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Background 

Qualitative, subjective reading of medical images have been the backbone of image interpretation for the 

past century, providing useful information to the treating physician. During the past two decades, advances 

in medical imaging technology have offered the possibility to extract high-resolution anatomic, physiologic, 

functional, biochemical, and metabolic information from clinical images, all of which reflect the molecular 

composition of the healthy or diseased tissue of organs imaged in the human body. We are now entering the 

era of ―quantitative imaging‖ recently formally defined as ―the extraction of quantifiable features from 

medical images for the assessment of normality, or the severity, degree of change, or status of a disease, 

injury, or chronic condition relative to normal‖. With appropriate calibration, most of the current imaging 

technologies can provide quantitative information about specific properties of the tissues being imaged. 

 

Purpose 

This doctoral thesis aims at exploring the possible use of imaging methods such as mammography and breast 

magnetic resonance imaging (MRI) as imaging biomarkers, measuring functional, biochemical and 

metabolic characteristics of the breast through medical images.  

 

Part I. Breast arterial calcifications for cardiovascular risk 

Breast arterial calcifications (BAC) are easily recognizable on screening mammography and are associated 

with coronary artery disease. We tried to implement the estimation of BAC to be easily applicable in clinical 

prevention of cardiovascular disease. In particular, we evaluated the intra- and inter-observer reproducibility 

of i) a specifically developed semi-automatic tool and of ii) a semi-quantitative scale for BAC quantification 

on digital mammograms.   

 

Part II. Multiparametric breast MRI for breast cancer management   

Multiparametric breast MRI allows to simultaneously quantify and visualize multiple functional processes at 

the cellular and molecular levels to further elucidate the development and progression of breast cancer (BC) 

and the response to treatment. The purpose of our study was to verify the correlation between enhancement 

parameters derived from routine breast contrast-enhancement MRI and pathological prognostic factors in 

invasive BC as a condition for the use of MRI-derived imaging biomarkers in adjunct to traditional 

prognostic tools in clinical decision making. 

 

Part III. Artificial intelligence in Breast MRI 

Recent enthusiasm regarding the introduction of artificial intelligence (AI) into health care and, in particular, 

into radiology has increased clinicians‘ expectations and also fears regarding the possible impact of AI on 

their profession. The large datasets provided by and potentially extractable from breast MRI make it the right 
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stuff for fitting AI applications. This session focuses on a systematic mapping review of the literature on AI 

application in breast MRI published during the past decade, analysing the phenomenon in terms of spread, 

clinical aim, used approach, and achieved results. 

 

Conclusions 

Medical images represent imaging biomarkers of considerable interest in evidence- based clinical decision-

making, for therapeutic development and treatment monitoring. Among imaging biomarkers, BAC represent 

the added value of an ongoing and consolidated cancer screening to act for preventing the main cause of 

death among women in which traditional CV risk scores do not adequately perform.  

Breast MRI may act as a prognostic tool to improve BC management through the extraction of a plenty of 

functional cancer parameters.  

AI might certainly implement the use of  imaging data interacting with and integrating quantitative imaging 

for improving patient outcome and reducing several sources of bias and variance in the quantitative results 

obtained from clinical images. The intrinsic multiparametric nature of MRI has the greatest potential to 

incorporate AI applications into the so called precision medicine. Nevertheless, AI applications are still not 

ready to be incorporated into clinical practice nor to replace the trained and experienced observer with the  

ability to interpret and judge during image reading sessions. 
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Breast arterial calcifications for 

cardiovascular risk 
 

 

 

 

 

 

 

 

 

Note: The part I research yielded following publications: 

1. Trimboli RM, Codari M, Bert A, Carbonaro LA, Maccagnoni S, Raciti D, Bernardi D, Clauser P, Losio C, Tagliafico A, 
Sardanelli F. Breast arterial calcifications on mammography: intra- and inter-observer reproducibility of a semi-

automatic quantification tool. Radiol Med. 2018 Mar;123(3):168-173. doi: 10.1007/s11547-017-0827-6 

 

2. Trimboli RM, Codari M, Guazzi M, Sardanelli F. Screening mammography beyond breast cancer: breast arterial 

calcifications as a sex-specific biomarker of cardiovascular risk. EJR 2019. https://doi.org/10.1016/j.ejrad.2019.08.005 

 

3. A manuscript entitled A reproducible semi-quantitative scale for the assessment of breast arterial calcifications, 

authored by Trimboli RM, Codari M, Cozzi A, Monti C, Nenna C, Spinelli D and Sardanelli F is under review on 

European Radiology   

https://doi.org/10.1016/j.ejrad.2019.08.005
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Introduction 

Cardiovascular (CV) disease represents a major public health issue and the first cause of death for men and 

women, accounting for more than 30% of cases worldwide [1]. Over the last fifty years, increasing attention 

has been paid to primary prevention, through the identification and control of risk factors and a progressive 

improvement in phenotyping CV risk. The complex biological pathway leading to CV events encompasses 

functional and structural changes of heart and vessels that develop over the years with a variable progression 

rate. Hence, there is a chance for these changes to be identified long before CV events occur and for a 

preventive strategy to be effective. In the last years, several attempts have been made for improving the 

performance of traditional CV risk scores with the help of improved algorithms including alternative blood-

based risk markers and imaging biomarkers [2] such as the coronary artery calcium score in asymptomatic 

individuals at intermediate-risk [3].   

Notably, a substantial sex-related difference in CV risk factors has been repeatedly emphasized and studied 

[4]. Based on population-based registries, the mortality rate for coronary heart disease (CHD) in young 

women (aged 55 years or less) did not fall as it did for male and in elderly populations [5]. Up to 20% of all 

coronary events occur in the absence of traditional CV risk factors [6], whereas many women with traditional 

risk factors do not experience coronary events [7]. One possible reason behind this fact is the occurrence of 

non-traditional risk factors unique to women. Indeed, pregnancy complications, contraceptive, fertility and 

menopausal hormonal therapies, and systemic autoimmune disorders [8] are not included in current CV risk 

algorithms for women, which are not tailored and are basically the same as 30 years ago.  

Moreover, the awareness of CV risk among young women is poor, as they perceive hearth diseases as a 

―male problem‖. This reflects in the failure of basic preventive actions, such as lifestyle modifications or 

appropriate screening tests. Breast cancer campaigns have been building women awareness for more than 20 

years, stressing on the importance and efficacy of early diagnosis. In Europe, half of organized 

mammographic screening programs achieves a participation rate higher than 70%, demonstrating that 

women education is the first step to call for action [9]. These different and somewhat paradoxical trends 

certainly reflect inadequate prevention strategies [5].  

Breast arterial calcifications (BAC) have been recently described among ―the top five women‘s health issues 

in preventive cardiology, at the forefront of recent and ongoing research‖, together with coronary 

microvascular dysfunction, hormone replacement therapy, calcium and vitamin D supplementation as well as 

metabolic considerations during pregnancy [4]. BAC are easily recognizable on routine mammograms that 

women periodically undergo spontaneously or through organized population-based programs for breast 

cancer screening from 40, 45 or 50 years of age, according to different national or local policies. Thus, there 

is a strong rationale for mammography to serve as a preventive test beyond breast cancer screening, 

spotlighting on the heart and more comprehensively on CV risk. The reported association of BAC with 

coronary artery disease (CAD) also in middle age [10] strongly suggests their potential as an additional risk 

factor when traditional CV risk assessment is somewhat inadequate and does not impact on CV mortality [5]. 

In this light, efforts should be made aiming at: i) improving the awareness of BAC by physicians providing 
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preventive care to women, including radiologists, cardiologists, and general practitioners; ii) implementing 

the estimation of BAC to be easily applicable in clinical prevention.   

 

BAC as a biomarker for CV risk 

BAC appear on mammograms [11] as linear, parallel opacities, typically showing a ―tram-track‖ appearance 

[12,13] (Fig. 1).  

 

Figure 1. Screening mammography (A, B cranio-caudal and C, D mediolateral oblique views) of a 65-year 

old woman showing bilateral breast arterial calcifications (BAC), more prominent on the left side (B, D). 

Morphology of these calcifications can be appreciated in the magnifications (E, F) of the squared regions of 
the left breast. 

 

They express Monckeberg‘s calcification, a non-atheromatous vascular lesion developing in the internal 

elastic or in the medial layer of muscular arteries, different from atherosclerotic calcification, involving the 

intima layer of large and medium sized elastic arteries. Monckeberg‘s calcification contains hydroxyapatite 

crystal deposition in the plaques, while accumulation of calcium phosphate salts in the vascular tissue is seen 

in advanced atherosclerosis [14].  

A systematic review and meta-analysis by Hendriks et al. [11] assessed the available evidence on the 

associations between BAC and CV risk factors (Table 1).  
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Table 1. Odds ratios (OR), 95% confidence interval (CI) and heterogeneity (I
2
) of the risk 

and reproductive factors as determinants of BAC 

Determinant OR 95% CI I2 (%) 

Risk factor 

   Age* 2.98 2.31-3.85 87.02 

Reproductive factors 

   Parity 3.43 2.23-5.47 0 

HRT 0.56 0.37-0.84 88.23 

Cardiovascular risk factors 

   Hypertension 1.08 0.98-1.19 0 

Smokers  0.48 0.39-0.60 45.58 

Hyperlipidemia 1.72 0.95-3.09 63.87 

BMI 0.99 0.95-1.04 27.5 

Diabetes 1.88 1.36-2.59 79.53 

OR=odds ratio; 95% CI= 95% confidence interval; I2= heterogeneity; HRT= hormone replacement 

therapy; BMI=body mass index. *For every 10 years of increasing age. Data are adapted from 

Hendriks et al [11] 

 

Pooled BAC prevalence resulted to be 12.7% among women attending screening programmes. A higher 

BAC prevalence was associated with increasing age, diabetes, and parity as opposed to nulliparity, while 

smoking was associated with lower BAC prevalence. 

No associations were found with other well-known CV risk factors such as hypertension, obesity, or 

dyslipidemia. Although longitudinal studies (n = 3) were scarce, BAC appeared to be associated with an 

increased risk of CV disease events (adjusted hazard ratios for CHD ranging from 1.32 to 1.44). 

The authors concluded that BAC appear to be associated with an increased risk of CV disease events, and 

with some of the known CV risk factors, illustrating that medial arterial calcification might contribute to CV 

disease through a pathway distinct from the intimal atherosclerotic process. 

The association between BAC, merely reported as ―present‖ at mammographic images, and CV risk was 

investigated in several studies [15–18], summarized in Table 2.   
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Table 2. Risk of death and cardiovascular outcomes associated with BAC 

Variable Risk 95% CI 

 a) 

   Transient ischemic attack/stroke 1.4 (RR) 1.01-1.08 

 Thrombosis 1.5 (RR) 1.00-2.20 

 Myocardial infarction  1.8 (RR) 1.01-2.90 

 b) 

   Death (all causes) 1.29 (HR) 1.06-1.58 

 With diabetes 1.74 (HR) 1.19-2.56 

 Cardiovascular deaths (total) 1.29 (HR) 1.01-1.66 

 With diabetes 1.71 (HR) 1.00-2.94 

 Death from coronary artery disease 1.44 (HR) 1.02-2.05 

 c) 

   CHD 1.32 (HR) 1.08-1.60 

 Ischemic stroke 1.41 (HR) 1.11-1.78 

 Heart failure 1.52 (HR) 1.18-1.98 

 d) 

   Any CHD 3.54 (OR) 2.28-5.50 

 BAC = breast arterial calcifications; CHD = coronary heart disease; 95% CI= 95% confidence interval; 

RR= relative risk; HR= hazard ratio; OR= odds ratio. Risks of death and cardiovascular outcomes were 

considered available evidence and then reported in the table only if the 95% CI did not include 1. a) 

Data adapted from van Noord et al [15]; b) Data adapted from Kemmeren et al [16]; c) Data adapted 

from Iribarren et al [17]; d) Data adapted from Schnatz et al [18]. 

