

Abstracts of the 5th IGCP-649 Diamonds and Recycled Mantle Workshop and Field Trip in Oman

13th-22nd November, 2019

Organized by IGCP-649 Project Sultan Qaboos University

Abstracts of the 5th IGCP-649 Diamonds and Recycled Mantle Workshop and Field Trip in Oman, 13-22, November, 2019

CONTENTS

Metallogeny of Serpentinite-Hosted Magnetite Deposits: Hydrothermal Overgrowth on	-
<u>Chromite or Metamorphic Transformation of Chromite?</u> ······Alireza ESLAMI,	
Ali KANANIAN, Giovanni GRIECO, G. Diego GATTA, Nicola ROTIROTI	1
Early Paleozoic Ocean in the North Qaidam: Constraints from Kaipinggou Ophiolite	
······CHEN Danling, ZHU Xiaohui, REN Yunfei and TUO Yu	2
<u>The Character and Petrogenetic Model of the Permian Tarim Large Igneous Province</u>	
······CHEN Hanlin, YANG Shufeng, LI Zilong, YU Xing and LI Yinqi	3
<u>Structural evolution of the western Makran</u> CHU Yang,	
······ CHEN Lin, WAN Bo, LIN Wei and Morteza TALEBIAN	6
New Caledonia Ophiolite, marginal rifting to fore-arc evolution Dominique CLUZEL,	
Jonathan AITCHISON, Arianna SECCHIARI, Alessandra MONTANINI, Delphine BOSCH	7
Mesorif Gabbros (External Rif, North Morocco): Ophiolitic suture witness or a "Newly	-
Discovered" Manifestation of the Central Atlantic Magmatic Province?	
······Faouziya HAISSEN, Oriol GIMENO-Vives, Geoffroy MOHN, Valérie BOSSE,	
Mohamed Najib ZAGHLOUL, Achraf ATOUABAT, Dominique FRIZON DE LAMOTTE	9
Geochemistry and Geochronology of OIB-type Early Jurassic Magmatism in the	
Zhangguangcai Range, NE China, as A Result of Continental Back-arc Extension	
FENG Guangying, Yildirim DILEK, NIU Xiaolu, LIU Fei, and YANG Jingsui	11
Remnants of Earth's Oldest Continental Crust Formed by Subduction	•
GE Rongfeng, ZHU Wenbin, Simon A. WILDE, WU Hailin	12
Peperites associated pillow lavas within ophiolites and new insight to tectotonic setting:	-
Comparative study between Oman and West Junggar of ChinaGUO Zhaojie	13
Formation of the Rifting Depression Groups in the Neoproterozoic of the Tarim Basin:	
Responded to the Initial Opening of the Proto-Tethy Ocean HE Bizhu, JIAO Cunli,	
HUANG Taizhu, CAI Zhihui, CAO Zicheng, JIANG Zhongzheng, ZHOU Xingui, CUI	
Junwen, LIU Ruohan, YUN Xiaorui, YU Zhuoying, CHEN Weiwei, HAO Guangming	14
Iron Isotope Compositions of Podiform Chromitites from Dazhuqu and Luobusha	
Ophiolites, Southern Tibet	15
Late Cretaceous high-Sr/Y granitic rocks in the South Qiangtang terrane, Tibetan Plates	au:
crustal thickening during continental collision ··· HU Peiyuan, ZHAI Qingguo, Wang Jun	17
Magmatic processes at the Oman ophiolite paleoridge – perspectives on the role of water	• <u>-</u>
Juergen KOEPKE and Sandrin T. FEIG	19
Vanadium Isotope Composition of the Bulk Silicate Earth: Constraints from Peridotites	and
Komatiites ··· ··· QI Yuhan, WU Fei, Dmitri IONOV, P UCHTEL Igor, Richard W. CARLSEN,	
Robert W. NIKLAS, YU Huimin, KANG Jinting, LI Chunhui, HUANG Fang	21
Peridotites and chromitites form the Dingqing ophiolite in the eastern segment of Bango	ng -
Nujiang suture zone, Tibet: Occurrence characteristics and classifications LIGuanlong,	

