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Abstract

In this paper linear stochastic transport and continuity equations with drift in critical Lp

spaces are considered. In this situation noise prevents shocks for the transport equation and
singularities in the density for the continuity equation, starting from smooth initial conditions.
Specifically, we first prove a result of Sobolev regularity of solutions, which is false for the cor-
responding deterministic equation. The technique needed to reach the critical case is new and
based on parabolic equations satisfied by moments of first derivatives of the solution, opposite
to previous works based on stochastic flows. The approach extends to higher order derivatives
under more regularity of the drift term. By a duality approach, these regularity results are
then applied to prove uniqueness of weak solutions to linear stochastic continuity and transport
equations and certain well-posedness results for the associated stochastic differential equation
(sDE) (roughly speaking, existence and uniqueness of flows and their Cα regularity, strong
uniqueness for the sDE when the initial datum has diffuse law). Finally, we show two types of
examples: on the one hand, we present well-posed sDEs, when the corresponding ODEs are
ill-posed, and on the other hand, we give a counterexample in the supercritical case.

MSC (2010): 60H10, 60H15 (primary); 35A02, 35B65 (secondary)

1 Introduction

Let b : [0, T ] × Rd → Rd, for d ∈ N, be a deterministic, time-dependent vector field, that we call
drift. Let (Wt)t≥0 be a Brownian motion in Rd, defined on a probability space (Ω,A, P ) with
respect to a filtration (Gt)t≥0 and let σ be a real number. The following three stochastic equations
are (at least formally) related:

1. the stochastic differential equation (sDE )

dX = b(t,X)dt+ σdWt, X0 = x, (sDE)

where x ∈ Rd; the unknown (Xt)t∈[0,T ] is a stochastic process in Rd;

2. the stochastic transport equation (sTE )

du+ b · ∇udt+ σ∇u ◦ dWt = 0, u|t=0 = u0, (sTE)

where u0 : Rd → R, b·∇u =
∑d
i=1 bi∂xiu, ∇u◦dWt =

∑d
i=1 ∂xiu◦dW i

t , and Stratonovich mul-
tiplication is used (precise definitions will be given below); the unknown (u(t, x))t∈[0,T ],x∈Rd
is a scalar random field,

3. the stochastic continuity equation (sCE )

dµ+ div(bµ)dt+ σ div(µ ◦ dWt) = 0, µ|t=0 = µ0, (sCE)
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where µ0 is a measure, div(µ◦dWt) stands for
∑d
i=1 ∂xiµ◦dW i

t , the unknown (µt)t∈[0,T ] is a

family of random measures on Rd, and thus the differential operations have to be understood
in the sense of distributions.

The aim of this paper is to investigate several questions for these equations in the case when
the drift is in a subcritical or even critical space, a case not reached by any approach until now.

1.1 The deterministic case σ = 0

For comparison with the results for the stochastic equations presented later on (due to the presence
of noise), we first address the deterministic case σ = 0. We start by explaining the link between
the three equations and recall some classical results – in the positive and in the negative direction –
under various regularity assumptions on the drift b. When b is smooth enough, then:

(i) the sDE generates a flow Φt(x) of diffeomorphisms;

(ii) the sTE is uniquely solvable in suitable spaces, and for the solution we have the representation
formula u(t, x) = u0(Φ−1

t (x));

(iii) the sCE is uniquely solvable in suitable spaces, and the solution µt is the push forward of µ0

under Φt, µt = (Φt)]µ0.

These links between the three equations can be either proved a posteriori, after the equations have
been solved by their own arguments, or they can be used to solve one equation by means of the
other.

Well-posedness of the previous equations and links between them have been explored also when b
is less regular. To simplify the exposition, let us summarize with the term “weakly differentiable”
the classes of non-smooth b considered in [29, 2]. In these works it has been proved that, whenever b
is weakly differentiable, sTE and sCE are well-posed in classes of weak solutions; moreover, a
generalized or Lagrangian flow for the sDE exists. Remarkable is the fact that the flow is obtained
by a preliminary solution of the sTE or of the sCE, see [29, 2] (later on in [23], similar results have
been obtained directly on sDE). However, when the regularity of b is too poor, several problems
arise, for which, at the level of the sDE and its flow, we want to mention two types:

1) non-uniqueness for the sDE, and, more generally, presence of discontinuities in the flow;

2) non-injectivity of the flow (two trajectories can coalesce) and, more generally, mass concen-
tration.

These phenomena have counterparts at the level of the associated sCE and sTE:

1) non-uniqueness for the sDE leads to non-uniqueness for sCE and sTE;

2) non-injectivity of the flow leads to shocks in the sTE (i.e. absence of continuous solutions, even
starting from a continuous initial datum), while mass concentration means that a measure-
valued solution of the sCE does not remain distributed.

Elementary examples can be easily constructed by means of continuous drifts in dimension 1;
more sophisticated examples in higher dimension, with bounded measurable and divergence free
drift, can be found in [1]. Concerning regularity, let us briefly give some details for an easy
example: Consider, in d = 1, the drift b(x) := − sign(x)|x|α for some α ∈ (0, 1). All trajectories
of the ODE coalesce at x = 0 in finite time; the solution to the deterministic TE develops a
shock (discontinuity) in finite time, at x = 0, from every smooth initial condition u0 such that
u0(x) 6= u0(−x) for some x 6= 0; the deterministic CE concentrates mass at x = 0 in finite time,
if the initial mass is not zero. See also Section 7 for similar examples of drift terms leading to
non-uniqueness or coalescence of trajectories for the deterministic ODE (which in turn results in
non-uniqueness and discontinuities/mass concentration for the PDEs).

Notice that the outstanding results of [29, 2] (still in the deterministic case) are concerned
only with uniqueness of weak solutions. The only results to our knowledge about regularity of
solutions with rough drifts are those of [5, Section 3.3] relative to the loss of regularity of solutions
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to the transport equation when the vector field satisfies a log-Lipschitz condition, which is a far
better situation than those considered in this paper. We shall prove below that these phenomena
disappear in the presence of noise. Of course they also disappear in the presence of viscosity,
but random perturbations of transport type ∇u ◦ dWt and viscosity ∆u are completely different
mechanisms. The sTE remains an hyperbolic equation, in the sense that the solution follows the
characteristics of the single particles (so we do not expect regularization of an irregular initial
datum); on the contrary, the insertion of a viscous term corresponds to some average, making
the equation of parabolic type. One could interpret transport noise as a turbulent motion of the
medium where transport of a passive scalar takes place, see [18], which is different from a dissipative
mechanism, although some of the consequences on the passive scalar may have similarities.

1.2 Stochastic case σ 6= 0

In the stochastic case, σ 6= 0, when b is smooth enough, the existence of a stochastic flow of
diffeomorphisms Φ for the sDE, the well-posedness of sTE and the relation u(t, x) = u0(Φ−1

t (x))
are again known results, see [55, 56, 57]; moreover, the link with sCE could be established as well.
However, the stochastic case offers a new possibility, namely that due to nontrivial regularization
effects of the noise, well-posedness of sDE, sTE and sCE remains true even if the drift b is quite
poor, opposite to the deterministic case. Notice that we are not talking about the well-known
regularization effect of a Laplacian or an expected value. By regularization we mean that some
of the pathologies mentioned above about the deterministic case (non-uniqueness and blow-up)
may disappear even at the level of a single trajectory ω; we do not address any regularization of
solutions in time, i.e. that solutions become more regular than the initial conditions, a fact that is
clearly false when we expect relations like u(t, x) = u0(Φ−1

t (x)).

1.3 Aim of this paper

The aim of this work is to prove several results in this direction and develop a sort of comprehensive
theory on this topic. The results in this paper are considerably advanced and are obtained by
means of new powerful strategies, which give a more complete theory. The list of our main results
is described in the next three subsections; in a few sentences, we are concerned with:

(i) regularity for the transport (and continuity) equation;

(ii) uniqueness for the continuity (and transport) equation;

(iii) uniqueness for the sDE and regularity for the flow.

In the following subsections, we will explain the results in more detail and give precise references
to previous works on the topics. Moreover, we will also analyze the crucial regularity assumptions
on the drift term (discussing its criticality in a heuristic way and via appropriate examples, which
are either classical or elaborated at the end of the paper).

1.4 Regularity assumptions on b

As already highlighted before, the key point for the question of existence, uniqueness and regu-
larity of the solutions to the relevant equations is the regularity assumption on the drift b. In
particular, we will not work with any kind of differentiability or Hölder condition, but merely
with an integrability condition. We say that a vector field f : [0, T ] × Rd → Rd satisfies the
Ladyzhenskaya–Prodi–Serrin condition (LPS) with exponents p, q ∈ (2,∞) if

f ∈ Lq([0, T ];Lp(Rd,Rd)),
d

p
+

2

q
≤ 1.

We shall write f ∈ LPS(p, q) (the precise definition will be given in Section 2.1), and we use the
norm

‖f‖Lq([0,T ];Lp) :=

(∫ T

0

(∫
Rd
|f(t, x)|pdx

)q/p
dt

)1/q

.
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We may extend the definition to the limit case (p, q) = (∞, 2) in the natural way: we say that
f ∈ LPS(∞, 2) if f ∈ L2(0, T ;L∞(Rd,Rd)) and we use the norm

‖f‖2L2(0,T ;L∞) =

∫ T

0

‖f(t, ·)‖2∞dt

with the usual meaning of ‖ ·‖∞ as the essential supremum norm. The extension to the other limit
case (p, q) = (d,∞) is more critical (similarly to the theory of 3D Navier–Stokes equations, see
below). The easy case is when q = ∞ is interpreted as continuity in time: C([0, T ];Ld(Rd,Rd));
on the contrary, L∞(0, T ;Ld(Rd,Rd)) is too difficult in general and we shall impose an additional
smallness assumption (which shall be understood implicitly whenever we address the case (d,∞)
in this introduction).

Roughly speaking, our results will hold for a drift b which is the sum of a Lipschitz function of
space (with some integrability in time) plus a vector field of LPS class. In the sequel of the intro-
duction, for simplicity of the exposition, we shall not mention the Lipschitz component anymore,
which is however important to avoid that the final results are restricted to drift with integrability
(or at least boundedness) at infinity.

Let us note that when p, q ∈ (2,∞) the space Lq([0, T ];Lp(Rd,Rd)) is the closure in the topology
‖·‖Lq([0,T ];Lp) of smooth functions with compact support. The same is true for C([0, T ];Ld(Rd,Rd)).
In the limit cases (p, q) = (∞, 2) and (p, q) = (d,∞), using classical mollifiers, there exists a
sequence of smooth functions with compact support which converges almost surely and has uniform
bound in the corresponding norm. This fact will allow us to follow an approach of a priori estimates,
i.e. perform all computations for solutions to the equation with smooth coefficients, obtain uniform
estimates for the associated solutions, and then deduce the statement after passage to the limit.

We further want to comment on the significance of the LPS condition in fluid dynamics. The
name LPS comes from the authors Ladyzhenskaya, Prodi and Serrin who identified this condition
as a class where regularity and well-posedness of 3D Navier–Stokes equations hold, see [52, 59,
71, 73, 58] and [46]. The limit case (p, q) = (d,∞) generated a lot of research and can be treated
almost as the other cases if there is continuity in time or some smallness condition, see for instance
[10, 60], but the full L∞(0, T ;Ld(Rd,Rd)) case is very difficult, see [32] and related works. It has
been solved only recently, at the price of a very innovative and complex proof. A similar result for
our problem is unknown. The deep connection of the LPS class, especially when d

p + 2
q = 1, with

the theory of 3D Navier–Stokes equations is one of our main motivations to analyze stochastic
transport under such conditions.

We finally note that, while preparing the second version of this work (after the first version
appeared on arXiv), one article [66] and two preprints [79, 64] have appeared on the topic of this
paper. In the article [66] pathwise (but not path-by-path) uniqueness is shown for the sCE under
Krylov–Röckner conditions in the subcritical case. The preprints [79] and [64] go almost up to the
critical case for weak and strong solution to the SDEs, the latter showing also Sobolev regularity of
the stochastic flow. Respectively, the former preprint, while staying within the subcritical case in
the interior [0, T ), allows a singularity at time T which matches, and actually goes slightly beyond,
the critical case. In the latter preprint [64], the limiting case is d/p + 2/q = 1 is reached when
replacing the Lq integrability condition by a Lq,1 condition (for Lorenz space Lq,1 ( Lq).

1.5 Criticality

We now show that the LPS condition is subcritical with strict inequality and critical with equality
in the condition d/p+2/q ≤ 1. We have already emphasized that we treat the critical case because
no other approach is known to attack this case, but the paper includes also the subcritical case. The
general intuitive idea is that, near the singularities of b, the Gaussian velocity field is “stronger”
than (or comparable to) b, which results in avoiding non-uniqueness or blow-up of solutions. The
name “critical” comes from the following scaling argument (done only in a heuristic way since it
only serves as motivation).

Let u : [0, T ]×Rd → R be a solution to the sTE. For λ > 0 and α ∈ R, we introduce the scaled
function uλ : [0, T/λα]× Rd → R defined as uλ(t, x) := u(λαt, λx). We denote by ∂tu and ∇u the
derivative of u in the first argument and the gradient in the second one (similarly for uλ). Since
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∂tuλ(t, x) = λα∂tu(λαt, λx) and ∇uλ(t, x) = λ∇u(λαt, λx), we get that uλ satisfies formally

∂tuλ(t, x) + bλ(t, x) · ∇uλ(t, x) + λα−1∇uλ(t, x) ◦W ′(λαt) = 0,

where bλ(t, x) = λα−1b(λαt, λx) is the rescaled drift and W ′(λαt) formally denotes the derivative
of W at time λαt. We now want to write the stochastic part in terms of a new Brownian motion.
For this purpose, we define a process (Wλ(t))t≥0, via Wλ(t) := λ−α/2W (λαt) and notice that Wλ

is a Brownian motion with W ′λ(t) = λα/2W ′(λαt). Thus the previous equation becomes

∂tuλ(t, x) + bλ(t, x) · ∇uλ(t, x) + λα/2−1∇uλ(t, x) ◦W ′λ(t) = 0.

We first choose α = 2 such that the stochastic part λα/2−1∇uλ(t, x) ◦W ′λ(t) is comparable to the
derivative in time ∂tuλ. Notice that this is the parabolic scaling, although sTE is not parabolic
(but as we will see below, a basic idea of our approach is that certain expected values of the solution
satisfy parabolic equations for which the above scaling is the relevant one). Next we require that,
for small λ, the rescaled drift bλ becomes small (or at least controlled) in some suitable norm (in
our case, Lq(0, T ;Lp(Rd,Rd))). It is easy to see that

‖bλ‖Lq(0,T/λ2;Lp) = λ1−(2/q+d/p)‖b‖Lq(0,T ;Lp)

(here, the exponent d comes from rescaling in space and the exponent 2 from rescaling in time and
the choice α = 2). In conclusion, we find that

• if LPS holds with strict inequality, then ‖bλ‖Lq(0,T/λ2;Lp) → 0 as λ→ 0: the stochastic term
dominates and we expect a regularizing effect (subcritical case);

• if LPS holds with equality, then ‖bλ‖Lq(0,T/λα;Lp) = ‖b‖Lq(0,T ;Lp) remains constant: the
deterministic drift and the stochastic forcing are comparable (critical case).

This intuitively explains why the analysis of the critical case is more difficult. Notice that, if
LPS does not hold, then we expect the drift to dominate, so that a general result for regularization
by noise is probably false. In this sense, LPS condition should be regarded as an optimal condition
for expecting regularity of solutions.

1.6 Regularity results for the SPDEs

Concerning regularity, we proceed in a unified approach to attack the sTE and the sCE simultane-
ously (but for the sCE we have to assume the LPS condition also on div b). In fact, we shall treat
a generalized stochastic equation of transport type which contains both the sTE and the sCE as
special cases. For this equation we prove a regularity result which contains as a particular case the
following:

Theorem 1.1. Assume the LPS condition on b (and also on div b for the sCE ). If u0 is of class
∩r≥1W

1,r(Rd), then there exists a solution to the sTE (similarly for the sCE ) which is of class

∩m≥1W
1,m
loc (Rd).

A more detailed statement is given in Section 2.9 below. This result is false for σ = 0, as
we mentioned in Section 1.1. Referring to some of the pathologies which may happen in the
deterministic case, we may say that, under regular initial conditions, noise prevents the emergence
of shocks (discontinuities) for the sTE, and singularities of the density for the sCE (the mass at
time t has a locally bounded density with respect to Lebesgue measure).

The method of proof is completely new. It is of analytic nature, based on PDE manipulations
and estimates, opposite to the methods used before in [39, 33, 63] and which are based on a
preliminary construction of the stochastic flow for the sDE. We believe that, apart from the result,
this new method of proof is the first important technical achievement of this paper (see Section 2.2
for a detailed description of the central ingredients of our method).