 

It is well-known that the transition to menopause is associated with an increase in CV risk due to 

dysregulation of glucose and lipid metabolism and consequently of estrogens. Indeed early menopause and 

premature ovarian insufficiency increase CV risk (1.5-2 folds). According to the literature, hormonal therapy 

has a positive impact on CV risk factors, with beneficial effects on both CV morbidity and mortality in 

women at early menopausal age [19]. In this light, the association between BAC and hormonal therapy was 

investigated by [18]. Their study demonstrated that BAC prevalence was higher (eight times) in menopausal 

women than in pre-menopausal ones, thus highlighting the role of estrogenic regulation in BAC 

development. Moreover, even when adjusting for age, past hormonal therapy was significantly associated to 

a lower prevalence of BAC. This study highlights the role of BAC as a potential biomarker of sex-specific 

CV risk due to the close link between CV risk factor and hormonal balance in women during and after 

transition to menopause.  
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When evaluating the interaction between BAC and CV disease, woman‘s age plays as a major cconfounder.  

To investigate the potential role of BAC as a biomarker of CV risk beyond the ageing progress, Moshyedi et 

al. [10]investigated  the association between BAC, CAD and diabetes mellitus, adjusting for patient age. 

Their results showed that BAC may still indicate an additional risk factor for CAD in women with less than 

59 years of age (positive predictive value [PPV] of BAC for CAD was 0.88, negative predictive value was 

0.65), particularly in diabetic patients (PPV of diabetes mellitus for CAD increased from 0.62 when BAC 

was absent to 1.00 when BAC was present) [10] 

Later on, also Schnatz et al [20] investigated the association between BAC and hormonal therapy in 1,919 

women undergoing screening mammography. As expected, the higher was the age, the higher the prevalence 

of BAC. Nevertheless, the prevalence of atherosclerotic cardiovascular disease and CAD remained higher in 

women with BAC stratified for age. Indeed, CAD prevalence was always greater in women with BAC than 

in women without BAC, in women under 55 (10.4% versus 3.8%), in women  from 55 to 64 (6.7% versus 

1.1%), and in women over 64 (18.9% versus 10.1%), confirming that BAC correlated con CV risk factors 

even in women aged less than 55 years, when it is especially important to detect CV risk factors [20]. 

The same research group investigated on the same cohort [18] whether mammography could predict the 

development of CAD. Among women who did not have CAD at baseline, women with BAC were 

significantly more likely to develop a heart disease or a stroke than those without BAC (6.3% versus 2.3%, p 

= 0.003; 58.3% versus 13.3%, p < 0.001), respectively. These results remained significant even when 

adjusting for age. BAC together with hypertension, hypercholesterolemia, and family history contributed to 

the 5-year incidence of CAD and BAC had the highest odds ratio for predicting CHD after 5 years.  

Thus, identifying and consistently reporting BAC presence and severity on mammography is paramount at 

all ages, in particular in women under 65, where traditional risk factors may not be so prevalent due to the 

later onset of CV events in women and actual CV risk may be underestimated. BAC are not only an imaging 

biomarker for CV risk, but represent a predictive factor for CV events. This strengths the potential of their 

application in preventing but also in monitoring the progression of the disease over time and the impact of 

any preventive measures. 

 

What is missing? 

Although BAC can be easily detected on routine mammograms, their assessment represents a crucial 

challenge. Various appearance patterns (bright tubular, single or parallel linear structures, or sporadic bright 

spots), topological complexity, and vessels overlap on two-dimensional projections make both identification 

and quantification of BAC difficult to standardize [12]. 

Currently, screening mammography readers BAC aside since they are not suspect for an underlying cancer, 

i.e. they do not ―alarm‖. While parenchymal calcifications, potentially associated with cancer, were 

extensively analyzed also using computer-aided detection tools [21], BAC, when detected, are generally just 

reported as ―present‖ but not interpreted according a CV risk preventive perspective [22–25].   
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It is unlikely that all subjects with BAC may benefit from the same preventive intervention. To express BAC 

with a dichotomic assessment (i.e., as present or absent), allows only to classify women into two CV risk 

classes. However, even at an early research stage, the binary classification hinders the identification of 

women with intermediate CV risk, who may mostly benefit of a tailored and personalized CV disease 

prevention. Personalized medicine may be based on the identification of quantitative biomarkers, even 

blood-based or imaging-based, ideally expressed on a continuous scale. This issue opens the challenge of 

expressing BAC as a quantitative (or at least semi-quantitative) scale that will allow to stratify patients into 

multiple CV risk levels.   

Recently, few attempts have been made for improving BAC assessment using semi-quantitative scales [26–

29]. In dedicated studies, BAC grading ranges from four-level Likert scale [29] to complex scores based on 

number and maximum length of involved vessels and calcium density [27]. Nevertheless, the heterogeneity 

among grading scales reflects the lack of standardized criteria for BAC burden estimation. However, to the 

best of our knowledge, there are no studies that stratify CV risk by means of continuous BAC assessment.  

When quantified, BAC are manually identified by radiologists [ 30, 31], through a time consuming, operator-

dependent process, far to be applied in a daily clinical workflow. Only a minority of studies tried to quantify 

BAC on a continuous scale [2,12, 30¬¬-32]. 

Operator-dependency in BAC quantification is crucial, representing the major source of bias during BAC 

estimation. Indeed, the few studies that focused on the development of automatic methods for BAC 

segmentation and quantification employed more than one reader to establish the reference standard for 

algorithm validation [12, 32]. Moreover, a recent original research highlighted this issue comparing the 

performance of two adequately trained observers in BAC segmentation on a multivendor image dataset of 

212 mammographic views from routine practice. In this study, each reader placed rectangular ROIs on both 

CC and MLO views, separately, then BAC were automatically segmented using an adaptive thresholding 

algorithm. Reader performance were compared using Bland--Altman analysis, which proved the existing 

disagreement among manual delineations, with an intraobserver and interobserver reproducibility of only 

55% and 3%, respectively [2]. 

A reliable and automated quantification of BAC is indispensable and could be the solution for contributing to 

the stratification of CV risk. To this aim, efforts have been put in the development of BAC quantification 

tools [12, 32]. Cheng et al. [10] proposed an automatic algorithm for the delineation of calcified vessels 

based on a tracking with uncertainty scheme and validated it on 63 mammograms by comparison with 

manual delineations from two experts. The overall detection performance of their algorithm in terms of 

sensitivity and specificity reached 92.6 ± 2.2% and 83.9 ± 3.6%, respectively when compared to the first 

expert and 91.3 ± 3.5% and 82.7 ± 4.1% when compared to the second one. These promising results 

demonstrated that manual segmentation may be replaced by automatic detection tools, however the need of 

stratifying algorithm parameters depending on breast density keeps the path open for further improvements. 

[12].  



14 
 

More recently, due to the promising performance of artificial intelligence systems in medical image analysis, 

a recent study [32] investigated the potential of deep learning for BAC detection on mammograms. In their 

study, Wang et al. proposed a deep convolutional neural network (CNN) that discriminates between BAC 

and non-BAC pixels [32]. The performance of the proposed CNN was compared with manual delineations 

performed on 210 cases (840 images) by three expert readers in a two-round reader study. The proposed 

solution reached detection ability similar to that of human experts at FROC analysis and good performance 

also in calcium mass quantification (determination coefficient 96.2%).  These results proved the promising 

application of deep CNN for BAC detection. Nevertheless, further large scale studies are needed to improve 

and test model generalization across different experimental setup [32]. Table 3 shows different attempts of 

BAC assessment reported in the literature. 

 

Future perspectives  

BAC may become an important sex-specific biomarker for CV risk stratification, potentially guiding CV 

preventive programs in the female population. Women entering screening program for breast cancer and 

otherwise not considered for CV risk will benefit doubly from mammography, aiming at cancer secondary 

prevention and CV primary and/or secondary prevention. Although evidence supports a strong association 

between BAC prevalence and CV risk, this association, per se, is not enough for a clinical use. In fact, while 

in a low-risk population a preventive intervention is likely to be not cost-effective, in a population at 

increased risk, a preventive treatment could be cost-effective [3]. In the context of a consolidated breast 

cancer screening, BAC assessment may enable subjects at increased CV risk to be identified and to be 

offered with tailored preventive and possibly therapeutic interventions. 

Recently, several papers pointed out the need to move from the evidence of the association between BAC 

and CV events to a medical action [33–35]. However, the lack of validated BAC quantification methods that 

overcome the intrinsic limitation of the dichotomous assessment is a strong factor limiting this action. Only 

through the stratification into multiple risk classes, BAC on mammography may exploit their potential. 

Breast radiologists have to support BAC reporting, although this is not recommended by guidelines and 

promote the awareness of their significance by women and general practitioners.  

Of note, a recent study demonstrated an overwhelming preference of patients to be informed on their BAC 

status [36]. More than 95% of 397 responding women declared to prefer to have BAC reported; all 107 

patients who were unaware of a personal history of CV disease wanted to have information about their BAC; 

interestingly, of those who chose one action option, 87% preferred coronary artery computed tomography for 

decision-making, of those who selected multiple options, 53% opted for coronary artery computed 

tomography for decision-making.  
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Table 3. Methods of BAC assessment reported in original studies and retrieved for this review. 

Assessment scale Authors Year Measure  

Dichotomic scale 

 

Moshyedi et al. [10] 1995 Present/absent 

Van Noord et al. [15] 1996 Present/absent 

Kemmeren al. [16] 1998 Present/absent 

Kataoka et al. [22] 2006 Present/absent 

Schnatz et al. [18]  2011 Present/absent 

Bae et al. [23] 2013 Present/absent 

Newallo et al. [24]  2015 Present/absent 

Chadashvili et al. [25] 2016 Present/absent 

Schnatz et al. [20] 202007 Present/absent 

    

Semi-quantitative scale 

 

Mostafavi et al. [26] 2015 4 levels visual scale+ 

Margolies et al. [27] 2016 12 levels scale*  

Kelly et al. [28] 2018 4 levels visual scale+  

Ružičić et al. [29] 2018 4 levels visual scale+  

    

Continuous scale 

 

Molloi et al. [30] 2008 Manual segmentation 

Molloi et al. [31] 2009 Manual segmentation 

Cheng et al. [12] 2012 Automatic segmentation 

Wang et al. [32] 2017 Automatic segmentation 

Trimboli et al. [2] 2018 Semi-automatic segmentation 

+Based on BAC severity; *Based on number of vessels, max length and calcium density 

 

Conclusions 

To summarize, mammography allows to identify the presence of BAC, turning on an alarm bell on woman‘s 

CV status. In Europe, about 64 million women aged 50-69 years access screening mammography every two 

or three years [37] and about 8 million of these women may have BAC identified. A similar rough estimation 

is for the United States [38, 39] where spontaneous screening starts at 40 years of age and about 45 million 

women yearly access screening mammography with 6 million having BAC identified. This enormous 

potential needs to be exploited and awareness campaigns have to be promoted. A preventive action could be 

initiated over a threshold defined by retrospective and prospective studies. BAC represent the added value of 
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an ongoing and consolidated cancer screening to act for preventing the main cause of death among women in 

which traditional CV risk scores do not adequately perform. We need high-quality research for this, the first 

step being to make reliable and user-friendly BAC quantification tools available. 

Preventive campaigns usually require huge efforts to be implemented, both social and economic. In a 

historical phase of great attention to the healthcare expenditure, to work in favor of using BAC for CV 

prevention in women, using the infrastructure of an already existing screening, implies that important results 

could be obtained with relatively limited costs. 
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Original investigation. Breast arterial calcifications on mammography: intra- and 

inter-observer reproducibility of a semi-automatic quantification tool 

 

Methods  

The purpose of the study was to evaluate the intra- and inter-observer reproducibility of a specifically 

developed semi-automatic tool for BAC quantification on digital mammograms. 

