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A Free-Electron Laser (FEL) operating in the quantum regime can provide a compact and

monochromatic X-ray source. Here we review the basic principles of a high-gain quantum FEL starting

from noise, with special emphasis on the self-amplified spontaneous emission (SASE) mode operation.

In the first part, the full quantum theory of the N-particle and single-radiation-mode FEL Hamiltonian is

presented. Quantum effects such as cooperative gain, discrete spectrum and line narrowing are

described, both in the multi-particle and in the second quantization formalism. In the second part,

propagation effects (i.e. slippage) are described and the main features of the quantum SASE regime are

discussed. The broad and spiky radiation spectrum observed in the classical SASE reduces in the

quantum regime to a series of narrow lines, associated to sequential transitions between adjacent

momentum states. A simple interpretation of the discrete nature of the spectrum and of the line width

of the single spike observed in the quantum regime is presented.

& 2008 Elsevier B.V. All rights reserved.
1. Classical and quantum SASE-FEL

The realization of a Free-Electron Laser (FEL) in the self-
amplified spontaneous emission (SASE) mode [1] is presently the
goal of several projects (such as LCLS [2] at Stanford, USA, XFEL [3]
in Hamburg, Germany, and [4] in Japan), to obtain a high-
brightness X-ray source. However, such sources will radiate a
pulse with a broad spectrum composed of many random super-
radiant spikes [5]. Recently it has been shown that an FEL can
operate in a quantum regime [6], in which the spiking behavior
observed in SASE mode disappears and the spectrum reduces to a
single narrow line [7,8], providing an enormous improvement in
the coherence of SASE-FEL based X-ray sources. The transition
from the classical to the quantum regime is controlled by the
‘‘quantum FEL (QFEL) parameter’’

r̄ ¼ r
mcgr

_k
(1)

(where r is the FEL parameter [1]), equal to the ratio between the
maximum classical momentum spread (of the order of mcgrr) and
the photon recoil momentum _k. It expresses also the maximum
number of photons emitted per electron in the classical regime.
When r̄b1 an SASE-FEL operates in the classical ‘‘multi-photon’’
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regime, and the spectrum of the emitted field is broad and chaotic.
In this regime an SASE-FEL radiates a random series of super-
radiant spikes because, at short wavelength, the electron bunch
contains many cooperation lengths which radiate randomly and
independently one from the other [5]. The number of spikes in
the high-gain regime corresponds approximately to the number
of cooperation lengths in the electron bunch (i.e. Lb=2pLc).
The final result is an almost chaotic temporal pulse structure
with a broad spectral width, unless Lbp2pLc. Hence, classical
SASE has the following drawback with regard to its application as
a useful source of short-wavelength coherent light: when
Lbb2pLc, its temporal coherence is very poor due to the noisy
spectrum.

Recently, we have shown that when an SASE-FEL is in the
quantum regime (with r̄p1) each electron emits only a single
photon and the spectrum reduces to a single narrow line, Fourier
limited by the electron beam duration [9]. So the spiky spectrum
of classical SASE is replaced by an almost coherent spectrum, as if
the system would be driven by a coherent seed. More specifically,
in the quantum regime the spectrum is composed by discrete
narrow lines equally spaced, generated by sequential transitions
between adjacent momentum states. Increasing r̄, the line
distance decreases and the width increases until when, for
r̄40:4, the lines overlap and the continuous and spiky classical
spectrum is recovered.

For an experimental realization of a QFEL it is necessary to use
a laser wiggler in a Compton backscattered configuration [10,11],
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instead of the magnetic wiggler as used in the classical SASE
experiments [2–4]. In a laser wiggler configuration, a low-energy
electron beam back scatters the photons of a counter-propagating
high power laser, with a frequency up-shifted by a factor 4g2.
However, such a choice sets some stringent conditions on the
electron and laser beam parameters. A parametric study of the
experimental requirements necessary to operate a laser wiggler
FEL in the quantum regime has been discussed in Ref. [9].
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Fig. 1. Imaginary part of the complex root of the cubic Eq. (13) vs. d for 1=2r̄ equal

to (a) 0, (b) 0:5, (c) 3, (d) 5, (e) 7 and (f) 10.
2. Quantum description of FEL

We review the main features of the quantum description of an
FEL, limited to the one-dimensional, cold electron beam and
uniform wiggler case. The more general three-dimensional
quantum model of an FEL with the laser wiggler is described
elsewhere in these Proceedings. Following Ref. [8], we start from
the FEL Hamiltonian for N electrons interacting with a single
mode of radiation [12,13]:

H ¼
XN

j¼1

p2
j

2r̄
þ i

ffiffiffiffiffiffiffiffiffi
r̄=N

p
ðaye�iyj � aeiyj Þ

" #
�

d
N

aya (2)

where yj ¼ ðkþ kwÞz� cktj � dz̄ and pj ¼ mcðgj � g0Þ=_ðkþ kwÞ are

position and momentum operators of the j-th electron, with

½yi; pj� ¼ idij, a is the annihilation operator of the radiation field,

with ½a; ay� ¼ 1, z̄ ¼ z=Lg, Lg ¼ lw=4pr is the gain length, d ¼

ðg0 � grÞ=rg0 is the detuning, r ¼ ð1=grÞðawop=4ckwÞ
2=3 is the

classical FEL parameter, op ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2n=m�0

p
is the plasma frequency,

gr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð1þ a2

wÞ=2kw

p
is the resonant energy (in mc2 units) and aw

is the undulator parameter. We observe that the dynamics depend
on the QFEL parameter r̄ defined in Eq. (1). From the Hamiltonian
(2) we derive the following Heisenberg equations for the
operators:

dyj

dz̄
¼

pj

r̄
(3)

dpj

dz̄
¼ �

ffiffiffiffiffiffiffiffiffi
r̄=N

p
ðaeiyj þ aye�iyj Þ (4)

da

dz̄
¼

ffiffiffiffiffiffiffiffiffi
r̄=N

p XN

j¼1

e�iyj þ ida. (5)

A constant of motion, which represents the total momentum in
dimensionless units, is given by

XN

j¼1

pj þ aya ¼ const. (6)

Let us introduce the following electron collective operators:

B ¼
1ffiffiffiffi
N
p

XN

j¼1

e�iyj (7)

P ¼
1ffiffiffiffi
N
p

XN

j¼1

pje
�iyj þ e�iyj pj

2

 !
(8)

where B is the bunching and P is the symmetrized momentum
bunching. This symmetrization is fundamental whenever one is
dealing with products of non-commuting operators, i.e.

½e�iyj ; pk� ¼ djke�iyj .

We consider a, pj and
P

j e�iyj as fluctuation operators, i.e. the
initial states for the electrons and the field is such that
hai0 ¼ hpji0 ¼

P
j he
�iyj i0 ¼ 0. Writing the Heisenberg equations

of motion and neglecting the high-order quantities

1ffiffiffiffi
N
p

X
j

ðpje
�iyj pjÞ; ay

1

N

X
j

e�2iyj (9)
we obtain the following equations for the linear regime:

dB

dz̄
¼ �

i

r̄
P (10)

dP

dz̄
¼ �

i

4r̄
B�

ffiffiffī
r

p
a (11)

da

dz̄
¼

ffiffiffī
r

p
Bþ ida. (12)

The quantum correction to the classical description [1] is given by
the term �iB=4r̄ in the equation for P. Looking for solutions of the
linear system (10)–(12) of the form Bðz̄Þ ¼ B0 expðilz̄Þ, we obtain
the cubic characteristic equation

ðl� dÞ l2
�

1

4r̄2

� �
þ 1 ¼ 0. (13)