We now want to give some details on the precise statements, the regularity assumptions on
drift and the strategy of proof for some known regularity results for the sTE, for the purpose of
comparison with the results presented here. The paper [39] deals with the case of Hölder continuous
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bounded drift and is based on the construction of the stochastic flow from [40]. The paper [33] is
concerned with the class called in the sequel as Krylov-Röckner class, after [54], where pathwise
uniqueness and other results are proved for the sDE. We say that a vector field f : [0, T ]×Rd → Rd
satisfies the Krylov-Röckner (KR) condition if the LPS condition holds with strict inequality

d

p
+

2

q
< 1

and we shall write f ∈ KR(p, q). The improvement from d
p + 2

q < 1 to d
p + 2

q = 1 appeared also

in the theory of 3D Navier–Stokes equations and required new techniques (which in turn opened
new research directions on L∞(0, T ;Ld(Rd,Rd)) regularity). Also here it requires a completely
new approach. Under the condition d

p + 2
q = 1, we do not know how to solve the sDE directly

(see however the recent preprints [64, 79] mentioned above); even in a weak sense, by Girsanov
theorem, the strict inequality seems to be needed ([54, 69, 51]). Similarly as in [39], the proof of
regularity of solutions of the sTE from [33] is based on the construction of stochastic flows for the
sDE and their regularity in terms of weak differentiability. Finally, [63] and [67] treat the case of
bounded measurable drift and, in [67], fractional Brownian motion (the classical work under this
condition on pathwise uniqueness for the sDE is [78]), again starting from a weak differentiability
result for stochastic flows, proved however with methods different from [33].

Let us mention that proving that noise prevents blow-up (in cases where blow-up phenomena
are possible in the deterministic situation) is an intriguing problem that is under investigation also
for other equations, different from transport ones, see e g. [7, 21, 26, 28, 31, 42, 44, 50].

1.7 Uniqueness results for the sPDEs

The second issue of our work is uniqueness of weak solutions to equations of continuity (and
transport) type. More precisely, we prove a path-by-path uniqueness result via a duality approach,
which relies on the regularity results described in Section 1.6. When uniqueness is understood
in a class of weak solutions, then the adjoint existence result must be in a class of sufficiently
regular solutions (which is why the assumption for path-by-path uniqueness for the sCE will be
the assumption for regularity for the sTE and vice versa); for this reason this approach cannot be
applied in the deterministic case, when b is not sufficiently regular.

By path-by-path uniqueness we mean something stronger than pathwise uniqueness, namely
that given ω a.s., the deterministic PDE corresponding to that particular ω has a unique weak
solution (note that our sPDE can be reformulated as a random PDE, which then can be read in
a proper sense at ω fixed). Instead, pathwise uniqueness means that two processes, hence families
indexed by ω, both solutions of the equation, coincide for a.e. ω. We prove:

Theorem 1.2. Assume the LPS condition on b (and also on div b for the sTE ). Then the sCE
(similarly the sTE ) has path-by-path uniqueness of weak Lm-solutions, for every finite m.

A more precise statement is given in Section 3.4 below. No other method is known to produce
such a strong result of uniqueness. This duality method in the stochastic setting is the second
important technical achievement of this paper.

The intuitive reason why, by duality, one can prove path-by-path uniqueness (usually so difficult
to be proven) is the following one. The duality approach gives us an identity of the form

〈ρt, ϕ〉 =
〈
ρ0, u

t,ϕ
0

〉
(1.1)

where ρt is any weak solution of the sCE (ρt is the density of µt) with initial condition ρ0 and
(ut,ϕs )s∈[0,t] is any regular solution of the sTE rewritten in backward form with final condition ϕ

at time t. As we shall see below, we use an approximate version of (1.1), but the idea we want to
explain here is the same. Identity (1.1) holds a.s. in Ω, for any given ϕ and t. But taking a dense
(in a suitable topology) countable set D of ϕ’s, we have (1.1) for a.e. ω, uniformly on D and thus we
may identify ρt. This is the reason why this approach is so powerful to prove path-by-path results.
Of course behind this simple idea, the main technical point is the regularity of the solutions to the
sTE, which makes it possible to prove an identity of the form (1.1) for weak solutions ρt, for all
those ω’s such that ut,ϕs is regular enough.
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Concerning other uniqueness results for the sTE with poor drift, let us briefly comment on
a few of them. In [41] the case of Hölder continuous bounded drift is treated, by means of the
differentiable flow associated to the sDE; [65] extends the result and the approach to drifts in KR
class with zero divergence. The paper [16] extends the results to the sTE with Hölder continuous
drift but driven by fractional Brownian motion, relying again on the flow; the technique used there
for the analysis of the sDE itself is instead different from [41] and leads to path-by-path uniqueness.
The paper [4] assumes weakly differentiable drift but relaxes the assumption on the divergence of
the drift, with respect to the deterministic works [29, 2]. The papers [61, 36] use Wiener chaos
expansion techniques to obtain uniqueness for the sTE for drifts close to KR class, see [61], or even
beyond, see [36], at the price of uniqueness in a smaller class (namely among solutions adapted
to the Brownian filtration). A full solution of the uniqueness problem in the KR class was still
open (apart from the paper [66] and the recent preprints [64, 79] mentioned above) and this is a
by-product of this paper, which solves the problem in a stronger sense in two directions:

i) path-by-path uniqueness instead of pathwise uniqueness;

ii) drift in the LPS class instead of only KR class.

Let us mention that the approach to uniqueness of [4] shares some technical steps with the results
described in Section 1.6: renormalization of solutions (in the sense of [29]), Itô reformulation of the
Stratonovich equation and then expected value (a Laplacian arises from this procedure). However,
in [4] this approach has been applied directly to uniqueness of weak solutions so the renormalization
step required weak differentiability of the drift. Instead, here we deal with regularity of solutions
and thus the renormalization is applied to regular solutions of approximate problems and no
additional assumption on the drift is needed.

Finally, we comment on some related uniqueness results in the nonlinear case. The duality
technique has been used in [48], for scalar conservation laws with linear transport noise, and
in [49], for nonlinear transport noise, but in a different way and without producing a path-by-path
uniqueness result. Other results on uniqueness by noise are available with different techniques
and/or different choices of noise, e.g. [11] for a dyadic model of turbulence and [6] for a parabolic
model.

1.8 Results for the sDE

The last issue of our paper is to provide existence, uniqueness and regularity of stochastic flows
for the sDE, imposing merely the LPS condition. The strategy here is to deduce such results from
the path-by-path uniqueness result established in Section 1.7. To understand the novelties, let us
recall that the more general strong well-posedness result for the sDE is due to [54] under the KR
condition on b. To simplify the exposition and unify the discussion of the literature, let us consider
the autonomous case b(t, x) = b(x) and an assumption of the form b ∈ Lp(Rd,Rd) (depending
on the reference, various locality conditions and behavior at infinity are assumed). The condition
p > d seems to be the limit case for solvability in all approaches, see for instance [54, 51, 69, 19, 75],
whether they are based on Girsanov theorem, Krylov estimates, parabolic theory or Dirichlet forms.
There are some results on weak well-posedness for measure-valued drifts, see [9], and distribution-
valued drifts, see [43, 27, 14], but it is unclear whether they apply to the limit case p = d: for
example, the result in [9], when restricted to measures with density b with respect to the Lebesgue
measure, requires p > d, see [9, Example 2.3]. The present paper is the first one to give information
on sDEs in the limit case p = d (apart from [64, 79]).

Since path-by-path solvability is another issue related to our results, let us mention [25], when
the drift is bounded measurable: for a.e. ω, there exists one and only one solution. New results for
several classes of noise and drift have been obtained by [15]. In general, the problem of path-by-
path solvability of an sDE with poor drift is extremely difficult, compared to pathwise uniqueness
which is already nontrivial. Thus it is remarkable that the approach by duality developed here
gives results in this direction.

Our contribution on the sDE is threefold: existence, uniqueness and regularity of Lagrangian
flows, pathwise uniqueness from a diffuse initial datum and path-by-path uniqueness from given
initial condition. The following subsections detail these three classes of results.
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1.8.1 Lagrangian flows

We prove a well-posedness result among Lagrangian flows (see below for more explanations) under
the LPS condition on the drift:

Theorem 1.3. Under LPS condition, for a.e. ω, there exists a unique Lagrangian flow Φω solving
the sDE at ω fixed. This flow is, at fixed time, W 1,m

loc (Rd,Rd)-regular for every finite m, in particular
it has a Cα(Rd,Rd) version (at fixed time) for every α < 1.

Uniqueness will follow from uniqueness of the sCE, regularity from regularity of the solution
to the sTE. The result is new because our uniqueness result is path-by-path: for a.e. ω, two
Lagrangian flows solving the sDE with that ω fixed must coincide (notice that the sDE has a clear
path-by-path meaning). A Lagrangian flow Φ, solving a given ODE, is a generalized flow, in the
sense of [29, 2]: a measurable map x 7→ Φt(x) with a certain non-contracting property, such that
t 7→ Φt(x) verifies that ODE for a.e. initial condition x. However, in general, we do not construct
solutions of the sDE in a classical sense, corresponding to a given initial condition X0 = x. In
fact we do not know whether or not strong solutions exist and are unique under the LPS condition
with d

p + 2
q = 1 (while for d

p + 2
q < 1 strong solutions do exist, see [54]).

Let us mention that regularity under more restrictive assumptions was already proved, see for
example [34, 63] or [15] (also for fractional Brownian motion). However, these results do not cover
the full LPS condition and their proofs are based on the sDE, rather than on the sTE.

1.8.2 Pathwise uniqueness from a diffuse initial datum

We also prove a (classical) pathwise uniqueness result under the LPS condition, when the initial
datum has a diffuse law. This is done by exploiting the regularity result of the sTE and by using
a duality technique similar to the one mentioned before.

Theorem 1.4. If X0 is a diffuse random variable (not a single x) on Rd, then pathwise uniqueness
holds among solutions having diffuse marginal laws (more precisely, such that the law of Xt has a
density in L∞([0, T ];Lm(Rd)), for a suitable m).

Finally we notice that uniqueness of the law of solutions (or at least of their one-dimensional
marginals, namely the solutions of Fokker-Planck equations) may hold true for very irregular drift,
i.e. b ∈ L2, if diffuse initial conditions with suitable density are considered; see [37, 12].

1.8.3 Results of path-by-path uniqueness from given initial condition

When the regularity results for the stochastic equation of transport type is improved from W 1,p

to C1-regularity, then the uniqueness results of Section 1.7 for the sCE holds in the very general
class of finite measures and it is a path-by-path uniqueness result. As a consequence, we get an
analogous path-by-path uniqueness result for the sDE with classical given initial conditions, a result
competitive with [25] and [15]. The main problem is to find assumptions, as weak as possible, on
the drift b which are sufficient to guarantee C1 regularity of the solutions. We describe two cases.
The first one, which follows the strategy described in Section 1.1, is when the weak derivatives of b
(instead of only b itself) belongs to the LPS class, that is ∂ib ∈ LPS(p, q) for i = 1, . . . , d. However,
since this is a weak differentiability assumption, it is less general than expected. The second case
is when b is Hölder continuous (in space) and bounded, but here we have to refer to [41, 39] for
the proof of the main regularity results.

Theorem 1.5. If Db belongs to the LPS class or if b is Hölder continuous (in space), then, for
a.e. ω, for every x in Rd, there exists a unique solution to the sDE, starting from x, at ω fixed.

Notice that the “good subset” of Ω is independent of the initial condition x; this is not obvious
from the approaches of [15, 25], due to the application of Girsanov transformation for a given
initial condition.

Let us mention that in [74], generalized in [70] to the case of Lévy noise, path-by-path uniqueness
is shown, from a fixed initial condition, for a Hölder continuous drift, using the regularity of the
flow. This approach is the translation at the sDE level of the duality technique for the sPDE.
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1.8.4 Summary on uniqueness results

Since the reader might not be acquainted with the various types of uniqueness, we resume here
the possible path-by-path uniqueness results and their links.

path-by-path uniqueness
among trajectories

⇒ pathwise uniqueness for
deterministic initial data

⇓ ⇓
path-by-path uniqueness

among flows
“⇒”

pathwise uniqueness for
diffuse initial data

Let us explain more in detail these implications (this is in parts heuristics and must not be
taken as rigorous proofs):

• Path-by-path uniqueness among trajectories implies path-by-path uniqueness among flows:
Assume path-by-path (or pathwise) uniqueness among trajectories and let Φ, Ψ be two flows
solving the sDE. Then, for a.e. x in Rd, Φ(x) and Ψ(x) are solutions to the sDE, starting
from x, so, by uniqueness, they must coincide and hence Φ = Ψ a.e..

• Path-by-path uniqueness among trajectories implies pathwise uniqueness for deterministic
initial data: Assume path-by-path uniqueness among trajectories and let X, Y be two
adapted processes which solve the sDE. Then, for a.e. ω, X(ω) and Y (ω) solve the sDE
for that fixed ω, so they must coincide and hence X = Y a.e..

• Pathwise uniqueness for deterministic initial data implies pathwise uniqueness for diffuse
initial data: Assume pathwise uniqueness for deterministic initial data and let X, Y be two
solutions, on a probability space (Ω,A, P ), starting from a diffuse initial datum X0. For x in
Rd, define the set Ωx = {ω ∈ Ω: X0(ω) = x}. Then, for (X0)#P -a.e. x, X and Y , restricted
to Ωx, solve the sDE starting from x, so they must coincide and hence X = Y a.e..

• Path-by-path uniqueness among flows (with non-concentration properties) “implies” pathwise
uniqueness for diffuse initial data: The quotation marks are here for two reasons: because the
general proof is more complicated than the idea below and because the pathwise uniqueness
is not among all the processes (with diffuse initial data), but a restriction is needed to
transfer the non-concentration property. Assume path-by-path uniqueness among flows and
let X, Y be two solutions on a probability space (Ω,A, P ), starting from a diffuse initial
datum X0. We give the idea in the case Ω = C([0, T ];Rd) × BR 3 ω = (γ, x) (the Wiener
space times the space of initial datum), P = Q × Ld, where Q is the Wiener measure,
W (γ, x) = γ, X0(γ, x) = x. In this case (which is a model for the general case), for Q-a.e. γ,
Φ(γ, ·) and Ψ(γ, ·) are flows solving the SDE for that fixed ω. If they have the required
non-concentration properties, then, by uniqueness, they must coincide. Hence uniqueness
holds among processes X, with diffuse X0, such that X(γ, ·) has a certain non-concentration
property; this is the restriction we need.

We will prove: path-by-path uniqueness among Lagrangian flows, when b is in LPS class; path-
by-path uniqueness among solutions starting from a fixed initial point, when b and Db are in LPS
class or when b is Hölder continuous (in space). We will develop in detail pathwise uniqueness from
a diffuse initial datum in Section 5.1 (where the last implication will be proved) and in Section 5.2
(where a somehow more general result will be given).

1.8.5 Examples

In Section 7 we give several examples of equations with irregular drift of two categories:

i) on one side, several examples of drifts which in the deterministic case give rise to non-
uniqueness, discontinuity or shocks in the flow, while in the stochastic case our results apply
and these problems disappear;

ii) on the other side, a counterexample of a drift outside of the LPS class, for which even the
sDE is ill-posed.
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1.9 Concluding remarks and generalizations

The three classes of results described above are listed in logical order: we need the regularity
results of Section 1.6 for sTE and sCE to prove the uniqueness results of Section 1.7 for sCE and
sTE by duality; then we deduce the results of Section 1.8 for sDE from such uniqueness results.
The fact that regularity for transport equations (with poor drift) is the starting point marks the
difference with the deterministic theory, where such kinds of results are absent. Hence, the results
and techniques of the present paper are not generalizations of deterministic ones.

The two most innovative technical tools developed in this work are the analytic proof of regu-
larity (Section 1.6) and the path-by-path duality argument yielding uniqueness in this very strong
sense. The generality of LPS condition seems to be unreachable with more classical tools, based
on a direct analysis of the sDE. Moreover, in principle some of the analytic steps of Section 1.6
and the duality argument could be applied to other classes of stochastic equations; however, the
renormalization step in the regularity proof is quite peculiar of transport equations.

The noise considered in this work is the simplest one, in the class of multiplicative noise of
transport type. The reason for this choice is that it suffices to prove the regularization phenomena
and the exposition will not be obscured by unnecessary details. However, for nonlinear problems
it seems that more structured noise is needed, see [42, 28]. So it is natural to ask whether the
results of this paper extend to such noise. Let us briefly discuss this issue. The more general sDE
takes the form

dX = b(t,X)dt+

∞∑
k=1

σk(X) ◦ dW k
t , X0 = x (1.2)

where σk : Rd → Rd and W k are independent Brownian motions, and sTE, sCE are now

du+ b · ∇udt+

∞∑
k=1

σk · ∇u ◦ dW k
t = 0, u|t=0 = u0 (1.3)

dµ+ div(bµ)dt+

∞∑
k=1

div(σkµ) ◦ dW k
t = 0, µ|t=0 = µ0 (1.4)

Concerning the assumptions on σk, for simplicity, think of the case when they are of class C4
b

with proper summability in k. In order to generalize the regularity theory (Section 1.6) it is
necessary to be able to perform parabolic estimates and thus the generator associated to this
sDE must be strongly elliptic; a simple sufficient condition is that the covariance matrix function
Q(x, y) :=

∑∞
k=1 σk(x)⊗σk(y) of the random field η(t, x) =

∑∞
k=1 σk(x)W k

t depends only on x− y
(namely η(t, x) is space-homogeneous), div σk(x) = 0 (this simplifies several lower order terms)
and for the function Q(x) = Q(x− y) we have

detQ(0) 6= 0.

This replaces the assumption σ 6= 0.
The duality argument (Section 1.7) is very general and in principle it does not require any

special structure except the linearity of the equations. However, in the form developed here,
we use auxiliary random PDEs associated to the sPDEs via the simple transformation v(t, x) :=
u(t, x+σWt); we do this in order to avoid troubles with backward and forward sPDEs at the same
time. But this simple transformation requires additive noise. In the case of multiplicative noise,
one has to consider the auxiliary stochastic equation

dY =

∞∑
k=1

σk(Y ) ◦ dW k
t , Y0 = y (1.5)

and its stochastic flow of diffeomorphisms ψt(x), and use the transformation v(t, x) := u(t, ψt(x)).
This new random field satisfies

∂tv + b̃ · ∇v = 0

where
b̃(t, x) := Dψ−1

t (ψt(x))b(t, ψt(x)),
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and the duality arguments can be repeated, in the form developed here. The uniqueness results
mentioned in Section 1.7 then extend to this case.