 

Image selection 

For the training phase, 42 bilateral mammograms from different vendors, each including bilateral cranio-

caudal (CC) and medio-lateral oblique (MLO) projections, were selected in five centers. Each case had to 

show in at least one projection in one breast a finding diagnosed as per BAC by a radiologist with at least 5-

year experience in mammography. Subsequently, for the testing phase, a second independent multivendor 

image dataset of 53 bilateral mammograms from the same centers was selected to investigate the system 

reproducibility.  

Images were acquired using full-field digital mammography systems, including: Senographe 2000D (General 

Electric Medical Systems, Milwaukee, WI, USA); AMULET FDR MS-100 (Fujifilm, Tokyo, Japan), 

Mammomat Inspiration (Siemens, Erlangen, Germany) or Giotto Tomo or Giotto Image 3D (IMS, Bologna, 

Italy) or Selenia (Hologic, Bedford, MA, USA). 

 

Image processing and training phase 

Considering the software functionalities, an adaptive thresholding algorithm was implemented and trained by 

a breast radiologist with a 9-year experience in breast imaging that precisely manually drawn BAC on the 

selected views using ITK-Snap [9]. Such manual BAC segmentation represented the reference standard for 

the training of the semi-automatic system.  

The algorithm segmented and quantified BAC, by providing an estimate of the image surface area occupied 

by BAC, starting from rectangular region of interests (ROIs) drawn by radiologists. The BAC surface area 

was expressed in mm
2
, and, in order to help the study logistics, the system allowed radiologists to visualize 

the mammograms and draw the ROIs online, through a simple ad-hoc web-based interface. During the 

segmentation process, overlapping ROIs were joined in order to obtain a unique segmentation of the shared 

portion of  rectangles. Inside the ROIs, the segmentation was fully automatic, so that the only possible source 

of variability was the ROIs‘ selection by the radiologist.  

 

Reproducibility assessment (testing phase) 

Two residents in Radiodiagnostics with more than 6-month experience in mammography independently 

positioned the ROIs to identify the image portions where they recognized BAC. To standardize the human 

component of the segmentation method, both operators were intensively trained (total training time 5 hours 

for each of the two residents) by a radiologist with a 9-year experience in mammography and by a 
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bioengineer with a 5-year experience in image segmentation. One of the two residents estimated the BAC 

burden twice in separate sessions at 2-week interval. The decision tree used during segmentation process is 

depicted in Figure 1. 

 

 Figure 1. Flowchart representing the decision tree adopted for breast arterial calcification (BAC) 

segmentation using a semi-automatic tool 
 

Considering the projective nature of mammography, the standard CC and MLO views were separately 

segmented for each breast (Figure 2). Finally, in order to find a unique index useful to represent the total 

BAC burden of each analyzed subject, the total BAC surface (BACTot) was calculated as: 

       (
                

 
)  (

                
 

) 

where BACCC,l and  BACCC,r represent the respective segmented BAC surface on the CC view of the left (l) 

and right (r) breasts. In the same way, BACMLO,l and BACMLO,r represent the segmented BAC surface on the 

MLO view of the left (l) and right (r) breasts. 
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Figure 2. Original CC and MLO 

mammographic views (left). 
Processed corresponding views 

with manually positioned 

rectangular ROIs containing 
breast arterial calcification 

(BAC) (right).    

 

 

Statistical analysis 

Shapiro-Wilk test was used to assess the normal distribution of data. Due to the not normal distribution, 

descriptive statistics are reported as median and interquartile range (IQR). In order to assess intra- and inter-

observer reproducibility, the Bland-Altman method was used. 
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Results 

A total number of 212 images were segmented, obtaining 53 values of BACTot. Table 1 shows the descriptive 

statistics related to the segmentation performed by both observers. 

 

Table 1. Descriptive statistics of the total breast arterial calcification amount (BACTot) of each patient. Due 
to data distribution, descriptive statistics are reported as median and interquartile range (IQR) defined as 

Q3-Q1. Data are reported for the first measurements of Observer1 (O1,1) and Observer2 (O2,1) and for the 

second measurement of Observer1 (O1,2). 

 BACTot (mm
2
) 

 O1,1 O2,1 O1,2 

Median 56.6 41.0 52.6 

IQR 18.1 – 91.1 18.8 – 90.9 30.3 – 114.0 

Min 5.1 1.1 9.4 

Max 313.9 258.3 367.9 

 

The intra-observer Bland Altman analysis showed a bias of 11.9 mm
2
, a coefficient of repeatability equal to 

32.7 mm
2
 for an average BACTot measurement equal to 72.8 mm

2 
and a corresponding reproducibility value 

of 55%. On the other hand, the inter-observer analysis showed a bias of -7.0 mm
2
, a coefficient of 

repeatability equal to 61.4 mm
2
 for an average BACTot measurement equal to 63.4 mm

2
 and a corresponding 

reproducibility value of only 3%. Bland-Altman plots are depicted in Figure 3. 
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Figure 3.  Bland-Altman plots representing the intra and inter-observer variability in breast arterial 
calcification (BAC) surface measurement. The dotted line represents the bias that affects measurement 

process and the dashed lines represents the limits of agreements between different repetitions (intra-observer 

analysis) or readers (inter-observer analysis) 

 

Discussion 

BACs are common findings on mammograms where they appear as linear, parallel opacities, typically 

described as a ―tram-track‖ appearance [10]. Although an overall BAC prevalence up to 29% has been 

reported [7], they are not commonly described by radiologists in their reports being considered neither 

suggestive of nor a risk factor for breast cancer. In fact, BAC are an expression of arteriosclerosis belonging 

to Monckeberg‘s sclerosis, a sclerosing calcifying process involving the media tunica of breast arteries [11]. 
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Up to now, BAC are only a research topic. Being considered only a secondary finding on mammograms, no 

big efforts have been made for standardize their quantitative evaluation similarly to mammographic density.  

As previously mentioned, a strong association between BAC and CV disease has been demonstrated, related 

to a distinct pathophysiological pathway from the intimal atherosclerotic process [12]. A recent meta-

analysis by Hendriks et al reported increased hazards from 1.32 to 1.44 for CV disease for women with BAC 

after adjusting for age and traditional CV risk factors [6]. Jiang et al [7] analyzed 10 cross-sectional studies 

for a total of 3,952 women and found a 3.86 odds ratio (OR) for CAD in those with BAC versus those 

without BAC. Thus, there is a potential for BAC to estimate CV risk in asymptomatic women. Considering 

the established role of screening mammography as a method to reduce breast cancer mortality by over 40% 

in women who attend a screening program [13], a reliable quantification of BAC used for CV risk estimation 

could be an important additional value of screening mammography. To date, this perspective is only an 

investigational issue. Only results from analyses using a dichotomic (present/absent BAC) scale were used 

because quantification methods adopted were largely heterogeneous and not comparable [14-18]. In most 

cases BAC were visually detected on mammograms by radiologists [19]. Molloi et al [20] developed a 

technique for quantification of BAC using standard full field digital mammography, demonstrating the 

feasibility of quantifying vascular calcium mass using densitometry upon calcium calibration on phantom, 

with an excellent inter-observer agreement.  

In this study, BAC were detected by human readers who selected encompassing ROIs whithin 

mammographic images. Being the segmentation within the ROIs fully automatic, the only possible source of 

variability of this process was the ROIs selection and positioning, entirely depending on the reader. 

Surprisingly, our experiment resulted only in a moderate intra-observer reproducibility (55%) and in a very 

poor inter-observer reproducibility (3%). These results highlight that detection and estimation of BAC extent 

is not a trivial task. As highlighted by Cheng et al [21], BAC analysis is complicated by relevant geometrical 

issues. The appearance patterns of vessel calcifications vary not only due to different amounts of calcium 

deposition but also due to projection effects. There is a topological complexity of calcified vessels that may 

also cross or overlap each other in the two-dimensional projections.   

The current study shows that, in the absence of fully automatic tools for BAC detection and quantification, 

the estimation of BAC largely depends on the reader and that, 2) a mixed approach such as reader-detection 

and automatic thresholding  results in a too low reproducibility. We can speculate that BAC recognition is 

not a mere matter of higher density findings on the background of breast parenchyma and/or fat. Indeed, 

anatomical recognition of a calcified vessel could be as important as high density area recognition. A key 

role should be played by a complex combination of these two factors: (i) density differences between BAC 

and background; and (ii) morphology of BAC along with background). As a consequence, developing a 

computed algorithm for BAC detection and quantitative estimation is far from easy.  

To standardize and reduce operator-dependency, two strongly different strategies are possible. On one hand, 

fully automatic detection and segmentation methods can be developed. Recent advances from artificial 

intelligence, such as deep learning [19], could play a role. However, large datasets of images are needed for 
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algorithm training and validation while establishing the ground truth for BAC engage expert radiologists in 

time-consuming procedures. On the other hand, radiologists may define semi-quantitative ordinal scales for 

severity of BAC, similar to the four ACR classes for breast density [10]. The second way seems to be easier 

and of more rapid application in clinical practice. Future research could integrate these two apparently 

opposite approaches, trying to define a visual BAC severity scale compared to thresholds obtained with 

automated methods.  

This study has limitations. Apart from the intrinsic characteristics of the software utilized, we should 

consider that the human readers were two residents in Radiodiagnostics with a limited experience in breast 

imaging. However, in this work, the clinical experience in cancer detection and characterization was not 

relevant. Moreover, preliminary first attempts for testing this method through long-experienced breast 

radiologists as observers were made, and a reproducibility even lower (unpublished data) resulted. In 

addition, for the specific aim of the experience here described, the two residents underwent an intensive 

training under a double supervision (a breast radiologist and a bioengineer, as described in Methods), with 

the specific aim of optimizing their reproducibility. 

In conclusion, our experiment showed a poor reproducibility of a semi-automatic operator-dependent tool for 

BAC quantification. These results pointed out that the observer represents the main source of variability in 

BAC severity assessment and give the basis for further studies. 
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Original investigation. Reproducibility of breast arterial calcifications assessment on 

a semi-quantitative scale. 

 

Methods 

The aim of this work was to explore intra- and inter-reader reproducibility of a semi-quantitative scale for 

BAC assessment. 

Study population and image selection 

The local Ethics Committee approved this retrospective, monocentric study. Due to the retrospective nature 

of this study, no specific informed consent was necessary. 

Mammograms of asymptomatic women who consecutively underwent screening for breast cancer from 

January 1
st
 to January 31

st
, 2018 were retrieved. Women in which BAC were recognized at least in one 

projection were selected for the study. In these women, among mammographic views, bilateral medio-lateral 

oblique (MLO) were considered for BAC assessment. Women‘s age was consequently retrieved.  

Image acquisition 

Images were acquired using full-field digital mammography systems (Giotto Tomo or Giotto Image 3D, 

IMS, Bologna, Italy). The breast was held in place during the exposure by a compression plate and by the 

image receptor to avoid artifacts. For each breast a compression, up to 40 seconds was applied. All 

examinations included a cranio-caudal (CC) and MLO projections for each breast.  

Image assessment 

Images were reviewed by a resident in Radiology with a 3-year experience in reading mammography (R1) 

and by a medical student (R2) adequately trained by a breast imager with a 15-year experience. At first, both 

R1 and R2 reviewed a subgroup of 10 randomly selected exams as training examples; subsequently, each 

reader independently evaluated all included mammograms. Finally, to estimate intra-reader agreement, R1 

re-evaluated all selected mammograms in a separate session at a 2-week interval. 

Images were reviewed on standard 5-megapixel mammography monitors with admitted access to all standard 

software tools including magnification and gray-scale inversion. 

