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Abstract 

Introduction: Alzheimer’s disease (AD), the most common form of dementia worldwide, is a 

multifactorial disease with a still unknown etiology. Herpes simplex virus 1 (HSV-1) has long been 

suspected to be one of the factors involved in the pathogenesis of the disease. 

Areas covered: We review the literature focusing on viral characteristics of HSV-1, the 

mechanisms this virus uses to infect neural cells, its interaction with the host immune system and 

genetic background and summarizes results and research that support the hypothesis of an 

association between AD and HSV-1. The possible usefulness of virus-directed pharmaceutical 

approaches as potential treatments for AD will be discussed as well. 

Expert opinion: We highlight crucial aspects that must be addressed to clarify the possible role of 

HSV-1 in the pathogenesis of the disease, and to allow the design of new therapeutical approaches 

for AD. 

 

 

Keywords: Alzheimer’s disease, Human herpes simplex virus type-I, immunity, mild cognitive 

impairment, pharmaceutical treatments. 
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Article highlights 

• A possible role for the reactivation of HSV-1, a virus that commonly infects humans, in the 

pathogenesis of AD is suggested by a string of observations. 

• After the initial infection HSV-1 persists in latent state in trigeminal ganglia and, upon 

reactivation can reach the brain, as showed by detection of HSV-1 viral genome in brain of 

elderly people. 

• Reactivation of HSV-1 can cause neuronal damage, directly and/or by induction of 

inflammation. 

• Host immunity is critical to control viral reactivation and it is impaired in AD patients. 

• If HSV-1 infection is a risk factor for AD, antiviral treatments could be useful in the 

prevention/treatment of this disease.  
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1. Introduction 

Alzheimer’s disease (AD) is a common form of senile dementia that in 2018 affects 50 million 

individuals around the world, and that in the near future will become one of the biggest medical 

issue, at least in western countries, due to the increase of life expectancy. Thus, the World 

Alzheimer Report predicts that in 2050 a total of 152 millions of people will suffer from AD [1]. AD 

is an inflammatory neurodegenerative disease characterized by progressive decline of normal 

cognitive abilities and of intellectual impairment, with a consequent loss of working abilities and 

the incapacity to perform daily living activities [2] Importantly, an intermediate stage between AD 

and healthy aging is Mild Cognitive Impairment (MCI), defined as a subjective and objective 

decline in cognitive performance that is greater than expected for individual’s age and education 

level, but does not meet criteria for the diagnosis of dementia [3]. The brain of AD patients is 

mainly characterized by the presence of intraneuronal neurofibrillary tangles, formed by abnormal 

phosphorylated Tau protein, and extracellular senile plaques, formed by amyloid-β (Aβ), a peptide 

produced by the proteolysis of amyloid precursor protein [4]. 

The etiology of AD is still unknown: the disease is defined as multifactorial as several factors 

interacting with each other are suspected to be involved in its development. Amongst these 

factors important roles are played by genetic background, in particular the ε4 allele of the 

apolipoprotein E (ApoE) gene, infections and inflammation. 

A role for pathogens in the development and progression of AD [5] has long been suspected, and 

human spirochetes, fungi, Borrelia burgdorferi, Chlamydophila pneumomniae, Helicobacter pylori 

and human herpes simplex virus type 1 (HSV-1) have been envisioned as possible culprits. The 

possibility that HSV-1 could be involved in the pathogenesis of AD, in particular, was originally 

hypothesized by Ball in 1982, when he proposed that “reactivation [of HSV-1] travelling 

centripetally [through known anatomic nerve fiber connections into the limbic areas of the brain] 

might be the cause of the degenerative lesions typical both of Alzheimer’s Disease and of the 

normal aged human brain” [6]. After the primary infection, HSV-1 can remain latent in the nervous 

system; very rarely, its reactivation can result in an acute and often lethal form of encephalitis [7]. 

In this case, the brain area involved are the hippocampus as well as the temporal and frontal 

lobes; interestingly these are the same brain area that are affected in AD. This observation offered 

one of the first supports to the Ball hypothesis. In 1991 Jamieson and coworkers found traces of 

HSV-1 genome in brains of sporadic AD patients; importantly viral genome was present in those 

areas – hippocampus, temporal and frontal lobes – typically affected by AD [8]. The importance of 
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these results was somewhat diminished by the fact that HSV-1 genome was also detected in brains 

of non-demented elderly individuals suggesting that brain HSV-1 latent infection is a relatively 

frequent event. Interestingly, in 1997 Itzhaki and coworkers added a further piece to this scenario 

by showing that the combination of ApoE4 allele, a genetic risk factor for AD, and HSV-1 in brain, 

greatly augments the risk of developing AD [9]. Some years later the same researchers proposed 

that recurrent reactivation of latent HSV-1 in brain results in localized neuron damage through 

direct and indirect toxic effects of the virus [10]. 

To note, the HSV-1 DNA detection in AD brain varies considerably in literature, from the absence 

[11] or small proportion of positivity (2%) [12], to a higher DNA presence (35%) [13], up to almost 

totally positive AD brain samples (70-100%)[8,9]: differences in methodological sensitivity, 

reduced DNA yield extraction from fixed material with long duration of storage may be the 

reasons of these discrepancies. Another important aspect is that not only HSV-1, but also other 

herpesvirus species (i.e. HHV-6A) [14] as well as bacteria (i.e. Borrelia burgdorferi and Chlamydia 

pneumoniae) and fungi can be detected in brain tissues [15], highlighting the need to perform 

larger studies to confirm these data and to analyze the presence of other uninvestigated 

pathogens.  

Based on literature databases (up to March 2019), in this review we summarize the main findings 

and results that support the presence of a link between AD and HSV-1, link that, acting in synergy 

with other, yet unidentified factors could have a role in the onset and development of this 

neurodegenerative disease. 

 

2. Herpes simplex virus 

Herpes simplex virus (HSV) type 1 and type 2 are human neurotropic, host-adapted pathogens 

whose lifestyle is based on a long-term dual interaction with the infected host that can establish 

both lytic and latent infections [16]. These viruses establish latent infections in sensory ganglia; 

such infections can undergo reactivations that can be either asymptomatic or symptomatic. In this 

case, cold sores, keratitis, blepharitis, meningitis, encephalitis, genital infections or systemic and 

severe conditions in immune compromised patients can be observed [17]. Dissemination is very 

common in human communities owing to latent infection, periodic reactivation, and 

asymptomatic virus shedding. HSV is a highly prevalent infection worldwide: 67% of the 

population under the age of 50 was shown to be infected with HSV-1 and 11% harbors HSV-2 [18]. 

The HSV-1 infection is generally acquired during childhood, although during the past twenty years 
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in developed countries a decreased trend of seroprevalence has been observed in adolescent and 

young adults [19]. 

 

2.1 Structure of HSV-1 

The HSV-1 virion includes 4 components: the outer envelope, the tegument, the capsid and the 

core [20] (Figure 1). The envelope consists of a lipid bilayer and anchors approximately 11 viral 

glycoproteins, four of which (gB, gD, gH, and gL) are essential in allowing virus entry into cells [21]. 

The tegument is an unstructured amorphous layer that surrounds the capsid, it includes more 

than 20 proteins and is important in the regulation of viral replicative cycle [22]. The capsid is 

composed by 162 capsomeres that are organized within an icosahedral structure. The core is the 

central domain of the virus and contains the linear, double stranded, 152 kbp DNA (dsDNA) 

genome . The HSV genome can be divided into two unique sequences, designated as unique long 

(UL) and unique short (US), flanked by large repeated sequences, internal (IRL and IRS) and 

terminal (TRL and TRS). The viral genome encodes approximately 90 unique transcriptional units, 

of these at least 84 encode proteins that can perform many functions in the infected cell. 