YANG Jingsui, BO Rongzhong, LIU Fei, RUI Huichao, XIONG Fahui, GUO Tengfei	22
Mantle Response to Slab Breakoff in the North Qaidam Tectonic Belt: Geochemical	
Constraints from Syn-subduction Mafic Igneous RocksLl Xiucai,	
NIU Manlan, CAI Qianru, WU Qi, SUN Yi, YUAN Xiaoyu, LI Chen	26
Magnetic signature of serpentinization at Zedang in the south Tibetan ophiolite belt	
LI Zhiyong, XIONG Qing and ZHENG Jianping	28
Fingerprints of the Kerguelen mantle plume in Southern Tibet: Evidence from early	
Cretaceous magmatism in the Tethyan Himalaya	
······LIAN Dongyang, YANG Jingsui, LIU Fei, WU Weiwei, XU Zhiqin	30
Tectonic Evolution of Neotethys Ocean: Evidences of Ophiolites and Ocean Plate	
Stratigraphy from the Northern and Southern belts in western Yarlung Zangbo Suture	
Zone, Tibet LIU Fei, YANG Jingsui, LIAN Dongyang, NIU Xiaolu and FENG Guangying	31
Petrology, Geochronology and Geochemistry of the Xar Moron River Ophiolite:	
Implications for the Tectonic Evolution of the Paleo-Asian OceanLIU Jianfeng,	
LI Jinyi, ZHANG Wenlong and YIN Dongfang	32
The Minimum Stable Pressure and Geological Significants of Supersilic Garnet in	
Continental Felsic Rocks: Constraints from HT-HP ExperimentsLIU Liang,	
CHEN Danling, ZHANG Junfeng, KANG Lei, YANG Wenqiang, LIAO Xiaoying, MA Tuo	33
Middle Triassic ophiolitic mélange in the western Yarlung Zangbo suture zone, southern	_
<u>Tibet</u> LIU Qiang, LIU Feng, LI Hualiang, ZONG Keqing, XIANG Shuyuan	35
Tectonic-sedimentary evolution during Late Triassic-Jurassic period in the eastern part of	<u>of</u>
the Qiangtang basin, TibetLIU Ruohan, HE Bizhu,	
ZHENG Menglin, PENG Yang, CHEN Weiwei, YU Zhuoying, YUN Xiaorui	36
Reconsideration of Neo-Tethys Evolution Constrained from the Nature of the Dazhuqu	
Ophiolitic Mantle, Southern Tibet	
LIU Tong, WU Fuyuan, LIU Chuanzhou, ZHANG Chang, JI Wenbin, XU Yang	37
The characteristics and significance of Peng Co peridotites in the middle segment of	
Bangong Co-Nujiang suture in Tibet LU Yuxiao, YANG Jingsui,	
DONG Yufei, XIONG Fahui, CHEN Xiaojian, LI Guanlong, BO Rongzhong	38
<u>Discovery and Geological Significance of Early Carboniferous High-Mg Diorite in the</u>	
Balikun Area, Eastern Tianshan LUO Jinglan, WANG Chong	40
A Red-corundum-bearing Vein in the Rai–Iz Ultramafic Rocks, Polar Urals, Russia: the	_
Product of Fluid Activity in a Subduction Zone	
MENG Fancong, Vladimir R. SHMELEV, Ksenia V. KULIKOVA, REN Yufeng	42
Compositional Variations and Tectonic Settings of Podiform Chromitites Associated with	_
<u>Ultramafic Rocks of the Pan-African Proterozoic Ophiolites from south Eastern Desert,</u>	
EgyptMohamed Metwaly ABU ANBAR, Fernando GERVILLA	43
Textural Insights on Significance of Ophiolitic Chromitites, with Special Reference to On	<u>nan</u>
······Adolphe NICOLAS and Françoise BOUDIER	47
Early Devonian Ultrapotassic Magmatism in the North China Craton: Geochemical and	_
<u>Isotopic Evidence for Subcontinental Lithospheric Mantle Metasomatism by Subducted</u>	-
Sediment–Derived FluidNIU Xiaolu, Yildirim DILEK,	
LIU Fei, FENG Guangying, YANG Jingsui	48
Evidence in Oman for Mantle Excavating Hypervelocity Impact at the Cenomanian-	