The semi-quantitative scale adopted for assessing BAC was defined as follows: 1. Number of calcified 

vessels; 2. Calcium burden; 3. Overall length of calcified vessels. The number of calcified vessels 

corresponded to the relative score (i.e.: 3 calcified vessels yielded a score of 3). Calcium burden was defined 

as ―present‖ when the lumen appeared obliterated in the 2D plane with a corresponding score of 1, or 

―absent‖ when the lumen was clearly or partially visible with a corresponding score of 0. The overall length 

of calcified vessels, expressed in millimeters, was obtained by adding together the single lengths of each 

calcified segment; afterwards, four categories were defined based on overall lengths distribution by R1 and 
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corresponding scores established according to the relative quartiles (category 0, category 1 from 1% to < 

25%, category 2 from 25% to < 50%, category 3 from 50% to < 75%, category 4 from 75% to 100%). The 

median length of calcified vessels was 33 mm with an interquartile range (IQR) of 12–84 mm; five 

categories were defined: category 0 in absence of BAC, category 1 from 1 mm to 11 mm, category 2 from 12 

mm to 32 mm, category 3 from 33 mm to 83 mm, category 4 for ≥ 84 mm. Category scores varied from 0 to 

4, accordingly (Table 1).  

Table 1: Variables and possible scores of the semi-quantitative scale for breast arterial calcifications (BAC) 

assessment. 

 

Variable Score 

Number of calcified vessels Number of vessels 

Calcium burden 0/1 

Overall length of calcified vessels
a
 0/4

a
 

Final score 0/n
b
 

a
Categories were defined by quartiles of lengths distribution by Reader 1. 

 

bn = sum of the scores related to calcified vessels, overall length of calcified vessels, and calcium 
burden 

An example of BAC assessment is shown in Figure 1. Grading time for each MLO image was recorded for 

both readers on a subgroup of 10 subjects. 

 

Figure 1. Image features used to estimate: number of calcified vessels (white arrows in panel A; score = 4), 

calcium burden (red arrow in panel A; score = 1), overall length of calcified vessels (panel B; overall length 
= 153 mm; score = 4). Final score = 9 



32 
 

Statistical analysis 

Shapiro-Wilk test was performed to ascertain data normality. If at least one distribution was non-normal, all 

data were treated with non-parametric statistics. Descriptive statistics of continuous variables were expressed 

as mean ± standard deviation (SD) or median and IQR according to data distribution. T-test or Mann-

Whitney U test were used to compare: age of women with BAC with age of women without BAC; median 

BAC score between the two readers; median BAC score in two age-groups (50–69 years, ≥ 70); median 

grading time between the two readers.  

To assess intra and inter-reader agreement the Bland–Altman method was used in case of discrete variables 

while Cohen κ statistics and raw concordance (RC) were used categorical variables. Results of Bland–

Altman analysis were reported as bias, coefficient of repeatability (CoR), and reproducibility (R) defined as 

the complement to one of the ratios between CoR and overall mean differences. Cohen κ with linear 

weighting for multiple categories was used with resulting values characterized according to the Landis and 

Koch scale [32]: < 0 no agreement; 0–0.20 slight agreement; 0.21–0.40 fair agreement; 0.41–0.60 moderate 

agreement; 0.61–0.80 substantial agreement; 0.81–1 almost perfect agreement. The level of statistical 

significance was set at p < 0.050. 

Results 

A total of 408 asymptomatic women underwent mammography during the study period. Among them, 

57/408 (14%) presented BAC. Women without BAC, with a mean age of 59 ± 8 years, were younger than 

women with BAC, aged 67 ± 9 years (p < 0.001), as shown in Figure 2. 

 

 

 

 

Figure 2. Boxplot of age distributions in women without and with breast arterial calcifications (BAC) 
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Image analysis was feasible in all 57 women and 114 MLO views were evaluated (Fig. 3). BAC presence 

was reported in 96/114 and 95/114 views respectively in the first and second assessment by R1 (κ = 0.968, p 

< 0.001, RC 99%) and in 94/114 views by R2 (κ = 0.937, p < 0.001, RC 98%). According to R1, BAC were 

bilateral in 39/57 and 38/57 women during the first and second assessment, respectively (κ = 0.846, p < 

0.001, RC 95%), and in 37/57 women by R2 (κ = 0.921, p < 0.001, RC 96%). 

 

Figure 3. Flowchart of the study population selection. 

 

After the application of the semi-quantitative scale, a median final score of 4 (IQR 3–4) and 4 (IQR 2–4) 

resulted for R1 and R2, respectively (p = 0.417); Bland–Altman plots of the intra- and inter-reader 

reproducibility are shown in Figure 4 and Figure 5. 
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Figure 4. Bland–Altman plot for intra-reader reproducibility of the final score of the 

semi-quantitative scale for breast arterial calcifications (BAC) assessment 

 

 

Figure 5. Bland–Altman plot for inter-reader reproducibility of the final score of the semi-quantitative scale 

for breast arterial calcifications (BAC) assessment 

 

In women aged 50–69, median final score was 4 (IQR 3–5), while in women aged 70 and older it was 

significantly higher (5, IQR 3–8, p = 0.018) as depicted in Figure 6. 



35 
 

 

Figure 6. Boxplot of final score of the semi-quantitative scale in patients aged 50–60 and 70 and 

older. 

Table 2 and Table 3 detail the results of intra- and inter-reader agreement for dichotomic and categorical 

variables, and of intra- and inter-reader reproducibility for the assessment of discrete variables. 

Median grading time was 156 seconds (IQR 99–314 seconds) for R1 and 191 (IQR 137–292 seconds) for R2 

(p = 0.743).  

Table 2. Intra-reader reproducibility of the semi-quantitative scale. 

Dichotomic and categorical variables 
Linear 

weighted  
p Raw concordance 

BAC presence/absence 0.968 < 0.001 99% 

BAC bilaterality 0.846 < 0.001 95% 

Calcium burden 0.961 < 0.001 99% 

Overall length of calcified vessels
a
 0.912 < 0.001 87% 

 

Discrete variables Bias CoR R 

Number of calcified vessels 0.079 0.604 66% 

Final score 0.193 0.955 77% 

Note—Dichotomic and categorical variables were analyzed with Cohen κ statistics, while discrete variables with the Bland–

Altman method. BAC = breast arterial calcifications; CoR = coefficient of repeatability; R = reproducibility  a 

Categories were defined by quartiles of lengths distribution by Reader 1. 
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Table 3. Inter-reader reproducibility of the semi-quantitative scale. 

 

Dichotomic and categorical 

variables 

Linear 

weighted  
p Raw concordance 

BAC presence/absence 0.937  < 0.001 98% 

BAC bilaterality 0.921  < 0.001 96% 

Calcium burden 0.837  < 0.001 97% 

Overall length of calcified vessels
a
 0.875  < 0.001 82% 

 

Discrete variables Bias CoR R 

Number of calcified vessels 0.070 1.120 38% 

Final score 0.211 1.516 64% 

Note—Dichotomic and categorical variables were analyzed with Cohen κ statistics, while discrete variables with the 

Bland–Altman method. BAC = breast arterial calcifications; CoR = coefficient of repeatability; R = reproducibility. 

a
Categories were defined by quartiles of lengths distribution by Reader 1. 

 

 

Discussion 

CV disease represents a major public health issue, and is the first cause of death accounting for more than 

30% of cases worldwide [1, 2, 33]. Over the last fifty years increasing attention has been paid to primary 

prevention, through the identification and control of risk factors and a progressive improvement in 

phenotyping CV risk; moreover, in recent times various efforts have been undertaken to improve the 

performance of traditional CV risk scores with the help of algorithms and also of imaging biomarkers [28]. 

In this framework, which implies also an attention to gender-specific risk assessment, BAC have been 

recently described among “the top five women’s health issues in preventive cardiology, at the forefront of 

recent and ongoing research”, together with coronary microvascular dysfunction, hormone replacement 

therapy, calcium and vitamin D supplementation, and metabolic adaptations during pregnancy [34]. 

BAC are a common finding on mammograms where they appear as linear, parallel opacities, typically 

described as having a ―tram-track‖ appearance [11, 12, 14, 15]. They are the expression of Mönckeberg‘s 

calcification, a non-atheromatous vascular lesion developing in the internal elastic lamina or in the tunica 

media of muscular arteries and have to be distinguished from atherosclerotic calcifications, which involve 

the intima of large and medium sized elastic arteries [35]. Mönckeberg‘s calcifications contain 

hydroxyapatite crystal deposition in the plaques, while accumulation of calcium phosphate salts in the 

vascular tissue is seen in advanced atherosclerosis [36]. 

BAC are easily recognizable on routine mammograms that women periodically undergo for breast cancer 

screening that – according to different local policies – starts from 40, 45 or 50 years of age. The reported 

association between BAC and CV disease in woman advocates the use of mammography as a preventive test 
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beyond breast cancer screening, spotlighting the heart and more comprehensively CV risk [15]. A systematic 

review and meta-analysis by Hendriks et al. [12]displayed evidence on the association between BAC and CV 

risk factors: high pooled BAC prevalence was found to be related with increasing age, diabetes, and parity as 

opposed to nulliparity, while smoking was linked with lower BAC prevalence. Thus, since BAC appear to be 

associated with an increased risk of CV disease events and with some known CV risk factors, their 

assessment represents a fundamental challenge [12]. 

Several attempts have been made to improve BAC estimation using fully automatic methods or semi-

quantitative grading scales, such as the one proposed by Margolies et al. [25], in which both qualitative and 

quantitative evaluations were introduced [24, 25, 37, 38]. In all experiments performed, operator-dependency 

in BAC quantification remained critical and represented the major source of bias [30, 31]. 

Moreover, reproducibility of semi-quantitative grading scales for BAC assessment has never been explored. 

In our limited experience, preliminary tests on the reproducibility of such scales, – in particular the one 

proposed by Margolies et al. [25] – invariably resulted in low intra- and inter-reader agreement: this indeed 

prompted the development of our semi-quantitative scale, as a critical rethinking of existing ones. 

The application of our newly built semi-quantitative scale started with a preliminary assessment of BAC 

prevalence in a population of 408 consecutive patients referring to our hospital for breast cancer screening in 

January 2018. As expected from literature reports that indicated an odds ratio of 2.98 linking age to BAC 

[15], we found a statistically significant difference (Mann-Whitney test with p < 0.001) in terms of age 

between the 57 women with BAC – which were aged 67±9 years on average – and the 351 women without 

BAC, which were aged an average 59±8 years. These data confirm that BAC prevalence increases 

significantly with age, like CV risk, considering that women in menopausal status loose the protective role of 

estrogenic hormones.  

The final score of semi-quantitative scale showed good intra-observer (R=77%) and inter-observer (R = 

64%) reproducibility. The number of calcified vessels was the most difficult variable to be assessed, showing 

lower reproducibility both in intra- and inter-reader comparison. On the contrary, calcium burden as well as 

overall length of calcified vessels showed low intra- and inter-operator variability. 

Intra-reader reproducibility of bilaterality resulted to be lower than the inter-reader one. This apparently 

counterintuitive result stems from a minimal difference in raw agreement. In fact, RC values confirm the 

high level of agreement between assessments. 

We also observed that the grading time for both readers was around 3 minutes, therefore suitable for 

integration in routine clinical practice; of note, the automatization of basic but time-consuming aspects such 

as the overall calculation of BAC length, which took an average 1 minute for both readers, could allow for an 

even smoother integration in standard mammography interpretation. 