 

2.2 Virus attachment and entry  

To initiate infection, HSV-1 binds at least three different classes of cell-surface receptor and fuses 

its envelope with the plasma membrane. The entry of HSV-1 into epithelial cells is a complex 

process [23]. Its envelope contains 11 glycoproteins that are very important in mediating the initial 

steps of viral attachment and entry into the cell as well as facilitating cell-to-cell spread of the virus 

[21]. The virus enters by fusion with the plasma membrane or via endosomes through an 

orchestrated process that requires gB, the most ubiquitous envelope glycoprotein in human 

herpesviruses, and three other essential envelope glycoproteins (gD and gH/gL), activated in a 

cascade fashion. 

Glycosaminoglycan-chains (GAGs) are expressed on the host cell; among these, heparan sulfate 

(HS) proteoglycans (HSPGs) are the primary attachment receptors for HSV gB and gC. The 

interaction of gC and gB with HS receptor is labile and is reinforced by the participation of gD in 

the process [24,25]. After the viral and the host membranes are brought into close vicinity, gD 

interacts with one or more cellular receptors [25] inducing a conformational change to the 

heterodimer gH/gL, modifying it into a form that interacts and triggers the fusogenic activity of gB 

[23]. By the interaction of gH/gL with gB, the prefusion glycoprotein shifts to a post fusion 
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conformation that is capable of forming the fusion pore. 

Fusion pore completes the fusion process; at this point the virion particles, along with the 

tegument, enter the cytoplasm. After penetration into the cytoplasm, some tegument proteins 

remain in the cytoplasm while other are transported to the nucleus or remain associated with the 

capsid that travels via microtubule network, to the nucleus [26]. The processes of transcription 

and replication of the viral genome, as well as the assembly of progeny capsids, take place within 

the nucleus.  

 

2.3 Lytic cycle 

Ones inside the nucleus, viral DNA is rapidly circularized and viral genes are expressed in a tightly 

regulated, interdependent temporal sequence. The lytic cycle of HSV-1 can be divided into three 

phases, which involve the expression of three groups of viral genes: α or Immediate Early (IE), β or 

Early (E) and γ or Late (L) [20]. IE genes are first expressed, about 2-4 hours post-infection, by the 

combined action of the tegument viral protein (VP) 16, known also as α-TIF (α-trans-inducing 

factor) with at least two cellular proteins, the octamer-binding protein (Oct-1) and the host cell 

factor 1 (HCF-1), that targets the TAATGARAT motif upstream of the IE promoters stimulating the 

transcription of five IE genes [27]. During this early stage the corresponding proteins are 

synthesized: infected-cell polypeptide (ICP)4, ICP27, ICP22, ICP0 and ICP47. ICP4, an essential viral 

protein, is a DNA binding protein that interacts with basal transcription factors, such as TATA-

binding protein (TBP), TFIIB, TFIID and TAF250 [28]. This interaction activates most E and L genes 

and represses the transcription of other IE genes [28]. ICP27, in particular, is responsible for the 

post-transcriptional modifications that control viral mRNA splicing, represses the expression of 

some IE and E proteins and induces L protein expression [29]. ICP27 also contributes to the 

decrease of cellular genes expression and is an important regulator of host cell fate [29]. ICP22 

plays an important role in replication and pathogenicity of HSV-1 since his function is crucial to 

allow the optimal expression of E and L genes, to promote the formation of functional virions 

composition, and to permit capsid nuclear egress [30]. ICP47 binds to the transport proteins TAP1 

or TAP2, preventing the transport of viral peptides to the endoplasmic reticulum [31]. ICP0 is a 

transactivator that promotes transcription of many viral and cellular genes during the lytic 

infection and is essential for latency reactivation [32]. ICP0 is a RING finger protein and exhibits 

two distinct ubiquitin ligase activities that interact with different cellular E2 ubiquitin-conjugating 

enzymes and therefore targets different cellular substrates [32]. The major mechanism of action of 
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ICP0, thus, may be the degradation of specific cellular proteins via the ubiquitin-proteasome 

pathway [32]. After IE gene transcription and expression, the E phase starts, this leads to the 

production of proteins responsible for viral DNA synthesis and packaging. Expression of E genes 

requires at least the presence of functional ICP4 and reaches a peak at 4-8 hours post-infection. 

During this phase, proteins mostly act as enzymes and are responsible for the replication of the 

viral genomes that are produced. Among them important roles are played by DNA polymerase 

(UL30/UL42 complex), thymidine kinase (TK), single-stranded DNA (ssDNA) binding protein (SSB), 

also known as ICP8, a DNA helicase-primase, and UL9 [20,21]. Finally, viral DNA replication 

stimulates the transcription of L genes that mainly consist of structural proteins of the virion, such 

as tegument and envelope proteins, and proteins responsible for the assembly of the viral particle. 

The assembly of the viral particle starts in the nucleus: a procapsid, a spherical fragile intermediate 

is formed, the DNA is then packaged and undergoes a morphological change to become a mature 

icosahedral capsid [20,21].  

 

2.4 HSV-1 infection in neuronal cells and latency establishment  

The initial site of entry within neurons is usually at the axon terminus near peripheral epithelial 

cells [33]. The entry mechanism in sensory nerves depends on the cell type and on the interaction 

of viral glycoproteins with the cellular receptors [33]. During infection of neurons, HSV-1 causes a 

biphasic remodeling of the actin cytoskeleton by first inactivating and then reactivating cofilin-1, 

resulting in F-actin assembly and disassembly during early and late stages of infection [33]. After 

the fusion, the capsid is transported retrogradely to the nucleus along the microtubules; this 

transport involves the dynein/dinactin complex [34]. Release of the viral genome in the neuronal 

nucleus results in its rapid association with histones to create a circular episomal DNA. Viral genes 

are not expressed at this stage with the exception of LAT gene which is expressed in high 

abundance [35]. The functions of LATs transcripts are not completely clear, but they have a 

fundamental role in maintaining viral latency which can silence lytic gene expression and block 

apoptosis [36]. During latency, chromatin plays an important role: in fact, the histones associated 

with the latent viral genome are often modified [35]. Experimental animal model have been used 

to show that in the trigeminal ganglia of infected mice the expression of genes IE, E and L occurs in 

the first 24-72 hours after infection, whereas in the following period their expression decreases 

and LAT transcripts accumulate: this results in the establishment of latent infection [37]. Generally 

sensory neurons do not express lytic proteins, but several stress stimuli may induce the 
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reactivation of the virus in these neurons. The assembled capside exits the nucleus through the 

inner nuclear membrane and merges with the outer nuclear membrane. Viral capsids containing 

inner tegument proteins with or without an envelope, and vesicles associated with glycoproteins 

and tegument proteins are targeted for active transport along microtubules in axons using the 

neuronal secretory pathway. The virus is then transported in anterograde manner to the area of 

primary infection where a new productive infection starts [38].  

 

3. Virus-host interaction 

3.1 HSV-1 and apoptosis  

Apoptosis, also called programmed cell death, is an important innate mechanism that eliminates 

pathogen-infected cells. This mechanism has a crucial role in limiting viral replication and 

transmission emphasizing the importance of this host-interaction process in viral pathogenesis.  

HSV has evolved in the manner to modulate apoptosis in different cell types either with anti-

apoptotic genes to promote the generation of new viral progenies or with pro-apoptotic genes to 

promote cell death to favor viral release and shedding. LAT, US3 and many other HSV-1 genes, 

including ICP4, ICP34.5, UL54, US1, US5 and US6 [39] are suspected to regulate apoptosis. The 

ability of LAT to interfere with apoptosis correlates with its ability to promote spontaneous 

reactivation [40]. LAT inhibits multiple steps in apoptotic cascades and inhibit dephosphorylation 

of pAKT levels to promote cell survival and indirectly to control caspase 3 and block apoptosis [41]. 

