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Abstract

It is well known that regular — or type 3 — languages are equivalent to finite automata.

Nevertheless, many other characterizations of this class of languages in terms of com-

putational devices and generative models are present in the literature. For example, by

suitably restricting more general models such as context-free grammars, pushdown au-

tomata, and Turing machines, that characterize wider classes of languages, it is possible

to obtain formal models that generate or recognize regular languages only. The resulting

formalisms provide alternative representations of type 3 languages that may be signifi-

cantly more concise than other models that share the same expressing power.

The goal of this work is to investigate these formal systems from a descriptional com-

plexity perspective, or, in other words, to study the relationships between their sizes,

namely the number of symbols used to write down their descriptions. We also present

some results related to the investigation of the famous question posed by Sakoda and

Sipser in 1978, concerning the size blowups from nondeterministic finite automata to two-

way deterministic finite automata.



Abstract

È noto che i linguaggi regolari — o di tipo 3 — sono equivalenti agli automi a stati finiti.

Tuttavia, in letteratura sono presenti altre caratterizzazioni di questa classe di linguaggi,

in termini di modelli riconoscitori e grammatiche. Per esempio, limitando le risorse com-

putazionali di modelli più generali, quali grammatiche context-free, automi a pila e mac-

chine di Turing, che caratterizzano classi di linguaggi più ampie, è possibile ottenere

modelli che generano o riconoscono solamente i linguaggi regolari. I dispositivi risultanti

forniscono delle rappresentazioni alternative dei linguaggi di tipo 3, che, in alcuni casi,

risultano significativamente più compatte rispetto a quelle dei modelli che caratterizzano

la stessa classe di linguaggi.

Il presente lavoro ha l’obiettivo di studiare questi modelli formali dal punto di vista

della complessità descrizionale, o, in altre parole, di analizzare le relazioni tra le loro di-

mensioni, ossia il numero di simboli utilizzati per specificare la loro descrizione. Sono

presentati, inoltre, alcuni risultati connessi allo studio della famosa domanda tuttora

aperta posta da Sakoda e Sipser nel 1978, inerente al costo, in termini di numero di stati,

per l’eliminazione del nondeterminismo dagli automi stati finiti sfruttando la capacità

degli automi two-way deterministici di muovere la testina avanti e indietro sul nastro di

input.



Introduction

The investigation of computational models operating under restrictions is one of classical

topics of computer science.

In one of his pioneer papers, Chomsky introduced a hierarchy of classes of languages,

also known as Chomsky hierarchy, obtained by applying increasing restrictions to general

grammars, that characterize the class of type 0 languages [Cho59a]. In this way he intro-

duced the classes of context-sensitive (or type 1), context-free (or type 2), and regular (or

type 3) languages.

For the same classes of languages, there also exist characterizations in terms of compu-

tational devices. Even in this case, bounding computational resources of general models,

less powerful devices can be obtained. For example, while nondeterministic Turing ma-

chines (even in the one-tape version) characterize type 0 languages, by restricting the

working space they are allowed to use to the portion of the tape that initially contains

the input, linear bounded automata are obtained, that are equivalent to context-sensitive

languages [Kur64]. Also finite automata or pushdown automata, that are standard rec-

ognizers for type 3 and type 2 languages, respectively, can be considered as particular

Turing machines in which the access to the memory storage is limited.

Besides the standard models mentioned so far, considering machines that make re-

stricted use of resources, it is possible to obtain alternative characterization of the classes
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of the hierarchy. For example, in 1965, Hennie proved that when the length of the compu-

tations, i.e., the time, is linear in the input length, one-tape Turing machines are no more

powerful than finite automata, that is, they recognize regular languages only [Hen65].

As remarked by Chomsky, context-free languages have the property of being able to

describe recursive structures such as, for instance, nested parentheses, arithmetic expres-

sions, and typical programming language constructs. In terms of recognizing devices, this

capability is implemented through the pushdown store, which is used to add recursion to

finite automata, so making the resulting model, namely pushdown automata, equivalent

to context-free grammars [Cho62].

To emphasize the ability of context-free grammars to generate recursive sentential

forms, Chomsky investigated the self-embedding property [Cho59b]: a context-free gram-

mar is self-embedding if it contains a variable which, in some sentential form, is able to

reproduce itself surrounded by two nonempty strings. Roughly speaking, this means that

such a self-embedded variable is “truly” recursive. He proved that, among all context-free

grammars, only self-embedding ones can generate nonregular languages. Hence, non-

self-embedding grammars are no more powerful than finite automata.

Counterpart devices for non-self-embedding grammars, for which the capability of

recognizing recursive structures is limited by placing some restrictions on the size of the

memory of the corresponding general model (i.e., pushdown automata), are constant-

height pushdown automata. More precisely, these devices are standard nondeterministic

pushdown automata where the amount of available pushdown store is fixed. Hence, the

number of their possible configurations is finite, thus implying that they are no more

powerful than finite automata.

By contrast to models that make use of space or time restrictions, Hibbard introduced

d-scan limited automata (or d-limited automata), that are obtained by limiting the writing

capabilities of nondeterministic linear bounded automata allowing overwriting of each

tape cell only the first d times that it is scanned, for some fixed d ≥ 0 [Hib67]. Hibbard

proved that, for each d ≥ 2 these models characterize context-free languages. Further-
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more, as shown by Wagner and Wechsung, when d = 1, that is, when these devices are

allowed to overwrite the contents of each tape cell during the first visit only, 1-limited

automata are equivalent to finite automata [WW86]. Moreover, it is a trivial observation

that when d = 0, and hence no writings on the tape are allowed, 0-limited automata cor-

respond to finite automata that can move their input head back and forth on the input

tape, namely two-way finite automata.

In this work we shall focus on the models characterizing the bottom level of the Chom-

sky hierarchy, i.e., the class of regular languages. We compare them from a descriptional

complexity point of view, specifically, by studying their capability of representing the

same class of languages in a more, or less, concise way. More precisely, descriptional com-

plexity is a field of formal languages and automata theory whose goal is to find relation-

ships between equivalent models in terms of their sizes, or, in other words, in the number

of symbols that can be used to write down their descriptions.

A classical problem in this area is the investigation of the relationships between deter-

ministic and nondeterministic devices. It is well known that one-way deterministic finite

automata are sufficient for type 3 languages. By allowing nondeterministic transitions the

computational power does not increase [RS59]. A natural question concerning models

that share the same computational power is the comparison of their size. In this respect,

even if deterministic and nondeterministic finite automata characterize the same class of

languages, it is well known that, in the worst case, one-way deterministic automata can

require exponentially many states with respect to equivalent nondeterministic automata.

Hence, there is an exponential size gap from one-way nondeterministic to one-way deter-

ministic automata.

Even by providing finite automata with the capability of moving the input head in

both directions on the tape, their recognizing power does not increase [She59]. The mod-

els so obtained are two-way deterministic and nondeterministic finite automata.

At this point, one could ask “Does the ability to scan the input in a two-way fashion in

finite automata help in the elimination of the nondeterminism?”. Differently from the one-way
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case, the question about the size cost of the conversion of (one-way and two-way) non-

deterministic finite automata into two-way deterministic finite automata, that was posed

by Sakoda and Sipser in 1978, is still open. In their paper, Sakoda and Sipser conjectured

that the elimination of the nondeterminism in the two-way case costs exponential. They

also related this question to the well-known P ?
= NP problem [SS78].

The dissertation is organized as follows.

After a gather of preliminary mathematical concepts useful to understand the concepts

presented in the thesis (Chapter 1), in Chapter 2 we define the models we deal with, and

the measures of complexity we shall consider.

We start our study by investigating non-self-embedding grammars and their descrip-

tional complexity [PP17]. In fact, in Chapter 3, we study the size costs of the conver-

sion of non-self-embedding grammars into equivalent finite automata, by proving op-

timal bounds for the number of states of nondeterministic and deterministic automata

equivalent to given non-self-embedding grammars. In particular, we show that each

non-self-embedding grammar of size s can be converted into an equivalent nondetermin-

istic automaton which has an exponential size in s and into an equivalent deterministic

automaton which has a double exponential size in s. These costs are shown to be optimal.

We then continue the investigation about non-self-embedding grammars, by compar-

ing them with constant-height pushdown automata and 1-limited automata [GPP18].

Since the double exponential gap in size from non-self-embedding grammars to deter-

ministic finite automata, presented in Chapter 3, coincides with the gap in size from

constant-height pushdown automata and 1-limited automata to deterministic finite au-

tomata, it is natural to ask how these models, obtained by posing some restrictions on

grammars and recognizers characterizing context-free languages, are related to each other.

So, in Chapter 4 we prove that non-self-embedding grammars and constant-height

pushdown automata are polynomially related in size, and we present a polynomial-size

simulation by 1-limited automata. However, we prove that the converse transformation

costs exponential. Finally, we give a different simulation that shows that also the conver-
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sion of deterministic constant-height pushdown automata into deterministic 1-limited

automata costs polynomial.

In Chapter 5 we focus on limited automata whose input alphabet is composed by just

one symbol and we show that there exists an exponential gap between the size of limited

automata accepting unary languages and the size of equivalent finite automata [PP19a].

Despite this gap, there are unary regular languages for which d-limited automata cannot

be significantly smaller than finite automata, for any arbitrarily large d.

We also prove that from each unary context-free grammar G it is possible to obtain

an equivalent 1-limited automaton whose description has a size that is polynomial in the

size of G.

In Chapter 6 we investigate, from a descriptional complexity point of view, the time

complexity of 1-limited automata [GP19]. Though the model recognizes regular lan-

guages only, it may use quadratic time in the input length. We show that, with a polyno-

mial increase in size and preserving determinism, each 1-limited automaton can be trans-

formed into a linear-time equivalent one. We also obtain polynomial transformations

into related models, including weight-reducing Hennie machines (i.e., one-tape Turing

machines syntactically forced to operate in linear-time), and we show exponential gaps

for the converse transformations in the deterministic case.

The investigation about machines working in linear time is continued in Chapter 7, in

which we prove that it is not decidable if a one-tape Turing machine works in linear time,

even if it is deterministic and restricted to use only the portion of the tape which initially

contains the input, unless the machine is weight-reducing [Gui+18].

By relating the study of these models to the above mentioned open question of Sakoda

and Sipser, we study the costs of the conversion of nondeterministic finite automata into

equivalent linear-time one-tape deterministic machines. We prove a polynomial blowup

from two-way nondeterministic finite automata into equivalent weight-reducing one-

tape deterministic machines (that work in linear time). The blowup remains polynomial

if the tape in the resulting machines is restricted to the portion which initially contains
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the input. However, in this case the resulting machines are not weight-reducing, unless

the input alphabet is unary. Similar results are proved in the case the simulated nonde-

terministic automata are one-way.

In Chapter 8 we turn our attention to pushdown automata [PP19b]. In particular, we

start our investigation by studying pushdown automata without any restriction on the

input height and we show that it cannot be decided whether these devices accept using

constant pushdown height, with respect to the input length, or not. Furthermore, in the

case of acceptance in constant height, the height cannot be bounded by any recursive

function in the size of the description of the machine. In contrast, in the restricted case of

pushdown automata over a one-letter input alphabet, i.e., unary pushdown automata, the

above property becomes decidable. Moreover, if the height is bounded by a constant that

does not depend on the input length, then it is at most exponential with respect to the size

of the description of the pushdown automaton. This bound cannot be reduced. Finally, if

a unary pushdown automaton uses non-constant height to accept, then the height should

grow at least as the logarithm of the input length. This bound is optimal.

In conclusion, in Chapter 9 we briefly discuss some possible future research directions.
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1
Preliminaries and Notation

In this chapter we recall some basic definitions and notations that will be used throughout

this dissertation.

The standard notions from formal language and automata theory are presented by

recalling the definitions in classical textbooks by Hopcroft and Ullman, and Shallit [HU79,

Sha08].

1.1 Sets, Lists, and Tuples

A set is an unordered collection of distinct elements. Given a set S, if an element x is in S,

it is denoted by x ∈ S, otherwise x /∈ S.

If a set does not contain any element, it is called empty set, and it is denoted by ∅.

We denote by #S the number of elements of S, namely, its cardinality, that can be either

finite, or infinite.

It is possible to describe a set S by enumerating all its elements within braces or by

stating properties common to all the elements of S.

Example 1.1. The set composed by the first 13 prime numbers can be represented in ex-

haustive way by S = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41 } or by stating a property

characterizing it, by S = { p | p < 42 and p is a prime number }, where the symbol | is read

“such that”. It denotes the set of numbers x satisfying the following property:
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• p is a number less than 42, and

• p is a prime number, i.e., a number greater than 1 whose divisors are only 1 and

itself. �

Given two sets A and B it is also possible to define new sets by using the following

operations between sets:

• The intersection of A and B: A ∩ B = { x | x ∈ A and x ∈ B }.

• The union of A and B: A ∪ B = { x | x ∈ A or x ∈ B }.

• The difference of A and B: A \ B = { x | x ∈ A and x /∈ B }.

If all the elements of a set A are in a set B, then A is a subset of B, and it is denoted

by A ⊆ B. A and B are equal (denoted by A = B), if they contain the same elements, or,

in other words, if A ⊆ B and B ⊆ A. A is a proper subset of B, denoted by A ⊂ B, if A ⊆ B

but A and B are not equal (A 6= B). If A and B do not have any element in common, i.e.,

A ∩ B = ∅, then we say that they are disjoint. The family of all the subsets of a set S is

denoted by 2S. Given a set A ⊆ B, the complement of A with respect to B is Ac = B \ A.

A collection P = { Si } of nonempty sets is a partition of a set S if

• the sets are pairwise disjoint, i.e., Si, Sj ∈ P and i 6= j implies Si ∩ Sj = ∅, and

• their union is S.

The set of natural numbers is denoted by N = { 0, 1, 2, 3, . . . }.

A list is a collection in which the elements, that can be repeated (unlikely sets), are

ordered by position.

A tuple is a list of fixed length. It is represented by enclosing its elements between

parentheses. For example, (0, 1, 2, 3, 4) is the tuple of length 5 (or 5-tuple) containing the

first five natural numbers.

The Cartesian product (or simply product) of n sets A1, A2, . . . , An, denoted by A1 ×

A2 × · · · × An, is the set of tuples of length n (namely, n-tuples) such that the i-th element
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of each n-tuple is an element of Ai, for i = 1, . . . , n, formally

A1 × A2 × · · · × An = { (a1, a2, . . . , an) | ai ∈ Ai, i = 1, . . . , n }.

The n-th power of a set A, is the Cartesian product of A repeated n times, in symbols

An = A× A× · · · × A︸ ︷︷ ︸
n times

.

1.2 Graphs and Trees

A (directed) graph is a pair G = 〈V, E〉, in which V is the finite set of nodes (or vertices)

and E is the finite set of edges connecting pairs of nodes. More formally, E : V × V is a

binary relation on V, and given two nodes u, v ∈ V, the edge connecting u to v is denoted

by the pair (u, v). A graph is undirected if, for each edge (u, v) in E, there also exists the

edge (v, u) in E.

A path of length k from a vertex u to a vertex v in a graph G = 〈V, E〉 is a sequence

v0, v1, v2, . . . , vk of vertices such that u = v0, v = vk, and (vi−1, vi) ∈ E, for i = 1, 2, . . . , k.

The length of the path is the number of edges in it. The path contains the vertices v0, . . . , vk

and the edges (v0, v1), (v1, v2), . . . , (vk−1, vk). If there is a path from u to v, we say that v

is reachable from u.

A path v0, v1, . . . , vk forms a cycle if v0 = vk and the path contains at least one edge. A

cycle is said to be simple if the only repeated vertices are v0 and vk. A graph with no cycles

is acyclic.

A strongly connected component (SCC, for short) of a directed graph G = 〈V, E〉 is a

maximal subset V′ of V such that for each pair of vertices u, v ∈ V′, G contains a path

from u to v. If V′ = V, i.e., all the nodes of the graph form a unique SCC, then G is said to

be strongly connected. An SCC is trivial if it does not contain any loop, namely, it is a single

vertex v without the edge (v, v). Otherwise, it is said to be nontrivial.

A tree is an undirected connected acyclic graph. A tree in which one of the nodes (root)

is distinguished from the others is a rooted tree. All the trees that we shall consider in this

thesis are rooted, and on them we use standard terminology from graph theory.

9



1.3 Basic Notions of Automata Theory

An alphabet is a finite, nonempty set of symbols or letters. As convention, we will often use

the symbols Σ and Γ for alphabets.

A string or word w over some alphabet Σ is a finite sequence of symbols chosen from Σ.

We denote by |w| the length of w, by w[i] the i-th symbol of w, for i = 1, . . . , |w|, and by ε

the empty string, that is the string composed by no letters. Notice that ε is the only string

whose length is 0. For any h ≥ 0, Σh denotes the set of strings of length h over the

alphabet Σ.

The set of all words over Σ is denoted Σ∗, while, if the empty string is excluded from

such a set, it is denoted by Σ+.

Let x and y be strings. Then xy is the string obtained from the concatenation of x and y,

that is the string composed by a copy of x followed by a copy of y. Given a string w,

w = a1a2 · · · an, let us denote by wR the reverse of w, i.e. the string an · · · a2a1, and by wn

the string composed by the concatenation of n copies of w. If n = 0, then w0 = ε.

Moreover w∗ denotes the set of words obtained by concatenating w arbitrarily many times

(commonly known as Kleene star or simply star operation): w∗ =
{

ε, w, w2, w3, . . .
}

.

Given an alphabet Σ, the set L of strings chosen from Σ∗ is a language over Σ. The

empty language ∅ is the language composed by no words. Notice that it is different from

the language composed by the empty word only. A unary language is defined over a one-

letter alphabet.

Since languages are set of words, classical operations on sets like union, intersection

and complementation are extended to languages in a natural way.

The product or concatenation of two languages L1 and L2 is the language

L1L2 = { uv | u ∈ L1 and v ∈ L2 }.

Given a language L, we denote by Li, i ≥ 1, the concatenation of L for i times, for-

mally Li = Li−1L, with L0 = { ε }. Moreover, L∗ denotes the language obtained by con-

catenate the strings in L arbitrarily many times, i.e., L∗ = L0∪ L1∪ L2∪ . . ., and L+ = LL∗.
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1.3.1 Grammars

A (formal) grammar is a tuple G = 〈V, Σ, P, S〉, where V is a finite set of variables (or non-

terminal symbols, or just nonterminals), T is a finite set of terminal symbols (or terminals) that

can occur in the strings of the language being defined, S ∈ V is the start symbol (or initial

symbol), representing the language being defined, and P is the finite set of production rules

(or productions) that represent the definition of a language. Each production has the form

α→ β

in which

• α is a nonempty string of terminals and variables, in which at least one nonterminal

occur, called left-hand side (or head) of the production,

• → is the production symbol, and

• β is a (possibly empty) string of terminals and variables, called right-hand side (or

body) of the production. It represents one way of replacing the head during the

derivation, that is the process of generation of a string starting from the initial symbol

and iteratively applying production rules.

Given two variables A, B ∈ V, productions of the form A → B and A → ε are called

unit productions and ε-productions, respectively.

Starting from the initial symbol S, it is expanded by using one of its productions (i.e.,

using a production whose head is S). The string s obtained is further expanded by picking

one production α→ β whose head occurs in s, and by replacing α with β. This is repeated

until s consists entirely of terminal symbols.

The process of derivation is indicated by using the relation⇒. Let α′αα′′ ∈ (V ∪ T)∗

be a string of terminal and variables and α → β ∈ P be a production of G. Then we

denote α′αα′′ ⇒
G

α′βα′′ for one step of derivation of G (or simply α′αα′′ ⇒ α′βα′′ if G is

clear from the context). We denote ?⇒ the extension of⇒ representing zero or more steps

of derivation.

Derivations from the start symbol produce strings that are called sentential forms. Thus,

any string α ∈ (V ∪ T)∗ such that S ?⇒ α is a sentential form.
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The language generated by G is denoted by L(G), and it contains all the sentential

forms composed only by terminal symbols. In symbols L(G) = {w | S ?⇒ w, w ∈ T∗}.

It is possible to represent the derivations of a grammar G as a tree, namely the deriva-

tion (or parse) tree, in which:

• Each node is labeled by a variable in V.

• Each leaf is labeled by either a variable, a terminal, or ε.

• If an interior node is labeled A and its children are labeled X1, X2, . . . , Xk, respec-

tively, from the left, then A→ X1X2 · · ·XK is a production in P.
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2
Computation Models and Descriptional Complexity

In this chapter we shall introduce the models studied in this thesis and the complexity

measures we consider.

We start by recalling the Chomsky hierarchy (Section 2.1), a hierarchy of class of lan-

guages, characterized by formal grammars that, for each level of the hierarchy, have

stronger and stronger restricting conditions. Each class of the Chomsky hierarchy is also

characterized in terms of acceptors, i.e., computational models that, given a word w in

input, are able to determine the membership of w to a language. Therefore, in Section 2.2

we define grammars and acceptors we are going to deal with, by posing some restrictions

on more general models.

Besides the references given in the following sections, more details on grammars and

devices can be found in classical text-books (e.g., [HU79, Sha08]).

Finally in Section 2.3, we introduce the measures of complexity of these models and

we present the problems we intend to investigate and some classical examples in the area

of descriptional complexity, according to the reference survey by Goldstine et al. [Gol+02].

13



2.1 Restrictions of Formal Grammars: The Chomsky Hier-

archy

In one of his pioneer papers, Chomsky defined the following classes of languages, that

are generated by grammars that were studied as potential models for the generation of

natural languages [Cho59a].

Type 0 languages. The largest family of the Chomsky hierarchy is the class of languages

recognized by Turing machines (in both deterministic and nondeterministic ver-

sions), even in the variant with one tape only. This family is generated by unre-

stricted — or type 0 — grammars, whose productions are of the form α→ β, where α

and β are arbitrary strings of grammar symbols, with α 6= ε. In other words, these

are general grammars that do not have any kind of restriction.

It is possible to recognize a type 0 language by using a Turing machine, (that, as

explained in the following section, is a general model of computation), that non-

deterministically guesses the “backward” derivation used to obtain the word given

in input. This procedure is implemented as follows. At each step of computation,

the machine guesses the production α → β that was applied at the previous step

of the derivation to obtain the current string and replaces the portion of the word

corresponding to β with α. This process is iterated until, simulating the recursive

inference, the initial symbol of the grammar is found and it is the only remaining

symbol of the string.

Type 1 languages. The weakest restriction on grammars posed by Chomsky was that

characterizing the class of context-sensitive (CSL, for short) — or type 1 — languages.

In context-sensitive grammars, each production has the form α1Aα2 → α1βα2, in

which A is a variable and α1, α2, and β 6= ε are strings of grammar symbols. Produc-

tions of this type mean that it is possible to replace the variable A with the nonempty

string β when A is in the “context” given by α1 and α2, i.e., between α1 and α2. The
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only exception is a production S → ε, provided that the variable S does not appear

on the right-hand side of any production.

Notice that, since β 6= ε, the right-hand side of each production is never shorter than

the left-hand side.

Also in this case, it is possible to design a Turing machine that performs a “back-

ward” guessing of the productions used in the derivation process. Differently from

the type 0 case, since the right-hand sides of the productions are shorter than the

left-hand sides, the machine should obtain a shorter and shorter string for each step

of the “backward” derivation, so it uses an amount of space that is limited by the

length of the input. When a Turing machine uses just the portion of the tape that ini-

tially contains the input, as in this case, the resulting model is called linear-bounded

automata. So, linear-bounded automata are the device counterpart characterizing

this class of languages.

Type 2 languages. Context-free grammars, that characterize this class of languages, namely

context-free languages (CFL, for short), have the capability of generating recursive

structures. They are obtained by restricting context-sensitive grammars. In particu-

lar, each production has the form α1Aα2 → α1βα2, with α1 = α2 = ε. It is possible

to notice that, in this case, it is always possible to apply the production from the

variable A, independently from the “context” surrounding it.

The ability of recognizing recursive structures in languages is implemented by using

the pushdown store of pushdown automata.

Type 3 languages. Finally, the smallest class of the hierarchy is the one of the regular lan-

guages (REG, for short). The productions of the grammars generating regular lan-

guages, namely regular — or type 3 — grammars, have the form A → aB or A → a,

where A and B are variables and a is a terminal symbol, or S→ ε, provided that the

variable S does not appear on the right-hand side of any production.

Typical acceptors for these languages are finite automata, that are simple machines
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that are able to represent only a finite set of possible configurations.

2.2 General Devices and Restrictions Characterizing Reg-

ular Languages

In this thesis we shall analyze, from a descriptional complexity point of view, variants

of classical formal computational models that characterize type 3 languages, obtained by

posing some restrictions on the computational resources of more general devices. This

section is devoted to the formal definition of these models.

2.2.1 Turing machines

Turing machines, introduced by Turing in 1936, were proposed as a general model of

computation, formalizing the concept of procedure [Göd31] and, hence, the intuitive no-

tion of algorithm [Kle52]. Such a principle is known as Church’s Thesis. As seen in the

previous section, this device was proven to be equivalent to unrestricted grammars (see,

e.g. [Cho59a]) in both the deterministic and nondeterministic versions.

In this thesis we shall consider one-tape Turing machine (TM), that are devices consist-

ing of a finite control, composed by the set of states the machine can be into during the

computation, an infinite tape, divided into cells, each one containing one letter of the in-

put, and a head that is used to read and write the tape contents. At the beginning of the

computation, the input of the Turing machines, a finite-length string of symbols chosen

from the input alphabet, is placed on a segment of an infinite tape, called initial segment, sur-

rounded on the left and on the right by infinite sequences of special symbols 6 b called blank,

and the head is at the leftmost cell containing the input.

At each step of computation, the machine, depending on its configuration — given

by the current state and the symbol scanned by the head — and according to the set of

its instructions, defined through a transition function that can be seen as the program that

describes the behavior of the machine, reaches the next configuration, by updating its
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Finite State Control

6 b 6 b i n p u t 6 b 6 b

Figure 2.1: The representation of a Turing machine. It is composed by a finite state control

and a head used to read and write the cells of the tape.

internal state, overwriting the symbol currently scanned with a symbol from a working

alphabet, and moving the tape head to left, to right, or keeping it in place.

Formally,

Definition 2.1. A Turing machine is a tuple 〈Q, Σ, Γ, δ, qI , F〉 where Q is a finite set of states,

Σ is a finite input alphabet, Γ is a finite working alphabet including Σ, qI ∈ Q is the initial

state, F ⊆ Q is the set of final states, and δ : Q × Γ → 2Q×Γ×{−1,0,+1 } is the transition

function.

When #δ(p, σ) ≤ 1 for each p ∈ Q and σ ∈ Γ, the Turing machine is deterministic (DTM, for

short). In this case, the deterministic transition function is δ : Q×Γ→ Q× Γ× {−1, 0,+1 }.

Since we shall focus on DTMs let us describe more in detail the meaning of the tran-

sition function of these devices. In one step, depending on its current state p and on the

symbol σ read by the head, a DTM changes its state to q, overwrites the corresponding

tape cell with τ and moves the head one cell to the left, to the right, or leaves it on the

same cell if δ(p, σ) = (q, τ, d), according to the fact that d = −1, d = +1, or d = 0.

The computation of a Turing machine A over an input w starts in the initial state with

the head scanning the leftmost symbol of w. This is the initial configuration ofA. The input

is accepted if the machine eventually halts in a final state, namely, if it reaches a final state

from which, given the current configuration, no move is possible.

A configuration is represented as a string zpz′, meaning that p is the current state,
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zz′ ∈ Π∗ is the content of the tape (where Π denotes the set of symbols that can appear

on the tape of the model) and the head is scanning the first symbol of z′. The transition

relation between configurations is denoted by ` , and its reflexive-transitive closure by ∗̀.

We also represent partial configurations as upv, where p is the current state and uv is a

factor of the tape content.

In order to understand how a Turing machine works, let us warm up with a prelimi-

nary example.

Example 2.1. Let us consider the following language:

L =
{

ww | w ∈ { a, b }∗
}

composed by the square of a word w on the alphabet { a, b }.

We are going to define a Turing machine T accepting L and to explain how it works.

Roughly, at the beginning of the computation the machine guesses which is the posi-

tion c of the cell containing the first symbol of the second occurrence of w. So, it compares

the symbol in position 1 with the one in position c, and, if they are equal, T overwrites

them with a special marker. Then, it compares the symbols in position 2 and c + 1, over-

writing them if they are equal, and so on, until reaching the end of the string. If, by

repeating these steps, the end of the input is reached and all the input symbols have been

overwritten, then the machine accepts.

Formally, let T = 〈Q, Σ, Γ, δ, qI , F〉, where Q = { qI , q1, q2, . . . , q9, qF, qT }, Σ = { a, b },

Γ = {X, 6 b } ∪ Σ, qI is the initial state, and the set of final states is F = { qI , qF }. The

transition function δ is defined as follows (undefined transitions are not listed):

i. δ(qI , a) = { (q1,X,+1) }

ii. δ(qI , b) = { (q2,X,+1) }

iii. δ(q1, a) = { (q1, a,+1), (q3,X,−1) }

iv. δ(q1, b) = { (q1, b,+1) }
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v. δ(q2, b) = { (q2, b,+1), (q3,X,−1) }

vi. δ(q2, a) = { (q2, a,+1) }

vii. δ(q3, σ) = { (q3, σ,−1) } = δ(q9, σ), for σ ∈ Σ

viii. δ(q3,X) = { (q4,X,+1) }

ix. δ(q4, a) = { (q5,X,+1) }

x. δ(q4, b) = { (q6,X,+1) }

xi. δ(q5, σ) = { (q5, σ,+1) }, for σ ∈ Σ

xii. δ(q5,X) = δ(q7,X) = { (q7,X,+1) }

xiii. δ(q6, σ) = { (q6, σ,+1) }, for σ ∈ Σ

xiv. δ(q6,X) = δ(q8,X) = { (q8,X,+1) }

xv. δ(q7, a) = δ(q8, b) = { (q9,X,−1) } = δ(q9,X)

xvi. δ(q9, 6 b) = { (qF, 6 b,+1) }

xvii. δ(qF,X) = { (qF,X,+1) } = δ(q4,X)

xviii. δ(qF, σ) = { (qT, σ,+1) }, for σ ∈ Σ

The machine starts in the initial state qI . At the beginning of the computation, it stores

the first symbol of the input word (and hence of the word w) in its finite control and

overwrites it with the symbol X (Transitions i. and ii.). Then, it guesses which is the cell

of the tape containing the first letter of the second occurrence of w and, after reaching it,

T overwrites such a cell with X if its contents corresponds to the letter stored in the finite

control (Transitions iii., iv., v., and vi.). At this point, the first letter of both the occurrences

of w is marked with X. So, the machine repeats the following steps:
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1. it moves the head backward until reaching the leftmost unmarked symbol σ ∈ Σ of

the first occurrence of w (Transitions vii. and viii.);

2. it stores σ in the finite control and overwrites σ with X (Transitions ix. and x.);

3. it moves the head to the right until reaching the leftmost unmarked symbol of the

second occurrence of w (Transitions xi., xii., xiii., and xiv.);

4. it compares the symbol scanned by the head with the one stored in the finite control

and, if they correspond, the machine continues the execution by starting another

iteration of this procedure from Step 1 (Transitions xv.).

Thus, T exits this loop

• either when one of the symbols of the second occurrence of w does not correspond

to the symbol stored in the finite control,

• or when, by moving the head backward while executing Step 1, a blank symbol 6 b is

reached (Transition xvi.).

In the former case, T halts and rejects (undefined transitions). While, in the latter case,

the device performs a last scan of the tape to check if no symbols of the input word x are

left, because at this point all of them should have been overwritten if x is in the language

(Transitions xvii.). In this case, the T halts and accepts. Otherwise, as soon as one input

symbol is detected, the machine enters a nonaccepting state and halts (Transition xviii.).

�

Let us now consider a trickier example, which will be utilized later.

Example 2.2 ([Sha08]). Consider the deterministic Turing machine BB3 represented in the

transition graph in Figure 2.2, in which each state is represented by a node, and each tran-

sition δ(p, a) = (q, X, d) is represented by an edge from the state p to q labeled by a/X, d.
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q1 q2

q3 qF

1/1,+1

6 b/1,+1

6 b/1,−1

1/1,−1 6 b/1,−1

1/1,+1

Figure 2.2: An example of deterministic Turing machine for the busy beaver problem.

The initial state is denoted by an arrow entering it, and the final state is represented by a

double circle.1

Such a machine, starting with the tape containing just an infinite sequence of blank

symbols, ends the computation with a string on the tape in which the number of 1’s is

the maximum that is possible to obtain with 3 states plus an accepting one from which no

outgoing transitions are defined. In fact, it halts after 13 moves with 6 consecutive 1’s on

the tape. Such a machine is a 3-state busy beaver (we do not count the halting state in the

total number of states). �

In general, for n > 0, a busy beaver BBn is a deterministic Turing machine with a set

of n states Qn and tape alphabet Γ = { 1, 6 b }, that starting with an empty tape, ends the

computation with a string on the tape in which the number of 1’s, denoted as Σ(n), is

maximum. We call Σ : N→N the busy beaver function.

Even if for small arguments of the busy beaver function it is possible to compute Σ(n)

— as in our case, in which Σ(3) = 6 — Radó in 1962 proved that Σ(n) grows asymptoti-

cally faster than any recursive function:

Theorem 2.1 ([Rad62]). Σ(n) cannot be bounded by any recursive function.
1In the following, transitions graphs will be also used to represent the other devices we are going to

study. In those cases, the edges will be labeled in accordance with the transition function of the model

under consideration.
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2.2.1.1 Restrictions of Turing machines

Since Turing machines are a general model of computation equivalent to the concept of

algorithm (according to Church’s Thesis), this model and its variants have been widely

studied in the literature. For example, in the area of structural complexity, classical com-

plexity classes such as P, NP, LOGSPACE, etc. are defined by introducing a limit on the

amount of resources, specifically time or space, at disposal of the model. Usually, such

limitations reduce the expressive power.

In this work we shall consider Turing machines operating under some limitations

on their computational resources, thus obtaining less powerful devices that character-

ize smaller families of languages. In particular, the following restrictions of DTMs will be

considered.

Bounded machines. We say that a device is bounded, if each input string is surrounded by

two special symbols called the left and the right endmarkers, B and C respectively,

and for each transition δ(p, σ) = (q, τ, d), σ = B (resp., σ = C) implies τ = σ

and d = +1 (resp., d = −1). Hence, the machine is restricted to use only the initial

segment (plus the endmarkers), that cannot be left by the head, i.e., it cannot be

moved to the left of the cell containing B and to the right of the cell containing C

and, moreover, these endmarkers cannot be modified.

Linear-bounded automata are bounded TMs [Kur64], while we call bounded DTMs

their deterministic restriction.

Weight-reducing Turing machines. Roughly speaking, in weight-reducing Turing machines

each overwriting is decreasing with respect to some fixed order on the working al-

phabet. As a consequence, after overwriting a cell with a minimal symbol, such a

machine cannot visit the cell again.

Formally, a Turing machine is weight-reducing (wr TM), if there exists an order <

on Γ such that δ(p, σ) 3 (q, τ, d) implies τ < σ. By this condition, in a wrTM the

number of visits to each tape cell is bounded by a constant. However, one wrTM
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could have non-halting computations which, hence, necessarily visit infinitely many

tape cells.

Deterministic weight-reducing Turing machines are denoted wrDTMs.

Linear-time Turing machines. A Turing machine is said to be linear-time if, over each

input w, its computation halts within O(|w|) steps.

Hennie machines. A Hennie machine (HM) is a linear-time Turing machine which is, fur-

thermore, bounded.

Deterministic Hennie machines are denoted DHMs.

Weight-Reducing Hennie machines. By combining previous conditions, weight-reducing

Hennie machines are defined, in both nondeterministic (wr HMs) and deterministic

(wr DHMs) versions.

Observe that each bounded wrDTM can execute a number of steps which is at most

linear in the length of the input. Hence, bounded wrDTMs are necessarily Hennie

machines.

Further restrictions deriving from finer analyses of computational resources of Turing

machines will be considered through this thesis. We shall introduce these models by

expressing the main differences with the general model of Turing machine just defined.

2.2.1.2 A note on common notations for restrictions of Turing machines

When considering restrictions of Turing machines some definitions could slightly differ

from the general model.

In particular, for machines that are allowed to use only the portion of the tape that

initially contains the input, at the beginning of the computation the input word w is stored

on the tape surrounded by the two end-markers, the left end-marker being at the position

zero. Hence, the right end-marker is on the cell in position |w| + 1. The head of the

machine is on the cell 1.
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The input is accepted if and only if there is a computation path which starts from the

initial configuration and ends in a final state after violating the right end-marker, i.e., with

the head which leaves the tape by moving to the right of the right end-marker.

In this case, configurations are represented by strings of the form zpz′, where p is the

current state, zz′ ∈ BΠ∗C is the content of the tape, for some alphabet Π, and the head is

scanning the first symbol of z′. Notice that, in case |z′| = 0, the machine has reached the

end of the computation.

In the cases in which we want to emphasize computations involving only some por-

tion of the tape, we shall use partial configurations. Partial configurations are represented

as strings of the form upv, where p is the current state and uv ∈ { ε,B }Π∗{ ε,C } is a

factor of the tape content. The relations ` and ∗̀ on configurations extend onto partial

configurations.

Instead, for one-way machines, i.e., machines whose head never moves to the left, the

input w is accepted if and only if there is a computation path which starts from the initial

configuration and ends in a final state after reading the last symbol of the w.

The language accepted by an acceptor A is denoted by L(A) and is composed by all

the input words accepted by A. If L(A) is a unary language, or, in other words, the input

alphabet is composed by one symbol only, then A is said to be unary as well.

A transition that does not depend on the input symbol scanned by the head, i.e., it is

performed without reading any input symbol, is called ε-transition (or ε-move).

2.2.2 Limited automata

By contrast to the standard restrictions on time and space, Hibbard in 1967 introduced

limited automata (originally called scan-limited automata), that are obtained by posing a

finer restriction of the capabilities of Turing machines. In particular, d-limited automata are

linear-bounded automata that, after the first d visits to a cell, for a fixed integer d ≥ 0, are

not allowed to overwrite its contents anymore. Nevertheless, the cell may be visited again

and the information stored therein read arbitrarily many more times, but its contents is
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frozen for the remainder of the computation [Hib67].

Formally, limited automata are defined as follows:

Definition 2.2. Given an integer d ≥ 0, a d-limited automaton (d-LA, for short) is a tupleA =

〈Q, Σ, Γ, δ, qI , F〉, where Q is a finite set of states, Σ is a finite input alphabet, Γ is a finite

working alphabet such that Σ ∪ {B,C } ⊆ Γ, where B,C /∈ Σ are the left and the right end-

markers, respectively, δ : Q× ΓBC → 2Q×ΓBC×{−1,0,+1 } is the nondeterministic transition

function, where ΓBC denotes the set Γ ∪ {B,C }, qI ∈ Q is the initial state, and F ⊆ Q is the

set of final states.

In one move, according to δ and to the current state, A reads a symbol from the tape, changes

its state, replaces the symbol just read from the tape by a new symbol, and moves its head, as

happens for Turing machines. However, there are the following restrictions:

• Replacing symbols is allowed to modify the contents of each cell only during the first d visits,

with the exception of the cells containing the end-markers, which are never modified.

• The end-marker symbols cannot be used to replace the contents of any of the cells which ini-

tially contains the input. (With the previous condition, this implies that if (q, X, m)∈ δ(p, a)

and either X ∈ {B,C } or a ∈ {B,C }, then X = a.)

• The head cannot violate the end-markers, i.e., it cannot move to the left of the left end-marker

or to the right of the right end-marker, except at the end of computation, to accept the input,

as explained in Section 2.2.1.2.

An automaton A is said to be limited if it is d-limited for some d ≥ 0.

As for Turing machines, A is said to be deterministic (deterministic d-LA, for short)

whenever #δ(q, a) ≤ 1, for any q ∈ Q and a ∈ Γ.

2.2.2.1 A classical example: recognizing Dyck languages

In order to show how this model works, we shall illustrate a classical example of exe-

cution for accepting the set of words representing well balanced sequences of brackets,

namely the Dyck languages.
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Definition 2.3. A bracket alphabet

Ωk = { (1, (2, . . . , (k, )1, )2, . . . , )k }

is a finite set containing an even number of symbols, say 2k, with k > 0, where the first k symbols

are interpreted as left brackets of k different types, while the remaining symbols are interpreted

as the corresponding right brackets. The Dyck language DΩk over Ωk is the set of all sequences

of balanced brackets from Ωk.

Example 2.3 ([Pig19]). Let us consider the Dyck language DΩk over the alphabet Ωk of k

types of brackets.

To recognize the strings in DΩk , a limited automaton can use the following strategy.

