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Plastic instabilities in amorphous materials are often studied using idealized models of binary
mixtures that do not capture accurately molecular interactions and bonding present in real glasses.
Here we study atomic scale plastic instabilities in a three dimensional molecular dynamics model
of silica glass under quasi-static shear. We identify two distinct types of elementary plastic events,
one is a standard quasi-localized atomic rearrangement while the second is a bond breaking event
that is absent in simplified models of fragile glass formers. Our results show that both plastic events
can be predicted by a drop of the lowest non-zero eigenvalue of the Hessian matrix that vanishes
at a critical strain. Remarkably, we find very high correlation between the associated eigenvectors
and the non-affine displacement fields accompanying the bond breaking event, predicting the locus
of structural failure. Both eigenvectors and non-affine displacement fields display an Eshelby-like
quadrupolar structure for both failure modes, rearrangement or bond-breaking. Our results thus
clarify the nature of atomic scale plastic instabilities in silica glasses providing useful information
for the development of mesoscale models of amorphous plasticity.

Amorphous solids under applied shear deformation un-
dergo localized plastic instabilities associated with the
rearrangement of a subset of particles and an associ-
ated energy release. These particle reorganization in-
duces structural deformation patterns, that have been
identified experimentally and numerically in amorphous
materials such as silica glasses [2–4], metallic glasses [5],
colloidal glasses [6], foams [7], bubble rafts [5], and emul-
sions [8, 9]. The initial destabilization can give rise to
a progression of additional deformation events in some
other areas of the sample, up to the global material fail-
ure. The ability to predict the plastic instabilities and
characterize their spatial features is of fundamental im-
portance to understand the mechanical response of amor-
phous solids and to devise mesoscale model focusing on
the evolution of localized plastic events [10–13].

A useful theoretical framework to analyze elementary
plastic events is the limit of temperature T = 0 and of
quasistatic strain where the real space structure can be
easily related with a potential energy landscape descrip-
tion [14]. To this end, many computational studies on
amorphous solids have been performed with athermal
quasi static (AQS) protocol [15–19]: a glass sample ini-
tially quenched down to zero temperature is deformed
by a quasi static shear procedure consisting in the relax-
ation of the system after each strain step. Within the
AQS conditions the elastic and plastic features of amor-
phous solids can be understood by analyzing the Hessian
matrix

Hij ≡
∂2U(r1, · · · , rN )

∂ri∂rj
≡ −∂fi(r1, · · · , rN )

∂rj
(1)

where U(r1, r2, · · · rN ) is the total potential energy of the
system, fi is the force vector on particle i, and {ri}Ni=1 are
the coordinates of the particles. The explicit H element
expression is reported in [1]. When the system is mechan-
ically stable the eigenvalues λ of the Hessian are semi-
positive, with zero values for the Goldstone modes and
all the rest positive. Elementary plastic instabilities are
signaled by the lowest eigenvalue λmin going to zero and
an eigenfunction getting quasi-localized on a pattern cor-
related with real space non-affine displacements. Typi-
cally observed quadrupole-like structure can be described
as an ellipsoidal inclusion in an elastic medium [20], fol-
lowing the classic work of Eshelby [21]. This kind of
analysis always gives rise to a similar phenomenology, in-
dependently of the detailed microscopic interactions be-
tween the constituents [18], but to the best of our knowl-
edge it has only be applied to idealized model of fragile
glasses [22] such as metallic glasses [18, 23, 24] or fric-
tional disks whose packing structure is isotropic [25, 26].

Experimental evidences of atomic rearrangements
for two-dimensional silica glass have been reported in
Ref. [4], while numerically the plastic rearrangements in
strained silica at zero temperature has been investigated
in Ref. [27]. We are lacking, however, numerical studies
of normal modes in realistic strong glass formers such as
silica that is characterized by a strong chemical structural
order with tetrahedral networks made by covalent bonds.
Indeed silica glass is not only appealing for technologi-
cal and commercial applications but also for its intriguing
and anomalous behavior that is still not fully understood.
In particular, we mention here the peaks in the specific
heat, the diffusion constant, the density maximum [28]
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Figure 1. (a) Typical dependence of potential energy per particle U/N on strain in the AQS0 protocol for the 3D silica glass. The
insets are a blowup of two events emphasized by the circles on the main curve, the first being a localized rearrangement (top)
and the second (bottom) reporting the first observed bond breaking (Si–O bond). Blue and light blue curves are obtained by
decreasing strain step size, AQS1 and AQS2 respectively. The energy zero has been set to the maximum value before the drop,
which is larger in the bond breaking event. (b),(c) 3D perspective view of the atomic positions before (left) and after (right)
the energy drop for the corresponding events of panel (a). Large and small spheres represent Si and O atoms, respectively.
Color and arrows report the magnitude of the occurred non-affine atomic displacements. Arrows have been rescaled by a factor
of 2. The corresponding movies are available in Supplemental Material [1].

and so on, that differentiates silica from all other fragile
glasses. Therefore a priori the nature of plastic instabili-
ties in silica glasses is not clear, specially considering the
relevance of anisotropic bonds which are absent in other
well studied amorphous systems.