The path-by-path analysis of the SDE (1.2) may look a priori less natural, since this equation
does not have a pathwise interpretation. However, when the coefficients σk are sufficiently regular
to generate, for the auxiliary equation (1.5), a stochastic flow of diffeomorphisms ψt(x), then we
may give a (formally) alternative formulation of (1.2) as a random differential equation, of the
form

dZ = b̃(t, Z)dt,

in analogy with the random PDE for the auxiliary variable v(t, x) above. This equation can be
studied pathwise, with the techniques of Section 1.8. Here, however, we feel that more work is
needed in order to connect the results with the more classical viewpoint of equation (1.2) and thus
we refrain to express strong claims here.

Concerning the path-by-path uniqueness, say for the sDE, note that this issue can be studied
for any deterministic path W , not necessarily the sample paths from the Brownian motion. Hence,
one can ask which conditions on a single, deterministic path W ensure uniqueness of (sDE), which
is now a deterministic ODE. This is investigated in [15], where the concept of (ρ, γ)-irregular
paths is given by means of Fourier analysis and it is shown that such paths provide uniqueness for
certain classes of non-Lipschitz drifts b (in particular if W is a sample path of the Brownian motion,
uniqueness is shown for Hölder continuous drifts). In contrast to the present paper, the techniques
used in [15] are based on Young integration, and the results, when specialized to Brownian sample
paths, are mostly concerned with Hölder continuous drifts. While for a general path it is not
easy to verify the (ρ, γ)-irregularity condition, one can prove, see [21, Proposition 1.4], that this
condition implies that the path must be irregular (non-Lipschitz in time): this corresponds to the
fact that a regular path does not regularize an ill-posed ODE, in general. It would be interesting
to compare the (ρ, γ)-irregularity notion with the concept of truly rough paths (e.g. [45]), which
also quantifies the irregularity of a path. Another, somehow more explicit, sufficient condition on
deterministic paths is given in [20, equation (3.3)], though it is used for regularization of scalar
conservation laws rather than ODEs. Here the regularization of non-linear PDEs was achieved by
means of a noise, that is here the derivative of the regularizing path, which is itself non-linear and
precisely multiplies the non-linearity: see e.g. [20, 21, 22], and [47] for other pathwise arguments.

Throughout the paper, the drift b is assumed to be deterministic. In view of applications
especially to non-linear equations, it would be very important to extend the result to random
drifts. While we do not see obstacles for the extension of the the duality technique, being path-
by-path in nature, the first step, namely the proof of regularity of solutions for the sTE, does
not allow for such generalization: if the drift were random, then the equations for the moments
of the derivative of the solution would not form a closed system. This is not simply a limitation
of the techniques: there are in fact simple counterexamples to regularization by noise for general
random drifts. Let us mention that, in some cases, it is possible to have regularization by noise
even for random drifts, see [15] and related work, assuming a suitable Hölder continuity of the
drift, or [30, 68], assuming Malliavin differentiability of the drift.

Finally, let us note that throughout the rest of the paper, concerning function spaces, we shall
use for simplicity the same notation for scalar-valued and vector-valued functions (but it will be
always clear from the context if the functions used have values in Rd, like b, X, or Φ, or in R, like c
or solutions u, v).

2 Regularity for sTE and sCE

In order to unify the analysis of the sTE and sCE we introduce the stochastic generalized transport
equation (sgTE ) in Rd

du+ (b · ∇u+ cu)dt+ σ∇u ◦ dW = 0, u|t=0 = u0 (sgTE)

where b, σ, u and u0 are as above, c : [0, T ] × Rd → R and W is a Brownian motion with respect
to a given filtration (Gt)t. We shall prove regularity results for solution to (sgTE).
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Remark 2.1. We note that the case c = 0 corresponds to (sTE), while the case c = div b corre-
sponds to (sCE), with

du+ div(bu)dt+ σ div(u ◦ dWt) = 0, u|t=0 = u0, (2.1)

where u stands for the density of the measure µt with respect to the Lebesgue measure.

2.1 Assumptions

Throughout all the paper, we assume that (Ω,A, P ) is a probability space, (Gt)t∈[0,T ] is a filtration
satisfying the standard assumptions, that is, it is complete and right-continuous. The process W
denotes a Brownian motion with respect to (Gt)t, unless differently specified.

Concerning the general equation (sgTE) we will always assume that we are in the purely
stochastic case with σ 6= 0 and that the coefficients b and c satisfy the following decomposition
and regularity condition.

Condition 2.2 (LPS+reg). The fields b and c can be written as b = b(1) + b(2), c = c(1) + c(2),
where

1. LPS-condition: b(1), c(1) satisfy one of the following three assumptions:

a) b(1), c(1) are in LPS(p, q) for some p, q in (2,∞) (with 2
q + d

p ≤ 1) or p =∞, q = 2;

b) b(1), c(1) are in C([0, T ];Ld(Rd)) with d ≥ 3;

c) b(1), c(1) are in L∞([0, T ];Ld(Rd)) with d ≥ 3 and there hold

‖b(1)‖L∞([0,T ];Ld(Rd)) ≤ δ and ‖c(1)‖L∞([0,T ];Ld(Rd)) ≤ δ,

with δ small enough; precisely, given an exponent m as in Theorem 2.7, δ depends on
m,σ, d, as given by inequality (2.18);

2. Regularity condition: b(2) is in L2([0, T ];C1
lin(Rd)) and c(2) is in L2([0, T ];C1

b (Rd)), i.e., for
a.e. t ∈ [0, T ], b(2)(t, ·) and c(2)(t, ·) are in C1(Rd) and

‖b(2)‖2L2([0,T ];C1
lin(Rd)) :=

∫ T

0

(∥∥∥b(2)(s, ·)
1 + | · |

∥∥∥
∞

+ ‖Db(2)(s, ·)‖∞
)2

ds <∞,

‖c(2)‖2L2([0,T ];C1
b (Rd)) :=

∫ T

0

(
‖c(2)(s, ·)‖∞ + ‖Dc(2)(s, ·)‖∞

)2

ds <∞.

(The expression “b is in a certain class A” must be understood componentwise.)

Remark 2.3. The hypotheses on b(2) and c(2) are slightly stronger than the natural ones, namely
b(2) in L1([0, T ];C1

lin(Rd)), c(2) in L1([0, T ];C1
b (Rd)): we require L2 integrability in time instead

of L1. This is mainly due to a technical point which will appear in Section 3. However, with minor
modifications, this assumption could be relaxed to L1 integrability throughout this section.

Remark 2.4. A simple extension of Condition 2.2 is to ask that b =
∑N
j=1 b̃

(j), where, for every j,

b̃(j) is a vector field satisfying Condition 2.2 with exponents pj, qj that can depend on j; similarly
for c. This extension is quite easy and we refrain to discuss it explicitly.

Remark 2.5. The sTE is just equation (sgTE) with c = 0 and thus we do write explicitly the
assumptions for sTE. The sCE instead corresponds to (sgTE) with c = div b and for completeness
let us note that we hence need to assume for sCE that we have b = b(1) + b(2), with

(i0) for some p, q ∈ (2,∞), or (p, q) = (∞, 2), b(1),div b(1) ∈ LPS(p, q);

(i1) for (p, q) = (d,∞), d ≥ 3, either we assume b(1) ∈ C([0, T ];Ld(Rd)) or we require the
smallness assumption in Condition 2.2, 1c);

(ii) b(2),div b(2) ∈ L2(0, T ;C1(Rd)), with∫ T

0

(∥∥∥b(2)(s, ·)
1 + | · |

∥∥∥
∞

+
∥∥Db(2)(s)

∥∥
∞ +

∥∥D div b(2)(s)
∥∥
∞

)2

ds <∞.
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2.2 Strategy of proof

In order to prove the regularity results, we follow the approach of a priori estimates: we prove
regularity estimates for the smooth solutions of approximate problems with smooth coefficients,
be careful to show that the regularity estimates have constants independent of the approximation;
then we deduce the regularity for the solution of the limit problem by passing to the limit.

The strategy of proof is made of several steps which bear some similarities with the computa-
tions done in literature of theoretical physics of passive scalars, see for instance [18].

First, we differentiate the sgTE (which is possible because we deal with smooth solutions of
regularized problems), with the purpose of estimating the derivatives of the solutions. However,
terms like ∂ibk appear. In the deterministic case, unless b is Lipschitz, these terms spoil any
attempt to prove differentiability of solutions by this method. In the stochastic case, we shall
integrate these bad terms by parts at the price of a second derivative of the solution, which
however will be controlled, as it will be explained below.

Second, we use the very important property of transport type equations of being invariant
under certain transformations of the solution. For the classical sTE, the typical transformation is
u 7→ β(u) where β ∈ C1(R): if u is a solution, then β(u) is (at least formally) again a solution.
For regular solutions, as in our case, this can be made rigorous; let us only mention that, for
weak solutions, this is a major issue, which gives rise to the concept of renormalized solutions [29]
(namely those for which β(u) is again a weak solution) and the so called commutator lemma; we
do not meet these problems here, in the framework of regular solutions. Nevertheless, to recall the
issue, we shall call this step renormalization, namely that suitable transformations of the solution
lead to solutions. In our case, since we consider the differentiated sgTE, we work on the level of
derivatives of the solution u and therefore we apply transformations to ∂iu. In order to find a
closed system, we have to consider, as transformations, all possible products of ∂iu, and u itself.
This leads to some complications in the book-keeping of indices, but the essential idea is still the
renormalization principle.

Third, we reformulate the sPDE from the Stratonovich to the Itô form. The corrector is a
second order differential operator. It is strongly elliptic in itself, but combined with the Itô term
(containing first derivatives of solutions), it does not give a parabolic character to the equation.
The equation is indeed equivalent to the original, hyperbolic (time-reversible) formulation.

Forth, we take the expectation. This projection annihilates the Itô term and gives a true
parabolic equation. The expected value of powers of ∂iu (or any product of them) solves a parabolic
equation, and, as a system in all possible products, it is a closed system. For other functionals of
the solution, as the two-point correlation function E[u(t, x)u(t, y)], the fact that a closed parabolic
equation arises was a basic tool in the theory of passive scalars [18].

Finally, on the parabolic equation we perform energy-type estimates. The elliptic term puts
into play, on the positive side of the estimates, terms like ∇E[(∂iu)m]. They are the key tool to
estimate those terms coming from the partial integration of ∂ibk (see the comments above). The
good parabolic terms ∇E[(∂iu)m] come from the Stratonovich-Itô corrector, after projection by
the expected value. This is the technical difference to the deterministic case.

2.3 Preparation

The following preliminary lemma is essentially known, although maybe not explicitly written in
all details in the literature; we shall therefore sketch the proof. As explained in the last section,
given non-smooth coefficients, we shall approximate them with smooth ones. Their role is only
to allow us to perform certain computations on the solutions (such as Itô formula, finite expected
values, finite integrals on Rd and so on). More precisely, the outcome of the next lemma are C∞c -
estimates (infinitely differentiable with compact support in all variables) in space for all times, for
the solutions corresponding to the equation with smooth (regularized) coefficients. However, we
emphasize that these estimates are not uniform in the approximations, in contrast to our main
regularity estimates concerning Sobolev-type regularity established later on in Theorem 2.7.

Lemma 2.6. If b, c ∈ C∞c ([0, T ] × Rd), u0 ∈ C∞c (Rd), then there exists an adapted solution u of
equation (sgTE) with paths of class C([0, T ];C∞c (Rd)) (the support of u depends on the path). We
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have
sup

(t,x)∈[0,T ]×Rd
E
[
|Dαu(t, x)|r

]
<∞ (2.2)

for every α ≥ 0 and r ≥ 1. Moreover, we have

sup
(t,x,ω)∈[0,T ]×Rd×Ω

|u(t, x, ω)| ≤ ‖u0‖∞e
∫ T
0
‖c(s,·)‖∞ds (2.3)

and for every r,R ≥ 1

sup
t∈[0,T ]

∫
Rd

(
1 + |x|R

)
E
[
|Dαu(t, x)|r

]
dx <∞, for α = 0, 1, 2. (2.4)

Proof. Step 1: Existence of a solution. Under the assumption b ∈ C∞c ([0, T ]×Rd), equation (sDE)
has a pathwise unique strong solution Xx

t for every given x ∈ Rd. As proved in [56], the random
field Xx

t has a modification Φt(x) which is a stochastic flow of diffeomorphisms of class C∞ (since b
is infinitely differentiable with bounded derivatives). Moreover, in view of [57, Theorem 6.1.9] we
know that, given u0 ∈ C∞c (Rd), the process

u(t, x) := u0

(
Φ−1
t (x)

)
e
∫ t
0
c(s,Φ−1

s (x))ds (2.5)

(which has paths of class C([0, T ];C∞c (Rd)) by the properties of Φ−1
t ) is an adapted strong solution

to (sgTE). Inequality (2.3) then follows from (2.5).
Step 2: Regularity of the solution. For the flow Φt(x) we have the simple inequality

|Φt(x)| ≤ |x|+ T‖b‖∞ + |σ||Wt|

and thus, for every R > 0 there exists a constant CR > 0 such that

E
[
|Φt(x)|R

]
≤ CR

(
|x|R + TR‖b‖R∞ + |σ|RTR/2

)
. (2.6)

This bound will be used below. For the derivative of the flow with respect to the initial condition
in the direction h, DhΦt(x) = limε→0 ε

−1(Φt(x+ εh)− Φt(x)), one has

d

dt
DhΦt(x) = Db(t,Φt(x))DhΦt(x), DhΦ0(x) = h

and thus, since Db is bounded,

|DhΦt(x)| ≤ C1|h| for t ∈ [0, T ], (2.7)

where C1 ≥ 1 is a deterministic constant. The same is true for higher derivatives and for the inverse
flow. This proves inequality (2.2) for α > 0, while the inequality for α = 0 comes from (2.3).

Concerning the claim (2.4), for α = 0 and t ∈ [0, T ] we have

E
[ ∫

Rd

(
1 + |x|R

)
|u(t, x)|rdx

]
≤ er

∫ T
0
‖c(s,·)‖∞dsE

[ ∫
Rd

(
1 + |x|R

)∣∣u0

(
Φ−1
t (x)

)∣∣rdx]
= er

∫ T
0
‖c(s,·)‖∞dsE

[ ∫
Rd

(
1 + |Φt(y)|R

)
|u0(y)|r|detDΦt(y)|dy

]
≤ C2,r

∫
Rd

(
1 + E

[
|Φt(y)|R

])
|u0(y)|rdy

by (2.7), where C2,r = Cd1e
r
∫ T
0
‖c(s,·)‖∞ds. Combined with (2.6) this implies (2.4) for α = 0, since

u0 has compact support. The proof of (2.4) for α = 1, 2 is similar: we first differentiate u by using
the explicit formula (2.5) and get several terms, then we control them by means of boundedness
of c and its derivatives, boundedness of derivatives of direct and inverse flow, and the change of
variable formula used above for α = 0. The computation is lengthy but elementary. For instance
we have

Dhu(t, x) = e
∫ t
0
c(s,Φ−1

s (x))dsDu0

(
Φ−1
t (x)

)
DhΦ−1

t (x)
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+ u0

(
Φ−1
t (x)

)
e
∫ t
0
c(s,Φ−1

s (x))ds

∫ t

0

Dc
(
s,Φ−1

s (x)
)
DhΦ−1

s (x)ds,

|Dhu(t, x)|r ≤ CrC2,rC
r
1

∣∣Du0

(
Φ−1
t (x)

)∣∣r|h|r + CrC2,rT
r‖Dc‖r∞Cr1

∣∣u0

(
Φ−1
t (x)

)∣∣r|h|r.
Hence, we obtain

E
[ ∫

Rd

(
1 + |x|R

)
|Dhu(t, x)|rdx

]
≤ CrC2,rC

r+d
1 |h|r

∫
Rd

(
1 + E

[
|Φt(y)|R

])
|Du0(y)|rdy

+ CrC2,rT
r‖Dc‖2∞Cr+d1 |h|r

∫
Rd

(
1 + E

[
|Φt(y)|R

])
|u0(y)|rdy

which implies (2.4) for α = 1. The proof is complete.

2.4 Main result on a priori estimates

In the sequel we take the regular solution given by Lemma 2.6 and prove a priori estimates. For
the formulation of the result, let us introduce a C1-function χ : Rd → [0,∞) such that

|∇χ(x)| ≤ Cχ
χ(x)

1 + |x|
for all x ∈ Rd (2.8)

for some constant Cχ > 0. For example, we might take χ(x) = (1 + |x|2)s/2 which satisfies
|∇χ(x)| ≤ 2|s|χ(x)/(1 + |x|), for every s ∈ R (all cases s < 0, s = 0, and s > 0 are of interest).
The associated norm ‖u0‖W 1,r

χ (Rd) is defined by

‖u0‖rW 1,r
χ (Rd)

=

d∑
i=0

∫
Rd
|∂iu0(x)|rχ(x)dx

where we have used the notation ∂0f = f .

Theorem 2.7. Let p, q be in (2,∞) satisfying 2
q + d

p ≤ 1 or (p, q) = (∞, 2), let m be a positive

integer, let σ 6= 0, and let χ be a function satisfying (2.8). Assume that b and c are a vector
field and a scalar field, respectively, such that b = b(1) + b(2), c = c(1) + c(2), with b(i), c(i) in
C∞c ([0, T ] × Rd) for i = 1, 2. Then there exists a constant C such that, for every u0 in C∞c (Rd),
the smooth solution u of equation (sgTE) starting from u0, given by Lemma 2.6, verifies

sup
t∈[0,T ]

d∑
i=0

∫
Rd
E
[
(∂iu(t, x))m

]2
χ(x)dx ≤ C‖u0‖2mW 1,2m

χ (Rd)
.