The two small RNAs encoded by the initial part of LAT gene are involved in the inhibition of 

caspase 8- and caspase 9-induced apoptosis [42]. The US3 is a multifunctional protein kinase that 

plays various roles in the viral life cycle by phosphorylating a number of viral substrates [43]. US3, 

can block apoptosis, as it activates antiapoptotic substrates targeted by the cellular cyclic 

adenosine monophosphate (cAMP)-dependent protein kinase [44]. Benetti and Roizman have 

demonstrated that Us3 blocks the proteolytic cleavage of caspase 3 inhibiting its activation and 

consequently the apoptotic event [45]. Many other viral proteins have a role in blocking apoptosis 

(summarized in table 1), in particular, US5 that encodes for the non-essential glycoprotein J (gJ) 

inhibits caspase 3/8 activation through Fas-mediated or granzyme B induced apoptosis [46,47].  

3.2 HSV-1 and host immunity  

Multiple innate immune pathways cooperate to form a barrier to viral infection: particular 

receptors (called pattern recognition receptors, PRRs) survey cells surface and intracellular 

compartments for specific pathogen-associated patterns (PAMPs), including viral DNA, RNA and 
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proteins. Toll like receptor-2 (TLR2) recognizes HSV-1 envelope glycoproteins (gD, gH, gL and gB), 

whereas on TLR9 and TLR3 detect respectively viral GC-rich/AT-repeated DNA regions and double 

strand RNA (dsRNA) [48]. TLR3, in particular, has an important protective role against HSV-1, as 

witnessed by the observation that patients with TLR3 dominant negative mutations are more 

susceptible to herpes simplex encephalitis [49]. 

A number of cytosolic receptors have been suggested to sense HSV-1 nucleic acid as well. Thus, 

RIG-1 and MDA-5 sense dsRNA whereas other receptors (cGAS, DNA-PK, DAI, IFI16, DDx41, DHx9, 

DHx36) are activated by viral DNA, although for many of these receptors the precise mechanism 

remains to be investigated [48]. 

After the binding of viral ligands to receptors, adaptors (such as MyD88, TRIF, MAVs, STING) are 

recruited, kinase proteins (as IKK, TBK) are activated and, after nuclear translocation of 

transcription factors (NF-Kb; IRF3; IRF7), type I IFNs (IFN-α and IFN-β) are generated; IFNs are 

crucial for the control of infection as they production induces the expression of hundreds of 

responsive genes (ISGs), among which pro-inflammatory cytokines (IL-6, IL-12, TNFα) and 

chemokines (CXCL-10, CXCL-9) that promotes viral clearance through the recruitment of 

specialized immune cells. 

The inflammasome is activated as well by HSV-1: this process is started by DNA binding to sensor 

molecules (IFI16 and NOD-like receptor family pyrin domain containing 3 or NLRP3) and results in 

the production of the pro-inflammatory cytokines IL-1β and IL-18 [50]. IFI16 (IFNγ-inducible 

protein 16), in particular, is another important player in the immune response to HSV-1. Thus, 

IFI16 binds the viral genome in the cytoplasm of the infected cell through STING/IRF3 proteins 

[51]; this leads to type 1 IFNs expression, and, through the activation of the inflammasome to IL-

1β and IL-18 release. Notably this proteins has a nuclear action as well, as in the nucleus it 

promotes heterocromatin assembly on HSV-1 DNA and silences HSV-1 expression [52]. 

Another central element of innate immunity is the complement system, whose components (in 

particular C1q e C3b) can directly bind to HSV-1. This leads to antibody (Ab)-mediated 

neutralization of the virus, inhibition of receptor binding on the surface of cells, reduction of the 

infectivity, and lysis of infected cells. The classical pathway of the complement is also triggered in 

an antibody-independent manner when C1 directly binds to virions or to infected cells. The 

complement system is also essential in the regulation of adaptive responses by enhancing T and B 

lymphocytes-mediated responses. 



Acc
ep

ted
 M

an
us

cri
pt

 

 

 

The production of cytokines and chemokines induces adaptive antigen-specific cell response. Viral 

antigens, bound to MHC-I and presented by antigen presenting cells (APC), are recognized by 

CD8+T lymphocytes, this results in the activation of their effector mechanisms and the 

establishment and maintenance of memory T cells. Granzymes and perforins induce the lysis of 

infected cells; IFN-γ production by activated T lymphocytes enhances the processing of viral 

peptides that will be presented by MHC, thus expanding the potency of cells-mediated immune 

responses. 

Overall, if the innate immunity system mainly controls the initial phase of HSV-1 replication, cell-

mediated adaptive immunity play a major role in preventing reactivation from latency and limiting 

of viral spread [53]. 

A novel population of T cells known as tissue-resident memory CD8+ (TRM) T cells has been 

recently described, these cells are critical for peripheral immune surveillance and protection 

against viral infection [54]. Following a primary HSV-1 infection, CD8+TRM cells are generated and 

retained for long time in non-lymphoid tissue, including ganglia and mucosa [55]. CD8+TRM survey 

latently infected niches, if infected cells are detected, IFN-γ and granzyme B will promptly be 

produced. The regulation mechanisms for TRM cell during viral reactivation in central nervous 

system (CNS) remain unclear but it is conceivable that vaccines boosting the resident CD8+TRM 

cells could be a viable option for protection against HSV-1 infection and/or reactivation. 

CD4+T cells are critically important for the prevention of HSV genital infection [53] and they are 

responsible for herpes stromal keratitis, following the production of Th1 cytokines. Notably, these 

cells are also present in sensory ganglia and spinal cord, where they mediate clearance of HSV-1 

from neural tissue and persist for a long time after infection. 

The Ab response to HSV-1 infection is broad, polyclonal and is mainly directed towards envelope 

glycoproteins as well as toward tegument and capsid proteins [56]. During infection gD and gB are 

the most important viral proteins in stimulating the production of IgGs; these Ab will then prevent 

the interaction between HSV-1 and its cell receptors, neutralizing viral infectivity. The role of 

humoral immunity in protection against HSV-1 infection is however still controversial [57]: 

naturally induced Abs are not able to protect from viral reactivation and to completely avoid virus 

transmission. This is at least partially the consequence of the ability of the virus to develop 

immune evasion strategies to inhibit neutralizing Ab response, including transmission through the 

cell-to-cell spread that protects the virus from immune surveillance. 
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Interestingly, HSV-1-specific cell-mediated immune responses can be detected in HSV-1 

seronegative individuals [58]; this could be a consequence of HSV-1 cross-reactivity with other 

herpesviruses, including varicella zoster virus (VZV): these two viruses in fact present homologies 

in numerous genes; immunity related to VZV infection or vaccination could thus modulate HSV-1 

or HSV-2 infection and vice versa [59]. 

Notably attempts to obtain an effective vaccines based on induction of Ab response by gB/gD 

envelope glycoproteins, showed only limited efficacy in humans, suggesting that a more complete 

protection against HSV-1 infection might be obtained upon stimulation of high titers of 

neutralizing Abs and, likely, by designing vaccines that will preferentially stimulate HSV-1-specific 

cell -mediated immunity (in particular tissue resident memory T-cells [60]. 

 

3.3 Evasion from host immunity 

HSV-1 has evolved several mechanisms to counteract the host immune response, allowing its 

persistence in infected hosts humans (reviewed in 48 and 61 and summarized in Table 2). Usually 

the host uses the xenophagy - i.e. the autophagic degradation of intracellular pathogens - to block 

HSV-1 infection [62]. HSV-1 xenophagy is stimulated by type 1 IFNs and is mediated by antiviral 

proteins, including the double stranded RNA-dependent protein kinase R (PKR). PKR is activated 

upon binding a double-stranded RNA; this precludes protein synthesis in virus-infected cells by 

phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF-2α). HSV-1 produces two 

different proteins to evade this defense mechanism: US11 and ICP34.5. In particular, US11 directly 

binds to PKR, blocking its phosphorylation and inhibiting its activity, whereas ICP34.5 recruits 

phosphatase proteins of the host to phosphorylate eIF2α with consequent translation blockage. 