In this paper, we study three dimensional silica glass
under AQS shear conditions. Previous numerical work
[29] has shown that bond breaking is mainly responsi-
ble for damage accumulation and failure of silica at zero
temperature. In this paper we focus on the initial sin-
gle events acting as fracture precursors and analyze the
softest modes.

We perform simulations on a silica glass sample in a
cubic box. The system is formed by a total of N = 8250
atoms, composed by NSi = 2750 silicon atoms and
NO = 5500 oxygen atoms. Silica glasses are simulated
using the Watanabe’s potential [30] with a similar sam-
ple preparation strategy. The advantage of this poten-
tial is that the usual Coulomb interaction term is im-
plicitly replaced by a coordination-based bond soften-
ing function for Si-O atoms that accounts for the en-
vironmental dependence, therefore we perform simula-
tions in open boundary conditions to study surface ef-
fects. The general form of the potential consists of two
terms: a two-body interaction that depends on distance
and a three-body interaction that describe rotational and
translational symmetry. The Hessian matrix (Eq. 1) is
computed numerically from the first-order derivatives of
inter-particle forces. To this extent, each element Hij is
obtained by calculating the force acting on particle i fol-

lowing a displacement of particle j by a small amount,
δ = 10−7 Å along positive and negative direction, and
by applying the difference quotient. All the simulations
have been performed using the LAMMPS simulator pack-
age [31], and visualized with the OVITO package [32].

To generate the sample we have started from a
randomly positioned Si,O atoms, with density ρin =
2.196 g/cm3 in a box size of 5×5×5 nm3. We then have
applied the following annealing procedure: i) After an
initial 2 ps of NVE dynamics with LJ interaction lim-
ited to 1 Å/ps, we switch to our reference Watanabe’s
potential for silica [30] and ii) we perform subsequent
8 ps of NVE dynamics. iii) We then heat up the sys-
tem up to 6000 K in 30 ps, iv) thermalize at 6000 K for
80 ps, v) reduce the temperature to 4000 K in 30 ps, vi)
then to 0.01 K in 50 ps, vii) then to 0.001 K in 100 ps,
and viii) finally we perform a pressure minimization –
cell relaxation – for 50 ps. After such procedure we
get a final density ρfin = 2.2439 g/cm3 and box size
4.948×4.996×4.948 nm3. Analysis on such initial sample
compares well with experimentally observed density [33]
and with previous calculations of atomic coordination
[34].

The so-produced configuration is then used to start
the AQS protocol. At each AQS step [15], we strain the
sample along z and compress it along x and y according
to a Poisson ratio ν=0.17. We have adopted three differ-
ent increment of strain δγ, namely δγ=5·10−4 (AQS0),
δγ=(5·10−4)/50 (AQS1), δγ=(5·10−4)/50/50 (AQS2). In
order to reduce the computational burden, once a rear-



3

0.000

0.005

0.010

0.015

0.020

0.025

 9.0285  9.0289
-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00
rearrangement

(a)

λ
m

in

Δ
U

/N
  (

m
eV

)

strain %

0.000

0.005

0.010

0.015

0.020

0.025

11.3682 11.3685
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0
bond breaking

(b)

λ
m

in

Δ
U

/N
  (

m
eV

)

strain %

Figure 2. Lowest eigenvalues and potential energy trend com-
parison for AQS2 strain steps for (a) localized atomic rear-
rangement and (b) bond breaking events. The lowest eigen-
value is reported in red squares and approaches zero at the
critical strain γc ' 9.02862% and '11.36827%, respectively.
Black curve reports the fit λmin ∝

√
γc − γ. The energy drops

are reported in blue dots.

rangement event is identified in the faster AQS0 simu-
lation, we used the more refined AQS1 and then AQS2

simulations only in the vicinity of such event. After the
imposed δγ strain an energy minimization through the
FIRE scheme [35] is performed until a maximum force of
10−10 eV/Å is reached.

In Fig. 1a the energy vs strain curve is reported. There
we identify two events – marked by circles and magni-
fied in the insets – which are of different nature, one be-
ing associated to a typical quasi-localized rearrangement
without any change in the atomic coordination, the other
resulting from the first observed bond breaking. Thanks
to these rearrangements, some of the internal stress is
released, and a consequent drop in the energy occurs.
As shown in the insets using the smaller δγ values, both
events manifest a drop in the total energy, which results
of about 0.9 eV and 5.4 eV for rearrangement and bond
breaking respectively, in line with previous works [27].
The non affine atomic displacements corresponding to the
energy drops are represented in Fig. 1b and 1c (the corre-
sponding movies are available in Supplemental Material
[1]). We note that while the rearrangement event con-
sists in displacements along multiple directions, the bond
breaking produces displacements mainly along the prin-
cipal strain direction z. Specifically, the rearrangement
involves changement in angle in two under-coordinated
silicon atoms, and the bond breaking occurs between a
Si and a O3− atom. Therefore both events appear in the
presence of a structural defect.