Notice that this dispersion relation coincides with that of a
classical FEL with an initial energy spread with a square
distribution and width 1=2r̄, i.e. this extra term represents the
intrinsic quantum momentum spread which, in real units, becomes
_k=2. The features of the solution of the cubic equation (13) are
shown in Fig. 1. When r̄p1 (Fig. 1(b)–(f)), the resonance occurs at
d ¼ 1=ð2r̄Þ, with full width equal to 4

ffiffiffī
r
p

and peak value
Im l ¼

ffiffiffī
r
p

. Note that the field and the bunching grow exponen-
tially as expð

ffiffiffī
r
p

z̄Þ ¼ expðz=L0gÞ, where L0g ¼ Lg=
ffiffiffī
r
p
¼ lw=ð4pr

ffiffiffī
r
p
Þ is

the quantum gain length.
Hence, in the quantum regime r̄o1, the resonance condition is

mcðgr � g0Þ ¼ _k=2 (i.e. d ¼ 1=2r̄ our dimensionless variables).
Moreover, the gain bandwidth increases (and the gain length
decreases) as the square root of r̄.

An alternative description to the N-particle Hamiltonian
model can be formulated in the second-quantization formalism,
treating the electrons as non-interacting bosons [14,15]. In this
formulation, the N particles are described by a matter-field
operator Ĉðy; z̄Þ obeying the bosonic equal-time commutation
relation

½ĈðyÞ; ĈðyÞy� ¼ dðy� y0Þ (14)

and the normalization condition isZ 2p

0
ĈðyÞyĈðyÞ ¼ N̂. (15)
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In this formulation, the second-quantized Hamiltonian is

Ĥ ¼

Z 2p

0
ĈðyÞyH y;�i

q
qy
; a; ay

� �
ĈðyÞ (16)

where H is the single-particle Hamiltonian defined in (2). The
Heisenberg equation for Ĉðy; z̄Þ and a are

i
qĈ
qz̄
¼ ½Ĉ; Ĥ� ¼ �

1

2r̄
q2Ĉ

qy2
þ i

ffiffiffiffiffiffiffiffiffi
r̄=N

p
ðaye�iy � aeiyÞĈ (17)

da

dz̄
¼ �i½a; Ĥ� ¼

ffiffiffiffiffiffiffiffiffi
r̄=N

p Z 2p

0
dy ĈðyÞye�iyĈðyÞ þ ida. (18)

We expand the matter-wave field in the momentum basis,

ĈðyÞ ¼
Xþ1

n¼�1

cnunðyÞ (19)

where un ¼ ð1=
ffiffiffiffiffiffi
2p
p
Þ expðimyÞ are the eigenfunctions of p with

eigenvalue n and cn are the annihilation operators for the state
with eigenvalue n, with ½cn; c

y
m� ¼ dn;m. Then, using (19) in Eqs. (17)

and (18), we obtain

dcn

dz̄
¼ �i

n2

2r̄
cn þ

ffiffiffiffiffiffiffiffiffi
r̄=N

p
ðaycnþ1 � acn�1Þ (20)

da

dz̄
¼

ffiffiffiffiffiffiffiffiffi
r̄=N

p Xþ1
n¼�1

cyn�1cn þ ida. (21)

The quantum expression for the bunching parameter appearing in
the right-hand side of Eq. (21)

b ¼
1

N

Xþ1
n¼�1

cyn�1cn (22)

shows that the electron bunching involves a coherent super-
position of different momentum states. A fully quantum treat-
ment of the linear regime of Eqs. (20) and (21) has been given in
Ref. [15], considering the equilibrium state with no photons and
all the electrons in the state with n ¼ 0 (i.e. hai0 ¼ 0 and
hcy0c0i0 ¼ N). Then, considering c1, c�1 and a as fluctuation
operators, we obtain the same quantum linear equations
(10)–(12), in which the bunching and the momentum bunching
operators are defined as B ¼ c1 þ cy