Both these two viral proteins are required for full resistance to type 1 IFN-mediated immune 

response, as both inhibit autophagic degradation of HSV-1 proteins [63]. To note, ICP34.5 is able 

to inhibit autophagy also in an alternative way, binding the essential autophagy protein beclin 1. 

LAT also can interfere with the type 1 IFN pathway, as it was demonstrated in animal models that 

this transcript regulates the expression of IFN in neurons [64]. Another HSV-1 key protein is the 

US3 tegument protein. US3 dampens the IFN-β signaling and reduces IFN–γ production by 

cytotoxic T lymphocytes, protecting the infected cells from lysis [65]. US3 can also modulate TLR 

responses, inhibiting the TLR2 and TLR3 signaling, and, in association with gB, interfering with the 

activity of natural killer cells, by inhibiting CD1d antigen presentation and their consequent 

activation [66].  
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Finally, HSV-1 can also evade the complement-dependent host immune response by binding the 

viral Fc receptor (vFcR) to the Fc end of IgGs; this results in the suppression of complement-

dependent neutralization and the survival of infected cells. 

 

3.4 Control of HSV-1 reactivation 

Normally the nervous system activates effective innate and adaptive immune responses to contain 

HSV-1 infection [67]. In particular, upon HSV-1 infection human microglia cells produce a number 

of pro-inflammatory cytokines and chemokines [68], with a concomitant activation of lymphocytes 

to control viral replication [69]. Therefore, a delicate balance between host surveillance and viral 

immune evasion mechanisms drives HSV-1 into latency. The virological mechanisms, related to 

latency and reactivation, have been extensively investigated [16,69]. The absence of viral product 

during latency in neurons lead to hypothesize that cellular factors act as “trigger” for HSV-1 

reactivation, but we have only a partial knowledge of these factors. Reactivation can be induced in 

humans by environmental stress (UV radiation, fever, fatigue, hormonal change, cranial trauma, 

immunesuppression) and by other stimuli (i.e. NGF deprvation or histone deacetilase inhibition), 

as observed in cultured neurons or using animal models [16]. It is important to underline that 

these experimental approaches are often imperfect and they don’t completely represent the 

natural occurring reactivation in humans, where probably other characteristics (related to cell 

type, species, or viral strain) can determine the results of this complex mechanism. Other 

concomitant infections, as i.e. with human Cytomegalovirus (CMV) [70], can be considered as well 

important factors inducing HSV-1 reactivation. The current understanding of the factors regulating 

latency reactivation is limited yet and much more knowledge should be gained before to have a 

clearer picture of viral reactivation process. 

In vivo studies in the murine model showed that HSV-1-infection of trigeminal ganglia results in 

the expression of major histocompatibility complex (MHC) class II antigens and triggers the 

production of pro-inflammatory and neuroinflammatory cytokines and proteins [71]. Interestingly, 

in the case of encephalitis, disease severity and the disruption of the blood-brain barrier are the 

consequence of the pro-inflammatory response to the virus [72], and immune markers of 

lymphocyte activation remain increased in cerebrospinal fluid for many months after the 

resolution of infection [73]. 

It is believed that reactivation can be controlled mainly by an efficient generation of CD8+ and to a 

lesser extent of CD4+T lymphocytes. Most of the CD8+T cells infiltrating trigeminal ganglia (TG) are 
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activated and secrete IFN-γ or TNF-α, but only few also express granzyme B. IFN-γ inhibits the 

expression of ICP0, a potent transactivator of viral genes that promote lytic cycle and granzyme B 

can degrade the IE protein ICP4, inhibiting viral replication in the absence of neuronal apoptosis 

[74].  

Induced regulatory T cells (iTreg) were recently indicated to be an HSV-1 “latency switch” through 

the regulation of HSV-1 specific -CD8+T cell. Thus, after acute primary infection, iTregs increase, 

this facilitates HSV-1 latency by suppressing cytotoxic response. Environmental stresses, on the 

other hand, result in an increase of iTreg cells and modulate glucocorticoid expression; this results 

in a decrease of CD8+T cell surveillance and HSV-1 reactivation [75]. Although further study are 

needed to better understand the fine mechanism of their interaction with CD8+T cells, 

manipulation of iTreg-cell-based could help in the prevention of damages derived from HSV-1 

reactivation. 

Most of HSV-1 infected individuals are “asymptomatic”, as viral reactivation is infrequent. In 

addition, only a minority of “symptomatic” subjects shows evident symptoms and recurrence of 

disease. The complex mechanisms that lead asymptomatic subjects to be “naturally protected” 

from clinical disease, are not completely known, and seem to derive from variations in the number 

and nature of the HSV-1 antigens (mainly gB and gD) that are targeted by cell immunity [76]. The 

identification of these “protective” epitopes, that characterize naturally protected individuals, 

represents a remarkable advance in the understanding of the immunological control of HSV-1 

reactivation. Studies on whole profiles of “protective” or “pathogenic” HSV-1 antigens will help to 

develop new effective vaccine strategies. Moreover, the phenotypical and functional 

characterization of the viral epitopes that are presented to T lymphocytes in relation to different 

HSV-1 clinical manifestation will further clarify the nature of the relationship between host 

immunity and pathogenesis. 

 

4 The interplay between HSV-1 and AD 

4.1 HSV-1 specific immunity in AD patients  

Evidences of microglia-mediated inflammation in AD brain have been reported by many authors. 

Thus, in AD brains, TLR expression is upregulated and pro-inflammatory cytokines and chemokines 

are produced [77,78]. Although it is hard to know if these features are a consequence of the 

disease or contribute to its pathogenesis, a realistic hypothesis is that a vicious cycle is created, 

where IFN-γ-producing T cells infiltrate the CNS [79], driving Aβ deposition/accumulation, while Aβ 
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activates glial cells to produce others inflammatory mediators, leading to chronic process of 

neuronal dysfunction and cellular death. 

In a recent work, De Chiara and co-authors have established a mouse model of HSV-1 infection 

where they show AD-like phenotype in animal brains after multiple viral reactivation after thermal 

stress. In this work they demonstrated that the accumulation of Aβ, hyperphosphorilated Tau and 

cognitive deficit was proportional to the numbers of HSV reactivations [80]. HSV-1 repeated 

reactivations from latency are likely to have a significant impact on the pathogenesis of AD [6] as 

such reactivations would concur to neuronal damage directly, via viral action and indirectly as a 

consequence of the upregulation of neuroinflammation. Several authors investigated the possible 

role of HSV-1 in the pathogenesis of AD by analyzing HSV-1-specific humoral immunity [reviewed 

in 81]. After a first important prospective study correlating the presence of HSV-1 specific IgM (an 

indicator of episodes of HSV-1 reactivation) with risk to develop AD [82], other authors observed 

that elevated HSV-1-IgG Ab titers are significantly more frequent in patients compared to age-

matched healthy controls [83]. A positive correlation between HSV-1-specific IgG titers and the 

cortical volumes of brain regions typically affected in AD was also described in mild AD patients 

[84]; this data indicate a possible protective role of HSV-1-specific humoral immunity in the early 

phase of AD. Notably, this effect is specific for HSV-1, as no relations were observed between 

CMV- and human herpesvirus 6 (HHV-6)-specific Abs and either magnetic resonance imaging (MRI) 

or clinical parameters in AD patients [84,85]. 

