool of FMRIB Software Library (FSL, 

https://fsl.fmrib.ox.ac.uk/fsl/). The derived transformation matrix was consequently applied to all 

the reconstructed tracts. All the tracts in the stereotaxic atlas space were finally converted into 

binary mask images using ITK-SNAP (V3.6.0) software 

(http://www.itksnap.org/pmwiki/pmwiki.php). In each mask image, the voxels containing at least 

one streamline of the tract are associated with value 1, the others with value 0. The binary mask 

images of each tract in the stereotaxic space were eventually summed by means of the ‘fslmaths’ 

function of FSL into a single mask, representing voxel-by-voxel probability of the presence of the 

tract in the 10 animals, thus ranged between 0 and 10. 

 

 

 

 

 

 

 

 

https://fsl.fmrib.ox.ac.uk/fsl/
http://www.itksnap.org/pmwiki/pmwiki.php)
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Figure 3 – Reproducibility of CST tractography reconstruction in all the 10 sheep 

The anatomical course of the corticospinal tract (CST, blue) is shown as three-dimensional rendering in a sagittal 

(A) and frontal (B) view for each of the ten sheep. At a qualitative, visual assessment the course of tracts appears 

very similar across the 10 animals, thus highlighting the reproducibility of the tractography pipeline 

 

 

3 Results 

3.1 DTI Tractography analysis in individual sheep 

DTI data acquisition was performed in all the ovine models, and DTI datasets were successfully post- 

processed in all the cases, allowing the in vivo dissection of the main projection, associative and 

commissural fibers in the ovine brain. Reconstruction of the corticospinal tract (CST), corpus callosum 

(CC), visual pathway (VP), fornix (FX) and occipitofrontal fasciculus (OF) was feasible in all the ten 

sheep. A detailed description of seed ROIs’ position for each tract has been reported in Figure 2. The 
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course of tracts was reproducible and consistent across all the animals. Figure 3 shows an example 

of the whole anatomical course of the CST both in the sagittal and frontal view for each of the ten 

sheep, revealing a minimal inter-sheep variability at a qualitative, visual assessment. 

3.1.1 Corticospinal tract (CST) 

 

 

 

 

Figure 4 – Details of the course of the CST in a representative sheep 

(A) CSTs are displayed as volumes on the corresponding T1-weighted anatomical image. (B) CSTs are 

overlaid as binary masks onto the T1-weighted volumetric images, previously coregistered with the DTI 

sequence by means of of the Local Correlation tool of the Philips IntelliSpace Portal software platform 

v8.0. 

 

The ovine primary motor cortex lays in the precruciate gyrus, immediately anterior to the cruciate 

fissure, and the CST is the main efferent bundle that connects it to the spinal cord (Figure 3 and 

4). Along its course, the CST reaches the corona radiata and its fibers intersect the radiation of the 

corpus callosum at the level of centrum semiovale. Then, it passes through the posterior limb of 
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the internal capsule and continues to the medial portion of cerebral peduncle, reaching the lateral 

funiculus. After the pontine nuclei, the white matter bundles converge in the pyramidal tract on the 

ventral bulbi surface. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5 – Details of the course of the main ovine white matter fiber bundles in a representative sheep 

Tracts are displayed as volumes onto high-resolution T1 anatomical images and showed in sagittal, lateral, 

coronal and transverse views (A) Corpus callosum (CC, orange): commissural bundle, connecting the right and 

left hemispheres, responsible for the integration between motor and cognitive functions. (B) Visual pathway 

(VP, yellow): constituted by the optic nerves, chiasm, optic tracts and optic radiations, responsible for visual 

function. (C) Fornix (FX, pink): part of the limbic system, responsible for memory-related functions. (D) 

Occipitofrontal fasciculus (OF, green): associative tract, whose precise function in sheep has not been 

exhaustively identified yet. 

 

3.1.2 Corpus callosum (CC) 

The ovine CC is a large band of fibers constituting the main commissural structure of the brain and 

it links homologous frontal motor areas from the two different hemispheres. Its medial part, the 

body, is located along the brain midline and forms the roof of large part of the lateral ventricles, then 

dispersing its fibers at the level of centrum semiovale, crossing the corona radiata. Anteriorly, the 
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genu of CC is identifiable as sharply bent white matter bundles, that narrow into the rostrum as the 

genu turns under. It connects the frontal cortex bilaterally, generating an arch path known as 

forceps minor. Posteriorly, the CC ends in the splenium: fiber bundles reach the parieto-occipital 

lobes bilaterally, generating an arch path known as forceps major that links parietal sensitive 

homologues areas. The callosal sulcus separates the CC from the adjacent midline cortex, the 

cingulate gyrus (Figure 5A). 

 

3.1.3 Visual pathway (VP) 

 

The VP in ovine crosses the brain rostro-caudally. Initially, the optic nerve connects the retina to 

the optic chiasm, which is surrounded by the Circle of Willis, allowing communications between 

the carotid and vertebral or basilar supplies to the brain. From the chiasm, optic tracts depart passing 

lateral to the cerebral peduncles and ending in the thalamic lateral geniculate nuclei (LGN). These 

nuclei constitute the thalamic receiving area for vision and are sidelong the medial geniculates, the 

thalamic relay nuclei for auditory fibers. From LGN, fibers are conveyed via the geniculocalcarine 

tract or optic radiation through the sublenticular portion of the internal capsule, and then to the 

primary visual cortex in the occipital lobe (Figure 5B).  

 

3.1.4 Fornix (FX) 

 

The FX is composed by an arch of fibers arising from the fimbria below the posterior portion of 

the corpus callosum and bending downward to dive below the surface, in route to the mammillary 

bodies. The FX constitutes part of the dorsal and rostral limit of the thalamus and is divided by a 

commissure which connects the two hippocampi, named commissure of fornix. Posteriorly, it is 

composed by two stripes of white matter that are known as fornix legs and are the extensions 

of the hippocampus fimbriae. Fornix legs continue rostrally forming the body of the fornix, which 

then creates two different ropes named fornix columns. The fornix columns proceed ventrally, 

ending the pathway into the corpi mamillari. The anterior arch of the fornix is adjacent to the 

anterior commissure, which connects the olfactory bulb, pyriform area and amygdala of the two 

hemispheres (Figure 5C).  
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3.1.5 Occipitofrontal fasciculus (OF) 

 

The OF connects the frontal with the occipital lobe, starting rostral to the olfactory bulbs. It is 

found along the lateral border of the caudate nucleus and on the lateral aspect of the CST. After 

passing near the deep nuclei, under the external capsule and claustrum, it travels in contiguity with 

optic radiations and reaches the occipital cortex (Figure 5D). 

 

3.2 The Ovine Brain Tractography Atlas 

 

An ovine brain tractography atlas was successfully obtained by combining every single white matter 

tract of the ten animals. Figure 6 shows the resulting probability maps for each tract superimposed 

to the publicly available T1-weighted stereotaxic ovine brain template (Nitzsche et al., 2015).  

Representative slices are displayed, showing the main course of each tract in all the ten animals 

(Figure 6 A-E). Tract masks are color-encoded according to the number of animals in which the 

tract passes through each voxel. Voxel values range from 1 (meaning that the voxel is occupied by 

the tract of a single sheep) to progressive numbers the more the tract is consistent between the 

animals, up to a value of 10 in voxels occupied by the tracts of all the 10 sheep. The complete 

set of probability maps throughout the whole the rostro-caudal extent of the atlas is available for 

download at https://www.eden2020.eu/data-sets/. Intensity values can be visualized in gray or in 

color scales with FSLeyes (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes). As an example, in Figure 

6 the intensity values are shown in color scales, excluding the voxels less consistent between the 

animal cohort. In fact, fixing the cutoff at 4 allows to visualize only the fibers that are consistent in 

at least 4 sheep out of 10. 
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Figure 6 – Representative images from the ovine tractographic atlas 

The tractography atlas of the five ovine tracts is visualized by means of FSLeyes in sagittal view for CST (6A) and 

CC (6B), transverse view for FX (6C) and coronal view for VP (6D) and OF (6E), overlaid onto the publicly available 

stereotaxic T1-weighted ovine brain atlas 0.5 mm. The origin of the reference system with the xyz- values 

(0;0;0) is a vertical line perpendicularly intersecting the superior aspect of the rostral commissure. All 

coordinates are given in millimeters (mm). Values of the x-axis increase from left to right, values of the y-axis 

increase from rostral to caudal, while values of the z-axis increase in the dorsal direction (Nitzsche, 2015). 