�1 and P ¼ c1 � cy
�1. In this

description the electrons have initially a definite value of
momentum (i.e. p ¼ 0), so that they are delocalized in position.
The dynamics of the system is that of three parametric coupled
harmonic oscillators, a1 ¼ c�1, a2 ¼ c1 and a3 ¼ a, which obey
commutation rules ½ai; aj� ¼ 0 and ½ai; a

y

j � ¼ dij for i; j ¼ 1;2;3. The
average occupation numbers are hnii ¼ ha

y

i aii (i ¼ 1;2;3). The state
n1 refers to electrons with negative recoil (decelerating), n2 with
positive recoil (accelerating) and n3 is the photon number. In
Ref. [15] the exact evolution of the three modes has been calcu-
lated starting from vacuum fluctuations, demonstrating that the
three modes are entangled and the number variance is s2

i ¼

hniið1þ hniiÞ [12,13], i.e. the statistics is that of a thermal state.
Furthermore, in Ref. [15] it has been shown that for r̄p1 the
electrons, initially in the momentum state n ¼ 0, populate only
the lower momentum state n ¼ �1, recoiling backward by _k

when a photon is emitted. In this quantum regime the system
behaves as a two-level system, described by the two operators c0

and c�1. The average number of photons grows exponentially as
hn3i � hn1i � ð

1
4Þ expð

ffiffiffī
r
p

z̄Þ at resonance (i.e. for d ¼ 1=ð2r̄Þ) and at
saturation the number of emitted photons is N.
3. QFEL model with propagation

The previous quantum model has been extended to include the
effects of propagation or slippage [16] (which are fundamental to
SASE) by using a multiple scaling method, previously adopted also
to derive the classical FEL equations [17]. This allows to take into
account the existence of two different spatial length scales: the
variation of the electron distribution on the scale of the radiation
wavelength (describing the bunching on the variable y) and the
variation of the field envelope on the much longer scale of
the cooperation length, described by z1 ¼ 2ry ¼ ðz� vrtÞ=brLc, i.e.
the electron coordinate along the bunch, in units of the
cooperation length, Lc ¼ l=ð4prÞ [18]. As discussed in Ref. [14],
the field operator Ĉ can be approximated by the complex function
C � hĈi=

ffiffiffiffi
N
p

and the electromagnetic field by the dimensionless
classical radiation amplitude, A ¼ a=

ffiffiffiffiffiffiffi
r̄N

p
. With these approxima-

tions, the QFEL model with propagation is

i
qCðy; z1; z̄Þ

qz̄
¼ �

1

2r̄
q2

qy2
Cðy; z1; z̄Þ

� ir̄½Aðz1; z̄Þe
iy � c:c:�Cðy; z1; z̄Þ (23)

qAðz1; z̄Þ

qz̄
þ
qAðz1; z̄Þ

qz1
¼

Z 2p

0
dyjCðy; z1; z̄Þj

2e�iy

þ idAðz1; z̄Þ. (24)

Notice that A is defined such that r̄jAj2 is the ratio between the
photon and the electron densities. Moreover, From Eq. (23) it
follows that the dimensionless density profile

I0ðz1Þ ¼

Z 2p

0
jCðy; z1; z̄Þj

2 dy (25)

is independent of z̄. This means that the spatial distribution of the
particles does not change appreciably on the slow scale z1 during
the interaction with the radiation field.

Eqs. (23) and (24) are conveniently solved in the momentum
representation. Assuming that Cðy; z1; z̄Þ is a periodic function of y,
it can be written as a Fourier series of momentum eigenstates as
in Eq. (19):

Cðy; z1; z̄Þ ¼
1ffiffiffiffiffiffi
2p
p

X1
n¼�1

cnðz1; z̄Þe
inðyþdz̄Þ (26)

where now jcnðz1; z̄Þj
2 is the local probability to have an electron

with momentum p ¼ nð_kÞ at z̄ and z1. By inserting Eq. (26) into
Eqs. (23) and (24) and defining A ¼ Āeidz̄, we obtain [16]

qcn

qz̄
¼ �iEncn � r̄ðĀcn�1 � Ā

�
cnþ1Þ (27)

qĀ

qz̄
þ

qĀ

qz1
¼
X1

n¼�1

cnc�n�1 (28)

where En ¼ n2=ð2r̄Þ þ nd. Eqs. (27) and (28) are the discrete QFEL
model with propagation.