Moreover, the constant C can be chosen to have continuous dependence on m, d, σ, χ, p, q and on
the Lq([0, T ];Lp(Rd)) norms of b(1) and c(1), on the L1([0, T ];C1

lin(Rd)) norm of b(2), and on the
L1([0, T ];C1

b (Rd)) norm of c(2).
The result holds also for (p, q) = (d,∞) with the additional hypothesis that the L∞([0, T ];Ld(Rd))

norms of b(1) and c(1) are smaller than δ, see Condition 2.2, 1c) (in this case the continuous de-
pendence of C on these norms is up to δ).

Corollary 2.8. With the same notations of the previous theorem, if m is an even integer, then for
every s ∈ R there exists a constant C depending also on s (in addition to the dependencies from
the theorem) such that

sup
t∈[0,T ]

E
[
‖u(t, ·)‖m

W 1,m
(1+|·|)s (Rd)

]
≤ C‖u0‖mW 1,2m

(1+|·|)2s+d+1 (Rd)
.

Proof. Via Hölder’s inequality we have∫
Rd

(
1 + |x|

)s
E
[
|∂iu(t, x)|m

]
dx =

∫
Rd

(
1 + |x|

)− d+1
2
(
1 + |x|

)s+ d+1
2 E

[
|∂iu(t, x)|m

]
dx

15



≤
(∫

Rd

(
1 + |x|

)−d−1
dx
)1/2(∫

Rd

(
1 + |x|

)2s+d+1
E
[
|∂iu(t, x)|m

]2
dx
)1/2

≤ C‖u0‖mW 1,2m

(1+|·|)2s+d+1 (Rd)
.

for a suitable constant C > 0.

Remark 2.9. Such power-type weights play a crucial role for later applications. Therefore, let us
note that, for every s ∈ R and m ∈ (1,∞), W 1,m

(1+|·|)s(R
d) is a reflexive Banach space. We can show

this, for instance, by observing that the dual of Lm(1+|·|)s(R
d) is isomorphic to Lm

′

(1+|·|)sm′/m(Rd) with

1/m+1/m′ = 1. Hence, the Lm spaces with these weights are reflexive, which directly carries over to
the weighted Sobolev spaces since they are closed subspaces via the mapping f 7→ (f, ∂1f, . . . , ∂df).
The same holds for spaces like Lm([0, T ] × Ω;W 1,m

(1+|·|)s(R
d)) and Lm([0, T ] × Ω;Lm(1+|·|)s(R

d)). In

particular, the Banach–Alaoglu theorem is at our disposal.

The next subsections are devoted to the proof of the a priori estimate of the theorem. At the
end, they will be used to construct a (weaker) solution corresponding to non-smooth data. Thus,
in the sequel, u refers to a smooth solution, with smooth and compactly supported data b, u0.

2.5 Formal computation

This section serves as a formal explanation of the first main steps of the proof, those based on
renormalization, passage from Itô to Stratonovich formulation and taking the expectation. A
precise statement and proof is given in the next Section 2.6.

The aim of the following computations is to write, given any positive integer m, a closed system
of parabolic equations for the quantities E[

∏
i∈I ∂iu], where I varies in the finite multi-indices with

elements in {0, 1, . . . , d} of length at most m. In principle, we need only the quantities E[(∂iu)m]
for i = 1, . . . , d, but they do not form a closed system.

Equation (sgTE) is formally of the form

Lu+ cu = 0

where L is the differential operator

Lf = ∂tf + b · ∇f + σ∇f ◦ Ẇ .

Being a first order differential operator, it formally satisfies the Leibniz rule

L
( m∏
j=1

fj

)
=

m∑
i=1

∏
j 6=i

fjLfi. (2.9)

This is the step that we call renormalization, following [29]: in the language of that paper, if
β : R→ R is a C1-function and v is a solution of Lv = 0, then formally Lβ(v) = 0, and solutions
which satisfy this rule rigorously are called renormalized solutions. Property (2.9) is a variant of
this idea. We apply the renormalization to first derivatives of u. Precisely, if u is a solution of
Lu+ cu = 0, we set

vi := ∂iu, for i = 1, . . . , d.

One has ∂i(Lu+ cu) = 0 and thus

Lvi = −(∂ib · ∇u+ u∂ic+ cvi), i = 1, . . . , d.

With the notation v0 = u we also have

Lv0 = −cv0.

In the sequel, I will be a finite multi-index with elements in {0, 1, . . . , d}, namely an element of
∪m∈N{0, 1, . . . , d}m. If I ∈ {0, 1, . . . , d}m we set |I| = m. Given a function h : {0, 1, . . . , d} → R,∑
i∈I h(i) means the sum over all the components of I (counting repetitions), and similarly for the
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product. The multi-index I \ i means that we drop in I a component of value i; the multi-index
I \ i∪ k means that we substitute in I a component of value i with a component of value k; which
component i is dropped or replaced does not matter because we consider only expressions of the
form

∑
i∈I h(i) and similar ones. Let us set

vI :=
∏
i∈I

vi which satisfies LvI =
∑
i∈I

vI\iLvi

in view of the Leibniz rule (2.9). Now, the equations for vi differ depending on whether i = 0 or
i ∈ {1, . . . , d}. The term cvi appears in all of them, but not ∂ib · ∇u+ u∂ic. Hence, we find

LvI = −c |I| vI −
∑

i∈I,i6=0

vI\i(∂ib · ∇u+ u∂ic)

= −c |I| vI −
∑

i∈I,i6=0

d∑
k=1

vI\i∪k∂ibk −
∑

i∈I,i6=0

vI\i∪0∂ic.

Next we want to take the expected value. The problem is the Stratonovich term σ∇vI ◦ Ẇ in LvI .
Rewriting it as an Itô term with correction, we get

σ∇vI ◦ dW = σ∇vIdW +
1

2

d∑
k=1

d
[
σ∂kvI ,W

k
]

where the brackets [·, ·] denote the joint quadratic variation. Since dvI has −σ
∑d
k′=1 ∂k′vIdW

k′

as local martingale term, we have d[σ∂kvI ,W
k] = −σ2∂2

kvIdt, and thus, we find

σ∇vI ◦ dW = σ∇vIdW −
σ2

2
∆vIdt.

Taking (formally) the expectation in the equation for vI , we arrive at

∂twI + b · ∇wI + c |I|wI +
∑

i∈I,i6=0

d∑
k=1

wI\i∪k∂ibk +
∑

i∈I,i6=0

wI\i∪0∂ic =
σ2

2
∆wI (2.10)

where
wI := E[vI ].

This is the first half of the proof of Theorem 2.7, which will be carried out rigorously in Section 2.6.
The second half is the estimate on w coming from the parabolic nature of this equation, which will
be established in Section 2.7.

2.6 Rigorous proof of (2.10)

We work with the regular solution u given by Lemma 2.6 and we use the notations I, I \ i∪ k, vi,
vI , wI as in the previous section. We observe that, since u is smooth in x, the vi’s and their spatial
derivatives are well-defined. Moreover, due to inequality (2.2), also the expected values wI ’s are
well-defined and smooth in x.

Lemma 2.10. The function wI(t, x) is continuously differentiable in time and satisfies the (point-
wise) equation (2.10).

Proof. The solution provided by Lemma 2.6 is a pointwise regular solution to (sgTE), namely it
satisfies with probability one the identity

u(t, x) +

∫ t

0

(
b · ∇u+ cu

)
(s, x)ds+

∫ t

0

σ∇u(s, x) ◦ dWs = u0(x)
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for every (t, x) ∈ [0, T ] × Rd. Since ∇u(t, x) is a semimartingale (from the definition of u), the
Stratonovich integral is well-defined. Using [56, Theorem 7.10] of differentiation under stochastic
integrals one deduces

∂iu(t, x) +

∫ t

0

(
∂ib · ∇u+ b · ∇∂iu+ u∂ic+ c∂iu

)
(s, x)ds+

∫ t

0

σ∇∂iu(s, x) ◦ dWs = ∂iu0(x),

hence, for i = 1, . . . , d, we have

vi(t, x) +

∫ t

0

( d∑
k=1

∂ibkvk + b · ∇vi + u∂ic+ cvi

)
(s, x)ds+

∫ t

0

σ∇vi(s, x) ◦ dWs = vi(0, x),

while for i = 0, we obtain just from the solution property

v0(t, x) +

∫ t

0

(
b · ∇v0 + cv0

)
(s, x)ds+

∫ t

0

σ∇v0(s, x) ◦ dWs = v0(0, x).

Setting

r0 = 0 and ri =

d∑
k=1

∂ibkvk + u∂ic for i = 1, . . . , d,

we may write for all i = 0, 1, . . . , d

vi(t, x) +

∫ t

0

(
b · ∇vi + cvi + ri

)
(s, x)ds+

∫ t

0

σ∇v0(s, x) ◦ dWs = v0(0, x).

Now we use Itô formula in Stratonovich form, see [56, Theorem 8.3], to get

vI(t, x) = vI(0, x) +
∑
i∈I

∫ t

0

vI\i(s, x) ◦ dvi(s, x)

= vI(0, x)−
∑
i∈I

∫ t

0

vI\i(s, x)
(
b · ∇vi + cvi + ri

)
(s, x)ds

−
∑
i∈I

∫ t

0

vI\i(s, x)σ∇vi(s, x) ◦ dWs.

Moreover, we have ∂jvI =
∑
i∈I vI\i∂jvi, and thus we may rewrite the previous identity as

vI(t, x) +

∫ t

0

(
b · ∇vI + |I| cvI

)
(s, x)ds+

∑
i∈I

∫ t

0

(vI\iri)(s, x)ds

= vI(0, x)− σ
∫ t

0

∇vI(s, x) ◦ dWs. (2.11)

By the definition of ri, for the last integral on the left-hand side of (2.11), it holds

∑
i∈I

∫ t

0

(vI\iri)(s, x)ds =
∑

i∈I,i6=0

d∑
k=1

∫ t

0

(vI\i∪k∂ibk)(s, x)ds+
∑

i∈I,i6=0

∫ t

0

(vI\i∪0∂ic)(s, x)ds.

Furthermore, before taking expectations, we want to pass in (2.11) from the Stratonovich to the
Itô formulation. To this end, we first note (again by [56, Theorem 7.10]) that

∂jvI(t, x) +

∫ t

0

g(s, x)ds = ∂jvI(0, x)− σ
d∑
k=1

∫ t

0

∂j∂kvI(s, x) ◦ dW k
s

for a bounded process g. Hence, for the stochastic integral in (2.11) we find

σ

d∑
j=1

∫ t

0

∂jvI(s, x) ◦ dW j
s = σ

∫ t

0

∇vI(s, x) · dWs +
σ

2

d∑
j=1

[
∂jvI(·, x),W j

]
t
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= σ

∫ t

0

∇vI(s, x) · dWs −
σ2

2

d∑
j=1

∫ t

0

∂2
j vI(s, x)ds.

We have proved so far

vI(t, x) +

∫ t

0

(
b · ∇vI + |I| cvI

)
(s, x)ds

+
∑

i∈I,i6=0

d∑
k=1

∫ t

0

(vI\i∪k∂ibk)(s, x)ds+
∑

i∈I,i6=0

∫ t

0

(vI\i∪0∂ic)(s, x)ds

= vI(0, x)− σ
∫ t

0

∇vI(s, x)dWs +
σ2

2

∫ t

0

∆vI(s, x)ds.

The process ∇vI(s, x) is bounded (via Lemma 2.6), thus
∫ t

0
∇vI(s, x)dWs is a martingale. All other

terms have also finite expectation, due to estimate (2.2) of Lemma 2.6. Hence, taking expectation,
we have

wI(t, x) +

∫ t

0

(
b · ∇wI + |I| cwI

)
(s, x)ds

+
∑

i∈I,i6=0

d∑
k=1

∫ t

0

(wI\i∪k∂ibk)(s, x)ds+
∑

i∈I,i6=0

∫ t

0

(wI\i∪0∂ic)(s, x)ds

= vI(0, x) +
σ2

2

∫ t

0

∆wI(s, x)ds.

This identity implies that wI(t, x) is continuously differentiable in t and that equation (2.10) holds.
The proof of the lemma is complete.

2.7 Estimates for the parabolic deterministic equation

The system for the wI ’s is a parabolic deterministic linear system of partial differential equations.
In this section we will obtain energy estimates for wI which will allow us to obtain the desired
a priori bounds. The fact that we have a system instead of a single equation will not affect the
estimate (to have an idea of what the final parabolic estimate should be, one could think that wI
is independent of I).

For every smooth function χ : Rd → [0,∞) as in the statement of the Theorem 2.7 we multiply
the identity (2.10) by χwI and get

∂t(χw
2
I ) + 2χwIb · ∇wI + 2χc|I|w2

I + 2
∑

i∈I,i6=0

d∑
k=0

χwIwI\i∪k∂ibk = σ2χwI∆wI ,

where, for a shorter notation, we have set b0 := c. From estimate (2.4) of Lemma 2.6 we know that
all terms in this identity are integrable on Rd, uniformly in time. Hence,∫

Rd
χw2

I (t, x)dx+ σ2

∫ t

0

∫
Rd
χ|∇wI |2(s, x)dxds

= −2σ2

∫ t

0

∫
Rd
wI∇wI · ∇χ(s, x)dxds

− 2

∫ t

0

∫
Rd

(
χwIb · ∇wI + χc|I|w2

I

)
(s, x)dxds

− 2
∑

i∈I,i6=0

d∑
k=0

∫ t

0

∫
Rd
χ
(
wIwI\i∪k∂ibk

)
(s, x)dxds.

The term with ∂ibk would spoil all our efforts of proving estimates depending only on the LPS
norm of the coefficients, but fortunately we may integrate by parts that term. This is the first
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key ingredient of this second half of the proof of Theorem 2.7. The second key ingredient is the
presence of the term σ2

∫ t
0

∫
Rd χ|∇wI |

2dxds, ultimately coming from the passage Stratonovich to
Itô formulation plus taking expectation; this allows us to ask as little as possible on b to close
the estimates: we may keep first derivatives of wI on the right-hand-side of the previous identity,
opposite to the deterministic case.

Before starting with the estimates, we recall that b = b(1) + b(2) and c = c(1) + c(2) are assumed
to be the sum of two smooth vector fields. Since the desired estimates in Theorem 2.7 differ for the
rough part b(1) and the regular (but possibly with linear growth) part b(2), we now split b and c
and use the integration by parts formula, in the following way: when a term with ∂ib

(1) appears,
we bring the derivative on the other terms; when we have b(2) multiplied by the derivative of some
object, we bring the derivative on b(2). In this way we obtain∫

Rd
χw2

I (t, x)dx+ σ2

∫ t

0

∫
Rd
χ|∇wI |2(s, x)dxds = AI,0 +A

(1)
I,1 +A

(2)
I,1 +A

(1)
I,2 +A

(2)
I,2,

where we have defined

AI,0 := −2σ2

∫ t

0

∫
Rd

(
wI∇wI · ∇χ

)
(s, x)dxds

A
(1)
I,1 := −2

∫ t

0

∫
Rd

(
χwIb

(1) · ∇wI + χc(1)|I|w2
I

)
(s, x)dxds

A
(2)
I,1 :=

∫ t

0

∫
Rd

(
χdiv b(2)w2

I +∇χ · b(2)w2
I − 2χc(2)|I|w2

I

)
(s, x)dxds

A
(1)
I,2 := 2

∑
i∈I,i6=0

d∑
k=0

∫ t

0

∫
Rd

((
∂iχwIwI\i∪k + χ∂iwIwI\i∪k + χwI∂iwI\i∪k

)
b
(1)
k

)
(s, x)dxds

A
(2)
I,2 := −2

∑
i∈I,i6=0

d∑
k=0

∫ t

0

∫
Rd

(
χwIwI\i∪k∂ib

(2)
k

)
(s, x)dxds.

To estimate these terms we essentially use the following consequence of Hölder’s inequality∫ t

0

∫
Rd

(
fgh

)
(s, x)dxds ≤

∫ t

0

‖f‖∞(s)

∫
Rd

(
|g|2 + |h|2

)
(s, x)dxds (2.12)

for functions f, g, h defined over [0, T ]×Rd such that the relevant integrals are well-defined. More-
over, we shall use at several instances the estimate (2.8) on |∇χ|, and we further drop the notation
(s, x) inside the integrals. For the first term we now employ (2.12) with f ≡ 1 (the special case

of Hölder’s inequality), g =
√
εχ|∇wI | and h = 2σ2

√
ε−1χ|wI | for an arbitrary positive number

ε > 0 to find

AI,0 ≤ ε
∫ t

0

∫
Rd
χ|∇wI |2dxds+ Cε,σ,χ

∫ t

0

∫
Rd
χ|wI |2dxds.

Similarly for the second term, we have

A
(1)
I,1 ≤ ε

∫ t

0

∫
Rd
χ|∇wI |2dxds+ Cε

∫ t

0

∫
Rd

(|b(1)|2 + |c(1)||I|)χw2
Idxds.