(6A) sagittal view for CST: on x axis, from -12.9 to 5.1mm (slice spacing: 1.2mm) 

(6B) sagittal view for CC: on x axis, from -14.6 to 3.4mm (slice spacing: 1.2mm) 

(6C) transverse view for FX: on y axis, from 3.65 to -17.35mm (slice spacing: 1.4mm) 

(6D) coronal view for VP: on z axis, from -11.1 to 15.9mm (slice spacing: 1.8mm) 

(6E) coronal view for OF: on z axis, from -6.225 to 17.025mm (slice spacing: 1.55 mm) 

A binary mask of each tract was firstly obtained from every sheep. The binary mask images of each tract in the 

stereotaxic space were summed into a single mask, in which the value of every voxel represents the number of 

animals in which the tract passes trough that voxel. By fixing the cutoff value at 4, only the fibers that are 

consistent in at least 4 sheep out of 10 are shown 
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4 Discussion 

 

In this work we demonstrate the feasibility of a protocol to perform in vivo DTI tractography of the 

sheep model, providing a reliable reconstruction and 3D rendering of major ovine fiber tracts 

responsible for different functions. A detailed pipeline for DTI data acquisition, preprocessing 

and analysis, as well as for the identification of seed ROIs for tractography, has been implemented in 

order to reconstruct the location and trajectory of five eloquent white matter tracts representative 

of the main fiber bundles included in typical in vivo DTI studies, namely the corticospinal tract 

(CST), corpus callosum (CC), visual pathway (VP), fornix (FX) and occipitofrontal fasciculus (OF). In 

fact, exclusively the ovine motor pathway (Lee et al., 2015;Peruffo et al., 2019) and optic radiations 

(Lee et al., 2015) have been previously described in DTI studies on the sheep model, with a limited 

number of subjects. Our analysis improved the anatomical understanding of the normal 

appearance of these ovine white matter bundles and allowed a comparison to the homologous 

structures of human and other mammals, which is pivotal for the translational purpose of using 

sheep models in neuroscience. Indeed, white matter fibers have been conventionally classified 

into different categories depending on their paths, both in humans and in animals (Jacqmot et al., 

2013;Anaya Garcia et al., 2015). For instance, tracts in the brainstem comprise the motor fibers of 

the CST and its cerebellar connections, while projection fibers include the suprathalamic portion of 

CST that connects cortical to subcortical white matter. With respect to the other primates, the CST 

in sheep is smaller and composed of thinner fibers (John et al., 2017). It is interesting to highlight 

that the ovine motor cortex is mesial, constituted by the precruciate gyrus that is located before the 

cruciate fissure. The latter corresponds to the human fissure of Rolando or central sulcus, and 

intersects the medial longitudinal fissure to mark off the anterior third of the cortex (Grisham, 

2006). Due to the para-sagittal disposition of the motor cortex, along the longitudinal fissure, the 

sheet of the corona radiata can be appreciated on the sagittal plane. Conversely, the human motor 

cortex extends along the central sulcus in the precentral gyrus, thus the corona radiata fans out in 

an arc on the coronal plane (Wakana et al., 2004). Another white matter category includes 

commissural tracts that connect the right and left hemispheres and are responsible both for 

homologous and heterotopic associations, as the CC. It consists of a flat bundle of fibers both in 

sheep and humans, spanning part of the longitudinal fissure (Barone 2010). Additional eloquent 

tracts that we managed to reconstruct in the ovine model are the VP for the eyesight and the FX, that 

is part of the limbic system. In the ovine VP, the same components that carry visual information from 
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the environment to the  brain in humans are identifiable, including the optic nerve, optic chiasm, 

optic tract, lateral geniculate nucleus, optic radiations and visual cortex, located in the occipital 

lobe as already described in the literature (Clarke and Whitteridge, 1976). Notably, the percentage 

of fibers that do not cross in the contralateral optic tract represents a recent filogenetic 

acquisition that allows a stereoscopic vision, thus it reaches only 11% in ovine, while 47% in 

humans (Barone 2010). Moreover, in sheep, a small supplementary bundle of fibers defined as 

fasciculus paraopticus runs along the medial margin of the optic tract. It groups fibers coming from 

the contralateral retina and can be considered an isolated portion of the medial root of the optic 

tract (Barone 2010). As far as the FX is concerned, it appears particularly trophic in sheep and 

emerges from the hippocampus as a C-shaped fiber bundle. It carries fibers from the hippocampus 

to the mammillary bodies (via the postcommissural fornix) and septal nuclei (via the 

precommissural fornix), and fibers from septal nuclei to hippocampus, thus seeming associated 

to sheep memory formation (Barone 2010), exactly as in humans. Eventually, a further category 

of white matter bundles is represented by the associative fibers, that connect two different 

cortical areas. In humans, they include the Inferior Fronto Occipital Fascicle, Uncinate Fascicle, 

Cingulum, Inferior Longitudinal fascicle, Superior Longitudinal Fascicle and Arcuate Fascicle, and are 

responsible for higher functions such as language production and comprehension. Since 

associative fibers have been described in dogs (Jacqmot et al., 2013;Anaya Garcia et al., 2015) 

bovines (Yaman et al., 2014) and dolphins (Wright et al., 2018), we expected to find the OF also 

in sheep, even if its precise function has not been completely elucidated in animals. Our study also 

aimed at evaluating the reproducibility of the sheep tractography pipeline. To this end, it was firstly 

figured out that the ROIs identified as appropriate seeds for the tracking algorithm could be 

consistently contoured in every animal, by taking into account an accurate examination of the  prior 

knowledge  on  sheep  neuroanatomy  (Clarke  and  Whitteridge,  1976;Bortolami and Callegari, 

2001;Barone 2010;Ozdemir, 2015;John et al., 2017), human DTI atlas (Wakana et al., 2004;Catani and 

Thiebaut de Schotten, 2008) and gross dissections of ovine brain (Grisham, 2006). At a qualitative, 

visual assessment the course of tracts appears very similar across the 10 animals, thus highlighting 

the reproducibility of the tracking pipeline, adding strength and consistency to our findings. 

Furthermore, in order to precisely quantify inter-sheep similarity and to provide an information 

regarding the average position of each tract and the normal variability across sheep, the ten 

individual MRI datasets were separately analyzed and then coregistered to a publicly available 

stereotaxic T1- weighted ovine brain atlas (Nitzsche et al., 2015) in a standard coordinate system. 
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A population- averaged atlas representing the five most eloquent white matter ovine fiber 

bundles was generated, providing  a  standard  sheep  brain  tractography  template  that  can  be  

easily  overlaid  onto  the aforementioned reference space. As confirmed by many researchers 

(Ella and Keller, 2015), the possibility to integrate our tractography reconstructions into other 

publicly available databases is of striking significance, since the availability of a common reference 

space for standardization is the basis for any future significant neuroimaging study. In fact, the 

atlas would offer to veterinaries and researchers the possibility to incorporate tractography in 

the study of numerous brain diseases in the ovine translational models, even if DTI acquisitions are 

not available. For example, Staudacher et al. pointed out that new technologies and tools are 

needed to improve the accuracy in brainstem biopsies essential for histopathological diagnoses 

(Staudacher et al., 2014), and the atlas could be fundamental to this purpose, precisely locating the 

CST pyramids. Furthermore, despite the possibility to identify ischemic injuries in ovine white 

matter by means of conventional MRI (Ferriero, 2006;Fraser et al., 2007), tractography would add 

specificity to the study of the complex pathophysiology of white matter damages, allowing 

researchers to focus their analyses on the core of the fiber bundles. From a more general 

perspective, then, the tractography atlas will facilitate the localization of different sheep cortical 

areas, implementing future studies on acute mapping procedures and possibly allowing the 

recording of motor potentials besides the sensory ones elicited by Gierthmuehlend et al. in a 

recent study (Gierthmuehlen et al., 2014). 

Key features of the proposed tractography atlas include also its versatility and adaptability to 

various clinical contexts. Indeed, the atlas consists in masks of white matter tracts that are not 

binary, but that are weighted from 1 to 10 according to the number of fiber bundles present in 

every specific voxel. The comprehensive tract masks that we generated for CST, CC, VP, FX and OF, 

in fact, derived from the sum of the corresponding fibers of 10 individual sheep previously 

coregistered to the same reference space. Therefore, their central core resulted common to all 

the animals, while subtle anatomical variations could be appreciated for more external fibers. 

Specifically, all the comprehensive masks can be thresholded for any value from 1 to 10 according 

to particular experimental needs, so to visualize and consider different levels of inter-subject 

variability. As an example, in the field of neurosurgical research, presurgical planning on sheep 

must be precisely tuned depending on the final aim of the procedure, both in the clinical veterinary 

routine as well as in experimental settings, in order to faithfully reproduce the human patient 

scenario. On one hand, if the ultimate goal of the surgery is to precisely target WM tracts with 
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electrical stimulation, the operator would probably want to consider only fibers that we tracked in 

8-10 out of the total of 10 sheep, to rely just on the tract portion more preserved across different 

animals. The study conducted by Stypulkowski et al. represents a fitting example in which the 

tractography atlas would have been valuable, since they stimulated the Papez circuit with deep 

brain stimulation (DBS) targeting the fornix only on the basis of anatomical notions, without the 

specificity of tractography reconstructions (Stypulkowski et al., 2017). 

On the other hand, if the final purpose of the procedure is to safely remove a mass lesion 

without compromising the sheep’s quality of life, the operator would probably prefer to consider all 

the possible fibers passing through the area of interest, to remain more conservative and spare 

eloquent structures. 

For example, the atlas could intriguingly implement the cerebral tumor model based on the 

injection of agar into sheep brain, proposed by Kamp et al. for the training of young neurosurgeons 

(Kamp et al., 2015). In this case, the mask threshold can be fixed around 3, in order to visualize 

white matter fibers present in at least 3 sheep out of the total of 10, to compute a realistic integration 

of WM obstacles in the simulation setting and to challenge neurosurgeons in sparing pivotal functions 

such as movement and vision. Ultimately, regardless of the context-dependent mask-threshold 

chosen by the operator, a detailed representation of white matter structures is essential for the 

study of many brain pathologies, from developmental ones to degenerative ones, so the 

exploitation of our atlas could be precious in several contexts, both for translational research in 

humans and in the veterinary application per se. 

A possible limitation of this study relies on the clinically-compatible MRI acquisitions on a 1.5T 

scanner, that may impede to depict fine anatomical details of the tracts. Recent studies have 

exploited DTI at 3T for tractography of white matter tracts of large animal models (Jacqmot et al., 

2013;Lee et al., 2015;Wright et al., 2018). However, 3T scanners are rarely available for veterinary 

cases. Nonetheless, in our study high-quality images have been obtained in clinically compatible 

scanning duration, without the need of keeping the sheep anesthetized for long time. Both 

diffusion maps and tractography reconstructions have been feasible with our datasets, and can be 

easily implemented in preclinical studies aimed at evaluating multiple time-points in vivo in an 

experimental setting resembling a clinical scenario. 