It starts by scanning the input tape from the left to the right until reaching the leftmost

cell containing a closing bracket. The corresponding opening one is necessarily the last

bracket before it, that must be of the same type. Such a bracket is located by changing

the direction of the head moving it backward along the tape. The two corresponding

brackets are then removed and overwritten with a special symbol. At this point, the same

procedure, consisting in

• locating the first (leftmost) closing bracket,

• checking if the last bracket before it is of the same type,

• and overwriting these two brackets,

can be iterated.

When no more closing brackets are left on the tape, opening bracket can be left nei-

ther. In this case the original word was balanced. Otherwise, in the following cases the

sequence is not balanced:

• At the end of the procedure the sequence left on the tape contains some opening

bracket;

• After locating a closing bracket no opening one before it is found;

• After locating a closing bracket the last opening one, found before it, is of a different

type.
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Let us focus on the movements of the head of a machine implementing the described

procedure. The computation of the device starts with the head scanning the cell contain-

ing the first input symbol. So, each input cell is reached for the first time while moving

the head from left to right. Moreover, the following holds:

• A cell containing a closing bracket is overwritten when the head visits it for the first

time. After that, the head is moved backward to look for an opening bracket;

• A cell containing an opening bracket is overwritten when the head reaches it for the

second time, while the device is scanning the tape from the right to the left;

• After the cell is overwritten, it could be visited further many times, but it is not

overwritten anymore.

Hence, a device implementing such a procedure, that overwrites each cell only in the first

two visits and, after that, it never modifies their contents, is a 2-limited automaton. �

The device just described accepts the Dyck languages. It is easy to notice that, with a

slight modification to the given procedure, it is possible to recognize an extended version

of a Dyck language DΩk , that is obtained by pumping the strings of DΩk with some extra

symbols that, during the recognizing procedure, will be just ignored. Formally,

Definition 2.4. An extended bracket alphabet Ω is a nonempty finite set which is the union

of two, possibly empty, sets Ωk and Ωn, where Ωk, if not empty, is a bracket alphabet, and Ωn is

a set of neutral symbols. The extended Dyck language D̂Ω over Ω is the set of all the strings

that can be obtained by arbitrarily inserting symbols from Ωn in strings of DΩk .

Example 2.4. Let Ωk = { (, [ , ), ] }, Ωn = { | }, and Ω = Ωk ∪Ωn. Then ([ [ ] ] )[ ] ∈

DΩk ⊂ D̂Ω. �

Dyck languages are important in the investigation of context-free languages, because

they capture the recursive structure of any context-free language. This fact is formal-

ized by the famous Chomsky-Schützenberger representation theorem for context-free lan-

guages [CS63], that we present here in a nonerasing variant, proved by Okhotin [Okh12]:
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Theorem 2.2. A language L ⊆ Σ∗ is context free if and only if there exist an extended bracket

alphabet Ω, a regular language R ⊆ Ω∗, and a letter-to-letter homomorphism h : Ω → Σ such

that L = h(D̂Ω ∩ R).

Theorem 2.2 suggests a way to build, for any context-free language L, a recognizer

which is the combination of the following devices:

• A one-way nondeterministic machine T that, on each input w ∈ Σ∗, produces a

string z ∈ h−1(w);

• A machine AD recognizing the extended Dyck language D̂Ω;

• A one-way finite automaton AR accepting the regular language R.

As device AD we can use a 2-limited automaton implementing the procedure out-

lined in Example 2.3, with the modification that allows to accept the extended Dyck lan-

guage D̂Ω. As a conclusion, each context-free language is accepted by a 2-limited automa-

ton. (For further details, see [Pig15, PP14].)

As proved by Hibbard, the converse also holds. Furthermore, by allowing a larger —

but still constant — number of visits during which it is possible to rewrite each tape cell,

the computational power does not change:

Theorem 2.3 ([Hib67]). For each d ≥ 2, the class of languages accepted by d-limited automata

coincides with the class of context-free languages.

Hibbard furthermore showed the existence of an infinite hierarchy of deterministic

d-limited automata, whose first level (i.e., corresponding to deterministic 2-limited au-

tomata) has been later proved to coincide with the class of deterministic context-free lan-

guages [PP15]. (See [KPW18] and references therein for further connections between lim-

ited automata and context-free languages.)

2.2.2.2 1-limited automata

Let us now turn our attention on the case d = 1. In 1986, Wagner and Wechsung proved

that 1-limited automata characterize the class of regular languages [WW86, Thm. 12.1].
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Remark 2.1. A 1-limited automaton A (1-LA, for short) is a limited automaton in which, for

each transition (q, γ, d) ∈ δ(p, σ), we have γ ∈ ΓBC \ Σ and if σ ∈ ΓBC \ Σ then γ = σ.

In one move, according to δ and to the current state, A reads a symbol from the tape,

changes its state, replaces the symbol just read by a new symbol, and moves its head

one position backward or forward or keeps it in place. However, replacing symbols is

subject to some restrictions, which, essentially, allow to modify the content of a cell during

the first visit only. Technically, symbols from Σ shall be replaced by symbols from Γ \ Σ,

while symbols from ΓBC \ Σ are never overwritten. In particular, at any time, both special

symbolsB andC occur exactly once on the tape and exactly at the respective left and right

boundaries. Acceptance for 1-LAs, as well as deterministic 1-LAs, is defined exactly as for

bounded machines (cf., Section 2.2.1.2).

Further examples, technical details, properties, and references about limited automata

can be found in the survey by Pighizzini [Pig19].

2.2.3 Context-free grammars

In formal language theory, the most investigated classes are probably those of regular and

context-free languages. The interest for them is not purely theoretical, but it is also related

to their practical applications as, for instance, the definition of programming language

syntax and the construction of lexical and syntactic analyzers [Aho+06].

As seen in Section 2.1, the difference between these two classes is related to the rep-

resentation of recursive structures (e.g., nested brackets, nested blocks in programming

languages, arithmetic expressions in infix notations) which is possible in context-free lan-

guages but not in regular ones.

Context-free languages are generated by context-free grammars, that are formally de-

fined as follows:

Remark 2.2. A context-free grammar (CFG, for short) is a formal grammar G = 〈V, Σ, P, S〉, in

which V ∩ Σ = ∅ and productions in P are of the form A→ α, where A ∈ V and α ∈ (V ∪ Σ)∗.
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It is possible to notice that, in context-free grammars, each variable represents a lan-

guage. So, for each A ∈ V, we shall denote as G|A = 〈V, Σ, P, A〉 the grammar obtained

from G by taking A as initial symbol. Hence L
(
G|A
)

is the language generated starting

from A.

In order to restrict the number of possible choices when deriving a string, it is often

useful to replace the given derivation by the leftmost derivation: such derivation always

rewrites the leftmost variable in the given sentential form. A leftmost derivation will be

denoted by ⇒
lm

and ?⇒
lm

, for exactly one and for arbitrarily many steps (including zero),

respectively.

2.2.3.1 Non-self-embedding context-free grammars

The difference, in terms of grammars, between context-free and regular languages, was

formalized by Chomsky, who studied the self-embedding property [Cho59a]. A variable A

in a context-free grammar is self-embedded if it is able to reproduce itself in a sentential

form, enclosed between two nonempty strings α and β. Formally,

Definition 2.5. Let G = 〈V, T, P, S〉 be a context-free grammar. A variable A ∈ V is said

to be self-embedded when there are two strings α, β ∈ (V ∪ Σ)+ such that A ?⇒ αAβ. The

grammar G is self-embedding (SE, for short) if it contains at least one self-embedded variable,

otherwise G is non-self-embedding (NSE, for short).

This means that the variable A can generate a “true” recursion that needs an auxiliary

memory (typically a stack) to be implemented (in contrast with tail or head recursions,

corresponding to the cases in which α or β are empty, respectively, that can be easily

eliminated). Chomsky proved that context-free grammars without self-embedded vari-

ables, namely non-self-embedding grammars, only generate regular languages, i.e., they are

no more powerful than finite automata [Cho59a, Cho59b].

Hence, the “true” recursion given by self-embedded variables is the additional ca-

pability which makes the class of context-free languages larger than the class of regular

ones.
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It is worthwhile to mention that, when considering unary alphabets, the classes of

context-free and regular languages collapse [GR62]. Hence, context-free grammars with

unary terminal alphabets generate regular languages. So one could ask what happens

if we consider context-free grammars where the only variables which are allowed to be

self-embedded are those generating only unary strings. Let us call such grammars quasi-

non-self-embedding.

Definition 2.6. Let G be a context-free grammar. G is quasi-non-self-embedding (qNSE, for

short) when each self-embedded variable generates a unary language.

Note that in qNSE grammars the self-embedded variables could generate different

unary languages on different symbols of T.

The results given by Chomsky on NSE grammars have been extended to qNSE gram-

mars by Andrei, Cavadini, and Chin, who proved that also qNSE grammars (called one-

letter factorizable), generate only regular languages [ACC03].

We point out that, as shown by Anselmo, Giammarresi, and Varricchio in 2002, given

a grammar G it is possible to decide in polynomial time whether or not it is NSE [AGV02].

The proof is based on the analysis of the production graph T of G. In particular, if each SCC

of T contains either only left-linear or right-linear variables, i.e., such that each production

having a variable A of the SCC as a left-end side is either of the form A → wB (A → Bw,

resp.), or of the form A→ w, for some B ∈ V and w ∈ Σ∗, then G is a NSE grammar.

With an easy modification, the same technique can be used to decide if G is qNSE.

2.2.4 Pushdown automata

As seen in the previous section, the difference between the two smallest classes of the

Chomsky hierarchy resides in the fact that context-free languages can represent recursive

structures.

While, on the one hand, such a difference can be emphasized in terms of grammars, on

the other hand, in terms of recognizers, the natural counterpart to context-free grammars
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are pushdown automata, that can be seen as particular Turing machines, that are allowed

to scan the input tape in a one-way fashion and can use an auxiliary memory that is

organized as a pushdown (or stack), i.e., the memory structure which allows to implement

the recursion, in which the information is stored and recovered in a “last in–first out” way.

The stack can be imagined as a data structure that grows from the bottom to the top, in a

vertical way. This means that, at each step of computation, the machine can access (read)

only the last information that was stored on the top of the pushdown, it can delete such

information (pop), or it can enter additional information on the top of the stack (push)2.

When a push operation is performed to save some symbol γ on the stack, the previous

topmost symbol becomes the second one from the top, and the device cannot access that

symbol until a pop move is used to remove γ from the top of the pushdown. We shall

represent the content of the stack as a string, with the convention that the leftmost symbol

represents the top of the stack, while the rightmost symbol is the bottom of the pushdown.

The stack gives this device the capability to implement recursive procedures. Hence,

due to its capability to recognize recursive structures in languages, this model character-

izes the class of context-free languages [Cho62].

Formally, a pushdown automaton is defined as follows:

Definition 2.7. A pushdown automaton (PDA, for short) is a tupleM = 〈Q, Σ, Γ, δ, qI , Z0, F〉

where Q is the finite set of states, Σ is the input alphabet, Γ is the pushdown alphabet, δ is

the transition function, qI ∈ Q is the initial state, Z0 ∈ Γ is the start symbol, F ⊆ Q is the set

of final states.

At the beginning of the computation the automaton starts with the input head being

on the first cell of the input tape, the pushdown store containing only a special symbol Z0

denoting the bottom of the stack, and the finite control storing the initial state.

2Notice that in the literature there exists a generalization of pushdown automata, whose name is stack

automata, in which, besides the operations push and pop, it is allowed to inspect — in a read-only way

— the contents stored below the symbol on top [HU69]. Throughout this thesis we study only pushdown

automata, however we shall use both “pushdown” and “stack” to refer to their memory structure.
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The input of a PDA is accepted if and only if the automaton reaches a final state qF ∈ F,

the pushdown store contains only Z0 and all the input has been scanned.

On classical text-books, the transition function δ is usually defined as a mapping

from Q × (Σ ∪ { ε }) × Γ to the finite subsets of Q × Γ∗. So, at each step, according to

the current state, the symbol scanned by the input head, and the symbol on the top of the

pushdown, the device (nondeterministically) selects the next state, moves the input head

to the right (unless a ε-move is performed), and replaces the symbol at the top of the stack

with a new string.

In order to study this model and some of its restrictions, it will be useful to make the

following assumptions about PDAs.

First of all, it is possible to transform each PDA in the above-given form in an equiva-

lent PDA that pushes exactly one symbol on the stack for each push operation. Formally,

each transition (p, Y1Y2 · · ·Yn) ∈ δ(q, a, X) such that n > 1, can be replaced by the follow-

ing transitions:

1. δ(q, a, X) = { (q′, ε) },

2. δ(q′, ε, γ) = { (pn, Ynγ) }, for each γ ∈ Γ,

3. δ(pi+1, ε, Yi+1) = { (pi, YiYi+1) }, for i = n− 1, . . . , 1,

4. δ(p1, ε, Y1) = { (p, Y1) }.

With this transformation, the topmost symbol is popped off the stack with Transition 1,

and then the symbols of the string Y1Y2 · · ·Yn are pushed on the stack, one per tran-

sition (Transitions 3). We point out that the rightmost symbol of Y1Y2 · · ·Yn is pushed

regardless the new topmost symbol (Transition 2). Finally, Transition 4 is used to reach p

without performing any operation on the stack. Notice that, if the first pushed symbol

of Y1Y2 · · ·Yn is X, i.e., Yn = X, then it is not necessary to pop X off the stack. In this case

Transitions 1 and 2 can be replaced by δ(q, a, X) = { (pn, X) }.

It can be observed that the number of auxiliary states pi, i = 1, . . . , n introduced to

split up the transition (p, Y1Y2 · · ·Yn) ∈ δ(q, a, X) is linear in the length of Y1Y2 · · ·Yn.
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Hence, this transformation requires an increase of number of states linear in the length of

the string pushed with each replaced transition.

Moreover, we can assume, without loss of generality, that if the automaton moves the

input head, then no operations are performed on the stack. In such a way, the transitions

manipulating the pushdown store are clearly distinguished from those reading the input

tape.

This is done by replacing each transition (p, Y) ∈ δ(q, a, X), with p, q ∈ Q, a ∈ Σ \ { ε },

and X, Y ∈ Γ, with two transitions

δ(q, a, X) =
{
(p′, X)

}
and δ(p′, ε, X) = { (p, Y) }.

It is an easy observation that this transformation only requires a constant increase of the

number of states of the original automaton.

The transition function δ of a PDAM in this form can be written as

δ : Q× (Σ ∪ { ε })× Γ→ 2Q×({−,pop }∪{ push(A)|A∈Γ }).

In particular, for q, p ∈ Q, A, B ∈ Γ, σ ∈ Σ, (p,−) ∈ δ(q, σ, A) means that the PDAM, in

the state q, with A at the top of the stack, by consuming the input σ, can reach the state

p without changing the stack contents; (p, pop) ∈ δ(q, ε, A) ((p, push(B)) ∈ δ(q, ε, A),

(p,−) ∈ δ(q, ε, A), respectively) means that M, in the state q, with A at the top of the

stack, without reading any input symbol, can reach the state p by popping off the stack the

symbol A on the top (by pushing the symbol B on the top of the stack, without changing

the stack, respectively).

Notice that in any accepting computation the occurrence of the start symbol Z0 at the

bottom of the stack is never removed, otherwise the next move would be undefined, so

halting in a non-accepting configuration.

Constant-Height Pushdown Automata. We shall consider a restriction of the model in

which the capacity of the pushdown store is bounded by some constant h ∈N. Hence,
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the number of their possible configurations is finite. This implies that they are no more

powerful than finite automata.

Definition 2.8. For h ∈ N, a pushdown automaton of height h (h-PDA) is a pushdown au-

tomaton 〈Q, Σ, Γ, δ, qI , Z0, F〉 in which, during the computation, the number of symbols contained

in the pushdown store besides the start symbol Z0 must be less than h. In particular, it is possible

to perform push transitions if the height of the pushdown store is less than h.

We point out that the height of a PDA A in a given configuration is the number of

symbols in the pushdown store besides the start symbol.

As for pushdown automata, this model accepts an input word w ∈ Σ∗ if, starting from

the initial state qI with a pushdown store containing only the start symbol Z0, being at

height 0, it can eventually reach the accepting state qF, after having read all the input

symbols.

2.2.5 Finite state automata

Finite state automata are the simplest model we are going to consider, and since they are

the standard model used to describe regular languages, in the thesis we shall study rela-

tionship of above-defined models with these devices.

These machines have been originally introduced to model brain functions (as neural

nets) [MP43], circuits [Huf54, Mea55] and as “sequential machines” [Moo56].

This model can be seen as restricted Turing machines that are not allowed to use other

memory than its finite control, i.e., it cannot change the contents of any cell of the tape

during the computation, nor it has an auxiliary memory (as in the case of pushdown

automata). It can also be noticed that such a description corresponds to the definition

of 0-limited automata.

Finite automata, in all their settings, namely deterministic, nondeterministic, one-way

and two-way, characterize the class of regular languages.

We start by introducing the model in the more general setting (two-way nondetermin-

istic finite automata) and then we consider the one-way and the deterministic versions of
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this device.

Definition 2.9. A two-way nondeterministic finite automaton (2NFA, for short) is a tu-

ple A = 〈Q, Σ, δ, qI , F〉, where Q is a finite set of states, Σ is a finite input alphabet, q0 ∈ Q is

the initial state, F ⊆ Q is a set of final states, and δ : Q× ΣBC → 2Q×{−1,0,+1 } is a nonde-

terministic transition function, where ΣBC denotes the set Σ ∪ {B,C }, and B,C /∈ Σ are the

left and the right endmarkers, respectively.

A 2NFA A is said to be deterministic (2DFA, for short), whenever #δ(q, σ) ≤ 1, for

any q ∈ Q and σ ∈ ΣBC. It is called one-way if its head can never move backward, i.e.,

if no transition returns −1 as second component. By 1NFAs and 1DFAs (or simply NFAs

and DFAs, when the one-way direction of the head is clear from the context) we denote

one-way nondeterministic and deterministic finite automata, respectively.

2.3 Descriptional Complexity of Formal Systems

Descriptional complexity is an area of formal languages and automata theory whose goal

is the investigation of the relationship between the sizes of the representations of equiva-

lent formal systems.

In the previous section a few equivalent models characterizing the class of regular

languages have been defined by limiting some resources of more general models. There-

fore, the main question we are interested about is “How much does the limitation of one

resource cost in terms of another resource, i.e., what are the upper and lower bounds of such

costs?” [Gol+02].

Since we are interested in comparing the sizes of the descriptions of devices and for-

mal systems, for each model under consideration we evaluate its size as the total number

of symbols used to describe it, or, in other words, to write down its description. In the

following, for each considered model, we give a more precise definition of the measure of

complexity considered. In particular, given a computational model A, we denote its size

by size(A).
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We remark that through the thesis we shall consider machines over a fixed input alpha-

bet Σ.

Turing machines. Given a deterministic Turing machine T = 〈Q, Σ, Γ, δ, q0, F〉, the size

of T is bounded by a polynomial in the number of states and of working symbols.

In particular, size(T ) ∈ Θ(#Q · #Γ · log(#Q · #Γ)).

We remark that such a measure of complexity holds for the bounded, weight re-

ducing, and linear-time Turing variants as well, while, if T is nondeterministic,

size(T ) ∈ Θ((#Q)2(#Γ)2).

Limited automata. For d-limited automata, the size depends on the number of states and

on the cardinality of the working alphabet.

Hence, the size of a 1-LA A = 〈Q, Σ, Γ, δ, qI , F〉, is Θ((#Q)2(#Γ)2).

We remind the reader that, if not otherwise specified, limited automata are consid-

ered to be nondeterministic.

In case A is deterministic, size(A) ∈ Θ(#Q · #Γ · log(#Q · #Γ)).

Pushdown automata. The size of a PDA M = 〈Q, Σ, Γ, δ, qI , Z0, F〉 in the above-defined

form, is Θ((#Q)2(#Γ)2), namely a polynomial in the cardinalities of the set of states

and of the pushdown alphabet.

Notice that if we consider PDAs in different forms, as that given in [HU79] in which

any push operation can replace the top of the pushdown by a string of symbols, to

define the size we have to take into account also the number of symbols that can

be pushed on the store in one single operation. However, PDAs in that form can be

turned in the form we consider through this thesis with a polynomial increase in size

(and by preserving the property of being constant height). For a further discussion

on this point we address the reader to [Bed+14].

h-PDAs, instead, can be replaced by equivalent standard PDAs without the built-

in limit on pushdown size, by counting in the finite control the pushdown height,
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with an increase in the number of states that is linear in h. For this reason, the

size of an h-PDA over a fixed input alphabet Σ is given by a polynomial in #Q, #Γ,

and h [GMP10].

Context-free grammars. For a context-free grammar G = 〈V, Σ, P, S〉, as size of G we

consider the total number of symbols used to specify it. i.e., the number of symbols

used to write down its productions. Therefore, for fixed Σ and V, size(G) is defined

as ∑(A→α)∈P(2 + |α|), cf. [Kel84]. Since in general we cannot assume that V is fixed,

the previous value is multiplied by log #V.

Finite automata. To measure the size of a finite automaton, since no writings are allowed

(neither on the tape nor on an auxiliary memory) and hence no working alphabet is

provided, we consider the cardinality of the state set.

More precisely, in the case of (one-way and two-way) nondeterministic finite au-

tomata, the size is linear in the number of instructions and states, which is bounded

by a function quadratic in the number of states. So, the size of a NFA 〈Q, Σ, δ, qI , F〉

is Θ((#Q)2). Instead, in the deterministic case (for both the one-way and two-way

models), the size of a DFA A = 〈Q, Σ, δ, qI , F〉 is bounded by a function linear in the

number of states. Therefore, size(A) ∈ Θ(#Q · log #Q).

The main goal of this thesis is to study the relationships between the size of these

different models.

In particular, given two different classes of computational modelsM1 andM2 char-

acterizing the regular languages, there are natural questions we are interested in:

• Does a function F exist, such that for all the regular languages L ∈ REG, the size of

the smallest device of typeM1 for L is upper bounded by the function F of the size

of the smallest equivalent device of typeM2, i.e.,

min{ size(A) | A is a device inM1 accepting L }

≤ F(min{ size(A) | A is a device inM2 accepting L })?
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If F exists, it is an upper bound for the increase (blow-up) in complexity when chang-

ing from a minimal model of typeM2 for an arbitrary regular language to an equiv-

alent minimal model of typeM1.

• Do an infinite family of distinct languages (Li)
∞
i=0, Li ∈ REG, i ∈N, and a function f

exist, such that for all i ∈N, the size of the smallest device of typeM1 for L is lower

bounded by the function f of the size of the smallest equivalent device of typeM2,

i.e.,

min{ size(A) | A is a device inM1 for Li }

≥ f (min{ size(A) | A is a device inM2 for Li })?

If f exists, it is a lower bound for the increase in complexity when changing from a

minimal model of typeM2 to an equivalent minimal model of typeM1 for infinitely

many languages.

If there is no recursive function upper bounding the trade-off between two computa-

tional modelsM1 andM2, we say that the trade-off is non-recursive. Furthermore, if the

lower and the upper bounds coincide, we say that the bound is tight or optimal.

For more details about the area of descriptional complexity see, e.g., the surveys by

Goldstine et al., Holzer and Kutrib [Gol+02, HK10].

A classical example in the area of descriptional complexity is the relationship between

the size of deterministic and nondeterministic finite automata.

It is well known that, for finite automata, the nondeterminism does not add power.

However, the elimination of nondeterminism, obtained by applying the subset (or pow-

erset) construction, cost exponential [RS59]. The subset construction gives an exponential

upper bound for the elimination of nondeterminism from one-way finite automata, and

it is possible to prove that such a bound is tight. In fact, we shall show an example in

which, given an infinite family of languages (Li)
∞
i=0, the size of each deterministic finite
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q0 q1 q2 . . . qi

0, 1

1 0, 1 0, 1 0, 1

Figure 2.3: A nondeterministic finite automaton accepting the language composed by

strings in which the i-th symbol from the end is a 1.

automaton accepting Li, for i ∈ N, is at least exponential in the size of the equivalent

nondeterministic finite automaton.3

Example 2.5 ([HMU01]). Let us consider the following language:

Li =
{

w ∈ { 0, 1 }∗ | the i-th to last symbol of w is 1
}

.

A 1NFA Ai accepting Li (represented in the transition graph in Figure 2.3) could work

as follows. It moves the input head forward on the input tape, until reaching the i-th

symbol from the end, that is detected by performing a nondeterministic guess. If the

i-th last symbol is a 1, the automaton performs a transition from q0 to q1, and checks if

the length of the remaining part of the input string is i − 1 (this is done by using states

from q1 to qi). Therefore, the number of states for a NFA accepting Li is i + 1.

On the other hand, a DFA accepting Li cannot guess which is the i-th symbol from the

end of the input string. So, intuitively, it has to “remember” the last window of i symbols,

saving it by using its finite control, and, when the end of the input is reached, checking

that the first symbol of the current window is 1. It is easy to see that the number of the

possible windows of length i is 2i, and each of them is stored by using a state of the 1DFA,

thus implying a number of states equal to 2i. �

3For a fixed i, the language presented has an i + 1-state NFA accepting it, while the equivalent DFA needs

at least 2i states. The choice of such a language is done for ease of presentation. However, Meyer and

Fischer showed that, for each n, there exists a language that can be accepted by an n-state NFA but for

which each DFA requires at least 2n states [MF71].
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It is also known that the capability of moving the input head back and forth along the

tape does not change the recognizing power of this model. In fact, Shepherdson and Ra-

bin and Scott, independently, in 1959, prove this result by giving a two constructions that

are based on the analysis of the crossing sequences, i.e., the moves of the input head of the

automata through the tape cells [She59, RS59]. Both the constructions, given a two-way fi-

nite automaton, return an equivalent one-way deterministic finite automaton whose size

is exponential in the square of the size of the automaton given in input.

Nevertheless, the question about the cost of the elimination of the nondeterminism

from 2FA is still open. In particular, Sakoda and Sipser in 1978 raised a question about

the cost of the optimal simulation of 1NFAs and 2NFAs by 2DFAs. Sakoda and Sipser

conjectured that such a cost is exponential.

The question has been solved in some special cases that can be grouped in three

classes: by considering restrictions on the simulating machines (e.g., sweeping [Sip80],

oblivious [HS03], few reversals two-way deterministic finite automata [Kap13]), by consid-

ering restrictions on languages (e.g., unary case [GMP03]), by considering restrictions on

the simulated machines (e.g., outer-nondeterministic automata [GGP14, KP15]). However,

in spite of all attempts, in the general case the question remains open.

The importance of this open problem is supported by its similarity to the well-known

P ?
= NP problem [SS78] and by relationships with LOGSPACE

?
= NLOGSPACE ques-

tion [BL77, GP11, Kap14b, KP15]. (See [Pig13] for further details and references.)
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3
Non-Self-Embedding Grammars

As mentioned in Section 2.2.3.1, Chomsky in 1959 investigated the self-embedding prop-

erty of context-free grammars, and proved that non-self-embedding grammars only gen-

erate regular languages.

The proof of this result given by Chomsky is constructive: it provides a method for ob-

taining a finite automaton equivalent to a given non-self-embedding grammar [Cho59a,

Cho59b]. A different constructive proof of the same result was given by Anselmo, Gi-

ammarresi, and Varricchio, who showed that it is possible to decompose non-self-embed-

ding grammars into regular grammars and then to iteratively apply regular substitutions

in order to obtain equivalent finite automata [AGV02]. In the same paper, the authors

also proved that the size gap between non-self-embedding grammars and equivalent fi-

nite automata is at least exponential, by showing the existence of a language (defined

over a one-letter alphabet) described by a non-self-embedding grammar of size O(s) for

which any equivalent nondeterministic finite automaton requires 2s many states.

In this chapter we continue the investigation of the relationships between the sizes of

non-self-embedding grammars, together with the quasi-non-self-embedding extension,

and of equivalent finite automata.

It is worthwhile to mention that, in 1971, Meyer and Fischer proved that for any recur-

sive function f and arbitrarily large integer n, there exists a context-free grammar whose

description has size n and which generates a regular language, such that any equivalent
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finite automaton requires at least f (n) states [MF71]. This means that it is not possible

to obtain a recursive bound relating the size of context-free grammars generating regu-

lar languages with the number of states of equivalent deterministic finite automata. It

is important to notice that the result of Meyer and Fischer was obtained by considering

grammars with a two-letter terminal alphabet. The unary case was studied in 2002 by

Pighizzini, Shallit, and Wang, who obtained optimal recursive bounds [PSW02].

In this chapter we show that, also in the case of non-self-embedding grammars, the

bounds are recursive, independently on the alphabet size. In particular, by inspecting

and refining the construction presented by Anselmo, Giammarresi, and Varricchio, we

show that each non-self-embedding grammar of size s can be converted into equivalent

nondeterministic and deterministic automata with 2O(s) and 22O(s)
states, respectively. We

also present a family of languages that witness that these gaps cannot be reduced.

Moreover, we prove that the size costs of the conversion of quasi-non-self-embedding

grammars into equivalent nondeterministic and deterministic finite automata are the

same of the conversion of non-self-embedding grammars.

The results shown in this chapter have been presented in [PP17].

3.1 Preliminaries

In the paper by Anselmo, Giammarresi, and Varricchio, the authors showed the existence

of a family of unary languages that witnesses the exponential size gap between non-self-

embedding grammars and finite automata. In order to show an example of NSE grammar,

we now present such a family of languages and the grammar used to describe it.

Example 3.1 ([AGV02]). Let us consider the family of languages (Un)∞
n=0, such that, for

each n, Un = { a2n }, that is the singleton composed by the unary string of length 2n.

Fixed an integer n, Un is generated by the NSE grammar

Gn = 〈{ A0, . . . , An }, { a }, P, An〉

where the set P of productions contains
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• A0 → a and

• Ai → Ai−1Ai−1, for each i = 1, . . . , n.

It is possible to see that the variable Ai generates the string a2i
, for i = 0, . . . , n. Hence,

the language generated by Gn is Un.

Moreover, the size of Gn is linear in the parameter n, while the minimum DFA An

accepting Un has 2n + 1 states. In fact, ifAn had less than 2n + 1 states, for the pigeons’ hole

principle, a computation path on the string a2n
would pass more than once in at least one

state, thus implying the existence of a cycle in the transition graph of An, and so that An

would recognize an infinite language. However, the same lower bound can be proved

for 2NFAs. Indeed, by adapting the n → n + n! method, originally derived for Turing

machines operating by using an auxiliary working tape of size bounded by a function

sublogarithmic in the input length [HR89, Gef91], one can prove that if a 2NFA accepts ak

with less than k states, it must also accept ak+k!. �

The family of languages (Un)∞
n=0 will be used often throughout this dissertation to

witness the bounds on the size of models.

We now introduce some technical results and definitions that will be used in the chap-

ter.

Given two alphabets Σ and Γ, a substitution is a function ϕ mapping each letter γ ∈ Γ

into a language ϕ(γ) ⊆ Σ∗. The substitution ϕ can be extended to strings and languages

in a standard way. The substitution ϕ is said to be regular if ϕ(γ) is a regular language for

each γ ∈ Γ. It is well known that regular substitutions preserve regularity.

Lemma 3.1. Let Σ and Γ be two alphabets and ϕ : Γ → 2Σ∗ be a regular substitution, i.e., a

function mapping each letter γ ∈ Γ into a regular language ϕ(γ) ⊆ Σ∗. If L ⊆ Γ∗ is a regu-

lar language accepted by an NFA M with n1 states, and each language ϕ(γ) is accepted by an

NFAMγ with at most n2 states, then the language ϕ(L) is accepted by an NFA N with O(n1n2)

states. Furthermore, for each nontrivial SCC in the transition graph of M there exists a cor-

responding “expanded” SCC in N , (i.e., if starting from the initial state of M and reading a
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string x ∈ Γ∗ a state in a nontrivial SCC is reached, then starting from the initial state of N and

reading ϕ(x) a state in the corresponding SCC is reached) while each remaining nontrivial SCC

in N is an isomorphic copy of some nontrivial SCC occurring in automataMγ, γ ∈ Γ.

Proof. The automaton N can be obtained by “substituting” each automaton Mγ in M,

namely by replacing in M each transition from a state p to a state q on the symbol γ

with a copy of the NFA Mγ. More precisely, using ε-moves, in N the initial state of the

copy ofMγ can be reached from the state p while the state q can be reached from each

final state in the copy. IfM has n1 states (hence O(n2
1) transitions) and eachMγ has at

most n2 states, then the resulting NFA N has O(n2
1n2) states. This number can be reduced

to O(n1n2) by using, for each state p, only one copy of Mγ for all outgoing transitions

from p on the symbol γ, and connecting with ε-transitions the final states of the copy to

all the states q which inM are reachable from p by transitions on γ. Finally, ε-transitions

can be removed in a standard way, without increasing the number of states.

We notice that in this construction, from each nontrivial SCC ofM we obtain a non-

trivial SCC in N . Each other nontrivial SCC in N is created as a copy of a nontrivial SCC

in an automatonMγ when a transition ofM on a symbol γ ∈ Γ connecting two states

of N not belonging to a same SCC is replaced by the automatonMγ.

3.1.1 Standard constructions: converting grammars to automata

The production graph P(G) of a context-free grammar G = 〈V, Σ, P, S〉 is a directed graph

which has V as vertex set and contains an edge from A to B, A, B ∈ V, if and only if there

is a production A → αBβ in P, for A, B ∈ V and some α, β ∈ (V ∪ Σ)∗. The strongly

connected components of the production graph induce a partial order on variables: a

variable A is smaller than B if there exists a path from A to B and no path from B to A.

The grammar G is said to be right-linear (left-linear, resp.), if each production in P is

either of the form A → wB (A → Bw, resp.), or of the form A → w, for some A, B ∈ V,

w ∈ Σ∗. It is well known that right- or left-linear grammars generate exactly the class of

regular languages.
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Lemma 3.2. Each left-linear grammar of size s can be converted into an equivalent right-linear

grammar of size O(s).

Proof. Let G = 〈V, Σ, P, S〉 be a left-linear grammar. It is possible to obtain an equivalent

right-linear grammar G ′ = 〈V′, Σ, P′, S′〉 whose size is linear in the size of G, in which the

set of variables V′ = V ∪ { S′ } has one more variable S′ /∈ V, and the set P′ contains the

following productions:

• B→ w, for each S→ Bw in P,

• B→ wA, for each A→ Bw in P (including S→ Bw),

• S′ → wA, for each A→ w in P.1

Notice that if we apply the above transformation to the grammar G|Ŝ obtained by

changing the initial symbol of G into Ŝ ∈ V, then the set of productions of the resulting

grammar can be different from P′.

From each left-linear (or right-linear) grammar G of size s it is possible to obtain an

equivalent NFA with O(s) many states. More precisely, we can prove the following result:

Lemma 3.3. Let G = 〈V, Σ, P, S〉 be a right-linear (left-linear, resp.) grammar of size s. Then,

the following holds:

1. There exists an equivalent NFAM with O(s) states.

2. If the production graph of G is strongly connected and its unique SCC is not trivial, then the

transition graph ofM contains one nontrivial SCC, and this SCC includes the initial (final,

resp.) state ofM.

Proof. First of all, if G is a left-linear grammar, then, by Lemma 3.2, it is possible to convert

it into a right-linear grammar whose size is linear in s. So, let us suppose G right-linear

and let us recall how to convert G to an equivalent NFAM. By standard construction,M

is obtained by:
1For our purposes, it is useful to observe that we can rename the variables in the resulting grammar G ′,

in such a way that the name of the start symbol is S, as in the original grammar.
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i. Creating a state qA for each variable A ∈ V and a final state qF.

ii. Adding a path labeled by w (with relative intermediate states) from qA to qB for each

production of the form A→ wB, w ∈ Σ∗.

iii. Adding a path labeled by w (with relative intermediate states) from qA to qF for each

production of the form A→ w, w ∈ Σ∗.

iv. Setting qS — the state representing the variable S — as initial.

The obtained graph corresponds to the transition graph of an NFA equivalent to G.

To prove 1 it is sufficient to see that for each production A → α in P, O(|α|) states are

created. So, it is possible to conclude that the number of states ofM is in O(s).

The proof of 2 follows from the observation that, if the production graph is a unique

nontrivial SCC then there exists a path from A to B and from B to A, for all A, B ∈ V.

Hence, there exists a unique nontrivial SCC inM containing all the states qA, A ∈ V, and

the extra states introduced at step ii.; the remaining states on the paths from qA, A ∈ V,

to qF (and the state qF itself) form trivial components.

From the construction in the proof of Lemma 3.3, we can notice that, by changing

the initial symbol in G, the obtained NFA can be different (in the case of a right-linear

grammar, we need to change the initial state, while in the case of left-linear grammars we

have to change the final state).

Anselmo, Giammarresi, and Varricchio showed that NSE grammars admit a particular

form based on a decomposition into finitely many simpler grammars, that will be now

recalled.

Definition 3.1 ([AGV02]). Let G1 = 〈V1, Σ1, P1, S1〉 and G2 = 〈V2, Σ2, P2, S2〉 be two CFGs,

with V1 ∩V2 = ∅. The ⊕-composition of G1 and G2 is the grammar

G = G1 ⊕ G2 = 〈V, Σ, P, S〉,

where V = V1 ∪V2, Σ = (Σ1 \V2) ∪ Σ2, P = P1 ∪ P2, and S = S1.
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Example 3.2. Let us consider two CFGs

G1 = ({ S1, C, D }, { b, A, B }, P1, S1) and G2 = ({ S2, A, B }, { a, b }, P2, S2),

where P1 contains the productions

S1 → bS1 | C C → DC | D D → AB

and P2 contains

S2 → A | B | ε A→ Aa | a B→ Bb | b.

It can be verified that L(G1) = b∗(AB)+, in G2 the variable A generates the language a+,

the variable B generates the language b+, and L(G2) = a∗ + b∗.

The⊕-composition of G1 and G2 is G1⊕G2 = ({ S1, S2, A, B, C, D }, { a, b }, P1 ∪ P2, S1),

that generates the language L(G1 ⊕ G2) = b∗(a+b+)+ = b∗a(a + b)∗b, i.e., the set of all the

strings on { a, b } ending with b and in which at least one a occurs. �

Intuitively, the grammar G = G1 ⊕ G2 generates all the strings which can be obtained

by replacing in any string w ∈ L(G1) each symbol A ∈ Σ1 ∩V2 with a string in Σ∗2 which

can be derived from A in the grammar G2, i.e., which is in the language L(G2|A). Notice

that the definition of G1 ⊕ G2 does not depend on the initial symbol S2 of G2, i.e., by

changing the initial symbol of G2 the resulting grammar G does not change. In fact, it

can be observed that in Example 3.2 the variable S2 of G1⊕G2 is never generated starting

from the initial nonterminal symbol S1.

The ⊕-composition is associative and preserves the non-self-embedding property of

grammars. Moreover, if Σ1 ∩ V2 = ∅ then L(G1 ⊕ G2) = L(G1). It is also possible to

observe that given two CFGs G1 and G2, if L(G1) is regular and, for each A ∈ Σ1 ∩ V2,

L(G2|A) is regular, then L(G) is regular as well (by regular substitution). In particular,

given an NFAM1 accepting L(G1) and NFAsMA accepting L(G2|A), for A ∈ Σ1 ∩V2, we

can obtain an NFAM accepting L(G1 ⊕ G2) by “substituting” each automatonMA inM1,

as in the proof of Lemma 3.1.
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3.2 Converting Non-Self-Embedding Grammars into Au-

tomata

Anselmo, Giammarresi, and Varricchio gave an interesting alternative proof of the above

mentioned result of Chomsky on the regularity of languages generated by NSE gram-

mars [AGV02]. In particular, they obtained the result as a consequence of the following

theorem.

Theorem 3.1 ([AGV02, Thm. 2]). For each NSE grammar G there exist g > 0 grammars

G1,G2, . . . ,Gg

such that G = G1 ⊕ G2 ⊕ · · · ⊕ Gg, where, for i = 1, . . . , g, Gi is either left-linear or right-linear.

The proof of Theorem 3.1 is constructive: it presents a method for obtaining gram-

mars G1,G2, . . . ,Gg from the given NSE grammar G. Since this method is important to ob-

tain the state upper bounds for NFAs and DFAs equivalent to NSE grammars presented in

this section and other results in the chapter, we now summarize how grammars G1, . . . ,Gg

are obtained (for a detailed presentation of a related decomposition see [Har78, Sect. 3.5]).

• Let n be the number of SCCs in the production graph P(G).

• If P(G) is strongly connected then G is either a left-linear or a right-linear grammar,

hence G = G1 is regular.