Next, with g = h =
√
χwI and f chosen as div b(2), b(2)Cχ(1 + |x|)−1 and 2|c(2)||I|, respectively,

we obtain via (2.8) the estimate

A
(2)
I,1 ≤

∫ t

0

∫
Rd

((
div b(2) − 2c(2)|I|

)
χw2

I

)
dxds+ Cχ

∫ t

0

∫
Rd
w2
I

|b(2)|
1 + |x|

χdxds

≤
∫ t

0

(
‖div b(2)(s)‖∞ + Cχ

∥∥∥b(2)(s, ·)
1 + | · |

∥∥∥
∞

+ 2|I|‖c(2)(s)‖∞
)∫

Rd
χw2

Idxds.
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Similarly as for the terms A
(2)
I,1 and A

(2)
I,1, we now proceed for the remaining terms A

(2)
I,2 and A

(2)
I,2,

with the main difference that wI eventually needs to be replaced with wI\i∪k. In this way, we get

A
(1)
I,2 ≤ 2

∑
i∈I,i6=0

d∑
k=0

∫ t

0

∫
Rd

(
χ|wI\i∪k||∂iwI |+ χ|wI ||∂iwI\i∪k|+ Cχ|wI\i∪k||wI |χ

)
|b(1)
k |dxds

≤ ε
∑

i∈I,i6=0

d∑
k=0

∫ t

0

∫
Rd

(
χ|∂iwI |2 + χ|∂iwI\i∪k|2

)
dxds

+ Cε,χ
∑

i∈I,i6=0

d∑
k=0

∫ t

0

∫
Rd

(
χw2

I\i∪k + χw2
I

)
|b(1)
k |

2dxds

and finally

A
(2)
I,2 ≤

∑
i∈I,i6=0

d∑
k=0

∫ t

0

‖∇b(2)
k (s)‖∞

∫
Rd
χ
(
w2
I + w2

I\i∪k
)
dxds.

Given m ∈ N, we abbreviate θm = (
∑
|I|=m χw

2
I )

1/2 and ρm = (
∑
|I|=m

∑d
i=1 χ|∂iwI |2)1/2. Col-

lecting the previous estimates and summing over |I| = m, we have proved so far∫
Rd
θ2
m(t, x)dx+ σ2

∫ t

0

∫
Rd
ρ2
mdxdr ≤

∑
|I|=m

(
AI,0 +A

(1)
I,1 +A

(2)
I,1 +A

(1)
I,2 +A

(2)
I,2

)
≤ ε

∫ t

0

∫
Rd
ρ2
mdxds+ Cε

∫ t

0

∫
Rd

(
|b(1)|2 +m|c(1)|

)
θ2
mdxds

+

∫ t

0

(
‖ div b(2)(s)‖∞ + Cχ

∥∥∥b(2)(s, ·)
1 + | · |

∥∥∥
∞

+ 2m‖c(2)(s)‖∞
)∫

Rd
θ2
mdxds

+ 2εCm,d

∫ t

0

∫
Rd
ρ2
mdxds+ 2Cε,χCm,d

∫ t

0

∫
Rd
θ2
m

(
|b(1)|2 + (c(1))2

)
dxds

+ 2Cm,d

∫ t

0

(
‖∇b(2)(s)‖∞ + ‖∇c(2)(s)‖∞

) ∫
Rd
θ2
mdxds,

where we have repeatedly employed the identities
∑
|I|=m

∑
i∈I
∑d
k=0 χ|wI\i∪k|2 = m(d + 1)θm

and
∑
|I|=m

∑
i∈I
∑d
k=0 χ|∂iwI\i∪k|2 = m(d+ 1)ρm (since every J of length m is counted m(d+ 1)

times in the previous sum); so here Cm,d = m(d + 1). We can then continue to estimate (using
Hölder inequality for m|c(1)|)

≤ ε(1 + 4Cm,d)

∫ t

0

∫
Rd
ρ2
mdxds

+ Cε,m,d,χ

∫ t

0

∫
Rd

(
|b(1)|2 + (c(1))2 + 1

)
θ2
mdxds

+ Cm,d

∫ t

0

(
‖∇b(2)(s)‖∞ + Cχ

∥∥∥b(2)(s, ·)
1 + | · |

∥∥∥
∞

+ ‖c(2)(s)‖∞ + ‖∇c(2)(s)‖∞
)∫

Rd
θ2
mdxds

for new positive constants Cε,m,d,χ, Cm,d (which incorporate the m inside the integrals). We
choose ε so small that ε(1 + 4Cm,d) ≤ σ2 and rename Cε,m,d,χ by Cm,d,σ. Therefore, we end up
with the preliminary estimate∫

Rd
θ2
m(t, x)dx+

σ2

2

∫ t

0

∫
Rd
ρ2
mdxdr (2.13)

≤ Cm,d,σ,χ
∫ t

0

∫
Rd

(
|b(1)|2 + (c(1))2 + 1

)
θ2
mdxds

+ Cm,d

∫ t

0

(
‖∇b(2)(s)‖∞ + Cχ

∥∥∥b(2)(s, ·)
1 + | · |

∥∥∥
∞

+ ‖c(2)(s)‖∞ + ‖∇c(2)(s)‖∞
)∫

Rd
θ2
mdxds.
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2.8 End of the proof of Theorem 2.7

Starting from the previous inequality (2.13), we can now continue to estimate its right-hand side
by taking into account the LPS-condition on b and c. To this end, we need to distinguish the three
cases (p, q) = (∞, 2), (p, q) ∈ (2,∞) and (p, q) = (d,∞). The main difficulty will be to estimate
the term ∫ t

0

∫
Rd

(
|b(1)|2 + (c(1))2

)
θ2
mdxds.

From the resulting inequality we can then conclude the proof of Theorem 2.7 via the Gronwall
lemma. For the sake of simplicity, let us first restrict ourselves to the important particular case
where b(1) and c(1) can be estimated in the L∞-topology.

Proof of Theorem 2.7 in the case (p, q) = (∞, 2). Here we have∫
Rd
θ2
m(t, x)dx+

σ2

2

∫ t

0

∫
Rd
ρ2
mdxdr

≤ Cm,d,σ,χ
∫ t

0

(
‖b(1)(s)‖2∞ + ‖c(1)(s)‖2∞ + 1

) ∫
Rd
θ2
mdxds

+ Cm,d

∫ t

0

(
‖∇b(2)(s)‖∞ + Cχ

∥∥∥b(2)(s, ·)
1 + | · |

∥∥∥
∞

+ ‖c(2)(s)‖∞ + ‖∇c(2)(s)‖∞
)∫

Rd
θ2
mdxds.

Thus, we deduce via Gronwall’s lemma that there is a constant C0 = C0(m, d, σ, b(1), b(2), c(1), c(2)),
which depends on b(1), b(2), c(1), c(2) through the norms∫ T

0

‖b(1)(s)‖2∞ds,
∫ T

0

(∥∥∥b(2)(s, ·)
1 + | · |

∥∥∥
∞

+ ‖∇b(2)(s)‖∞
)
ds,∫ T

0

‖c(1)(s)‖2∞ds,
∫ T

0

(
‖c(2)(s)‖∞ + ‖∇c(2)(s)‖∞

)
ds

such that

sup
t∈[0,T ]

∫
Rd
θ2
m(t, x)dx ≤ C0

∫
Rd
θ2
m(0, x)dx. (2.14)

We then notice that by the definition of θm and by Young’s inequality, there holds

d∑
i=0

∫
Rd
E[(∂iu(t, x))m]2χ(x)dx ≤

∫
Rd
θ2
m(t, x)dx ≤ Cm,d

d∑
i=0

∫
Rd
E[|∂iu(t, x)|m]2χ(x)dx

for some constant Cm,d > 0, hence

sup
t∈[0,T ]

d∑
i=1

∫
Rd
E[(∂iu(t, x))m]2χ(x)dx ≤ C0

∫
Rd
θ2
m(0, x)dx ≤ C0Cm,d‖u0‖2mW 1,2m

χ (Rd)
.

This finishes the proof of Theorem 2.7 in the case (p, q) = (∞, 2).

Let us come to the general case. Notice that it is only here, for the first and only time, that
the exponents (p, q) of the LPS condition enter. By ‖·‖W 1,2 and ‖·‖Lp we denote the usual norms
in W 1,2(Rd) and Lp(Rd) respectively. We first prove the following technical lemma, which will be
relevant to continue with the estimate for the terms on the right-hand side of inequality (2.13) for
the general case p 6=∞.

Lemma 2.11. If p > d ∨ 2, then for every ε > 0 there is a constant Cε > 0, depending only on
p, d and ε, such that for all f, g ∈ C∞c (Rd) we have∫

Rd
|f(x)g(x)|2dx ≤ ε‖g‖2W 1,2 + Cε‖f‖

2p
p−d
Lp ‖g‖

2
L2 . (2.15)

If p = d ≥ 3, we have ∫
Rd
|f(x)g(x)|2dx ≤ Cd‖f‖2Ld‖∇g‖

2
L2 (2.16)

with a constant Cd > 0 depending only on d.
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Proof. Let us start by recalling Gagliardo–Nirenberg interpolation inequality on Rd, d 6= 2: for
every 0 ≤ β ≤ 1 and α ≥ 2 which satisfy

1

α
=

1

2
− β

d

the following holds: there exists a constant C > 0 depending only on β and d such that every
g ∈W 1,2(Rd) belongs to Lα(Rd) with

‖g‖Lα ≤ C‖g‖1−βL2 ‖∇g‖βL2 .

The result is true also for d = 2 but requires the additional condition β < 1. We apply this
inequality with β = d

p , α = 2p
p−2 . The assumptions of Gagliardo–Nirenberg inequality are satisfied

because β ≤ 1 for d 6= 2 and β < 1 for d = 2. Then

‖g‖
L

2p
p−2
≤ C‖g‖1−

d
p

L2 ‖∇g‖
d
p

L2 .

Now we come the the proof of the lemma. We first apply Hölder’s inequality with exponents p
2

and p
p−2 and then the previous inequality to find∫

Rd
|fg|2dx ≤ ‖f‖2Lp‖g‖2

L
2p
p−2
≤ C ‖f‖2Lp ‖g‖

2(1− dp )

L2 ‖∇g‖2
d
p

L2 ,

which is the claim (2.16) for p = d. For p > d, we use Young’s inequality

ab ≤ ar

r
+
br
′

r′
, r, r′ > 1,

1

r
+

1

r′
= 1

with

r =
p

d
, a = (rε)

d
p ‖∇g‖2

d
p

L2 , b = (rε)−
d
pC‖f‖2Lp‖g‖

2(1− dp )

L2 .

With r′ = p
p−d we get

∫
Rd
|fg|2dx ≤ ε‖∇g‖2L2 +

(rε)−
d
p r
′
Cr
′

r′
‖f‖2r

′

Lp ‖g‖
2(1− dp )r′

L2

= ε‖∇g‖2L2 + p−1(p− d)(pε/d)−
d
p−dC

p
p−d ‖f‖

2p
p−d
Lp ‖g‖

2
L2 ,

and thus, we have found Cε such that (2.15) holds. This concludes the proof.

Lemma 2.12. If b ∈ LPS(p, q) with q <∞ (hence p > d), then∫ T

0

(∫
Rd
|b(s, x)|pdx

) 2
p−d

ds ≤ ‖b‖qLq([0,T ];Lp). (2.17)

Proof. From 2
q ≤ 1 − d

p = p−d
p we see 2

p−d ≤
q
p . Therefore, the assumption b ∈ LPS(p, q) with

q <∞ implies∫ T

0

(∫
Rd
|b(s, x)|pdx

) 2
p−d

ds ≤ T 1− 2p
q(p−d)

(∫ T

0

(∫
Rd
|b(s, x)|pdx

) q
p

ds

) 2p
q(p−d)

<∞.

The previous interpolation Lemma 2.11 now allows us to continue with the proof of Theorem 2.7
in the remaining cases.

Proof of Theorem 2.7 in the case (p, q) ∈ (2,∞). We start by observing

|∂iθm| ≤
1

2θm

∑
|I|=m

|∂iχ|w2
I +

1

θm

∑
|I|=m

χ|wI ||∂iwI |
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≤ Cχ
2θm

∑
|I|=m

χw2
I +

√ ∑
|I|=m

χ|∂iwI |2 ≤
Cχ
2

√
θm +

√
ρm,

and thus

‖θm‖2W 1,2 = ‖θm‖2L2 +

d∑
i=1

‖∂iθm‖2L2 ≤ C‖θm‖2L2 + C‖ρm‖2L2

for some constant C depending only on χ, d, m. Therefore, the application of inequality (2.15) to
the terms of the second line of inequality (2.13) shows∫ t

0

∫
Rd
|b(1)|2θ2

mdxds ≤
∫ t

0

(
ε‖θm‖2W 1,2 + Cε‖b(1)‖

2p
p−d
Lp ‖θm‖

2
L2

)
ds

≤ εC
∫ t

0

‖ρm‖2L2ds+ C ′ε

∫ t

0

(
1 + ‖b(1)‖

2p
p−d
Lp

)
‖θm‖2L2ds

for some constant C ′ε > 0. We use this inequality and the similar one for c(1) in the second line
of inequality (2.13) and get, for ε small enough and by means of the Gronwall lemma (applicable
because of the inequality (2.17)), a bound of the form (2.14). With the final arguments used above
in the case (p, q) = (∞, 2), this completes the proof of Theorem 2.7 in the case p, q ∈ (2,∞).

Proof of Theorem 2.7 in the case (p, q) = (d,∞). In this case we apply inequality (2.16) to the
terms of the second line of inequality (2.13) to find∫ t

0

∫
Rd
|b(1)|2θ2

mdxds ≤ Cd
∫ t

0

‖b(1)‖2Ld‖∇θm‖
2
L2ds

and an analogous inequality for the term with c(1). We then estimate ‖∇θm‖2L2 as above by
C∗‖θm‖2L2 + C∗‖ρm‖2L2 and get∫

Rd
θ2
m(t, x)dx+

σ2

2

∫ t

0

∫
Rd
ρ2
mdxdr

≤ Cm,d,σCdC∗
∫ t

0

(
‖b(1)‖2Ld + ‖c(1)‖2Ld

)
‖ρm‖2L2ds

+ Cm,d

∫ t

0

(
‖∇b(2)(s)‖∞ + Cχ

∥∥∥b(2)(s, ·)
1 + | · |

∥∥∥
∞

+ ‖c(2)(s)‖∞ + ‖∇c(2)(s)‖∞ + 2
)∫

Rd
θ2
mdxds.

If the smallness condition

2Cm,d,σCdC
∗( sup

t∈[0,T ]

‖b(1)‖2Ld + sup
t∈[0,T ]

‖c(1)‖2Ld
)
≤ σ2 (2.18)

is satisfied, we may again apply the Gronwall lemma and the other computations above to conclude
the proof of Theorem 2.7 also in the remaining case (p, q) = (d,∞).

2.9 Existence of global regular solutions for sTE and sCE

In this section we deduce, from the a priori estimates of Theorem 2.7, the existence of global regular
solutions for the stochastic generalized equation (sgTE) and consequently also for sTE and sCE.
This can be interpreted, at least for the sTE, as a no-blow-up result. Uniqueness will be treated
separately in the next section, see also Remark 2.18 below.

In what follows, we assume that the LPS-integrability condition on b, c with exponents p ∈
[d,∞] and q ∈ [2,∞] as stated in Section 2.1 is satisfied. We further denote by p′ = p/(p− 1) the
conjugate exponent of p (with p′ = 1 if p =∞). We now start by defining the notion of solutions
of class Lθ(W 1,m

loc ) of equation (sgTE), for some θ ≥ 2 and m ≥ p′. To this end, we require first
of all some measurability and continuous semimartingale properties for terms appearing in (sgTE)
after testing against smooth functions. We say that a map u : [0, T ] × Rd × Ω → R is weakly
progressively measurable with respect to (Gt)t if x 7→ u(t, x, ω) ∈ L1

loc(Rd) for a.e. (t, ω) and the
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process (t, ω) 7→
∫
Rd u(t, x, ω)ϕ(x)dx is progressively measurable with respect to (Gt)t, for every

ϕ ∈ C∞c (Rd). Secondly, we need all relevant integrals to be well-defined. Due to the choice θ ≥ 2
we have well-defined stochastic integrals; hence we only need to take care that b(s) · ∇u(s) and
c(s)u(s) are in L1

loc(Rd) for a.e. s ∈ [0, T ]. Keeping in mind the decompositions b = b(1) + b(2) and
c = c(1) + c(2) into (roughly) a vector field of LPS class and a Lipschitz function, we first note that
with θ ≥ 2 we also have θ ≥ q/(q−1) (recalling q ≥ 2). Therefore, s 7→ 〈b(s) · ∇u(s)− c(s)u(s), ϕ〉
is integrable according to the choice m ≥ p′ (here, the symbol 〈·, ·〉 stands for the usual inner
product in L2(Rd)).

These introductory comments now motivate the following definition.

Definition 2.13. Given θ ≥ 2, m ≥ p′, a solution of equation (sgTE) of class Lθ(W 1,m
loc ) is a map

u : [0, T ]× Rd × Ω→ R with the following properties:

(o) it is weakly progressively measurable with respect to (Gt)t;

(i) u is in Lθ([0, T ]× Ω;W 1,m(BR)) for every R > 0;

(ii) t 7→ 〈u(t), ϕ〉 has a modification that is a continuous semimartingale, for every ϕ in C∞c (Rd);

(iii) for every ϕ in C∞c (Rd), for this modification (still denoted by 〈u(t), ϕ〉) we have uniformly
in t ∈ [0, T ], with probability one,

〈u(t), ϕ〉 = 〈u0, ϕ〉 −
∫ t

0

〈b(s) · ∇u(s) + c(s)u(s), ϕ〉 ds+ σ

d∑
i=1

∫ t

0

〈u(s), ∂iϕ〉 ◦ dW i
s . (2.19)

As mentioned above we will now prove the existence of such solutions by exploiting the a priori
Sobolev-type estimates for solutions to approximate equations with smooth coefficients. The crucial
point is that the estimates only depend on the LPS norms of the coefficients b and c, but not on
the approximation itself. Hence, from the regular solutions to these approximate equations we may
then pass to a limit function which still has the same Sobolev-type regularity, provided that the
approximate coefficients remain bounded in these norms. In a second step we then need to verify
that the limit function is indeed a solution to the original equation in the sense of Definition 2.13.

