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Abstract. The Random spray Retinex (RSR) algorithm was
developed by taking into consideration the mathematical description
of Milano-Retinex. The RSR substituted random paths with
random sprays. Mimicking some characteristics of the human visual
system (HVS), this article proposes two variants of RSR adding a
mechanism of region of interest (ROI). In the first proposed model,
a cone distribution based on anatomical data is considered as ROI.
In the second model, the visual resolution depending on the visual
field based on the knowledge of visual information processing is
considered as ROI. We have measured actual eye movements using
an eye-tracking system. By using the eye-tracking data, we have
simulated the HVS using test images. Results show an interesting
qualitative computation of the appearance of the processed area
around real gaze points. c© 2019 Society for Imaging Science and
Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2019.63.6.060403]

1. INTRODUCTION
Scenes perceived by the human visual system (HVS) may
differ from the corresponding ideal photometric image. The
perceived color will depend on the chromatic content of
the neighboring objects or background. This phenomenon
is named as ‘‘the locality of color perception.’’

Retinex by Land and McCann [1, 2] was the first
computational model that explained how the HVS perceives
color. The model presented in this article is a particular
variant of a Milano-Retinex algorithm [3], named Random
spray Retinex (RSR) [4]. The idea is to test a hybrid approach
starting from the Retinex computational model, with the
implementation of a particularmethod of image exploration.

Retinex is a model that accounts for the spatial
formation of the visual color sensation in our vision system

IS&T Members.
Received July 14, 2019; accepted for publication Mar. 10, 2019; published
online Nov. 26, 2019. Associate Editor: Susan Farnand.
1062-3701/2019/63(6)/060403/6/$25.00

[1, 2]. The idea has been successful and has generated a wide
set of implementations for the original method [5–7] and for
themany versions that arose from the later simplified version
by Land [8, 9]. A detailed description of Retinex history and
of the differences among the many variants can be found
in [10, 11].

Stated the biological inspiration of all the many existing
Retinex models, a very important detail is their quantitative
versus qualitative implementation. In fact, for a quantitative
implementation, two different phases have to be inserted
in the pipeline, the first at the beginning for a careful
calibration of the input ‘‘stimulus’’ and the second at the
end for the calibration of the final computed appearance.
A more detailed description of this important point can be
found in [12]. A qualitative implementation presented here
has many more degrees of freedom since it does not aim
at modeling the exact visual response of HVS but rather
computing an image ‘‘enhanced’’ in the direction of the
spatial changes performed by HVS.

The main characteristic of Retinex models is the
spatial recomputation of each pixel value performed with
a series of ratio operation in luminous intensity difference
across the image. This idea of exploring the image content
through paths is a common feature for many Retinex
implementations (not all) and has been modeling studies [7,
13–19].

Retinex image exploration evokes spontaneously the
natural exploration of the scene that derives from the
foveal distribution of the retinal maximal acuity in HVS.
The presented approach is an attempt to connect these
two different mechanisms in order to test if this joint
computation leads to an improvement in the final overall
enhancement. Ohtera et al. proposed a Retinex based on the
region of interest (ROI) [20]. This method was an image
processing model based on center/surround processing,
which is similar to the simplified version of Retinex [8, 9].
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Instead of starting from a path Retinex version, we
have decided to start from RSR [4]. RSR, a Milano-Retinex
implementation, substitutes random paths with random
sprays. This simplifies the implementation of a further
spatial ‘‘movement.’’ In this case, we have added a deeper
exploration starting from the lightest point in the spray as
will be presented in detail in the next sections.

This article proposes two models of the HVS by
performing the RSR along ROI. In the first proposed model,
a cone distribution based on anatomical knowledge is
considered as ROI. In the secondmodel, the visual resolution
depending on the visual field based on the knowledge of
the visual information processing is considered as ROI. The
feasibility of the proposed models is verified by experiments.

2. MODELS CONSIDERING ROI
In this section, we propose two simulationmodels. In the first
model, a cone distribution based on anatomical knowledge is
considered as ROI. In the secondmodel, the visual resolution
depending on the visual field based on the knowledge of
visual information processing is considered as ROI. Both
models are built based on the principle of the RSR. Therefore,
in Section 2.1, we will start with a description of the RSR.