3.1. Linear analysis

We now perform a stability analysis of Eqs. (27) and (28)
around the equilibrium state in which the electrons are in the
momentum state nð_kÞ, with arbitrary n. As done in Section 2, we
assume Ā ¼ 0 and cn ¼ 1 and cm ¼ 0 for all man, i.e. all the
electrons in the same state n. Looking for solutions of the
linearized equations proportional to eiðlz̄þōz1Þ (where ō ¼
ðLc=cÞðo0 � oÞ ¼ ðo0 � oÞ=ð2roÞ is the frequency shift of the
radiation field with respect to the carrier frequency o), one
obtains the quantum dispersion relation

ðl� DnÞ l2
�

1

4r̄2

� �
þ 1 ¼ 0 (29)

where Dn ¼ dþ ðn=r̄Þ � ō is the generalized detuning. Note that
the dispersion relation in Eq. (29) reduces to Eq. (13) when n ¼ 0
and ō ¼ 0. The behavior of the imaginary part of l as a function of
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Fig. 2. Imaginary part of the unstable root of the cubic equation (29) vs. ō ¼
ðo0 � oÞ=ð2roÞ for d ¼ 0, (a) r̄ ¼ 0:1, (b) r̄ ¼ 0:2, and (c) r̄ ¼ 0:4. Each line is

centered around ō ¼ ðn� 1
2Þ=r̄ and has a width 4

ffiffiffī
r
p

. For r̄40:4 the lines overlap

and the spectrum becomes almost continuous.

R. Bonifacio et al. / Nuclear Instruments and Methods in Physics Research A 593 (2008) 69–7472
Dn is the same as that shown in Fig. 1, in which Dn takes the place
of d. We remember that, when r̄o1, the resonance moves from
Dn ¼ 0 to Dn ¼ 1=ð2r̄Þ, with a width of 4

ffiffiffī
r
p

in units of Dn. This
corresponds, in the momentum space, to a shift of _k=2 with a
width 4r̄3=2ð_kÞ. Let us now consider a fixed value of r̄ and plot
ImðlÞ for d ¼ 0 as a function of frequency shift ō, as shown in
Fig. 2. It can be seen that the regions of the spectrum
corresponding to gain (ImðlÞ40) appear as a series of discrete
lines corresponding to different values of n. Each of these lines is
centered on ō ¼ ðn� 1

2Þ=r̄, equally separated by a distance 1=r̄,
and has a width 4

ffiffiffī
r
p

. The transition to the classical continuous
gain spectrum occurs when the width of the lines becomes larger
than their separation, i.e. when r̄4 1

2

� �4=3
� 0:4 (see Fig. 2). The

physical reason for the existence of such a discrete spectrum is
that in the quantum regime the electron recoils by _k, so it
undergoes a transition from an initial state with energy
En / p2 / n2, to the final state with energy En�1 / ðn� 1Þ2. Hence,
the transition frequency varies as n� 1

2, as shown above. For r̄b1
the probabilities of transition from the momentum states n to
n� 1 are comparable (i.e. jcnþ1j

2 � jcn�1j
2), so that an electron

may either absorb or emit a photon. The difference between the
emission and absorption rates yields the FEL gain in the classical
regime. On the contrary, in the case r̄o1, the emission rate is
much larger than the absorption rate (i.e. jcn�1j

2
bjcnþ1j

2) and the
electrons do only the transition n! n� 1, emitting a photon. In
this quantum regime the FEL behaves approximately as a two-
level system described by the Maxwell–Bloch equations known in
laser physics [19].
3.2. The quantum purification of the SASE spectrum

We now show that the discrete nature of the gain spectrum in
the quantum regime, shown in Fig. 2, is the origin of the
‘‘quantum purification’’ observed the SASE spectrum. Fig. 3 shows
the numerical solution of Eqs. (27) and (28), for Lb ¼ 30Lc and
d ¼ 0. The simulations assume all the electrons initially in the

same momentum state n ¼ 0, Aðz1; z̄ ¼ 0Þ ¼ 0, c�1ðz1; z̄ ¼ 0Þ ¼
b0eifðz1Þ and c0ðz1; z̄ ¼ 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