Concerning the approximation of the coefficients, we first observe that, since b and c are assumed
to belong to the LPS class (satisfying Condition 2.2), we may choose sequences (bε)ε, (cε)ε which
verify the following assumptions:

Condition 2.14. We assume bε = b
(1)
ε + b

(2)
ε , cε = c

(1)
ε + c

(2)
ε , such that:

• (b
(1)
ε )ε is a C∞c ([0, T ] × Rd) approximation of b(1) a.e. and in LPS, in the following sense:

if p, q ∈ (2,∞), then b
(1)
ε → b(1) a.e. in [0, T ] × Rd and in Lq([0, T ];Lp(Rd)) as ε → 0;

otherwise, if p or q is ∞, then b
(1)
ε → b(1) a.e. in [0, T ]× Rd as ε→ 0 and, for every ε > 0,

‖b(1)
ε ‖Lq([0,T ];Lp(Rd)) ≤ 2‖b(1)‖Lq([0,T ];Lp(Rd));

• in case of Condition 2.2, 1b), the ‖b(1)
ε ‖C([0,T ];Ld(Rd)) norms are small enough, uniformly in ε

(in case of Condition 2.2 1c), this follows from the previous assumption);

• (c
(1)
ε )ε is as (b

(1)
ε )ε (with c(1) in place of b(1));

• (b
(2)
ε )ε is a C∞c ([0, T ]×Rd) approximation of b(2) a.e. and in L2(C1

lin), in the following sense:

b
(2)
ε → b(2) a.e. in [0, T ]× Rd and in L2([0, T ];C1

lin(Rd)) as ε→ 0;

• (c
(2)
ε )ε is a C∞c ([0, T ] × Rd) approximation of c(2) a.e. in [0, T ] × Rd and in L2(C1

b ), in the

following sense: c
(2)
ε → c(2) a.e. in [0, T ]× Rd and in L2([0, T ];C1

b (Rd)) as ε→ 0.

Remark 2.15. Let us briefly explain how Condition 2.14 allows us to treat general coefficients b(1)

and c(1) in C([0, T ];Ld(Rd)) (see Condition 2.2, 1b)), without imposing a smallness condition of
the associated norm as for the case of coefficients in L∞([0, T ];Ld(Rd)). In fact, we can rewrite any
coefficients b(1) in C([0, T ];Ld(Rd)) as a sum of a regular, compactly supported term (say f) and the
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remaining, possibly irregular term b(1) − f , whose C([0, T ];Ld(Rd)) norm can be made arbitrarily
small as a consequence of the density of C([0, T ];C∞c (Rd))-functions in C([0, T ];Ld(Rd)). Thus

we can approximate b(1) − f with (b
(1)
ε )ε and f + b(2) with (b

(2)
ε )ε (analogously c), which in turn

ensures that Condition 2.14 is fulfilled, in particular the smallness of the norm of b
(1)
ε .

Remark 2.16. Notice that, in any case of Condition 2.2 (or also for more general b’s), the family
(bε)ε converges to b in L1([0, T ];Lm

′
(BR)); the same holds for c.

Theorem 2.17. Let m ≥ 2 be an even integer and let s ∈ R. Assume that b, c satisfy Condi-
tion 2.2 and let u0 ∈W 1,2m

(1+|·|)2s+d+1(Rd). Then there exists a solution u of equation (sgTE) of class

Lm(W 1,m
loc ), which further satisfies u(t, ·) ∈W 1,m

(1+|·|)s(R
d) for a.e. (t, ω). Moreover, there holds

ess sup
t∈[0,T ]

E
[
‖u(t, ·)‖m

W 1,m
(1+|·|)s (Rd)

]
<∞. (2.20)

Proof. Step 1: Compactness argument. Take (bε)ε and (cε)ε as in Condition 2.14; take (uε0)ε as
C∞c (Rd) approximations of the initial datum u0, converging to it a.e. in Rd and inW 1,2m

(1+|·|)2s+d+1(Rd).
Let uε be the regular solution to (sgTE) corresponding to coefficients bε, cε instead of b, c, and
with initial value uε0, given by Lemma 2.6. From Corollary 2.8 (notice that, in the limit case p = d,

b
(1)
ε is small enough in view of Condition 2.14), we deduce that the family (uε)ε is bounded in
L∞([0, T ];Lm(Ω;W 1,m

(1+|·|)s(R
d))). Hence, by Remark 2.9, we can extract a subsequence (for sim-

plicity the whole sequence), which converges weakly-∗ to some u in that space; in particular, weak
convergence in Lm([0, T ]× Ω;W 1,m(BR)) holds for every R > 0, i.e. (i) of Definition 2.13.

Step 2: Weak progressive measurability. Given ϕ ∈ C∞c (Rd), the stochastic processes (t, ω) 7→
〈uε(t), ϕ〉 are progressively measurable, weakly convergent in Lm([0, T ]×Ω) to 〈u, ϕ〉 and the space
of progressively measurable processes is closed, so weakly closed, in Lm([0, T ] × Ω). Thus, u is
weakly progressively measurable.

Step 3: Passage from Stratonovich to Itô and viceversa. It will be useful to notice that the last
two requirements, namely the semimartingale (ii) and the solution property (iii), in Definition 2.13
can be replaced by the following Itô formulation: for every ϕ in C∞c (Rd), for a.e. (t, ω), there holds

〈u(t), ϕ〉 = 〈u0, ϕ〉 −
∫ t

0

〈b(s) · ∇u(s) + c(s)u(s), ϕ〉 ds

+ σ

d∑
i=1

∫ t

0

〈u(s), ∂iϕ〉 dW i
s +

σ2

2

∫ t

0

〈u(s),∆ϕ〉ds. (2.21)

Let us prove this fact. Suppose we have the Stratonovich formulation (with (ii) and (iii)). The

Stratonovich integral
∑d
i=1

∫ t
0
〈u(s), ∂iϕ〉 ◦ dW i

s is well-defined, thanks to (ii) and our integrability
assumptions (with m, θ ≥ 2), and it is equal to

d∑
i=1

∫ t

0

〈u(s), ∂iϕ〉 ◦ dW i
s =

d∑
i=1

∫ t

0

〈u(s), ∂iϕ〉 dW i
s +

d∑
i=1

[
〈u(·), ∂iϕ〉 ,W i

]
t

where the brackets [·, ·] again denote the quadratic covariation. The semimartingale decomposition
of 〈u(t), ∂iϕ〉 is taken from the equation for u (just use ∂iϕ instead of ϕ): the martingale part of

〈u(t), ∂iϕ〉 is σ
∑d
j=1

∫ t
0
〈u(s), ∂j∂iϕ〉 ◦ dW j

s , so that we have

[
〈u(·), ∂iϕ〉 ,W i

]
t

= σ

∫ t

0

〈
u(s), ∂2

i ϕ
〉
ds. (2.22)

Thus, we get precisely formula (2.21) from (iii).
Now suppose we have the Itô formulation (2.21). This implies that t 7→ 〈u(t), ϕ〉 has a mod-

ification that is a continuous semimartingale (i.e. (ii) in Definition 2.13). The same is true for
t 7→ 〈u(t), ∂iϕ〉 for i = 1, . . . , d, and thus the quadratic covariation [〈u(·), ∂iϕ〉,W i]t and the
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Stratonovich integral
∫ t

0
〈u(s), ∂iϕ〉◦dW i

s exist; moreover, by the equation itself we again find (2.22).
It follows that

σ

d∑
i=1

∫ t

0

〈u(s), ∂iϕ〉 dW i
s +

σ2

2

∫ t

0

〈u(s),∆ϕ〉 ds = σ

d∑
i=1

∫ t

0

〈u(s), ∂iϕ〉 ◦ dW i
s

and so we deduce (iii) from (2.21).
Step 4: Verification of the equation. We want to show that u satisfies (sgTE), in the sense of

distributions. In view of Step 3, we can use the Itô formulation (2.21). Fix ϕ in C∞c (Rd) with
support in BR. We already know from Step 2 that 〈uε(t), ϕ〉−〈uε0, ϕ〉 converges to 〈ut, ϕ〉−〈u0, ϕ〉
weakly in L2([0, T ] × Ω). We will prove that also the other terms in (2.21) converge, weakly in
L1([0, T ]× Ω). The idea for the convergence is the following: assume we have a linear continuous
map G = G(u) between two Banach spaces and a bilinear map F = F (b, u) mapping from two
suitable Banach spaces into a third one; then, if bε converges to b strongly and uε converges to u
weakly in the associated topologies, G(uε) and F (bε, uε) converge weakly to G(u) and F (b, u),
respectively.

For the term
∫ t

0
〈b(s)∇u(s), ϕ〉ds, we take

F : L1
(
[0, T ];Lm

′
(BR)

)
× L∞

(
[0, T ];Lm(Ω;W 1,m(BR))

)
→ L1([0, T ]× Ω)

F (b, u)(t, ω) :=

∫ t

0

〈b(s)∇u(s)(ω), ϕ〉ds;

Then F is a bilinear continuous map. Fix Z in L∞([0, T ] × Ω); for the weak L1([0, T ] × Ω)-
convergence we now have to prove that, as ε→ 0,∫ T

0

E
[(
F (bε, uε)− F (b, u)

)
Z
]
dt→ 0.

Since bε converges strongly to b in L1([0, T ];Lm
′
(BR)) (see Remark 2.16) and since uε has uniformly

(in ε) bounded norm in L∞([0, T ];Lm(Ω;W 1,m(BR))) (according to Step 1), the norm ‖F (bε, uε)−
F (b, uε)‖L1([0,T ]×Ω) is small for ε small, and in particular∫ T

0

E[(F (bε, uε)− F (b, uε))Z]dt→ 0

as ε→ 0. It remains to prove that
∫ T

0
E[(F (b, uε)− F (b, u))Z]dt→ 0 as ε→ 0. For this purpose,

we notice that, by the Fubini–Tonelli theorem,∫ T

0

E
[
(F (b, uε)− F (b, u))Z

]
dt =

∫ T

0

∫
BR

E
[
Y (∇uε −∇u)

]
dxds,

where Y (s, x, ω) := b(s, x)ϕ(x)
∫ T
s
Z(t, ω)dt. The convergence of the right-hand side now fol-

lows easily, since Y is in L1([0, T ];Lm
′
(BR × Ω)) and since ∇uε converges weakly-∗ to ∇u in

L∞([0, T ];Lm(BR × Ω)) (by Step 1), as ε → 0. This finishes the proof of convergence for F , and

the convergence of the term
∫ t

0
〈c(s)u(s), ϕ〉ds is established analogously.

For the term
∫ t

0
〈u(s), ∂iϕ〉dW i

s , we define G : L2([0, T ]×BR × Ω)→ L2([0, T ]× Ω) by

G(u)(t, ω) :=

∫ t

0

〈u(s), ∂iϕ〉dW i
s(ω);

G is a linear continuous map, hence weakly continuous. Therefore, as a consequence of the weak
convergence 〈uε(s), ∂iϕ〉 to 〈u(s), ∂iϕ〉 in L2([0, T ]×Ω), we find that

∫ t
0
〈uε(s), ∂iϕ〉dW i

s converges
weakly (to the obvious limit) in L2([0, T ] × Ω). The convergence of the last terms in (2.21) is
easier. Thus, the limit function u satisfies the identity (2.21), i.e. it is a solution to (sgTE) in the
Itô sense, and via Step 3 the proof of Theorem 2.17 is complete.
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Remark 2.18. Uniqueness of solutions to (sgTE) will be treated later in great generality (note
that uniqueness of weak solutions of class Lm(Lmloc), defined in Definition 3.1, implies uniqueness

of solutions of class Lm(W 1,m
loc )). However, uniqueness of weak solutions requires the formulation

itself of weak solutions, in which we have to assume some integrability of div b which plays no role
in Definition 2.13 and Theorem 2.17. One may ask whether it is possible to prove uniqueness
of solutions of class Lm(W 1,m

loc ) directly, without the theory of weak solutions. The answer is
affirmative but we do not repeat the proofs, see for instance [41, Appendix A].

The previous result holds for (sgTE) and therefore, it covers the sTE by taking c = 0. The
case of the sCE requires c = div b and therefore it is better to state explicitly the assumptions.
The divergence is understood in the sense of distributions.

Corollary 2.19. Let m ≥ 2 be an even integer and let s ∈ R. Consider the sCE in the form (2.1)
under the assumptions of Remark 2.5 and let u0 ∈W 1,2m

(1+|·|)2s+d+1(Rd). Then there exists a solution u

of equation (sgTE) of class Lm(W 1,m
loc ), which further satisfies u(t, ·) ∈W 1,m

(1+|·|)s(R
d) for a.e. (t, ω)

and the analogous estimate of (2.20).

2.10 W 2,m-regularity

In this section we are interested in the existence of solutions to equation (sgTE) of higher regularity,
more precisely of local W 2,m-regularity in space. To this end we shall essentially follow the strategy
of the local W 1,m-regularity in space presented above. First, we consider second order derivatives
of equation (sgTE) (instead of first ones) for the smooth solutions of approximate problems with
smooth coefficients and derive a parabolic (deterministic) equation for averages of second order
derivatives. For this reason we have to assume some LPS condition not only on the coefficients b
and c, but also on their first space derivatives. Once the parabolic equation is derived, we may
proceed analogously to above, that is, via the parabolic theory we establish a priori regularity
estimates involving second order derivatives, and finally we pass to the limit to get the regularity
statement.

Let us now start to clarify the assumptions of this section. As motivated above, we roughly
assume that in addition to the coefficients b and c also their first order derivatives ∂kb and ∂kc (for
k = 1, . . . , d) satisfy the assumptions of Section 2.1. More precisely, we assume

Condition 2.20. The coefficients b and c can be written as b = b(1)+b(2), c = c(1)+c(2) with weakly
differentiable functions b(1), b(2), c(1), c(2), and for every k ∈ {0, 1, . . . , d} each of the decompositions
∂kb = ∂kb

(1) + ∂kb
(2) and ∂kc = ∂kc

(1) + ∂kc
(2) satisfies Condition 2.2. Note that if Condition 2.2

1b) or 1c) applies, then we need to assume in addition d ≥ 3.

We start by deriving, in the smooth setting, suitable a priori estimates involving second order
derivatives of the regular solution, following the strategy of Theorem 2.7.

Lemma 2.21. Let p, q be in (2,∞) satisfying 2
q + d

p ≤ 1 or (p, q) = (∞, 2), let m be positive

integer, let σ 6= 0, and let χ be a function satisfying (2.8). Assume that b and c are a vector
field and a scalar field, respectively, such that b = b(1) + b(2), c = c(1) + c(2), with b(i), c(i) in
C∞c ([0, T ] × Rd) for i = 1, 2. Then there exists a constant C such that, for every u0 in C∞c (Rd),
the smooth solution u of equation (sgTE) starting from u0, given by Lemma 2.6, verifies

sup
t∈[0,T ]

d∑
i,j=0

∫
Rd
E
[
(∂j∂iu(t, x))m

]2
χ(x)dx ≤ C‖u0‖2mW 2,2m

χ (Rd)
.

Here, the constant C can be chosen similarly as in Theorem 2.7, now depending also on the
Lq([0, T ];Lp(Rd)) norms of ∂kb

(1) and ∂kc
(1), on the L1([0, T ];C1

lin(Rd)) norms of ∂kb
(2), and on

the L1([0, T ];C1
b (Rd)) norms of ∂kc

(2), for all k ∈ {0, 1, . . . , d}.
The result holds also for (p, q) = (d,∞), provided that the L∞([0, T ];Ld(Rd)) norms of ∂kb

(1)

and ∂kc
(1) are sufficiently small (depending only on m,σ and d) for all k ∈ {0, 1, . . . , d}, see

Condition 2.2, 1c).
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Sketch of proof. Let us start again from the formal computation: using the abbreviations vi := ∂iu
and νij := ∂j∂iu (thus νij = νji) for i, j ∈ {0, 1, . . . , d} (and with ∂0 the identity operator), we
have

Lvi = −(∂ib · ∇u+ ∂icu+ cvi), for i = 1, . . . , d, and Lv0 = −cu.
Differentiating once more, we find for i, j ∈ {1, . . . , d} the identity

L∂jvi = ∂jLvi − ∂jb · ∇vi
= −∂j∂ib · ∇u− ∂ib · ∂j∇u− ∂j∂icu− ∂ic∂ju− ∂jcvi − c∂jvi − ∂jb · ∇vi.

Hence, setting again b0 := c, we end up with the equations

Lνij =



−
d∑
k=0

∂j∂ibkνk0 −
d∑
k=0

(∂ibkνkj + ∂jbkνik) −b0νij for i, j 6= 0,

−
d∑
k=0

∂ibkνk0 −b0νi0 for i > j = 0,

−b0ν00 for i = j = 0.