At least two other experimental observations favor the hypothesis that HSV-1-specific Abs have a 

protective effect against AD development. Thus: 1) AD incidence increases with age, possibly as a 

consequence the natural decline of the potency of immune responses seen in senility [86]; 2) age-

dependent BBB injuries, although detected in normal brain, are more pronounced in MCI subjects 

compared to age-matched normal subjects [87]: consequently the high concentration of HSV-1 

specific Ab could limit viral reactivation in that brain regions where the BBB is disrupted.  

The efficacy of humoral responses is also modulated by Ab avidity, that is the relative strength 

with which Abs bind antigens. A significantly increase of the HSV-1 IgG avidity index was described 

in MCI compared to AD individuals [88]; additionally another study showed that HSV-1-specific Ab 

avidity was significantly higher at baseline in MCI-non-converters compared to those MCI who did 

develop AD [89]. Notably, in that study, a positive correlation was observed between avidity of 

Abs and cortical volumes (MRI analyses). However, other experiments are needed to better 

understand the role of Ab avidity in neurodegeneration. 
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The biological properties of Abs are different in different IgG subclasses. A comparative analysis of 

the distribution of the four HSV-1-specific IgG subclasses showed a significantly increased 

frequency of HSV-1-specific IgG3, the subclass with the strongest complement activation ability, in 

MCI compared to AD and healthy controls (HC) [90,91]. It is also known that at least three HSV-1 

envelope glycoproteins regulate complement system and are able to prevent or reduce 

phagocytosis-mediated virus neutralization: the heterodimer gE-gI binds Fc portion of Ab molecule 

and function as IgG Fc receptor (vFcγR) [92]. Moreover gC directly binds complement components 

(C3 and C5), inhibiting complement activation and virus neutralization as well as complement 

mediated lysis of infected cells [93]. It is important to note that HSV-1 specific IgG3 Abs also have 

the highest neutralizing capacity of all Ab subclasses [94]. The development of an IgG3 response in 

MCI patients could thus be interpreted as an attempt to prevent HSV-1 reactivation. Finally, the 

protective effect of Abs in the early phase of AD could be also due to CD4+T lymphocytes 

functional impairments: a recent paper showed that Ab access to neuronal tissues is controlled by 

local secretion of IFN-γ from CD4+ memory T cells in a mouse model of genital HSV infection [95]. 

To note, other viruses are suggested to be involved in cognitive impairment, as Epstein Barr virus 

(EBV) and CMV [96]: new researches are surely needed to better understand if one or several 

microbes are involved in AD. 

 

4.2 HSV-1, amyloid beta and calcium  

One of the major hallmark of AD is the presence of cortical senile plaques in the brain of affected 

patients [4]. The major component of these plaques is Aβ, that derives from the cleavage of the 

ubiquitous membrane protein amyloid precursor protein (APP) that in central nervous system 

(CNS) is expressed by neurons, astrocytes and microglia in 8 different isoforms. Its primary 

physiological function is not known, but it seems to be involved in neuronal survival, synaptic 

plasticity and cell adhesion [97]. In healthy individuals APP cleavage is mainly mediated by β-

secretase, while in AD patients γ pathway is more enhanced resulting in overproduction of Aβ, in 

particular its fragments 1-40 and 1-42, which are derived from the cleavage of precursor protein 

(APP) by β- (BACE-1) and γ-secretases. A direct relation between Aβ and HSV-1 was demonstrated 

in an vitro study showing that HSV-1 infection of human neuroblastoma cells reduces APP levels 

and increases the APP 55 KDa C-terminal fragment. Moreover, HSV-1-infected human neuronal 

and glia cells were shown to be characterized by an increase of BACE-1 and γ-secretases, leading a 

concomitant intracellular increase of Aβ 1-40 and 1-42 [98]. The brain accumulation of Aβ 1-42 
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was then confirmed by studies performed in HSV-1 infected BALB/c mice [98] as well as in HSV-1 

infected human and rat neuronal cells [99]. Data in rat cortical cells indicated that HSV-1 plays a 

role in the dualism between Ca2+ and Aβ, since the Ca2+ signalling attendant to viral attachment 

and entry induce modifications in APP that lead to its cleavage and the consequent formation of 

Aβ 1-42 accumulation [100]. These findings are particularly interesting as AD mice are 

characterized by elevated levels of Ca2+ in neurons [101], and genes involved in calcium signaling 

are deregulated in neurons of AD brains [102]. Furthermore, the link among HSV infection and AD 

amyloid plaques formation are associated also to the homology between the internal amino acid 

sequence of HSV-1 glycoprotein B (gB) and the carboxyl-terminal region of Aβ; therefore the 

intracellular processing of gB in neurons can lead to the generation of amyloid fragments that 

accelerates in vitro Aβ aggregation [103]. Moreover it was found that the Us11 HSV-1 protein 

ligates a microtubule-binding protein involved in APP trafficking [104], possibly altering its cellular 

distribution [105]. 

The co-localization of HSV-1 DNA and amyloid plaques in AD patients’ brain, besides being a strong 

evidence of a possible relation between HSV-1 and AD, supports the idea that Aβ could have an 

antimicrobial role and could be secreted to protect neurons from injuries [106]. In the case of HSV-

1, in particular, in vitro and animal studies demonstrated that repeated viral reactivations can 

result in APP processing and accumulation of Aβ and other APP fragments, although a direct effect 

of HSV-1 on Aβ accumulation remains to be confirmed in humans in vivo. Aβ anti-infective activity 

has been recently showed, even if its accumulation as oligomer results neurotoxic and can cause 

the destruction of brain structure and functionality [107]. 

 

4.3 HSV-1 and tau protein  

Another hallmark of AD pathology is the hyperphosphorylation of tau protein. The main function 

of this protein is to stabilize microtubules, a process regulated by its phosphorylation. The normal 

level of tau phosphorylation is a consequence of dynamic regulation of tau kinases and tau 

phosphatases. 

In AD, the hyperphosphorylated tau is aggregating in paired helical filaments (PHF) and 

neurofibrillary tangles (NFT) and can no longer perform this role. It has been proposed that this 

fact induces microtubules disintegrations dismantling cytoskeleton and thus neuronal transport 

[108]. This may first affect communications between neurons and finally lead to cell death [109]. 

Thus, HSV-1 infection causes an increase of hyperphosphorylated tau protein in murine cells [110], 
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and in neuroblastoma cells [111]. Wozniak and co-workers have demonstrated that HSV-1 

phosphorylates several sites of tau by inducing over-expression of two enzymes: GSK3β and PKA 

which are involved in protein phosphorylation [112]. To note, treatment of neuronal cells with 

antiviral drugs prior to HSV-1 infection prevents tau protein hyperphosphorylation [110]. 

 

4.4 HSV-1 and autophagy 

Autophagy is the physiological mechanism used by cells to disassemble and degrade unnecessary 

or dysfunctional components. AD is associated with a deregulation of such mechanism; this results 

in a decreased clearance of Aβ-containing autophagic vacuoles, and Aβ accumulation [113]. An in 

vitro study on human neuron cells demonstrated that HSV-1 directly impairs autophagy, increasing 

the intracellular accumulation of autophagosomes [114] and reducing Aβ autophagic degradation 

[115]. 

 

4.5 HSV-1 and oxidative stress 

The reciprocal balance between free radicals and antioxidants is altered as well in AD, where 

oxidative stress with a consequent damage to cellular molecules is present. Thus, DNA, RNA and 

proteins that are damaged as a result of oxidative stress are observed in the AD brain [116]; of 

note, oxidative stress is one of the main culprits for neuroinflammation and neurodegeneration. In 

vivo studies have proven that HSV-1 can cause oxidative stress and neuronal damage in rabbits 

[117] as well as in mice [118]; these findings were confirmed in human neuronal cells, where 

oxidative stress was shown to also result in intracellular accumulation of Aβ [119]. Notably, HSV-1 

can induce oxidative stress via mitochondrial damage, another cellular alteration seen in AD [120], 

can interfere with axonal transport of mitochondria in rat neurons in vitro [121] and can induce 

the degradation of mitochondrial DNA and mRNA in cell lines [122]. 