0

q
, where b0 ¼ 0:01 and fðz1Þ is

a randomly fluctuating phase with values in the range ½0;2pÞ.
Fig. 3(a) and (b) show the field intensity as a function of z1 at
z̄ ¼ 30 for the classical regime and z̄ ¼ 150 for the quantum
regime, respectively. Fig. 3(c) and (d) show the corresponding
classical and quantum power spectra of the radiated field vs.
ō ¼ ðo0 � oÞ=2ro, where o is the carrier frequency. A dramatic
difference between the classical (Fig. 3(a) and (c)) and the
quantum evolution (Fig. 3(b) and (d)) appears: whereas the
temporal structure in the classical limit is almost chaotic and
spectrum broad (see Fig. 3(a) and (c)), on the contrary in the
quantum limit the temporal behavior shows a purification of the
initially noisy evolution, and the spectrum is composed of two
narrow lines, whose positions are in agreement with the linear
theory prediction (see Fig. 2(a)). Notice that the line separation
1=r̄ corresponds in frequency to the relativistic recoil frequency

2_k2=grm. In Fig. 3(b) we observe also the rapid beat between the
two frequencies of Fig. 3(d). Initially, for short z̄, only the
frequency with ō ¼ �1=ð2r̄Þ appears. Increasing z̄ additional lines
downshifted by 1=r̄ also appear, corresponding to the sequence of
the several momentum transitions.

The transition from the quantum to the classical SASE regimes
is observed in Fig. 4, showing the scaled power spectra, PðōÞ, for
different values of r̄ and for z̄ ¼ 150. We observe that the
spectrum, composed of discrete, narrow lines for r̄51, becomes
quasi-continuous when r̄X0:4, in agreement with the predictions
of the linear analysis described in the previous section.
3.3. A simple interpretation of the spectral narrowing

The ‘‘quantum purification’’ of the SASE spectrum can be
interpreted by the following simple argument [9]: The maximum
induced energy spread in an FEL is dg=g�r, which in terms of
momentum spread is dp ¼ mcdg�r̄ ð_kÞ. So, the QFEL parameter r̄
yields the ratio between the maximum momentum spread
(induced in the classical regime) and the photon recoil momen-
tum _k; quantum effects become important when r̄o1, since in
this case the discreteness of momentum exchange is relevant. This
provides a simply explanation of the origin of the broad and spiky
classical spectrum and its reduction to a single line in the
quantum regime. In fact, the radiation emission is due to the
transition between adjacent recoil momentum states (pðnÞ ¼ n_k),
which are equally spaced by the photon momentum. The emitted
frequencies in the transitions n! n� 1 are also equally spaced,
since they are proportional to the difference between the
corresponding kinetic energies. In the classical regime (r̄b1)
many momentum states becomes occupied and the multiple
transitions between the different momentum states lead to a
multi-frequency spectrum with equally spaced lines and an
envelope width Do=o�2r. The many sequential transitions occur
randomly under the gain curve, leading to the multiple-line
chaotic spectrum observed in the classical SASE. Since the
radiation is emitted during a time Lb=c, its line width is
Do=o ’ l=Lb. Hence, the number of spikes Ns in the classical
regime can be obtained by the ratio between the envelope width
and the single spike line width Ns ¼ 2r=ðl=LbÞ ¼ Lb=ð2pLcÞ [5],
where Lc ¼ l=4pr is the cooperation length. Conversely, in the
quantum regime r̄o1, the momentum spread dp cannot be
smaller than the photon recoil _k and only a single frequency,
corresponding to a single momentum transition, occurs with line
width

Do
o

� �
QFEL

’
l
Lb

. (30)
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Fig. 3. Numerical solutions of Eqs. (27) and (28), for Lb ¼ 30Lc and d ¼ 0, in the classical regime (r̄ ¼ 5 and z̄ ¼ 30) (a, c) and in the quantum regime (r̄ ¼ 0:1 and z̄ ¼ 150)

(b, d): Graphs (a) and (b) show the scaled intensity and graphs (c) and (d) show the corresponding scaled power spectra as a function of scaled frequency ō ¼ ðo0 � oÞ=2ro,

where o is the resonance frequency. The dotted line in (a) and (b) mark the front edge of the electron pulse. The frequency shift in (d) is in agreement with that predicted

from Fig. 2(a).