Finally, the possible inaccuracy derived from anatomical variability of the animals may be improved 

even considering other ovine breeds. Future investigation will be aimed at exploring the degree 
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of heterogeneity in brain anatomy between different ovine varieties, possibly leading toward a 

more accurate representation of pivotal neuroanatomical structures in exceptionally detailed 

atlases (Liyanage et al., 2016). 

 

5 Conclusion 

 

The present work built an innovative ovine tractography atlas, demonstrating that multiple white 

matter fiber tracts can be consistently reconstructed in sheep. Minimal inter-subject variability 

proves the reproducibility of our image post-processing, ROIs identification and fiber tracking. 

Additionally, the population-averaged atlas can be integrated into publicly available imaging 

software, paving the way toward space standardization of ovine imaging analyses. It will enable to 

design homogeneous  studies considering the direction and reciprocal position of white matter fiber 

bundles, that will significantly support the meticulous study of numerous brain pathologies. In 

conclusion, the ovine tractography atlas can be considered as a valuable tool to implement the 

knowledge of sheep’s brain anatomy and to improve the activity of clinicians and researchers using 

this animal model in neuroscience studies. 
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Supplementary Material 
 
 

1 Supplementary Tables 

 

1.1 Supplementary Table 1 -  Example of the detailed ethogram 

 
For all sheep, a dedicated ethogram was daily filled in during the entire housing period. Detailed scores 
for clinical and physiological parameters were reported in order to guarantee the animal wellbeing and 

to intervene if the animal balance is compromised 
 

Date 

Sheep n° 
Weight 

 

Score 

 

Date/Hour 

Sensorium 0/3  

Eating Y/N  

Ruminating Y/N  

Drinking Y/N  

Lameness 0-3  

Rectal Temperature 
(39-40°C) 

0/3  

Respiratory frequency 
(12-20 breaths per min) 

0/3  

Cardiac frequency 

(70-80 beat per min) 

0/3  

Body condition score (BCS)* 0/5  

 

Table legend on animal welfare (degree of severity): 
 

• Sensorium: Normal: 0 = no grade (normal behaviour), 1= low activity (reduction of 

motility, lethargy), 2 = no activity (stillness or reluctance to move), 3 = persistent 

decubitus or coma  

• Lameness: 0 = no grade, 1 = mild, 2 = moderate, 3= severe 

• Body temperature: 0 = normothermia, 1 = hypothermia, 2 = hyperthermia 

• Respiratory frequency: 0 = eupneic, 1 = bradypneic, 2 = tachypneic, 3 = dyspneic 

• Cardiac frequency: 0 = normocardia 1= bradycardia, 2=tachycardia, 

3=tachyarrhythmia 677  

• Y/N= YES/NO  

•*BSC: 0 = emaciated, 1 = very thin, 2 = thin, 3 = moderate (ideal), 4 = fleshy, 5 = very 

fleshy 
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1.2 Supplementary Table 2 – Complete MRI  protocol acquired in sheep 

 

Technical parameters of the MR sequences acquired in sheep are herein reported 

 

 
3D T1 T

2 

SWI PCA TOF HR DTI15 

Sequence sT1w_3D_FFE T2W_TSE SWIp s3D_PCA_SA

G 

TOF DTI15 

TR (ms) 25 7557 52 12 25 6700 

TE (ms) 5 110 0 7 7 84 

Flip Angle 40 90 20 10 20 90 

Acquisiti

on 

Matrix 

288x288 512x512 192x192 256x256 320X320 96x96 

Voxel size 

(mm) 

0.667x0.667 0.314x0.314 1x1 0.898x0.898 0.562x0.562 2x2 

Slice 

Thickne

ss (mm) 

1.4 3 2 1.6 1.2 2 

Slice number 150 34 56 76 120 45 

SENSE factor 2 1 2 1.8 2 2 

b-

value 

(s/m

m2) 

- - - - - 
0 

1000 (15 dir) 

Acquisiti

on 

Time 

8 min 40 sec 5 min 41 sec 4 min 34 sec 3 min 52 sec 4 min 5 sec 5 min 34 sec 
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Cytoarchitecture of commissural, association and projection fibres: a comparative study 
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Abstract 

This study is a first attempt to characterise the cytoarchitecture of commissural, long association 

and projection fibre, namely: the corpus callosum, the fornix and the corona radiata. Ovine samples 

from three different subjects have been stained with osmium tetroxide, embedded in resin and then 

imaged using scanning electron microscope combined with focused ion beam milling. Particular 

focus has been given to the characteristic cytological feature of the white matter: the axons. Via 2D 

images it has been estimated a homogeneous myelination via detection of ~40% content of lipids in 

all the different fibre tracts. Additionally, for each tract, a 3D reconstruction of volumes (average 

dimensions of 15x15x15μm) has been performed. Namely, outer axonal ellipticity, outer axonal 

cross sectional area and its relative perimeter have been measured. This study provides useful 

insight into the fibrous organisation of the tissue that can be described as composite material 

presenting elliptical tubular fibres with an average cross-sectional area of circa 0.52μm2 and an 

estimated mean diameter of 1.15μm. 

 

Introduction 

(Brain)  

Brain is a delicate, complex and still quite unknown organ. A multitude of cells constitute cerebral 

matter and cooperate toward its functionalities. Neurons, astrocytes, oligodendrocytes, and 

microglia are the main cellular bodies present in the brain (Fitzgerald, Greuner and Mtui, 2012).  

Overall they can be classified in neurons and non-neurons namely, glial cells. These serve as 

accessory cells with different supportive roles such as soft scaffolds, biochemical producers and 

blood-brain-barrier building blocks (von Bartheld, Bahney and Herculano-Houzel, 2016). 

 

 

 

(GM and WM) 

The biggest difference between the neurons and the glial cells is that the latter do not present 

myelinated portions. In fact neurons have long projections called axons that serve as a connecting 

network for electric signals. Because of this, an insulation for such signals is needed and myelin is 

the biological answer to it. This lipidic sheath is produced by oligodendrocytes (von Bartheld, Bahney 

and Herculano-Houzel, 2016) in the white matter (WM) of the central nervous system (CNS). The 

white colour is due to the high concentration of this fatty insulator and it appears as a striking visual 
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contrast when comparing the cortex made of grey matter (GM) and the WM. GM is rich in axonal 

bodies, glial cells and synaptic buttons, WM is rich in axonal protrusions, myelin and unmyelinated 

glia cells. 

 

(Myelin) 

As previously mentioned, myelin is a typical axonal feature made at 20% of proteins and at 80% of 

different lipids that give the axon its insulated characteristic. Although there are unmyelinated 

segments of 1-2μm in length called the Ranvier nodes, most of the axon is myelinated. These areas 

are called internodal sections and being their length correlated to the outer axon diameter, they 

range between 0.2mm and 2mm in length (Rushton, 1951). So an average volume of investigation 

of circa 15x15x15 μm was chosen as a compromise between optimising acquisition time and 

maximising the chances of characterising solely the myelinated portions of the axons. However, 

some unmyelinated axons coexist with their myelinated counterparts in the CNS. Their function has 

not been fully understood yet, and their frequency when compared to the myelinated axons it is 

relatively small, only the genu of the corpus callosum (CC) showing the highest percentage of 

unmyelinated axons (Lamantia and Rakic, 1990; Aboitiz et al., 1992). Therefore, in order to minimise 

their contribution to this investigation, only the mid body of CC has been taken into account for this 

study. 

 

(Axons) 

Axons connect different areas of the CNS and therefore their length varies a lot in humans ranging 

from millimetres to metres (Schuez and Miller, 2002). They contain various proteins and other 

macromolecules, structural filaments like microtubules and mitochondria (Fadić, Vergara and 

Alvarez, 1985; Kubota et al., 2011; Ouyang, Nauman and Shi, 2013). The conductivity speed of the 

axons is proportional to their diameters but wider axons are energetically more expensive and too 

bulky in a constrained environment such as the brain, so the presence of small axons is favoured in 

the cerebral tissue (Honda, Takamatsu and Wei, 1972; Perge et al., 2009). As a result, most of the 

myelinated axons in the WM areas of the brain show diameters between 0.3μm and 2μm while the 

rarer bigger axons have been found mostly in the Corpus Callosum and the white matter motor 

pathways  (Lamantia and Rakic, 1990; Aboitiz et al., 1992; Ong et al., 2008). 

(Pathways) 
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Many bundles of axons connect different regions (Gray, 1918; Woolsey, Hanaway and Gado, 2003) 

and can be divided in:  

• Commissural Pathways, such as Corpus Callosum (CC), connect the two different 

hemispheres 

• Association Pathways, such as the long association pathway Fornix (FO), connecting regions 

that belong to the same hemisphere  

• Projection Pathways, such as Corona Radiata (CR), connect the cortex to subcortical 

structures 

 

These pathways can be seen as brain connections made of bundles of axonal fibres that link different 

cerebral areas. The diameter of the axons has been shown to vary depending on the linked regions 

as a result of the different conductivities needed per each area (Innocenti, Vercelli and Caminiti, 

2014; Innocenti, Carlén and Dyrby, 2016) and additional differences between different species have 

been detected when comparing same pathways (Caminiti et al., 2009). However the diameters and 

their distribution have been consistent among different studies and appear to follow gamma 

unimodal one-tailed distributions characterised by long right tails reaching the aforementioned 

upper limits of the axonal diameters (Alexander et al., 2017; Jones et al., 2018; Liewald et al., 2014; 

Sepehrband et al., 2016) . 