<u>Turonian Boundary?</u> Peter OLDS	49
Southward Extension of the Bangonghu-Nujiang Suture: Evidence from Early Cretaceo	us
Intermediate and Felsic Magmatism in the Gaoligong Orogen, China	
·······QI Xuexiang, WEI Cheng, ZHANG Chao, ZHANG Shiqi, JI Fengbao	50
<u>Distribution of the Pan-African domains in East Antarctica and adjacent areas</u>	
REN Liudong, ZONG Shi, WANG Yanbin, LI Chong	52
Geochronology and Geochemistry of Gabbros from Moa-Baracoa Ophiolitic Massif, East	stern
<u>Cuba: Implication for Early Cretaceous SSZ Magmatism</u> RUI Huichao,	
YANG Jingsui, WU Weiwei, LIAN Dongyang, QIU Tian	54
Neoproterozoic Trench-arc System in the Western Segment of Jiangnan Orogenic Belt,	
South China SHU Liangshu	56
Evaluating the precise 39Ar/40Ar dating of multiple mineral potassic phases in ultra-	
<u>alkaline rocks: applications to mantle systematics</u> Simon A. WILDE,	
Fred JOURDAN, Lynda FREWER and Monika A. KUSIAK	57
SSZ Semail Ophiolite vs MORB Masirah Ophiolite: A perspective from Podiform	
<u>Chromitites</u> Sobhi NASIR	58
From Mantle Transition zone with Microstructures: A New Paradigm in Ophiolite	
Souvik DAS	61
<u>Lajishan Ayishan Formation Rhyolites: Implications for the Closure Time of the Proto-</u>	
<u>Tethys Ocean</u> SUN Yi, NIU Manlan, LI Xiucai	63
The Ren Co MOR-type ophiolite in the north-central Tibetan plateau: a fast-spreading r	ridge
segment of the Meso-Tethys Ocean?	
TANG Yue, ZHAI Qingguo, HU Peiyuan, XIAO Xuchang	65
<u>Ultramafic Zoned Complexes of the Urals and Siberia: New Geochemical Evidence of</u>	
Magmatic Origin Vladimir SHMELEV, Maria CHERVYAKOVSKAYA	66
An experimental study of melt-peridotite reaction in the upper mantle: effect of water in	1
<u>reacting melt</u> WANG Chunguang, YAN Liang and XU Wenliang	68
A New Understanding on the Emplacement of Ophiolitic Mélanges and Its Tectonic	
Significance: Insights from the Structural Analysis of the Remnant Oceanic Basin-Type	_
<u>Ophiolitic Mélanges</u> WANG Guocan, ZHANG Pan	69
Rock Assemblages and Formation Ages of the Baishuijiang Group in the Southwest Qinl	ling
Orogenic belt, Northwest China	
························WANG Tao, WANG Zongqi, WANG Dongsheng, WANG MingQian	71
Origin of the Diamonds within Chromitite from the Mirdita Ophiolite (Albania) and its	_
Geological Significance WU Weiwei, YANG Jingsui,	
ZHENG Jianping, LIAN Dongyang, QIU Tian, RUI Huichao	72
Potential New Titanium Minerals in Corundum from the Cr-11 Chromitite orebody,	
Luobusa ophiolite, Tibet, China: Evidence for Super-reduced Mantle-derived Fluids?	
·······XIONG Fahui, XU Xiangzhen, MUGNAIOLI Enrico, GEMMI Mauro, WIRTH Richard,	
GREW Edward, Paul T ROBINSON and YANG Jingsui	75
Sulfide Aggregation in Ophiolitic Dunite Channels Explains Os-Isotope Mismatch between	en
Oceanic Crust and Mantle ··· XIONG Qing, XU Yong, José M. GONZÁLEZ-JINÉNEZ, LIU	
Jingao, Olivier ALARD, ZHENG Jian-Ping, William L. GRIFFIN, Suzanne Y. O'REILLY	76
Mantle Partial Melting and Melt-peridotite Interaction: A Case Study of PeridotiteXend	oliths