• Otherwise, the SCCs of P(G) are considered in some topological order and, for

each i = 1, . . . , g, the grammar Gi = 〈Vi, Σi, Pi, Si〉 is defined as follows:

– Vi is the set of variables in the i-th SCC.

– Σi = Σ ∪⋃j>i Vj, for technical reasons we also set Σ0 = { S }.

– Pi is obtained by restricting P to productions whose left-hand side variables are

in Vi.
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– Si is an element in Vi ∩ Σi−1.

Since P(Gi) is strongly connected, Gi is either a left-linear or a right-linear grammar,

for i = 1, . . . , g.

Example 3.3. Let us consider the NSE grammar G = ({ S, A, B, C, D }, { a, b }, P, S), whose

productions are

S→ aA |bB | aC A→ aS | aD B→ Bb |b C → aC |bD D → bC |bD |bB.

Hence, the production graph P(G) is composed by three SCCs: C1 whose nodes are S

and A, C2 containing C and D, and C3 containing B. Following the construction recalled

above it is possible to decompose G into three grammars G1 = ({ S, A }, { a, b, B, C }, P1, S),

G2 = ({C, D }, { a, b, B }, P2, C), and G3 = ({ B }, { b }, P3, B), where P1, P2, and P3 are

composed by the productions of P having, as left-hand side, S or A, C or D, and B, re-

spectively. �

We are now going to estimate the size of NFAs and DFAs equivalent to the NSE grammar G

given in Theorem 3.1. Let us suppose that the size of G is s. Then g ≤ s. Furthermore,

s = s1 + s2 + · · ·+ sg, where si is the size of Gi, i = 1, . . . , g.

Now, from each grammar Gi, we obtain a family of NFAs {Mi,A | A ∈ Σi−1 ∩Vi },

such that each NFAMi,A has size O(si) and recognizes the language L
(
Gi|A

)
.

To obtain an NFA M accepting L(G), we iteratively construct automata Mi, for i =

1, . . . , g, accepting L(G1 ⊕ G2 ⊕ · · · ⊕ Gi) as follows. Let us start by taking M1 = M1,S.

For i > 1, the automatonMi is obtained by substituting in the automatonMi−1 each tran-

sition labeled by A ∈ Σi−1∩Vi with the NFAMi,A, as explained in the proof of Lemma 3.1.

At the end of this process, we finally obtain M = Mn, which accepts L(G) and

has O(s1s2 · · · sg) many states. Since s1 + · · ·+ sg = s, we get that s1 · · · sg = 2log(s1···sg) =

2log s1+···+log sg ≤ 2s. Hence, we conclude thatM has 2O(s) many states. Considering also

the cost of the conversion of NFAs into equivalent DFAs, we obtain the following:

Theorem 3.2. Let G be an NSE grammar of size s. Then there exist an NFA and a DFA accept-

ing L(G) with 2O(s) and 22O(s)
states, respectively.
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3.3 Optimality

In this section we prove that the exponential and double exponential state upper bounds

for the conversion of NSE grammars into NFAs and DFAs given in Theorem 3.2 cannot be

reduced. To this aim, we now introduce a family (Lh)
∞
h=1 of witness languages.

Given an integer h > 0, consider the language Lh ⊆ { a, b }∗ defined as the set of

strings composed of k blocks w1w2 · · ·wk each of length h, for some k > 1, such that the

last block wk is the reverse of one of the first k− 1 blocks. Formally,

Lh=
{

w1w2 · · ·wk−1wk | k > 1, wi ∈ { a, b }h, i = 1, . . . , k, and ∃j, 1 ≤ j < k, s.t. wj = wR
k

}
.

Let us define the grammar Gh = 〈V, Σ, P, S〉 generating Lh, with terminals Σ = { a, b },

variables V = { S, C1, . . . , Ch, A1, . . . , Ah }, and the following productions in P:

• S→ C1A1 | A1

• Ci → aCi+1 | bCi+1 for 1 ≤ i < h

• Ch → a | b | aC1 | bC1

• Ai → aAi+1a | bAi+1b for 1 ≤ i < h

• Ah → aa | bb | aC1a | bC1b

It is easy to verify that only from variables Ci, for 1 ≤ i ≤ h, it is possible to de-

rive themselves in some sentential form, i.e., they are in the unique nontrivial SCC of the

production graph of G, but all of them are right-linear. Hence, G is a NSE grammar.

Moreover, it can be observed that from the variable C1 it is possible to derive one or

more blocks of h terminal symbols, i.e., for x ∈ Σ∗, C1
?⇒ x if and only if x ∈ (Σh)+. From

the variable A1, after expanding variables Ai, i = 1, . . . , h, we generate sentential forms

as A1
?⇒ wwR or A1

?⇒ wC1wR where w ∈ Σh. Then A1 generates all terminal strings of

the form w(Σh)∗wR, where w ∈ Σh. Using the initial symbol S, it is possible to combine

the two variables C1 and A1 to obtain an arbitrarily long sequence of blocks of length h
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followed by the blocks wj and wk that enclose another arbitrarily long sequence of blocks

of h symbols.

Observe that the size of the grammar Gh is linear in the parameter h, i.e. size(Gh) =

O(h). Using a distinguishability argument, we are going to show that any DFA accept-

ing Lh requires a number of states which is double exponential in h.

Let w1, w2, . . . , w2h be the list of all the strings in Σh sorted in lexicographical order,

and S = 2Σh
be the family of all the subsets of Σh. For each s ∈ S, we consider the

string vs = wi1wi2 · · ·wik , where 1 ≤ i1 < i2 < . . . < ik ≤ 2h, k ≥ 0, and s ={
wi1 , wi2 , . . . , wik

}
. Given two different subsets s′, s′′ ∈ S, let x ∈ Σh be a string such

that x ∈ (s′ ∪ s′′) \ (s′ ∩ s′′). Then, the string xR distinguishes vs′ and vs′′ , i.e., exactly one

between vs′x and vs′′x belongs to Lh. Hence, each DFA accepting Lh needs at least #S many

states. This gives a 22h
lower bound for the size of any DFA accepting Lh and a 2h lower

bound for the size of any NFA accepting Lh. This allows us to conclude that the gaps given

in Theorem 3.2 cannot be reduced.

For the sake of completeness we describe how an NFA Nh accepting Lh works.

• Nh starts to scan the input string by skipping the first j− 1 blocks and by nondeter-

ministically guessing which is the block wj. To this aim,Nh uses a counter modulo h,

that requires h states.

• After that, the automaton has to read and finally save the content of wj into its finite

state control. The transition graph of this part corresponds to a complete binary

tree Bh of height h starting from the initial state and in which each of the 2h leaves

represents a string w ∈ Σh. As a consequence, the number of states required for this

part is ∑h
i=1 2i = 2h+1 − 2.

• After reaching a leaf it is necessary to skip k− j + 1 blocks. Again, this can be done

in a nondeterministic way by using a counter modulo h for each leaf, each of them

implemented by using O(h) states.

• Finally,Nh has to verify that the last block corresponds to the stored word. This can
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be done by comparing the next input symbol with the last symbol in the string w

stored in the control; if they are different, then the computation stops, otherwise the

last symbol of w is removed and the computation continues in the same way. The

part of the transition graph of Nh for this comparison corresponds to a “reversed”

binary tree of height h, in which the first level is composed by the 2h leaves of Bh,

and the last one is composed by the unique final state of Nh only.

From the above description, summing up the states of the automaton, it is possible to

derive an upper bound on the size of the NFA Nh that is exponential in the size of the

NSE grammar Gh. More precisely, we can show thatNh can be implemented by using h +

∑h
i=1 2i + 2h(h− 1) + ∑h−1

i=0 2i = (2 + h)2h + h− 3 states.

In conclusion, we proved the following:

Theorem 3.3. The size blowup from NSE grammars to NFAs (DFAs, resp.) is exponential (double

exponential, resp.). This bound is tight.

3.4 Converting Quasi-Non-Self-Embedding Grammars into

Automata

It is well known that unary context-free languages, i.e., languages generated by CFGs

with a one-letter terminal alphabet, are regular [GR62]. Hence, this holds even for unary

grammars containing self-embedded variables.

In this section we consider qNSE grammars, namely CFGs in which the only self-

embedded variables are unary. As observed by Andrei, Cavadini, and Chin, all the lan-

guages generated by these grammars are regular [ACC03]. We are now going to describe

and refine the idea used to prove that result, in order to extend Theorem 3.2 to qNSE gram-

mars. First, it is useful to have an upper bound for the cost of the conversion of unary

CFGs into equivalent finite automata.

53



Lemma 3.4. Each unary CFG G of size s can be transformed into an equivalent NFA with 2O(s)

states and into an equivalent DFA with 2O(s2) states.

Proof. In [PSW02, Thms. 4, 6], it was proved that for any unary CFG in Chomsky normal

form with h variables there exists an equivalent NFA with at most 22h−1 + 1 states and,

when h ≥ 2, an equivalent DFA with less than 2h2
states. By inspecting the arguments

used in the proof, it can be observed that these bounds do not change if unary CFGs

whose production right-hand sides have length at most 2 are considered. Each CFG can

be turned in this form with a linear increase of the size.

Let G = 〈V, Σ, P, S〉 be a qNSE grammar of size s. We proceed as follows:

• We can suppose that each production right-hand side is either a sequence of vari-

ables or a single terminal, i.e., α ∈ V∗ ∪Σ for each A→ α in P. This (at most) linearly

increases the size of the grammar.

• Let G ′ = 〈V′, Σ′, P′, S〉 and G ′′ = 〈V′′, Σ, P′′, S′′〉 be the grammars obtained from G

by choosing as V′ the set of variables in G which generate at least one nonunary ter-

minal string and as V′′ = V \V′ the set of unary variables, namely variables generat-

ing unary languages, Σ′ = Σ∪V′′, P′ is the set of productions in P having left-hand

side in V′, P′′ = P \ P′, and S′′ is a variable in V′′. It can be verified that G = G ′⊕G ′′.

Furthermore, if the sizes of G ′ and G ′′ are s′ and s′′, then s′ + s′′ = s. Notice

that Σ′ = V′′ under the hypothesis that useless variables have been removed from G.

• Since its variables are nonunary, the grammar G ′ is NSE. Hence, using Theorem 3.2,

there exists an NFAM′ with 2O(s′) states accepting L(G ′).

• For each unary variable A ∈ V′′, from the grammar G ′′|A we obtain a unary NFAMA

accepting L(G ′′|A) with 2O(s′′) states (Lemma 3.4).

• Finally, we substitute in the automatonM′ the automataMA, as described in Sec-

tion 3.1. Hence, we obtain an NFA M with 2O(s′)2O(s′′) states accepting the lan-

guage L(G) = L(G ′ ⊕ G ′′). Since s′+ s′′ = s, the total number of states ofM is 2O(s).
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From the previous discussion, we obtain the extension of Theorem 3.2 to qNSE grammars.

Theorem 3.4. Let G be a qNSE grammar of size s. Then there exist an NFA and a DFA accept-

ing L(G) with 2O(s) and 22O(s)
many states, respectively.

The optimality of the bounds in Theorem 3.4 follows from the optimality of those in

Theorem 3.2 presented in Section 3.3.
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4
Optimal Simulations Between Non-Self-Embedding

Grammars, Constant-Height Pushdown Automata,

and Limited Automata

In Chapter 3 we investigated the relationships between the description sizes of non-self-

embedding grammars and finite automata. In the worst case, the size of a deterministic

automaton equivalent to a given non-self-embedding grammar is doubly exponential in

the size of the grammar. The gap reduces to a simple exponential in the case of nondeter-

ministic automata.

Other formal models characterizing the class of regular languages and exhibiting gaps

of the same order with respect to deterministic and nondeterministic automata have been

investigated in the literature. Two of them are constant-height pushdown automata and

1-limited automata. The aim of this chapter is to study the size relationships between

non-self-embedding grammars, constant-height pushdown automata, and 1-limited au-

tomata, three models that restrict context-free acceptors to the level of regular recognizers.

The exponential and double exponential gaps from constant-height pushdown au-

tomata to nondeterministic and deterministic automata have been proved by Geffert,

Mereghetti, and Palano [GMP10]. Furthermore, Bednárová et al. showed the interest-

ing result that the gap from nondeterministic to deterministic constant-height pushdown

automata is double exponential also [Bed+14]. We remind the reader that both non-self-

embedding grammars and constant-height pushdown automata are restrictions of the
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corresponding general models, where true recursions are not possible. In the first part of

the chapter we compare these two models by proving that they are polynomially related

in size.

Also 1-limited automata can be significantly smaller than equivalent finite automata.

The equivalence between 1-limited automata and finite automata has been investigated

from the descriptional complexity point of view by Pighizzini and Pisoni, who proved ex-

ponential and double exponential gaps from 1-limited automata to nondeterministic and

deterministic finite automata, respectively [PP14]. Moreover, as we shall see in Chapter 5,

two-way nondeterministic finite automata can require exponential size with respect to

deterministic 1-LAs even in the unary case.

In the second part of this chapter, we turn our attention to the size relationships be-

tween 1-limited automata and non-self-embedding grammars. The main result presented

in this chapter is a construction transforming each non-self-embedding grammar into a

1-limited automaton of polynomial size. As a consequence, each constant-height push-

down automaton can be transformed into an equivalent 1-limited automaton of polyno-

mial size. We also prove, using a different construction, that even the conversion of deter-

ministic constant-height pushdown automata into deterministic 1-limited automata costs

polynomial in size. For the converse transformation, we show that an exponential size is

necessary. Indeed, we prove a stronger result by exhibiting a family of languages (Ln)∞
n=1,

such that, for each n ≥ 1, a language Ln accepted by a two-way deterministic finite au-

tomaton with O(n) states, which requires exponentially many states to be accepted even

by an unrestricted pushdown automaton. From the cost of the conversion of 1-limited

automata into nondeterministic automata, it turns out that for the conversion of 1-lim-

ited automata into non-self-embedding grammars an exponential size is also sufficient.

The results shown in this chapter have been presented in [GPP18] and are summarized in

Figure 4.1.
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exp (Thm 4.4) exp exp [PP14, Thm 4]

?
[Sakoda-Sipser problem]

Figure 4.1: Some bounds discussed in the chapter. Dotted arrows denote trivial relation-

ships, while the dashed arrow indicates the Sakoda and Sipser’s question [SS78]. The

exponential cost of the simulation of h-PDAs by 2NFAs is discussed at the end of Sec-

tion 4.3.2.

4.1 On the Form of Constant-Height Pushdown Automata

For ease of presentation of the constructions showed in the next sections, following Bed-

nárová et al. [GMP10, Bed+14], we consider PDAs and the restriction of the model in

which the capacity of the pushdown store is bounded by some constant h ∈N in the

following form, where the transitions manipulating the pushdown store are clearly dis-

tinguished from those reading the input tape.

Lemma 4.1. Every h-PDA A = 〈Q, Σ, Γ, δ, qI , Z0, F〉 can be turned, with a linear increase in

size, in a form in which δ is a transition relation δ ⊆ Q× ({ ε } ∪ Σ ∪ {−,+ }Γ)× Q with the

following meaning:

• (p, ε, q) ∈ δ: A can reach the state q from the state p without using the input tape nor the

pushdown store (ε-moves);

• (p, a, q) ∈ δ: A can reach the state q from the state p by reading the symbol a from the input

without using the pushdown store;

• (p,−X, q) ∈ δ: if the symbol on the top of the pushdown store is X, A can reach the state q

from the state p by popping off X, not using the input tape;
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• (p,+X, q) ∈ δ: if the number of symbols contained in the pushdown store is less than h, A

can reach the state q from the state p by pushing X on the pushdown store, without using

the input tape.

4.2 Non-Self-Embedding Grammars versus Constant-Height

Pushdown Automata

In this section we prove that NSE grammars and h-PDAs are polynomially related in size.

4.2.1 From NSE grammars to h-PDAs

The following result is based on the decomposition of NSE grammars recalled in Theo-

rem 3.1.

Studying the relationships between NSE grammars and PDAs, Anselmo, Giammarresi,

and Varricchio claimed that from any NSE grammar in canonical normal form (namely with

productions A → aγ or A → γ, A ∈ V, a ∈ Σ and γ ∈ V∗), by applying a standard

transformation, it is possible to obtain an equivalent constant-height PDA [AGV02]. Un-

fortunately, the argument fails when the grammar contains left-recursive derivations, i.e.,

derivations of the form A ?⇒ Aγ, with γ 6= ε. For them, the resulting PDA has computa-

tions with arbitrarily high pushdown stores. This problem can be fixed by replacing each

left-linear grammar corresponding to a strongly connected component of the production

graph of the given NSE grammar by a set of equivalent right-linear grammars, as shown

in the following lemma:

Lemma 4.2. Each NSE grammar can be converted into an equivalent NSE grammar of polynomial

size which can be expressed as a ⊕-composition of right-linear grammars.

Proof. First of all, we remind the reader that from each left-linear grammar we can obtain

an equivalent right-linear grammar whose size is linear in the size of G (see Lemma 3.2).
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Now suppose to have an NSE grammar G, where G = G1⊕G2⊕ · · · ⊕ Gg and each Gi is

left-linear or right-linear. The idea is to define an equivalent grammar G ′ by keeping each

right-linear Gi, and by replacing each left-linear Gi by an equivalent right-linear grammar.

However, when doing grammar ⊕-composition, we could use derivations of Gi that be-

gin from variables of Vi different than the start symbol Si. For this reason, we replace each

left-linear Gi by a family of right-linear grammars G ′iA, with A ∈ Vi, where G ′iA is equiva-

lent to the grammar Gi|A = 〈Vi, Σi, Pi, A〉. It can be verified that the size of the resulting

grammar G ′ is at most quadratic in the size of G.

We now prove that each NSE grammar can be transformed into an h-PDA of polyno-

mial size.

Theorem 4.1. Each NSE grammar G = 〈V, Σ, P, S〉 can be converted into an h-PDA A with

both h and the size of A polynomial in the size of G.

Proof. We start from a NSE grammar G = G1⊕G2⊕ · · · ⊕ Gg such that the sum of the sizes

of the Gi’s is polynomial in the size of G, and where each Gi = 〈Vi, Σi, Pi, Si〉 is right-linear,

by Theorem 3.1, Theorem 3.2, and Lemma 4.2. First, as in the construction presented by

Anselmo, Giammarresi, and Varricchio, we show that if a variable A ∈ Vi, 1 ≤ i ≤ g,

derives a string xα by a leftmost derivation, i.e., A ?⇒
lm

xα, where x is the longest prefix

of xα consisting only of terminal symbols, then the length of α is linear in g − i. More

precisely, we claim that |α| ≤ K(g− i) + 1, where K is the maximum length of production

right-hand sides. We are going to prove this claim by induction on the number h of steps

of the derivation A ?⇒
lm

xα.

For h = 0 we have |α| = 1 and, hence, the claim is trivial.

Consider now h > 0. If α = ε then the claim is obvious. Otherwise, let A →

X1X2 · · ·Xs be the first production used in the derivation under consideration, i.e.,

A⇒ X1X2 · · ·Xs
?⇒

lm
α1α2 · · · αs = xα

where Xk ∈ Σ ∪ ⋃g
j=i Vj and Xk

?⇒
lm

αk, for k = 1, . . . , s. Let `, 1 ≤ ` ≤ s, be the smallest
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index such that α` contains at least one variable. Hence, we can write x = x′x′′ where x′ =

α1α2 · · · α`−1, x′′α′ = α`, αk = Xk for k = `+ 1, . . . , s, and α = α′X`+1 · · ·Xs.

Since the derivation X`
?⇒

lm
x′′α′ consists of less than h steps, from the induction

hypothesis we get that |α′| ≤ K(g − j) + 1, where j is the index satisfying X` ∈ Vj.

Thus, |α| = |α′|+ s− ` ≤ K(g− j) + 1 + s− `.

Due to the fact that s − ` < K, when j > i from the last inequality we obtain |α| <

K(g− i)+ 1. Furthermore, since Gi is right-linear, the case j = i could occur only when ` =

s, thus implying α = α′ and, hence |α| = |α′| ≤ K(g− i) + 1. This completes the proof of

the claim.

From the grammar G we can apply a standard construction to obtain a PDAM which

simulates a leftmost derivation of G, by replacing any variable A occurring on the top

of the pushdown by the right-hand side of a production A → α, and by popping off

the pushdown any terminal symbol occurring on the top and matching the next input

symbol (for details see, e.g., [HMU01]). After consuming an input prefix y, the pushdown

store of M can contain any string zα such that S ?⇒
lm

yzα, yz is the longest prefix of yzα

consisting only of terminal symbols, and z is a suitable factor of the string which was most

recently pushed on the pushdown. Since |z| ≤ K and, according to the first part of the

proof |α| ≤ K(g− 1) + 1, we conclude that the pushdown height is bounded by Kg + 1.

Hence, M is a constant-height PDA. Finally, M can be converted in the form given in

Lemma 4.1 by keeping its size polynomial.

4.2.2 From h-PDAs to NSE grammars

We first show that, modulo acceptance of the empty word, with only a polynomial in-

crease in the size we can transform any h-PDA in a special form. Subsequently, we shall

associate to any h-PDA in such form, a NSE grammar and show that it is equivalent to the

h-PDA.

Lemma 4.3. For each h-PDAA = 〈Q, Σ, Γ, δ, q0, F〉 there exists an h-PDAA′ = 〈Q′, Σ, Γ′, δ′, q−, { q+ }〉

and a mapping h̃ : Γ′ → { 1, . . . , h } such that:
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• L(A′) = L(A) \ { ε };

• A′ has polynomial size with respect to A;

• A′ accepts with empty pushdown;

• A′ has no ε-moves;

• each symbol X ∈ Γ′ can appear on the pushdown only at height h̃(X);

• every nonempty computation path of A′ starting and ending with the same symbol X on

the top of the pushdown, and never popping off X in the meantime, consumes some input

letters.

Proof. First, we create two new states q− and q+, intuitively the new initial and unique

final states, respectively, and we add transitions (q−, ε, q0) and (p, ε, q+) for each p ∈ F.

Furthermore, in order to empty the pushdown store at the end of the accepting com-

putations, we add the transition (q+,−X, q+) for each X ∈ Γ. We denote by Q? the

set Q ∪ { q−, q+ }.

Second, by extending Q? to Q?×{ 0, . . . , h }, we can suppose that each state stores the

current height of the pushdown as second component. After this change, we set (q−, 0)

as initial state and (q+, 0) as unique final state (as a consequence, acceptance is neces-

sarily made with empty pushdown). We then set Γ′ = Γ × { 1, . . . , h } and we modify

the transitions in such a way that a symbol (γ, i) ∈ Γ′ can be pushed only from a state

in Q× { i− 1 }, i.e., only at pushdown height i. The mapping h̃ is then defined on Γ′ as

the projection over the second component.

Now, for each state (p, i) ∈ Q? × { 0, . . . , h }, we define the set E(p,i) of states (q, i)

which are accessible from (p, i) by using only transitions in

(Q? × { i, . . . , h })× ({ ε } ∪ {−,+ }Γ)× (Q? × { i, . . . , h }).

The restriction to states from Q? × { i, . . . , h } ensures that the considered computation

paths can never pop off symbols under their initial level, while the restriction on the set
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of actions forbids any reading of the input. We first replace such computations by a single

ε-move. This can be achieved as follows:

• we create a transition ((p, i), ε, (q, i)) for each (q, i) ∈ E(p,i);

• we add a new state component storing an element in { push, pop, read } that saves

the last operation performed during the computation (with the natural meaning,

ε-moves being not considered as operations) and we forbid transitions of the form

((p, j),−X, (q, j− 1)) whenever the last operation is push. (For simplicity, the newly-

introduced component will not appear in the end of the proof.)

After such transformation, the only computations that start and end with same symbol

on the top of the pushdown, without popping off symbols under the corresponding level,

and without scanning any input letter, are necessarily sequences of ε-moves. Hence, each

set E(p,i), which is kept unchanged by the above transformation, is now equal to the set

of states accessible from (p, i) through a sequence of ε-moves.

We finally proceed to the elimination of ε-moves, using classical techniques. First, we

consider the set E(q−,0) of states that are accessible from the initial configuration through

a sequence of ε-moves. For each state (p, 0) ∈ E(q−,0) and each transition ((p, 0),κ, (r, i))

with κ 6= ε, we create a transition ((q−, 0),κ, (r, i)). We then remove every ε-move

from q−, i.e., every transition of the form ((q−, 0), ε, (p, 0)). As a consequence, the empty

word cannot be accepted by the resulting h-PDA. However, since every computation

of A accepting a nonempty word should perform a transition of the form ((p, 0),κ, (r, i))

with κ 6= ε at some point, our transformation preserves acceptance of nonempty words.

Lastly, the remaining ε-moves are eliminated as follows. For each transition of the

form ((p, i),κ, (q, j)) withκ 6= ε and each (r, j) ∈ E(q,j), we create the transition ((p, i),κ, (r, j)).

We finally remove all remaining ε-moves.

The complete construction has polynomial cost and the resulting h-PDA A′ accepts

an input word if and only if the word is nonempty and was accepted by the original

h-PDA A. Acceptance is furthermore done by empty pushdown, indeed the only final

state (q+, 0) stores the information that the current pushdown height is 0. Moreover, the
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projection h̃ over the pushdown alphabet Γ′, associates to each pushdown symbol, the

only height index to which it may appear in the pushdown store.

By adapting the classical construction of CFGs from PDAs (see, e.g., [HMU01, Sec. 6.3]),

from an h-PDA A = 〈Q, Σ, Γ, δ, q−, { q+ }〉 in the form of Lemma 4.3, we define a gram-

mar G = 〈V, Σ, P, S〉, where V consists of an initial symbol S and of triples of the form [pXq]

and 〈pXq〉, for q, p ∈ Q, X ∈ Γ⊥ = Γ ∪ {⊥ }, with the new symbol ⊥ /∈ Γ denoting the

(missed) bottom of the pushdown store.

Before defining the set P of productions, we give a short explanation of the meaning

of the variables we just introduced. Each triple [pXq] is used to generate any string which

is consumed in a computation path C that starts in the state p with X on the top of the

stack and ends in the state q with the same occurrence of X on the top of the stack, i.e., the

height of the stack at the beginning and at the end of C is the same and it cannot be lower

in between. Notice that this implies that C does not depend on the symbols that are on

the stack at the beginning and at the end of C. Any string generated by a variable 〈pXq〉 is

consumed in a computation path C which, besides the previous conditions, does not visit

other configurations with same stack height, namely, either C consists of a single step, or

it starts by pushing a symbol which is popped off only at its last step. As we shall prove,

the use of two types of triples allows to obtain an NSE grammar.

We now list the productions in the set P and then we shall prove that the grammar has

the desired behavior:

(i) 〈pXq〉 → a, for (p, a, q) ∈ δ

(ii) 〈pXq〉 → [p′Yq′], for (p,+Y, p′), (q′,−Y, q) ∈ δ, i.e., push and pop of a same sym-

bol Y

(iii) [pXq]→ 〈pXr〉[rXq], for p, q, r ∈ Q, X ∈ Γ⊥

(iv) [pXq]→ 〈pXq〉, for p, q ∈ Q, X ∈ Γ⊥

(v) S→ [q−⊥q+].
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Lemma 4.4. For each x ∈ Σ∗, p, q ∈ Q and X ∈ Γ⊥, [pXq] ?⇒ x if and only if there exists a

computation path C of A satisfying the following conditions:

(1) C starts in the state p and ends in the state q, in both these configurations the symbol at the

top of the pushdown is X;1

(2) along C the pushdown is never popped off under height h̃(X).

(3) the input factor consumed along C is x.

Furthermore, 〈pXq〉 ?⇒ x if and only if besides the above conditions (1) and (3), the following

condition (stronger than (2)) is satisfied:

(2 ′) in all configurations of C other than the first and the last one, the pushdown height is greater

than h̃(X).

Proof. First of all, we are going to prove that for all x, p, q, X as in the statement of the

lemma, [pXq] ?⇒ x implies (1), (2), and (3), while 〈pXq〉 ?⇒ x implies (1), (2′), and (3). We

proceed by induction on the length k ≥ 1 of the derivation [pXq]⇒ x or 〈pXq〉 ⇒ x.

For k = 1, there are no derivations [pXq] ⇒ x, while 〈pXq〉 ⇒ x implies that x is a

terminal symbol and (p, x, q) ∈ δ (the production is of the form (i)), from which (1), (2′),

and (3) trivially follow.

Suppose now k > 1. The first production applied in a derivation [pXq] ⇒ x is either

of the form (iii) or of the form (iv). In the first case we have [pXq] ⇒ 〈pXr〉[rXq] ⇒ x,

〈pXr〉 ⇒ x′, [rXq] ⇒ x′′, for some r ∈ Q, 1 ≤ k′, k′′ < k, k′ + k′′ = k− 1, x′, x′′ ∈ Σ+ such

that x′x′′ = x. Using the induction hypothesis, we can find two computations path C ′

and C ′′, from state p to r and from state r to q, respectively, with X at the top of the

pushdown at the beginning and at the end, such that the pushdown is never popped

under its level at the beginning of these paths, and consuming the factors x′ and x′′,

1When X = ⊥ the pushdown store in these configurations is empty. Furthermore, we stipu-

late h̃(⊥) = 0.
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respectively. By concatenating these two paths, we find the path C satisfying in (1), (2),

and (3).

If [pXq] ⇒ 〈pXq〉 ⇒ x (i.e., the first production applied is of the form (iv)), (1), (2),

and (3) follow from the induction hypothesis applied to the derivation 〈pXq〉 ⇒ x.

We now consider a derivation 〈pXq〉 ⇒ x, with k > 1. The first step can only be of

the form (ii), namely 〈pXq〉 ⇒ [p′Yq′] ⇒ x. From the induction hypothesis, there is a

computation path C ′ from state p′ to state q′ which starts and ends with Y at the top of

the pushdown, never popping off the pushdown under the initial level, and consuming x

from the input tape. From a configuration with state p and X at the top of the pushdown,

A can start a computation path which pushes Y, simulates C ′, and finally pops Y off the

pushdown. While simulating C ′ the pushdown always contains the symbol Y over X.

Hence, it is higher than in the first and in the last configuration of C. This proves (1), (2′),

and (3).

To prove the converse implications, we proceed by induction on the length k of the

computation path C satisfying conditions (1), (2), (3), and, possibly, the further condi-

tion (2′).

If k = 1 then C should consist only of one move, which consumes the input symbol x =

a and does not modify the pushdown store. According to the definition of G, the only

possible derivations corresponding to such path are 〈pXq〉 ⇒ x and [pXq]⇒ 〈pXq〉 ⇒ x.

For k > 1 we consider two cases. First we suppose that C satisfies (1), (2), (3), but

does not satisfy (2′). We decompose C in two shorter paths C ′ and C ′′ that are delimited

by the first configuration which is reached in C with the same pushdown height as at the

beginning and at the end of C. These two paths satisfy (1), (2), (3). Furthermore, C ′

satisfies also (2′). By the induction hypothesis, we get that 〈pXr〉 ?⇒ x′, [rXq] ?⇒ x′′,

where r is the state reached at the end of C ′ and x′x′′ = x. Using production (iv) we

obtain the derivation [pXq]⇒ 〈pXr〉[rXq] ?⇒ x′x′′ = x.

If C satisfies (1), (2′), and (3), then it should start in state p with a push of a symbol Y

moving in a state p′, ends after a pop of the same symbol Y from a state q′ to state q, where
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the symbol Y is never popped off the pushdown in between. The path C ′, consisting

of k − 2 moves, obtained by removing from C the first and the last move, consumes the

same input string x which is consumed by C. From the induction hypothesis, we obtain

that [p′Yq′] ?⇒ x and, considering (ii), 〈pXq〉 ⇒ [p′Yq′] ?⇒ x. Furthermore, by (iv), we also

obtain [pXq] ?⇒ x.

From Lemma 4.4, considering production (v), we can conclude that the grammar G so

defined is equivalent to the given PDA A.

Lemma 4.5. The above-defined grammar G is non-self-embedding.

Proof. From productions (ii), we observe that h̃(X′) > h̃(X) for any possible variable 〈p′X′q′〉

or [p′X′q′] that can appear in a sentential form from a variable 〈pXq〉. Hence, each vari-

able 〈pXq〉 is not self-embedded.

Now, we consider any variable of the form [pXq]. We observe that in each derivation

[pXq] +⇒ α[pXq]β, α, β ∈ (V ∪ Σ)∗, the occurrence of [pXq] on the right-hand side can be

obtained only if, each time the rightmost variable is rewritten, productions of the form (iii)

are used. Hence, the string β must be empty. This allows us to conclude that each [pXq]

is not self-embedded.

By combining the previous results, we obtain:

Theorem 4.2. For each h-PDA there exists an equivalent NSE grammar of polynomial size.

Proof. From Lemmas 4.3, 4.4, and 4.5, from an h-PDA Awe can obtain an NSE grammar G

of polynomial size generating L(A) \ { ε }. In case ε ∈ L(A), in order to make G equiva-

lent to A, we add the production S→ ε.

As a consequence of Theorems 4.1 and 4.2, by paying a polynomial size increase, each

NSE grammar can be transformed into an equivalent one in a particular form.

Corollary 4.1. Each NSE grammar is equivalent (modulo the empty word) to a grammar in Chom-

sky normal form of polynomial size, in which, for each production X → YZ, Y is greater than X

according to the order induced by the production graph.
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Proof. By Theorem 4.1, from each NSE grammar G we can obtain an equivalent h-PDA A

of polynomial size which, according to Theorem 4.2, can be transformed into an equiv-

alent NSE grammar G ′ as defined above. We can observe that if X +⇒ αXβ in G ′, then β

should be empty. This implies that for each production X → YZ, Y is greater than X

according to the order induced by the production graph. Furthermore, unit productions,

namely productions (ii), (iv) and (v), can be easily eliminated, yielding a grammar G ′′ of

the desired form.

4.3 Non-Self-Embedding Grammars versus 1-Limited Au-

tomata

In this section, we compare the sizes of NSE grammars and of h-PDAs with the size of

equivalent 1-limited automata. We prove that for each NSE grammar there exists an equiv-

alent 1-LA of polynomial size. As a consequence, the simulation of constant-height PDAs

by 1-LAs is polynomial in size.

Concerning the converse transformation, we prove that 1-LAs can be more succinct

than NSE grammars and constant-height PDAs. Actually, we prove a stronger result show-

ing the existence of a family of languages (Ln)∞
n=0 such that, for each n > 0, Ln is accepted

by a 2DFA with O(n) states, while each Chomsky normal form grammar or PDA accept-

ing Ln would require an exponential size in n.

4.3.1 From NSE grammars to 1-LAs

We start from an NSE grammar G = 〈V, Σ, P, S〉 in the form given by Corollary 4.1. Thus,

every derivation tree of G has a particular form which can be expressed using the notion

we now introduce. For any constant j, we call j-tree any labeled tree satisfying:

• internal nodes are labeled by variables, while leaves are labeled by terminal sym-

bols;
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• each internal node either has exactly two children which are internal nodes, or has

a unique child which is a leaf;

• the root is an internal node;

• along every branch, the number of left turns (i.e., the number of nodes which are left

child of some node) is bounded by j.

We observe that any 0-tree consists of a root labeled by some variable which has as unique

child a leaf labeled by a terminal. Moreover, a j-tree is also a (j+ 1)-tree. We also point out

that we do not require that j-trees are consistent with the production rules of G. However,

due to the form given by Corollary 4.1, there exists a constant c such that any derivation

tree of G is a c-tree with root label S.

We now describe how we encode a j-tree T with m leaves into a word u of length m

over the alphabet Γj = Σ × V × V × { 0, . . . , j }. The construction is illustrated in Fig-

ure 4.2. First, we inductively index the nodes of T according to the following rules:

• the root of T has index j;

• the left child of a node with index i has index i− 1;

• the right child of a node with index i has index i;

• a leaf has the same index as its parent.

In other words, the index of a node is an upper limit to the number of left turns from

that node to a leaf. From now on, we fix a parameter Y ∈ V whose meaning will be

discussed later. For a leaf ` of the j-tree labeled by a symbol a ∈ Σ, we consider the

symbol σ` = 〈a, X, Z, i〉 ∈ Γj where (X, i) is the indexed label of the closest ancestor of `

which is not a right child of any node (such nodes have square shape in Figure 4.2) and Z

is the label of its right sibling if any, or equals Y otherwise, namely when that node is

the root of the tree. Intuitively, the j-compression of the j-tree T is the word σ`1 · · · σ`m

where `1, . . . , `m are the leaves of T taken from left to right. Formally, it is inductively
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Figure 4.2: An example of a 2-tree and its 2-compression. Here Tl and Tr denote the left

and right subtrees at depth 1 and TS
r denotes the subtree Tr in which the label of the root

has been changed to S.

defined as follows. Let Y ∈ V and T be a j-tree with root label X, for some j ≥ 0. If T

consists of its root with only one child being a leaf labeled by a ∈ Σ (which is always the

case when j = 0 by definition of j-trees), then µj,Y(T) = 〈a, X, Y, j〉. Otherwise, j > 0

and T consists of a root node yielding a left subtree Tl and a right subtree Tr. Let Z be

the root label of Tr. Then, denoting TX
r the tree Tr in which the label of the root has been

changed to X, µj,Y(T) = µj−1,Z(Tl) · µj,Y(TX
r ) (see Figure 4.2).

Let us shortly discuss the parameter Y, which does not influence much the j-compres-

sion: it occurs only in the rightmost symbol of the word encoding the given j-tree. The

parameter is meant to indicate the right sibling label of the root node, when considering

left subtrees of some (j− 1)-tree. Hence, when considering full derivation trees of G, this

parameter is meaningless, and we can fix it to some arbitrarily chosen variable, say S (as

in Figure 4.2). So defined, the c-compression (or simply compression) of a derivation tree

of G is a word u ∈ Γ+
c whose projection on Σ∗ is the word generated by the tree. The

following remark, which directly follows from the inductive definition of µj,Y, is instru-

mental for our later proofs.
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Remark 4.1. If µj,Y(T) = v · 〈a, Z, Y, j〉 then µj,Y(TX) = v · 〈a, X, Y, j〉, where TX denotes the

tree T in which the root label has been changed to X.

Not every word over Γj is the j-compression of a j-tree, and not every j-tree is a deriva-

tion tree. We now introduce a property which allows us to check that a word u ∈ Γ∗j is

a correct j-compression and that the tree it encodes is a derivation tree, namely it is con-

sistent with the production rules of G. We set Γ−1 = ∅. A word u ∈ Γ+
j is a valid

j-compression, 0 ≤ j ≤ c, if, on the one hand, u = w · 〈a, X, Y, j〉 for some w ∈ Γ∗j−1, a ∈ Σ

and X, Y ∈ V, and, on the other hand, one of the following two cases holds:

1. w = ε, and X → a belongs to P;

2. there exist v, w′ ∈ Γ∗j−1, b ∈ Σ, and W, Z ∈ V such that:

(a) w = v · 〈b, W, Z, j− 1〉w′

(b) X →WZ belongs to P;

(c) v · 〈b, W, Z, j− 1〉 is a valid (j− 1)-compression;

(d) w′ · 〈a, Z, Y, j〉 is a valid j-compression.

In particular, valid 0-compressions are exactly the single-letter words 〈a, X, Y, 0〉 such

that X → a ∈ P. Observe that Item 2c implies v ∈ Γ∗j−2 and therefore, the decompo-

sition of w (Item 2a) as well as W, Z, and b are determined by the leftmost symbol of

index j− 1 of u. Notice furthermore that validity does not depend on the variable Y.

Intuitively, validity of compressions corresponds to derivation consistency of encoded

trees. This is stated formally in the following lemma (remember that G|X denotes the

grammar G in which the starting symbol has been replaced by X).

Lemma 4.6. Let j ∈ { 0, . . . , c }, X, Y ∈ V, a ∈ Σ, and u ∈ Γ∗j−1 · 〈a, X, Y, j〉. Then u is a

valid j-compression if and only if u = µj,Y(T) for some derivation tree T of G|X. In particular, the

projection w of u to Σ∗ is generated by G|X through T.

Proof. We fix a valid j-compression u ∈ Γ∗j−1 · 〈a, X, Y, j〉. We show, by induction on the

length of u, that there exists a derivation tree T of G|X such that µj,Y(T) = u.
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If |u| = 1, then u = 〈a, X, Y, j〉 and X → a ∈ P by Item 1. Hence, u = µj,Y(T) for T the

derivation tree of G|X which derives the word a from X in one step.