 

(Mechanical reasoning) 

Other hints of differences between zones come from biomechanically driven studies. A 

comprehensive study by Jin and co-workers demonstrates that the mechanical properties of the 

cerebral tissue are rather complex. Not only it agrees with Franceschini et al. on the mechanical 

rate-dependency qualities and the role of the axons on the mechanical properties of WM 

(Franceschini et al., 2006). This study also highlighted the mechanical differences among different 

regions of the brain: CC, brain stem and CR  (Jin et al., 2013). Whether these differences are also 

caused by the geometry of the axons, is not explored being the scale of investigation not at a 

microscopic level. Looking at the engineering nature of the WM as an extremely soft composite 

material, not only the orientation but also the geometry of the fibrous component has a major role 

in the mechanical response and therefore needs to be addressed. 
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(Histological and Medical Reasoning) 

Axonal geometrical data merely extrapolated from MRI and diffusion imaging studies might be 

misleading. In fact, research from both animal and clinical studies, has demonstrated that with the 

latest technologies, the minimal discernible values from MRI can range from 2.5-3.5µm (Alexander 

et al. 2010) to 5µm (Nilsson et al. 2010). As mentioned above, histological studies, many of which 

involved transmission electron microscopy (TEM), revealed a distribution of diameters of 

myelinated axons from the CNS peaking below the minimal discernible values from MRIs. So, when 

characterising the microstructure of the brain, values coming from MRI studies should be handled 

with care and the resolution limits always highlighted when drawing conclusions. 

 

In addition to the 2D data from TEM studies, also scanning electron microscopy combined with focus 

ion beam milling (FIB-SEM) can be used to extrapolate geometrical properties from realistic 3D 

reconstructions of microscopic regions of interest (ROIs) (Villinger et al. 2012; Zaimi et al. 2016; 

Kubota 2015). Therefore, the geometries of the axons can be fully followed in their evolution over 

the third dimension and an accurate estimate of their geometrical properties and features would 

be possible. In fact, the issue of the accurate measurement being dependent on the acquisition 

plane position relative to the main axonal direction is avoided via 3D reconstruction. 

 

Therefore, this research aims to provide a first tentative of producing a structural database based 

on investigations at a microscopic scale by subdividing the WM upon the aforementioned fascicle 

subdivision. 

 

Material and Methods 

(Fixing, Embedding, Staining and Sampling) 

3 healthy, female ovis aries (1 year old, 70 Kg weight) have been used for this study. All animals were 

treated under the European Communities Council Directive (2010/63/EU), adhering to the laws and 

regulations on animal welfare enclosed in D.L.G.S. 26/2014 and approved by the Italian Health 

Department with authorization n° 635/2017. After culling via intravenous potassium chloride 

overdose following the authorization n° 635/2017 the cerebrum has been immediately removed. 

The three areas of interest (CC, FO, CR) have been sampled using biopsy punchers of 1mm diameter 

(see figure 1) from the middle coronal section of each cerebrum. Given the theory of cerebral 
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laterality (Miller, 1987, 1996; Liewald et al., 2014), a conservative choice of sampling only from the 

left hemisphere has been taken to avoid any possible difference between left and right hemisphere.  

 

We used a robust preparation protocol for high-rate imaging to obtain a satisfactory contrast for 

measuring of the geometrical properties of the “outer axon structure” (axon and myelin together). 

So, the staining and embedding method from Mikula & Dnek (Mikula and Denk, 2015) has been 

followed with few modifications (Feirabend, Choufoer and Ploeger, 1998) to optimise the 

aforementioned output. Within [time] from culling, each biopsy sample was fixed for 3 hours at 

room temperature in 2% formaldehyde in 0.1M sodium phosphate buffer at pH 7.4. After fixation 

the samples were washed 3 times for 10’ in the buffer and left at circa 4°C overnight to remove any  

fixative remaining within the tissue. 

 

 
Figure 10 Sampling areas on the left hemisphere, central coronal section of the ovine brain. Red, blue and green boxes 

highlight the sampling areas . 

 

In order to make visible the myelin layers around the axonal structures under SEM imaging the 

samples are stained in 0.5% (w/v) osmium tetroxide (OsO4) for 1h. OsO4 binds to the lipidic layers 

of the cytological components of the tissue (White et al., 1976). Excessive stain is removed by 

washing the samples 3 times for 10’ in the buffer. Samples are gradually dehydrated via immersion 

in ethanol-water solutions, namely at 25%, 50%, 70% and 95% ethanol-water for 15' each. Finally, 

samples are immersed twice, each time in fresh 100% ethanol for other 15’ each time. 
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Embedding in LRWhite resin is done gradually in three steps. Firstly, samples are left in a 1:1 solution 

of ethanol and resin for 2h. Secondly, samples are immersed in another 1:3 solution of ethanol and 

resin. Finally, samples are left in pure LRWhite resin overnight. Anaerobic thermal curing in oven 

(60°C for 24h) produces the final samples ready for sectioning.  

 

From each embedded sample three subsamples have been excised via microtoming (PTXL 

PowerTomes, RMC Boekler) using a glass knife. Each sample is then mounted on a stub and gold 

coated for the subsequent FIB SEM imaging. 

(Focused Ion Beam Scanning Electron Microscope Imaging) 

Imaging has been performed via a Zeiss Auriga Cross Beam featuring a Schottky field emission gun 

and a Gemini electron column. The SEM column is coupled with a Ga+ ion FIB.  

FIB-SEM series have been taken with FIB milling conditions set to 30 kV and with a beam current of 

4 nA corresponding to 150 nm thick slices.  SEM  imaging  has been performed via a beam energy at  

1.5  kV to avoid damage of the tissue sample  and selective backscattered electron detector was 

used to image the contrast given by the heavy metal stain  (Giannuzzi and Stevie, 2005). 16-bit Black 

and White images have been acquired via the detector and stored with a resolution of 764x1024 

pixel after line averaging collection was performed in order to reduce noise.  

On each subsample from each fibre tract sample, three different singular 2D areas have been 

imaged at random locations (see figure 2). By doing this, the homogenous composition of the 

sample has been investigated. Finally, for each sample corresponding to each fibre tract, a full 3D 

scan from one of the subsamples has been acquired per each subject with an average volume of 

15x15x15μm. With a final resolution of 0.020μm per pixel, the total acquisition time resulted in ~8 

hours per each 3D volume 
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Figure 2 Scheme of the sample subdivision 

 

(Data Analysis) 

2D images: qualitative analysis of material composition 

 

The 2D areas have been acquired at random locations and with different plane of cuts relative to 

the main directionality of the fibre tracts. Therefore, to assess the homogeneity of the sample, a 

qualitative analysis via pixel counting of the binarised images has been carried out via MATLAB 

scripts (The Mathworks, 2018). Firstly, the noise has been preliminary reduced in a two-step 

procedure. 

 

The first step involves a reduction of the “salt and pepper” noise via a median filtering where the 

median values per each pixel is chosen in the 3x3 neighbourhood. At the boundaries, a symmetrical 

padding has been adopted. This operation reduces the scatter of the grey values around the mode 

and therefore reduces the amount of spurious pixels due to noise. Ideally, myelin would be imaged 

as "continuous rings" therefore isolated white pixels are not representative of the myelin content. 

The noisy pixels have so been removed via additional morphological operations (such as opening) 

that remove spurious and isolated pixels. 

 

Uneven background illumination was caused by the different acquisition positions that led the areas 

of interest differently exposed to the beam. This type of noise would have hindered the direct 
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relationship between grey levels distribution and the distribution of the material in the sample. 

Therefore, the uneven background illumination has been reduced in the second step. Via 

morphological opening the objects in the foreground (the axonal matter) have been removed, the 

resulting unevenly illuminated background has been subtracted from the original image (see figure 

3) reducing so the irregularity.  

 

After reducing the noise, image thresholding operations have been carried out to represent the 

images in binary form. The MATLAB function adaptthresh has been used as some level of 

heterogeneously illuminated background still persists. This function is based on the algorithm 

developed by Bradley and Roth (Bradley and Roth, 2011). The method is based on the adaptive 

thresholding concept where threshold values are locally computed for each pixel. The method 

preserves significant contrasts and does not take into account gradient changes counterbalancing 

so the remaining uneven exposure of the background. After binarization, a calculation of relative 

frequencies for black and white pixels has been carried out in each image to estimate myelin 

content. 

 
 
 

 
Figure 3 After filtering salt and pepper noise (1) and subtracting the unevenly illuminated background (2) the image is 

binarized (3). 

 

A qualitative comparison has been carried out to determine homogeneity in composition of each 

sample. Firstly, bar plots of the average pixel counts computed from each area (area 1, area 2 and 

area 3) are compared within each of the three subsampling zones (01 02 03) to check sample 

homogeneity. This comparison has also been used as proof for the random choice of the 3D imaging 

sampling site on the sample. Then, per each sample, averages of the results from the total nine 

areas have been compared to detect possible composition differences between the CC, FO and CR. 
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(3D images: reconstruction and extrapolation of geometrical data.) 

 

Each stack of FIB SEM images representing a 3D sample has been post-processed via Mimics 

software (Materialise, 2019). First a manual segmentation of each axon present in the region of 

interest has been carried out. Then, using the built-in 3D reconstruction algorithm of MIMICS, 3D 

models have been created by interpolating the different layers. Therefore, from each subject, a full 

3D reconstruction of CC, FO and CR has been created. 