2.1 Traditional RSR Model for Fixation Point
Consider an RGB digital image and a collection of N paths
γ1, . . . , γN composed of ordered chains of pixels starting
with jk and ending in i. Letnk be the number of pixels traveled
by the kth path, γk. The RSR [4] is a new implementation
of the original Retinex model [1, 2, 8, 9] motivated by the
results of the mathematical analysis of Retinex performed
in [3]. In the RSR, the role of the path, γk, traveling nk
pixels and ending in the target, i, is performed by Sprayk(i), a
spray composed of nk pixels and centered at i. In particular,
the RSR explores the locality of a digital image by selecting
pixels with dense samples called random sprays, located in a
circular area around the pixel, i, with the density decreasing
as a function of the distance from i. The function, Sprayk (i),
performs a pixel selection composed of nk pixels centered
at i to reveal different local filtering properties. Note that
in the RSR, varying the number of points per spray with k
is not required; hence, n and not nk is used to denote the
number of pixels per spray. To generate a spray,we first obtain
a uniform random distribution of values within [0, 1]. Then
it is multiplied to extend to the intervals of [0, 2π] and [0,
R], where R is a real positive number corresponding to the
radius of the spray, yielding the distributions, RANDn[0, R]
and RANDn [0, 2π]. (ix , iy) being the coordinates of a pixel,
i, we can obtain the polar coordinates, (jx , jy), of a pixel j in
Sprayk(i) with {

jx = ix + ρ cos(θ)

jy = iy + ρ sin(θ)
, (1)

where ρ ∈ RANDn[0, R] and θ ∈ RANDn[0, π]. Sprays are
then selected from N random precomputed sprays and used
to search for the pixel with the highest intensity in all the

sprays. For each spray, the RSR performs N comparisons to
determine the xHk pixel with the highest intensity traveled by
the path, γk. By calculating a ratio between intensities I (i) for
a pixel i and I (xHk) for the pixel xHk, the RSR recomputes the
lightness, L(i), by averaging the contributions as follows:

L (i)=
1
N

N∑
k=1

I (i)
I
(
xHk

) . (2)

2.2 Model Based on Cone Distribution
The RSR described in Section 2.1 is an algorithm for fixed
viewpoints. In this section, we extend RSR to the function
of ROI based on anatomical information. Anatomically, the
cone cells present in the human retina are more distributed
near the center of the retina (the fovea centralis), and they
decrease rapidly as they move away from the fovea. We
simulate the function for ROI by applying the RSR based on
the density distributions of the cone cells.

Although individual differences are observed in the
distributions of the cone cells, we assumed that the spatial
density distributions of the cones follow a normal distribu-
tion in this study. In addition, there is evidence to suggest
that the cone photoreceptor array plays a critical role in
spatial sampling in theHVS in the region fromapproximately
1◦ to 10◦ [21–24]. Therefore, a visual field of 2◦ from the
fixed point of view is set as ROI, and random numbers are
generated in ROI to achieve a two-dimensional (2D) normal
distribution as the processing pixels.

Let p be a pixel in ROI set for a fixed pixel, i, and the RSR
algorithm calculates the lightness, L

(
i; p
)
, as

L
(
i; p
)
=

1
N

N∑
k=1

I
(
p
)

I
(
xHk(p)

) , ∃p ∈ ROI(i). (3)

The lightness is calculated at all pixels, p, in ROI.
Figure 1 shows an example of a set of pixels, p, in ROI,

indicated in blue color. The gray point at the center shows a
fixed pixel, i. The pixels, p, are randomly generated in ROI to
achieve a 2D normal distribution as the processing pixels.

2.3 Model Based on Visual Resolution
As a different approach from Section 2.2, we extend RSR to
the function of ROI based on visual information processing.
In particular, we focused on the resolution of the eye.