Otherwise, u = v · 〈b, W, Z, j − 1〉 · w′ · 〈a, X, Y, j〉 by Item 2a, where X → WZ by

Item 2b. Moreover, on the one hand v · 〈b, W, Z, j − 1〉 is a valid (j − 1)-compression

by Item 2c, on the other hand w′ · 〈a, Z, Y, j〉 is a valid j-compression by Item 2d. By

induction, there exist two derivation trees Tl and Tr, respectively of G|W and G|Z, such that

µj−1,Z(Tl) = v · 〈b, W, Z, j− 1〉 and µj,Y(Tr) = w′ · 〈a, Z, Y, j〉. Since changing the label of

the root node does affect only the rightmost symbol of its compression (Remark 4.1), we

have µj,Y(TX
r ) = w′ · 〈a, X, Y, j〉 where TX

r is the tree Tr in which the root label has been

changed to X. Consider the tree T consisting of a root labeled by X which has Tl as left

subtree and Tr as right subtree. By the above properties, T is a derivation tree of G|X.

Moreover, µj,Y(T) = µj−1,Z(Tl) · µj,Y(TX
r ) = u.

Conversely, we fix a derivation tree T of G|X that we supposed to be a j-tree. We show

by induction on the structure of T, that µj,Y(T) is valid for any Y ∈ V.

If T is a trivial derivation tree consisting of the root node which has as unique child

a leaf labeled by a, then, X → a ∈ P by definition, whence µj,Y(T) = 〈a, X, Y, j〉 is valid

through Item 1 for any Y and any j.

Otherwise, the root of T has two children, yielding a left subtree Tl and a right sub-

tree Tr. Let W and Z be the respective root labels of Tl and Tr. By definition, u =

µj,Y(T) = µj−1,Z(Tl) · µj,Y(TX
r ) where TX

r denotes the tree Tr in which the root label has

been changed to X. Since T is a derivation tree, we have X → WZ ∈ P (i.e., Item 2b).

By induction, µj−1,Z(Tl) = v · 〈b, W, Z, j − 1〉 is a valid (j − 1)-compression (Item 2c),

and µj,Y(Tr) = w′ · 〈a, Z, Y, j〉 is a valid j-compression (Item 2d). Finally, since modify-

ing the root label of a tree does only affect the rightmost letter of its compressions, by

Remark 4.1, we obtain that u = v · 〈b, W, Z, j− 1〉w′ · 〈a, X, Y, j〉 (i.e., Item 2a).

Lemma 4.6 yields a strategy to check whether a word w ∈ Σ+ is generated by G, us-

ing the property that all its derivation trees are c-trees. We first guess the c-compression

of a derivation tree generating w, thus obtaining a word u ∈ Γ+
c whose projection to Σ
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equals w. We then check that u is a valid c-compression with parameter Y = S. Although

the initial guess makes use of nondeterminism, the verification can be performed deter-

ministically once the guessed symbols have been fixed. We now show how to do this

verification with a 2DFA. From now on, we set Γ = Γc.

In any valid j-compression of length greater than 1, some factors represent the (j −

1)-compressions of some subtrees of the encoded tree. They are exactly the factors de-

limited to the left by a symbol of index greater than or equal to j or by the left end-

marker (not included in the factor), and to the right by the symbol of index j corre-

sponding to its root node (included in the factor). In other words, they are maximal

factors in Γ∗j−1 · Γj. This allows a reading head to locally detect the boundaries of such

factors when scanning the j-compression. This also implies that the index of a symbol

preceding a symbol of index j is always less than or equal to j − 1. For instance, the

compression illustrated in Figure 4.2 admits five valid 1-compression factors, namely the

factor 〈a, A, F, 0〉〈b, B, E, 0〉〈a, A, F, 0〉〈b, E, C, 1〉, the factor 〈b, B, A, 0〉〈a, E, D, 1〉, the fac-

tor 〈a, A, S, 1〉, the factor 〈a, A, F, 0〉〈b, E, C, 1〉, and the factor 〈b, B, D, 1〉 which respec-

tively correspond to the five subtrees rooted in the square-shape nodes which have in-

dex 1.

We now describe how a 2DFAA can check that a word u ∈ Γ+
c is a valid c-compression.

First of all, the device checks that u belongs to Γ∗c−1 · 〈a, S, S, c〉 for some letter a ∈ Σ. Then,

it iteratively verifies that every maximal factor of the form Γ∗j−1 · 〈a, X, Y, j〉 is a valid

j-compression. To this end, once the verification has been performed for the level j− 1,

it just needs to check that the letter just before 〈a, X, Y, j〉, if any, is of index at most j− 1,

and that there is consistency between letters of index j− 1 and 〈a, X, Y, j〉 of such maximal

factor, as follows: sweeping these letters 〈a1, W1, Z1, j− 1〉, . . . , 〈ak, Wk, Zk, j− 1〉 from left

to right and setting Z0 = X, the 2DFA sequentially checks that Zi−1 → WiZi ∈ P for

i = 1, . . . , k, and Zk → a ∈ P. In other words, the device implements the above-given

inductive definition of valid compressions, with the difference that it tests each subtree

of level from 0 to c instead of performing recursive calls. This allows to store only one

73



Procedure 1: CheckTree

/* start with the head on the left endmarker */

1 CheckRoot

2 for j← 0 to c do

3 repeat move the head to the right until index(σ) ≥ j

4 while index(σ) = j do

5 CheckSubtree(j)

6 repeat move the head to the right until index(σ) ≥ j

7 repeat move the head to the left until σ = B

8 ACCEPT

variable Z at each time.

The 2DFA A implements a collection of deterministic subroutines, the top-level of

which is the procedure CheckTree. In each subroutine, σ denotes the symbol currently

scanned by the head, which is automatically updated at each head move. Moreover,

the special instruction REJECT causes the whole computation to halt and reject. We fur-

thermore use the four natural projections over Γ: for a symbol σ = 〈a, X, Y, j〉 ∈ Γ, we

set letter(σ) = a, varLeft(σ) = X, varRight(σ) = Y, and index(σ) = j. We fix the con-

vention index(B) = index(C) = c + 1.

Procedure 2: CheckRoot

9 repeat move the head to the right until σ = C

10 move the head to the left

11 if varLeft(σ) 6= S or varRight(σ) 6= S or index(σ) 6= c then REJECT

12 while σ 6= B do

13 move the head to the left

14 if index(σ) = c then REJECT

As initial phase, the subroutine CheckRoot checks that the input word belongs to Γ∗c−1 ·
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Procedure 3: CheckSubtree(j)

/* start with the head scanning a symbol of index j */

15 C ← varLeft(σ)

16 repeat move the head to the left until index(σ) ≥ j

17 SelectNext(j− 1)

18 while index(σ) 6= j do

19 if C → varLeft(σ)varRight(σ) 6∈ P then REJECT

20 C ← varRight(σ)

21 SelectNext(j− 1)

22 if C → letter(σ) 6∈ P then REJECT

Procedure 4: SelectNext(j)

23 move the head to the right

24 if index(σ) 6= j + 1 then

25 while index(σ) < j do move the head to the right

26 if index(σ) 6= j then REJECT

〈a, S, S, c〉 for some letter a ∈ Σ. Then, A checks the validity of each compression of each

level from 0 to c (Lines 2 to 7). This verification uses the procedure CheckSubtree (Line 5).

This latter subroutine is the direct implementation of the inductive definition of valid

compressions, where the recursive call to incremented level (Item 2c) is omitted (the valid-

ity of these sub-compressions have already been checked by previous call to CheckSubtree).

It uses the subroutine SelectNext to locate the leftmost symbol of index j− 1 in the factor

under consideration, if any, or to check if the factor has length 1, otherwise, thus checking

Item 2a (or, partially, Item 1). Items 1 and 2b correspond to Lines 22 and 19, respectively,

where C contains the variable Z (Line 20), the variable label of the root of the subtree

which is initially set to X (Line 15), thus allowing to verify Item 2d (Lines 18 to 21).

To summarize, we obtained the following result.
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Lemma 4.7. The language of valid compressions of derivation trees of G is recognized by a 2DFA

which uses O(c · #V) states.

Proof. The construction of such a 2DFA A has been described above. We now estimate

its size. The only memory used in the procedure CheckTree, is an index j ∈ { 0, . . . , c },

to which both the subroutines SelectNext and CheckSubtree have read-only access. The

procedure CheckSubtree stores one variable, C, which ranges over V. The subroutines

CheckRoot and SelectNext use no additional memory. Hence, the number of states of A

is linear in c · #V.

We are now ready to state our main result.

Theorem 4.3. Every NSE grammar G can be transformed into a 1-LA A whose size is polynomial

in the size of G.

Proof. From an NSE grammar G, we obtain an NSE grammar G ′ over Σ of polynomial size

in the form given by Corollary 4.1, such that L(G ′) = L(G) \ { ε }.

The automaton A first performs a left-to-right traversal during which rewrites each

letter a ∈ Σ with a symbol 〈a, X, Y, j〉 for some variables X and Y of G ′ and some index j ≤

#V. Then it deterministically simulates the behavior of a 2DFA, using Lemma 4.7, which

accepts if and only if the contents of the tape before the first traversal was generated by G ′,

by Lemma 4.6. In case ε ∈ L(G), we modify A in order to accept ε.

4.3.2 From 1-LAs to NSE grammars: An exponential gap

In this section, we exhibit an infinite family (Ln)∞
n=0 of languages over the alphabet { 0, 1 },

such that each Ln is recognized by a 1-LA with size polynomial in n, but requires an ex-

ponential size in order to be recognized by any h-PDA or NSE grammars. We can actually

prove a stronger result, since each Ln is recognized by a 2DFA (and even by a rotating de-

terministic automaton, in which all passes over the input are from left to right [KKM12])

of linear size, while any grammar in Chomsky normal form generating Ln requires an

exponential number of variables. As a consequence, every PDA recognizing Ln requires
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an exponential size. The proof of this lower bound is obtained by using the interchange

lemma for context-free languages [ORW85]:

Lemma 4.8. Let G be a context-free grammar in Chomsky normal form, with c variables, and

let L be the language it generates. For all integers N, m, with 2 ≤ m ≤ N, and all subsets R

of L ∩ ΣN, there exists a subset Z ⊆ R with Z = { z1, z2, . . . , zk } such that k ≥ #R
cN2 , and there

exist decompositions zi = wixiyi, with 1 ≤ i ≤ k, such that the following conditions are satisfied:

1. |w1| = |w2| = · · · = |wk|;

2. |y1| = |y2| = · · · = |yk|;

3. m
2 < |x1| = |x2| = · · · = |xk| ≤ m;

4. wixjyi ∈ L for all i, j with 1 ≤ i, j ≤ k.

Theorem 4.4. For each n > 0, let Ln be the language
{

uuu | u ∈ { 0, 1 }n }. Then:

• Ln is accepted by a 2DFA of size O(n);

• each context-free grammar in Chomsky normal form needs exponentially many variables

in n to generate Ln;

• the size of any PDA accepting Ln is at least exponential in n.

Proof. A 2DFA A with O(n) states can accept Ln as follows. First A traverses the whole

input tape, in order to verify that the input length is 3n. Then A, by moving the head

back and forth, verifies that all two symbols at distance n are equal. It is not difficult to

observe that A can be implemented using O(n) states.

To prove that each context-free grammar generating Ln requires an exponential num-

ber of variables, we observe that given u, u′ ∈ { 0, 1 }n, if we decompose the strings z =

uuu and z′ = u′u′u′ ∈ Ln as z = wxy and z′ = w′x′y′, with |w| = |w′|, |y| = |y′|,

n < |x| = |x′| ≤ 2n, then |wy| ≥ n, thus implying that u = ulur where ul is a prefix of w

and ur is a suffix of y. If u 6= u′ then x 6= x′ and the string wx′y cannot belong to Ln.
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Applying Lemma 4.8, with N = 3n, R = Ln and m = 2n, from the previous argument it

follows that the resulting set Z cannot contain more than one string. Hence, we conclude

that each context-free grammar in Chomsky normal form generating Ln should have at

least 2n

9n2 variables.

Finally, since each PDA can be converted into an equivalent context-free grammar in

Chomsky normal form with a polynomial number of variables, e.g., [PSW02, Theorem 8]

we conclude that the size of any PDA accepting Ln is at least exponential in n.

Corollary 4.2. The size cost of the conversion of 1-LAs into NSE grammars and h-PDAs is expo-

nential.

Proof. The lower bound derives from Theorem 4.4. For the upper bound, in [PP14] it was

proved that each 1-LA can be transformed into a 1NFA of exponential size from which,

by a standard construction, we can obtain a regular (and, so, NSE) grammar, without

increasing the size asymptotically.

In [Bed+14], the question of the cost of the conversion of deterministic h-PDAs into

1NFAs was raised. To this regard, we observe that the language (a2n
)
∗

is accepted by a

deterministic h-PDA of size polynomial in n for large enough h (see, e.g., [Pig09a]) but,

by a standard pumping argument, it requires at least 2n states to be accepted by 1NFAs.

Actually, as a consequence of state lower bound presented in [MP00], 2n states are also

necessary to accept it on each 2NFA. Considering Theorem 4.4, we can conclude that both

simulations from two-way automata to h-PDAs and from h-PDAs to two-way automata

cost at least exponential.

4.4 Deterministic Constant-Height Pushdown Automata ver-

sus Deterministic 1-Limited Automata

From the results in Sections 4.2 and 4.3, it turns out that there is a polynomial-size con-

version of h-PDAs into 1-LAs. Here, we consider the deterministic case. We present a poly-
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nomial size conversion of h-DPDAs into deterministic 1-LAs.

We now recall the definition of h-DPDAs, according to [Bed+12]. LetA = 〈Q, Σ, Γ, δ, q0, F〉

be an h-PDA. Let QΣ, Q+, and Q− be the sets of states p such that there exists a transi-

tion (p, op, q) with op belonging to Σ, to {+ }Γ, or to {− }Γ, respectively. A is deterministic

if it satisfies the following properties:

1. it does not allow transitions of the form (p, ε, q);

2. QΣ, Q+, and Q− form a partition of Q;

3. if (p, op, q) and (p, op′, q′) are distinct transitions, then p ∈ QΣ ∪Q− and op and op′

are distinct elements of Σ if p ∈ QΣ, or of {− }Γ if p ∈ Q− (notice that this implies

that there exists exactly one outgoing transition from each state in Q+);

4. F ⊆ QΣ.

Item 2 ensures that the action to perform is fully determined by the current state. Based on

this, Item 3 states that for any configuration there exists at most one outgoing transition,

while Item 4 constrains acceptance, as explained in the following. As for nondeterministic

h-PDA, the machine accepts the input word if it reaches an accepting state after having

read all the input symbols. However, in order to avoid exiting an accepting configuration,

Item 4 requires that the machine halts by waiting for a next symbol to scan. We point out

that, in the definition of h-DPDA given in [Bed+12], states with no outgoing transitions

are present and transitions of the form (p, ε, q) are allowed under the restriction that from

each state at most one such transition is allowed, which should further be the unique

transition outgoing that state. With classical transformations, states without any outgoing

transition as well as ε-moves can be avoided without increasing the size of the automaton,

while preserving determinism. Hence Item 1 as well as the statement of Item 2 which is

stronger than those given in [Bed+12] can be ensured without loss of generality.

Moreover, given a h-DPDA, it is always possible to obtain an equivalent h-DPDA of

at most the same size, in which there are no push transitions entering a state of Q−. In-

deed, in any computation, if a pop (p−,−Y, q) immediately follows a push (p+,+X, p−)
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then X = Y. Thus, in presence of a transition (p+,+X, p−) with p− ∈ Q−, we can elim-

inate the state p+ and its outgoing transition after modifying the machine as follows: if

there exists q such that (p−,−X, q) ∈ δ then we replace each transition (p, op, p+) with the

transition (p, op, q) and, furthermore, q becomes the initial state whenever p+ is initial.2

By iteratively applying this transformation, an equivalent h-DPDA without any transition

in Q+ × {+ }Γ× Q− is obtained. Finally, we can assume without loss of generality that

h-DPDAs do not contain any loop composed by push transitions only. Indeed, without

increasing the size of the model, these loops can be eliminated since when entering such

a loop, the machine surely halts and rejects after at most h steps as the pushdown height

will exceed its bound.

From now on, we assume without loss of generality that h-DPDAs have neither a tran-

sition in Q+ × {+ }Γ×Q− nor a loop with push transitions only.

Let A = 〈Q, Σ, Γ, δ, q0, F〉 be a h-DPDA, with QΣ, Q+, Q− defined as above. By deter-

minism, a state from Q+ has a unique outgoing transition. Hence, until leaving Q+, the

successive transitions from a state p ∈ Q+ generate a finite sequence of push transitions,

which is fully determined from p. For ease of presentation we shall use the following

functions that are defined for each state from Q+:

• η : Q+ → QΣ maps each state in Q+ to the first reachable state not belonging to Q+

after a sequence of push transitions, which exists and belongs to QΣ by assumption.

• ` : Q+ → { 1, . . . , h } maps each state p+ ∈ Q+ to the maximum number of consec-

utive push transitions that can be performed starting from p+.

• ω : Q+ → Γ≤h maps each state p+ ∈ Q+ to the string that can be pushed during a

maximal sequence of consecutive push transitions starting from p+. Notice that the

length of such a string is given by `(p+) ≤ h.

2If p+ is the initial state but there exists no q such that (p−,−X, q) ∈ δ, then the complete device recog-

nizes the empty language, and can thus be replaced by a simpler single-state one.
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For instance, consider the maximal sequence of consecutive push transitions

(p0,+X1, p1), (p1,+X2, p2), . . . , (pn−1,+Xn, pn),

where pn ∈ QΣ and, for each i such that 0 ≤ i < n ≤ h, pi ∈ Q+ and Xi+1 ∈ Γ. Then,

η(p0) = pn, `(p0) = n, and ω(p0) = X1 · · ·Xn. These functions can be always computed

by analyzing the transition function δ.

Let us now show how the simulation works.

Theorem 4.5. Each h-DPDA admits an equivalent deterministic 1-LA of polynomial size.

Proof. Let A = 〈Q, Σ, Γ, δ, q0, F〉 be a h-DPDA where, using the above notations, Q =

QΣ ∪ Q+ ∪ Q−. Hence, in every accepting computation, a sequence of push transitions

ends by entering a state from QΣ from which A scans the next input symbol, or accepts.

We define a simulating deterministic 1-LA A′ = 〈Q′, Σ, Γ′, δ′, q′0, F′〉.

The main idea of the simulation is that at each step of its computation A′ is able to

recover the content w ∈ Γ≤h of the pushdown store of the simulated machine without

storing w in its finite control, but from the information written on the already visited tape

cells. The simulation, detailed below, is described in Procedures 5, 6, and 7.

More precisely, we assume that A′ stores in its finite control the current pushdown

height, in a variable height with maximum value h that is initially set to 0, and the current

state, in a variable simulatedState initially containing the initial state ofA, of the configura-

tion reached in the simulated computation ofA. In order to simulate a maximal sequence

of push transitions

(p0,+X1, p1), (p1,+X2, p2), . . . , (pn−1,+Xn, pn)

where p0, . . . , pn−1 ∈ Q+, X1, . . . , Xn ∈ Γ, and pn ∈ QΣ, A′ moves its head rightward to

the leftmost tape cell which has not been visited so far (i.e., which has not been rewritten)

and performs, in one step, the following actions:

• it scans the input symbol a ∈ Σ, and determines the transition (pn, a, q) (Line 30);
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Procedure 5: simulatePush is called when a push has to be simulated, i.e., when the

variable simulatedState contains a state q ∈ Q+

27 move the head rightward until reaching the leftmost symbol σ ∈ Σ ∪ {C }

28 if σ = C then

29 if η(q) ∈ F then ACCEPT else REJECT

30 detect move (η(q), σ, r) to be simulated

31 write(〈q, height〉)

32 if height+ `(q) > h then REJECT

33 height← height+ `(q)

34 simulatedState← r

• it overwrites the cell content with the pair (p0, i) where i ≤ h− `(p0) is the current

pushdown height, stored in its finite control (Line 31);

• if the height of the stack after pushing `(p0) symbols does not exceed h (Line 32), it

updates the pushdown height component to i + `(p0) ≤ h (Line 33);

• it updates the state component to q (Line 34).

Hence, A′ does not only simulate the sequence of push, but also the successive scan step.

When all the cells have already been visited, i.e., when the head of A′ has reached the

right endmarker, then it halts and accepts if and only if pn ∈ F (Line 29).

When the next transition to be simulated has to scan the input (not just after a sequence

of push), A′ proceeds similarly (Procedure 6), but simply updates the variable simulated-

State accordingly (Line 40) without modifying the value of height, and rewrites the corre-

sponding cell content with the special symbol ] (Line 39).

When A′ has to access the content of the pushdown, namely when a pop transition

has to be simulated, the simulating machine looks for the last sequence of simulated push

transitions whose first symbol was pushed from a level lower than or equal to the cur-

rent pushdown height. This can be done by scanning leftward the tape, until reaching
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Procedure 6: simulateRead is called when a read has to be simulated, i.e., when the

variable simulatedState contains a state q ∈ QΣ

35 move the head rightward until reaching the leftmost symbol σ ∈ Σ ∪ {C }

36 if σ = C then

37 if η(q) ∈ F then ACCEPT else REJECT

38 detect move (q, σ, r) to be simulated

39 write(])

40 simulatedState← r

Procedure 7: simulatePop is called when a pop has to be simulated, i.e., when the

variable simulatedState contains a state q ∈ Q−.

41 move the head leftward until reaching a symbol (p+, i) with i ≤ height

42 detect move (q,−X, r) to be simulated where X is the (height− i)-th symbol

of ω(p+)

43 height← height− 1

44 simulatedState← r

the rightmost cell containing a pair (p+, i), with i less than or equal to the value of height

(Line 41). At this point, by using i and ω(p+), A′ recovers the symbol at level equal to

the height stored in the finite control and detects a suitable pop transition to be simulated

(Line 42). If such a transition exists then A′ updates both its state and pushdown height

components according to this transition (Lines 44, and 43), and continues the simulation.

Notice that A′ does not need to recover the original head position, i.e., the head posi-

tion of A in the simulated computation, until it enters a state from QΣ ∪ Q+. When this

happens, A′ proceed as explained previously.

If no move in δ can be simulated because no suitable transition is defined (Lines 30,

38, and 42), then the simulating machine halts and rejects.

We now evaluate the size of the simulating deterministic 1-LA A′. Notice that the
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quantities computed by η, `, and ω do not depend on the input, whence are pre-computed

and hardly encoded in the transition table of A′. The working alphabet of A′ is included

in Q+ × { 0, . . . , h− 1 } ∪ { ] }, while the finite control stores two variables: one state in Q

and one pushdown height in { 0, . . . , h }. Hence, the size of A′ is polynomial in #Q and h.

We point out that it does not depend on the size of the pushdown alphabet of A.
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5
Unary Limited Automata

In this chapter we focus on limited automata whose input alphabet is composed by just

one symbol.

Limited automata have been investigated from the descriptional complexity point of

view by Pighizzini and Pisoni, who proved that each 1-limited automatonAwith n states

can be simulated by a one-way deterministic automaton with a number of states double

exponential in a polynomial in n. Furthermore, in the worst case, double exponentially

many states are necessary for this simulation. The cost reduces to a single exponential

when A is deterministic [PP14].

Theorem 5.1 ([PP14]). LetM be an n-state 1-LA. ThenM can be simulated by a 1NFA with n ·

2n2
states and by a 1DFA with 2n·2n2

states. Furthermore, ifM is deterministic then an equivalent

1DFA with no more than n · (n + 1)n states can be obtained.

The lower bounds in this result have been obtained by providing witness languages

defined over a binary alphabet. In the unary case, namely in the case of languages de-

fined over a one-letter alphabet, it is an open question if these bounds remain valid. It

is suitable to point out that in the unary case the classes of regular and context-free lan-

guages collapse [GR62] and, hence, d-limited automata are equivalent to finite automata

for each d > 0. The existence of unary 1-limited automata which require a quadratic

number of states to be simulated by two-way nondeterministic finite automata has been
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proved [PP14]. The set of unary strings of length a multiple of 2n can be recognized by

a 2-limited automaton of size O(n), for any fixed n > 0. On the other hand, each (even

two-way nondeterministic) finite automaton requires a number of states exponential in n

to accept the same language [PP15].

The investigation of the size of unary limited automata was deepened by Kutrib and

Wendlandt: several bounds for the costs of the simulations of different variants of unary

limited automata by different variants of finite automata were stated. Among these re-

sults, they proved the existence of unary languages accepted by 4n-states deterministic

1-limited automata which require n · e
√

n ln n states to be accepted by two-way nondeter-

ministic finite automata [KW15].

In this chapter we improve these results, by obtaining an exponential gap between

unary deterministic 1-limited automata and two-way nondeterministic finite automata.

To this aim, first we show that for each n > 1 the singleton language { a2n } can be rec-

ognized by a deterministic 1-limited automaton having 2n + 1 states and a description of

size O(n). Since the same language requires 2n + 1 states to be accepted by a one-way

nondeterministic automaton, it turns out that the state gap between deterministic 1-lim-

ited automata and one-way nondeterministic automata in the unary case is the same as

in the binary case. Then, we shall also observe that the gap does not reduce if we want to

convert unary deterministic 1-limited automata into two-way nondeterministic automata.

However, when converting finite automata into limited automata, a size reduction corre-

sponding to such a gap is not always achievable, even if we convert a unary one-way

deterministic finite automaton into a nondeterministic d-limited automaton for any arbi-

trarily large d.

In the second part of the chapter, we consider unary context-free grammars. The

cost of the conversion of these grammars into finite automata has been investigated by

proving exponential gaps [PSW02]. Here, we study the conversion of unary context-free

grammars into limited automata. With the help of a result presented by Okhotin [Okh12]

(recalled in Theorem 2.2), we prove that each unary context-free grammar G can be con-
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verted into an equivalent 1-limited automaton whose description has a size that is poly-

nomial in the size of G.

The results shown in this chapter have been presented in [PP19a].

5.1 On the Size of Unary Limited Automata

In this section we compare the sizes of unary limited automata with the sizes of equiv-

alent finite automata. Our main result is that unary 1-LAs can be exponentially more

succinct than finite automata even while comparing unary deterministic 1-LAs with two-

way nondeterministic automata. However, there are unary regular languages that do not

have any d-limited automaton which is significantly more succinct than finite automata,

even for arbitrarily large d.

A large part of the section is devoted to showing that, for each n ≥ 0, the language Un =

{ a2n }, which requires 2n + 1 states to be accepted by an NFA (even if it is able to scan the

input in a two-way fashion), can be accepted by a deterministic 1-LA whose size is poly-

nomial in n. Let us proceed by steps. In order to illustrate the construction, first it is useful

to discuss how Un can be accepted by a linear bounded automatonMn.1

Mn works in the following way:

i. Starting from the first input symbol, it scans the tape from left to right by count-

ing modulo 2 the a’s until the right end-marker is reached. Each odd-counted a is

overwritten by X.

ii. The previous step is repeated n− 1 further times, after moving backward the head

until reaching the left end-marker. If at the end of one of the iterationsMn discovers

that the number of a’s on the tape was odd thenMn rejects.

iii. After the last iteration,Mn accepts if only one a is left on the tape.

1We remind the reader that a linear bounded automaton is a Turing machine that can use as storage only

the portion of the tape which initially contains the input, by rewriting its cells an unbounded number of

times.
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It is possible to modifyMn, without any increasing of the number of the states, by intro-

ducing a different kind of writing at step i.: in the course of the i-th iteration, the symbol i

is used instead of X. After the n-th iteration, only one cell of the tape should contain the

symbol a. In this case,Mn writes the symbol non such a cell and accepts; otherwise,Mn

rejects. For example, in the case n = 4, at the end of computation the final contents of

the tape on input a24
will be 0102010301020104 . (Computations of Mn will be formally

studied in Lemma 5.1.)

Considering the last extension ofMn, we are now going to introduce a 1-LA Nn ac-

cepting the language Un, based on the guessing of the final tape contents ofMn.

In the first phase, Nn scans the tape replacing each a with a symbol nondetermin-

istically chosen in { 0, . . . , n}. This requires only one state. Next, the machine, after

moving backward the head to the left end-marker, makes a scan from left to right for

each i = 0, . . . , n− 1, where it checks if the symbol ioccurs in all odd positions, where po-

sitions are counted ignoring the cells containing numbers less than i. This control phase

needs three states for each value of i: one for moving backward the head and two for

counting modulo 2 the positions containing symbols greater or equal to i. Finally, the

automaton checks if only the last cell contains n (two states), in such a case the input is

accepted. The total number of states of Nn is 3(n + 1), that, even in this case, is linear in

the parameter n. This gives us a 1-LA of size polynomial in n accepting Un.

We are now going to prove that we can do better. In fact, we will show that switching

to the deterministic case for the limited automata model, the size of the resulting device

does not increase. Actually, we will slightly reduce the number of states, while using the

same working alphabet.

To this aim, we study the final tape contents of the linear bounded automaton Mn

when it accepts the input:

Lemma 5.1. At the end of the computation of Mn on input a2n
, the j-th tape cell contains the

exponent of the largest power of 2 that divides j, for j = 1, . . . , 2n.

Proof. First, we prove by induction on i = 0, . . . , n− 1 that the cells that are not yet rewrit-
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ten before iteration i + 1 are those whose positions are multiples of 2i. The basis, i = 0, is

trivial. Furthermore, for i = 0, . . . , n− 1, the iteration i + 1 rewrites the odd-counted cells

among those which are not rewritten so far, namely, according to the induction hypothe-

sis, among those in positions 1 · 2i, 2 · 2i, 3 · 2i, . . . , 2n−i · 2i. Hence, the cells which are not

still rewritten after iteration i + 1 and before the next iteration (if any) are those whose

positions are even multiples of 2i, namely multiples of 2i+1.

In this way, we can conclude that for i = 0, . . . , n− 1, iteration i + 1 rewrites any cell

of index j such that 2i is the largest power of 2 that divides j. The proof can be completed

just observing that the symbol used for rewriting in such iteration is i.

From now on, let us denote by σ1σ2 · · · σj · · · the infinite integer sequence which is de-

fined by taking as j-th element σj the exponent of the highest power of 2 which divides j.

This sequence is known as binary carry sequence [Sloa].2

From Lemma 5.1, it follows that the final tape contents of Mn (and of Nn), when the

input is accepted, consists of the first 2n elements of the binary carry sequence.

We notice that given integers j > 0, k ≥ 0, 0 < j′ < 2k, such that j = 2k + j′, the

exponents of the highest powers of 2 which divide j and j′ are the same. Considering the

definition of the sequence, this allows us to get the following equality, for all integers j >

0, k ≥ 0:

σj =

 k if j = 2k,

σj−2k if 2k < j < 2k+1.
(5.1)

Hence, the sequence can be iteratively obtained as follows:

• The first element of the sequence is 0.

• For k ≥ 0, by making a copy of the first 2k elements of the sequence and by replacing

the last element in the copy by its successor, we obtain the next 2k elements.

2In [AS03], the function associating with each integer j the exponent σj of the highest power of 2 which

divides j is called the ruler function. A slightly different definition of the ruler function is given in [Slob].
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For example, from 0, concatenating a copy and replacing the last (and unique) element of

the copy by the successor, we obtain 01, from which, with the same process, we get 0102,

01020103, and so on.

Remark 5.1. In the prefix of length 2n of the binary carry sequence, each symbol i, 0 ≤ i < n,

occurs 2n−i−1 times, starting in position 2i and at distance 2i+1, i.e., it occurs in positions 2i(2j−

1), for j = 1, . . . , 2n−i−1. The symbol i = n occurs in position 2n only.

Remark 5.1 is a direct consequence of the definition of the sequence. Consider, as an

example, the sequence x = 01020103: reading x from left to right, the symbol 0 appears

for the first time in position 20 and then in positions 3, 5, 7; 1 occurs in positions 2, 6; 2

occurs in position 4; and, finally, 3 occurs in position 8 only.

We will show that, for any n > 0, the prefix of length 2n of this sequence can be gener-

ated by a deterministic 1-LA which writes it on its tape, but avoids using large numbers.

To this aim, we introduce the function bis, that associates with any given sequence

of integers s = k1k2 · · · k j, its Backward Increasing Sequence, namely the longest strictly

increasing sequence which can be obtained by copying some elements from s, selected

with the greedy strategy we now present. At the beginning the last element k j of s is

chosen as first element of bis(s). Then the remaining elements are inspected from k j−1

to k1, by appending one element to bis(s) only when it is greater than the last element

added to bis(s).

Formally, bis(k1k2 · · · k j) = (i1, i2, . . . , ir), j, r > 0, if and only if i1= kh1 , i2= kh2 , . . . , ir =

khr where h1 = j, ht = max
{

h′ < ht−1 | kh′ > kht−1

}
for t = 2, . . . , r, and kh′ < khr

for 0 < h′ < hr.

For example, considering the prefix s = 01020103010 of length j = 11 of the binary

carry sequence, we obtain bis(s) by firstly selecting 0, namely the last element of s. Then,

moving backwards, we select 1 (because 1 > 0), we do not select 0 (0 ≤ 1), we select 3

(3 > 1), and we do not select any of the remaining elements (all of them are not greater

than 3). In this way, we finally get bis(01020103010) = (0, 1, 3). Notice that in the binary

representation of j, namely 1011, the bits set to 1 occur, respectively, in position 0, 1, and 3.
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This fact is true for each j, as proved in the following lemma, i.e., the value of bis, applied

to the first j elements of the binary carry sequence, indicates the positions of bits equal

to 1 in the binary representation of j, starting from the least significant bit.

We remind the reader that σ1σ2 · · · σj denotes the prefix of length j of the binary carry

sequence.

Lemma 5.2. For j > 0, if bis(σ1σ2 · · · σj) = (i1, i2, . . . , ir) then j = ∑r
t=1 2it .

Proof. We proceed by induction on j.

• If j is a power of 2, namely j = 2k, for some k ≥ 0, then k is the maximum number

in the sequence and, by definition, it occurs in position j only. So, bis(σ1σ2 · · · σj) =

(k).

• If j is not a power of 2, namely 2k < j < 2k+1, j = 2k + j′ for some k > 0, 0 <

j′ < 2k, then k is the maximum number which occurs in the sequence and, by equal-

ity (5.1), the subsequence σ2k+1σ2k+2 · · · σj is equal to the subsequence σ1σ2 · · · σj′

of the first j′ elements. Hence, bis(σ1σ2 · · · σj) can be obtained by appending k at

the end of bis(σ1σ2 · · · σj′), namely, if bis(σ1σ2 · · · σj′) = (i1, . . . , ir′), r′ = r − 1,

then bis(σ1σ2 · · · σj) = (i1, . . . , ir′ , ir), ir = k.

By induction hypothesis, j′ = ∑r′
t=1 2it . Thus j = 2k + j′ = 2k + ∑r′

t=1 2it = ∑r
t=1 2it .

Using Lemma 5.2, we now prove a property which will be crucial in the construction

of a deterministic 1-LA accepting the language Un.

Lemma 5.3. For j > 0, σj is the smallest integer greater than or equal to 0 not occurring

in bis(σ1σ2 · · · σj−1).

Proof. In the case j = 1, bis(σ1σ2 · · · σj−1) is empty and, hence, the statement of the

lemma gives σ1 = 0. To study the case j > 1, we first remind the reader that, by defi-

nition, σj is the exponent of the highest power of 2 which divides j, namely it coincides
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with the position of the least significant 1 in the binary representation of j and, hence,

with the lowest position which does not contain the digit 1 in the binary representation

of j − 1.3 Considering Lemma 5.2, applied to j − 1, we conclude that σj is the smallest

integer not occurring in bis(σ1σ2 · · · σj−1).

We are going to define a deterministic 1-LA An = 〈Q, Σ, Γ, δ, qI , F〉 accepting the lan-

guage Un = { a2n }, for a fixed n. The automaton An writes on its tape the prefix of

length 2n of the binary carry sequence. In particular, in the first visit at the cell j, An

writes the symbol σj of the binary carry sequence that, according to Lemma 5.3, can be

computed as the smallest nonnegative integer missing in bis(σ1σ2 · · · σj−1). This compu-

tation is done by inspecting the part of the tape to the left of the j-th cell only. In this way,

the contents of the cell j is changed in the first visit only.

The automaton An implements the procedure summarized in Procedure 8 — note

that, for ease of presentation, the procedure assumes that the machine starts the com-

putation with the head on the left end-marker — and it is defined as follows: Q =

{ qI , qF, q1, . . . , qn, p1, . . . , pn−1 }, Σ = { a }, Γ = { 0, . . . , n}, qI is the initial state and qF

is the unique final one. The transitions in δ are the following (undefined transitions are

not listed):

i. δ(qI , a) = (p1, 0,−1)

ii. δ(pi, σ) = (pi, σ,−1), for i = 2, . . . , n− 1 and σ < i− 1

iii. δ(pi, i) = (pi+1, i,−1), for i = 1, . . . , n− 2

iv. δ(pi, σ) = (qi, σ,+1), for i = 1, . . . , n− 1 and (σ > i or σ = B)

v. δ(pn−1, n− 1) = (qn, n− 1,+1)

vi. δ(qi, σ) = (qi, σ,+1), for i = 1, . . . , n and σ < i

3Indeed the binary representation of j is x10k, for some k ≥ 0, x ∈ {0, 1}∗, when the binary representation

of j− 1 is x01k, or simply 1k, if x is empty.
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vii. δ(qi, a) = (qI , i,+1), for i = 1, . . . , n− 1

viii. δ(qn, a) = (qF, n,+1)

ix. δ(qF,C) = (qF,C,+1)

We finally observe that An has 2n + 1 states, which is linear in the parameter n.

Procedure 8: Recognition of the language Un. Also in this case, the symbol σ denotes

the symbol currently scanned by the head, which is automatically updated at each

head move, while the special instruction REJECT causes the whole computation to

halt and reject.

/* start with the head on the left endmarker */

45 while σ /∈ {n,C} do

46 move the head to the right

47 write(0)

48 j← 0

49 repeat

50 while σ ≤ j and σ 6= B do

51 move the head to the left

52 j← j + 1

53 until σ 6= j

54 repeat move the head to the right until σ = a

55 write(j)

56 if σ = n then

57 move the head to the right

58 if σ = C then ACCEPT

59 REJECT

The machine starts in the initial state qI . Since each symbol σ 6= 0 is preceded by 0 (a 0

occurs in each odd position), the automaton moves the head to the right and writes a 0
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before each symbol in Γ \ { 0} (Transition i. — Lines 46 and 47). Every time the head is

in a odd position p, the automaton has to look backward for the minimum integer j such

that j is not in bis(σ1, . . . , σp). This is done with Transitions from ii. to v. — Lines from 49

to 53. After that, An moves its head to the right until the first a is reached (Transitions vi.

— Lines from 54 to 54) and writes the symbol j (Transitions vii. — Line 55). This is

repeated until either the symbol n is written on the tape or the right end-marker is reached

because the input length is less than 2n. In the former case, it is sufficient to verify if the

next symbol on the tape is the right end-marker: in this case, the automaton accepts

(Transitions viii. and ix. — Lines from 56 to 58). In the latter case, An stops and rejects

(undefined transition — Line 59).

Hence we conclude that the language Un is accepted by a deterministic 1-LA with O(n)

states, while it is an easy observation that each 1NFA accepting it requires 2n + 1 states.

We can even obtain a stronger result by proving that between unary deterministic 1-LAs

and 2NFAs there is the same gap. Indeed, from Fact 5.2 in [Bir96], each 2NFA accepting Un

requires more than 2n states. This gives the main result of this section:

Theorem 5.2. For each integer n > 1 the language Un is accepted by a deterministic 1-LA

with O(n) states and a working alphabet of size O(n) while each 2NFA accepting it requires more

than 2n states.

We conclude this section by proving that the exponential gap between unary limited

automata and finite automata is not always achievable.

Theorem 5.3. There exist constants c, n0 such that for all integers n ≥ n0 there exists a unary

1DFA accepting a finite language L with at most n states, such that for any d-LA accepting L

with d > 0, q states, and a working alphabet of m symbols, it holds that qm ≥ cn1/2.

Proof. There are 2O(q2m2) different limited automata such that the cardinalities of the set

of states and of the working alphabet are bounded by q and m, respectively. On the other

hand, the number of different subsets of {a0, a1, . . . , an−1} is 2n. Hence kq2m2 ≥ n for a

constant k > 0 and each sufficiently large n, which implies qm ≥ cn1/2, where c = 1/k1/2.
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Notice that each subset of
{

a0, a1, . . . , an−1 } is accepted by a (possibly incomplete) 1DFA

with at most n states.

The result in Theorem 5.3 does not depend on d, i.e., the lower bound holds even

taking an arbitrarily large d. In the case d = 1, the argument in the proof can be refined to

show that qm1/2 ≥ cn1/2.

5.2 Unary Grammars versus Limited Automata

In Section 5.1 we proved an exponential gap between unary 1-LAs and finite automata.