 

4.6 HSV-1 and host genetics 

The major AD-associated genetic risk factor is ApoE [123]. ApoE codes for ApoE protein, a fat-

binding 299 amino acid glycoprotein component of lipoproteins that plays a fundamental role in 

the maintenance and homeostasis of neurons. Three different isoforms of ApoE exist, and each of 

them differs in the ability to accomplish these critical tasks. In brain tissues, ApoE is produced by 

astrocytes and microglial cells, and is involved in different pathways, including lipid transport, lipid 

metabolism regulation, synaptic plasticity, cell signaling and neuroinflammation. Interestingly, 
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ApoE2 and ApoE3 isoforms are very effective in maintaining and repairing neuronal cells, whereas 

ApoE4 works less efficiently. Several studies showed that ApoE4 is the major known genetic risk 

factor for AD [reviewed in 123]. Although the exact mode of ApoE4 action in AD is unknown, 

higher HSV-1 viral titers and an increased expression of HSV-1 IE genes were detected in brains of 

cognitive deficits-affected mice carrying ApoE4 genotype [124]. 

A working hypothesis tying together AD, ApoE4 and HSV-1 is that ApoE4 competes with HSV-1 for 

attachment to the viral entry receptors HPSGs less effectively than ApoE3 and ApoE2 [125]. 

Other susceptibility genes for AD were identified in genome-wide association studies (GWAS); 

these include phosphatidylinositol binding clathrin assembly protein (PICALM) and nectin 2 (NC-2). 

Both these genes produce proteins that are associated with HSV-1 lifecycle: in particular PICALM is 

involved in the viral exit from the nucleus [126], whereas NC-2 codes for the HVEb adhesion 

molecule, one of the receptors for the entrance of HSV-1 into host cells [127]. 

Another group of susceptibility genes for AD are genes involved in the host immune response 

against infection. In particular: 1) clusterin inhibits the formation of the membrane attack complex 

(MAC), usually activated by infection, by interacting with several of its components [128]; 2) 

complement receptor 1 (CR1) binds complement C3 components, blocking the complement 

pathway and preventing the formation of MAC [129]. Interestingly, the HSV-1 glycoprotein C is a 

CR1 mimics and it binds the complement C3 components, turning off the complement pathway. 

Another gene involved in AD development is cholesterol 25-hydroxylase (CH25H). This protein 

regulates lipid metabolism, and is increased in the temporal cortex and the hippocampus of AD 

patients; notably high levels of Aβ deposits were observed to be associated with specific single 

nucleotide polymorphisms (SNPs) of the CH25C gene [130]. CH25H is an interferon-stimulated 

gene involved in the host immune response against viruses, HSV-1 included. In fact, CH25H 

interacts with 25-hydroxycholesterol (25OHC), a protein that prevents HSV-1 infection by blocking 

the virus-cell fusion [131]. Moreover it was demonstrated that chronic upregulation of 25OHC due 

to infections causes the accumulation of non-soluble cholesteryl esters in the brain, leading the 

cerebral vessel atherosclerosis with vascular occlusion, which contributes to AD pathology [132].  

Other results showed an association between IFN-ʎ pathway genes SNPs and AD. IFN-ʎ, includes 

four structurally related IFN-ʎ molecules (ʎ1, ʎ2, ʎ3 and ʎ4) endowed with potent antiviral 

activities. Interestingly, specific SNPs on IFNL3 and on IRF7, a fundamental transcriptional 

regulator of IFN-dependent immune responses, are associated with HSV-1 antibody titers in AD 

and MCI patients [133]. A very recent study showed that G78R, a particular variant of the paired 
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Immunoglobulin-like type 2 receptor alpha (PILRA) a negative regulator of inflammation in myeloid 

cells, is protective against AD [134]. HSV-1 uses PILRA as an entry receptor [135], and G78R down 

regulates the ability of PILRA to bind endogenous and exogenous ligands, HSV-1 included. Finally, 

because several IL-10 SNPs were suggested to be a risk factor for AD [136], and because IL-10 plays 

an important role in HSV-1 reactivation [137], it cannot be excluded that SNPs interfering with IL-

10 production, modulate HSV-1 reactivation. 

 

5. Pharmaceutical treatment: HSV-1 and Alzheimer’s Disease 

If HSV-1 is a risk factor for AD, the use of antivirals should be considered in this disease, especially 

when one considers that current AD therapies are only marginally efficacious [138]. Thus, 

cholinesterase inhibitors and memantine are the only FDA-approved medications for AD but their 

effect is extremely limited as they do not alter the course of the disease [138,139]. In vitro studies 

in which anti-HSV-1 antiviral agents, including acyclovir, penciclovir, and foscarnet were analyzed 

showed that these drugs reduce HSV-1 particles as well as Aβ and P-tau accumulation [140]. 

Notably, a recent retrospective study performed in a large Taiwanese cohort [141] suggested that 

HSV infection is associated with an increased risk of dementia and that this risk decreased after 

treatment with anti-herpetic drugs. Two other articles studied the possible relation between 

dementia and reactivation in older age of another herpetic virus, the varicella zoster virus (VZV), 

reporting an increased risk of cognitive decline after herpes zoster ophthalmicus (HZO) [142] and a 

decrease in incidence of dementia in HZO subjects treated with anti-herpetic antiviral [143]. The 

use of antivirals, notably, could down modulate CNS inflammation, reducing the production of 

pro-inflammatory molecules, Aβ and hyperphosphorylated tau proteins. Early combination of 

neuroprotective and anti-inflammatory agents may represent an efficacious approach to AD. 

Natural products, and more specifically polyphenols, have been reported as promising antiviral 

and agents for treatment of neurodegenerative disease [144]. Phytochemicals including 

flavonoids, alkaloids, terpenoids and phenols are of considerable interest for the treatment of such 

diseases [144]. Flavonoids are naturally occurring, biologically active, and therapeutically effective 

polyphenols endowed with antiviral, anti-allergic, anti-inflammatory, antitumoral, and antioxidant 

activities [145]. They can cross the BBB and may exhibit neuropharmacological activities, 

influencing the protein function and gene expression. Genistein is phytoestrogen in soybean and 

proficiently mimics the pharmacological functions of estrogen. It can act as estrogen receptors 

(ERs) agonist, and could reduce Aβ-induced toxicity [146]. Daidzein, another flavonoid, binds ERs 
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in the brain and, because of its structural similarity with estrogen, it acts as a neuroprotective 

agent antagonizing the action of estrogens [146]. Luteolin has anti-inflammatory and anti-

oxidative properties, and its protective effect on the hippocampus structure and learning flaws has 

been studied in a AD rat model [147]. Apigenin and acacetin could inhibit the activation of pro-

inflammatory cytokines and nitric oxide (NO) production, protecting AD neurons from 

inflammatory-induced stress [148]. Epigallocatechin gallate (EGCG) acts as a potent anti-oxidant 

agent and prevents the hippocampal neuronal cell death [149]. Cyanidin-3-glucoside (C3G) is a 

naturally occurring anthocyanin. Results obtained in SK-N-SH neuroblastoma cell line showed that 

C3G reduces Aβ 1-42 accumulation, H2O2-induced neurotoxicity, ROS production and dampens 

the Aβ-induced expression of ER stress proteins [150]. Pelargonidin (PEL), an anthocyanin, crosses 

the BBB, inhibits inducible nitric oxide synthase (iNOS), a pivotal driver of oxidative stress, as well 

as NO production and NF-κB expression [151]. All these products can modulate molecular 

pathways that are altered by HSV infection.  