BAC may therefore become an important sex-specific biomarker for CV risk stratification, potentially 

guiding CV preventive programs in the female population. Women entering the screening program for breast 

cancer and not otherwise considered for CV risk would benefit from mammography in a double way, aiming 

at cancer secondary prevention and CV primary or secondary prevention. While such a preventive 
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intervention towards CV disease is likely not to be cost-effective in a low-risk population, it could be so in a 

population at increased risk [39]. BAC assessment in the context of breast cancer screening may enable 

subjects at increased risk to be identified and to be offered with tailored preventive and possibly therapeutic 

interventions, especially if this assessment could be easily integrated in the mammography interpretation 

workflow without substantial increase in time requirements. However, this approach has been indeed 

strongly limited by a number of factors, one of the strongest being the lack of validated BAC quantification 

methods. To exploit BAC potential on mammography, our semi-quantitative scale could be integrated with 

other approaches, such as fully automatic detection and segmentation systems. In the wake of artificial 

intelligence systems‘ promising performances in medical image analysis, a recent study investigated the 

potential of deep learning for BAC detection on mammograms: a deep convolutional neural network was 

used to discriminate between BAC and non-BAC pixels [31], reaching a detection ability similar to that of 

human experts, with false positives of 0.4762 cm
2
, a true positive rate of 60%, and good performance also in 

calcium mass quantification (determination coefficient 96.2%). While these results once more confirmed the 

beneficial potential of deep learning in medical image processing and, in particular, for BAC detection, 

further large scale studies are needed to improve and validate these algorithms [31]. 

BAC represent an added value – swiftly recognized by patients [40]– in an ongoing and consolidated cancer 

screening strategy, shedding light on CV risk factors and prompting detection and prevention for the main 

cause of death among women, in which traditional CV risk scores do not adequately perform. High quality 

research is paramount to reach this aim, the first step being to make a reliable and user-friendly BAC 

quantification tool available. 

Our study has limitations. First, it is a single-center study on a retrospectively retrieved relatively small 

number of subjects, that seems however statistically adequate given the narrow IC for BAC prevalence. 

Second, the two human readers were a Radiology resident and a medical student that – although adequately 

trained – still had limited experience in breast imaging. Yet, while clinical experience in cancer detection and 

characterization were not relevant in this study, it should also be noted how this factor represents indeed a 

strong point of this ad hoc semi-quantitative scale: the high intra- and inter-reader reproducibility show in 

fact the relative ease of its application, even in the hands of not-experienced readers. Third, a ―ground truth‖ 

for BAC was not applied and it is unlikely that we will ever have large prospective studies that will ascertain 

the real burden of calcium from surgical specimens. Therefore, a higher intra- and inter-reader 

reproducibility is the most reliable method for a robust and objective quantification. Fourth, although the 

observer itself represents the main source of variability when assessing BAC, our reproducibility was high 

and intra- and inter-reader agreement rates all fell into the highest category according to the established 

classification by Landis and Koch [32]. 

In conclusion, this study showed that BAC can be semi-quantitatively assessed on mammography with high 

reproducibility and within an acceptable time, allowing for immediate clinical translation. Future prospective 

trials are needed to prove the ability of this score to stratify CV risk in women, guiding sex-specific 

preventive interventions. 
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Introduction 

 

Breast cancer (BC) is the most common female cancer in the western world and represents the leading cause 

of cancer death in women aged 20 to 59 years [1]. A variety of entities with distinct morphological features 

and clinical behaviors are encompassed [2] and several chances exist for local and regional treatment [3]. 

Thus, a great effort has been made for the development of tailored therapies allowing for reducing BC 

mortality and treatment-related morbidity. Current decision making is based on traditional prognostic factors 

such as tumor size, histologic type, grading, and nodal status. All these parameters are derived from image-

guided percutaneous biopsy or surgical intervention, which still play a crucial role in the diagnostic and 

prognostic process.  

BC is an angiogenesis-dependent tumor since angiogenesis is necessary for tumor growth, invasion, and 

metastatic spread and takes on a prognostic value [4, 5]. Angiogenesis is the process by which, as the tumor 

grows, hypoxic stress on tumor cells, caused by the increasing gap between demand and supply of oxygen 

and nutrients through the normal vessels, leads to the formation of new vessels and/or the sprouting of 

existing capillaries in the peritumoral stroma through the release of growth factors, particularly the vascular 

endothelial growth factor (VEGF). The large endothelial fenestrations of the new capillary system, no longer 

controlled by regular physiologic mechanisms, give rise to increased capillary leakage of contrast material 

that can be appreciated on magnetic resonance imaging (MRI). One of the main advantages of MRI is the 

ability to go beyond morphological toward functional information providing insights of the hallmarks of a 

neoplasm. In particular, given the sensitivity to blood volume and vascular permeability, it can be used to 

measure the properties of tissue microvascularization that are associated with tumor neoangiogenesis [6,7]. 

The latter is essential for tumor growth and metastatic diffusion and is the physiopathological basis of 

contrast enhancement which is why in most cases we can distinguish a benign from a malignant lesion in 

breast MRI [6]. Breast magnetic resonance imaging (MRI) is the most accurate non-invasive method in the 

diagnosis of breast cancer with a sensitivity of 93% and a specificity of 71% as reported in a meta-analysis of 

14 studies [8]. Significant technological advances and ever-increasing scientific evidence led to a widespread 

use of the method in the clinical field over the last ten years and allowed its introduction in different aspects 

of breast cancer diagnosis and management. Screening of high-risk women, preoperative staging, "problem 

solving" and monitoring of neoadjuvant therapy represent the main indications for the use of contrast-

enhanced breast MRI and are currently recommended by the major scientific societies, such as the American 

Cancer Society, the European Society of Breast Imaging, the American College of Radiology, the European 

Society of Breast Cancer Specialists. Several perfusion parameters variably derived from breast MRI were 

initially correlated with traditional histological prognostic factors (grading, tumor size, HER2 expression and 

hormone receptors, Ki67 proliferation index), later with local recurrences, distant metastases and survival, 

opening a new scenario in the treatment of breast cancer where MRI becomes an imaging biomarker, a 

prognostic method able to predict the progression of the disease. Contrast-enhanced MRI allows to extract 

local perfusion parameters that permit to quantify the angiogenetic activity of breast lesions. So far, 
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perfusion parameters have been correlated with pathological prognostic factors such as grading, tumor size, 

human epidermal growth factor receptor 2 overexpression, hormonal receptors expression, and Ki67 positive 

cells percentage, with local recurrences, metastatic spread, and overall survival as well as response to 

neoadjuvant therapy [9, 10].  
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Original investigation. Correlation between voxel-wise enhancement parameters on 

DCE-MRI and pathological prognostic factors in invasive breast cancers 

 

Methods 

The purpose of our study was to verify the correlation between enhancement parameters derived from 

routine breast DCE-MRI and pathological prognostic factors in invasive BCs as a condition for the use of 

MRI-derived imaging biomarkers in adjunct to traditional prognostic tools in clinical decision making. 

 

Patients 

This retrospective study was approved by the local ethical committee. We retrospectively reviewed clinical 

and imaging records of newly diagnosed BC cases surgically treated at our Institution from January 2011 to 

December 2013, who also had preoperative breast MRI performed at our Department of Radiology. Women 

with unilateral unifocal, mass invasive BC were included in the analysis while those with multifocal, 

multicentric, or bilateral BCs and with in situ or non-mass enhancement carcinomas were excluded. 

 

MRI technique 

The MRI examinations were performed using a 1.5-T unit (Magnetom Sonata Maestro Class, Siemens 

Medical Solution, Erlangen, Germany). Patients were imaged in prone position with a dedicated bilateral 

breast surface coil, on days 7-14 of the menstrual cycle in premenopausal women and without scheduling 

limitations in postmenopausal women. After a three-plane scout view, the imaging protocol started with a 

bilateral axial T2-weighted short time inversion recovery sequence and an axial diffusion-weighted echo-

planar sequence, both of them not considered for the current study. The DCE-MRI protocol consisted of a 

repetitive axial three-dimensional T1-weighted spoiled gradient-echo sequence: after an unenhanced scan, an 

intravenous bolus of 0.1 mmol/kg of gadobenate dimeglumine (MultiHance®, Bracco, Italy), at a rate of 2 

ml/s, followed by a 20 ml saline flush, was administered and four contrast-enhanced dynamic scans were 

acquired (TR 11 ms, TE 4.9 ms, slice thickness 1,3 mm, matrix 512×512, acquisition time 1 min and 43 sec 

× 5, flip angle: 25°, voxel resolution 0.8×0.8×1.3 mm
3
). 

 

Image analysis 

Two independent radiology residents, with a 3-year experience in breast MRI, retrospectively reviewed the 

images and segmented the entire lesion volume of each tumor. Both operators were trained for the 

segmentation protocol. Intra- and inter-observer reproducibility was tested on ten randomly selected patients 

in a double-blinded process (≥2-week interval). Segmentation was performed on the images obtained 

subtracting the pre-contrast frame from the second contrast-enhanced frame. At first, spatial resolution was 

doubled using super sampling tool in order to minimize partial volume effect; secondarily, the volume was 

outlined through constrains on consecutive slices. Segmentation was obtained by selecting a single seed that 
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propagates through slices, using an isointensity algorithm. Manual correction was done if necessary, as for 

removal of vessels (Figure 1). 

 

 

Figure 1. Volume segmentation. Axial T1-weighted subtracted images show the application of the semi-

automatic three-dimensional volume segmentation (Olea Medical, La Ciotat, France) of an invasive ductal 

carcinoma on the right breast. Segmentation was obtained by selecting a single seed that propagates 
through slices, using an isointensity algorithm. 

 

Enhancement parameters 

The segmented volume was used as mask for the extraction of all voxel values from the computed DCE-MRI 

maps. Perfusion maps were extracted using a post-processing platform with dedicated DCE-MRI (Olea 

Sphere, Olea Medical, La Ciotat, France). The following voxel-wise semi-quantitative enhancement 

parameters were extracted: 1) time to peak enhancement; 2) signal intensity at peak (SIP); 3) peak 

enhancement percentage (PEP); and 4) post-initial enhancement percentage (PIEP).  

PEP and PIEP were computed on three time points: the baseline point (t0), the end of wash-in phase (t1), and 

the post-bolus point (t2). The PEP represents the percentage of initial signal increase of the concentration 

time curve: 

        
       
   

 

The PIEP describes in percentage the post-initial behavior of the concentration time curve: 
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Based on the PEP value, the initial signal increase of the pixel intensity curve has been classified between 

three wash-in types: slow (less than 50% increase in signal intensity compared with pre-contrast signal 

intensity), intermediate (between 50% and 100% increase in signal intensity compared with pre-contrast 

signal intensity), and fast (over than 100% increase in signal intensity compared with pre-contrast signal 

intensity). Similarly, based on the PIEP value, the post- initial signal course of the pixel intensity curve has 

been classified in: persistent (signal increase over 10% peak signal intensity), plateau (constant signal 

intensity +/- 10%) and washout (signal decrease over 10% peak signal intensity). 

As  time to peak enhancement and corresponding peak are independently reached by each voxel also PEP 

and PIEP were computed taking this into account. Furthermore, time needed for lesion segmentation was 

recorded. 

 

Histopathological assessment 

Pathology was obtained on definitive surgical specimens in all patients. Histological features, including 

grading, estrogen receptor (ER) and progesterone receptor (PR) status, HER2 expression, Ki-67 

proliferation, vascular and neural invasion, tumor and axillary nodal stage were obtained from the pathology 

reports. Among these, ER, PR status, HER2 expression, vascular and neural invasion were considered as 

binary variables (positive vs negative). Grading (G1,G2,G3) and Ki-67 proliferation (<15% vs. ≥ 15%, ≤30% 

vs. >30%) were scored on a three-level scale, while pathological tumor (pT1, pT2, pT3) and axillary nodal 

stages (pN0, pN1, pN2, pN3) were scored using breast tumor-node-metastasis (TNM) staging system [11].  