In the HSV, the first 2◦ of the visual angle has the best
resolution performance, following which the performance
gradually declines to 10◦ of the visual angle. To apply this
property to the RSR described in Section 2.1, the visual
acuity is considered to set a new spatially variable parameter
depending on the visual angle from a fixed point. We newly
introduce a weight, w(R), where R represents the Euclidean
distance between the fixed point, i, and a pixel p in ROI
as R =

∥∥i− p
∥∥2. Here, we set ROI as the 10◦ visual degree
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Figure 1. Set of points p in the ROI. (Top) Top view of the two-dimensional
distribution. (Bottom) Distribution frequency histogram.

region. Then the weight, w(R), is defined as

w (R)=


1.0, (R≤ r2)

I
(
xHk(p)

)
−1

r10−r2 (R− r2)+ 1, (r2 < R≤ r10)

I
(
xHk

(
p
))
, (r10 < R)

, (4)

where r2 is the radius of the 2◦ visual degree region and r10
is the outer radius of the 10◦ visual degree region. Then, the
RSR algorithm calculates the lightness, L

(
i; p
)
as

L
(
i; p
)
=

1
N

N∑
k=1

I
(
p
)

I
(
xHk

(
p
)) w(‖i− p‖2) ,∀p ∈ ROI(i).

(5)
Note that unlike the model described in Section 2.2, this is
defined for all the pixels, p, in ROI with a viewing angle of
10◦. Figure 2 illustrates the definition of the weight, w(R).
As shown in the figure, Eq. (4) represents that the weight,
w(R), within a viewing angle of 2◦ is 1.0, and the RSR works
completely. However, when the viewing angle is larger than
10◦, the weight is constant I

(
xHk

(
p
))
, and the output of

L
(
i; p
)
matches the original intensity, I (p), of a pixel p.

2.4 Eye Movement Processing
In Sections 2.2 and 2.3, we proposed a model for a fixation
point and its ROI. In this section, a processing model for the
case of the viewpoint moving with time will be described.

Basically, even when the viewpoint moves, RSR pro-
cessing may be performed on each sampling point of the
sequential viewpoint. However, note that we may look at
the same point multiple times along the time sequence.
Therefore, we can form two hypotheses. One hypothesis is
that the effect of the RSR is repetitively amplified by viewing

Figure 2. Definition of the weight, w (R). (Left) Illustration of the symbols.
(Right) Illustration of the weight for the viewing angle.

multiple times, and the other one is that the effect of the RSR
is constant regardless of the number of times. Because the
former hypothesis needs a complex visual processing model
considering latency memory and afterimage, this study
adopted the latter hypothesis. However, in the processing for
a pixel p in ROI, the model in Section 2.3 may have different
weights depending on the distance to the fixation point, i, and
may have different outputs of lightness. Therefore, we adopt
a larger weight, w.

3. EXPERIMENT
To verify the feasibility of our proposed models, we
conducted simulation by measuring ROI based on actual eye
tracking.

3.1 Measurement of ROI
To simulate the ROI from the actual eye movement, we
conducted an experiment to measure visual point movement
when an observer looks at a displayed image.

In our HVS, the diameter of one cone is about 2 µm
(30′′ of visual angle), and the distribution interval between
the cones in the central fovea is 35′′. When we assume that
the above-mentioned 30′′ of the visual angle corresponds
to one pixel on a displayed image in real world, we can
realize the simulation of amore realistic retinal image. In this
experiment, we used a laptop display (VAIO Corp., VAIO Z
VJZ13A1). The laptop has a display size of 20.6 cm×16.5 cm.
Therefore, to realize one pixel on a digital image as one
cone, we set our observation condition (viewing distance:
50 cm, viewing angle: 23.28◦ × 18.74◦ and resolution:
2288× 1830 pixels) because one pixel corresponds to 36.63′′

(it is similar to 30′′ of the viewing angle by one cone).
The gaze points were measured by an eye tracker (NAC

Image Technology Inc., EMR-9) using the positions of both
eyes. Figure 3(a) shows a snapshot of the experimental
environment. The target image displayed on a laptopmonitor
is used as an experimental stimulus. The participant observes
the experimental stimulus by changing only the visual
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(a)

(b)

Figure 3. Experimental environment. (a) System setup. (b) A stimulus.