The number of particles involved in such fundamental
non-affine events can be estimated by the participation
number Pn =

∑N
i=1 (ui/umax)2, with ui the displacement

modulus of atom i, and umax the maximum ui. Such
calculation for rearrangement and bond breaking events
gives PRR

n = 3.73 and PBB
n = 6.11, respectively, reveal-

ing that the more energetic event involves, as expected,
a larger effective number of particles. Furthermore, the
participation ratio Pr =

∑N
i=1 (ei · ei)2/[

∑N
i=1 (ei · ei)]2,
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Figure 3. Comparison between normalized non-affine dis-
placements (left) and eigenvectors (right) of the configuration
before the bond breaking or energy drop: (AQS2 steps). Ar-
rows are colored with respect to the modulus of the vectors.
Arrows have been rescaled by a factor of 50, the view is “or-
thogonal”. Panels (b) and (d) are related to Figure 1(b) and
(c), right panels.

calculated using the Hessian eigenvectors ei right before
the critical strain, results PRR

r = 0.31 and PBB
r = 0.20.

Analytical investigation of the rearrangement events
induced by external stress can be performed by comput-
ing the H matrix, and by following the direction of the
softest mode. The results of this investigation are re-
ported in Fig. 2, showing that for both selected events
the smallest eigenvalue λmin progressively decreases fol-
lowing a square-root trend, and vanishes at the critical
strain value γc marking a saddle point in the energy con-
figuration space. As in the case of metallic glasses, gov-
erned by isotropic interactions, in which stress release is
associated to a irreversible plastic event, we have veri-
fied that the same irreversibility occurs in the covalently
bonded system under consideration. The application of
a negative strain rate after a rearrangement does not fol-
low the configurational path that led the system to that
rearrangement.

Further information can be obtained by analyzing the
eigenvectors associated with the lowest eigenvalue λmin,
to be compared with the non-affine displacement fields,
calculated between the frame after the energy drop and
the one before.
In Figure 3 we present such comparison for the selected
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Figure 4. Eigenvectors vs non-affine displacement comparison
for the rearrangement (squares) and bond breaking (circles)
events, compared to the ideal correlation line (dotted line).

plastic events showing an almost exact matching, espe-
cially in the case of bond breaking: The scalar prod-
uct, s =

∑N
i=1 (ui · ei), of the normalized eigenvectors ei

and non affine displacements ui results sRR ' 0.74 and
sBB ' 0.91 respectively. The higher correlation in the
latter case is likely due to the fact that bond breaking oc-
curs along the strain direction, while the rearrangement
occurs through a local rotation of bonds, i.e. not con-
nected to the strain direction. In any case, both mechan-
ical events show a high correlation between the eigenvec-
tors and displacements. This evidence is also supported
by Figure 4 in which the individual ei vs ui moduli are
compared.

In summary, we have analyzed, using Hessian methods,
the nature of non-affine responses to mechanical shear
strain in a model of silica. The difference from other
examples of similar studies is that in silica we have di-
rectional chemical bonds between atoms, and these can
be broken. In most models of glass formers one can-
not assign actual bonds, and one can even discuss glass
physics with repulsive interaction only. The presence of
bonds enriches that discussion of non-affine responses to
strain, offering plastic events that do not exist in most
of the studied models of glass formers. We could there-
fore identify two distinctly different non-affine responses
in silica, one that corresponds to other models with so
called T1 processes that involves particles moving out
and particles moving in on a quadrupolar quasi-localized
structure, but also an elementary event of bond break-
ing. Both events are accompanied by an eigenvalue of
the Hessian approaching zero with a square-root singu-
larity and are associated with a stress and energy drop.
Even in the case of bond breaking the system response
is again quadrupolar. This result is important for the-
oretical modeling of failure in real amorphous materials

since our understanding of amorphous plasticity has often
relied on mesoscale models assuming that plastic defor-
mation can be decomposed into a series of discrete local-
ized plastic instabilities [13]. While this assumption was
supported by atomistic simulations in simplified isotropic
models for glasses [18], the present study shows that the
same description holds for more realistic anisotropic mod-
els. Finally, an important aspect of our findings is that
using the eigenfunction associated with the lowest eigen-
value one can predict the locus of the non-affine response
[36] even in realistic anisotropic conditions as those sim-
ulate here.
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