  

Statistical analysis  

Volume values and patients age were reported as mean ± standard deviation (SD) due to their normal 

distribution. Intra- and inter-observer reproducibility during volume segmentation was evaluated with the 

Bland-Altman analysis using segmented volume values. Correlations among enhancement parameters and 

pathological prognostic factors were evaluated using respectively Spearman (ρ) correlation coefficient for 

pT, pN, histologic grade and Ki67 proliferation or Phi (ϕ) correlation coefficients in case of vascular/neural 

invasion, ER expression, PR expression, HER2 expression (positive vs negative). Statistical significance 

level was set at p<0.05. 
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Results 

Overall, 76 consecutive women were identified in the database; 56 women were excluded from the analysis 

for having ductal carcinoma in situ (1), multifocal (20), multicentric (15), non-mass enhancement lesions (8) 

or bilateral cancers (8). Moreover, 4 patients had incomplete MRI examinations and were also excluded. 

Thus, 25 women (age 64.5 ± 9.94, mean ± SD) with 25 BCs were included in the study: 22 (88%) invasive 

ductal, 2 (8%) invasive lobular and 1 (4%) invasive mucinous carcinomas. 

Time for post-processing was 14.6 ±1.3 min (mean ± SD). The mean tumor volume was 2.78 ± 1.97 cm
3
 

(mean ± SD). Intra-observer bias ± 2 SD was 0.22 ± 0.53 cm
3
 with a resulting reproducibility value equal to 

60.2%. Inter-observer bias ± 2 SD was 0.15 ± 0.82 cm
3
, with a resulting reproducibility value equal to 

55.8%. 

Significant correlations were found among MRI enhancement parameters and pathological prognostic 

factors. In particular, mean SIP correlated with pT (ρ = 0.424, p = 0.035) while mean PEP correlated with 

HER2 overexpression (ϕ = 0.471, p = 0.017) and pT (ρ = 0.449, p = 0.024). The percentage of voxels with a 

fast PEP directly correlated with pT (ρ = 0.482, p = 0.015) and pN (ρ = 0.446, p = 0.026) while the 

percentage of voxels with a slow PEP inversely correlated with  pT (ρ = -0.421, p = 0.039) and pN (ρ = -

0.481, p = 0.015). The percentage of voxels with an intermediate PEP also inversely correlated with pT (ρ = -

0.415, p = 0.042) (Table 1).    

 

Table 1. Correlation coefficients and corresponding p-values among HER2, pT, pN and DCE-MRI 
enhancement parameters 

 

  Mean SIP Mean PEP % PEPSlow % PEPMedium %PEPFast 

HER2 

ϕ -0.022 0.471 -0.240 -0.315 0.314 

p-value 0.916 0.017 0.247 0.125 0.127 

pT 

ρ 0.424 0.449 -0.421 -0.415 0.482 

p-value 0.035 0.024 0.039 0.042 0.015 

pN 

ρ 0.013 0.301 -0.481 -0.342 0.446 

p-value 0.952 0.144 0.015 0.094 0.026 

ρ = Spearman correlation coefficient; ϕ = Phi correlation coefficient; SIP = signal intensity at peak; PEP = peak enhancement percentage; Statistical 

significant correlations are highlighted in bold. 
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Discussion 

Our study confirmed that there is a correlation between enhancement parameters of invasive breast cancers 

as derived from breast MRI and pathological prognostic factors. In particular, SIP and PEP, that mainly 

reflect the increased permeability of vascular space in invasive cancers, correlated with histological 

unfavorable prognostic factors including HER2, pT and pN.  

Yi et al. obtained model-based and model-free perfusion parameters of 102 invasive carcinomas and 

correlated them with histological prognostic factors. They found a significant correlation between model-

based and model-free parameters and concluded that general information about tumor vascularization and 

pathologic prognostic factors may be obtained by routine acquisitions analyzing time-signal intensity curve 

[12]. However, dedicated MRI protocols aiming at deriving model-based perfusions parameters require T1 

mapping and arterial input function favoring high temporal resolution with the sacrifice of high spatial 

resolution, the latter being indeed necessary for lesion morphology characterization. Accordingly, our study 

demonstrated that model-free enhancement parameters obtained from a routine acquisition protocol of breast 

MRI correlate with histological prognostic factors.      

Important to note, HER2 gene product is a trans-membrane receptor protein that plays an important role in 

regulating cell growth and differentiation. Amplification or overexpression of this oncogene occurs in 

approximately 15-30% of BCs and is relevant for the development and progression of certain aggressive 

BCs, being strongly associated with increased disease recurrence and a poor prognosis [13]. BC cells 

transfected with HER2 acquire a more malignant phenotype, with increased cell invasion, angiogenesis and 

metastasis [14]. Previous studies showed that the VEGF expression, related to angiogenesis and microvessel 

density of BC, is positively correlated with HER2 expression in human breast carcinomas [15]. Thus, the 

increased vascularization revealed by high perfusions indices on MRI well addresses the poor prognosis of 

HER2 positive BCs.  

Tumor stage at diagnosis still influences BC overall survival significantly in the current era of effective 

systemic therapy [16], representing a strong predictor of a poor prognosis [17]. We found that SIP and PEP, 

which are indices of high vascularization, correlated with pT (Figures 2 and 3), and may potentially serve as 

predictive imaging-biomarkers [17]. In fact, the tumor neovascularization grade correlates with biologic 

aggressiveness and potential to metastasize [5,18].  
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Figure 2. Correlation between tumor size and peak enhancement percentage (PEP).  Axial T1-weighted 

subtracted images (above) and corresponding PEP distribution (below) of a pT1 (left) and a pT2 (right) 

invasive ductal carcinoma. Histograms show that the larger tumor has higher percentage of voxels with fast 
PEP and lower percentage of voxels with slow PEP compared to the smaller tumor. 

 

Our results are in line with previous studies reporting an association between increased vascularization and 

higher histological grading with larger tumor size [10, 19]. 

 

 

Figure 3. Correlation between tumor size and signal intensity at peak (SIP). Representative parametric 

color-coded maps of SIP showing lower values in a pT1 invasive ductal carcinoma compared with a pT4 

invasive ductal carcinoma (right). 
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Lymph node metastases are well-recognized prognostic indicators. We found that high perfusion indices on 

MRI correlate with nodal status. This is in accordance with previous reports from Bonè et al [6, 20] 

suggesting that DCE-MRI may be influenced by factors that have prognostic value and may become a 

valuable prognostic tool for BC pretreatment evaluation. 

As expected, the intra- and inter-reproducibility of volume segmentation resulted to be suboptimal. In fact, as 

it derives from the Euclidean geometry, greater the number of considered dimensions, greater the error and 

lower the reproducibility of the measurement [21]. Automatic segmentation systems are advocated to solve 

this geometrical difficulty.    

A growing interest is in the use of MRI as a prognostic tool helping to define prognosis but also for a better 

planning of therapies. This is particularly true in patients candidates to neoadjuvant therapies where MRI 

could help to optimize the treatment in non-responders and in patients not suitable for surgery, such as 

elderly patients, where breast MRI could help understand hallmarks of cancers in a non-invasive way.   . The 

strength of the present study is that it applies a semi-quantitative analysis using data deriving from routine 

clinical acquisitions of breast MRI, differently from what has been done in previous perfusion studies using 

dedicated acquisitions [10,22]. Perfusion indices can be obtained from normal workflow and may add 

prognostic information to diagnostics supporting the decision making on BC care.  

This study has some limitations. First of all, it is a retrospective study on a small sample of patients. Thus, 

the sample size may be insufficient to reveal subtle differences in the various enhancement parameters and 

prevents from performing subgroup analyses. We strictly selected the study population, including only 

unifocal, unilateral, invasive mass cancers in order to avoid any confounding variable possibly diluting 

investigated correlations. Notably, 73% of identified patients was excluded for multifocal, multicenter, 

bilateral, or non-mass lesions, as however expected in a population of women newly diagnosed with breast 

cancer requested with MRI. Thus, in order to definitively ascertain the relation between enhancement 

parameters and pathological prognostic factors of BC, larger prospective studies are needed to figure out the 

applicability of routine MRI acquisitions in a prognostic potential for a predictive, personalized, preventive, 

participatory (P4) medicine [23]. 

In conclusion, our study showed that voxel-wise enhancement parameters of invasive BCs derived from a 

routine clinical DCE-MRI protocol correlated with HER2, pT and pN. This supports thinking breast MRI as 

a promising tool to improve BC patient management.  
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Introduction 

Recent enthusiasm regarding the introduction of artificial intelligence (AI) into health care and, in particular, 

into radiology has increased clinicians‘ expectations regarding the possible impact of AI on their profession 

[1, 2]. Indeed, in 2017 AI was included as one of the three top trends in the Gartner hype cycle for emerging 

technologies [3]. However, this technology has not yet reached the stage of stable and massive adoption, and 

it is indeed currently evolving.  

AI refers to a subfield of computer science focused on allowing computers to mimic human cognitive 

functions [4]. The recent hype regarding AI applications in health care is mainly attributable to the use of 

deep learning (DL) to address diagnostic tasks [5]. DL is a subset of machine learning(ML), which, in turn, 

is a domain of AI that enables computers to learn and detect patterns in data without being explicitly 

programmed [6]. ML was first introduced in 1959 [7] and has been used for daily tasks such as filtering 

spam e-mails. In the past decade, thanks to recent technologic advancements that bring graphic processing 

units and other highly performing computational resources within the reach of all individuals, ML and DL 

algorithms have been applied to diagnostic tasks with encouraging performance [8].  

ML includes a large variety of methods that can be classified according to the training approach, as follows: 

supervised learning algorithms, which use labeled data to predict or classify data according to a known 

output; unsupervised learning algorithms, which do not use labeled data but aim to find naturally occurring 

patterns within data; and reinforcement learning algorithms, which aim to determine the best behavior on the 

basis of simple reward feedback [9]. Among the supervised learning approaches, artificial neural networks 

(ANNs), support vector machines (SVMs), random forest (RF), linear discriminant analysis (LDA), and 

logistic regression classifiers are the most frequently used [10, 11].  

ANN architecture, which is inspired by biologic neural networks of the brain, comprises interconnected 

nodes, which perform the weighted sums of several input data (features) and then pass them to an activation 

function to produce the target output. Nodes are structured in layers: the input layer, which represents input 

features; a variable number of hidden layers, which represent the network depth; and the output layer, which 

represents the target output. During the training phase, all weights are dynamically optimized to maximize 

model accuracy. The output layer is then connected to a softmask function that converted the raw data 

generated by output nodes into a target class probability [5].  

SVMs are supervised learning models that allow classification of input data by calculating the widest 

hyperplane, the support vector, between two classes. Created as binary classifiers, SVMs are now used also 

for multiclass classification and are widely used both for classification and regression purposes because of 

their ability to model nonlinear relationship between input features and output target [6].  

Another popular branch of the ML is represented by decision trees, which are one of the most popular ML 

algorithms because of their ease of interpretation compared with other black-box techniques like ANNs and 

SVMs [6]. Decision trees make predictions or classifications by bifurcating the feature space at each decision 

node. Among decision trees, RF classifiers aggregate votes of a set of decision trees generated by a randomly 

created subset of the training dataset to improve classification accuracy. On the other hand, among 
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unsupervised learning methods, clustering is the most frequently used subset of unsupervised learning 

methods [12], with the fuzzy C-means clustering algorithm being one of the methods most often used [9]. 

Clustering algorithms classify data into a defined number of clusters (groups) by iteratively calculating the 

cluster configurations that minimize intragroup variability and maximize the intergroup variability. In the 

fuzzy C-means algorithm, each datum, instead of being assigned to a specific cluster (hard clustering 

methods), can belong to several clusters with a certain degree of membership that ranges between zero and 

one [9].  

One of the first fields of medical imaging that benefited from the introduction of ML techniques is breast 

imaging. The pioneer applications of ML to breast imaging date back to the 1990s and, predictably, were 

focused on the detection of microcalcifications and breast lesions on mammograms to overcome the 

limitations of conventional computer-assisted diagnosis systems [13–15]. These efforts were justified by the 

combination of high-volume workflow in mass screening and the intrinsic limitation of mammography, 

which remains the standard method for breast cancer screening but which clearly shows its imperfections in 

terms of both sensitivity and positive predictive value.  