We next would like to pass to products of the νij ’s. To this end we consider K to be an element
in ∪m∈N({0, 1, . . . , d} × {0, 1, . . . , d})m and set |K| = m if K ∈ ({0, 1, . . . , d} × {0, 1, . . . , d})m.
Moreover, we may assume i ≥ j for every (i, j) ∈ K. As before, K \ (i, j) means that we drop
one component in K of value (i, j), and similarly K \ (i, j) ∪ {k, `} now means that we substitute
in K one component of value (i, j) by one of value (k, `) if k ≥ ` or by one of the value (`, k)
otherwise. Again, which component is dropped does not matter because in the end we will only
consider expressions which depend on the total number of the single components, but not on their
numbering. We now set νK :=

∏
(i,j)∈K νij , and we then infer from the previous equations satisfied

by νij , via the Leibniz rule and by distinguishing the cases when j 6= 0, i > j = 0 and i = j = 0,
that

LνK =
∑

(i,j)∈K

νK\(i,j)Lνij

= −b0|K|νK −
∑

(i,j)∈K,i>0

d∑
k=0

νK\(i,j)∪{k,j}∂ibk

−
∑

(i,j)∈K,i,j>0

d∑
k=0

(
νK\(i,j)∪{k,0}∂j∂ibk + νK\(i,j)∪{i,k}∂jbk

)
.

Rewriting the Stratonovich term in LνK via σ∇νK ◦dW = σ∇νKdW− σ2

2 ∆νKdt and by (formally)
taking the expectation, we then obtain that ωK := E[νK ] satisfies the equation

∂tωK + b · ∇ωK + b0|K|ωK +
∑

(i,j)∈K,i>0

d∑
k=0

ωK\(i,j)∪{k,j}∂ibk

+
∑

(i,j)∈K,i,j>0

d∑
k=0

(
ωK\(i,j)∪{k,0}∂j∂ibk + ωK\(i,j)∪{i,k}∂jbk

)
=
σ2

2
∆ωK . (2.23)

This system of equations is of the same structure as the system (2.10) derived for the averages of
products of first order space derivatives of the solution u, with the only difference that now also
second order derivatives of the coefficients appear. Analogously to Section 2.6, one can make the
previous computations rigorous for the regular solution of Lemma 2.6 to (sgTE), i.e. the functions
ωK(t, x) are continuously differentiable in time and satisfy the pointwise equation (2.23).

From here on, we can proceed completely analogously to the proof of Theorem 2.7, since – even
though there are more terms involved – the structure of the system is essentially the same (note
that χ was only introduced after having derived the parabolic equation, hence no second order
derivatives of χ appear in the computations). This finishes the sketch of the proof.
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With the previous lemma we can then deduce the existence of a global regular solution for the
stochastic generalized equation. To this end, we introduce in analogy to Definition 2.13 the notion
of a solution u to (sgTE) of class W 2,m

loc , just with the additional W 2,m
loc -regularity in space.

Theorem 2.22. Let m ≥ 2 be an even integer and let s ∈ R be given. Assume that b, c satisfy
Condition 2.20 and let u0 ∈W 2,2m

(1+|·|)2s+d+1(Rd). Then there exists a solution u of equation (sgTE)

of class Lm(W 2,m
loc ), which further satisfies u(t, ·) ∈ W 2,m

(1+|·|)s(R
d) for a.e. (t, ω). Moreover, there

holds
ess sup
t∈[0,T ]

E
[
‖u(t, ·)‖m

W 2,m
(1+|·|)s (Rd)

]
<∞.

Sketch of proof. Since b and c are assumed by Condition 2.20 to belong to the extended LPS
class (extended in the sense that the decomposition into LPS-part and regular part is available

for ∂kb and ∂kc for each k ∈ {0, 1, . . . , d}), we find approximations b
(1)
ε , b

(2)
ε , c

(1)
ε and c

(2)
ε of class

C∞c ([0, T ]×Rd) such that all assumptions concerning boundedness or convergence in Condition 2.14

are satisfied for ∂kb
(1)
ε , ∂kb

(2)
ε , ∂kc

(1)
ε and ∂kc

(2)
ε , for every k = 0, 1, . . . , d. We then set bε = b

(1)
ε +b

(2)
ε ,

cε = c
(1)
ε + c

(2)
ε . We further choose an C∞c (Rd)-approximation (uε0)ε of the initial values u0 with

respect to W 2,2m
(1+|·|)2s+d+1(Rd) and denote by uε the regular solution to (sgTE) given by Lemma 2.6,

corresponding to coefficients bε, cε and initial values uε0.
We now take χ = (1 + |x|)2s+d+1 in the previous lemma and then deduce from Hölder’s in-

equality, as in Corollary 2.8, the bound

sup
t∈[0,T ]

E
[
‖uε(t, ·)‖mW 2,m

(1+|·|)s (Rd)

]
≤ C‖u0‖mW 2,2m

(1+|·|)2s+d+1 (Rd)
,

with a constant C which does not depend on the particular approximation, but only on its norms,
and therefore this bound holds uniformly in ε ∈ (0, 1). From this stage we can follow the strategy of
the proof of Theorem 2.17. Indeed, the previous inequality yields that the family (uε)ε is bounded
in L∞([0, T ];Lm(Ω;W 2,m(BR))) for every R > 0. Hence, there exists a subsequence weakly-∗
convergent to a limit process u in this space. This yields the asserted Sobolev-type regularity
involving derivatives up to second order, while the fact that u is indeed a solution to (sgTE) with
coefficients b, c was already established in the proof of Theorem 2.17.

Remark 2.23. In a similar way one can show higher order Sobolev regularity of type W `,m
loc ,

provided that b and c are more regular, in the sense that they can be decomposed into b(1) +b(2) and
c(1) +c(2) such that each derivative of these decompositions up to order `−1 satisfies Condition 2.2.
However, it remains an interesting open question to prove a similar result for fractional Sobolev
spaces.

3 Path-by-path uniqueness for sCE and sTE

The aim of this section is to prove a path-by-path uniqueness result for both sTE and sCE. Since
we deal with weak solutions, where an integration by parts is necessary at the level of the definition,
the general stochastic equation (sgTE) is not the most convenient one. Let us consider a similar
equation in divergence form

du+ (div(bu) + cu)dt+ σ div(u ◦ dWt) = 0, u|t=0 = u0 (3.1)

for vector fields b : [0, T ]× Rd → Rd and c : [0, T ]× Rd → R. We observe that

(i) for regular coefficients, the equations (3.1) and (sgTE) are equivalent (renaming b and c);

(ii) the sCE is included in (3.1), with u as density of the measure µt with respect to the Lebesgue
measure;

(iii) the sTE is included in (3.1), by formally setting c = −div b (which then gives rise to a
restriction on div b for this equation).
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We recall from the introduction that all path-by-path uniqueness results rely heavily on the
regularity results achieved in the previous section. For this reason we will always assume Condi-
tion 2.2 of Section 2.1, which allows us to decompose the vector fields b and c into rough parts
b(1) and c(1) under a LPS-condition and more regular parts b(2) and c(2) under an integrability
condition in time (only here the L2-integrability in time is required, cp. Remark 2.3). Concerning
the LPS-condition, we still denote the exponents by p, q ≥ 2 and the conjugate exponent of p by
p′. We will consider the purely stochastic case σ 6= 0 throughout this section.

We can now introduce the concept of a weak solution of the stochastic equation (3.1), in
analogy to Definition 2.13 (in particular, it is easily verified that all integrals are well-defined by
the integrability assumptions on the vector fields b and c and on the weak solution). We recall that
(Gt)t∈[0,T ] is a filtration satisfying the standard assumptions and W denotes a Brownian motion
with respect to (Gt)t.

Definition 3.1. Let m ≥ 2 be given. A weak solution of equation (3.1) of class Lm(Lmloc) is a
random field u : Ω× [0, T ]× Rd → R with the following properties:

(o) it is weakly progressively measurable with respect to (Gt)t;

(i) it is in Lm([0, T ]×BR × Ω) for every R > 0;

(ii) t 7→ 〈u(t), ϕ〉 has a modification which is a continuous semimartingale, for every ϕ in
C∞c (Rd);

(iii) for every ϕ in C∞c (Rd), for this continuous modification (still denoted by 〈u(t), ϕ〉), it holds
for all t ∈ [0, T ]

〈u(t), ϕ〉 = 〈u0, ϕ〉+

∫ t

0

〈u(s), b(s) · ∇ϕ− c(s)ϕ〉 ds+ σ

∫ t

0

〈u(s),∇ϕ〉 ◦ dWs.

Remark 3.2. The previous definition can be given with different degrees of integrability in time
and space, namely for solutions of class Lθ(Lmloc) with θ ≥ 2 and m ≥ p′ (cp. Definition 2.13). We
take θ = m only to minimize the notations.

Since our aim is to establish the stronger results of path-by-path uniqueness, we first give a
path-by-path formulation of (3.1). Let us recall that we started with a probability space (Ω,A, P ),
a filtration (Gt)t≥0 (satisfying the standard assumptions), and a Brownian motion (Wt)t≥0. We
now choose, without restriction, a version of Wt which is continuous for every ω ∈ Ω. Given ω ∈ Ω,
considered here as a parameter, we define

b̃(ω, t, x) := b(t, x+ σWt(ω))

c̃(ω, t, x) := c(t, x+ σWt(ω)).

We shall write sometimes b̃ω and c̃ω for b̃(ω, ·, ·) and c̃(ω, ·, ·), respectively, in order to stress the
parameter character of ω. With this new notation we now consider the following deterministic
PDE, parametrized by ω ∈ Ω, in the unknown ũω : [0, T ]× Rd → R:

∂tũ
ω + div(̃bωũω) + c̃ωũω = 0, ũω|t=0 = u0. (3.2)

Definition 3.3. Let m ≥ 2. Given ω ∈ Ω, we say that ũω : [0, T ]× Rd → R is a weak solution to
equation (3.2) of class Lm(Lmloc) if

(i) ũω ∈ Lm([0, T ]×BR), for every R > 0,

(ii) for each ϕ in C1([0, T ];C∞c (Rd)), t 7→ 〈ũω(t), ϕ(t)〉 is continuous; precisely, this map has a
continuous representative, where by representative we mean a function which coincides with
t 7→ 〈ũω(t), ϕ(t)〉 for L1-a.e. t ∈ [0, T ],

(iii) for all ϕ ∈ C1([0, T ];C∞c (Rd)), we have for this continuous representative, for all t in [0, T ],

〈ũω(t), ϕ(t)〉 = 〈u0, ϕ(0)〉+

∫ t

0

〈
ũω(s), ∂tϕ(s) + b̃ω(s) · ∇ϕ(s)− c̃ω(s)ϕ(s)

〉
ds. (3.3)
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Notice that we have employed here time-dependent test functions. This is only for a technical
convenience (we will use such functions in the following), and the definition with autonomous test
functions could be shown to be equivalent to Definition 3.3. Equation (3.2) will be considered as
the path-by-path formulation of (3.1). The reason is:

Proposition 3.4. If u is a weak solution of the stochastic equation (3.1) of class Lm(Lmloc) in the
sense of Definition 3.1, then ũω defined as

ũω(t, x) := u(t, x+ σWt(ω))

is, for a.e. ω ∈ Ω, a weak solution of the deterministic equation (3.2) of class Lm(Lmloc) in the
sense of Definition 3.3.

Remark 3.5. The following proof, simple in the idea, becomes tedious because of a technical detail
which we will encounter also in the following: equation (3.1) resp. (3.2), in its weak formulation,
is satisfied by 〈u, ϕ〉 resp. 〈ũ, ϕ〉 only for a.e. t ∈ [0, T ], and the exceptional set in [0, T ], where
this formulation does not hold, could depend on ϕ, ω and the initial datum. This problem can be
overcome essentially in every case, but with some small work (see also Lemma 3.10).

Proof. The idea of the proof is given by the following formal computation, using the Itô formula
(in Stratonovich form):

∂tũ(t, x) = ∂tu(t, x+ σWt) + σ∇u(t, x+ σWt) ◦ Ẇt

= −div
(
b̃(t, x)ũ(t, x)

)
− c̃(t, x)ũ(t, x). (3.4)

Since this does not work rigorously when u is not regular, one could try to apply the change of
variable formula on the test function rather than on u itself, i.e. taking ϕ̃(t, x) = ϕ(t, x − σWt)
(which is smooth) as test function in equation (3.1) for u and then use a change of variable to get
equation (3.2) for ũ, with ϕ as test function. The problem is that ϕ̃, besides being time-dependent,
is not deterministic (but Definition 3.1 only allows deterministic test functions). Thus, we proceed
by approximation. The idea is the following: taking a family (ρε)ε of standard symmetric, com-
pactly supported mollifiers, we first use a shifted version of ρε as test function, to get an equation
for the mollification uε := u ∗ ρε for fixed x; having regularity of uε, we can derive a formula for
uε(t, x)ϕ(t, x − σWt). After integrating in x, taking the limit ε → 0 and a change of variable, we
finally get an equation for ũ, still in a weak formulation.

For simplicity of notation, we set c = 0 and σ = 1, but all the arguments are valid with
immediate extension also in the general case.

Step 1: For fixed ϕ ∈ C1([0, T ];C∞c (Rd)), the mollifications uε satisfy, for a.e. (t, x, ω),

uε(t, x)ϕ(t, x−Wt) (3.5)

= uε0(x)ϕ(0, x)−
∫ t

0

(u(s)b(s)) ∗ ∇ρε(x)ϕ(s, x−Ws)ds

−
∫ t

0

u(s) ∗ ∇ρε(x)ϕ(s, x−Ws) · dWs +
1

2

∫ t

0

u(s) ∗∆ρε(x)ϕ(s, x−Ws)ds

−
∫ t

0

uε(s, x)∇ϕ(s, x−Ws) · dWs +

∫ t

0

uε(s, x)
(
∂t +

1

2
∆
)
ϕ(s, x−Ws)ds

+

∫ t

0

u(s) ∗ ∇ρε(x) · ∇ϕ(s, x−Ws)ds,

and all the addends have modification that are measurable in (t, x, ω) (these are the modifications
considered in the equality above). We fix a measurable map u (not equivalence class), so that by
Fubini’s theorem convolutions of u are measurable maps in (t, x, ω). For fixed x ∈ Rd, we apply
Definition 3.1 of a weak solution with test function ϕ = ρε(x− ·) ∈ C∞0 (Rd), getting the following
equation for a modification u(ρε(x − ·)) of uε(x) = u ∗ ρε(x) = 〈u, ρε(x − ·)〉 (here the notation
∇·ρε(x− ·) means the derivative with respect to the · variable, with x fixed):

u(ρε(x− ·))(t) (3.6)
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= 〈u0, ρε(x− ·)〉+

∫ t

0

〈u(s), b(s) · ∇·ρε(x− ·)〉ds+

∫ t

0

〈u(s),∇·ρε(x− ·)〉 ◦ dWs

= uε0(x)−
∫ t

0

(u(s)b(s)) ∗ ∇ρε(x)ds−
∫ t

0

u(s) ∗ ∇ρε(x) · dWs +
1

2

∫ t

0

u(s) ∗∆ρε(x)ds,

where we also have passed from Stratonovich to Itô stochastic integral. Applying Itô’s product
formula to u(ρε(x− ·)) and ϕ(t, x−Wt), we find that P -a.s. it hold for every t ∈ [0, T ]

u(ρε(x− ·))(t)ϕ(t, x−Wt) (3.7)

= uε0(x)ϕ(0, x)−
∫ t

0

(u(s)b(s)) ∗ ∇ρε(x)ϕ(s, x−Ws)ds

−
∫ t

0

u(s) ∗ ∇ρε(x)ϕ(s, x−Ws) · dWs +
1

2

∫ t

0

u(s) ∗∆ρε(x)ϕ(s, x−Ws)ds

−
∫ t

0

u(ρε(x− ·))(s)∇ϕ(s, x−Ws) · dWs +

∫ t

0

u(ρε(x− ·))(s)
(
∂t +

1

2
∆
)
ϕ(s, x−Ws)ds

+

∫ t

0

u(s) ∗ ∇ρε(x) · ∇ϕ(s, x−Ws)ds.

Since, for fixed x, u(ρε(x− ·)) = uε(x) for a.e. (t, ω), we can replace u(ρε(x− ·)) with uε(x) inside
the integrals, which implies (3.5) for all (t, ω) in a full-measure set Ax, possibly depending on x.
Note that, up to this point, we have not used any measurability in x.

Now let us justify that all the addends in (3.5) have modifications which are measurable in
(t, x, ω). By classical Fubini theorem, the mollifications of u and thus all the addends but the
stochastic integrals are measurable in (t, x, ω). Concerning the stochastic integrals, their integrands
are, in view of the weak progressive measurability of u, measurable in (t, x, ω) with respect to
P ⊗ B(Rd), where P is the progressive σ-algebra. Thus, stochastic Fubini theorem (see e.g. [77,
Theorem 2.2] applies and gives the existence of measurable modifications in (t, x, ω). For such
modifications, (3.5) must holds for a.e. (t, x, ω): if this were not the case, then there would exist a
positive measure set B in Rd, such that, for every x ∈ B, there would exist a positive measure set
Cx in [0, T ] × Ω where equality 3.5 would not hold. Since the addends of (3.5) are modifications
of the addends of those of (3.7), also (3.7) would not hold on this set, which is a contradiction,
cf. Remark 4.8.