 

Because of the cutting plane being not perpendicular to the centreline of the axons, post processing 

has been carried out to measure the real geometrical properties without distortions due to the 

relative position of the imaging plane. After calculating a centreline for each axon via the built-in 

MIMICS function, the subsequent quantities have been measured on the relative planes 

perpendicular to the centrelines. This allows to measure the real geometrical properties regardless 

of the position of the acquisition plane relative to the instances. Axonal tortuosity, area, best fit 

diameter and ellipticity of the cross sections have been measured along each axon, per each axon, 

in each 3D reconstructed sample. 

 

Results  
(2D Images) 

1. (Validation of the sample homogeneity ) 

  

The average numbers of white pixels imaged from each subsampling area show a percentage of circa 40% of 

white pixels on the total pixel count in all subjects. In each sample the differences between subsampling 

areas (01 02 03) appear to be minimal. The average values are always within the biggest standard deviation 

of the three subsamples (see figure 4 ). 

 

2. (Differences in the composition between areas) 

 

For all subjects the relative frequency (see figure 4). 
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Figure 4 Barplots of the pixel counts per each subsample of each sample  

 

(3D Images) 

(Best Fit Diameter) 

 

Average values of the geometrical properties have been calculated from all the slices representing 

each axon over their whole specific lengths. On all these average values from all the subjects, a 

lognormal distribution has been fit as suggested by Sepehrband et al. (Sepehrband et al., 2016). The 

distribution of axonal diameter is similar between CC and CR with peaking values ranging between 

1μm and 2μm. The FO shows a more spread distribution and peaking values more towards 2μm. 

From the fitted lognormal distributions the mode and median values of the different zones have 

been extrapolated and summed up in the table below (see table 1).  

In this study the best fit diameters on the cross-sectional area perpendicular to the centreline of the 

3D reconstructed axons have been measured. This ensures constant measurements regardless of 

the plane of cut relative position to the main direction of the axonal fibres. The best fit diameters 

of CR and CC seem to overlap in the diameter distribution being respectively 1.00 μm and 1.07μm. 

The FO shows still the same distributions but with values more spread around a higher mode value 

of circa 1.4 μm. 
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Figure 5  Axonal  diameters of CC CR and FO. The data measured is lognormal distributed in all samples. 

 

(AREA) 

Cross-sectional areas show a distribution similar to the best fit diameters.. Both CC and CR 

similarly show a higher concentration of axons with a cross-sectional area of ~0.5μm2 while FO 

appears to have a larger spread of axons with a modal area of ~1μm2  nearly doubling the CR 

measurements. 

 

  CC CR FO 

V0  1.07 μm 1.00 μm 1.41 μm 

x ̃  1.35 μm 1.3 μm 1.81 μm 
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Figure 6 Axonal  cross sectional area of CC CR and FO. The data measured is lognormal distributed in all samples. 

 
 

 
 
 
 
 

 
 
(ELLIPTICITY) 
 

 
Figure 7 Ellipticity histograms. Axons show an elliptical tubular structure rather than circular 

 CC CR FO 

V0 0.63 μm2 0.5 μm2 0.98 μm2 

x ̃ 1.42 μm2 1.35 μm2 2.32 μm2 



113 
 

Ellipticity is calculated as 𝐸 = √
𝑎2−𝑏2

𝑎2
 with 𝑎  being the semi-major axes and 𝑏  being the semi-

minor axes. For 𝐸 = 1  the semi-major axes is double the semi-minor axis, for 𝐸 = 0 the shape is 

perfectly circular with the semi-major equal to the semi-minor. In the CC over 90% of measured 

axons show an ellipticity between 0.6 and 0.9, also the CR shows a similar trend with a slight 

skewness to the right. The FO displays  more elliptic axons with an ellipticity towards the range 0.7-

0.9. 

 

(Tortuosity) 

The tortuosity of the axons was measured via Mimics following the formula 𝜏 = 1 −
𝑙

𝐿
  where 𝐿 is 

the linear distance between the endpoints of the fitted centreline and 𝑙 is the length of the 

centreline itself. The measured values give an average tortuosity for the CC of 0.113±0.109, for the 

CR 0.0914±0.07 and FO of 0.130±0.088. 

 

Additionally, a comparison of the three areas is done via plotting the logarithmic values from each 

group against a theoretical normal distribution (see figure 9), all the groups seem to follow a 

lognormal distribution. While CC and CR show a similar distribution, FO differs slightly. Additionally, 

boxplots show the difference in the median values of the measured quantities, agreeing with the 

difference noticed between CC and CR against FO (see figure 8). 

 

 
Figure 8 Boxplot of the logarithmic values of tortuosities of axons from CC, CR and FO 
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Figure 9 Normal probability plot comparing the distribution of the logarithmic values of tortuosities of axons from CC, 

CR and FO 

 
 

(3D AREA) 

 

As per microstructural appearance, the 3D reconstructions showed a unidirectional fibrous 

arrangement, with little entangling of the axonal fibres. A representative volume, manually 

reconstructed via MIMICS, is shown in figure 10 together with the initial FIB SEM slices.  

 

 
Figure 10 Manually reconstructed 3D volume of a CC.  
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Discussion 

 

(2D Images) 

1. (Validation of the sample homogeneity and goodness of 3D location choice) 

 

The authors are aware that white pixels do not represent solely the myelin rings. In fact, for example, 

some images inevitably contained astrocytic cellular bodies. Being the astrocytes the major cells 

found in the glia of the CNS (Lundgaard et al., 2014; Kıray et al., 2016), their contribution to the pixel 

count could not always be avoided. 

 

However, the normalised frequency of white pixels can still be taken as an indicative measure of the 

myelinisation level of the area. In fact the relative frequency of circa 40% of white pixels is in 

accordance to the relative lipidic content measured in dry weight of white matter samples by 

O'Brien and Sampson, with an approximate range between 40% and 60%. These numbers are 

heavily determined by the myelin sheaths. As previously mentioned, dry weight of myelin itself 

consists of percentages around 70%-80% of different lipids i.e. glycosphingolipids, cholesterol and 

other long-chain fatty acids (1 O'Brien & Sampson 1965). Another study, estimated the dry weight 

content of myelin from WM of adult rats to be around the same percentage of 40% (Sanjeeva Reddy, 

Rajalakshmi and Ramakrishnan, 1983). These converging results come from investigative techniques 

that differ from the EM used in this study. Therefore, this proves also the goodness of the chosen 

size of the ROIs that appears to be accurately representative of the material composition of WM. 

 

Additionally, this measured homogeneity of material composition in different, randomly chosen 

areas across each sample, supports the goodness of the choice of random sampling locations in each 

samples of the areas that have undergone 3D reconstruction. 

 

As previously mentioned, the samples all come from the CNS where the Oligodendrocytes, not the 

Schwann cells, contribute to the lipidic content by forming the myelin rings typical of the WM 

(Duncan and Hoffman, 1997; Salzer, 2015; Kıray et al., 2016). So, the consistency found among all 

samples could be explained by the uniformity of the cells involved in the myelination of the axons. 

Additionally, all the sampled fibre tracts belong to the CNS, here the axons are shorter than the ones 

in the Peripheral Nervous System (PNS) so a uniform level of myelination would be expected 
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(Fitzgerald, Greuner and Mtui, 2012). Another difference between myelination in the Peripheral 

Nervous System (PNS) and the CNS is that in the former whole cells entirely wrap around the axons 

(the Schwann Cells), while in the latter myelination is achieved via wrapped membrane processes 

of the aforementioned Oligodendrocytes. Their projections of the cellular membrane wraps around 

several axonal fibres forming myelin sheaths (Moore, Dalley and Agur, 2013; Simons and Nave, 

2016). EM images show myelin sheaths as periodically layered areas of electron dense and light 

dense regions that represent the alternation of intraperiod and dense lines (see red dashed box in 

figure 10). This feature is where the oligodendrocitic membrane comes into apposition to form the 

isolating layer (Peters, 1960) . Therefore, the recognition of this feature aides in the correct 

individuation of myelin rings also in the eventuality of split, degenerated layers. 

 

2. (Goodness of the experimental choices and split myelin) 

To minimise trauma to the tissue, a slow and gradual dehydration has been followed as aforesaid. 

A standard aldehyde-based dehydration method provides a good compromise between  practical 

simplicity and the goodness of the acquired results (Kubota, 2015, Liewald et al. 2014 

 

FIB-SEM  is well suited for an automated and high output rate imaging, especially when the high 

resolution is not required as the smallest resolvable feature are axonal tubular structures with a 

diameter of 0.2-0.4 μm (Bosch et al., 2015). Therefore, as this study focusses on the 3D cyto-

organization of the axonal fibres for modelling purposes, priority to the output quantity has been 

given at a cost of a lower resolution of the axonal ultrastructure comprising the extra cellular matrix. 

As a matter of fact, an engineering approach has guided this study throughout where the imaging 

of the feature of interest responds to a need of measuring the geometrical properties of these 

fibrous components (the axons) that heavily influence the mechanical characteristics of WM as a 

composite material (Arbogast and Margulies, 1999; Abolfathi et al., 2009; Karami et al., 2009). 
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Figure 10 Zoom of a 2D image where a compact myelin sheath (blue dashed box) and a split sheath (red dashed box) are visible. In 

the split sheath intraperiod and dense lines are visible.  

(3D Images) 

 

As previously mentioned, this study aims to create an initial database on the geometrical 

characteristics of the fibres from specific areas of the WM for micromechanical and CFD purposes. 