MRI represents the most sophisticated method for breast imaging. When, in 1986 [16], the introduction of a 

gadolinium chelate as a contrast material opened the door to contrast-enhanced (CE) MRI, and highly 

spatially and temporally resolved images were further obtained over the years, it was immediately evident 

that this functional method would have preserved a great potential for diagnosis and care of breast cancer. 

Today, selected clinical settings are recommended for CE breast MRI [17], which reaches a sensitivity close 

to 100% [18]. In addition, unenhanced sequences (in particular, T2-weighted imaging, proton spectroscopy, 

and especially DWI) have been applied in clinical practice, ushering in the era of multiparametric breast MRI 

[19]. The large datasets provided by and potentially extractable from breast MRI make it the right stuff for 

fitting AI applications. Moreover, AI interacts with and integrates radiomics, which is now the other 

emerging topic in radiology. Radiologic images and especially MR images encompass hidden information 

that is not always perceivable from human interpretation but can be extracted using ML methods and 

analyzed for a better understanding of the disease in vivo [20]. Patient care may hence benefit from a faster, 

more accurate, and tailored diagnosis and  prognosis. 
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Original investigation. Artificial Intelligence for breast MRI in 2008-2018: A 

systematic mapping  review 

 

Methods 

Search Strategy and Eligibility Criteria 

In June 2018, with the use of PubMed (MEDLINE, U.S. National Library of Medicine and National 

Institutes of Health) and EMBASE (Elsevier), a systematic search of the literature was performed to identify 

articles that evaluated the application of ML to breast MRI. A controlled vocabulary (using medical subject 

headings in PubMed and the thesaurus in EMBASE) was used. Search syntax was built combining search 

terms related to three main domains: ―artificial intelligence,‖ ―breast disease,‖ and ―MRI.‖ The exact search 

query was (‗breast disease‘/exp OR ‗breast disease‘ OR ‗breast‘ OR ‗breast‘/exp OR breast) AND (‗nuclear 

MRI‘ OR ‗nuclear MRI‘/exp OR ‗mri‘) AND (‗artificial intelligence‘ OR ‗artificial intelligence‘/exp OR 

‗machine learning‘ OR ‗machine learning‘/exp OR ‗deep learning‘ OR ‗deep learning‘/exp). The search was 

limited to original articles on in vivo studies of humans published since 2008 in peer-reviewed journals, all 

of which were written in English and featured an available abstract. The initial screening for eligibility was 

performed by two independent readers with 10 and 6 years of experience in medical image analysis. Articles 

considered to address the application of AI to breast MRI on the basis of the title and abstract were 

considered eligible for inclusion. Eligible articles were retrieved and read in full. To be included in our 

systematic review, an article had to discuss any attempt to apply any method of ML, DL, or AI to breast MRI 

for any clinical or technical aim. No specific limitations were applied regarding the aim of the study, 

including image processing, diagnosis, prognosis, or outcome prediction. Finally, references of analyzed 

articles were searched manually to determine further eligibility for inclusion. 

 

Data Extraction 

Data extraction was performed independently by the same two readers. Agreement was achieved by 

consensus involving two other readers. For each article analyzed, the first author‘s surname; year of 

publication; journal of publication; Web of Science Core Collection journal category; first author‘s country 

of affiliation; study design; dataset; study aim; ML, DL, or AI methods used; and corresponding performance 

were recorded. Among the MRI characteristics, static magnetic field strength and adopted sequences were 

noted. When multiple AI, DL, and ML approaches were compared, only the outperforming approach was 

included in this review. A quantitative general overview of study characteristics was reported using 

descriptive statistics and median and interquartile range (IQR) values. However, because of the heterogeneity 

of aims, the dataset used, applied techniques, and evaluation metrics specified in the selected publications, 

we decided to stratify results by pursued clinical aim. Moreover, to summarize the results accomplished in 

studies that addressed the same aim, the descriptive statistics (minimum, median, IQR, and maximum 

values) were reported for the most frequently used performance metric. 
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Results 

Literature Search and Study Characteristics A flowchart illustrating the literature search is presented in 

Figure 1. From the initial search and after removal of duplicate studies, 258 articles were identified. In 

addition, one more article was included after a manual search. So, 259 articles were selected for further 

screening. Of these, 112 articles met the exclusion criteria, whereas 147 were selected for title and abstract 

screening. A total of 67 studies were ultimately included in this systematic mapping review. 

 

 

 

 

Figure 1. PRISMA (preferred reporting items for systematic reviews and meta-analyses) flowchart 

of systematic identification, screening, eligibility, and inclusion information from retrieved studies 

in this analysis. 
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Of the full texts that were reviewed, 58 studies (87%) had a retrospective design, whereas the remaining nine 

studies (13%) had a prospective prospective design. Included articles were published between January 2008 

and June 2018. Figure 2 shows an increase in the number of published original articles on the topic of AI.  

 

 

Figure 2. Graph of number of original articles on application of artificial intelligence to breast MRI 
published annually, as indexed in EMBASE and PubMed. 

 

Figure 3 shows the distribution of articles according to the Web of Science Core Collection journal category. 

When journal categories were categorized into two main groups (medical journals versus engineering or 

computer science journals), 45% of selected articles were published in medical journals, whereas 55% were 

published in engineering or computer science journals. Of note, approximately one-third of the reviewed 

articles (36%) were included in the radiology, nuclear medicine, and medical imaging article category. 
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Figure 3. Graph of number of original articles on application of artificial intelligence to breast MRI 

published annually, as indexed in EMBASE and PubMed. 

 

Regarding geographic distribution of the studies, 29 studies (43%) came from North America, 21 (31%) 

from Europe, 16 (24%) from Asia, and one (2%) from Australia. Among European countries, The 

Netherlands accounted for 24% of published articles; the United Kingdom, 19%; Germany, 14%; Italy and 

Slovenia, 9% each; and Belgium, Norway, Portugal, France, and Turkey, 5% each. The United States alone 

accounts for 90% of publications from North America. Among publications from Asia, 75% are from China, 

13% from Taiwan, 6% from India, and 6% from South Korea. Figure 4 shows the geographic distribution of 

published works. 
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Figure 4. Geographic map of country of affiliation of first authors of reviewed studies. 

 

For most of the studies (37 studies; 55%), MRI scans were collected using 1.5-T scanners only. Eleven 

studies (16%) used images acquired using 3-T scanners only. Finally, 14 studies (21%) used both 1.5-T and 

3-T scanners, whereas four studies did not provide this information. Of the different MRI sequences used for 

breast imaging, CE sequences were used most often. In particular, in 50 studies (75%), only CE images were 

used, whereas in seven studies (10%), CE images were combined with other MRI data, such as T2-weighted, 

diffusion-weighted, and MR spectroscopy images. Images acquired using the Dixon method were also used 

in three studies (4%); in one of these studies, it was used alone, and in the other two, it was combined with 

other MR images (T1-, T2-, and proton density–weighted images). Finally, three studies (4%) were 

performed using diffusion-weighted images only.  

Different aims were addressed in various studies. We grouped the aims of the studies reported in each article 

into four subgroups: breast lesion classification (i.e., differentiation of malignant versus benign lesions) (36 

studies [54%]); image processing (14 studies [21%]), including tissue and lesion segmentation and image 

quality improvement; prognostic imaging (nine studies [13%]); and response to neoadjuvant therapy (NAT) 

(eight studies [12%]). The lesion classification subgroup included all studies that tried to differentiate 

between two or multiple lesion categories (e.g., mass, nonmass, benign, or malignant). The image processing 

subgroup comprised all studies that focused on image segmentation or image quality improvement. The 

prognostic imaging subgroup included all studies correlating MRI enhancement parameters, extracted 

through ML algorithms, with indicators of prognosis, namely molecular subtype (luminal A cancers), the 

pathologic marker of aggressiveness (Ki-67 labeling index and histologic grade), multigene assay 

classification (MammaPrint [Agendia], Oncotype DX [Genomic Health], and PAM50 [Prosigna]), and 
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lymph node status. Finally, the NAT response subgroup consisted of all studies analyzing the pretreatment 

prediction of response to therapy, early prediction of NAT response after one cycle, and residual tumor 

assessment. Figure 5 shows in detail the article distribution according to these different subgroups.  

 

 

Figure 5. Pie chart of percentage distribution of original articles on application of artificial intelligence to 

breast MRI, according to different clinical aims. NAT = neoadjuvant therapy. 

 

To address these aims, different algorithms falling under the umbrella of AI were applied. Multiple 

algorithms were frequently combined to address the final aim of the study. Among the techniques used, 

ANN, SVM, and clustering approaches were the most frequently used algorithms, accounting for 66% of the 

studies. Comprehensive distribution of the methods used is provided in Figure 6, whereas Figure 7 shows 

their distribution as stratified by the aim pursued.  
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Figure 6. Pie chart of percentage distribution of used machine learning approaches to process breast MRI 

data in articles included in this review. “Others” denotes techniques used in less than 2% of studies. 

 

Taking into account only ANNs, which were used in 21 studies, conventional ANNs were used in 48% of the 

studies [21–30], Bayesian ANNs in 24% [31–35], convolutional neural networks in 24% [36–40], and 

Markov-Chain Monte-Carlo Bayesian neural net classifier in 5% [41]. Regarding clustering techniques, 

which were applied in 13 studies, fuzzy C-means clustering algorithm was the technique most often applied, 

accounting for 77% of the studies [40, 42–50]. 

 

Lesion Classification 

The median size of the dataset was 120 patients (range, 41–325 patients; IQR, 88.5–234 patients) and 132 

lesions (range, 41–690 lesions; IQR, 94–259 lesions). SVM was the most frequently used algorithm, used in 

15 of 36 studies (42%) [36, 37, 51–64]. The diagnostic performance was evaluated primarily on the basis of 

AUC value from ROC analysis, which ranged from 0.74 [60] to 0.96 [57] (median AUC value, 0.88; IQR, 

0.83–0.91). Overall, after all methods of lesion classification (SVMs [36, 37, 51–64], ANNs [21–25, 31–34, 

36, 37], clustering [42, 43], LRCs [24, 42, 65, 66], and the RF algorithm [67–69]) were considered, the AUC 

value ranged from 0.74 [60] to 0.98 [21] (median, 0.87; IQR, 0.84–0.91). Ground truth was established on 

the basis of pathologic analysis in 34 studies and radiologic reports in two studies. 

 



64 
 

Image Processing 

The median size of the dataset was 21 patients (range, 4–361 patients; IQR, 10–82 patients) and 98.5 lesions 

(range, 60–137 lesions; IQR, 79–118 lesions). The most frequently used approach was clustering, which 

occurred in six of 14 studies (43%) [40, 44–47, 70]. Several measures of performance were used: the Dice 

similarity coefficient [38, 71], accuracy [70], sensitivity and specificity [26, 27, 40, 70, 71], the overlap ratio 

[40, 44, 66, 71], true-positive findings [72], correlation [38, 47], the intraclass correlation coefficient (ICC) 

[46], and the Jaccard similarity coefficient [73]. Ground truth was established by manual segmentation in 11 

studies and by radiologic report in two studies. 

 

Prognostic Imaging 

The median size of the dataset was 178 patients (range, 66–318 patients; IQR, 90–228 patients) and 192 

lesions (range, 84–508 lesions; IQR, 170–318 lesions). Different algorithms were applied. ANNs were used 

in three studies [28, 35, 41], clustering was used in three studies [48–50], LRCs were used in four studies 

[49, 50, 74, 75], and an SVM [76], Markov random fields [49], and LDA [48] were used in one study each. 

The measure of performance was the AUC value in all but one [76] study, and the AUC value ranged from 

0.62 [35] to 0.88 [41, 75] (median 0.80; IQR, 0.76–0.85). Ground truth was established on the basis of 

pathologic findings in seven studies and multigene assay classification in two studies.  