point under a fixed chin support. Fig. 3(b) shows that
the experimental stimulus was a simple color chart. We
also prepared test stimuli even for images that were more
complex than the color chart and performed simulations
using the proposed models. The test images were natural
scenes under low illumination conditions (710× 613 pixels),
and a cube (1000× 800 pixels) was from the YACCD (yet
another color constancy database) dataset [25]. These images
are approximately contained in the 10◦ field of view. A
participant freely observed three target images for 30 s. The
results of this step yield a very low visual impact because
each fixation lasts on an average 200–300 ms, and in 30 s
of gazing at the image, only ∼120 pixels will be affected.
Therefore, 1800 detected gaze points (60 Hz × 30 s) were
reduced to 200 points after excluding the noise data by using
the area threshold (outside the target image area) and the
frequently detected data with the same coordinate. All the
experiments were conducted in accordance with The Code
of Ethics of the World Medical Association (Declaration of
Helsinki). Written informed consent was obtained from all
the participants.

3.2 Results for Single Gaze Point
In this section, we consider the processing results for a single
gaze point. In the experiment, the diameters of the circles
with viewing angles of 2◦ and 10◦ corresponded to 1.75 (194
pixels) and 8.75 cm (972 pixels) on the display.

(a) (b)

(c)

Figure 4. Results for a fixation point. (a) Original image. (b) Model based
on the cone distribution (Section 2.2) (number of pixels p = 16,325).
(c) Model based on the visual resolution (Section 2.3) (number of pixels
p = 741,977).

Figure 4 shows the simulation results of close-up images
for the color chart image. In Fig. 4(a), the red ‘‘x’’ represents
a fixation point. Figs. 4(b) and 4(c) show the simulation
results for the fixation point by the proposed models in
Sections 2.2 and 2.3, respectively. Although the number of
processed pixels, p, in ROI varies significantly between the
twomodels, in both the simulation results, it is observed that
the brightness is improved in the area around the fixation
point, and the color of the original image is maintained as
it approaches the border of ROI.

3.3 Results for Eye-Tracking Data
The proposed model was applied to the time series gaze
tracking data described in Section 3.1. Figure 5 shows the
simulated images of the color chart image obtained by
each model. Fig. 5(a) shows an original test image and the
sampled gaze points indicated as red ‘‘x’’s. Figs. 5(b)–(d) show
the simulated images using the traditional RSR, proposed
model based on the cone distribution and another proposed
model based on visual resolution, respectively. Compared to
Fig. 5(b), the proposed model simulates the HVS in ROI. As
shown in Fig. 5(a), the participant observes each color patch
and grid line to compare the difference in the lightness and
color. A participant observes the same gaze points several
times. It is reported that the appearance is constant and
not repetitively amplified by viewing multiple times in an
introspection survey. Therefore, our hypothesis of the effect
of the RSR being constant regardless of the number of times
seems to be reasonable to simulate the appearance of human
vision.

Other results are presented in Figures 6 and 7. As shown
in Fig. 6, the appearance of the processed area around
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(a) (b)

(c) (d)

Figure 5. Results for the color chart image. (a) Original image. (b)
Traditional RSR (Section 2.1). (c) Model based on the cone distribution
(Section 2.2) (total number of pixels p = 101,575). (d) Model based on
the visual resolution (Section 2.3) (total number of pixels p = 364,820).

(a) (b)

(c) (d)

Figure 6. Results for the natural scene image. (a) Original image (‘‘x ’’:
200 measured gaze points). (b) Traditional RSR (Section 2.1). (c) Model
based on the cone distribution (Section 2.2) (total number of pixels
p = 94,704). (d) Model based on the visual resolution (Section 2.3) (total
number of pixels p = 366,276).

the real gaze points results natural. For the cube images
shown in Fig. 7, the same fixation points measured for
the red-light condition are used as the eye-tracking data
for the other cube images. Figs. 7(c) and (d) confirm the
chromatic normalization effect typical of SCAs (spatial color
algorithms) [12].