In fact, it has been shown that the WM stiffness is highly related to the axonal presence. Axonal 

cytoskeletal elements such as microtubules contribute greatly to the axon mechanical response 

(Ouyang, Nauman and Shi, 2013) and to its relative contribution to the overall tissue stiffness. Also, 

it has been proved that the content of the myelin wrapping the axons linearly increased the stiffness 

of the WM tissue (Weickenmeier et al., 2016). Additionally, like in many MRI and diffusivity studies, 

it has been assumed that axons are impermeable due to their envelope of myelin composed of 

hydrophobic lipid (Cory and Garroway, 1990; Callaghan et al., 1991; Barazany, Basser and Assaf, 

2009; Ong and Wehrli, 2010; Dyrby et al., 2013; Alexander et al., 2017). Also Convection Enhanced 

Delivery studies and clinical studies on the cerebral oedema propagation seem to give substantial 
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hints on the influence of the axonal fibres on fluid diffusion (Reulen et al., 1977; Geer and Grossman, 

1997; Stummer, 2007). Therefore, the recognition of the axonal features has comprised the outer 

ring of myelin sheaths, so all the data expressed in this research are representative of axons and 

their relative myelin rings: the “outer diameter” of the axon. 

 

The distributions of the measured data are in agreement with findings of previous studies that 

involved ultra-strong gradients for diffusion MRI and different electron microscopy techniques. For 

example, values of the CC diameter are within the range of the existing literature where more than 

50% of the measurements are confined between 0.5μm and 1.5μm.  ( A.Lamantia and Rakic, 1990; 

Assaf et al., 2008; Liewald et al., 2014; Jones et al., 2018;  Nunes et al., 2017). Interestingly, the 

values measured on ovine brain are more similar to the ones measured on chimpanzees and humans 

than to the measurements performed on macaques. In fact, although the range of values and the 

lognormal distribution of data is maintained, the spread of the ovine values is more similar to the 

former two species than the latter, which presents a higher concentration of smaller axons in the 

CC. This validates how sheep can be successfully used as an animal model and could replace other 

species given its similarity to human cerebral cytostructure (Caminiti et al., 2009).  

 

CR consistently showed geometrical data trend very similar to the CC; this similarity between these 

two areas was also maintained in the measured axonal density, with the FO showing a less dense 

axonal population when compared to CR and CC. Irregularities and degeneration of the myelin layers 

have been found slightly more often in FO samples. These degenerative patterns have been widely 

detected in several studies across different species and although its consequences on the brain 

functionality have not yet been fully understood, it has been related to the normal aging processes 

occurring in all living organisms (Bowley et al., 2010; Peters, Sethares and Moss, 2010).  

 

The variation of the diameter and the cross-sectional area measured within the same axonal 

structures is due to the different subcellular structures within the axon, of which the most 

prominent is the mitochondria that appeared as bulges along the axonal tube (Abdollahzadeh et al., 

2019). These features contributed to the ellipticity findings in all of the three areas, that 

unequivocally show that axons should be thought as ellipsoidal, rather than circular, tubular 

structures with ellipticity values comprised between 0.7 and 0.9. 
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This study also gives a first quantifiable measure of the level of tortuosity of the fibrous component 

of the WM.  Interestingly, also this geometrical quantity follows a lognormal distribution. Low values 

of tortuosity have been detected in all of the three fibre tracts showing that, at the microscale, 

axons follow a nearly straight path in the CNS. Also for this geometrical entity, a difference between 

the FO and the CC-CR duo has been detected with FO showing slightly more tortuous axons. It is 

important to highlight that previous studies always took into considerations WM samples from 

cranial nerves or from spinal cord where a much wavier layout of the axonal tracts is visible (INSERT 

REF).  

 

All of these findings suggest that while commissural and projection fibres have a more similar 

cytoarchitecture, the long projection fibre of FO seem to slightly differ, probably due to its particular 

anatomical configuration. Given its fornix shape, the more accentuated bending and curving of the 

macroscopic fibre bundle might be the reason of the measured difference.   

 

Another focal point of this study is to create a usable database aimed at fluid dynamics and 

micromechanical modelling based on the geometrical properties measured from the 3D 

reconstructions. However, irregularities and artefacts arising from the manual segmentation 

process would have hindered a usable, standardised 3D file object aimed at FEA studies. Therefore, 

the axonal data discussed above have been post-processed in order to create potential 

representative volume elements (RVE) for micromechanical analysis ready to be used as inputs for 

FEA packages and for other studies.  

 

A semi-automated reconstruction of the axonal architecture has been performed via a custom made 

code in Matlab. Because of the representativeness of the content measured, RVEs of 15x15x15μm 

have been chosen and assembled following a periodicity constraint on the plane perpendicular to 

the direction of the fibres. The sampling of the image acquisition during FIB-SEM imaging has been 

maintained with a total of 100 slices with a thickness of 0.15μm each.  

In every volume, the geometrical inputs come from a random subsampling of the distributions of 

data distributions mentioned before: cross-sectional area, diameter, ellipticity, tortuosity and 

axonal density. Additionally, the measured variations of cross-sectional area, diameter and ellipticity 

along the fibre direction have been followed. In red the outcome for the CC, in green the CR and in 

blue the FO.  
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Figure 11 Representative periodic volumes of the CC (shades of red), CR (shades of green) and FO (shades of blue) 

generated via a Matlab custom-built code. 

 
 
 
 

(Future Work and Conclusions) 

 

Cryo-imaging techniques have been shown to  differently preserve  the ultrastructure of the 

biological matter when compared to the alcohol-driven dehydration that characterizes the 

methodology followed in this study (Simons and Nave, 2016). In fact, the authors realise that the 

techniques applied in this research have affected the sampled tissue by some shrinkage factor 

(Virtanen et al., 1984). However, room temperature fixation technique herein adopted provides a 

robust and relatively easy solution for a high rate imaging output of multiple specimens. In fact, the 

aforementioned agreements between our data and data from other studies show that any adverse 

effect to the structure is negligible for the main purpose of this study. 

 

Additional refinement by adding MRI images of the sampled brains as reference images could lead 

to extra information on the sampling position relative to the axonal tracts of each individual 

cerebrum (Catani et al. 2012a). In fact, the authors realise that manual sampling from visual 

recognition of the areas of interest does not provide exact sampling coordinates of the specimena 

relative to each brain. 

 

Finally, this study is a first important attempt of geometrical micro characterization of the different 

pathways in which WM tracts are anatomically subdivided. We show the feasibility of this 

methodology aimed at creating an axonal geometry database for each of the tracts of the cerebral 

tissue. We also show how commissural and projection fibres seem to be more similar to each other 
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when compared to long association fibres. Ultimately, such a detailed knowledge of the 

microstructure can provide a key insight for a deeper understanding of the different cerebral macro 

phenomena. Diffusivity, permeability and mechanical behaviour of cerebral tissue are all 

intrinsically dependent on the cytoarchitecture of the WM and can only be better understood with 

a detailed knowledge of this. All of these fundamental properties can also be further studied via in 

silico experiments and simulations that can now be based on models that are geometrically 

representative of real life tissue. 
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Discussion 
 

This doctorate thesis dealt with different aspects and topics in the field of EDEN2020 project. 

Enhanced Delivery Ecosystem for Neurosurgery in 2020 (EDEN2020) is a European project 

supported by the European Union’s EU Research and Innovation programme Horizon 2020 under 

grant agreement n° 688279.  

The main aim of EDEN2020 is to provide a step change in the treatment of brain disease by delivering 

an integrated technology platform for minimally invasive neurosurgery. 

EDEN2020 is built around two parallel research threads, the first focused on a clinical investigation 

of diffusion, encompassing experiments and computational modelling, and the other on 

technological development of a steerable catheter and catheter controller, intelligent planner, real-

time intra-operative visualisation and tracking, and in vivo diagnostics via flexible access. 

Clinical research activities workflow has been validated in a staged approach throughout the project 

three sequential animal trials: ex vivo experiments to fine tune system performance and procedural 

work flow; in vivo ovine trials to ascertain feasibility of the system under realistic operating 

conditions; in vivo study to evaluate and verify system performance in a clinical setting. 

The right animal model choice has been the first procedural step of my PhD. The project needed a 

translational model, characterized by similar brain and skull features compared to human anatomy 

respecting the 3R rules ( reduce, refine, replace). Large animal models have been contemplated as 

better models than small one as mouse, rat, rabbit, even though small-animal models are usually 

favourited due to low cost, ease of care, and the possibilities for high work rate. Moreover murine 

and rabbit model are characterized by a lissencephalic brain cortex which is a major limit for 

EDEN2020. 

A brief analysis on large animal models, composed by ovine and swine animals, have been 

conducted focusing animal behaviour, growth index and most important, skull anatomy and 

features. Ovine model has been selected as proper model for EDEN2020 project. 

The present doctorate thesis contains three researches in different topic all under the EDEN2020 

project scenario. 

The first study reported a work concerning the validation of a novel stereotactic head frame MRI 

compatible for ovine models. Since no stereotactic head frame tools for ovine model MRI 



127 
 

compatible were available and the surgical workflow in EDEN2020 needed the MRI and CT study for 

neuroplanning purpose, an ad hoc ovine head frame system has been developed and validated to 

achieve this objective. The validation protocol has been composed by the sheep head fixation 

analysis and MRI compatibility test. The results in ex vivo and in vivo tests reported an average linear 

motion for the ex-vivo trials was 0.81 ± 0.54 mm., while for the in-vivo trials was 0.68 ± 0.61 mm. 

The MRI compatibility test was evaluated in an MRI scanner and data analysis was carried out 

following the National Electrical Manufacturers Association (NEMA) procedures standard assuming 

a statistically and spatially uniform distribution of noise. The head frame system for the ovine model 

presented, address several clinical requirements of translational studies, such as CT/MRI 

compatibility, compatibility with a conventional human stereotactic CRW frame, robustness during 

the surgical procedure and robustness against the anatomical variability which is inherent in the 

sheep model. The system described may benefit future research projects using sheep as an animal 

model. 