in Cenozoic Basalt of Nanjing, SE ChinaXU Haijin, SONG Yanru, XIONG Zhiwu	77
Late Jurassic to early Early Cretaceous strike-slip tectonics on the NE Asian contine	ental
margin: Constraints from Mesozoic accretionary complexes XU Wenliang and LI Yu	79
Petrology and Geochemistry of the Dangqiong Ophiolite, Western Yarlung-Zangbo Su	ıture
Zone, Tibet XU Xiangzhen, YANG Jingsui, XIONG Fahui and GUO Guolin	80
Formation Age and Tectonic Setting of the Muli Arc-Ophiolite Complex in the South Qili	<u>ian</u>
Belt, NW China YAN Zhen, FU Changlei, Jonathan C. AITCHISON,	
NIU Manlan, Solomon BUCKMAN, CAO Bo	81
Geological Evidence does not Support a Shallow Origin for Diamonds in Ophiolite	
YANG Jingsui, LIAN Dongyang, Paul T ROBINSON, QIU Tian, XIONG Fahui, WU Weiwei	82
The Boninite-like Dolerites in the Xigaze Ophiolites, Tibet: Similar to the MORB-like	
<u>Dolerites</u> YANG Shengbiao, YANG Jingsui, Li Yuan and Li Ruibao	86
$\underline{\textbf{Neotethyan Ophiolites and Their Geodynamic Evolution During the Mesozoic: A Global}$	_
<u>Overview</u>	89
Geochronological and Geochemical Study of Mafic-intermediate Dykes from the Northern	rn_
West Junggar, NW China: Source, Petrogenesis and Tectonic Implications	
YIN Jiyuan, CHEN Wen, XIAO Wenjiao	91
Arc-trench System of the Paleo-Tethys Ocean: Inferred from Ophiolite in the Southern	
<u>Lancangjiang Belt, SW China</u> ZHAI Qingguo, TANG Yue, HU Peiyuan,	
JIN Xiaochi, WANG Jun and WANG Haitao	92
Subduction Re-initiation at Dying Ridge of Neo-Tethys: Insights from Mafic and Metama	afic
Rocks in Lhaze Ophiolitic Mélange, Yarlung-Tsangbo Suture Zone	
ZHANG Chang, LIU Chuanzhou, XU Yang, JI Wenbin, WANG Jiamin,	
WU Fuyuan, LIU Tong, ZHANG Zhenyu, ZHANG Weiqi	93
Magma Dynamics of Axial Melt Lens at Fast-Spreading Mid-Ocean Ridges	
ZHANG Chao and Juergen KOEPKE	95
Late Paleozoic Mantle Source Nature of Tianshan Orogen, Northwest China: Evidence for	rom
the Geochemistry, Zircon U-Pb Dating, Hf and whole rock Sr-Nd-Pb Isotopes of the Maf	<u>ic</u>
<u>Dyke</u> ZHANG Chengli, XU Xueyi, WANG Hongliang,	
MA Zhongping, GAO Xiaofeng, CHEN Junlu	96
Metamorphic evolution and exhumation processes of the newly discovered Xilang eclogit	
<u>Tibet—constraints from phase equilibrium modeling and Raman microspectroscopy</u>	
ZHANG Cong, CHEN Jing and LI Yang	99
Multiple Deformation in the Northeastern Alxa Block: Implications for the Southern	
Central Asian Orogeny and Its Subsequent Intraplate evolution ZHANG Jin,	
QU Junfeng, ZHANG Beihang, ZHAO Heng, ZHENG Rongguo	100
<u>Ultrahigh pressure metamorphism and tectonic evolution of southwestern Tianshan orog</u>	
belt, China: a comprehensive review ZHANG Lifei, WANG Yang, ZHANG Lijuan, LV Zeng	
Scientific Drilling - to Construct the Telescopes that Inserting to the Earth Interior	•
ZHANG Xiaoxi and ZHANG Hui	103
Composition and Seismic Properties of the Oceanic Lithosphere: A Synthesis of Ophio	lites
and Core Samples of the IODP ZHAO Jiabin and WANG Qin	105
The Metamorphism and Its Tectonic Implications of Indosinian High Pressure Granulite	<u>'S</u>
from the Badu Complex of the Cathavsia Block, Southwestern Zhejiang Province, South	

<u>China</u> ZHENG Changqing, XU Xuechun, ZHOU Xiw	en,		
ZHOU Xiao, GUO Tengda, YANG Yan, HU Pengyi	ue 107		
Episodic Melt Percolating and Chromite Mineralization in Yushigou Peridotite, Nort	h Qilian		
Suture Zone ZHOU Xiang, ZHENG Jianping, ZHU Hui and Li Yibir	ig 108		
Comparison of Redox States between the Ultramafic Bodies of Xigaze and Luobusha			
Ophiolites, Tibet, ChinaZHU Xiangkun, HE Yuan, SHE Yuwei, WAN Hongqir	ıg 109		

Metallogeny of Serpentinite-Hosted Magnetite Deposits: Hydrothermal Overgrowth on Chromite or Metamorphic Transformation of Chromite?