Other natural products with an antiviral action and the ability of inducing protection from 

neurodegeneration are Resveratrol (RSV) and Quercetin, which are known activators of Sirt1 

(NAD+-dependent deacetylase sirtuin 1) and AMPK (5’AMP-activated protein kinase) [151-154]. 

Several studies have demonstrated that, during neuronal infection, HSV-1 modulates the 

AMPK/Sirt1 axis. Particularly, AMPK is down-regulated during early infection; on the other hand, 

the levels of Sirt1 increase, suggesting that the AMPK/Sirt1 axis is differentially modulated by the 

virus during infection [155]. RSV and Quercetin activate the AMPK/Sirt1 axis and induce 

neuroprotective and antiviral effects in HSV-1-infected neuronal cultures [156]. Other studies have 

demonstrated the capacity of RSV and Quercetin to delay axonal degeneration after injury [155], 

to block accumulation of Aβ peptide in vitro [156], to reduce BACE-1, which mediates the APP 

cleavage [155], and to provide protection from brain ischemia in both adult and neonatal rodents 

[157,158]. Palmitoylethanolamide (PEA), an endogenous lipid mediator is also endowed with anti-

inflammatory and neuroprotective effects [159]. A murine model showed that PEA counteracted 

the activation and inflammation seen in AD-like mouse astrocytes and promoted neuronal viability 

[160]. Table 3 summarizes the drugs discussed in this paragraph. 

 

6. Conclusions 

Reports investigating a possible role for HSV-1 in the pathogenesis of AD pathogenesis are 

accumulating and are making increasingly clear that HSV-1 infection is a very likely co-factor of this 



Acc
ep

ted
 M

an
us

cri
pt

 

 

 

neurodegenerative disease (see Figure 2). Notably, this does not preclude a role for other 

microorganisms that, acting through peripheral infection and/or inducing the reactivation of latent 

viruses, can contribute to chronic inflammation in the brain and the consequent neuronal damage. 

The smoking gun is missing and much work remains to be performed to clarify the possible 

mechanisms of viral contribution to AD neurodegeneration, and to verify whether the use of anti-

virals could be useful in preventing AD and/or reducing its progression. It is nevertheless 

important to remember the story of Barry J. Marshall and J. Robin Warren who won the 2005 

Nobel prize for the discovery of the bacterium Helicobacter pylori and its role in gastritis and 

peptic ulcer disease. The hypothesis was first published in 1984 [161], it took these scientists a 

long time for their discoveries to be accepted by the scientific community. Antibiotic drugs are 

nowadays current treatment in gastric and peptic ulcers.  

 

7. Expert opinion 

The discouraging results obtained in clinical trials for AD, trials that mainly focus on Aβ 

accumulation and its elimination, suggest the need for alternate strategies to fight this cruel and 

devastating disease. Although a general erroneous idea often identifies viruses with acute damage 

only, many examples (e.g. HIV, measles, JCV) exist in human pathology indicating that viruses can 

persist in the body throughout life and can result in diseases many years after the primary 

infection. 

A large number of evidences suggests a possible link between HSV-1 and AD, and results obtained 

in vitro and in animal models indicate that HSV-1 infection can result in anatomical and cellular 

abnormalities that resemble those seen in AD. 

However, several important points must be underlined: 

1) HSV-1 is a very common and widespread virus; fortunately nevertheless the majority of HSV-1-

infected individuals does not developed AD. HSV-1, thus, can’t be the only causative factor of AD, 

but it is a risk factor that, among others, as genetics, inflammatory status, or other infections, can 

favor the onset and development of the disease. The main question within this hypothesis is if AD 

can develop in the absence of HSV-1 i.e. whether the presence of HSV-1 is a necessary and 

mandatory factor in AD pathogenesis. As other pathogens have been detected in brain of AD 

subjects and the disease can also develop in HSV-1 seronegative subjects, in future it will be 

interesting to analyze the entire microbiome. 
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2) If HSV-1 is one possible risk factor for AD, as the distribution of HSV-1 seroprevalence with age 

is changing, with an increased number of younger subjects susceptible to HSV infection compared 

to twenty years ago, we cannot exclude that this epidemiological change can have future effect on 

the risk of dementia. Although the outcome of infection is determined by several combined 

factors (i.e. genetic of the host, biology of virus, other environmental agents), to better 

understand this aspect it will be important to perform larger epidemiological studies and to 

monitor in the next years the possible change of HSV-1-associated dementia risk. 

  

3) The presence of viral DNA in the human brain of at least a part of elderly people has been 

repeatedly shown in autoptic analyses, but the frequency and effects of viral reactivation in the 

CNS is not known and is extremely difficult to investigate. As of today it is impossible to measure 

HSV-1 reactivation in brain in vivo, thus no final evidences linking HSV-1 reactivation with AD 

development can be drown. Analyses performed on CSF are an acceptable proxy of what goes in 

CNS, but it is unethical to think of performing repeated lumbar punctures in elderly people for 

research purposes, and no peripheral biomarkers of asymptomatic viral reactivation in the CNS 

have been identified. The development of probes specific for viral reactivation that could be used 

for imaging techniques and/or the identification of novel peripheral biomarkers, including 

pathology-specific microRNA could be an interesting way to allow noninvasive longitudinal 

monitoring of viral replication in brain. 

 

4) If HSV-1 reactivation is indeed linked to the development of AD, then antiviral drugs should be 

used for its prevention. But, whom should we treat? All HSV-1 seropositive subjects or, rather only 

those HSV-1 infected individuals who are characterized by an unfavorable genetic or immune 

background or in whom a familiarity for AD is known? And when should therapy be started: at the 

first symptoms of cognitive decline or should we consider the possibility of a life-long therapy?  

An intense effort to develop basic translational and clinical research needs to be envisioned to try 

and find a cure for AD, a disease whose prevalence is constantly increasing and for which no 

therapies are currently available. 

 

The idea that HSV-1 infection is associated with/responsible for Alzheimer’s disease has been 

investigated starting from the mid 80’s; this hypothesis has gained strength and has recently been 

supported by a string of experimental and clinical results. Many hints, thou, do not add up to a 
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fully convincing proof: the smoking gun is still missing. Data stemming from a long term follow-up 

study of patients showed that episodic memory impairment is associated with HSV-1 infection, 

especially among ApoE4 carriers [162]; this leads to the design of a pilot study based on the use of 

valaciclovir (VALZ-Pilot, NCT02997982), an antiviral, in AD patients and MCI individuals. Results of 

this clinical trial, now in Phase II, should help clarifying whether antivirals can modulate the 

progression of cognitive decline. Bigger trials performed in larger cohorts that include different 

ethnic groups and take into account the variety of environmental and genetic factors suspected to 

be involved in the pathogenesis of AD will nevertheless be needed to definitely verify whether 

antiviral drugs can have a preventative and/or therapeutic effect in AD [see also ref.]. 

The unequivocal identification and characterization of those HSV-1 epitopes that elicit immune 

response in Alzheimer’s patients, in HSV-1-infected asymptomatic individuals and in HSV-1-

exposed uninfected individuals, will be extremely useful in designing efficient vaccines. 

Finally, as it is known that HSV-1 can persist in enteric neurons as well, it will be interesting to 

study the effect of viral reactivation in this compartment, and to analyze if interventions aimed at 

modifying the microbioma could have a beneficial effects in AD secondary to the prevention of 

HSV-1 reactivation in the gastro enteric tract. 
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Figure Legend 

Figure 1: A schematic representation of the HSV-1 structure with lipid membrane envelope with 

viral surface glycoproteins, tegument layer containing viral proteins, icosahedral capsid shell and 

linear double-stranded DNA, is shown.  