The objective of the second work illustrated in this thesis was to determine the major ovine white 

matter fibre bundles via diffusion tensor resonance tractography. Diffusion  Tensor  Magnetic  

Resonance  Imaging  (DTI)  allows  to  decode  the  mobility  of  water molecules in cerebral tissue, 

which is highly directional along myelinated fibres. By integrating the direction of highest water 

diffusion through the tissue, DTI Tractography enables a non-invasive dissection of brain fibre 

bundles. As such, this technique is a unique probe for in vivo characterization of white matter 

architecture. Unravelling the principal brain texture features of preclinical models that are   

advantageously   exploited   in   experimental   neuroscience   is   crucial   to   correctly evaluate 

investigational findings and to correlate them with real clinical scenarios. Firstly the in vivo brain 

MRI protocol for ovine animal models was optimized on a 1.5T scanner. Topography of the ovine 

cortex was then studied and DTI maps were derived to perform DTI tractography reconstruction of 

the corticospinal tract (CST), corpus callosum (CC), fornix (FX), visual pathway (VP) and occipitofrontal 

fascicle (OF), bilaterally for all the animals involved in the study with a minimal inter-subject 

variability. The present work built an innovative ovine tractography atlas, demonstrating that 

multiple white matter fibre tracts can be consistently reconstructed in sheep. Additionally, the 

population-averaged atlas can be integrated into publicly available imaging software, paving the 

way toward space standardization of ovine imaging analyses. It will enable to design homogeneous 

studies considering the direction and reciprocal position of white matter fibre bundles, that will 

significantly support the meticulous study of numerous brain pathologies. In conclusion, the ovine 
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tractography atlas can be considered as a valuable tool to implement the knowledge of sheep’s 

brain anatomy and to improve the activity of clinicians and researchers using this animal model in 

neuroscience studies 

The third work involved the microscopic analysis cytoarchitecture of commissural, long association 

and projection fibre, specifically the corpus callosum, the fornix and the corona radiata. The fibre 

tract analysed have been selected from the bundles reconstructed via DTI analysis. Corpus callosum 

and Fornix have been studied properly while corticospinal tract has been sampled via corona 

radiata. Ovine samples from three different subjects have been stained with osmium tetroxide, 

embedded in resin and then imaged using scanning electron microscope combined with focused ion 

beam milling. Particular focus has been given to the characteristic cytological feature of the white 

matter: the axons. Via 2D images it has been estimated a homogeneous myelination via detection 

of ~40% content of lipids in all the different fibre tracts. Additionally, for each tract, a 3D 

reconstruction of volumes (average dimensions of 15x15x15μm) has been performed. Namely, 

outer axonal ellipticity, outer axonal cross sectional area and its relative perimeter have been 

measured. The study provided useful insight into the fibrous organisation of the tissue that can be 

described as composite material presenting elliptical tubular fibres with an average cross-sectional 

area of circa 0.52μm2 and an estimated mean diameter of 1.15μm. This study is a first important 

attempt of geometrical micro characterization of the different pathways in which WM tracts are 

anatomically subdivided. The data acquired from the microstructure can provide a key insight for a 

deeper understanding of the different cerebral macro phenomena indeed diffusivity, permeability 

and mechanical behaviour of cerebral tissue are all intrinsically dependent on the cytoarchitecture 

of the WM. All of these fundamental properties can also be further studied via in silico experiments 

and simulations that can now be based on models that are geometrically representative of real life 

tissue. 
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Appendix 
 

EDEN2020: Encephalic tissue damage evaluation after catheter insertion in sheep 

brain model  
 

Introduction 

 

As this project is still ongoing, the last period of the PhD has been focused on the analysis of the 

brain tissue damage after catheter introduction. The first part of the project has been concentrated 

in the use of a rigid catheter simulating a common clinical scenario. The results of the damage from 

the rigid catheter will be compared with the steerable catheter developed in EDEN2020.  

Given the nature of this project which will see the natural end on March 2020, analysis and data are 

currently in acquisition. Here below is presented a brief overview about the rational on which the 

catheter tissue damage analysis is based.  

Sheep has been involved in several studies with different aims. Unfortunately there are few papers 

that analyse tissue damages after the catheter, or any other medical device, introduction in sheep 

brain. 

Despite these limitations in the brain damage analysis in scientific literature, sheep has been used 

as large animal model of traumatic brain injury, and considering the experimental procedures, brain 

injury scenario is the more closer than others to our purpose. (Dai et al. 2018)  

Considering the catheter introduction as a little penetrating brain injury we can identify 

“Penetrating brain injury” from all these models as a useful kind of brain injury model. This model 

could be comparable to our aims with all the differences of pathophysiological brain damage, 

methods, goal noted. 

In literature the analysis of a brain injury can be done with three different methodologies (fig1) [10]. 

- Cerebrospinal fluid sample (Neurotransmitters) 

- Blood sample (Interleukin, Cytokine, Neurotransmitters) 

- Tissue analysis (Fluorescence dye, Immunohistochemistry, Histology, SEM, Digital 

microscopy) 
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Cerebrospinal fluid and blood sample can give us in real time information about development of the 

damage during the in vivo phases. Tissue analysis are done after the animal euthanasia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Methods  

 

1) Blood analysis Elisa Test (IL-1 Beta; IL-18; TNF-alpha) 

Cytokine are structural and functional components with pro and/or anti-inflammatory aims and are even 

mediators of the cellular immune responses.  

Several reports indicate that interleukin (IL) IL-1 beta, IL-18 and tumour necrosis factor alpha (TNF alpha) are 

involved in the beginning and development of the inflammatory cascade after traumatic brain injury. IL 1 

beta binds the receptors localized on microglia and astrocytes in brain. Activation of the neuroglial and 

immune cell IL1 receptors induct the production and release of inflammatory cytokines as IL-1 beta and IL-

18. The damage effect of IL 1 beta can be also related to activation of TNF alpha.  

IL-1 beta, IL-18 and TNF-alpha are all pro-inflammatory cytokines.  

No papers involving traumatic brain injury used blood analysis with sheep as animal models. However several 

papers used cytokines analysis during the study of brain damages with different animal models as pigs and 

rats.(Dai et al. 2018)  

 

 

Figure 10 A suggested protocol for monitoring the evolution of “biotic” and “abiotic” factors that 
contributes to the failure of neural implant. [10, 11](McCreery 2016) 
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2)  Blood brain barrier (BBB) integrity with Evans blue. Correlation between catheters and BBB damages 

(Olympus Fluo View FV300) 

The presence of the brain blood barrier makes difficult the use normal vital or necrotics dye administration. 

The drug administration must be done intravenously and the most dye molecules have a dimension bigger 

than 500-600 Da which is the size of the BBB pores. Besides that molecular dye are linking with carrier 

proteins as albumins which avoid the passage of the barrier. 

The catheter during the insertion damage the brain parenchyma. The astrocytes make an intimate contact 

with the cerebrovascular endothelium of parenchymal blood microvessels and are critical for the normal 

function of BBB. Not only astrocytes are linked to the brain endothelium but even microglia interact with glia 

and endothelium cells in a paracrine manner. This anatomical and functional relationship showed the 

importance of gliovascular unit. The catheter damages this structure and the microcapillary circulation. Once 

the BBB is damaged the molecular can cross it and accumulate inside the brain area damaged. 

A commonly used technique is the Evans Blue (EB), based on the ability of EB dye to bind to serum albumin 

immediately following its intravenous (IV) injection into the bloodstream. Since serum albumin does not cross 

the BBB under normal physiologic conditions, spectrophotometric determination of EB dye accumulation in 

brain tissue is carried out to analyse the extent of vascular leakage. 

The analysis of the different tissue damages could be done by the Mapping of EB dye leakage in brain. With 

this method we should be able to explore with optical imaging to map vascular leakage and quantify EB by 

optical imaging and UV absorbance with fluorescence scanner (fig11-12). (Jaffer et al. 2013) 
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Figure 11: Vascular damage in stroke. Rat as animal model (Jaffer, Adjei and Labhasetwar 2013) 

Figure 12: Analysis of Evans blue uptake in sheep brain (Pelekanos et al. 2018) 
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3) Histology with hematoxylin-eosin and Immunohistochemical analysis  

 

The difference track shape can be observed with a normal histological study with hematoxylin and 

eosin. Brain can be cut with series of axial slides along the catheter trajectory (Tsumura et al.2016). 