 

Neoadjuvant Therapy Response 

The median size of the dataset was 63 patients (range, 28–151 patients; IQR, 50.75–81 patients). ANNs were 

used in two studies [29, 30], LRCs were used in two studies [77, 78], and an SVM [79], LDA [80], clustering 

[81], and Bayesian classifier [82] were used in one study each. The statistical measure of performance that 

was used most often (used in all but one [82] study) was the AUC value. AUC values ranged from 0.74 [80] 

to 0.96 [29] (median, 0.85; IQR, 0.83–0.90). In half the studies, the ground truth was established on the basis 

of pathologic analysis; in the other half, it was established on the basis of Response Evaluation Criteria in 

Solid Tumors [83].  
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Figure 7. Bar graph of distribution of machine learning algorithms used (alone or in combination with 
another algorithm) in published articles included in this review, according to clinical aim. “Others” denotes 

techniques that were used in less than 2% of cases. NAT = neoadjuvant therapy 

 

Discussion 

Today, all over the world, AI is one of the most compelling and complex challenges faced by the medical 

community. Radiologists are already—or soon will be—directly involved in using AI. Therefore, efforts 

have to be made to become familiar with the phenomenon, and radiologists cannot put their heads in the sand 

regarding the existence of AI or be afraid to ask questions about it. The aim of this systematic mapping 

review was to evaluate the application of AI in breast MRI in a matter-of-fact manner. We primarily focused 

on clinical aims for which AI has been tested and then provided insights regarding applied ML methods, 

assessing where we stand and what we must expect. Web of Science Core Collection journal categories were 

also investigated to gain a better understanding of the current actors in the AI revolution.  

As expected, in the past decade, several studies appeared that tested ML approaches in breast MRI. 

Researchers worldwide are working to exploit MRI data to improve breast cancer diagnosis and treatment. 

This is exemplified by the global coverage of published studies from many countries, with researchers in the 

United States and China having a leading role in producing these studies. Among European countries, The 

Netherlands and the United Kingdom have produced the largest number of publications. A fast nonlinear 
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increase in the number of published original studies is clearly visible (Fig. 2), reflecting the scientific 

community‘s growing interest in the application of the ML technique in MRI data processing. As pointed out 

in a recent report by Craft [84], interest in such applications is expected to grow within the next 5 years 

because, at present, most of these applications are nascent and not ready to be massively adopted.  

Hard work has been expended on the development of innovative solutions to improve women‘s health care, 

as emphasized by the results of this review. Of note, only one-third of the articles identified were published 

in radiology journals, whereas 48% were published in engineering or computer science journals (Fig. 3). 

These findings suggest the existence of two concurrent circumstances and one emergent need. One 

circumstance, as would be predicted, is that radiologists are the target audience for and future users of AI-

based applications in breast MRI. The other circumstance is that most AI methods are still in the technical 

development phase (or, as we may say, the preclinical phase, even though they are applied to breast MR 

images of humans). The emergent need involves close cooperation of radiologists and computer scientists 

and engineers as the key to success in the development of clinically usable AI-based solutions.  

Moreover, breast imaging represents a breeding ground for ML implementation. First of all, early cancer 

diagnosis may be understood in several ways. There is a well-known population that is periodically screened 

involving millions of women all over the world who need to be confirmed healthy. BI-RADS is an accepted 

standard diagnostic categorical system globally [85]. Finally, there is room for improvement in risk 

prediction and prognostication using imaging. Increased positive predictive value of breast MRI is needed. 

Both this and multiparametric breast MRI for breast cancer prognosis are key areas of AI application.  

In fact, when breast cancer diagnosis and treatment planning are performed on the basis of MRI data, 

radiologists are asked to integrate multiple types of information from multiple different images. As 

previously emphasized in the present study, CE, diffusion-weighted, and Dixon images provide the data most 

likely to be processed by ML algorithms. These MRI sequences have a common characteristic: they generate 

multiple image volumes for a single subject. Moreover, CE and DWI sequences are adopted to represent and 

investigate dynamic events, such as perfusion and, mainly, diffusion, respectively. This means that, by 

definition, breast MRI data include both spatial and morphologic information and temporal and dynamic 

information that must be integrated and processed to classify, detect, and characterize breast lesions. These 

data are prone to be processed with ML and, in particular, DL algorithms because of the heterogeneity and 

volume of the information included. Indeed, the successful application of these algorithms requires that 

overfitting and bias be avoided during model development, a goal that can be achieved using large and 

heterogeneous datasets. In this scenario, because of the large amount of morphologic and dynamic data that 

can be extracted, breast MRI offers one of the most appealing methods for the testing of AI and 

manifestation of its potential.  

Despite lack of standardization of the breast MRI examination and the increasing use of DWI sequences, CE 

MRI is the sequence most as input data of ML algorithms for AI applications in nearly 60% of studies, 

whereas less than 5% of studies have involved diffusion images. This probably reflects not only the larger 
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confidence associated with use of a consolidated sequence—namely, CE MRI—but also the willingness to 

exploit its potential to discover more and more features that are helpful in achieving the best performance.  

The present study emphasizes the four main applications of ML algorithms in breast MRI (lesion 

classification; image processing, mainly including tissue and lesion segmentation; prognostic imaging; and 

NAT response). These applications reflect the clinical settings in which the role of ML has increased. To 

date, the use of breast MRI for the four main indications has indeed increased [86], according to international 

guidelines [17, 87].  

One of the most common indications is preoperative MRI examination of women with newly diagnosed 

breast  cancer. Although debate on the topic still exists, obtaining the best local staging of the disease 

remains a crucial objective in providing optimal and successful treatment, as has been shown by 

surgeons‘propensity to ask for preoperative breast MRI [88]. Image processing with the use of AI methods 

fits well with the aim of excluding multicentric or bilateral disease and the need to avoid false-positive 

findings that may result in unnecessary surgery or biopsies. MRI screening of high-risk patients largely has 

been shown to outperform mammography screening [89, 90]. AI-based applications may serve as a 

gatekeeper, with lesion and tissue segmentation possibly identifying women with a very low probability of 

harboring cancer. MRI has been proposed as a useful method for prediction of the early response to NAT 

[91]; however, no consensus yet exists regarding its widespread application, even if the number of women 

offered with a neoadjuvant approach is increasing because of expanding inclusion criteria [92]. In this 

clinical setting, the potential of image processing and automated tissue and lesion segmentation, in addition 

to automated classification of patients who do not respond to therapy, may help recognize women possibly 

benefitting from a more  effective systemic regimen. Finally, there are great expectations for breast MRI 

biomarkers in predicting the prognosis of breast cancer [93, 94]. Extracting multiple functional and 

morphologic features from MR images could improve risk stratification of patients and allow a personalized 

approach to medicine by combining information on these features with demographic, genomic, and clinical 

data.  

From the present study, it is clear that supervised learning approaches are the technique of choice for 

classification tasks, such as lesion characterization and prognostic imaging. Indeed, SVMs and ANNs are the 

approaches most often implemented to try to achieve these aims. This is reasonable because, for these 

specific tasks, the tumor presence and the clinical outcome (e.g., benign versus malignant status and 

molecular subtype classification) are already known. To the contrary, segmentation and detection of breast 

lesions are mainly performed using unsupervised clustering algorithms. This may be explained by the fact 

that, in segmentation tasks, tumor presence cannot be previously assumed, so the algorithm has to search for 

suspicious or unexpected patterns within the image data. When supervised approaches are used to 

accomplish segmentation tasks, an ANN seems to be the technique of choice, in particular after the 

introduction of CNNs. Deep CNNs represent an emerging subgroup of ANNs that have shown encouraging 

performance [36, 39]. However CNNs have been applied only recently, and for this reason they must be 

further investigated to exploit their true potential in breast MRI data processing. Diagnosis of and treatment 
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planning for breast cancer represent multifaceted challenges that breast radiologists must face on a daily 

basis. For example, breast tumor characterization must take into account the effect of multiple physiologic 

and pathologic phenomena that occur during tumor development and progression. This may be the reason for 

the successful application of SVMs and ANNs, both of which can model complex and nonlinear 

relationships within data. However, the approaches that have been developed must have very high 

performance levels because breast MRI is the most sensitive method for diagnosing breast cancer, with 

reported pooled sensitivity and specificity of 93.2% and 71.1%, respectively [95]. The key point will be the 

ability of AI to correctly change a BI-RADS diagnostic category assigned by a human from one 

recommending that biopsy be performed to a category not recommending biopsy, or vice versa, with a 

reliability very close to 100%, especially when the AI-based system suggests that biopsy should not be 

performed. AI applications in breast MRI, although encouraging, are still far from achieving the 

aforementioned goal, as based on their current performance. In the present study, we  performed a systematic 

mapping review of articles on applications of ML methods in breast MRI published over the past decades. 

Although this kind of study allows the identification of gaps of knowledge within larger research topics, it 

usually leads to broad and descriptive characterization and does not usually include a quality assessment 

process [96]. This is especially true when we consider such large and heterogeneous categories as image 

processing, prognostic imaging, and NAT response, which group several specific subgoals with different 

tasks. Descriptive statistics were used only to support a narrative synthesis of current accomplishments, 

because of awareness that quantitative analysis is inappropriateness in such heterogeneous studies. For these 

reasons, the present mapping review can be considered the starting point for more focused investigations of 

specific in-depth literature reviews. We are only at the start of the era of the use of  advanced AI methods for 

breast imaging. Despite the increase in published studies on this topic, the present mapping review provides 

a snapshot of a scenario that is expected to progress in the near future. Even if promising, AI-based 

applications still are not ready to be incorporated into clinical practice. On the basis of the results of the 

present study, we can reasonably expect that lesion classification and image processing will be the tasks 

benefitting most from the use of ML techniques. ML will help in the development of useful tools that will 

help radiologists in the detection, characterization, and treatment of breast diseases. Even though other breast 

imaging techniques will benefit from AI applications, the intrinsic multiparametric nature of MRI has the 

greatest potential to incorporate AI applications into personalized care for patients with breast cancer. AI can 

be a tool for extracting and using a larger portion of the huge amount of information associated with breast 

MR images. Breast radiologists must learn about AI methods before these methods can be used in the best 

interest of our patients. 
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Conclusions 

Medical images represent imaging biomarkers of considerable interest in evidence-based clinical decision-

making, for therapeutic development and treatment monitoring.  

BAC have been recently described among ―the top five women‘s health issues in preventive cardiology, at 

the forefront of recent and ongoing research‖, together with coronary microvascular dysfunction, hormone 

replacement therapy, calcium and vitamin D supplementation as well as metabolic considerations during 

pregnancy. Women entering screening program for breast cancer and otherwise not considered for CV risk 

will benefit doubly from mammography, aiming at secondary cancer prevention and primary and/or 

secondary CV prevention. This enormous potential needs to be exploited and awareness campaigns have to 

be promoted. Mammograms could screen women for CV disease, but not yet. A preventive action could be 

initiated only once a threshold will be defined by retrospective and prospective population studies. 

Multiparametric breast MRI with different functional parameters may visualize and quantify the functional 

processes of cancer development and progression at multiple levels and provide specific information about 

the hallmarks of cancer. Numerous groups have developed sophisticated software to improve 

characterization of breast lesions, assessment and prediction of treatment response, and differentiation of 

biological cancer subtypes through MRI. Breast MRI is ready to candidate as a prognostic tool and more 

significant advances are expected, which will further aid the development of novel personalized approaches 

in the management of breast cancer.  

Breast imaging represents a promising area for the application of AI both for screening and diagnostics.  

In particular, MRI images are a fertile ground for machine learning processing due to their complex 

information content, holding the greatest potential to incorporate AI applications into the so called precision 

medicine. Nevertheless, several investigations focus on the application of AI to breast imaging but we are 

still far from clinical practice due to the lack of validation studies.  
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