Figure 2: HSV-1 lytic infection in the epithelial cells, the process that the virus follows to infect the 

sensory ganglion, is shown. Retrograde transport from the sensory nerve terminus to the neuronal 

cell body is also shown. Factors disrupting the homeostasis that maintains the latency state results 

in HSV-1 reactivation; HSV-1 lytic genes in particular are reactivated. Note that sensory ganglion 

projects two processes: one in the epithelial tissue, the other in the brain. Newly replicated virions 

traffic back by anterograde axonal transport mechanisms, to re-establish infection at epithelial 

tissues or brain. HSV-1 enters the brains of elderly people as their immune system declines with 

age could contribute to the development of AD. 
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Table 1: Summary of principal HSV-1 gene products with anti-apoptotic function.  

 

 

 

  

 Genes product Role Effects References

LA
TE

N
CY

 LAT 
(Latency-
associated 
transcript) 

Enhances the establishment of 
latency 
Protect the host cells from 
apoptosis 

Inhibits apoptosis blocking GrB 
Modulates Bad-Bax [163] 

IM
M

ED
IA

TE
 E

AR
LY

 

 
ICP4 
 
 

Regulates the gene expression 
cascade which controls viral 
infection. 
Anti-apoptotic 

Inhibits apoptosis 
 
[164] 

 
ICP27 
 

Multifunctional regulatory protein 
Pro and anti-apoptotic 

Inhibits apoptosis by NFkB 
JNk- Bcl-2- Bax-Bid 

 
[163] 

 
ICP 22 
 

Regulator of viral gene expression 
Promote and Inhibits apoptosis 

Inhibits Caspase 8-9 
AKT- NFkB [165] 

 
ICP0 
 

Anti-apoptotic Inhibits caspase 8 
Inhibits apoptosis TNF-a 

 
[164] 

LA
TE

 

 
US3 
(Tegument 
Protein) 
 

Regulates the biological function of 
the virus and the host cells 
Anti-apoptotic 

Inhibits apoptosis phosphorylating 
BAD 
Inhibits Caspase 3 
Bcl2-AKT-BAX-BAD NFkB 

 
[40,163] 

US5 (gJ) 
(Envelope) Anti-apoptotic Inhibits Fas 

Caspase 3-8 
 
[163] 

 
US6 (gD) 
(Envelope) 
 

Anti-apoptotic Inhibits by Fas-NFkB  
 
[163,164] 
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Table 2: Summary of the principal HSV-1 proteins involved in immunoevasion. 

 

Phase Gene product ORFs Host target  Inhibited host mechanism 

IM
M

ED
IA

TE
 E

AR
LY

 

ICP0 RL2 

MyD88 TLRs signaling/IFN response 

TIRAP TLRs signaling/IFN response 

p65 NF-kB signaling/IFN response 

STING DNA sensor signaling /IFN response 

IFI16 inflammasome 

DNA PK DNA damage response  

ND10 /Sp100 nuclear bodies chromatin epigenetic regulation 
ICP27 UL54 IRF3 TLRs signaling/IFN response 
    STAT1 JAK/STAT signaling/IFN response 
ICP47  US12 TAP   MHC- I antigen presentation 

EA
RL

Y 
/ 

LA
TE

 tegument protein  UL36USP TRAF3 TLRs signaling/IFN response 

 
 
Vhs 

 
 
UL41 

mRNA host 
IRF7 
JAK/STAT signaling 
Viperin 
ZAP 
Tetherin 

host translational arrest 
TLRs signaling/IFN response  
IFN response 
interferon-stimulated genes 
interferon-stimulated genes 
interferon-stimulated genes 

LA
TE

 

US11 US11 

RIG-1 RLRs signaling/IFN response 
MDA5 RLRs signaling/IFN response 
2’5’OAS interferon-stimulated genes  
PKR interferon-stimulated genes  

ICP34.5  RL1 
TBK1 TLRs signaling/IFN response  
Beclin autophagy 
PKR NF-kB signaling/IFN response 

VP16 UL48 IRF3 TLR3 /IFN response 
gC UL44 C3b complement activation  
gE/gI US8/US7 IgG neutralization/Ab dependent cytotoxicity 
gM UL10 Tetherin interferon-stimulated genes 
gB UL27 PERK protein kinase host translational arrest 
ICP8 UL29 Stress granules host translational arrest 

Ser/Thr Protein  
kinase US3  

IRF3 TLRs signaling /IFN response 
TRAF6 TLRs signaling/IFN response 
STING DNA sensor signaling  

For more details, see references 48 and 61. 
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Table 3: Classes of drugs for the treatment of HSV-1 infection and Alzheimer Disease 

 Class of Drugs Effect on 
HSV-1 Effect on AD General effect References

Ch
em

ic
al

 P
ro

du
ct

s 

Aciclic-guanosine 
analogues: 
Acyclovir, Ganciclovir, 
Penciclovir, 
Valaciclovir, 
Famciclovir 

Reduction of 
HSV-1 particles 

Reduction of Aβ, 
decrease of 
P-tau accumulation 

Reduction of disorders of 
the micro-circulation 
Bradycardia and treatment 
of pain 
Bell’s palsy (cranial nerve 
lesion) 

[140-143, 
166,167] 

Pyrophosphate 
analogues: 
Foscarnet 

Reduction of 
HSV-1 particles 

Reduction of Aβ, 
decrease of 
P-tau accumulation 

Alters antidiuretic 
hormone mediated 
transport water and urea 

[140-143] 

Acyclic nucleotide 
analogues: 
Cidofovir, Adefovir 

Reduction of 
HSV-1 particles 

Reduction of Aβ, 
decrease of  
P-tau accumulation 

Inhibits mitochondrial DNA 
synthesis 
Antiproliferative agents 

[140-143, 
168,169] 

N
at

ur
al

 P
ro

du
ct

s 

Phytochemical: 
Flavonoids, Alkaloids, 
Terpenoids and 
phenols 

Anti-viral 
Anti-
inflammatory 

Protective role in 
nervous system 
disorders 

Anti-inflammatory 
Anti cancer [145] 

Flavonoids: 
Flavanols, flavones, 
Flavonols, isoflavones, 
anthocyanidins 

Anti-viral 
Anti-oxidant 

Cross BBB
Neuropharmacological 

activities 
Influencing protein 
fusion and gene 
expression 

Anti-oxidant 
Anti cancer 
Antiangiogenic 

[145] 

Isoflavones: 
Genistein, Daidzein 

Molecular 
pathways 
altered during 
HSV-1 infection 

Neuroprotective 
agent, antagonizing 
the action of 
estrogens 

Osteogenic function [146] 

Flavones: 
Luteolin, Apigenin, 
Acacetin 

Anti-
inflammatory 
Anti-oxidative 
Anti-viral 

Inhibit the activation 
of proinflammatory 
cytokines, 
Protection AD 
neurons 

Anti-inflammatory 
Anti-oxidative 

 
[147,148] 

Flavanols: 
Epigallocatechin(EGCG) 

Molecular 
pathways 
altered during 
HSV-1 infection 

Prevent neuronal cell 
death Cardiovascular function [149,170] 

Anthocyanidin: 
Cyanidin-3-glucoside 
(C3G) 

Molecular 
pathways 
altered during 
HSV-1 infection 

Neutralize the level of 
Aβ 1-42 

peptides 
Renal protective effect [150,171] 

Flavonols: 
Quercitin 
 
 
Polyphenol: 
Resveratrol 

Sirt1 and AMPK 
pathways 
modulated by 
HSV-1 
Anti-viral effects 

Neuroprotective 
effects, block 
accumulation of Aβ 
peptides in vitro, 
mediate the cleavage 
of APP 

Anti-inflammatory 
Anti-oxidative 
Anti- apoptotic 
 

[152-156, 
158] 

Endogenous fatty acid 
amide (class of nuclear 
factor agonists): 
Palmitoylethanolamide 
(PEA) 

Anti-
Inflammatory 

Neuroprotective 
effects Neurophatic pain [159] 
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