A similar gap was obtained between unary CFGs and finite automata [PSW02]. Hence, it

is natural to study the size relationships between unary CFGs and 1-LAs. Here, we prove

that each context-free grammar G specifying a unary language can be converted into an

equivalent 1-LAM of polynomial size. More precisely, the sizes of the set of states and of

the working alphabet ofM are polynomial with respect to the size of G.

Let us start by presenting some notions and preliminary results.

Definition 5.1. Given an integer d > 0, the extended Dyck language with nesting depth

bounded by d over Ω, denoted as D̂(d)
Ω , is the subset of D̂Ω consisting of all strings where the

nesting depth of brackets is at most d.

Example 5.1. Let Ωk = { (, [ , ), ] }, Ωn = { | }, and Ω = Ωk ∪Ωn. Then | ( |[ [ ] | ] )[ | ] ∈

D̂(3)
Ω \ D̂(2)

Ω . �

As discussed in Section 2.2.2.1, it is well-known that Dyck languages, and so extended

Dyck languages, are context free and nonregular. However, the subsets obtained by

bounding the nesting depth by any fixed constant are regular. We are interested in the

recognition of such languages by “small” two-way automata:

Lemma 5.4. Given an extended bracket alphabet Ω with k types of brackets and an integer d > 0,

the language D̂(d)
Ω can be recognized by a 2DFA with O(k · d) states.
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Proof. We can define a 2DFA M which verifies the membership of its input w to D̂(d)
Ω by

using a counter c. During a first scanM checks whether or not the brackets are correctly

nested, regardless their types. This is done as follows. Starting with 0 in c, M scans the

input from left to right, incrementing the counter for each left bracket and decrementing

it for each right bracket. If during this process the counter exceeds d or becomes negative

thenM rejects. M also rejects if at the end of this scan the value stored in the counter is

positive.

In the remaining part of the computation,M verifies that corresponding left and right

brackets are of the same type. To this aim, starting from the left end-marker,Mmoves its

head to the right, to locate a left bracket. When it is found,M saves it in the finite control

and moves to the right to locate the corresponding right bracket. This is done by using

the counter c, which is set to 0 on the left bracket and it is incremented or decremented

for each left or right bracket, respectively, which is encountered while moving to the

right. In this way, the right bracket which is reached when c contains 0 corresponds

to the left bracket under inspection. When such right bracket is reached,M verifies the

matching with the one saved in the control. If this is not the case, then M stops and

rejects. Otherwise,M should move back its head to the matched left bracket in order to

continue the inspection. This can be done, using the same method, by moving the head

to the left and incrementing or decrementing the counter for each right or left bracket,

respectively, up to reach a cell containing a left bracket when 0 is in c. At this point,

M moves to the right to locate the next left bracket and to check the matching with its

corresponding right bracket by the same procedure.

This process is repeated up to reach the right end-marker. At that point, all pairs of

brackets have been inspected. Notice that neutral symbols are completely ignored.

In its finite control,M keeps the counter c, that can assume d + 1 different values, and

can store a left bracket. This yields O(k · d) states.

It is possible to notice that the computation of the obtained 2DFA M accepting D̂(d)
Ω

can be made sweeping (namely, in which the head can change direction only on the end-
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markers), even rotating (a sweeping computation in which the head is reset to the left end-

marker every time the right endmarker is reached). After the first scan (or sweep) during

whichM checks whether or not the brackets are correctly nested, regardless their types,

h further sweeps are performed. In particular, during the i-th sweep, for i = 1, . . . , d,M

checks the types of the brackets at level i, by using a counter kept in the finite state control

to keep track of the current nesting level of the brackets. This increases the number of the

states to O(k · d2).

Corollary 5.1. Given an extended bracket alphabet Ω with k types of brackets and an inte-

ger d > 0, the language D̂(d)
Ω can be recognized by a sweeping (rotating) 2DFA with O(k · d2)

states.

In the following we shall use the nonerasing variant of the Chomsky-Schützenberger

representation theorem for context-free languages, proved by Okhotin (cf., Theorem 2.2)

to obtain our main result.

Pighizzini observed that the size of the alphabet Ω is polynomial with respect to the

size of a context-free grammar G generating L and the language R of Theorem 2.2 is lo-

cal [Pig16], namely, such that there exist sets A ⊆ Σ × Σ, I ⊆ Σ, and F ⊆ Σ such

that w ∈ R if and only if all factors of length 2 in w belong to A and the first and the last

symbols of w belong to I and F , respectively [MP71].4

This was used to prove that each context-free grammar G can be transformed into

an equivalent strongly limited automaton (a special kind of 2-LA) whose description has

polynomial size with respect to the description of G. In the following, when L is specified

by a context-free grammar G, i.e., L = L(G), we will write ΩG and RG instead of ΩL

and RL, respectively.

Our goal, here, is to build 1-LAs of polynomial size from unary context-free gram-

mars. To this aim, using the fact that factors in unary strings commute, by adapting the

argument used to obtain Theorem 2.2, we prove the following result:

4It is not difficult to verify that local languages are a subclass of regular languages.
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Theorem 5.4. Let L ⊆ { a }∗ be a unary regular language and G = 〈V, { a }, P, S〉 be a context-

free grammar of size s generating it. Then, there exist an extended bracket alphabet ΩG and a

regular language R̂G ⊆ Ω∗G such that L = h(D̂(#V)
ΩG
∩ R̂G), where:

• D̂(#V)
ΩG

is the extended Dyck language over ΩG with nesting depth bounded by #V,

• h is the letter-to-letter homomorphism which maps each element of ΩG into the symbol a.

Furthermore, the size of ΩG is polynomial in the size s of the grammar G and the language R̂G is

recognized by a 2DFA with a number of states polynomial in s.

Proof. Here we present an outline of the argument used to prove the result. A detailed

proof of a more general result is given in [PP19a].

Given a context-free grammar G = 〈V, { a }, P, S〉 specifying a unary language L, we

first obtain the representation in Theorem 2.2. According to Theorem 5.2 in [Pig16], the

size of the alphabet ΩG is polynomial with respect to the size of the description of G. Each

pair of brackets in ΩG represents the root of a derivation tree of G, which starts from a

certain variable of G and produces a terminal string.

If a sequence w ∈ Ω∗G contains a pair of brackets corresponding to a variable A which

is nested, at some level, in another pair corresponding to the same variable, then w can be

replaced by a sequence w′ of the same length, which is obtained by replacing the factor

of w delimited by the outer pair of brackets corresponding to A, by the factor delimited by

the inner pair, and by moving the removed part at the end of w. For instance, consider the

sequence w = (S (A (B )B (C (A (B )B )A )C )A )S where, for the sake of simplicity, subscripts

represent variables corresponding to brackets. The factor delimited by the pair (A )A at

the inner level is (A (B )B )A which can replace the factor (A (B )B (C (A (B )B )A )C )A, which

is delimited by the same pair at the outer level. Moving the remaining part (A (B )B (C )C )A

at the end, we obtain w′ = (S (A (B )B )A )S (A (B )B (C )C )A. In such a way, each time the

nesting depth is greater than #V, it can be reduced by repeatedly moving some part to the

end. So, from each string in D̂ΩG , we can obtain an “equivalent” string of the same length

in D̂(#V)
ΩG

.
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The regular language RG should be modified accordingly. While in the representa-

tion in Theorem 2.2, the first and the last symbol of a string w ∈ D̂ΩG ∩ RG represent

a matching pair corresponding to the variable S, after the above transformation, valid

strings should correspond to sequences of blocks of brackets where the first block repre-

sents a derivation tree of a terminal string from S, while each of the subsequent blocks

represents a gap tree from a variable A, namely a tree corresponding to a derivation of

the form A +⇒ ai Aaj, with i + j > 0, where A already appeared in some of the previous

blocks. This condition, together with the conditions on RG , can be verified by a 2DFA with

a polynomial number of states.

Notice that if we omit the state bound for the 2DFA accepting R̂G , the statement of The-

orem 5.4 becomes trivial: by taking ΩG = { a } where a is a neutral symbol, RG = L,

and h(a) = a, we obtain D̂(#V)
ΩG

= { a }∗ and hence D̂(#V)
ΩG
∩ R̂G = L = h(L).

Using Theorem 5.4, we now prove the main result of this section:

Theorem 5.5. Each context-free grammar of size s generating a unary language can be converted

into an equivalent 1-LA having a size that is polynomial in s.

Proof. Let G = 〈V, { a }, P, S〉 be the given grammar, L ⊆ { a }∗ be the unary language

generated by it, ΩG be the extended bracket alphabet, and R̂G be the regular language

obtained from G according to Theorem 5.4.

We define a 1-LAM which works as follows:

1. M makes a complete scan of the input tape from left to right, by rewriting each

input cell by a nondeterministically chosen symbol from ΩG . Let w ∈ Ω∗G be the

string written on the tape at the end of this phase.

2. M checks whether or not w ∈ D̂(#V)
ΩG

.

3. M checks whether or not w ∈ R̂G .

4. M accepts if and only if the outcomes of steps 2 and 3 are both positive.
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According to Lemma 5.4, Step 2 can be done by simulating a 2DFA with O(#ΩG · #V)

states, hence a number polynomial in s. Furthermore, by Theorem 5.4, also Step 3 can be

performed by simulating a 2DFA with a number of states polynomial in s. HenceM has

a size that is polynomial in s.

We point out that from Theorem 5.5 and the exponential gap from unary CFGs to 1NFAs

proved in [PSW02], we could derive an exponential gap from unary nondeterministic 1-LAs

to 1NFAs. In Section 5.1 we proved that the gap remains exponential if we restrict to unary

deterministic 1-LAs and consider the simulation by 2NFAs.

5.3 Remarks

Using languages defined over a binary alphabet, exponential size gaps were proved for

the conversion of 1-LAs into 2NFAs and of deterministic 1-LAs into 1DFAs [PP14]. As

a consequence of our results, these exponential gaps hold even in the restricted case of

unary languages. On the other hand, the gap between sizes of 1-LAs and 1DFAs is doubly

exponential. Even in this case, the proof given by Pighizzini and Pisoni relies on witness

languages defined over a binary alphabet. We leave as an open question to investigate

whether or not a double exponential gap is possible between 1-LAs and 1DFAs even in the

unary case.

Another question we leave open is whether or not 1-LAs and CFGs are polynomially

related in the unary case. While in Section 5.2 we proved that from each unary CFG we can

build a 1-LA of polynomial size, at the moment we do not know the converse relationship.

The same question can be formulated by dropping the restriction to the unary case. We

point out that, in the general case, the size cost of the conversion of 2-LAs into equivalent

CFGs is exponential [PP15]. The cost remains exponential when we convert d-LAs into

CFGs, for each d > 2 [KPW18].

Furthermore, it would be interesting to know the costs of the conversions when de-

terministic devices are considered. For instance, the 1-LAs produced by our conversion
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from unary CFGs strongly rely on the use of nondeterministic choices. So, it would be

interesting to know what is the size cost if we want to obtain deterministic 1-LAs.
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6
Limited Automata: A Time Constraint

As observed by Hennie in 1965, deterministic one-tape Turing machines operating in lin-

ear time recognize exactly the class of regular languages [Hen65]. The result has later

been extended to the nondeterministic case [TYL10, Pig09b]. Here, operating in linear

time means that every computation has length linearly bounded in the input length. In

particular, linear-time machines are necessarily halting — see [Pig09b] for investigations

of alternative linear time restrictions. The above-mentioned result implies that every Hen-

nie machine is equivalent to some finite automaton. From the opposite point of view, this

means that providing two-way finite automata with the ability to overwrite the tape cells

does not extend the expressiveness of the model, as long as the time is linearly bounded

in the length of the input.

However, Průša showed that it is undecidable given a bounded deterministic Turing

machine to check whether it works in linear time over all input strings, namely, whether it

is actually a deterministic Hennie machine [Prů14]. To avoid this drawback, he proposed

the weight-reducing variant of Hennie machines, in which the time limitation is syntactic

(refer to Section 2.2 for the definitions of these models). As a consequence, the number of

visits of a cell by the head is bounded by some constant (i.e., not depending on the input

length) hence the device works in linear time over every input string.

By contrast to Hennie machines, in d-limited automata the head is allowed to visit

a cell after the d-th visit, even if it cannot rewrite the contents anymore. This allows to
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use super-linear time. Hence, limited automata live midway between linear-bounded

automata and weight-reducing Hennie machines.

Also in the case d = 1, 1-limited automata can operate in super-linear time (as we shall

show in Example 6.1). This contrasts with Hennie machines which operate in linear time

by definition. The question we address in this chapter is whether this ability of 1-limited

automata with respect to Hennie machines yields a gap between the two models in terms

of the size of their representations.

We show that, with a polynomial increase in size, each 1-limited automaton can be

transformed into an equivalent linear-time 1-limited automaton, or, alternatively, into

a weight-reducing Hennie machine. Furthermore, we are able to obtain a deterministic

device when the original machine is deterministic as well. We also show that the 1-limited

automata resulting from our constructions have a special structure that can be exploited

in order to obtain equivalent 1-limited automata in which an initial phase just overwrites

each tape cell, i.e., the device initially performs a nondeterministic left-to-right pass over

the tape during which all the cells are independently overwritten. Similar behaviors have

been considered in the context of regular transduction, because of their correspondence

with global existential quantification in monadic second order logic, see [Boj+17] in which

the authors define an operation called common guess corresponding to a nondeterministic

sweep from left to right, overwriting the tape. Hence, as a consequence of our main result,

each 1-limited automaton can be simulated by a two-way automaton with common guess of

polynomial size. It follows that reversing a 1-limited automaton, i.e., transforming it into

another one recognizing the reverse of its accepted language, has polynomial cost only.

This fails in the deterministic case, for which we exhibit an exponential lower bound. As

a consequence, we obtain exponential lower bounds for the simulation of deterministic

weight-reducing Hennie machines by deterministic 1-limited automata. The results are

summarized in Figure 6.1.

The chapter is organized as follows. In Section 6.1 we start by presenting a simpler

form of 1-LAs and a preliminary example showing that 1-LAs can operate in super-linear
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Figure 6.1: Relationships between the main models studied in the chapter. Here, lt and wr

mean linear-time and weight-reducing, while D1-LA and (D)HM stand for deterministic

1-LA and (deterministic) Hennie machine, respectively. Deterministic and nondeterminis-

tic two-way automata with common guess are denoted by 2DFA+cg and 2NFA+cg. Dotted

arrows indicate trivial connections while thick arrows indicate our results.

time. The main constructions used for proving our results are detailed in Section 6.2,

while the results are finally presented in Section 6.3.

The results discussed in this chapter have been presented in [GP19].

6.1 Preliminaries

The following result, which is instrumental for our later proofs, gives a simpler form of

1-LAs.

Lemma 6.1. For each n-state 1-LA, there exists an equivalent 3n-state 1-LA using the same work-

ing alphabet, which performs stationary moves exactly when rewriting a cell content. Furthermore,

the conversion preserves determinism.

Proof. First, by using standard techniques, each sequence of stationary moves followed

by a nonstationary move can be replaced by a nonstationary transition. This operation
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does not increase the size of the 1-LA. Since in every accepting computation the last

transition performed by any 1-LA is a right move from the rightmost cell of the tape, this

modification eliminates all the stationary moves.

Second, we can split every rewriting step into two steps: a first stationary step during

which the input cell is rewritten, followed by a second read-only nonstationary step. This

yields a linear increase of the size of the device only. More precisely, for each state q ∈ Q

and each direction d ∈ {−1,+1 }, we create a new copy (q, d) /∈ Q of q, whose interpre-

tation is to delay the head move d. Then, each rewriting transition (q, γ, d) ∈ δ(p, σ) is

replaced by two transitions ((q, d), γ, 0) from p on σ and (q, γ, d) from (q, d) on γ.

Example 6.1. Let us consider the family of languages (Ln)∞
n=0, in which, for each n ∈N,

Ln =
{

x0x1 · · · xk | k ∈N, for each i : xi ∈ { a, b }n, for some j 6=0 : xj = x0
}

.

A deterministic 1-LA An may recognize Ln as follows. It first scans the factor x0, overwrit-

ing each input symbol with a marked copy. Then, An repeats a subroutine which over-

writes a factor xi with some fixed symbol ], while checking in the meantime whether xi

equals x0 or not. This can be achieved as follows. Before overwriting the j-th symbol of xi,

first, An, with the help of a counter modulo n, moves the head leftward to the position j

of x0 and stores the unmarked scanned symbol σ in its finite control; second, it moves the

head rightward until reaching the position j of xi, namely, the leftmost position that has

not been overwritten so far. At this point, An compares the scanned symbol (i.e., the j-th

symbol of xi) with σ (i.e., the j-th symbol of x0). By setting a Boolean variable to true

when complete factor xi has matched x0 and finally checking that the input string has

length multiple of n, An can decide the membership of the input to Ln.

It is possible to implement An with a number of states linear in n and #Σ + 1 working

symbols. Since for each position of a factor xi, i > 0, the head has to move back to the

factor x0, we observe thatAn works in quadratic time in the length of the input string. �
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6.2 Linear-Time Simulations of 1-Limited Automata

If a linear-space Turing machine can visit a tape cell only a constant number of times,

it necessarily works in linear time. Conversely, Turing machines working in linear time

(i.e., Hennie machines), have been shown to visit each tape cell only a constant number

of times during a computation [Hen65]. This contrasts with the case of 1-LAs, which can

use quadratic time, as shown in Example 6.1. However, our main contribution states that,

with a polynomial increase in size of the model, we can recover the above property, and

therefore obtain equivalent 1-LAs working in linear time.

6.2.1 Main ingredients

6.2.1.1 Local window space bound

The key idea to obtain a linear-time bound, is to ensure that, in any computation, the

simulating device works on a virtual window of fixed size that is shifted along the tape

in a one-way fashion. More precisely, in the computations of our simulating 1-LAs, there

exists a constant K not depending on the input length, such that, for any two tape cells at

distance K, the leftmost one cannot be visited after having visited the rightmost one. In

this way, it is possible to bound the number of visits of each cell.

In our simulation we divide the input word into blocks of some fixed length `, given

by some polynomial in the number n of states of the simulated 1-LA. Then, our virtual

window covers two successive blocks, i.e., K = 2`. The length ` is chosen in such a way

that, once overwritten, a block on the tape may contain the sufficient information for re-

covering the behaviors of the simulated machine that may occur on the left of the window.

Describing and storing this information is the purpose of the following subsection.

6.2.1.2 Shepherdson tables

Pighizzini and Pisoni presented a construction to simulate any 1-LA A by a finite automa-

ton B [PP14], using classic ideas from the simulation of two-way automata by one-way
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automata [She59]. The main ingredient was to store in the finite control of B, a “transi-

tion table” describing the possible behaviors ofA that may occur to the left of the current

head position. Since the part of the tape to the left of the current head position has nec-

essarily already been visited, its “frozen” content belongs to B(Γ \ Σ)∗ ∪ { ε }. Hence, the

above-mentioned behaviors to the left of the current head position are read-only compu-

tations. To represent them, for each word z′X ∈ B(Γ \ Σ)∗ with |X| = 1, we consider a

relation τz′X ⊆ Q×Q, where Q denotes the set of states ofA. A pair (p, q) belongs to τz′X

if and only if, starting from state p with the head scanning the last symbol of z′X, A may

reach state q one cell to the right of z′X. Formally,

τz′X =
{
(p, q) | z′pX ∗̀ z′Xq

}
,

where z′pX and z′Xq are partial configurations ofA (see Section 2.2.1.2), and z′pX ∗̀ z′Xq

means that there exists a computation path

• starting from the rightmost position of z′X (labeled by X) in state p,

• ending one cell to the right of this position in state q, and

• which visits only cells from the part of the tape containing z′X in the meantime.

With the information of τz′X, B has no need to read the part of the tape containing z′X, that

is, to move its head leftward. Furthermore, given a symbol σ and a string z = z′X, we can

construct τzσ from τz by scanning σ.1 This is achieved by observing that (see Figure 6.2)

(p, q) ∈ τzσ if and only if there exists a sequence r0, s0, r1, s1, . . . , r` ∈ Q, with ` ≥ 0,

satisfying:

• r0 = p,

• (q,+1) ∈ δ(r`, σ), and

• (si,−1) ∈ δ(ri, σ) and (si, ri+1) ∈ τz, for i = 0, . . . , `− 1.

1For convenience, we set τε = ∅.
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Figure 6.2: A computation path from p = r0 to q giving (p, q) ∈ τzσ. For each i, (si, ri+1) ∈

τz and (si,−1) ∈ δ(ri, σ), while (q,+1) ∈ δ(r`, σ).

We denote by n the cardinality of Q. In the simulation of 1-LAs by finite automata, the

table of size n2 corresponding to the relation τz′X was stored in the finite control of the

simulating 1NFA B and it was updated at each step. This yielded an exponential number

of states for storing the 2n2
possible tables thus implying an exponential size of B with

respect toA. This blowup was shown to be necessary in the worst case for the considered

simulation [PP14].

Here, as our simulating device is a 1-LA, we take advantage of its ability to write

on the tape. We indeed store the table τz′X onto the n2 cells following the last position

of z′X. Formally, fixing a bijection µ from
{

0, . . . , n2 − 1
}

to Q × Q, the i-th cell of the

portion storing the table τz′X will contain 1 if µ(i) belongs to τz′X, and 0 otherwise. As a

consequence, we do not store all the tables corresponding to each tape position but a sub-

collection of them. More precisely, we only store tables τz′X for tape content prefixes z′X

of length multiple of n2. Thus, updating the tables should be done block by block rather

than cell by cell, for a decomposition of the input into blocks of length n2. (We consider

the cell containing the left endmarker as a complete block, while the last block containing

the right endmarker may be shorter than n2.)

When A is deterministic, τz′X is a partial2 function from Q to Q. In this case it is

2In the deterministic case, the image associated with p by τz′X is undefined if one of the two follow-

ing cases of the computation starting in z′pX occurs: either, after a finite number of steps, no successive

108



possible to improve the above-described construction by storing the tables τz′X on the n

cells following the last position of z′X. The input is therefore decomposed into blocks

of length n rather than n2. However, the alphabet used to store the table has size n + 1

rather than 2. Indeed, the i-th cell of the portion storing the table will contain the image

of the i-th state of A by τz′X if defined, or a special symbol ⊥ /∈ Q otherwise.

6.2.2 Construction of the simulating 1-LA A′

Our simulation combines the two ideas discussed previously, by storing a subcollection of

the Shepherdson tables on the tape. We actually present several simulations transforming

1-LAs into equivalent linear-time 1-LAs. The most general one produces a nondetermin-

istic 1-LA from a nondeterministic 1-LA. The other ones produce a deterministic 1-LA

from a deterministic 1-LA. The various constructions are very similar and differ only in

some basic routines and in the encoding of the Shepherdson tables. We first present their

common global structure and then we specify their differences, when detailing the low-

level implementation of the basic operations and subroutines used for the simulation in

Section 6.2.2.3. To this end, we now fix some convenient notations.

Let A = 〈Q, Σ, Γ, δ, q0, F〉 be the source 1-LA. By Lemma 6.1, modulo a linear size

increase, we suppose that A performs stationary moves exactly when overwriting a cell

content. Our goal is to build a linear-time 1-LA A′ = 〈Q′, Σ, Γ′, δ′, q′0, F′〉 equivalent to A,

which has polynomial size with respect to to the size of A.

Let ` denote the size of the blocks in the tape decomposition discussed above, and

let T denote the set of symbols used to encode the Shepherdson tables on tape. Formally,

either ` = n2 and T = { 0, 1 }, or, possibly if A is deterministic, ` = n and T = Q⊥

where Q⊥ = Q ∪ {⊥ } for ⊥ a symbol not belonging to Q. Moreover, we fix a mapping ν

from { 0, . . . , `− 1 } to Q defined for each index i ∈ { 0, . . . , `− 1 } as follows:

• if ` = n2 then ν(i) is the state p such that µ(i) = (p, q) for some state q (recall that µ

transition is defined (incompleteness ofA), or the computation eventually enters a deterministic loop (non-

haltingness of A).
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current window

left part of window right part of window

B w x y u v C

already visited part unvisited part

0 frontier m + 1

Figure 6.3: Typical description of the window during a computation of A: m denotes the

length of the input word, the current frontier occurs in the right block as first position

of u, w ∈ ((Γ \ Σ)`)∗, x ∈ (Γ \ Σ)`, y ∈ (Γ \ Σ)∗, u ∈ Σ+ with |yu| = `, and v ∈ Σ∗.

is a fixed bijection from
{

0, . . . , n2 − 1
}

to Q2);

• if ` = n then ν(i) = qi, assuming Q = { q0, . . . , qn−1 }.

During a computation of our simulating 1-LA A′, the frozen content of the tape can be

viewed as divided into two tracks: the first track contains the symbols overwritten by A

in the simulated computation; the second track contains the encoding of the Shepherdson

tables τz′X. We thus fix the set of working symbols to be the product of Γ \ Σ and T, i.e.,

Γ′ = ((Γ \ Σ)× T) ∪ Σ.

As previously explained, the behavior of A′ will be locally restricted to a window

of bounded width. At any time in a computation of A we consider a virtual window

which covers two successive blocks in the tape decomposition described above. The right

block covered by the window contains the leftmost cell that has not been visited so far, to

which we refer as current frontier. The content x of the left block covered by the window

belongs to (Γ \ Σ)` ∪ {B }. The content of the right block covered by the window can

be decomposed into yu with y ∈ (Γ \ Σ)∗ and u ∈ Σ+ ∪ Σ∗C such that |yu| = ` unless,

possibly, C occurs in u, in which case |yu| ≤ `. The frontier is on the first position of u. A

typical situation is depicted in Figure 6.3.

In order to simulateA, the linear-time 1-LA A′ overwrites each block with a word x̃ ∈

(Γ′ \ Σ)` whose projection on Γ \ Σ is the word x written by A on the corresponding
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block in the simulated computation, and the projection on T is exactly the encoding of

the table τz, where z is the content of the tape to the left of the corresponding block in the

simulated computation. (In Figure 6.3, z = Bw when considering the left block covered

by the window, whose frozen content is x.) Roughly, in the simulating computation, when

the frontier occurs at the first position of a block, A′ has to fill this block, cell by cell, with

the encoding of τzx, where x (resp. z) is the projection on Γ \ Σ of the content x̃ of the

preceding block which is covered by the window (resp. of the content z̃ of the tape to the

left of the current window). To this end, it has read-only access to the left block, whose

content x̃ gathers all the required information, namely τz and x. In parallel, A′ should

also recover the simulated computation of A. As soon as the right block is completely

filled, the window is shifted to the right, in such a way that it covers the block just treated

(as left part) and its successor (as right part).

6.2.2.1 Auxiliary procedures readFromTable and simulateLeft

Our simulation uses two subroutines, readFromTable and simulateLeft, which are called

in order to recover some value from τz, where z is a tape content prefix in the simulated

computation. Using the above-given notations (see, e.g., Figure 6.3), we suppose that the

virtual window covers two successive blocks, the left one containing x̃ ∈ (Γ′ \ Σ)` ∪{B },

and the right one being partially filled with a prefix ỹ ∈ (Γ′ \ Σ)∗ of length less than `.

We denote by z ∈ B((Γ \ Σ)`)∗ ∪ { ε } the tape content to the left of the window in the

simulated computation.

readFromTable starts from and ends in the first position of the block containing x̃ with a

state p given as argument and returns a state q such that (p, q) ∈ τz. Alternatively, it

may return the error symbol ⊥ if no such q exists or if its internal computation fails.

Nevertheless, for each state q such that (p, q) ∈ τz, the procedure may return q.

During its computation, the subroutine visits cells of the block containing x̃ only.

simulateLeft starts from and ends in the last position of x̃ (resp. of ỹ if y 6= ε) with a

state p given as argument and returns a state q such that (p, q) ∈ τzx (resp. (p, q) ∈
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τzxy). Alternatively, it may return the error symbol ⊥ if no such q exists or if its

internal computation fails. Nevertheless, for each state q such that (p, q) ∈ τzx (resp.

(p, q) ∈ τzxy), the procedure may return q. During its computation, the subroutine

visits cells of the block containing x̃ (resp. of the portion of the tape containing x̃ỹ)

only.

When the simulated 1-LA is deterministic, it is possible to implement both subroutines

in a deterministic way. The implementations of these subroutines are described in Sec-

tion 6.2.2.3.

6.2.2.2 Main procedure

We now focus on the high-level description of the simulation, which is given in Proce-

dure 9. By using a state component of size 2`, named relative position and stored in a

global variable relativePosition, A′ can store the exact position of its head relative to the

current window. We represent it as a pair (i, S), where i ∈ { 0, . . . , `− 1 } is the position in

the scanned block of length ` and S ∈ { L, R } is equal to L (resp. R) if the head is scanning

a position in the left (resp. right) block of the window. We suppose that the component

is updated at each head move. Using this component, A′ can avoid moving to the left

of the current window. More precisely, from a relative position (0, L) (i.e., the leftmost

position covered by the window), when a backward move of A from p to q has to be sim-

ulated, A′ calls the procedure readFromTable with argument q, in order to find a state r

such that (q, r) ∈ τz, where z is the content of the tape to the left of the window. Hence, it

simulates not only the backward step from p to q, but also a complete computation seg-

ment to the left of the window, namely, it simulates z′Xp ` z′qX ∗̀ z′Xr, where z′X = z.

In addition to the relative position, A′ stores in a global variable, named relativeFron-

tier, the relative position of the current frontier, to which we refer as relative frontier. Since

this position always occurs in the right block of the window, it is enough to represent it

as an index ρ ∈ { 0, . . . , `− 1 }. Much like the relative position component, we suppose

that it is updated each time a cell is visited for the first time. Observe that such updates
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Procedure 9: main

/* the variables relativePosition and relativeFrontier are not indicated and

are supposed to be automatically updated;

in the following, �current symbol� designates the symbol currently

read by the head */

60 frontierState← q0

61 tableState← ν(relativeFrontier)

62 while “current symbol” 6= C do

63 simulateLeft(frontierState)

64 if frontierState = ⊥ then REJECT

65 move the input head leftward until reaching position (`− 1, L)

66 simulateLeft(tableState)

67 move the input head rightward until reaching position relativeFrontier− 1

68 move the input head one cell to the right

69 if “current symbol” 6= C then

70 let (q, γ, 0) = selectTransition(frontierState,“current symb”)

71 frontierState← q

72 if frontierState = ⊥ then REJECT

73 write(γ,tableState)

74 tableState← ν(relativeFrontier)

75 simulateLeft(frontierState)

76 if frontierState ∈ F then ACCEPT else REJECT
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are increments modulo `. Incrementing ρ = `− 1 means shifting the window by ` cells

to the right. In particular, this implies to updating the relative position by switching it

from (`− 1, R) to (`− 1, L).

Initially, the head is scanning the left endmarker, which is considered as the left block

of the current window. Hence, the initial relative position and relative frontier are (`−

1, L) and 0, respectively.

Using both the relative frontier ρ and the relative position (i, S), A′ can ensure that

entering a cell for the first time, may be done only once all the information, which is

required to determine the symbol to write on the cell, has been gathered. More precisely,

when A′ moves its head to the frontier cell (Line 68), it stores a pair (p, q) in its finite

control, such that:

• p ∈ Q is the state entered by A in the simulated computation, when visiting for the

first time the corresponding cell;

• q ∈ Q⊥ is either ⊥ or a state such that (ν(ρ), q) ∈ τzx, where zx denotes the content

to the left of the right block of the window (i.e., the block of the frontier cell) in the

simulated computation.

The states p and q are stored in two variables, respectively named frontierState and ta-

bleState, which are updated through two calls to the subroutine simulateLeft:

• from one cell to the left of the frontier, to update frontierState (Line 63);

• from the last cell of the preceding block, to update tableState (Line 66).

OnceA′ has updated the variables frontierState and tableState, it moves the head to the cell

at relative position (ρ, R) (Line 68), and reads the input symbol σ ∈ Σ ∪ {C } (Line 69).

If σ = C thenA′ enters a final mode in which it calls the subroutine simulateLeft with ar-

gument frontierState from the current position, and accepts, after violating the endmarker,

if the updated value of frontierState is a final state of A and rejects otherwise (Lines 75

and 76). If σ 6= C then A′ simulates a stationary overwriting transition of A (Lines 70

to 74). Formally, it selects a transition (p′, γ, 0) ∈ δ(p, σ), where p is the state stored

in frontierState, updates the variable frontierState with p′, and overwrites the cell content
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with (γ, h) where h ∈ T is defined as follows according to the value q ∈ Q⊥ of tableState.

If T = { 0, 1 } then h = 1 if µ(ρ) = (ν(ρ), q) and h = 0 otherwise. If T = Q⊥ then h = q.

It then repeats the procedure with the updated relative frontier. In the case ρ = `− 1, the

window is shifted to the right, in such a way that the head is positioned on the rightmost

cell of its left block. This is formally done by setting the relative position to (`− 1, L) and

the relative frontier to 0.

6.2.2.3 Implementation details for the auxiliary operations and procedures

The operation selectTransition

Our subroutines simulateLeft and main use a basic operation named selectTransition

(Lines 70 and 81). This operation takes a state p ∈ Q and a symbol σ ∈ Γ as arguments,

and returns a tuple (q, γ, d) ∈ δ(p, σ). When no such transition exists, it returns (⊥, σ, 0).

Notice that the operation is nondeterministic only if A is nondeterministic.

The operation write

In our simulation,A′ overwrites symbols in Σ with symbols in (Γ \Σ)× T by performing

an operation named write. This operation takes two arguments, γ ∈ Γ \ Σ and r ∈ Q⊥.

When T = { 0, 1 }, it compares r to the state q such that µ(i) = (ν(i), q) where i is the

index of the current relative position. If r = q then the symbol (γ, 1) is written, otherwise

(including the case r = ⊥) the symbol (γ, 0) is written. When T = Q⊥, the routine simply

overwrites the content of the currently scanned cell with (γ, r).

The subroutine readFromTable

This subroutine was introduced in Section 6.2.2.1. It is used to prevent the head of A′ to

move to the portion of the tape on the left of the current window. It is always called from

the leftmost position of the window. In particular, this position is the first one of a frozen

block x̃ ∈ (Γ′ \ Σ)`, supposed to contain on its second track the encoding of the table τ
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that describes the possible computation segments to the left of the window. The routine

takes a global variable var as argument, initially containing a state p ∈ Q.

The procedure operates in two modes. First, it moves the head rightward until reach-

ing a position i of x̃ such that ν(i) = p. Second, it moves the head backward to the first

position of x̃ and halts. When switching from the former to the latter mode at position i,

the variable var is updated with an element q ∈ Q⊥, which is deduced from the scanned

symbol (γ, t) ∈ (Γ \ Σ) × T, and the current relative position i, as now explained. If

T = { 0, 1 } then, according to whether t equals 0 or 1, q is equal to ⊥ or is the state

such that µ(i) = (ν(i), q), respectively. If T = Q⊥ then q is equal to t. In the nondeter-

ministic case, such a position i is nondeterministically chosen. In the deterministic case,

however, A′ can select the position i deterministically. Indeed, when T = Q⊥, there ex-

ists exactly one i such that ν(i) = q. On the other hand, when T = { 0, 1 }, several such

indices may exist, but at most one is such that the symbol (γ, t) written at the correspond-

ing position satisfies t = 1, by determinism of A. In this latter case, when no such i exist,

the procedure sets the variable var to ⊥. Thus, the routine deterministically finds this

position, and returns the image q ∈ Q⊥ of p by the functional table τ written on x̃.

Lemma 6.2. The procedure readFromTable can be implemented using 2 states, not counting

the global variables var and relativePosition. Furthermore, the implementation is deterministic

whenever A is deterministic.

Proof. In all the cases described above, the procedure needs only one state to move the

head rightward until finding the correct information, and a second state to move the head

back to the initial position, namely to relative position (0, L). The recovered information

is directly stored in var.

The subroutine simulateLeft

This subroutine was introduced in Section 6.2.2.1. It is used to update the variables fron-

tierState and tableState before visiting the frontier cell. Hence, the routine has two call-

modes:
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• one for updating frontierState starting from one cell to the left of the frontier;

• the other one for updating tableState starting from the rightmost cell of the left block

of the window.

Let us denote by var the variable to be updated and by (i, S) the relative position from

which the routine is called. Let zxy ∈ B(Γ \ Σ)∗ be the projection on (Γ \ Σ) ∪ {B } of

the tape content up to the starting position, with x corresponding to the left block of the

current window. During the computation, simulateLeft has access to the content of the

window up to position (i, S). It basically performs a direct simulation of A on the cor-

responding part of the tape, and uses the procedure readFromTable in order to simulate

computations that occur to the left of the window, as explained above. Moreover, if a

rightward transition (q, γ,+1) ∈ δ(r, γ) from the last position of zxy has to be simulated,

then the procedure halts without performing the right move, namely at relative posi-

tion (i, S), and updates the variable var to the value q. Notice that the direct simulation is

deterministic if A is deterministic, since the procedure readFromTable is deterministic in

this case, by Lemma 6.2.

However, this naive approach might fail because the direct simulation may enter loops

and never halt. In order to handle this issue, we need to detect computational loops. We

proceed as follows. If (p, q) ∈ τzxy then this can be witnessed by a direct simulation which

never repeats a configuration. In particular, the same state cannot be entered twice at the

same position. Since the procedure simulateLeft operates in a read-only window of size

at most 2`, any repetition-free computation has length bounded by 2`n (counting the calls

to the subroutine readFromTable as a single move). Hence, by using a clock of size 2`n,

stored in the finite control of the simulating device, we can enforce the procedure to halt.

Only runs that halted before this time limit may return a state while “killed” runs will

return ⊥. Notice that the clock yields a polynomial increase of the size of the simulating

machine only.

Let us focus on the implementation details of simulateLeft given in Procedure 10.

The subroutine starts by storing the value (i, S) of the current relative position (Line 77)
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Procedure 10: simulateLeft(var)

/* the variables relativePosition and relativeFrontier are not indicated and

are supposed to be automatically updated */

Input: a variable var in read/write mode, initially containing a state in Q

Output: halts with var containing a state or the special symbol ⊥

77 let (i, s) = relativePosition

78 clock← 2`n

79 while var 6= ⊥ and clock > 0 do

80 let γ ∈ ΓBC \ Σ be the first track symbol of the currently scanned cell

81 let (q, γ, d) = selectTransition(var, γ)

82 var← q

83 if var = ⊥ then

84 break

85 else if relativePosition = (i, S) and d = +1 then

86 break

87 else if relativePosition = (0, L) and d = −1 then

88 readFromTable(var)

89 else

90 move head according to d

91 clock← clock− 1

92 if clock = 0 then var← ⊥

93 move head rightward until reaching position (i, S)
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and the clock to 2`n (Line 78). After that, A′ simulates A by reading the first track of

the scanned cell and using the transition function of the simulated machine (Lines 80

and 81). The next simulated state reached by A is stored in the variable var (Line 82). If,

by incompleteness of the transition function of A no such state exists, var gets value ⊥

and the procedure ends after moving its head rightward to the position (i, S) from which

it was called (Lines 83, 84 and 93). In case a right move from relative position (i, S) is

detected, the procedure ends without moving rightward (Lines 85 and 86). If a left move

from the relative position (0, L) is detected, A′ calls readFromTable in order to simulate

the computation segment to the left of the window (Lines 87 and 88). Otherwise, A′

can directly simulate the transition performed by A: the simulating machine moves its

head according to the simulated transition (Line 90). After each simulated move3 of A,

the value of the clock is decremented (Line 91). If after 2`n simulated moves the routine

has not halted, then it updates the value of var with ⊥, moves the head rightward until

reaching the relative position (i, S), and halts (Lines 92 and 93).

Hence, implementing simulateLeft requires only a polynomial number of states in n.

Lemma 6.3. The subroutine simulateLeft can be implemented using 12`n + 2 states, not

counting the global variables var, relativePosition, and relativeFrontier. Furthermore, it is de-

terministic if A is deterministic.

Proof. Using Lemma 6.2, the implementation of simulateLeft given in Procedure 10 is

deterministic when A is deterministic. Furthermore, it uses the following state compo-

nents.

• A binary state component is required for keeping track of the call-mode in which

the procedure is operating. Moreover, since the mode also determines the position

from which the procedure is called, and because the relative frontier (stored in the

variable relativeFrontier) is not modified during the execution of the procedure, no

3Here, we consider the simulated computation segments to the left of the window, which are recovered

through call to readFromTable (Line 88), as single moves.
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further state components are necessary for storing the initial value (i, S) of relative-

Position.

• A state component of size 2`n is required for storing the value of the clock (we do

not need to store the value 0, as the device can directly enter a failure state when

decrementing the clock from value 1).

• A state component of size 3 storing the three internal modes of the procedure,

namely the main mode and the two sub-modes resulting from the calls to the routine

readFromTable (Line 88) by Lemma 6.2.

• One failure state for each call-mode is required for moving the head rightward until

reaching the initial position (i, S) when the procedure fails (Line 93).