(a) (b)

(c) (d)

Figure 7. Results for the cube image. (a) Original image (‘‘x ’’: 200
measured gaze points). (b) Traditional RSR (Section 2.1). (c) Model based
on the cone distribution (Section 2.2) (total number of pixels p = 86,735).
(d) Model based on the visual resolution (Section 2.3) (total number of
pixels p = 324,494).

4. CONSIDERATION
We conducted an additional experiment to detect the
characteristics of the eye movement during gazing at the
target point on an object. Our eyes are typically not perfectly
still during gazing but are perturbed by small undetectable
ocular motions called involuntary eye movements. Their
role is to counteract the effects of a neural adaptation
during unvarying stimuli, preventing the effect of perceptual
fading. This processingmethod considers the involuntary eye
movements in the computation of the RSR. Three types of
eye motions can be distinguished during a gazing: tremor,
drift andmicrosaccades. A tremor is defined as an aperiodic,
wave-like motion of the eyes with a frequency from 30 to 100
Hz and an angular extent of 10–20 s of the arc, about the
diameter of one cone in the fovea [26]. A visual tremor is also
reported to be generally independent in both eyes, generating
a physical limit on the ability of matching the corresponding
visual points at the retina during a stereoscopic vision. Drifts
are movements that occur in conjunction with a tremor,
resulting in a slow motion of the eyes, causing the image to
move across an extent of 5 min of the arc. Micro saccades
are extremely small and unnoticeable jerking movements of
an eye occurring during a voluntary fixation, usually moving
the retinal image across 2–25 min of the arc and occurring
in about 25 ms [27]. These movements have been theorized
to be functional during fixations, similar to the saccadic
movements during the exploration of a scene.

In ourmodels, we desired to incorporate involuntary eye
movements in the RSR computation. As shown in Figure 8,
we record the data from microsaccades and drifts using an
eye-tracker set to a detection rate of 60 Hz while fixating
the target gaze point marked as a red symbol for 30 s.
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(a) (b)

Figure 8. Consideration of the involuntary eye movements. (a)
Measurement result. ‘‘x ’’ is the target point. Blue dots indicate the detected
points as involuntary eye movements. (b) Visualization result.

We considered the results for the dominant right eye of
one of the authors with a viewing distance of 50 cm while
observing a target in the color chart (2288× 1830 pixels),
with one pixel corresponding to 36.63′′ of the viewing
angle. Fig. 8(a) shows the detected points, with a range
of about 30 × 50 pixels (18.3 × 30.5′), distributed over
an approximate oval shape. The visualization result using
the traditional RSR is shown in Fig. 8(b). Because of the
drifted points, the eye movements might have an anisotropy
depending on the viewing condition, such as dominant eye,
target point in the field of view and focus distance. Therefore,
isotropic modeling like Brownian motion does not seem to
be appropriate for the simulation. Moreover, an involuntary
eye movement is affected by the color and luminance of the
target object [28]. To incorporate involuntary eyemovements
into our model, considerations of an anisotropic modeling
based on the eye characteristics and the color and luminance
of the target object in the Retinex model are needed by our
experiments.

5. CONCLUSIONS
This article proposed two models extending RSR along ROI.
In the first proposed model, a cone distribution based on
anatomical knowledge was considered as ROI. Based on the
knowledge that the cone photoreceptor array plays a critical
role in spatial sampling in the HVS in the region from
approximately 1◦ to 10◦, the visual field of 2◦ from the fixed
point of view was set as ROI. Moreover, random numbers
were generated in ROI to achieve a two-dimensional normal
distribution as the processing pixels. In the secondmodel, the
visual resolution depending on the visual field based on the
knowledge of visual information processing was considered
as ROI. Based on the knowledge of the visual information
processing, we developed a model in which the first 2◦ of
the visual angle had the best resolution performance, which
then gradually declined to 10◦ of the visual angle by using the
weight for the RSR.

As a support for the proposed models, we measured
actual eyemovements using an eye-tracking system. By using
the eye-tracking data, we acquired the HVS movements
using test images. Results confirmed the interest of such
an extension of the RSR model. A wide and more accurate

comparison of the results of the proposed extension will be
the subject of further research.
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