 

 

 

 

- Imperial 

 
 

- Polimi 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

- Immunohistochemical detection with amyloid precursor protein (APP). APP is a membrane-

spanning glycoprotein that is synthesised in normal neurons and involved in axoplasmatic 

transport. APP accumulates after distruption of the axonal cytoskeleton. It is not 

demonstrable in normal axons and immunostaining for APP can detect damaged axons 

within 60 minutes of injury. (Finnie et al. 2002)  

 

Figure 13: Histological Evaluation of Tissue Damage Caused by Rotational 
Needle Insertion Tsumura et al.2016 
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4) Tissue preparation for Digital Microscope and FIB-SEM analysis (Fixation, Staining, 

Infiltration, Thermal curing) 

 

Surface analysis: 

 
Figure 14: Example of sampling for different aims 

 

- Sample preparing for Digital Microscope 

Formalin 10 % fixing 

- Sample preparing for FIB SEM analysis  

FIXATION 

1. Brain Samples is sectioned using scalpel blade into small pieces (puncher diameters). 

2. Tissue samples are fixed for 2-3h at room temperature in 2% formaldehyde in 0.1 M sodium 

phosphate 

buffer pH 7.4 

3. Fixed samples are washed three times, 10’ each, in 0.1 M sodium phosphate buffer pH 7.4. 

4. Fixed samples are left overnight in the fridge (~4°C), in 0.1 M sodium phosphate buffer pH 7.4. 

STAINING 

5. Samples are stained in 0.5% (w/v) osmium tetroxide (OsO4) in water for 1 h. 

6. Samples are rinsed three times, 10’ each, in 0.1 M sodium phosphate buffer pH 7.4. 

7. Samples are immersed in 25%, 50%,70% and 95% ethanol-water for 15’. 

8. Samples are immersed in 100% ethanol two times, 15’ each. 

INFILTRATION 

9. Samples are immersed in 1:1 solution of ethanol and resin (LRWhite) for 2h. 

10. Samples are immersed in 1:3 solution of ethanol and resin (LRWhite) for 2h. 



135 
 

11. Samples are immersed in pure resin overnight (LRWhite). 

12. Add Catalyst to the LRWhite as per manufacturer instructions (full dissolution in 24h) 

13. Oven temperature is set 

14. Place samples in capsules and put in oven 

-  Polymerization in 24h at 60°C 

-  Polymerization in 48h at 40°C 

- FIB SEM analysis (Zeiss Auriga Cross Beam) 

The FIB SEM analysis will continue the work act by EDEN2020 based on the study of the normal 

white matter tracks in a healthy animal (see  “Cytoarchitecture of commissural, association and 

projection fibres: a comparative study”). The team is studying the difference of cell structures, 

compression and damage of axons located into the brain parenchyma in peri-track area ( figure 14). 

Samples form parenchyma surrounded the trajectory along the tracks and form the tips area will be 

taken and analysed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 15: SEM analysis of axonal damage through the progressive loss of 
microtubules Tang-Schomer et al. 2010). 
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5) Cerebrospinal fluid and plasma neurotransmitters concentrations 
 
 

In the immediate period following the primary brain injury there is a massive disturbance of the 

cellular ion homeostasis initiated by excessive release of the excitatory amino acid 

neurotransmitters glutamate and aspartate with the activation of glutamate receptors. The release 

of glutamate results in cellular influx of Na and Ca and efflux of K. The influx of calcium ions is 

considered the key event in early post traumatic brain injury leading to mitochondrial damage with 

an increase in free radical production (Marklund and Hillered 2011). If excess extracellular 

glutamate, glutamate receptors on the post-synaptic membrane will be excessively activated, 

resulting in excitotoxic injury, including the destruction of the Ca2C buffer system. Understand the 

neurotransmitters concentration after a brain injury can be useful to delineate a physiological 

response against the tissue damage. 

 

In human the concentration of glutamate in the brain ranges from 1 to 10 µM, which is much lower 

than that in blood (40–60 µM) and astrocytes and neurons (10–100 µM). When the glutamate 

concentration in an endothelial cell exceeds the blood concentration, glutamate will be transported 

into the blood via facilitative transport. It is difficult for blood glutamate to enter the brain via either 

tight junctions or carriers (Bai et al. 2017). Under normal conditions, blood glutamate levels are 

maintained in a steady state by the blood brain barrier (BBB) (Chodobobski, Zink and Szmydynger-

Chodobska 2011), however in a variety of brain diseases, the glutamate levels in the blood, 

cerebrospinal fluid (CSF) or both can significantly increase, and the normal intraparenchymal-blood 

glutamate concentration gradient is thereby disrupted (Bai et al. 2017).  Analyses of Glutamate, 

Aspartate and Gaba in cerebrospinal fluid and blood concentration can be useful to outline the 

damage level of the brain injury after the catheters introduction and compare both. The 

neurotransmitters analysis on cerebrospinal fluid and plasma can be assayed using high 

performance liquid chromatography or mass spectrometry. 

Hypothesis: 

Plasma sample analysis 

- Glutamate, Aspartate blood level increase = high BBB level damage 

- Glutamate, Aspartate blood level decrease = low BBB damage. Neurotransmitters follow the 

gradient of concentration  
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- Glutamate, Aspartate blood level stable = no BBB damage detectable 

Cerebrospinal fluid 

- Glutamate and aspartate level increase = high brain parenchyma damage 

- Glutamate and Aspartate level stable = no brain parenchyma damage detectable 

Gaba is analysed as control neurotransmitter in consequence of its nature as inhibitory 

neurotransmitter. We assume that the concentration of Gaba would be always low and stable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



138 
 

References 

Preclinical testing of Neural Prostheses. In Neurobionics: The Biomedical Engineering of Neural 

Prostheses. 

Bai, W., W. L. Zhu, Y. L. Ning, P. Li, Y. Zhao, N. Yang, X. Chen, Y. L. Jiang, W. Q. Yang, D. P. Jiang, L. Y. 

Chen & Y. G. Zhou (2017) Dramatic increases in blood glutamate concentrations are closely related 

to traumatic brain injury-induced acute lung injury. Sci Rep, 7, 5380. 

Chodobski, A., B. J. Zink & J. Szmydynger-Chodobska (2011) Blood-brain barrier pathophysiology in 

traumatic brain injury. Transl Stroke Res, 2, 492-516. 

Dai, J. X., Y. B. Ma, N. Y. Le, J. Cao & Y. Wang (2018) Large animal models of traumatic brain injury. 

Int J Neurosci, 128, 243-254. 

Finnie, J. W., J. Manavis, P. C. Blumbergs & G. E. Summersides (2002) Brain damage in sheep from 

penetrating captive bolt stunning. Aust Vet J, 80, 67-9. 

Jaffer, H., I. M. Adjei & V. Labhasetwar (2013) Optical imaging to map blood-brain barrier leakage. 

Sci Rep, 3, 3117. 

Marklund, N. & L. Hillered (2011) Animal modelling of traumatic brain injury in preclinical drug 

development: where do we go from here? Br J Pharmacol, 164, 1207-29. 

McCreery, D. 2016. Preclinical testing of Neural Prostheses. In Neurobionics: The Biomedical 

Engineering of Neural Prostheses. 

Pelekanos, M., G. Leinenga, M. Odabaee, S. Saifzadeh, R. Steck & J. Götz (2018) Establishing sheep 

as an experimental species to validate ultrasound-mediated blood-brain barrier opening for 

potential therapeutic interventions. Theranostics, 8, 2583-2602. 

Tang-Schomer, M. D., A. R. Patel, P. W. Baas & D. H. Smith (2010) Mechanical breaking of 

microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule 

disassembly, and axon degeneration. FASEB J, 24, 1401-10. 

Tsumura, R., Y. Takishita, Y. Fukushima & H. Iwata (2016) Histological evaluation of tissue damage 

caused by rotational needle insertion. Conf Proc IEEE Eng Med Biol Soc, 2016, 5120-5123. 

 

 

 

 

 

 

 

 

 



139 
 

Further work related to the PhD period 
 

Sheep Brain Slicer 
 

Introduction 

Nowadays imaging techniques allow to obtain sensitive measure of tissue integrity. MRI can identify 

areas of abnormality and pathological processes which are the common features in experimental 

trials. The high sensibility of the imaging procedures biopsy is often required to diagnose and 

differentiate pathological processes. Nevertheless histological information are mandatory for a 

certain diagnosis and the possibility to compare the data acquired from different techniques is a 

value added in research. 

For sheep as animal model the sampling from specific brain area is hard and some limitations can 

occur. For a proper comparison the orientation of MRI slice plane must match the sectioning plane 

of the brain tissue when cut. The large size of the brain makes hardly applicable the normal brain 

cutting on a flat surface, the sampling is consequently not accurate. 

In order to be able to compare the pathological or normal brain tissue between the histology 

sections and MRI studies a brain slicer tool is needed. 

Here we presented a method to create a custom brain holders and slicers from a real sheep brain. 

 

Methods 

Female adults, 70kg, Ovis Aries sheep Bergamasca heads were used.  

The brain was removed after a craniotomy using a surgical oscillating saw respecting the organ 

anatomy. The sheep brain obtained has been casted in silicon rubber malleable glue in order to 

create a plastic brain clone. (figure 16).  

The silicon brain has been then immersed into a case gypsum filled and the brain shape has been 

engraved in a gypsum cast (figure 16). 

Laser scanner machine that has been used to create a mesh from the gypsum case of the brain case 

surface. The brain mesh has been uploaded in Solidwork software for three dimensional parametric 

design and planning. 
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A sheep brain slicer has been molded using a Boolean subtraction of the sheep brain mesh to a solid. 

The slice paths have been designed for coronal or sagittal sections, to manage to isolate specific 

sheep brain regions quickly and consistently or in case prepare uniform slices for microtome 

dissection. 

Two brain slicer prototypes have been designed. Once with coronal slicer cut along all the brain area 

and one sagittal lane passing through the middle brain area (figure 17). The second with sagittal 

slicer cut along all the brain area and one coronal lane passing through the middle brain area (figure 

17). The cut lane dimension has been set in 0.5 mm. 

Once designed the sheep brain slicer has been create with a 3D printer in plastic material for a demo 

purpose (figure 18) and then printed in surgical steel (figure 19). 

With these two slicer models is possible to reach a good sampling method reproducing it within the 

same target area x and y values. 

 

 

Figure 16: Sheep brain casting 
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Figure 17: Sheep brain slicer designed in Solidwork 

 

 

Figure 18: Sheep brain slicer Demo, printed in plastic material with a 3D printing machine 

 

Figure 19: Sheep brain slicer with coronal cut rows 