Hence, the total number of states required for implementing simulateLeft is 2 · (2`n · 3+

1), not counting the global variables var, relativePosition, and relativeFrontier.

6.2.2.4 Sipser’s simulation

When the simulated 1-LA A is deterministic it is possible to use a finer implementation

of simulateLeft, thus avoiding the size-expensive clock. This finer implementation is an

adaptation of a construction due to Sipser, that avoids deterministic loops in deterministic

Turing machines by a clever backward simulation [Sip80]. A version for 2DFAs has been

presented by Geffert, Mereghetti, and Pighizzini, who showed that a linear increase of

the size is sufficient for simulating any 2DFA with a halting equivalent one [GMP07]. We

first recall the main ideas of this simulation and then we show how it can be adapted for

implementing the procedure simulateLeft.

Let B be a 2DFA. Without loss of generality (see [GMP07, Lemma 3.1]), we can sup-

pose that B cannot perform stationary moves, that it has exactly one final state qF, that

acceptance is made by entering qF at the leftmost position, namely on the left endmarker,

and that furthermore no transition can be performed from that point, i.e., from state qF
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readingB. Then, given an input word w, we consider the configuration graph G of B on w,

namely the directed graph such that the vertices are the configurations of B on w and

there is an edge from c to c′ if c ` c′. In particular, w is accepted by B if and only if there

exists a path in G from the initial configuration cI to the unique final configuration cF.

Let us focus on the connected component of cF. Since B is deterministic and because cF

has no successor by assumption, this component is a tree rooted in cF. Moreover, w is

accepted if and only if cI occurs in this tree. Hence, by performing a depth-first-search

in the tree, one can check whether cI is in the component, and thus decide whether the

word w is accepted. This depth-first-search idea can be implemented deterministically,

starting from cF, using four copies of each state only. This yields a (4 · #QB)-state halting

2DFA which is equivalent to B, where QB denotes the state set of B [GMP07]. It should

be noticed that when cI does not belong to the tree, the simulating halting 2DFA halts in a

configuration that matches the root cF after having tried all its subtrees.

We shall adapt this construction to our case, for implementing simulateLeft. Notice

that the direct simulation of A on the corresponding frozen portion of the tape is a read-

only deterministic computation. Remember that simulateLeft can operate in two call-

modes. Let us fix one of these two modes. We denote by var the variable to update, by p

its initial content, by (i, S) the starting relative position, and by ρ the relative frontier.

Let zwX be the content of the tape to the left of the starting position, with z being the

portion to the left of the window and |X| = 1.

We consider a 2DFA variant C simulatingA, which starts from and ends in some spec-

ified position. We assume that it has access to the variables relativePosition and relative-

Frontier. It basically performs an unclocked version of Procedure 10 in which the failure

state (Line 93) has been thrown away. Furthermore, we ignore the last update of var,

when the image q of p by τzwX is found. We can suppose that C never performs station-

ary moves. Indeed, on the one hand, A does not perform any stationary move when

working on frozen symbols by assumption. On the other hand, without increasing the

size of the device, we can eliminate the stationary moves possibly resulting from the
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calls to the subroutine readFromTable, by using classical techniques. Moreover, C can be

implemented using 3 states only, not counting the variable var, according to Lemma 6.2

(one state for the main mode, and two additional states for the calls to the sub-routine

readFromTable). Remember that X is the symbol written at relative position (i, S) and let

R(X) = { r | ∃q, δ(r, X) = { (q, X,+1) } }. An accepting configuration of C, is a config-

uration in which the head is positioned at relative position (i, S) (thus scanning X), the

internal state corresponds to its main mode (i.e., not to a call to readFromTable), and var

contains a state r ∈ R(X).

Observe that, although we dropped the last update of var with respect to Procedure 10,

it is possible to recover it from the halting point of C. Indeed, this value is either q ∈ Q

if C halted in an accepting configuration with var storing r ∈ R(X) such that δ(r, X) =

{ q, X,+1 }, or ⊥ otherwise. Notice that C does not use the endmarkers but rather the

relative position, to ensure that the head stays between (0, L) and (i, S). In particular, the

initial configuration cI of C is at relative position (i, S) with the state corresponding to its

main mode and var storing p.

The main issue for adapting Sipser’s construction to our case, is that the target config-

uration cF is initially unknown. Indeed, it is the role of simulateLeft to find the image q

of p by τzwX (when defined). In order to solve this issue, we apply the Sipser simula-

tion of C for each value r ∈ R(X) of var. By taking such r’s in order, we only need 4

internal sub-modes for the simulation, as in [GMP07]. Indeed, if for some target con-

figuration cF(r) the simulation does not find cI , then it halts in a configuration that en-

codes cF(r). In particular, var contains r and can thus be updated with the next value

from R(X). If no successor of r exists, then C can never reach an accepting configuration,

namely cI is in none of the trees rooted in the cF(r)’s. Thus, our procedure updates var

with the symbol ⊥ and halts. If otherwise the configuration cI has been found during a

simulation starting from some cF(r), then the direct execution of C halts in cF(r). Thus, it

is enough to directly simulate C from cI and to update var according to the state r which is

recovered when the execution halts. More precisely, once C has reached cF(r), our proce-
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dure reads the symbol X and updates the variable var which contains r ∈ R(X) with the

state q such that δ(r, X) = { (q, X,+1) }.

We now evaluate the size of this deterministic version of simulateLeft, which works

independently of the chosen table encoding (i.e., for any T, `), so long as A is determinis-

tic.

Lemma 6.4. If A is deterministic, then, independently of the encoding of the Shepherdson tables

on the tape, the procedure simulateLeft can be implemented deterministically using 30 internal

states, not counting the global variables var, relativePosition, and relativeFrontier.

Proof. We evaluate the implementation described above. As in the implementation given

in Section 6.2.2.3, we need a binary component for storing the call-mode of the procedure.

This component is sufficient to recover the starting position (i, S), possibly by reading the

value of relativeFrontier which is not modified during the execution of the procedure.

Then the 3-mode automaton C given above is simulated a first time, by Sipser’s con-

struction, using 4 sub-modes. If the simulation succeeds then C is simulated a second

time in order to recover the value to store in var. Otherwise, no further state is needed,

as a failure necessarily occurs at position (i, S) from which var is updated to ⊥ without

moving the head.

Thus, not counting the global variables relativePosition, relativeFrontier, frontierState, and

tableState, we obtain that 2(12 + 3) states are enough.

6.2.3 Properties of A′

In this section, we state the main properties of the 1-LA A′ that has been obtained fromA

by the simulation defined in Section 6.2.2. Notice that several simulations have been

described. We differentiate them only when required.

Lemma 6.5. A′ is equivalent to A.

Proof. We first prove that L(A) ⊆ L(A′). Consider an accepting computation c = c0, c1, . . . , ct

of A on some input w = w1 · · ·wm ∈ Σ∗, where c0 = q0BwC and ct = BxCqF, for some
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qF ∈ F and x = x1 · · · xm ∈ (Γ \ Σ)∗. We can extract from c the sequence cj1 , . . . , cjm of con-

figurations in which the head is scanning a symbol of Σ, namely, for each i ∈ { 1, . . . , m },

cji = Bx1 · · · xi−1piwi · · ·wmC for some state pi. Notice that pi is necessarily the first

state entered at position i in c. Moreover, since by assumption A has the form given in

Lemma 6.1, we have cji+1 = Bx1 · · · xi−1p′ixiwi+1 · · ·wmC for some state p′i. In particular,

(p′i, xi, 0) ∈ δ(pi, wi) is the stationary transition which is performed when overwriting

the content of the cell at position i during the computation c. For convenience, we de-

fine cjm+1 to be the first configuration of the form Bx1 · · · xm pm+1C for some state pm+1.

We also set x0 = B, xm+1 = C, p0 = p′0 = q0, p′m+1 = pm+1, and pm+2 = qF. For

each i ∈ { 0, . . . , m + 1 }, we have (p′i, pi+1) ∈ τx0···xi .

The simulating 1-LA A′ recovers c by successively storing the states

p′0, p1, p′1, . . . , pm+1, p′m+1, pm+2

in its internal variable frontierState, while visiting the corresponding cells from left to

right. More precisely, for each i ∈ { 0, . . . , m + 2 }, whenA′ enters the i-th tape cell for the

first time, the variable frontierState contains the state pi. It is routine to show by induction

that, at each iteration of the while loop in Procedure 9 (Lines 62 to 74), as soon as the

left block of the current window encodes the correct table, the two calls to the subroutine

simulateLeft can recover the right information, namely frontierState is updated from p′i
to pi+1 on Line 63, and tableState is updated from ν(ρ) to q on Line 66, where q is such

that:

• if T = { 0, 1 } then either q is a state r such that (ν(ρ), r) ∈ τx0···xk , or q = ⊥;

• if T = Q⊥ then q is the image of ν(ρ) by τx0···xk if defined, or ⊥ otherwise;

where k is the rightmost position of the left block of the window.

Conversely, updating frontierState in A′ is done only by performing direct simula-

tion of A that may read some table τ, which have previously be written on the frozen

content of the tape. By induction on the frontier position, we can prove that τ is a
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relation included in τx0···xk−` , where k is the rightmost position of the left block of the

window. (We further have τ = τx0···xk−` when A is deterministic.) Hence, every state

recovered through readFromTable and simulateLeft, correspond to a state that can be

entered by A from the corresponding configuration at the corresponding position. Thus,

for each accepting computation of A′, one can find a simulated accepting computation

of A, whence L(A′) ⊆ L(A).

We have shown how A′ simulates A in a halting manner, by shifting a virtual win-

dow to the right during its computation, and by restricting local head moves to the cur-

rent window of size 2`. We now evaluate the size of A′. We point out that, as long

as A is deterministic, the two possible encodings of the Shepherdson tables, namely us-

ing T = { 0, 1 } and ` = n2 or using T = Q⊥ and ` = n, are possible. For both, the

Sipser simulation yields a smaller size increase with respect to the clock trick used for the

general case. Though in the deterministic case, the smallest simulating 1-LA is obtained

by combining the second encoding with Sipser simulation, it should be noticed that using

the first encoding yields a smaller working alphabet, whose size does not depend on n.

Lemma 6.6. A′ has polynomial size with respect to A. More precisely, we obtain the following

simulation costs:

case technique states working symbols

nondeterministic clock/` = n2 O(n9) 2 · #(Γ \ Σ)

deterministic
Sipser/` = n2 O(n6) 2 · #(Γ \ Σ)

Sipser/` = n O(n4) (n + 1) · #(Γ \ Σ)

Proof. The set of working symbols of A′ is Γ′ \ Σ = (Γ \ Σ)× T. In both nondeterministic

and deterministic cases, the finite control uses several components:

• the variable relativeFrontier of size `;

• the variable relativePosition of size 2`− 1 (the value (`− 1, R) is never used, since the

relative position is always to the left of the relative frontier);

• the variable frontierState of size n (the value ⊥ is unnecessary, since updating fron-

tierState with ⊥ implies rejecting the input);
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• the variable tableState of size n + 1;

• the state components used to implement simulateLeft of size:

– 12`n + 2 using the clock (general case, see Section 6.2.2.3);

– 30 using Sipser’s construction (deterministic case only, see Section 6.2.2.4).

In both cases, the size includes the two sub-modes used in the implementation of

the routine readFromTable, cf. Lemma 6.2.

Let us now evaluate the time used by the simulating machine A′.

Lemma 6.7. In every computation of A′, each tape cell is visited a number of times which is

bounded by some polynomial in the size of A.

Proof. Let us fix a cell c. As A′ is loop-free, each time the head visits c it must have a

different state or a different tape content. A tape modification between two visits of c is

restricted to cells from the right block of the current window containing c. The number of

successive tape modifications in a window is bounded by `. Indeed, after ` overwritings

the window is shifted. The cell c may occur in two successive windows: first in the right

part and, after shifting the window, in the left part. Thus, the number of visits to the cell c

is bounded by 2`n′, where n′ is the number of states of A′, which is polynomial in the

number of states of A as seen in Lemma 6.6. The number of visits to each cell is hence

bounded by a polynomial in the size of A.

As a consequence, A′ operates in linear time with respect to the input length.

We can observe that, by the use of the state components relativePosition and relative-

Frontier, our simulating 1-LA always “knows” where the frontier is. Roughly, this means

that A′ does not use the meta-instruction “move rightward until finding the leftmost cell

that has not been visited so far” which was used by the 1-LA described in Example 6.1.

Lemma 6.8. A′ “knows” where the frontier is, namely, there exist special states that are entered

exactly when visiting a tape cell for the first time.
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Proof. In Procedure 9, when entering the frontier cell (Line 68), the simulating device

enters a particular mode from which the cell is scanned (Line 69) in order to simulate a

stationary overwriting transition of A (Lines 70 to 74). Hence, we can exhibit the set of

states corresponding to this special mode.

6.3 Main Result and Consequences

We are now able to state our results as consequences of the properties of A′ stated in

Section 6.2.3. See Figure 6.1 for a summary of these results.

6.3.1 Main result: Conversion into linear-time 1-limited automata

Our main result shows that operating in super-linear time is not essential for 1-LAs, if

allowing a polynomial increase in the number of states.

Theorem 6.1. Each 1-LA (resp. deterministic 1-LA) admits an equivalent linear-time 1-LA (resp.

deterministic 1-LA) of polynomially larger size.

Proof. We start with a 1-LA. By paying a linear increase of its size and preserving de-

terminism, we transform it into an equivalent 1-LA A which performs stationary moves

exactly when rewriting a cell content, by Lemma 6.1. Then we apply the above construc-

tion in order to obtain the 1-LA A′ equivalent to A, by Lemma 6.5. If A is deterministic

then so is A′. By Lemma 6.6, the size of A′ is bounded by some polynomial in the size

of A. By Lemma 6.7, A′ operates in linear time in the length of the input.

6.3.2 Conversion into weight-reducing Hennie machines

Linear-time 1-LAs are particular cases of Hennie machines (i.e., linear-time linear bounded

automata), hence, it follows from the above result that any 1-LA can be transformed into a

Hennie machine with a polynomial increase of the size only. Using Lemma 6.7, we can ac-
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tually obtain the stronger result that the 1-LA can be transformed into a weight-reducing

Hennie machine of polynomial size.

Theorem 6.2. Each 1-LA (resp. deterministic 1-LA) admits an equivalent weight-reducing Hen-

nie machine (resp. deterministic weight-reducing Hennie machine) of polynomial size.

Proof. Following [Prů14, Lemma 4], it is enough to modify the 1-LA A′ obtained by the

above construction, in such a way that each time a frozen cell is visited, it is overwritten

with a copy of the frozen symbol, that encodes the number of visits to the cell. Since,

by Lemma 6.7, the total number of visits of a cell in a computation of A′ is bounded

by some polynomial in the size of A, the transformation yields an equivalent weight-

reducing Hennie machine which has polynomial size with respect to the simulated 1-LA.

Furthermore, the conversion clearly preserves determinism.

6.3.3 Conversion into two-way automata with common guess

Some 1-LAs have a particular behavior, which can be decomposed into two phases. In

the first phase, they nondeterministically rewrite the content of the whole tape during a

left-to-right traversal of the input. Then, in the second phase, they perform a two-way

read-only computation over the overwritten tape. To formally define this kind of 1-LAs,

we introduce the following model.

Definition 6.1. A 2NFA (resp. 2DFA) with common guess (2NFA+cg, resp. 2DFA+cg)4 is a

tuple 〈A, Σ, ∆〉 where Σ and ∆ are two alphabets and A is a 2NFA (resp. 2DFA) over the product

alphabet Σ× ∆.

The model is aimed to recognize languages over Σ. Its dynamics is defined as for

two-way automata, but a nondeterministic pre-computation initially marks each input

symbol with a symbol from ∆.5 Hence, the read-only automaton A has access to both

42DFA+cgs also correspond to synchronous two-way deterministic finite verifiers [Kap14a].
5Though the model is motivated by special behaviors of 1-LAs whence the nondeterministic pre-

computation is naturally thought as being one-way left-to-right, there is no reason to impose this. Here,
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the input symbol and the guessed additional information. The language accepted, de-

noted L(〈A, Σ, ∆〉), is defined as the projection, denoted π1, of L(A) on the alphabet Σ,

i.e., L(〈A, Σ, ∆〉) = π1(L(A)). In other terms, a word is accepted by 〈A, Σ, ∆〉 if for some

guess, the enriched word in (Σ× ∆)∗ is accepted by A. We point out that, due to the

common guess, 2DFA+cg’s are nondeterministic devices.

Let us detail the connection between 1-LAs and 2FA+cgs. It is easy to turn a 2FA+cg into

an equivalent nondeterministic 1-LA of the same size, by simply guessing and writing

the symbols from ∆ when visiting the cells for the first time. It is however a priori not

clear whether a converse transformation with reasonable size cost exists. The main issue

for such a conversion is that, at any time during a computation of a 1-LA, a position of

the tape is identified as being the leftmost cell that has not been visited so far, namely

the current frontier. In particular, a 1-LA can use meta-instructions making use of this

identified position, such as “move the head rightward to the frontier cell”, as it is the case

in Example 6.1. Nevertheless, when a 1-LA does not use such kind of instructions, that is,

if it always “knows” when it enters a cell for the first time (before scanning its content),

then it is easy to convert it to an equivalent 2FA+cg of similar size. Formally, the property

of always “knowing” where the frontier is can be expressed by specifying the states that

are entered exactly when visiting a tape cell for the first time. In order to simulate such a

1-LA (with input alphabet Σ and working alphabet Γ) with a 2FA+cg (with common guess

alphabet ∆), it is indeed enough to first guess the working symbols that will be written on

the tape at the end of the computation (thus, setting ∆ = Γ), and then simulate the 1-LA in

a read-only manner, using the symbol component in Σ when the cell is visited for the first

time (which is determined by the current state) or the symbol component in Γ otherwise,

while checking that the guessed symbols correspond to the symbol overwritten during

the simulated computation. Notice that, so obtained, the resulting device is a 2DFA+cg

the marking is uniform meaning that each cell is independently marked by a nondeterministically-chosen

symbol of ∆. This operation is connected with existential set quantification in monadic second order logic, see,

e.g., [Boj+17].
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(resp. is halting) when the source 1-LA is deterministic (resp. halting).

Concerning the conversion of arbitrary 1-LAs (i.e., not “knowing” where the frontier

is) into equivalent 2FA+cgs, it is a non-trivial consequence of our main construction that

with a polynomial increase of the size only, this can be achieved.

Theorem 6.3. Each 1-LA (resp. deterministic 1-LA) admits an equivalent halting 2NFA+cg (resp.

2DFA+cg) of polynomial size.

Proof. By Lemma 6.8, A′ “knows where the frontier is”. Hence, by applying the above-

given conversion, we can obtain an equivalent 2FA+cg of polynomial size, which is halting

by Lemma 6.7. Furthermore, ifA′ is deterministic, then the resulting device is a 2DFA+cg.

In the nondeterministic case, this last result is of particular interest. Indeed, 2NFA+cg’s

can be seen as particular cases of 1-LAs. (It is not the case for 2DFA+cg’s with respect to

deterministic 1-LAs.) Hence, Theorem 6.3 gives a kind of normal form for nondetermin-

istic 1-LAs. In particular, it is easy to modify such a 1-LA in order to recognize the reverse

of its accepted language.

Corollary 6.1. Each 1-LA A can be transformed into a nondeterministic 1-LA A′ with a polyno-

mial increase of the size, such that L(A′) = L(A)R.

Proof. Given a 1-LA A, we can obtain an equivalent 2NFA+cg by Theorem 6.3. By replac-

ing left move by right move and vice versa on each transition of its underlying automaton,

we can obtain a 2NFA+cg of same size, which recognizes L(A)R. This 2NFA+cg can in turn

be viewed as a nondeterministic 1-LA.

6.3.4 Lower bounds

Concerning the size cost of the simulation of 2DFA+cg by deterministic 1-LA, using the

language Ln from Example 6.1, we can prove an exponential gap in the deterministic

case.
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Theorem 6.4. Let Ln be the language of Example 6.1. Hence

Ln
R =

{
xkxk−1 · · · x0 | k ∈N, for each i : xi ∈ { a, b }n, for some j 6=0 : xj = x0

}
.

Then,

1. Ln
R is accepted by a 2DFA+cg, a linear-time nondeterministic 1-LA, or a deterministic

weight-reducing Hennie machine of size polynomial in n;

2. any 1DFA recognizing Ln
R requires 22n

states;

3. any deterministic 1-LA recognizing Ln
R requires O(2n) states.

Proof. Example 6.1 describes a deterministic 1-LA recognizing Ln, whose size is linear

in n. By applying Theorems 6.2 and 6.3, we respectively obtain equivalent deterministic

weight-reducing Hennie machine and 2DFA+cg of polynomial size. Both models can be

transformed with at most a linear increase in size, in order to accept the reverse of the

language, thus proving Item 1. For both models, it is indeed enough to initially move the

head to the right endmarker, and then simulate the two-way device in opposite direction,

that is, replacing left moves of the head by right ones and vice versa. In the case of 2DFA+cg

this yields a constant increase of the size of the model (only one state should be added

for the initial mode). In the case of weight-reducing Hennie machines, since during the

initial traversal of the input the cells should be overwritten in a decreasing way (in order

to preserve the weight-reducingness property), we should in addition add a fresh copy of

each input symbol to the set of working symbols.

Using a simple distinguishability argument, we can prove Item 2. Finally, Item 3 can

be deduced from this previous point and the exponential upper bound for the size cost of

the simulation of deterministic 1-LA by 1DFA given in [PP14].
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7
Two-Way Automata and One-Tape Machines

In this chapter we continue the investigation about devices operating in linear time. In

particular, we shall compare the sizes of descriptions of finite automata with those of

equivalent one-tape Turing machines working in linear time. Throughout the chapter

we consider the variants of one-tape deterministic Turing machines introduced in Sec-

tion 2.2.1, that we recall in Figure 7.1.

It is useful to emphasize that, as we shall prove, it cannot be decided whether or

not a one-tape Turing machine works in linear time.1 Furthermore, there is no recursive

function bounding the size blowup from one-tape Turing machines working in linear time

to equivalent finite automata. These results remain true in the restricted case of bounded

machines.

To overcome the above-mentioned “negative” results, we consider weight-reducing

machines, that can be seen as a syntactical restriction on one-tape Turing machines. We

focus on the deterministic case. These devices can have non-halting computations. How-

ever, they work in linear time as soon as they are halting. In fact, we show that it is

possible to decide whether a weight-reducing machine is halting. As a consequence, it is

also possible to decide whether it works in linear time. Furthermore, with a polynomial

size increase, any such machine can be made halting whence working in linear time. A

1For the sake of completeness, we mention that it is decidable whether or not a machine makes at

most cm + d steps on input of length m, for any fixed c, d > 0 [Gaj15].
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Figure 7.1: Variants of one-tape deterministic Turing machines.

double exponential blowup to 1DFAs is proved.

The same blowup is easily extended to weight-reducing Hennie machines.

The first part of the chapter is devoted to investigate these and some other properties

of these models. These results are interesting per se. Moreover, some of them turn out to

be useful in the second part of the chapter, where we relate the study of these restricted

variants of one-tape machines, accepting only regular languages, to the famous Sakoda

and Sipser question concerning the size blowups from 1NFAs or 2NFAs to 2DFAs.

Here, we study blowups for the conversion of 1NFAs and 2NFAs into several variants

of linear-time one-tape deterministic Turing machines.

Our main result is that each 2NFA A can be simulated by a one-tape deterministic Tur-

ing machine which works in linear time (with respect to the input length) and which has a

polynomial size with respect to the size ofA. We point out that the resulting machine can

use extra space, besides the tape segment which initially contained the input. Next, the

machine is halting and weight reducing, thus implying a linear execution time. Hence,

nondeterminism can be eliminated with at most a polynomial size increase, obtaining a

linear execution time in the input length, and provided the ability to rewrite tape cells

and to use some extra space.

We then investigate what happens by removing the latter possibility, namely if the

machine does not have any further tape storage, i.e., it is a Hennie machine. We prove

that even under this restriction it is still possible to obtain a machine of polynomial size,
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namely each 2NFA can be transformed into an equivalent Hennie machine of polynomial

size. However, the machine resulting from our construction is not weight reducing, un-

less we require that it agrees with the given 2NFA only on sufficiently long inputs. We do

not have this problem in the unary case, namely for a one-letter input alphabet, where we

prove that each unary 2NFA can be simulated by a weight-reducing Hennie machine of

polynomial size. Similar results are obtained for the transformation of 1NFAs into variants

of one-tape deterministic machines.

The chapter is organized as follows. Section 7.1 is devoted to prove the above men-

tioned undecidability and non-recursive trade-off results.

Sections 7.2 and 7.3 are devoted to study some fundamental properties of weight-

reducing machines. In Section 7.2, after proving that it can be decided if a deterministic

Turing machine is weight-reducing, we show that each linear-time machine T can be

turned into an equivalent weight-reducing one whose size is bounded by a function of

the size and of the execution time of T , and we present a simulation of weight-reducing

machines by finite automata, studying its size cost. In Section 7.3 we show how to decide

if a weight-reducing machine halts on any input and if it works in linear time. As a

consequence of this result, we are also able to prove that by a polynomial size increase,

each weight-reducing machine can be transformed into and equivalent one which always

halts and which works in linear time.

In Section 7.4 we present our main simulation result: we show that each n-state 2NFA

can be transformed into an equivalent halting weight-reducing machine of size polyno-

mial in n. In Section 7.5 we discuss how the simulation changes if the resulting machine

is required to be a Hennie machine. Finally, in Section 7.6 we revise the results of Sec-

tions 7.4 and 7.5 under the assumption that the simulated automata are one-way instead

of two-way.

The results shown in this chapter have been presented in [Gui+18].
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7.1 Hennie Machines: Undecidability and Non-Recursive

Trade-Offs

In this section we investigate some basic properties of DTMs. First of all, we prove that

it cannot be decided whether or not a bounded DTM works in linear time. As a conse-

quence, it cannot be decided if a DTM is a Hennie machine. Since linear-time DTMs accept

only regular languages [Hen65], it is natural to investigate the size cost of their conver-

sion into equivalent finite automata. Even in the restricted case of deterministic Hennie

machines we obtain a “negative” result, by proving a non-recursive trade-off.

Let us start by proving the following undecidability result.

Theorem 7.1. It is undecidable whether a bounded DTM works in a linear time.

Proof. We show that the problem of deciding whether a DTM halts on the empty word ε

reduces to this problem. Let T = 〈Q, Σ, Γ, δ, q0, F〉 be a DTM. Without loss of gener-

ality, assume that T has a tape infinite only to the right. Construct a bounded Turing

machine H with the input alphabet { a } as follows. Given an input v ∈ a∗, H starts to

simulate T over ε. If the simulation reaches the |v|+ 1-st tape cell, then H stops the sim-

ulation and performs additional Θ(|v|2) computation steps over the first |v| tape cells.

Otherwise, H continues the simulation of T and halts, if T halts. One can verify that the

construction yields the following properties.

• If T halts on ε in time t visiting s tape cells, thenH performs O(t) computation steps

on any input of length greater than s, while it performs O(|s|2) steps on shorter

inputs. In both cases, the time is constant in the input length.

• If T does not halt on ε, then for any input v either the simulation reaches the |v|+ 1-

st tape cell and then H performs further Θ(|v|2) computation steps, or it does not

halt because T enters an infinite loop, without reaching such a tape cell. In both

casesH is not a linear-time DTM.
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This allows to conclude that H is a linear-time DTM if and only if T halts on input ε,

which is known to be undecidable.

We now show that the size trade-off from linear-time DTM to finite automata is not

recursive. More precisely, we obtain a non-recursive trade-off from Hennie machines to

finite automata.

Theorem 7.2. There is no recursive function bounding the size blowup when transforming a

DHM to finite automata.

Proof. For each n > 0, let wn be the string over { a } of length Σ(n), where Σ is the busy

beaver function (see Example 2.2), and let Ln = {wn }. We remind the reader that Σ

cannot be bounded by any recursive function (cf. Theorem 2.1).

The language Ln is accepted by a DTM Hn with O(n) states and O(1) working tape

symbols, which simulates the n-state busy beaver BBn and accepts an input w ∈ a∗ if and

only if the space used by BBn equals |w|. Since the simulation can be aborted if BBn tries

to use more than |w| space, the machine Hn is bounded. Furthermore, the simulation

of BBn does not depend on inputs long enough, since it is interrupted otherwise. Hence,

it is made in constant time. This allows to conclude that, with respect to the input length,

Hn works in linear time and, so, it is a Hennie machine. Furthermore, any 1DFA would

require Σ(n) states to accept Ln. This completes the proof.

7.2 Weight-Reducing Machines: Decidability, Expressive-

ness and Descriptional Complexity

In Section 7.1 we proved that it cannot be decided whether a bounded DTM works in

linear time. Here, we show that this property becomes decidable for weight-reducing

machines (even without requiring that they are bounded). Furthermore, each linear-time

DTM T can be transformed into an equivalent weight-reducing machine whose size is

bounded by a function of the size and of the running time of T .
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We also present a simulation of weight-reducing machines by finite automata, thus

concluding that weight-reducing machines express exactly the class of regular languages.

From such a simulation we shall obtain the size trade-off between weight-reducing ma-

chines and finite automata which, hence, is recursive. This contrasts with the non-recursive

trade-off from Hennie machines to finite automata, proved in Section 7.1.

Proposition 7.1. There exists an algorithm that decides in linear time whether a DTM is weight-

reducing or not.

Proof. Let T = 〈Q, Σ, Γ, δ, q0, F〉 be a DTM. To decide if there is an order < on Γ prov-

ing that T is weight-reducing, it suffices to check if the directed graph G = 〈Γ, E〉, with

E = { (τ, σ) | ∃p, q ∈ Q ∃d ∈ {−1, 0,+1 } : δ(p, σ) = (q, τ, d) }, is acyclic (each topologi-

cal ordering of G acts as the required order <). All this is done in O(#Γ + #E) time, i.e., in

time linear in the size of T .

We now study how linear-time DTMs can be made weight-reducing. To this aim, we

use the fact that each DTM working in linear time makes a constant number of visits

to each tape cell, hence linear-time is equivalent to a constant number of visits per tape

cell. This property is stated in the following lemma, which derives from [Hen65, Proof of

Theorem 3].

Lemma 7.1. If a DTM T = 〈Q, Σ, Γ, δ, q0, F〉 has time complexity t(n) ≤ Kn, where K is a

constant, then the number of instructions performed by T on any tape cell is at most 2K · (#Q)K +

K.

The following lemma, which will be used in this section to study trade-offs between

the computational models we are investigating and finite automata, presents a transfor-

mation from linear-time Turing and Hennie machines into equivalent weight-reducing

ones.

Lemma 7.2. Let T = 〈Q, Σ, Γ, δ, q0, F〉 be a linear-time DTM such that, for any input, T per-

forms at most k computation steps on each tape cell, for some k > 0. Then there is a wr DTM A
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accepting L(T ) with the same set of states Q as T and working alphabet of size O(k · #Γ). Fur-

thermore, if T is a Hennie machine then A is a weight-reducing Hennie machine.

Proof. To obtain A we incorporate a counter into the working alphabet of T . For each

scanned cell, the counter says what is the maximum number of visits A can perform dur-

ing the remaining computation steps over the cell. Formally, defineA = 〈Q, Σ, Γ′, δ′, q0, F〉

with Γ′ = Σ ∪ (Γ × { 1, . . . , k }) and, for all q, q′ ∈ Q, a, a′ ∈ Γ, d ∈ {−1,+1 } where

δ(q, a) = (q′, a′, d), δ′ fulfills

δ′(q, a) = (q′, (a′, k), d),

δ′(q, (a, i)) = (q′, (a′, i− 1), d), for all i ∈ { 2, . . . , k }.

Using an ordering < on Γ′ such that

(a, i) < b for all a, b ∈ Σ, 1 ≤ i ≤ k, and

(a, i) < (b, j) for all a, b ∈ Σ, 1 ≤ i < j ≤ k,

it is easy to see that A is a wrDTM equivalent to T . Furthermore if T is bounded, then A

is also bounded and, hence, it is a wrDHM.

We now investigate the transformation of weight-reducing machines into equivalent

finite automata and its cost. To do that, let us start with some preliminary observations.

Let us fix a wrDTM T = 〈Q, Σ, Γ, δ, q0, F〉. Assume that T never re-enters the initial

state q0 and that it can reach a final state in F only when scanning the rightmost cell which

is visited during the computation. Any wrDTM can be modified to fulfill these restrictions

by adding a constant number of states and working symbols.

Let ρ = (C0, C1, . . .) be the computation of T over a non-empty input w ∈ Σ+. Let q(j)

denote the state of T in configuration Cj. Similarly, let a(j) denote the symbol scanned

by T in Cj.

Let τ1, τ2 and τ3 denote the portion of T ’s tape which stores the initial blank symbols

preceding w, the input w and the initial blank symbols following w, respectively.
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It is possible to obtain, for each cell C of the tape of T , the time-ordered sequence of

states entered while visiting C. Notice that this kind of sequences are a variant of crossing

sequences: they are defined by considering the states reached while the head is on the cell

instead of considering the states while the head crosses one of the borders of C.2

It is possible to observe that ρ is an accepting computation if and only if the initial

state q0 occurs only once in the sequences, more precisely it is the first element of the

sequence associated with the leftmost cell of τ2, initially containing the first symbol of w,

and a final state is the last element of the sequence associated with the rightmost visited

cell.

Let Cj1 , . . . , Cjk , where j1 < · · · < jk, be the sequence of all configurations in which T

scans a tape cell C of τ2 or τ3. Observe that a(j1) and q(j1), . . . , q(jk) determine a(ji) for

all i = 2, . . . , k. For each configuration Cji , it is also clear from which directions the head

entered C and in which direction it moves out of it (C is always entered from the left

neighboring cell the first time it is visited, i.e., in configuration Cj1 , with the only exception

of the leftmost cell of τ2, from which the computation starts with configuration C1, being

in the initial state q0; for i > 1, the cell C is entered in configuration Cji from the same

direction it was left from configuration Cji−1). For this reason, we can determine for two

neighboring cells C1, C2 of τ2 and τ3 whether two sequences of states assigned with them

are consistent with the transitions of T , in the sense that each rightward head movement

outgoing C1 is an incoming leftward movement to C2 (or, in other words, if, according

to δ, T performs a rightward transition from a state in the sequence associated with C1 to

a state in the sequence associated with C2) and each leftward head movement outgoing C2

is an incoming rightward movement to C1.

Similarly, we can determine whether a sequence of states assigned to the first cell of τ2

is consistent with the transitions of T performed over the cell and over τ1.

Hence, by summarizing, the following lemma can be proved.

Lemma 7.3. Let T = 〈Q, Σ, Γ, δ, q0, F〉 be a wr DTM. T accepts an input word w if and only if it

2This kind of sequences are also known in the literature as “slices of computations” [CL15].
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is possible to associate, with each cell C of the tape, a time-ordered sequence of states entered while

visiting C consistent with the transition function δ of T .

This lemma is used for the simulation of weight-reducing machines by finite automata

that we now present.

Theorem 7.3. For every wr DTM T = 〈Q, Σ, Γ, δ, q0, F〉 there exist a 1NFA and a 1DFA accepting

L(T ) with 2O(#Γ·log(#Q)) and 22O(#Γ·log(#Q))
states, respectively.

Proof. We first describe a 1NFA A = 〈Q′, Σ, δ′, q−, F′〉which accepts L(T ), working on the

principle of guessing the time-ordered sequences of states in which T scans each of the

tape cells storing the input, and the symbol to be scanned next.

The weight-reducing property guarantees that T scans a cell C in at most #Γ + 1

configurations. The set of states Q′ thus consists of a special initial state q− and all se-

quences of the form (a, q1, . . . , qk) where a ∈ Σ ∪ {6 b }, 1 ≤ k ≤ #Γ + 1, and qi ∈ Q for all

i ∈ { 1, . . . , k }.

The set of final states F′ consists of those states (a, q1, . . . , qk) ∈ Q′ where k > 0, qk ∈ F

and a = 6 b. In addition, if ε ∈ L(T ), then F′ also contains the initial state q−.

Based on the observations leading to Lemma 7.3, transitions of A are defined by the

following rules, which apply to any a, b ∈ Σ and pi, qi ∈ Q.

• (a, p1, . . . , p`) ∈ δ′(q−, ε), where p1 = q0, if and only if the time-ordered sequence of

states (p1, . . . , p`) is the one associated with the first cell of τ2, initially storing a.

• (b, p1, . . . , p`) ∈ δ′((a, q1, . . . , qk), a) if and only if (p1, . . . , p`) and (q1, . . . , qk) are

consistent with the transitions of T over two neighboring cells of τ2 initially stor-

ing a and b, respectively.

• (6 b, p1, . . . , p`) ∈ δ′((a, q1, . . . , qk), a) if and only if (p1, . . . , p`) and (q1, . . . , qk) are

consistent with the transitions of T over the last cell of τ2, initially storing a, and the

first cell of τ3.
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• (6 b, p1, . . . , p`) ∈ δ′((6 b, q1, . . . , qk), ε) if and only if (p1, . . . , p`) and (q1, . . . , qk) are

consistent with the transitions of T over two neighboring cells of τ3.

According to Lemma 7.3, the defined transitions ensure that A reaches an accepting con-

figuration if and only if T accepts w.

The number of states of A is 1 + (#Σ + 1)∑#Γ+1
i=0 ni = 2O(#Γ log#Q). If A is in turn trans-

formed to an equivalent 1DFA, the resulting automaton has 22O(#Γ log#Q)
states.

As a direct consequence of Theorem 7.3, we get that wrDTMs recognize exactly the

class of regular languages.

Corollary 7.1. A language is regular if and only if it is accepted by some wr DTM.

Theorem 7.3 gives a double exponential upper bound for the size cost of the simulation

of wrDTMs by 1DFAs. We now prove a matching lower bound.

To this end, for each n ∈ N, we consider the family of languages (Bn)∞
n=0, in which,

for each n ∈ N, Bn ⊆ { 0, 1, $ }∗ consists of strings v1$v2$ · · · $vj where j ∈ N, every

vi ∈ { 0, 1 }∗, |vj| ≤ n and there is ` < j such that v` = vj. Informally, every string in Bn is

a sequence of binary substrings which are separated by the symbol $. Moreover, the last

substring is of length at most n and it is a copy of one of the preceding substrings. For

example,

v1$v2$v3$v4$v5$v6 = 11$0101110$011$0011$001$011 ∈ B4

since v3 = v6 and |v6| ≤ 4.

Lemma 7.4. For every n ∈ N, the language Bn is accepted by a wr DHM with O(1) states and

O(n) working symbols.

Proof. Let Σ = { 0, 1, $ }. We first describe a bounded DTM T accepting Bn, then we

transform it into a wrDHM with the desired properties. Define the working alphabet of T

as Γ = { 0, 1, $, x, f , 6 b }.

Let w ∈ Σ∗ be an input string of the form w = v1$v2$ · · · $vk where each vi ∈ { 0, 1 }∗,

and vk = a1 · · · a` where ai ∈ {0, 1} for all i = 1, . . . , `. The machine T performs
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min{ `, n } iterations. In each iteration T moves the head from the leftmost position to

the right end of w and back. It also rewrites some of the tape cells during this movement.

Within the first iteration it stores a` in its finite control, and overwrites it by symbol x.

Then it moves the head leftwards. Whenever it passes the symbol $ and enters the right

end of a substring vj, it checks if its last symbol equals a`. If yes, it overwrite it with x,

otherwise it overwrites it with f . During the i-th iteration, T finds a`+1−i (it is in the right-

most input cell not storing the symbol x), memorizes it in the finite control, overwrites

the cell contents with x and checks the i-th symbol from behind of each vj, with j < k,

whether it matches a`+1−i (if yes, it overwrites the symbol with x, if not it rewrites it by

f ).

The initial contents of the tape and the outcomes of all iterations are illustrated by the

following example:

11$0101110$011$0011$001$011

1x$010111f$01x$001x$00x$01x

xx$01011xf$0xx$00xx$0fx$0xx

xx$0101fxf$xxx$0xxx$xfx$xxx

T accepts w during the last iteration if and only if all symbols of vk have been rewritten

to x (this ensures |vk| ≤ n) and there is some vj with all symbols also rewritten to x. In

the above example, T accepts the input since all three symbols in v3 have been rewritten

to x.

The described bounded DTM T can be implemented as a wrDHM H with the working

alphabet Γ′ = Γ∪ (Γ×{ 1, . . . , 2n }) and a constant number of states. The working alpha-

bet is constructed in the same way as in the proof of Lemma 7.2. It allows to perform 2n

transitions over each tape cell (i.e., 2 transitions for each iteration of T ). If |vk| > n, it

will happen that H attempts to start the n + 1-st iteration, but this results in halting in a

rejecting configuration. Hence,H is a wrDHM proving the lemma.