Fig. 4. The transition from quantum SASE to classical SASE: scaled power spectra, PðōÞ, as a function of scaled frequency ō ¼ ðo0 � oÞ=2ro for z̄ ¼ 150, calculated from a

numerical solution of Eqs. (27) and (28) for d ¼ 0 when (a) r̄ ¼ 0:1, (b) r̄ ¼ 0:2, (c) r̄ ¼ 0:3, and (d) r̄ ¼ 0:4.

R. Bonifacio et al. / Nuclear Instruments and Methods in Physics Research A 593 (2008) 69–74 73
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Fig. 5. Line width of the single spike in the quantum regime, s0 ¼ ðL0c=cÞso , vs. the

inverse of the electron bunch length, L0c=Lb (triangles). The straight line is

s0 ¼ 2pðL0c=LbÞ.
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This means that a QFEL operating in the Ångstrom region with the
electron beam duration t ¼ 1 ps could generate radiation with a
line width of 10�7, much smaller than the envelope line width 2r
of the classical SASE spectrum (typically of the order of 10�3).
Hence, the QFEL can be a very promising X-ray source generating
quasi-monochromatic radiation (although at a lower power than
in a classical SASE-FEL) and a formidable tool for ultra-high
resolution process studies.

We have done a preliminary numerical test of Eq. (30),
measuring the width s0 ¼ ðL0c=cÞso of the single spike in the SASE
spectrum for different electron bunch lengths Lb=L0c, where L0c ¼

Lc=
ffiffiffī
r
p

is the quantum cooperation length. The simulations have
been done for r̄ ¼ 0:2 and the SASE spectrum is at z̄ ¼ 20 (i.e. after
nine quantum gain lengths L0g ¼ Lg=

ffiffiffī
r
p

). Fig. 5 shows s0 as a
function of L0c=Lb (triangles) and the prediction of Eq. (30), which
in terms of dimensionless variables reads s0 ¼ 2pðL0c=LbÞ (straight
line in Fig. 5). The numerical points of s0 lay around Eq. (30),
proving that the width of the spike is Fourier limited by the
electron pulse duration. Hence, the coherence length in the
quantum regime is of the order of the electron beam length. A
more complete numerical study of the quantum line width in
SASE will be presented elsewhere.
4. Conclusions

In conclusion, we have reviewed some aspects of the quantum
regime of the FEL (QFEL). Firstly, from a quantum N-particle FEL
theory we have obtained the cubic characteristic equation,
showing the shift and the narrowing of the FEL resonance in the
quantum regime r̄o1. The same results have been obtained also
using the second quantization formalism, from which it has been
shown that photons and electrons can be entangled [15]. In the
second part, we have presented the principles of the quantum
SASE regime, whose dynamical properties appear very different
from the usual classical SASE. In contrast to what happens in the
classical regime, in the quantum limit r̄o1 a ‘‘quantum purifica-
tion’’ of the temporal and spectral structure occurs: the spectrum
becomes a series of discrete narrow lines, separated in momen-
tum space by _k and with a width 4r̄3=2ð_kÞ. The continuous and
broad spectrum observed in the classical SASE is recovered when
r̄ increases such that the width of each discrete line exceeds the
separation between the lines, so that they overlap. A simple
interpretation of the observed spectral line width, Fourier limited
by the electron beam length, is given. The possibility of
experimental operation in the quantum regime using a laser
wiggler has been investigated in Refs. [9–11]. In this prospective, a
complete three-dimensional quantum model for an FEL with a
laser wiggler, based on the Wigner function formalism, has been
developed [20] and is currently under investigation [21].
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