Alireza ESLAMI 1, 2, *, Ali KANANIAN Giovanni GRIECO3, G. Diego GATTA3, Nicola ROTIROTI3

- ¹ School of Geology, College of Science, University of Tehran, Tehran, 1417614418, Iran
- ² ISTerre, Maison des Géosciences, Université de Grenoble-Alps, CNRS, F-38041 Grenoble, France
- ³ Dipartimento di Scienze della Terra, Università degli Studi di Milano, via Botticelli 23, 20133, Milan, Italy

Corresponding author's E-mail: alireza.eslami@ut.ac.ir; alirezaesl@live.com

Abstract: Peculiar and rare occurrences of serpentinite-hosted magnetite deposits with mineable sizes are found in the Mesozoic ophiolites of Greece (Skyros), Iran (Nain and Sabzevar) and Oman (Aniba). These deposits have diverse thickness (from a few centimeters up to 50 m) and length (2 to >500 m). Magnetite ores show variable textures, including massive, nodular and banded ores, veins, net and fine-grained disseminations in serpentinites. Intriguingly, the investigated magnetite deposits can be mistaken for chromitite pods. Serpentinite-hosted magnetite deposits show three modes of occurrences including: (i) boulders strewn across the serpentinites (i.e. Skyros Island) (ii) ore bodies along the nonconformity contacts between serpentinites and limestones (i.e. Aniba); (iii) irregular and discontinuous trails of massive and semi-massive ore bodies within highly sheared serpentinite masses (i.e. Nain; Sabzevar). In all of these magnetite ore bodies, relicts of chromian spinel grains are occasionally enclosed in magnetite crystals. The chemistry of Cr-spinel relics found in these magnetite bodies are comparable to those of accessory Cr-spinels in the surrounding serpentinized peridotites. BSE images and elemental mapping revealed that magnetite occurs as a nucleation on chromian spinels but not being involved in reaction either with chromite or ferritchromite. Low-grade metamorphic transformation of chromite into Fe-chromite is documented along the cracks and fractures of a few chromite grains. Generally, magnetite has typical hydrothermal compositions, characterized by low Cr, V and Ti and high Mg and Mn. It is crucial to note that a few magnetite grains with metamorphic origin are characterized by high Cr and low Ti and Ni. The potential source of iron is essentially the Fe-rich olivine, We believe that multi-episodic serpentinization of peridotite systems at high fluid-rock ratios is the main process responsible for precipitation of magnetite at ore levels whereas low-grade metamorphic transformation of chromite to magnetite has minor contribution. Cumulative factors in generation of these deposits are modal volume of mantle olivine, peridotite composition, fluid chemistry, fluid-rock ratio, mechanisms of transportation and precipitation, structural controls such as cracks and shear zones.

Key words: serpentinite-hosted magnetite deposit, multi-episodic serpentinization, metamorphic transformation

Acknowledgments: This work is granted by the Iran National Science Foundation (Grant No. 98000178) and the Iranian Ministry of Science, Research and Technology.

About the first author

Alireza Eslami is a PhD student in the universities of Tehran, School of Geology and Grenoble-Alpes, ISTerre. He received his M.S. in Economic Geology at Tarbiat Modares University (Iran). His current research is on the behavior of the iron and other ore-forming elements during hydrothermal processes in serpentinized peridotites from Tethyan ophiolites.

About the corresponding author

Alireza Eslami is a PhD student in the universities of Tehran, School of Geology and Grenoble-Alpes, ISTerre. He received his M.S. in Economic Geology at Tarbiat Modares University (Iran). His current research is on the behavior of the iron and other ore-forming elements during hydrothermal processes in serpentinized peridotites from Tethyan ophiolites. Email: alireza.eslami@ut.ac.ir; <a