Lemma 7.5. Each 1DFA accepting Bn has at least 22n
states.
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Proof. Let S be the family of all subsets of {0, 1}n. Consider a subset S={w1, . . . , wk }∈ S ,

where w1 < · · · < wk in the lexicographical order. Let us represent the subset S by the

string w(S) = w1$w2$ · · · $wk, where the strings wi are separated by the symbol $. Let S1

and S2 be two different elements of S and let u ∈ { 0, 1 }n be a string which is in S1 but

not in S2 (or vice versa). Then, w(S1)$u ∈ Bn and w(S2)$u /∈ Bn (or vice versa), hence $u

is a distinguishing extension, and, by the Myhill-Nerode theorem [Ner58], each 1DFA ac-

cepting Bn has at least #S = 22n
states.

From Theorem 7.3 and Lemmas 7.4 and 7.5, we obtain:

Corollary 7.2. The size trade-offs from wr DTMs and wr DHMs to 1DFAs are double exponential.

As shown in Theorem 7.2, by dropping the weight-reducing assumption for machines,

the size trade-offs in Corollary 7.2 become not recursive. However, by taking into account

also time complexity, we obtain the following result:

Theorem 7.4. For every DTM T = 〈Q, Σ, Γ, δ, q0, F〉 with time complexity t(n) ≤ Kn, where K

is a constant, there exist a 1NFA and a 1DFA accepting L(T ) with 2O(k·#Γ·log(#Q)) and 22O(k·#Γ·log(#Q))

states, respectively, where k = K · (#Q)K + K.

Proof. Consequence of Lemmas 7.1 and 7.2 and Theorem 7.3.

7.3 Weight-Reducing Machines: Space and Time Usage, Halt-

ingness

Weight-reducing Turing machines generalize weight-reducing bounded Turing machines

(that are necessarily Hennie machines) by allowing to use additional tape cells that were

not initially containing the input and to which we refer as initially-blank cells. This ex-

tension allows in particular infinite computations. For instance, a wrDTM can perform

forward moves forever, rewriting each blank cell with some symbol. We now show that,

however, due to the weight-reducing property, the amount of initially-blank cells that is
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really useful, i.e., that is visited in some halting computation, is bounded by some con-

stant which can be computed from the size of the wrDTM and does not depend on the

input string. This allows us to transform any wrDTM into an equivalent halting one of

polynomial size, which therefore operates in linear time. Notice that Theorem 7.3 already

gave a simulation of wrDTMs by a halting and linear-time computational model.

Lemma 7.6. Let T be an n-state wr DTM which uses g working symbols. A computation of T is

infinite if and only if it visits (n + 1)g consecutive initially-blank cells, i.e., tape cells to the left or

to the right of the initial segment.

Proof. Since T is weight reducing, the number of visits to each tape cell is bounded by

a constant which, in turn, is bounded by g. Thus, each infinite computation should visit

infinitely many tape cells, hence at least (n + 1)g consecutive initially-blank cells.

To prove the converse, let us consider a halting computation ρ of T over an input

word of length `. Let ν : Z → Q∗ be the function which maps each cell position to the

sequence of states entered at this position in ρ. Because T is weight-reducing, |ν(i)| ≤ g

for each position i. If there exist two positions i and j, laying at the same side of the

initial segment, i.e., j < i ≤ 0 or ` < i < j, such that ν(i) = ν(j), then, by determinism

of T , ν(j + k(j − i)) = ν(i) for each k > 0. This yields an infinite amount of positions

with the same associated sequence of states by ν. By haltingness of ρ, these repeated

sequences are necessarily empty. Thus, no two such positions on the same side of the

initial segment are mapped by ν to the same nonempty sequence. Since there are less

than (n + 1)g nonempty distinct sequences of states of length at most g, we conclude

that the number of consecutive initially-blank cells visited during the computation is less

than (n + 1)g.

Proposition 7.2. By a polynomial size increase, each wr DTM can be transformed into an equiva-

lent halting linear-time one.

Proof. From an n-state wrDTM T with a working alphabet of cardinality g, we can build an

equivalent halting wrDTM T ′ which works as follows. First T ′ marks (n + 1)g initially-

blank cells to the left and to the right of the initial segment. This is obtained by using
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a counter in basis (n + 1), stored on g consecutive tape cells, which is incremented up

to (n+ 1)g and shifted along the tape. Once the space is marked, T ′ simulates T , stopping

and rejecting if the simulation reaches a blank cell.

From Lemma 7.6, we can easily conclude that each halting computation of T is simu-

lated by an equivalent halting computation of T ′, while each infinite computation of T is

replaced in T ′ by a computation which reaches a blank cell and then stops and rejects. It

can be verified that the size of T ′ is polynomial in n and g.

Using Lemma 7.6 and Proposition 7.2, we prove the following property.

Theorem 7.5. It is decidable whether a wr DTM halts on each input string.

Proof. From any given wrDTM T , we construct a halting wrDTM T ′ which, besides all the

strings accepted by T , accepts all the strings on which T does not halt. To this aim, we

can slightly modify the construction used to prove Proposition 7.2, in such a way that

when the head reaches a blank cell outside the initial segment and the initially marked

space, the machine stops and accepts. Hence, the given wrDTM T halts on each input

string if and only if the finite automata which are obtained from T and T ′ according to

Theorem 7.3 are equivalent.

As a consequence:

Corollary 7.3. It is decidable whether a wr DTM works in linear time.

As seen in Lemma 7.6, the space used by a halting wrDTM is m + C where m is the

input length and C is a constant. By contrast, according to the definition, the space used

by a wrDHM is m. Over long enough inputs, the constant C can be eliminated. Thus, every

wrDTM can be simulated by a wrDHM of polynomial size on long inputs. This result will

be useful in next sections.

Lemma 7.7. Let T be a weight-reducing Turing machine which uses at most C initially-blank

cells in every halting computation. Then, there exists a weight-reducing Hennie machine H of

size polynomial in the size of T , which agrees with T on every input of length at least C.
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Proof. When the input is long enough, the tape parts containing useful initially-blank cells

can be folded as a second track over the initial segment, paying a polynomial increase of

the size of the machine.

7.4 Simulating Two-Way Automata by Weight-Reducing Ma-

chines

This section is devoted to present our main simulation: we show that every n-state 2NFA

A = 〈Q, Σ, δ, q0, F〉 can be transformed into an equivalent wrDTM of size polynomial in

the size of A. Our construction is based on the classical simulation of 2NFAs by 1DFAs,

inspired from Shepherdson’s construction [She59]. The main idea is to perform forward

moves, while updating a table of size n2 that describes parts of computations which may

occur to the left of the current position, analogously to the technique used for the linear-

time simulation of 1-LAs. In parallel, an adaptation of the powerset construction is done,

in such a way that the set of states that are accessible from the initial configuration when

visiting for the first time the current head position is updated at each move. In the simula-

tion by 1DFAs, the table and the set are stored on the finite state control. In our simulation

by wrDTMs they will be written, under a suitable encoding, in O(n2) many tape cells.

The construction is similar to the one for the linear-time simulation of 1-LAs presented

in Chapter 6. More precisely, we shall use a slight modification of the technique shown

in Section 6.2.1.2 to describe computations paths occurring on some restricted part of the

tape. In particular, for a prefix z′X of the tape content, we build the set τz′X, composed

by the pairs of states (p, q) such that there exists a computation path starting from p

with the head scanning the last symbol of z′X and ending one cell to the right of such

a symbol in the state q. Additionally, we define the set γz′X of states that are reachable

from the initial configuration, when visiting for the first time the position to the right of the

part containing z′X. Formally, for z′X ∈ {B } · Σ∗ · { ε,C } a prefix of the tape content
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with |X| = 1:

τzX = { (p, q) ∈ Q×Q | zpX ∗̀ zXq }, and

γzX = { r ∈ Q | q0zX ∗̀ zXr }.

Observe that a word w ∈ Σ∗ is accepted by A if and only if F ∩ γBwC 6= ∅. In order to

simulate A on input w, it is thus sufficient to incrementally compute γz for each prefix z

of BwC. To do so, we will keep updated the table τz as well. Indeed, given γz, τz and

a symbol σ, it is possible to compute γzσ and τzσ. In particular, the set τzσ is obtained

from τz as explained in Section 6.2.1.2 (see Figure 6.2), while it is possible to observe that

q ∈ γzσ if and only if there exists p ∈ γz such that (p, q) ∈ τzσ.

We represent a pair (γz, τz) as a word uv in { 0, 1 }∗ with |u| = n and |v| = n2. Each

bit of u (resp., v) indicates the membership of some state p (resp., some pair (p, q) of

states) to the set γz (resp., τz) through an implicitly fixed bijection from Q to { 1, . . . , n }

(resp., from Q2 to
{

1, . . . , n2 }). From such a word uv, and given a fixed input symbol σ,

a wrDHM is able to compute the representation u′v′ of the pair (γzσ, τzσ). Notice that such

computations do not depend on z, i.e., z is not given to the machine.

Lemma 7.8. For each σ ∈ Σ, there exists a wr DHM Tσ of size polynomial in n that on in-

put (γz, τz) halts with the tape containing (γzσ, τzσ). The input and the output are represented

on the tape as strings in { 0, 1 }n+n2
.

Proof. Fixed σ, let uv be the input string encoding the pair of tables (γz, τz), of size n

and n2 respectively. In order to update them, Tσ uses a second track on the tape, on which

it will progressively build the updated tables. At the end of the computation, namely

when the updated tables have been determined and written down over the second track,

the device performs a projection of the tape on its second track, in order to produce the

correct output, and halts.

We fix the working alphabet Γ = { 0, 1 } ∪ { 0, 1 }2. The “simple” symbols from { 0, 1 }

are used only for the input and the output of Tσ. For now on, we suppose that the tape

contains only symbols from the 2-track alphabet part, i.e., the right side of the union.
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Moreover, since the length of the input is n + n2, we can suppose that Tσ keeps updated

a state component of size n + n2 which always stores the exact position of its head on the

tape. This allows it to navigate over the tables.

We divide the tape into two parts: a prefix u of length n (thus covering the factor u

which encodes γz on its first track) and a suffix v of length n2 (thus covering the factor v

which encodes τz on its first track). As previously explained, the updated table γzσ can

easily be obtained once the updated table τzσ has been computed. Hence, we first show

how to write the table τzσ on the second track of v. This is achieved using the space n

available on the second track of u as temporary memory, to which we refer as temporary

table.

It is possible to observe that (see Figure 6.2), a computation path on the segment con-

taining zσ starting from the rightmost position of the segment and exiting the segment to

the right at its last step, i.e., a computation of the form zpσ ∗̀ zσq, can be decomposed

into an alternation of computation paths on the segment containing z (described by the

table τz) and of backward computation steps on σ connecting these paths, followed by a

last forward computation step on σ that exits the segment. For each state p, in order to

decide which pairs (p, q) belong to τzσ, the machine Tσ first computes the set Zp of states

that are reachable at the rightmost position of the segment containing zσ, from the state p

at the same position, by visiting only cells from the segment, i.e.,

Zp = { r | zpσ ∗̀ zrσ }.

Thus, a pair (p, q) belongs to τzσ if and only if for some r ∈ Zp, we have (q,+1) ∈ δ(r, σ).

For a fixed p, Tσ can incrementally construct Zp on the temporary table as follows. Ini-

tially, all the cells from the table are unmarked (i.e., contain 0) except the one correspond-

ing to state p which contains 1. The update process behaves as follows: for each state r

corresponding to a marked cell, each state s such that (s,−1) ∈ δ(r, σ), and each state r′

such that (s, r′) ∈ τz, the machine marks the cell corresponding to r′ with 1 in the tempo-

rary table. Since Zp has size bounded by n, after at most n passes, the temporary table is

not modified anymore and contains exactly an encoding of Zp.
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So done, computing the set Zp uses only a polynomial number of states in n. This

is however not sufficient to get a weight-reducing machine of polynomial size. To this

end we should indeed prove that the number of visits to each cell is bounded by some

polynomial in n. To update Zp, three nested loops on states, namely on r, s, and r′, are

used. Once such a triple is fixed, the machine navigates on the tape in order to check

that r is currently marked in the temporary table, and (s, r′) ∈ τz (notice that the condi-

tion (s,−1) ∈ δ(r, σ) is verified in constant time, since σ is fixed). These two conditions

require to read the corresponding cells in the temporary table (on u) and in the table τz

(on v), respectively. This can be performed by visiting each tape cell at most twice. Mark-

ing the cell corresponding to r′ also implies to scan the tape part u twice. As the operation

is repeated for each triple, we obtain that the number of visits to each cell in a pass for

updating Zp is in O(n3). Since the number of passes is at most n, the total number of visits

to each cell is in O(n4).

Once Zp has been computed, for each state r corresponding to a marked cell in the

temporary table, and each state q such that (q,+1) ∈ δ(r, σ), Tσ adds the pair (p, q) to the

table τzσ represented on the second track of v. This requires to visit O(n) times each tape

cell and can be performed using only a polynomial number of states in n.

By repeating this for each state p, we manage to update the table from τz to τzσ. Fi-

nally, we can update the table γz. As observed before, it is sufficient to consider for each

state q, whether (p, q) ∈ τzσ for some p ∈ γz. This last step requires only polynomially

many states and a linear number of visits to each cell. Combining the above-described

subroutines, and taking into account the state component which stores the exact head po-

sition, we obtain a DHM with O(n6) states and O(1) working symbols, whose number of

visits to each tape cell is O(n5). The machine can finally be converted into an equivalent

wrDHM of polynomial size (see Lemma 7.2).

We are now ready to state our main simulation.

Theorem 7.6. Every n-state 2NFA can be transformed into an equivalent halting wr DTM of size

polynomial in n.
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Proof. Let A = 〈Q, Σ, δ, q0, F〉 be a 2NFA. We build a deterministic Turing machine that

mimics the simulation ofA by a 1DFA: after reading any prefix z of an input w surrounded

by endmarkers, the machine stores the tables γz and τz and finally checks the existence

of a final state in γBwC. The tables are stored on a suitable tape track and updated each

time a further input symbol is read, using the method presented in Lemma 7.8. This can

be achieved by switching between two tape tracks at each update of the tables. However,

as the number of updates is linear in the length of the input, storing and updating the

tables on a fixed part of length n + n2 of the tape would lead to a non-weight-reducing

Turing machine. To handle this issue, for each prefix z of BwC, we store the tables γz

and τz on the n + n2 cells that precede the last position of z. (Remember that, in a wrDTM,

some initially-blank cells to the left of the initial segment are available.) Thus, at each

update of the tables made according to Lemma 7.8, the tables are shifted one cell to the

right. Therefore, since a fixed cell may occur in n + n2 successive stored tables, accord-

ing to Lemma 7.8 the number of visits to this cell is bounded by some polynomial in n.

We thus obtain a halting weight-reducing Turing machine equivalent to A whose size is

polynomial in the size of A. Furthermore, the machine uses only n + n2 initially-blank

cells, that are all to the left of the initial segment.

7.5 Simulating Two-Way Automata by Hennie Machines

In Section 7.4 we provided a polynomial size conversion from 2NFAs to wrDTMs. The

resulting machines use further tape cells, besides the initial segment. In this section we

study how to make such a simulation when the use of such extra space is not allowed,

namely when we want to obtain a deterministic Hennie machine. We show that a poly-

nomial conversion still exists, but we are not able to guarantee that the resulting machine

is weight reducing. Actually this issue is related to “short” inputs, namely to strings of

length less than n2, where n is the number of states of the given 2NFA. For such inputs we

do not have enough tape space to perform the simulation in Theorem 7.6. We will deal

with them, by using a different technique.
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Let us start by considering acceptance of “long” inputs.

Theorem 7.7. For each n-state 2NFA A, there exists a wr DHM H of size polynomial in n which

agrees with A on strings of length at least n2.

Proof. The technique used in the proof of Theorem 7.6 can be exploited, with slight mod-

ifications. Indeed, when recovering the tables corresponding to the “short” prefixes z’s

of the tape content, the wrDTM machine resulting from the above construction uses up

to n+ n2 initially-blank cells to the left of the initial segment, that are not any longer avail-

able with a wrDHM. By folding n of these cells on an additional track, as in Lemma 7.7,

we can reduce this space amount to n2 cells. Moreover, when the input string is longer

than n2, the tape part containing these useful initially-blank cells can be folded as a fur-

ther track over the initial segment. The size increase implied by both constructions is

polynomial in n.

In the case of unary 2NFAs, the number of short inputs that are not handled by Theo-

rem 7.7 is n2. They can be managed in a read-only preliminary phase which uses O(n2)

states.

Corollary 7.4. Every n-state unary 2NFA is equivalent to a wr DHM of size polynomial in n.

In the nonunary case, since the number of short strings is exponential in n, we cannot

apply the same technique as in Corollary 7.4. However, we are able to obtain a polynomial

size Hennie machine, using a different technique, which is based on the analysis of the

computation graph of the simulated 2NFA.

Theorem 7.8. Each n-state 2NFA is equivalent to a DHM of size polynomial in n.

Proof. Let A = 〈Q, Σ, δ, q0, F〉 be a 2NFA, with #Q = n. Without loss of generality we sup-

pose F =
{

q f
}

. Let w ∈ Σ∗ be an input word, with m = |w|. We distinguish three cases,

depending on m. Observe that the simulating DHM H can decide the case by performing

a reading traversal of the input using a polynomial number of states.

If m ≥ n2, thenH simulates A as in Theorem 7.7.

151



If m ≤ log n, thenH simulates a 1DFA with a polynomial number of states in n, which

agrees with A on all strings of length at most log n.

Finally, if log n < m < n2, then H checks whether there is an accepting computa-

tion of A on w by analyzing the computation graph G = 〈V, E〉 of A on w whose nodes

represent the configurations of A and whose edges represent single computation steps

on input w. Since w is fixed, configurations can be represented as pairs (q, i) ∈ V =

Q × { 0, . . . , m + 1 } ∪
{
(q f , m + 2)

}
indicating that A is in the state q while scanning

the i-th symbol of the input tape. There exists an edge from (q, i) to (p, j) if and only if

(p, j− i) ∈ δ(q, w̃[i]), where w̃ = BwC.

The simulating Hennie machine H should check the existence of a computation of A

starting from the initial state q0 with the head on the left endmarker (i.e., at position 0)

and ending in the unique final state q f after violating the right endmarker (i.e., at posi-

tion m + 2). This is equivalent to check the existence of a path from the node (q0, 0) to

the node (q f , m + 2) in G. Since there are n(m + 2) + 1 nodes in G, if such a path exists,

then there should exist one of length at most K = n(m + 2). Hence, checking the exis-

tence of an accepting computation reduces to checking the existence of a path of length at

most K in G. The recursive function reachable is used to perform this checking by calling

reachable(q0, 0, q f , m + 2, K).

Let us show how a call of reachable(p, i, q, j, T) works. The function has to check if

there exists a computation from (p, i) to (q, j) of length at most T. This is done by using

a divide-and-conquer technique as in the famous proof of the Savitch’s Theorem [Sav70].

If (p, i) = (q, j), i.e., there is a path of length 0 from (p, i) to (q, j), then the function

returns true independently of T (Line 94). Otherwise, if T = 0 but (p, i) 6= (q, j), then

the function returns false (Line 95), while, if T = 1, the function returns true if there is a

suitable edge in G (Line 97). In order to verify that, H saves (q, i) and (p, j) in its internal

state and then, if the distance between i and j is 1, it moves its head to the i-th position,

reads the symbol w̃[i], and checks (q, j− i) ∈ δ(p, w̃[i]). Notice that this read-only process

uses only a number of states polynomial in n.
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Function 11: reachable(p, i, q, j, T): boolean

Checks the existence of a path from (p, i) to (q, j) of length less than or equal to T in

the graph of the configurations of a given 2NFA on input w = w1 · · ·wm

94 if (p, i) = (q, j) then return true

95 if T = 0 then return false

96 if T = 1 then

97 if (q, j− i) ∈ δ(p, w̃[i]) then return true

98 else

99 foreach r, ` ∈ Q× { 0, . . . , m + 1 } do

100 if reachable(p, i, r, `, bT/2c) then

101 if reachable(r, `, q, j, dT/2e) then return true

102 return false

In the recursive case, for checking if there exists a path in the graph from (p, i) to (q, j)

of length at most T > 1,H verifies whether there exists a node (r, `) ∈ Q×{ 0, . . . , m + 1 }

such that there is a path from (p, i) to (r, `) of length at most
⌊T

2

⌋
and a path from (r, `)

to (q, j) of length at most
⌈T

2

⌉
(Lines 99 to 101). This is done by trying all possible

nodes (r, `) until finding one satisfying these conditions. If it does not exist, then the

procedure returns false (Line 102).

Recursive calls to the function reachable can be naturally saved on a pushdown store.

More precisely, at the beginning of the simulation the store is empty. When a call to

reachable(p, i, q, j, T) is performed, the activation record, consisting of the parameters p,

i, q, j, and T, is pushed on the top of the pushdown. Similarly, when reachable returns,

the activation record of the last call is popped off. The function reachable uses seven

variables, five of them being arguments saved on the pushdown store, and two being

the local variables r and `. As these two local variables are arguments of inner recursive

calls, their values can be recovered when popping off the inner activation record (after

the corresponding call has returned). Hence, the state components saving r and ` are
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freed at each recursive call. Therefore, all the checks performed by reachable can be

done with a number of states that is polynomial in n, and using the pushdown alpha-

bet
(
Q×

{
0, . . . , n2 })2 × { 0, . . . , dlog Ke } of size polynomial in n.

Finally, notice that the maximum recursion depth is dlog Ke = O(log n). The stack of

recursion calls can be stored in a separated track on log n tape cells, by using standard

space compression techniques, that only induce a polynomial increase of the working

alphabet. Since the input length m is larger than log n, H has enough space in its initial

segment. The number of visits to each cell is super-polynomial in n, hence the machine is

not weight-reducing. However, because the input lengths are bounded by n2, the number

of visits to each cell is bounded by a number which only depends on n.

Considering also how the machine works on inputs of length at least n2, this allows us

to conclude that the working time of the whole machine H is linear in the input length.

It is natural to ask if Theorem 7.8 can be improved in order to obtain, from a given

2NFA A, an equivalent wrDHM of polynomial size. In the light of Theorem 7.7, to do that

it will be enough to obtain a wrDHM of polynomial size which agrees with the 2NFA on

“short” inputs. With this respect, we point out that the problem of Sakoda and Sipser

seems to be hard even when restricted to strings of length polynomial in the number of

states of A [Kap14a].

7.6 Simulating One-Way Automata by Hennie Machines

In this section we restrict our attention to one-way automata simulations. A natural ques-

tion is to ask if in the case of 1NFAs a result stronger than Theorem 7.8 can be achieved.

A simulation of 1NFAs by wrDHMs was studied in [Prů14, Theorem 11], claiming that

each n-state 1NFA A has an equivalent wrDHM H of size polynomial in n. Unfortunately,

the presented proof is incorrect as it casts the problem of A acceptance as the problem

of reachability in an undirected computation graph. Existence of a path connecting the
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initial and an accepting configuration in such a graph does not guarantee the existence of

an accepting computation of A since the path can include “back” edges.

By revising the result, we now show that each 1NFA can be simulated by a determin-

istic Hennie machine which, however, is not weight-reducing. The improvement with

respect to Theorem 7.8 is that, in this case, short inputs are the strings of length less than n

rather than n2.

Let us start by presenting the weight-reducing simulation for “long” inputs.

Proposition 7.3. For each n-state 1NFA A, there exists a wr DHM H of size polynomial in n

which agrees with A on strings of length at least n.

Proof. Let A = 〈Q, Σ, δ, q0, F〉 where Q = { q0, . . . , qn−1 }. Let us assume the standard

definition for 1NFAs. Hence, the computation of A starts in the initial state q0 with the

head scanning the first input symbol; at each step one symbol is read from the tape and

the state is changed according to the transition function; the computation is accepting if a

final state is reached after reading the last input symbol.

We first describe a wrDTM T simulating A, which uses at most n further extra tape

cells to the right of the initial tape segment. Then, according to Lemma 7.7, T will be

converted into the wanted Hennie machine H which agrees with A on inputs of length

at least n.

Let Ci denote the i-th tape cell of T . Hence, on input w ∈ Σ∗ of length m, Ci initially

contains the input symbol wi, i = 1, . . . , m. For each i = 1, . . . ,
⌈m

n
⌉
, define a block Bi

consisting of tape cells C(i−1)n+1, . . . , Ci·n. Note that each block Bi can represent any sub-

set Q′ ⊆ Q (mark the j-th cell of Bi if and only if qj−1 ∈ Q′). Let Q0 = { q0 } and, for

i = 1, . . . , m, let Qi be the subset of states reachable by A after performing its i-th transi-

tion, i.e., after reading wi.

The machine T initializes the simulation by representing Q0 in B1. For each i-th com-

putation step of A, the machine T computes Qi based on Qi−1 and represents Qi in block

B1+b i
nc. In the end, T checks if the representation of Qm includes a state from F.

Since each block is used at most 2n + 2 times to represent a subset of Q, the number
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of transitions performed by T over each tape cell is upper bounded by a polynomial in n.

This ensures that T is of size polynomial in n.

Finally, from T we obtain the wanted wrDHM H by applying Lemma 7.7, as already

explained.

Using a technique similar to that of Theorem 7.8, we prove the following.

Proposition 7.4. Every n-state 1NFA A is equivalent to a DHM H of size polynomial in n.

Proof. Let w ∈ Σ∗ be an input to A = 〈Q, Σ, δ, q0, F〉 where, without loss of generality,

F =
{

q f
}

. Distinguish two cases by m = |w|.

If m ≤ n, the machineH checks whether there is an accepting computation of A for w

by calling reachable1(q0, 0, q f , m), a slightly modified version of the function reachable

presented in the proof of Theorem 7.8, adapted to deal with 1NFAs.

Function 12: reachable1(p, i, q, j): boolean

Checks the existence of a path from (p, i) to (q, j) of length j− i in the graph of the

configurations of a given 1NFA on input w = w1 · · ·wm

103 if (p, i) = (q, j) then return true

104 if j− i = 1 and q ∈ δ(p, wj) then return true

105 if j− i > 1 then

106 foreach r ∈ Q do

107 if reachable1(p, i, r, b(i + j)/2c) then

108 if reachable1(r, d(i + j)/2e, q, j) then return true

109 return false

The recursion depth is O(log m). At each level of the recursion, the function needs to

store states p, q, r and indices i, j. This can be done in a tape cell if O(n5) working tape

symbols are provided for this purpose. The function runs in nO(log m) time.

If m > n, the Hennie machine H executes the computation described in the proof of

Theorem 7.3.

156



In conclusion, the constructed machine H has the number of states and working tape

symbols polynomial in n, hence it is of size polynomial in n. Note that the number of

transitions performed byH over any tape field is nO(log n).

By summarizing, from Proposition 7.3 and Proposition 7.4 we obtain:

Corollary 7.5. For each n-state 1NFA A, there exist:

• a wr DHM of size polynomial in n which agrees with A on words longer than n;

• an equivalent DHM of size polynomial in n.
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8
Pushdown Automata and Space Restrictions

As discussed in Chapter 4, pushdown automata in which the maximum height of the

pushdown is limited by some constant, namely constant-height pushdown automata, al-

low more succinct representations of regular languages than finite automata [GMP10],

and are polynomially related in size with their natural generative counterpart, non-self-

embedding context-free grammars, roughly, context-free grammars without “true” recur-

sion [Cho59a].

In this chapter we turn our attention on standard pushdown automata, namely with

an unrestricted pushdown store, that, however, are able to accept their inputs by mak-

ing use only of a constant amount of the pushdown store. More precisely, we say that a

pushdown automatonM accepts in constant height h, for some given h, if for each word in

the language accepted byM there exists one accepting computation in which the maxi-

mum height reached by the store is bounded by h. Notice that this does not prevent the

existence of accepting or rejecting computations using an unbounded pushdown height.

It is a simple observation that a pushdown automatonM accepting in constant height h

can be converted into an equivalent constant-height pushdown automaton: in any con-

figuration it is enough to keep track of the current height in order to stop and reject when

a computation tries to exceed the height limit. The description of the resulting constant-

height pushdown automaton has size polynomial in h and in the size of the description

ofM.
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While studying these size relationships, we tried to understand how large can h be with

respect to the size of the description ofM. We discovered that h can be arbitrarily large. In-

deed, in the first part of the chapter we prove that there is no recursive function bounding

the maximal height reached by the pushdown store in a pushdown automaton accepting

in constant height, with respect to the size of its description.

We also prove that it cannot be decided if a pushdown automaton accepts in constant

height.

In the second part of the chapter we restrict the attention to the case of unary push-

down automata. By studying the structure of the computations of these devices, we are

able to prove that, in contrast to the general case, it can be decided whether or not they

accept in constant height. Furthermore, we also prove that if a unary pushdown automa-

tonM accepts in height h, constant with respect to the input length, then h is bounded by

an exponential function in the size ofM. By presenting a suitable family of pushdown

automata, we show that this bound cannot be reduced.

In the final part of the chapter we consider pushdown automata that accept using

height which is not constant in the input length. Our aim is to investigate how the push-

down height grows. In particular, we want to know if there exists a minimum growth of

the pushdown height, with respect to the length of the input, when it is not constant. The

answer to this question is already known and it derives from results on Turing machines:

the height of the store should grow at least as a double logarithmic function [Alb85]. This

lower bound cannot be increased, because a matching upper bound has been recently ob-

tained in [Bed+16]. As a consequence of the constructions presented in the second part of

the chapter, we are able to prove that in the unary case this lower bound is logarithmic.

We also show that it cannot be further increased.

The results discussed in this chapter have been presented in [PP19b].

159



8.1 Preliminary Definitions and Results

Let us start by presenting the main measure we consider in the chapter, namely the push-

down height. The height of a PDA M in a given configuration is the number of symbols

in the pushdown store besides the start symbol Z0. Hence, in the initial and in the accept-

ing configurations the height is 0. The height in a computation C is the maximum height

reached in the configurations occurring in C.

We say that M uses height h(x) on an accepted input x ∈ Σ∗ if and only if h(x) is

the minimum pushdown height necessary to accept such a string, namely, there exists a

computation accepting x using pushdown height h(x), and no computations accepting x

using height smaller than h(x). Moreover, if x is rejected then h(x) = 0. To study push-

down height with respect to input lengths, we consider the worst case among all possible

inputs of the same length. Hence, we define h(n) = max{ h(x) | x ∈ Σ∗, |x| = n }. When

there is a constant H such that, for each n, h(n) is bounded by H, we say thatM accepts

in constant height. Each PDA accepting in constant height can be easily transformed into

an equivalent finite automaton. So the language accepted by it is regular.

We now present some technical notions and results that will be useful in order to state

our results. LetM = 〈Q, Σ, Γ, δ, qI , Z0, { qF }〉 be a fixed PDA.

A surface pair is defined by a state q ∈ Q and a symbol A ∈ Γ, and it is denoted by [qA].

The surface pair in a given configuration is defined by the current state and the topmost

stack symbol, namely the only part of the stack which is relevant in order to decide the

next move.

A surface triple is defined by two states q, p ∈ Q and a symbol A ∈ Γ, and it is denoted

by [qAp]. Surface triples are used to study parts of computations starting and ending at

the same pushdown height and that do not go below that height in between. More pre-

cisely, a [qAp]-computation on an input string x ∈ Σ∗ is a computation C which starts from

the state q with A on the top of the pushdown at some height h and the input head on

the tape cell containing the leftmost symbol of x, and ends in the state p with A on the

top of the pushdown at the same height h and the input head on the cell to the right of
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the cell containing the rightmost symbol of x, without reaching pushdown height smaller

than h in between. We also say that C consumes the input x. We point out that, during C,

the symbol A at height h is never replaced. Hence, C does not depend on h and on the

symbols in the pushdown store at height smaller than h. The stack increment during C is

the difference between the maximum stack height in C and the stack height at the begin-

ning and at the end of C. Notice that the surface pairs at the beginning and at the end of C

are [qA] and [pA], respectively.

We denote by L[qAp] the set of input strings consumed in all possible [qAp]-computa-

tions. We point out that the set of accepting computations of M coincides with the set

of [qIZ0qF]-computations. Hence, L[qI Z0qF] is the language accepted byM. Furthermore,

for each surface triple [qAp], by suitably modifying M, we can obtain a PDA accept-

ing L[qAp] which, hence, is context free.

A horizontal loop on a surface pair [qA] is any [qAq]-computation consuming at least

one input symbol. By considering a computation of 0 moves, we always have ε ∈ L[qAq].

Hence [qA] has a horizontal loop when L[qAq] contains at least one more string, besides ε.

Using standard arguments on context-free languages, the following result can be proved:

Lemma 8.1. It is decidable if a surface pair [qA] has a horizontal loop.

Proof sketch. By using standard transformations (see, e.g., [HU79]), it is possible to con-

vertM into a context-free grammar G, whose nonterminal symbols have the form [pAr],

for p, r ∈ Q and A ∈ Γ. Then [qA] has a horizontal loop if and only if L(G|[qAq]) contains

at least one string besides the empty word.

If a [qAp]-computation C contains a proper [qAp]-subcomputation C ′, for the same

triple [qAp], which starts with stack higher than at the beginning of C, then the pair (X ,Y)

where X is the prefix of C ending in the first configuration of C ′, and Y is the suffix of C

starting from the last configuration of C ′, it is called vertical loop. Notice that at the end

of X a nonempty string Aα is on the pushdown above the occurrence of A which was on

the top at the beginning of C, and such a string is popped off during Y .
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In the following sections we shall consider grammars in binary normal form, an exten-

sion of Chomsky normal form where, in a context-free grammar G = 〈V, Σ, P, S〉, besides

productions A → BC and A → a, also unit productions A → B and ε-productions are

allowed.

We remind the reader that unary context-free languages are regular [GR62]. The

size cost of the conversion of unary context-free grammar and pushdown automata into

equivalent nondeterministic and deterministic finite automata (NFAs and DFAs, resp.) has

been investigated in [PSW02]. In the chapter we will use the following small extension

of [PSW02, Thms. 4, 6]:

Lemma 8.2. For each unary context-free grammar G = 〈V, { a }, P, S〉 in binary normal form,

with v variables, there exist:

• an equivalent NFA with at most 22v−1 + 1 states, and

• an equivalent DFA with less that 2v2
states.

Proof. By applying a standard construction, from G we can obtain a grammar G ′ in Chom-

sky normal form, having the same set of variables as G and generating the same language,

with the possible exception of the empty word (if generated by G).

Using Theorems 4 and 6 in [PSW02], we can convert G ′ into equivalent finite automata

satisfying the bounds on the number of the states given in the statement of the lemma.

By inspecting the proofs of those results, it can be observed that there are not transitions

entering the initial states of the resulting automata. This allows to safely mark the initial

states as accepting, in the case G generates the empty word, in order to make the resulting

automata equivalent to the original grammar G.

The following result, related to Diophantine equations, will be used in the chapter:

Lemma 8.3 ([MP00, Lemma 2.6]). Let n, z, i0, i1, . . . , is be integers with 0 < ij ≤ n, j =

0, . . . , s, and z ≥ 0. If the equation i0x0 + i1x1 + · · · + isxs = z has a solution in natural

numbers, then it also has a solution in natural numbers satisfying i1x1 + · · ·+ isxs ≤ n2.
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8.2 Undecidability and Non-Recursive Bounds

In this section we prove that it cannot be decided whether a PDA accepts in constant height

or not. Furthermore, there are no recursive functions that upper limit, with respect to the

size of any PDAM accepting in constant height, the maximal height which is reached by

the pushdown store ofM and the number of states of minimal finite automata equivalent

toM.

These results are proved by using a technique introduced in [Har67], based on suitable

encodings of single-tape Turing machine computations. Roughly, configurations of a such

machine T with state set Q and alphabet Γ are denoted in the standard way as strings

from Γ∗QΓ∗. A computation consisting of m configurations α1, α2, . . . , αm is encoded as a

string of blocks, separated by a delimiter $ /∈ Q ∪ Γ, where the i-th block is αi when i is

odd, αR
i when i is even (in the following, we use α(R)

i to denote either αR
i or αi according

to the parity of the index i).

Hence, the (encoding of a) valid computation of T on input w is a string

C = α1$αR
2 $α3$αR

4 $ · · · $α(R)
m ,

for some integer m ≥ 1 such that:

1. αi ∈ Γ∗QΓ∗, i.e., αi encodes a configuration of T , i = 1, . . . , m;

2. α1 is the initial configuration on input w;

3. αi+1 is reachable in one step from αi, i = 1, . . . , m− 1;

4. αm is a halting configuration of T .

A partial valid computation is defined in a similar way, by dropping Condition 4.

As proved in by Hartmanis, the complement of the set of all valid computations of T

is a context-free language [Har67].

Theorem 8.1. It is undecidable whether a PDA accepts in constant height.
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Proof. We give a reduction from the halting problem. Let T be a deterministic Turing

machine. With an easy modification, we suppose that arbitrarily long computations use

arbitrarily large amounts of tape (to this aim, it is sufficient to modify T by adding to the

tape a track where the machine, between any two original consecutive moves, marks a

tape cell not visited yet ).

By adapting the techniques used by Hartmanis to prove the above mentioned re-

sult, we show that the complement of the language partial(T , w) of partial computations

of T on a given input w is accepted by a PDA MT ,w in the following way. Given D =

β1$βR
2 $ · · · $β(R)

r , with βi ∈ (Q ∪ Γ)∗, i = 1, . . . , r, to decide whether D ∈ (partial(T , w))c,

MT ,w guesses which one among Conditions 1, 2 and 3 is not satisfied. For the first two

conditions, the verification of the guess is done by only using the finite control. For the

third condition, MT ,w nondeterministically selects one block β(R)
i , 1 ≤ i ≤ r, copies

it on the pushdown store and then makes the verification. This is done by scanning

the (i + 1)-th block, if any, and by suitably comparing it with the block saved on the

pushdown store. (If i = r then the verification fails.)

We remind the reader that the pushdown height used to accept any input string x is

the minimum height in accepting computations on x. Hence, if D does not satisfy Condi-

tion 1 or Condition 2, then it is accepted with pushdown height 0; otherwise, the height

is bounded by the length of the first block β(R)
i for which Condition 3 is not satisfied, i.e.,

the block corresponding to the largest i such that β j = αj, for j = 1, . . . , i, where α1, α2, . . .

is the (possibly infinite) sequence of configurations in the computation of T on w.

If T halts on w in m steps, then the maximum amount of the pushdown store used to

accept strings in (partial(T , w))c is equal to |αm|. Otherwise, for each arbitrarily large inte-

ger h, we can find an index i > 0 such that |αi| > h. To accept any string α1$αR
2 $ · · · $α(R)

i $β,

with β ∈ Γ∗QΓ∗ and β 6= α(R)
i+1,MT ,w uses height |αi| > h.

This allows to conclude that T halts on input w if and only ifMT ,w accepts in constant

height. Hence, it cannot be decided whether a PDA accepts in constant height.

We point out that in the restricted case of unambiguous PDAs, the property in Theo-
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rem 8.1 is decidable [Mal+12]. As a consequence, it is decidable for deterministic PDAs.

As already observed at the beginning of the chapter, any PDA M accepting in con-

stant height h can be converted into an equivalent constant-height PDA. From such a

machine, equivalent NFAs and DFAs with a number of states exponential and double ex-

ponential in h, respectively, are easily obtained. In the worst case these bounds cannot be

reduced [GMP10]. We now show that, however, h cannot be bounded by any recursive

function in the size ofM.

Theorem 8.2. For any recursive function f : N → N and for infinitely many integers n there

exists a PDA of size n accepting in constant height H(n), where H(n) cannot be bounded by f (n).1

Proof. The argument is derived from [MF71, Prop. 7]. Let us consider a busy beaver BBn

as defined in Example 2.2. As recalled in Theorem 2.1, Σ(n) cannot be bounded by any

recursive function [Rad62]. Hence, also the maximal length of configurations occurring

in a computation of BBn cannot be bounded by any recursive function.

Let Cn be the encoding of the valid computation of BBn on ε. By adapting the argu-

ments used to prove Theorem 8.1, we can define a PDAMn, whose description has a size

polynomial in n, which accepts all the strings over (Qn ∪ Γ∪ {$})∗ different from Cn, and

such that each string different from Cn is accepted using height bounded by the length of

the longest configuration occurring in Cn. Since n is fixed,Mn accepts in constant height.

Furthermore, by suitably modifying Cn (with the same method we applied in the last part

of the proof of Theorem 8.1 to a prefix of the string encoding the infinite computation

of the machine T on input w), we can obtain a string that requires height equal to the

maximal length of configurations occurring in Cn to be accepted byMn.

This allows to conclude that the pushdown height used byMn cannot be bounded by

any recursive function in the size ofMn.

The PDA Mn used to prove Theorem 8.2 accepts the complement of the singleton

language { Cn }. This implies that each equivalent deterministic automaton requires more

than |Cn| states. Hence:
1We point out that here H(n) is a function of the size of the PDA and not of the input.
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Corollary 8.1. There is no recursive function bounding the size blowup from PDAs accepting in

constant height to finite automata.

8.3 Constant Height Decidability in the Unary Case

In Section 8.2 we proved that it cannot be decided if a PDA accepts in constant height. This

section is devoted to showing that this property turns out to be decidable in the restricted

case of PDAs with a one-letter input alphabet. We first give an informal outline of the

argument.

Any accepting computation on a sufficiently long input should contain horizontal

or vertical loops. The use of vertical loops can lead to computations using unbounded

height. However, we prove that if an accepting computation on an input a` visits a surface

pair on which there exists a horizontal loop, then there is another accepting computation

for the same input in which almost all occurrences of the vertical loops are replaced by

occurrences of such horizontal loop. The number of vertical loops which remain in the

resulting computation is bounded by a constant. As a consequence, the amount of push-

down store sufficient to accept a` is also bounded by a constant. This result is obtained

by refining pumping arguments on grammars and the fact that, in the unary case, input

symbols commute. In contrast, when all accepting computations on a long string a` do

not visit any surface pair having a horizontal loop, vertical loops and an increasing of the

stack cannot be avoided. Hence, the given PDA works in constant height if and only if

the cardinality of the language Lv \ Lh is finite, where Lh (Lv, resp.) is the set of strings

which are accepted by a computation visiting a (not visiting any, resp.) surface pair hav-

ing a horizontal loop. Since we are considering a unary alphabet, languages Lv and Lh

are regular. So the finiteness of their difference is decidable.

To obtain these results, we refine some of the arguments given by Pighizzini, Shallit,

and Wang to study the size costs of the transformations of unary context-free grammars

and pushdown automata into equivalent finite automata [PSW02].
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8.3.1 Loops and grammars

In the following, we consider a grammar G = 〈V, Σ, P, S〉 in binary normal form and we

denote by v = #V the number of its variables.

If T is a parse tree whose root is labeled with a variable A ∈ V and such that the labels

of the leaves, from left to right, form a string γ ∈ (V ∪ Σ)∗, then we write T : A ?⇒ γ.

Furthermore, we indicate by ν(T) the set of variables occurring as labels of the nodes in T.

As usual, the height of a derivation tree T is the maximum number of edges from the root to

a leaf in T.

A gap tree T from a variable A ∈ V, also called A-gap tree, is a tree corresponding to

a nonempty derivation of the form A +⇒ xAy, with x, y ∈ Σ∗. When x = y = ε, the gap

tree T is said to be trivial, otherwise, i.e., when it has at least one leaf labeled by a terminal,

T is nontrivial.

Lemma 8.4. If A ?⇒ γ, A ∈ V, γ ∈ (V ∪ Σ)+, then there exists a derivation tree T : A ?⇒ γ of

height at most (|γ|+ 1)v.

Proof. Given a derivation tree T : A ?⇒ γ of height h > (|γ| + 1)v, let n1, n2, . . . , nh be

the sequence of the internal nodes which are encountered on a longest path in T, moving

from the leaf to the root. With each node nk, we associate the pair (Ak, γk), where Ak is

the variable labeling nk and γk is the string generated by the subtree rooted at nk.

Hence, for k = 2, . . . , h, γk−1 is a factor of γk and γh = γ. Considering that γ1

could be ε, the number of possible different second components in these pairs is bounded

by |γ|+ 1.

Since h > (|γ|+ 1)v, this implies that there is a sequence of v + 1 > #V indices k, k +

1, . . . , k + v, with 1 ≤ k ≤ h − v, such that γk = γk+1 = . . . = γk+v. Hence Ai = Aj,

for some i, j, with k ≤ i < j ≤ k + v, namely, the tree T1 obtained by removing from the

subtree of T rooted at nj the subtree rooted at ni is a trivial Ai-gap tree. By removing T1

from T, i.e., by replacing the subtree rooted at nj by the subtree rooted at ni, we obtain a

tree T′ : A ?⇒ γ with a smaller number of nodes than T.
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We can iterate this process, up to obtain a tree for a derivation A ?⇒ γ of height

bounded by (|γ|+ 1)v.

Lemma 8.5. Let T : A ?⇒ γ, A ∈ V, γ ∈ (V ∪ Σ)+, be a derivation tree.

1. Let k be the length of the longest path from the root to a leaf labeled by a terminal symbol, if

any. Then γ contains at most 2k−1 terminal symbols, and less than 2k−1 symbols when γ

contains at least one variable.

2. If γ contains only terminal symbols, i.e., γ ∈ Σ∗, and the height of T is k, then |γ| ≤ 2k−1.

3. If γ = xAy, xy ∈ Σ+, and T has a minimal number of nodes among all nontrivial A-gap

trees, then |xy| < 22v−1.

Proof. The proof is given by adapting standard properties of parse trees of grammars in

Chomsky normal form (see, e.g., [HU79]).

1. The statement can be proved by induction on k. If k = 1 then the tree consists only of

the root, labeled by A, with one son, labeled by a ∈ Σ, where A→ a is a production

of G. In this case the statement is trivial. If k > 1 then, in any subtree of the root, the

longest path to a leaf labeled by a terminal symbol has length at most k− 1, so gen-

erating, by induction hypothesis, a string containing at most 2k−2 terminal symbols.

Due to the form of the grammar, the root can have at most 2 subtrees. Hence the

number of terminal symbols in γ is bounded by 2k−1. Furthermore, when γ contains

one variable, one of the subtrees of the root derives a factor of γ containing such a

variable. Hence, by induction, it generates a number of terminals which is strictly

less than 2k−2. As a consequence, the number of terminals in γ is less than 2k−1.

2. Consequence of Item 1.

3. Let n1, n2, . . . , nk be the sequence of the internal nodes on the longest path in T from

a leaf labeled by a terminal symbol a ∈ Σ to the root. With each node ni, i = 1, . . . , n,

we associate a pair (Ai, bi) where Ai ∈ V and bi ∈ { 0, 1 } is 1 if and only if the factor
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of γ generated by the subtree rooted at ni contains the variable A. Hence, the pair

associated with n1 is (B, 0) for some B ∈ V having the production B → a, while the

pair associated with the root nk is (A, 1).

Suppose k > 2v. Then there are two nodes ni, nj, with 1 ≤ i < j ≤ k with (Ai, bi) =

(Aj, bj). By replacing in T the subtree rooted at nj by the subtree rooted at ni we

obtain an A-gap tree T′ which still generates at least one terminal symbol and has

less nodes than T, which is a contradiction.

Hence, in T each path connecting the root and a leaf labeled by a terminal symbol

should have length at most 2v, which, according to Item 1, implies |xy| < 22v−1.

From now on, let us suppose that G is unary, i.e., Σ = { a }. The following modified ver-

sion of Lemma 2(ii) in [PSW02] is derived from the arguments of the classical “pumping

lemma” for context-free languages.

Lemma 8.6. Let T : S ?⇒ a` be a tree in G. If ` > 2v2−1 then there exist three integers s, i, j, with

` = s + i + j, s ≥ 0, and 0 < i + j < 2v2
, a tree T1 : S ?⇒ as, a variable A ∈ ν(T), and an A-gap

tree T2 : A +⇒ ai Aaj, such that ν(T) = ν(T1) ⊇ ν(T2).

Proof. We use a combinatorial argument similar to that in the proofs of Lemmas 8.4 and 8.5.

Let n1, n2, . . . , ne be the sequence of the internal nodes which are encountered on a longest

path in T, moving from the leaf to the root. With each nk we associate the pair (Ak, αk),

where Ak ∈ V is the variable labeling nk and αk ⊆ ν(T) is the set of variables occurring

in the subtree rooted at nk, k = 1, . . . , e. Hence, α1 = { A1 }, αe = ν(T), and αk−1 ⊆ αk,

k = 2, . . . , e. Notice that we can have at most v different αk’s.

Since ` > 2v2−1, from Lemma 8.5(2) we get e > v2. Thus, there are more than v

consecutive pairs (Ak, αk) with the same second component and, so, the first components

of two of them should coincide. In other words, we can find two nodes nx and ny, 0 <

x < y ≤ v2 + 1, such that (Ax, αx) = (Ay, αy) and y− x ≤ v. By replacing in T the subtree

rooted at ny by the subtree rooted at nx, we get a new tree T1 : S ?⇒ as with s ≤ `. Let T2
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be the gap tree obtained from T by taking as root ny and by deleting the subtree rooted

at nx. Then T2 : Ax
+⇒ ai Axaj, for some integers i, j with s + i + j = `. Furthermore,

ν(T) = ν(T1) ⊇ ν(T2).

Since the root of T2 is ny, its height is at most v2 + 1. By Lemma 8.5(1) this implies i +

j < 2v2
.

Finally, we observe that in case i + j = 0 and s = `, we can repeat the same argument

after replacing T by T1. Since the number of nodes in the “new” T is smaller than in

the “old” one, by iterating this process, at some point we will finally obtain a tree T1

producing a shorter string and a gap tree T2 producing at least one terminal symbol.

The following lemma will be crucial to obtain our main result. We prove that each long

enough string a` can be derived by pumping a derivation tree of some short string by

many occurrences of a same gap tree. Furthermore, such a gap tree can be arbitrarily

chosen among “small” nontrivial A-gap trees, with A occurring in the derivation of a`.

Lemma 8.7. For any derivation tree T : S ?⇒ a` and for any A-gap tree TA : A ?⇒ ai Aaj, with

0 < i + j < 22v−1 and A ∈ ν(T), there exists a derivation tree T′ : S ?⇒ a` which is obtained by

pumping a tree T0 : S ?⇒ a`0 such that ν(T0) = ν(T), 0 ≤ `0 ≤ 22v2 − 3 · 2v2−1 + 1, with k ≥ 0

occurrences of TA.

Proof. If ` ≤ 22v2 − 3 · 2v2−1 + 1, then we take T0 = T, `0 = `, and k = 0. Otherwise,

we repeatedly apply Lemma 8.6 to “unpump” the tree T up to find a tree Tr : S ?⇒ a`r ,

with `r ≤ 2v2−1 and ν(Tr) = ν(T).

Let { i1, . . . , is } ⊆ { 1, . . . , 2v2 − 1 } be the set of numbers of terminals that are gen-

erated by the gap trees removed during this process. Hence ` = `r + i1x1 + · · · + isxs,

where, for t = 1, . . . , s, xt > 0 is the number of gap trees generating it terminal symbols

that have been removed to obtain Tr. Let i0 = i + j < 22v−1 ≤ 2v2
be the number of

terminals generated by the tree TA. By Lemma 8.3 (applied with z = `− `r and x0 = 0),

we can find integers x′0, x′1, . . . , x′s ≥ 0 in such a way that ` = `r + i0x′0 + i1x′1 + · · ·+ isx′s

and i1x′1 + · · ·+ isx′s ≤ (2v2 − 1)2. This means that we can pump the tree Tr with a suit-

able number of occurrences of some of the gap trees removed in the previous process, in
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order to get a tree T0 : S ?⇒ a`0 , with `0 = `r + i1x′1 + · · ·+ isx′s ≤ 2v2−1 + (2v2 − 1)2 =

22v2 − 3 · 2v2−1 + 1 and ν(T0) = ν(T). Furthermore, by pumping T0 with x′0 occurrences

of TA, we finally get a tree T′ : S ?⇒ a`.

8.3.2 Simulating vertical loops by a horizontal loop

From now on, let us consider a fixed PDA M = 〈Q, Σ, Γ, δ, qI , Z0, { qF }〉. We define the

grammar G = 〈V, Σ, P, S〉, where the elements of V are triples [qAp], with q, p ∈ Q, A ∈ Γ,

the start symbol S is the triple [qIZ0qF], and P contains the following productions:

1. [qAp]→ [qAr][rAp], for q, p, r ∈ Q, A ∈ Γ;

2. [qAp]→ [q′Bp′], for q, q′, p, p′ ∈ Q, A, B ∈ Γ such that (q′, push(B)) ∈ δ(q, ε, A) and

(p, pop) ∈ δ(p′, ε, B);

3. [qAp]→ σ, for q, p ∈ Q, σ ∈ Σ ∪ { ε }, A ∈ Γ such that (p,−) ∈ δ(q, σ, A);

4. [qAq]→ ε, for q ∈ Q, A ∈ Γ.

We point out that the number of variables of G is v = (#Q)2 · #Γ. Furthermore, G is in

binary normal form.

The techniques used to show that G generates the language accepted byM are very

similar to those presented in classical textbooks (see, e.g., [HU79]) to prove the correct-

ness of the standard transformation of PDAs into CFGs. In particular, it can be shown

that each triple [qAp] generates the language L[qAp] of all strings which are consumed

in [qAp]-computations.

Since we are interested in the amount of stack used byM, we state such equivalence

in a stronger form, which also considers the use of the stack in computations.

In particular, we relate the stack increment to the unit production height which, for a

derivation tree T of the above grammar G, is defined as the maximum number of edges

corresponding to unit productions in a path from the root to a leaf of T.

171



Lemma 8.8. For any x ∈ Σ∗, q, p ∈ Q, A ∈ Γ, h ∈ N, there exists a derivation tree T :

[qAp] ?⇒ x with unit production height h if and only if there exists a [qAp]-computation C on x

with stack increment h.

Proof. Let T : [qAp] ⇒ x, for some k > 0, be a derivation tree with unit production

height h. We prove by induction on k that there exists a [qAp]-computation C on x with

stack increment h.

If k = 1 then the tree contains only the root and one leaf and it corresponds to the use

of one of the productions of the form 3 or 4. So the statement is trivial.

If k > 1 then the production used at the root level of T is either of the form 1 or of the

form 2.

In the first case, we have [qAp] → [qAr][rAp], for some r ∈ Q, the root of T has

left subtree T′ : [qAr] ⇒ x′ and a right subtree T′′ : [rAp] ⇒ x′′, for some k′, k′′ > 0

with k′ + k′′ = k − 1, x′, x′′ ∈ Σ∗, x′x′′ = x. Then h = max{ h′, h′′ }, where h′ and h′′

are the unit production heights of T′ and T′′, respectively. According to the induction

hypothesis, there exist a [qAr]-computation on x′ and a [rAp]-computation on x′′ with

stack increment h′ and h′′, respectively. By concatenating these two computations, we

obtain a [qAp]-computation on x in which the stack increment is max{ h′, h′′ }, namely h.

In case the production applied to the root of T is [qAp] → [q′Bp′], let T′ : [q′Bp′] ⇒ x

be the subtree of T rooted at the only son of the root. Since in T at the top level a unit

production is used, the unit production height on a path from the root of T′ is h− 1. Even

in this case, from the induction hypothesis we obtain a [q′Bp′]-computation on x with

stack increment h− 1. By adding to this computation the initial push and the final pop

from which the production [qAp] → [q′Bp′] is defined, we obtain a [qAp]-computation

on x with stack increment h.

Conversely, let us consider a [qAp]-computation C on x with stack increment h. We

proceed on the number k of steps of C.

If k = 1 then the computation C does not make any stack increment and it can only

correspond to a one-step derivation consisting of a production of the form 3 or 4. So the
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statement is trivial.

If k > 1 then we consider two cases, depending on whether or not at some configura-

tion in C, after the first and before the last configuration, the stack is at the same height

than at the beginning and at the end of C.

• If such configuration exists, then we split C at that configuration into a [qAr]-com-

putation C ′ and a [rAp]-computation C ′′, for some r ∈ Q, consuming some x′, x′′,

with x′x′′ = x and with stack increment h′, h′′, respectively. Then the stack in-

crement in C is max{h′, h′′}. Using the induction hypothesis, we find two trees T′

and T′′ corresponding to such computations, with unit production heights h′ and h′′,

respectively. We can suitably combine T′ and T′′, using a production of form 1, in

order to obtain a tree T which derives x and has max{ h′, h′′ } height.

• If such configuration does not exist, then the computation of C should start with a

push of a symbol B which is removed in the last step. Let C ′ be a [q′Br′]-subcomputa-

tion of C which is obtained by removing the first and the last step. If h is the stack

increment in C, then the stack increment in C ′ is h− 1. Let T′ : [q′Br′] ?⇒ x be the

tree corresponding to C ′, obtained according to the induction hypothesis. Its unit

production height is h− 1. The tree T which is obtained by taking T′ as only subtree

of a root with label [qAr], derives x and has unit production height h.

As a consequence of Lemma 8.8 we get:

Corollary 8.2. For any integer h ≥ 0, a string x is accepted byM using pushdown height h if

and only if there is a derivation tree T of x in G with unit production height h.

Combining Corollary 8.2 with Lemma 8.4, we get the following upper bound for the

height of the pushdown store necessary to accept a string x:

Lemma 8.9. If x ∈ Σ∗ is accepted byM, then h(x) ≤ (|x|+ 1)v, where v = (#Q)2 · #Γ.
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Proof. By contradiction, suppose that each computation ofM accepting x uses pushdown

height greater than (|x| + 1)v. As a consequence of Corollary 8.2, each derivation tree

of x in G has unit production height, and so height, greater than (|x| + 1)v, which is a

contradiction to Lemma 8.4.

Let us go back to the case of unary pushdown automata. Hence, from now on letM =

〈Q, { a }, Γ, δ, qI , Z0, { qF }〉 be a fixed unary PDA. Using Lemma 8.8, we can reformulate

Lemma 8.7 in terms of pushdown automata. Roughly, we can say that for each computa-

tion C accepting a “long” input, there is another computation accepting the same input,

which is obtained by pumping a suitable computation C0, chosen from a finite set, with a

repeated pattern which is arbitrarily selected from another finite set that depends on C0.

We will use this property to replace, in any accepting computation C, almost all the ver-

tical loops with many occurrences of a horizontal loop, in the case a surface pair [rB]

having a horizontal loop occurs in C. In this way, we shall be able to obtain an accepting

computation on the same input using a bounded amount of pushdown storage.

Theorem 8.3. Let C be an accepting computation on input a` which visits a surface pair [rB] hav-

ing a horizontal loop. Then there exists another accepting computation on a` which uses pushdown

height smaller than 22v2+log2 v.

Proof. Let G be the above defined grammar, obtained fromM. First, we observe that if C

visits the surface pair [rB] then there exists a derivation tree T : S ?⇒ a` with [rBr] ∈ ν(T).

In fact, one of the triples [rBs] or [sBr] for some s ∈ Q should appear in the derivation

tree corresponding to C. Since G contains the productions [rBs] → [rBr][rBs], [sBr] →

[sBr][rBr] and [rBr]→ ε, we can suitably modify the tree in order to introduce one occur-

rence of [rBr], without changing the derived string.

Now we select a “small” [rBr]-gap tree T[rBr] deriving a nonempty string, i.e., T[rBr] :

[rBr] ?⇒ ai[rBr]aj, with 0 < i + j < 22v−1. We prove that such a gap tree should ex-

ist. In fact, since [rB] has a horizontal loop, the language L[rBr] should contain at least a

nonempty string w ∈ a∗. Hence, [rBr] ?⇒ w. Furthermore, the tree corresponding to the
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derivation

[rBr] ?⇒ [rBr][rBr] ?⇒ w[rBr]

is a [rBr]-gap tree. Hence, from Lemma 8.5(3), it follows that there exists also a [rBr]-gap

tree T[rBr] : [rBr] ?⇒ ai[rBr]aj, with 0 < i + j < 22v−1.

According to Lemma 8.7, we can obtain another tree T′ : S ?⇒ a` by pumping a tree T0 :

S ?⇒ a`0 , such that ν(T0) = ν(T), 0 ≤ `0 ≤ 22v2 − 3 · 2v2−1 + 1, with k ≥ 0 occurrences

of T[rBr].

We observe that in the tree T′, some of the k occurrences of T[rBr], say t, could be nested,

possibly giving a stack height in the corresponding computation which linearly increases

with k. To fix this problem, we modify T′ as we now describe (see Figure 8.1).

Let u be a node of T0 labeled by [rBr] and Tu be the subtree of T0 rooted at u, such

that T0 is pumped starting from u with t nested occurrences of T[rBr], 1 < t ≤ k. We

rearrange these t occurrences of T[rBr] in a sequence by inserting, starting from node u,

a subtree corresponding to a derivation [rBr] ?⇒t
obtained by using t− 1 times the pro-

duction [rBr] → [rBr][rBr]. To each leaf of this subtree we append one occurrence of

the [rBr]-gap tree T[rBr]. Finally, to the leaf labeled [rBr] of the first occurrence of T[rBr] we

append the tree Tu, and to each of the remaining t− 1 leaves labeled [rBr] we append one

leaf labeled with the empty word (we remind the reader that [rBr] → ε is a production

of G).

Let T′′ be the tree obtained after this modification, which still generates a`. Using

Corollary 8.2 we now estimate the amount of pushdown store used in the computation C ′′

corresponding to T′′, by calculating the unit production height of T′′, which is bounded

by the maximum number h0 of edges corresponding to unit productions in any path in T0

plus the maximum number h1 of such edges in any path in T[rBr] which, in turn, are

bounded by the height of T0 and T[rBr], respectively. Using Lemma 8.4, we get h0 ≤

(`0 + 1)v and h1 ≤ (i + j + 2)v (we remind the reader that the tree T[rBr] generates a

string of length i + j + 1). Hence, the height of the pushdown is bounded by h0 + h1 ≤

(`0 + i + j + 3)v. Considering the bounds on `0 and i + j, we obtain `0 + i + j + 3 <
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Figure 8.1: On the left, the portion of the tree T0 from the node u pumped by using t

repetitions of the tree T[rBr]. These occurrences are rearranged by using t − 1 times the

production [rBr] → [rBr][rBr], as shown on the right, in order to avoid a linear increase

of the stack in the number of the repetitions of T[rBr]. (In the figure t = 3.)

22v2 − 3 · 2v2−1 + 22v−1 + 4.

For v ≥ 2, it can be verified that −3 · 2v2−1 + 22v−1 < −4. Hence, h0 + h1 < 22v2 · v =

22v2+log2 v.

In the case v = 1, the PDA M can have only one state q, which is both initial and

final, and only one pushdown symbol Z0. Since in the form we are considering for PDAs

transitions consuming input symbols do not change the stack (cf. Section 2.2.4), the only

possibility to read an input symbol is that of having the transition (q,−) ∈ δ(q, a, Z0). If

this is the case, then any string in a∗ can be accepted by a computation which does not

use the pushdown store, i.e., using height 0. Otherwise,M accepts the empty language

and so, by definition, it accepts in height 0.

8.3.3 Vertical increase without horizontal loops

We now evaluate the increase of the stack in computations that do not use horizontal

loops, i.e., between any two repetitions of a same surface pair [rB] at the same height

either no input is consumed or there is at least one configuration with lower stack height.
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Lemma 8.10. Let C be a [qAp]-computation on a` with stack increment bounded by h and without

horizontal loops. Then ` ≤ (#Q− 1)h+1.

Proof. We give the proof by induction on h. Let h0 be the stack height at the beginning and

at the end of C. We preliminary observe that since in C the stack height cannot be lower

than h0 and there are no horizontal loops, between any two repetitions of a same state at

stack height h0 no input symbols can be consumed. Hence, we can remove from C the

part between the two repetitions of such a state, to obtain a shorter [qAp]-computation on

the same input having stack increment bounded by h. By iterating this process, we finally

get C with at most n configurations at stack height h0.

If h = 0, i.e., the stack height is never incremented, then C consists of less than #Q

moves. Hence ` ≤ #Q − 1. Otherwise, we decompose C in k < #Q subcomputa-

tions C1, . . . , Ck, where, for i = 1, . . . , k, Ci starts with a push of a symbol, which is popped

off the stack only in the last move of Ci. Let C ′i be the subcomputation obtained by re-

moving from Ci the first and the last move and let a`i be the input consumed during

it. Then the stack increment in C ′i is at most h − 1. By induction hypothesis, this im-

plies `i ≤ (#Q− 1)h. Since push and pop moves do not consume input symbols, we get

that ` ≤ k(#Q− 1)h ≤ (#Q− 1)h+1.

As a consequence of Lemma 8.10, the recognition of arbitrarily long strings without

making use of horizontal loops requires unbounded stack height.

8.3.4 Decidability

Using the tools we developed so far, we are now able to prove the main result of this

section:

Theorem 8.4. LetM be a unary PDA with n states and m pushdown symbols. ThenM accepts

in constant height if and only if it accepts in height smaller than 218v2+log2 v+log2 3 = 3v · 218v2
,

where v = n2m.
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Proof. Let L be the language accepted by M. We also consider the following two lan-

guages Lh and Lv:

• Lh is the set of strings accepted by the computations ofM which visit at least one

surface pair having a horizontal loop.

• Lv is the set of strings accepted by the computations ofM which visit only surface

pairs that do not have horizontal loops.

Clearly, the language L accepted byM is the union of Lh and Lv.

According to Theorem 8.3, all strings in Lh are accepted in constant height. More

precisely, fromM we can build a unary PDAMh which accepts Lh by simulatingM and

by accepting when the simulated computation is accepting and visits at least one surface

pair having a horizontal loop, which can be decided according to Lemma 8.1.

To implementMh, we double the cardinality of the state set, in order to remember if

some surface pair having an horizontal loop has been reached during the computation,

i.e., for each state q we create a copy q′, where q′ is used each time M reaches q in any

configuration which occurs after visiting a surface pair having a horizontal loop. Hence,

the final state ofMh is q′F. FromMh we can obtain an equivalent grammar in binary nor-

mal form with (2n)2m variables. However, in such a grammar, the triples [q′Ap], where q

and p are states ofM, cannot generate any string (in fact, once a pair having a horizontal

loop is reached, the computation ofMh can only visit states in the copy of Q). This allows

to reduce the number of variables to 3n2m = 3v. According to Theorem 8.3, each string

in Lh can be accepted using height smaller than 22(3v)2+log2(3v) = 218v2+log2 v+log2 3.

If the set Lv \ Lh is infinite, then it should contain arbitrarily long strings; by Lemma 8.10,

an arbitrarily high stack is required to accept them.

Otherwise, when Lv \ Lh is finite, M accepts in constant height, which is bounded

by the maximum between the height used to accept strings in Lh and the height used to

accept strings Lv \ Lh. To estimate the last amount, first we notice that Lv is accepted by

a PDA Mv which can be obtained by just removing from M all the transitions defined
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from surface pairs [rB] having horizontal loops. Hence, Lv is generated by a context-

free grammar in binary normal form with v = n2m variables. According to Lemma 8.2,

from Mh and Mv we obtain equivalent DFAs with less than 29v2
and 2v2

states, respec-

tively. From them, using a standard product construction, we can obtain a DFA with less

than 210v2
states accepting Lv \ Lh. Since such a language is finite, the length of each

string in it is less than the number of states of such a DFA, i.e., it is bounded by 210v2
.

By Lemma 8.9, this implies that each string in Lv \ Lh is accepted using height bounded

by v210v2
, which is lower than the bound we obtained for strings in Lh. By summarizing,

we can conclude that if M accepts in constant height, then it accepts in height smaller

than 218v2+log2 v+log2 3.

Corollary 8.3. It is decidable whether a unary PDA accepts in constant height.

8.4 Size versus Height in the Unary Case

The arguments used in Section 8.3 to prove that it is decidable whether a unary PDA ac-

cepts in constant height give an exponential upper bound for the maximum stack height,

with respect to the size of a PDA working in constant height (see Theorem 8.4). In this

section we prove that such an exponential bound cannot be reduced.

To prove this result, we shall make use of some modifications of the PDA described in

the following example.

Example 8.1. Let us consider the family of languages (Uk)
∞
k=1 such that, for each k > 0,

Uk = { a2k }. A deterministic PDA Ak for Uk might work as follows. The automaton can

exploit its pushdown to implement the recursive function

f (i) =

 1 if i = 0,

2 f (i− 1) otherwise,

in order to read f (k) = 2k input symbols. To this aim it uses the state set Q = { q, r, p },

and the pushdown alphabet Γ = { A0, A1, . . . , Ak, B1, . . . , Bk }.
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q

q p

r

q p

p
Xi

Ai−1 Bi−1

Figure 8.2: The evolution of the pushdown store ofMk in a [qXi p]-computation, where

the symbol Xi which is initially on the top of the stack is either Ai, i = 1, . . . , k, or Bi,

i = 1, . . . , k− 1. The horizontal dashed lines should be replaced by a move reading one

input symbol, when i− 1 = 0, and by the same pattern, in the other cases.

One call to f (i) is implemented by a [qXi p]-computation, with X ∈ { A, B }. For i = 0,

such a computation consists of one move which reads one input symbol (Transitions 1

or 2 below). Otherwise, the computation is split into two parts, both consuming 2i−1

input symbols, as depicted in Figure 8.2:

• a [qXir]-computation that activates, by a recursive call, one [qAi−1p]-computation

(Transitions 3 or 4, and 7),

• a [rXi p]-computation that activates, by a recursive call, one [qBi−1p]-computation

(Transitions 5 or 6, and 8).

In this way, a [qAk p]-computation consumes the string a2k
. Hence, to recognize Uk the

automaton starts in the state q with Ak on the stack and accepts in the state p.

Formally, Ak = 〈Q, { a }, Γ, δ, q, Ak, { p }〉, where the transitions are:

1. δ(q, a, A0) = (p,−);

2. δ(q, a, B0) = (p,−);

3. δ(q, ε, Ai) = (q, push(Ai−1)), for i = 1, . . . , k;

4. δ(q, ε, Bi) = (q, push(Ai−1)), for i = 1, . . . , k− 1;

5. δ(r, ε, Ai) = (q, push(Bi−1)), for i = 1, . . . , k;

6. δ(r, ε, Bi) = (q, push(Bi−1)), for i = 1, . . . , k− 1;
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7. δ(p, ε, Ai) = (r, pop), for i = 0, . . . , k− 1;

8. δ(p, ε, Bi) = (p, pop), for i = 0, . . . , k− 1.

We point out that, analogously to what happens for NSE grammars, also in this case the

size of Ak is linear in the parameter k, while the minimum DFA accepting Lk has 2k + 1

states. �

We now present the main result of this section:

Theorem 8.5. For each integer k > 0 there exists a PDA Mk having a size linear in k and

accepting in height which is constant with respect to the input length but exponential in k.

Proof. For each integer k > 0, let us consider two automata A′k and A′′k , accepting the

languages { a2k }∗ and { a2k+1 }∗, respectively, obtained by modifying the automaton Ak

of Example 8.1 as follows:

• A′k is obtained by adding to Ak the transition δ(p, ε, Ak) = (q,−) and by choosing q

as final state. This allows A′k to recognize { a2k }∗ with pushdown height k, using 3

states and a pushdown alphabet of size 2k + 1. We point out that, from such a

definition, each accepting computation of A′k visits the surface pair [qAk] which has

a horizontal loop.

• A′′k guesses — at the beginning of the computation — how many repetitions of the

word a2k+1 are concatenated in the input word. This is done, in a preliminary phase,

by pushing one occurrence of the symbol Ak on the store for each guessed repeti-

tion (Transitions 9 below). Then, for any such occurrence, A′′k makes the following

operations:

– it reads one a from the input (Transition 10),

– it simulates one execution of Ak, using Transitions 1–8 in Example 8.1,

– it pops the symbol Ak off the pushdown (Transition 11).
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Formally,A′′k = 〈Q′′, { a }, Γ∪{ Z0 }, δ′′, qI , Z0, { s }〉, where Q′′ = Q∪{ qI , s }, and δ′′

is a copy of δ with the addition of the following nondeterministic transitions:

9. δ′′(qI , ε, X) = { (qI , push(Ak)), (s,−) }, for X ∈ { Z0, Ak };

10. δ′′(s, a, Ak) = { (q,−) },

11. δ′′(p, ε, Ak) = { (s, pop) }.

Notice that A′′k has 5 states and 2k + 2 pushdown symbols. Furthermore, the push-

down height used to accept the string aβ(2k+1) is β + k. So, A′′k does not accept in

constant height.

It is easy to see that the automaton Mk obtained by concatenating the automata A′k
and A′′k using standard techniques (after renaming the states in such a way that the two

sets of states are disjoint) recognizes the language

Hk =
{

at | t = α2k + β(2k + 1), α, β ≥ 0
}

and has 8 states and a pushdown alphabet of 2k + 2 symbols.

By construction, the first part of each accepting computation of Mk is an accepting

computation of A′k which, as above observed, visits a surface pair having a horizontal

loop. Hence, from Theorem 8.3 it follows thatMk accepts in constant height, with respect

to the input length.

We now prove that a height exponential in k is necessary.

Let us consider the string at ∈ Hk obtained by choosing α = 0 and β = 2k − 1, namely,

t = (2k − 1)(2k + 1) = 22k − 1. We are going to prove that there is only one accepting

computation on at.

To this aim, we observe that, due to the structure of Mk, for each accepting com-

putation on at, there should exist two integers α′, β′ ≥ 0, such that t = 22k − 1 =

α′2k + β′(2k + 1), from which 22k− 1− β′ = 2k(α′+ β′) and 22k− 2k(α′+ β′) = β′+ 1. So,

2k should divide β′ + 1. The only possible solution of t = α′2k + β′(2k + 1) is obtained by

taking α′ = α = 0 and β′ = β = 2k − 1. In fact, this solution corresponds to the small-

est β′ ≥ 0 such that 2k divides β′ + 1, while β′(2k + 1) > t for any larger multiple β′ of 2k.
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This allows to conclude that the only accepting computation on at is the one in which the

simulation of A′′k uses height β + k, with β = 2k − 1.

Hence, to accept at an exponential height, with respect the size ofMk, is necessary.

8.5 An Optimal Lower Bound for Non-Constant Height

In this section we turn our attention to PDAs accepting in non-constant height. First of

all, we mention that each nondeterministic Turing machine, with a two-way read-only

input tape, which accepts in o(log log m) space, where m is the input length and the space

is measured by considering the portion of an auxiliary work tape used during the less

expensive computation, actually uses only a constant amount of space [Alb85]. As a

corollary, the height of the pushdown store in any PDAs accepting in non-constant height

should grow at least as the function log log m. Furthermore, this lower bound is opti-

mal [Bed+16].

We show that in the unary case the optimal bound increases to a logarithmic function.

Let us start by proving the lower bound:

Theorem 8.6. Let M be a unary PDA using height h(m). Then either h(m) is bounded by a

constant or there exists c > 0 such that h(m) ≥ c log m infinitely often.

Proof. According to the proof of Theorem 8.4, if h(m) is not constant, then there exist in-

finitely many strings in Lv \ Lh that are accepted only by computations that use vertical

loops and do not visit surface pairs having horizontal loops. LetMv be the PDA accept-

ing Lv (proof of Theorem 8.4), which has the same set of states Q and the same pushdown

alphabet Γ ofM, but that does not visit surface pairs having horizontal loops in accepting

computations.

Given am ∈ Lv \ Lh, let us consider the PDA Mh(m) obtained by bounding the height

of the pushdown of Mv to h(m). To this aim, the pushdown alphabet is extended in

order to keep track of the pushdown height, together with each symbol pushed on the

stack. Hence, since the only symbol that appears at height 0 is Z0, the cardinality of the
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pushdown alphabet ofMh(m) is bounded by #Γ · h(m) + 1. According to the construction

in Section 8.3.2, Mh(m) can be converted into an equivalent grammar in binary normal

form with (#Q)2 · (#Γ · h(m) + 1) variables, from which, using Lemma 8.2, we can obtain

an NFA Nh(m) which is equivalent toMh(m), and whose number of states is 2O(h(m)).

Since Mh(m) has stack height bounded by h(m), it cannot have vertical loops. Fur-

thermore, since accepting computations ofMv do not use surface pairs with horizontal

loops, also accepting computations of Mh(m) do not use horizontal loops. This allows

to conclude that the language accepted by Mh(m) is finite. Thus, in Nh(m), which ac-

cepts the same language, the string am is accepted by a path without any repeated state.

Hence Nh(m) must have more than m states.

This allows to conclude that 2O(h(m)) > m, thus implying the existence of a constant c

such that h(m) ≥ c log m infinitely often.

We now prove a matching upper bound by presenting an overcomplicated device

accepting all unary strings:

Theorem 8.7. There exists a unary PDA accepting every word am, m > 0, using pushdown

height exactly blog2 mc+ 1 and the empty word using height 0.

Proof. Consider the PDA A = 〈Q, { a }, Γ, δ, qI , Z0, qF〉, where Q = { qI , q1, q2, qF }, Γ =

{ Z0, 0, 1 }, and the transition function δ is defined as follows:

1. δ(qI , ε, X) = (qF,−), for X ∈ Γ;

2. δ(qI , ε, X) = (qI , push(0)), for X ∈ Γ;

3. δ(qF, ε, 0) = (q1, pop);

4. δ(q1, a, X) = (q2,−), for X ∈ Γ;

5. δ(q2, ε, X) = (qI , push(1)), for X ∈ Γ;

6. δ(qF, ε, 1) = (qF, pop).
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qI

qI qF

q1 q2

qI qF

qF

0 1
a

Figure 8.3: The evolution of the pushdown store of A during the recursive subroutine

leading from qI to qF, when recursive calls are made. The dashed lines should be replaced

either by an ε-move or, recursively, by the same pattern.

As a first observation, we point out that from the initial state qI it is possible to reach

the final state qF with the same pushdown height by using a subroutine implementing a

recursive strategy: either an ε-move is performed (Transitions 1), or two recursive calls of

the same subroutine, with one read operation between them, are executed. This is done,

as depicted in Figure 8.3, by pushing 0 on the stack, while activating the first recursive call

(Transition 2). When such a recursive call ends, 0 is popped off the stack (Transition 3), a

symbol a is read from the input (Transition 4), and then 1 is pushed while activating the

second call (Transitions 5). Finally, when such a call ends, the symbol 1 is popped off the

pushdown (Transitions 6).

It is possible to notice that each string in a∗ is accepted by A.

In order to state how the length of a word and the height of the pushdown used for

accepting it are related, let us calculate the maximal length `(h) of strings consumed by

[qIXqF]-computations with stack increment h, for X ∈ Γ. We point out that the moves

made during such computations do not depend on the symbol X, hence also `(h) does

not depend on X.

According to the recursive subroutine implemented byA (see also Figure 8.3), we can

write the following recurrence:

`(h) =

 0 if h = 0,

2`(h− 1) + 1 otherwise,

which has solution `(h) = 2h− 1. As a consequence, pushdown height h is necessary and

sufficient to accept all strings of length m, with 2h−1 ≤ m < 2h. Hence, for m > 0, the

string am is accepted in height blog2 mc+ 1.
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9
Future Work

In this dissertation we presented some results related to the area of descriptional com-

plexity, and, in this regard, we focused on the class of regular languages. To conclude the

work, we discuss possible directions for future research in this field.

First of all, it is worth to mention that there exist other models characterizing the

class of regular languages besides the ones analyzed in this thesis. One example are the

well-known regular expressions, widely discussed in classical textbooks (see, e.g. [HU79,

Sha08]).

From regular expressions we can derive a more succinct representation of regular lan-

guages, by using straight line programs, namely programs representing directed acyclic

graphs, whose internal nodes represent the basic regular operations (i.e., union, concate-

nation, and star). Descriptional complexity of straight line programs has been analyzed

and it has been proved that they are polynomially related in size with constant height

pushdown automata [GMP10].

As widely discussed, the question posed by Sakoda and Sipser in 1978 about the elim-

ination of nondeterminism from two-way automata is still open. We plan to continue the

investigation on this question by considering models that have the same computational

power of finite automata and by studying the relations in sizes between these nondeter-

ministic devices and finite automata by deterministic ones.

For example, as remarked by Pighizzini, at the moment direct simulations of 1-limited
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automata by deterministic 1-limited automata and by two-way deterministic automata are

not known [Pig19]. It could be interesting to study if simulating unary and non-unary

1-limited automata by two-way (instead of one-way) deterministic finite automata the

cost reduces from a double exponential to a simple exponential.

It could be also interesting to study “relaxed” versions of the problem of Sakoda and

Sipser, in which the simulating machine is a deterministic 1-limited automaton (i.e., a

deterministic two-way automaton with the capability of rewriting the contents of tape

cells during the first visit).

Moreover, following the research line started in [GGP14], it could be deepen the in-

vestigation on the Sakoda and Sipser problem in case of simulated devices that perform

a limited use of nondeterminism. In this regard, it is possible to consider several restric-

tions like, for example, on the number of nondetermistic choices along the computation

(see, e.g. [HK19]), or on the number of total, or accepting, computations (also known as

degree of ambiguity [Leu05, HSS17, KS19]).
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