Step 2: For fixed ϕ ∈ C1([0, T ];C∞c (Rd)), ũ has the solution property (3.3) a.s.. We may now
integrate, for a.e. (t, ω), the identity (3.5) with respect to x, obtaining∫

Rd
uε(t, x)ϕ(t, x−Wt)dx (3.8)

=

∫
Rd
uε0(x)ϕ(0, x)dx−

∫ t

0

∫
Rd

(u(s)b(s)) ∗ ∇ρε(x)ϕ(s, x−Ws)dxds

−
∫ t

0

∫
Rd
u(s) ∗ ∇ρε(x)ϕ(s, x−Ws)dx · dWs +

1

2

∫ t

0

∫
Rd
u(s) ∗∆ρε(x)ϕ(s, x−Ws)dxds

−
∫ t

0

∫
Rd
uε(s, x)∇ϕ(s, x−Ws)dx · dWs +

∫ t

0

∫
Rd
uε(s, x)(∂t +

1

2
∆)ϕ(s, x−Ws)dxds

+

∫ t

0

∫
Rd
u(s) ∗ ∇ρε(x) · ∇ϕ(s, x−Ws)dxds,

where we have also used the Fubini as well as the stochastic Fubini to exchange the order of
integration. Employing once again Fubini theorem to bring the convolution on ϕ(t, · −Wt), we
get, for a.e. (t, ω),

〈u(t), ϕε(t, · −Wt)〉

= 〈u0, ϕ
ε(0)〉+

∫ t

0

〈u(s), b(s) · ∇ϕε(s, · −Ws)〉ds

+

∫ t

0

〈u(s),∇ϕε(s, · −Ws)〉 · dWs +
1

2

∫ t

0

〈u(s),∆ϕε(s, · −Ws)〉ds
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−
∫ t

0

〈u(s),∇ϕε(s, · −Ws)〉 · dWs +

∫ t

0

〈u(s), (∂t +
1

2
∆)ϕε(s, · −Ws)〉ds

−
∫ t

0

〈u(s),∆ϕε(s, · −Ws)〉ds

= 〈u0, ϕ
ε(0)〉+

∫ t

0

〈u(s), (∂t + b(s) · ∇)ϕε(s, · −Ws)〉ds.

Letting ε→ 0, since u, bu are in L1([0, T ];L1
loc(Rd)) for a.e. ω, we have for a.e. (t, ω),

〈u(t), ϕ(t, · −Wt)〉 = 〈u0, ϕ(0)〉+

∫ t

0

〈u(s), (∂t + b(s) · ∇)ϕ(s, · −Ws)〉ds.

By the change of variable x̃ = x−Wt, we therefore end up with the claimed solution property

〈ũ(t), ϕ(t)〉 = 〈u0, ϕ(0)〉+

∫ t

0

〈ũ(s), (∂t + b̃(s) · ∇)ϕ(s)〉ds (3.9)

for fixed test function ϕ ∈ C1([0, T ];C∞c (Rd)), for every (t, ω) in a full measure set Fϕ, which may
still depend on ϕ.

Step 3: Removal of the dependency on the test function ϕ. In order to conclude the proof
of the proposition, we need to make the “good” full measure set, where ũ satisfies the solution
property, independent of ϕ. For this purpose, we use a density argument. Let D be a countable
set in C1([0, T ];C∞c (Rd)), which is dense in C1([0, T ];C2

b (Rd)), and set F = ∩ϕ∈DFϕ. Then F
is a full measure set and (3.9) holds for every (t, ω) ∈ F and ϕ ∈ D; after possibly passing
to a smaller full-measure set F we can also assume ũω ∈ Lm([0, T ];Lmloc(Rd)) (thus, fulfilling
Definition 3.3 (i)). Now, for a generic test function ϕ ∈ C1([0, T ];C∞c (Rd)), we take a sequence
(ϕn)n∈N in D, satisfying equation (3.9) and converging to ϕ in C1([0, T ];C2

b (Rd)); by dominated
convergence theorem, we can pass to the limit in the equation, for (t, ω) ∈ F , getting (3.9) for ϕ.
Hence, for a.e. (t, ω), (3.3) holds and the right-hand side defines the continuous representative.

Since some technical measurability arguments are delicate in the above proof (based mostly
on Fubini and stochastic Fubini theorems), we want to give alternative proofs of Step 1 and
formula (3.8) at the beginning of Step 2, which rely on a direct exchange of integral formula
obtained by continuity of approximations.

Alternative proof of Step 1 and (3.8). Step 0: Exchange of integrals formula by approximation.
Let f : [0, T ]× Rd × Ω→ R be a function such that:

• f is measurable in (t, x, ω),

• for every x, (t, ω) 7→ f(t, x, ω) is progressively measurable,

• f ∈ L2([0, T ]× Ω;Cαloc(Rd)) for some α > 0.

Then the family of stochastic integrals
∫ t

0
f(r, x)dWr, parametrized by x, admits a modification

which is measurable in (t, x, ω), for every x progressively measurable in (t, ω), and for a.e. ω locally
Hölder continuous in (t, x). This can be proven by Kolmogorov’s continuity criterion in (t, x)
for the stochastic integrals (joint measurability is a consequence of progressive measurability and
continuity in (t, x)). Moreover, for such modification, we have for a.e. ω ∈ Ω: for every t ∈ [0, T ],∫

Rd

∫ t

0

f(r, x)dWrdx =

∫ t

0

∫
Rd
f(r, x)dxdWr,

provided the integrals are well-defined (for example, if f is compactly supported). This is a
consequence of stochastic Fubini theorem but can be proved without it:

For this purpose, we first observe that by continuity of the stochastic integrals in (t, x), we

can approximate, for fixed t, for a.e. ω ∈ Ω, the left-hand side
∫
Rd
∫ t

0
f(r, x)dWrdx with a finite

Riemann sum (in x) of stochastic integrals. We then notice that we can approximate the inner
integral

∫
Rd f(r, x)dx in L2([0, T ]×Ω) with a finite Riemann sum (in x), and as a consequence, we
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can approximate, for fixed t, the right-hand side
∫ t

0

∫
Rd f(r, x)dxdWr in L2(Ω) with the stochastic

integral of a finite Riemann sum (in x). At the level of these approximations sums we can finally
exchanging sum and stochastic integral, and passing to the limit we get the equality above.

Alternative proof of Step 1 above. As before, we fix a measurable map u (not equivalence class),
so that, by Fubini theorem, all the convolutions with u are measurable maps in (t, x, ω), regular
in x for a.e. (t, ω) fixed. Then, for fixed x ∈ Rd, our starting point is the modification u(ρε(x− ·))
of uε(x) = u ∗ ρε(x) = 〈u, ρε(x − ·)〉 satisfying (3.6) and (3.7). Replacing u(ρε(x − ·)) with uε(x)
inside the integrals of (3.7) (as before), we get for a.e. ω, for every t,

u(ρε(x− ·))(t)ϕ(t, x−Wt)

= uε0(x)ϕ(0, x)−
∫ t

0

(u(s)b(s)) ∗ ∇ρε(x)ϕ(s, x−Ws)ds

−
∫ t

0

u(s) ∗ ∇ρε(x)ϕ(s, x−Ws) · dWs +
1

2

∫ t

0

u(s) ∗∆ρε(x)ϕ(s, x−Ws)ds

−
∫ t

0

uε(s, x)∇ϕ(s, x−Ws) · dWs +

∫ t

0

uε(s, x)
(
∂t +

1

2
∆
)
ϕ(s, x−Ws)ds

+

∫ t

0

u(s) ∗ ∇ρε(x) · ∇ϕ(s, x−Ws)ds.

For the stochastic integrals, the integrands u(s) ∗ ∇ρε(x)ϕ(s, x −Ws) and uε(s, x)∇ϕ(s, x −Ws)
are measurable in (t, x, ω), progressively measurable for every fixed x, and they also belong to
L2([0, T ] × Ω;C1

loc(Rd)). Therefore, by Step 0, there exist “nice” modifications of the stochastic
integrals. Using these modifications, we get for every x, for a.e. (t, ω) (where the exceptional set
possibly depends on x) precisely the formula (3.5). Moreover, since all the addends are measurable
in (t, x, ω) by construction, this equality is true for a.e. (t, x, ω) (otherwise we would find positive
measure sets Ax in [0, T ]× Ω, for some x, where the equality above would not hold).

Alternative justification of (3.8). As before we again integrate (3.5) in x, for a.e. (t, ω), but at
this stage we may then use Fubini theorem to exchange the integrals in ds and dx, while we may
use Step 0 to exchange the integral in dWs and dx.

Remark 3.6. One can ask why such a change of variable works and if this is simply a trick.
Actually this is not the case: as we will see in Section 4, this change of variable corresponds to
looking at the random ODE

dX̃ω = b̃ω(t, X̃ω)dt.

A similar change of variable can be done also for more general diffusion coefficients, see the dis-
cussion in the Introduction, Paragraph 1.9.

3.1 The duality approach in the deterministic case

To prove uniqueness for equation (3.2), we shall follow a duality approach. It is convenient to recall
the idea in a deterministic case first, especially in view of condition (3.14) further below. For the
sake of illustration, we give here an Hilbert space description, even though the duality approach
will be developed later in the stochastic case in a more general set-up.

Assume we have a Hilbert space H with inner product 〈·, ·〉H and two Hilbert spaces DA, DA∗

which are continuously embedded in H, DA ⊂ H and DA∗ ⊂ H. Furthermore, let A(t) : DA → H
and A(t)∗ : DA∗ → H be two families of bounded linear operators such that

〈A(t)x, y〉H = 〈x,A(t)∗y〉H
for all x ∈ DA, y ∈ DA∗ . Consider the linear evolution equation in H

∂tu(t)−A(t)u(t) = 0 for t ∈ [0, T ], u|t=0 = u0 (3.10)

and suppose that we want to study uniqueness of weak solutions, defined as those functions
u : [0, T ]→ H, bounded and weakly continuous, such that

〈u(t), ϕ〉H = 〈u0, ϕ〉H +

∫ t

0

〈u(s), A(s)∗ϕ〉H ds
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for all ϕ ∈ DA∗ and all t ∈ [0, T ]. Assume we can prove that this weak formulation implies

〈u(t), ϕ(t)〉H = 〈u0, ϕ(0)〉H +

∫ t

0

〈
u(s), A(s)∗ϕ(s) + ∂tϕ(s)

〉
H
ds (3.11)

for all ϕ ∈ C([0, T ];DA∗) ∩ C1([0, T ];H) and all t ∈ [0, T ]. In order to identify u at any time
tf ∈ [0, T ], we need to consider the dual problem on [0, tf ] with final condition at time tf . Thus,
given any tf ∈ [0, T ], we consider the equation

∂tv(t) +A(t)∗v(t) = 0 for t ∈ [0, tf ], v|t=tf = v0 (3.12)

and assume that, for every v0 in a dense set D of H, it has a regular solution v ∈ C([0, tf ];DA∗)∩
C1([0, tf ];H). Then by the previous assumption (3.11) we obtain with the choice ϕ = v that

〈u(tf ), v0〉H = 〈u0, v(0)〉H .

If u0 = 0, then 〈u(tf ), v0〉H = 0 for every v0 ∈ D, hence u(tf ) = 0. This implies uniqueness for
equation (3.10) by linearity.

Let us repeat this scheme (still considering the case u0 = 0), when a regularized version of the
dual equation is used. Assume we have a sequence of (smooth) approximations of equation (3.12)

∂tvε(t) +Aε(t)
∗vε(t) = 0 for t ∈ [0, tf ], vε|t=tf = v0,

where Aε(t)
∗ : DA∗ → H. If, for every v0 ∈ D, we have regular solutions vε ∈ C([0, tf ];DA∗) ∩

C1([0, tf ];H), then, if u0 = 0, we find

〈u(tf ), v0〉H =

∫ tf

0

〈u(s), (A∗(s)−Aε∗(s))vε(s)〉H ds (3.13)

again from (3.11), and hence

| 〈u(tf ), v0〉H | ≤ ‖u‖L∞(0,T ;H)

∫ tf

0

‖(A∗(s)−A∗ε(s))vε(s)‖Hds.

If, for every tf ∈ [0, T ] and v0 ∈ D, we have

lim
ε→0

∫ tf

0

‖(A∗(s)−A∗ε(s))vε(s)‖Hds = 0, (3.14)

then we again conclude with u = 0, which proves uniqueness for equation (3.10). A property of
the form (3.14) will be a basic tool in the sequel.

The problem to apply this method rigorously is the regularity of v (or a uniform control of
the regularity of vε). For deterministic transport and continuity equations with rough drift, one
cannot solve the dual equation (3.12) in a sufficiently regular space. Thus the regularity results of
Section 2 are the key point of this approach, specific to the stochastic case.

3.2 Dual sPDE and random PDE

Let us recall that we started with a probability space (Ω,A, P ), a (complete and right-continuous)
filtration (Gt)t≥0 and a Brownian motion (Wt)t≥0. Given tf ∈ [0, T ] (which will be the final time),
we consider the process

Bt := Wt −Wtf , t ∈ [0, tf ] (3.15)

and the family of σ-fields, for t ∈ [0, tf ],

F t = σ({Bs, s ∈ [t, tf ]} ∪ N ), (3.16)

where N is the set of P -null sets in A. The family (F t)t∈[0,tf ] is a backward filtration, in the
sense that F t1 ⊂ F t2 if t1 > t2. The process B is a “backward Brownian motion”, or a “Brownian
motion in the reversed direction of time”, with respect to the filtration (F t)t:
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• Btf = 0 a.s., t 7→ Bt is a.s. continuous (in fact, for all ω ∈ Ω by our choice of Wt),

• Bt−h −Bt is N (0, h) and independent of F t, for every t ∈ [0, tf ] and h ∈ (0, t],

• (F t)t∈[0,tf ] is complete and right-continuous (see e.g. [8, Proposition 2.5]).

Stochastic calculus in the backward direction of time can be developed without any difference
(except notational) compared to the common forward stochastic calculus, see [56, Chapter 3].
Thus, we may consider the backward version of the sPDE (sgTE) in Stratonovich form

dv + (b · ∇v − cv)dt+ σ∇v ◦ dB = 0 for t ∈ [0, tf ], v|t=tf = v0,

and define weak or W 1,r solutions in the same way as in the forward case. In fact, instead of this
equation, we shall use its regularized version

dvε + (bε · ∇vε − cεvε)dt+ σ∇vε ◦ dB = 0 for t ∈ [0, tf ], vε|t=tf = v0, (3.17)

where bε, cε, for ε > 0, and v0 are C∞c functions. First, for every ε > 0, this equations has a smooth
solution with the properties described in Lemma 2.6. Second, we have the analog of Theorem 2.7
and Corollary 2.8:

Corollary 3.7. Let m be an even integer and let s be in Rd. Assume that b, c satisfy Condition 2.2,
and let bε, cε be C∞c ([0, T ]×Rd) functions satisfying Condition 2.14. Then there exists a constant C
independent of ε such that, for every v0 ∈ C∞c (Rd), the smooth solution vε of equation (3.17)
verifies for all ε ∈ (0, 1)

sup
t∈[0,T ]

E
[
‖vε(t, ·)‖mW 1,m

(1+|·|)s (Rd)

]
≤ C‖v0‖mW 1,2m

(1+|·|)2s+d+1 (Rd)
.

Moreover, the analog of Proposition 3.4 holds. But, about this, let us pay attention to the
notations. The result here is:

Corollary 3.8. With the notations ṽBε (t, x) := vε(t, x+σBt), b̃Bε (t, x) := bε(t, x+σBt), c̃
B
ε (t, x) :=

cε(t, x+σBt) we have for a.e. ω ∈ Ω that ṽBε has paths in C1([0, tf ];C∞c (Rd)) and that there holds

∂tṽ
B
ε + b̃Bε · ∇ṽBε − c̃Bε ṽBε = 0, ṽBε |t=tf = v0. (3.18)

To check that the substitution x + σBt is correct, we should repeat step by step the proof
of Proposition 3.4 in the backward case, but, since this is lengthy, let us only convince ourselves
with a formal computation, similar to (3.4), which would be rigorous if W (hence B) and v were
smooth:(

∂tṽ
B
ε + b̃Bε · ∇ṽBε − c̃Bε ṽBε

)
(t, x)

=
(
∂tvε + bε · ∇vε − cεvε

)
(t, x+ σBt) + σ∇vε(t, x+ σBt) ◦

dB

dt
= 0.

Unfortunately, equation (3.18) is not dual to equation (3.2) (up to the fact that coefficients are
smoothed) because, in the coefficients, x is translated by W in (3.2) and by B in (3.18). If we
introduce ṽε(t, x) := vε(t, x+ σWt) we have ṽε(t, x) = ṽBε (t, x+ σWtf ) and therefore:

Corollary 3.9. With the notations ṽε(t, x) := vε(t, x+σWt), b̃ε(t, x) := bε(t, x+σWt), c̃ε(t, x) :=
cε(t, x+ σWt), we have for a.e. ω ∈ Ω

∂tṽε + b̃ε · ∇ṽε − c̃εṽε = 0, ṽε(tf , x) = v0(x+ σWtf ). (3.19)

So ṽε solves the dual equation to (3.2) (more precisely, the regularized version of the dual
equation), but with a randomized final condition at time tf . Having in mind the scheme of the
previous section, we have found the operator A∗ε(t).
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3.3 Duality formula

The aim of this section is to prove the duality formula (3.20), in order to repeat the ideas described
in Section 3.1. Notice that, by the explicit formula (2.5), smooth solutions of equation (sgTE)
with smooth, compactly supported initial data, and therefore also the smooth solution vε(ω, t, x)
of the backward stochastic equation (3.17) with smooth, compactly supported final data, are
compactly supported in space, with support depending on (t, ω). The same is true for the function
ṽε(ω, t, x) := vε(ω, t, x+ σWt(ω)) (since we have assumed that Wt is continuous for every ω ∈ Ω).
We shall write vωε and ṽωε for these functions, respectively, for a given ω ∈ Ω.

Before going on, we need to give a meaning to equation (3.3) for every t, for a certain fixed
(i.e. independent of ϕ) modification of ũω (see Remark 3.5). To this end, we establish the next
lemma, in which we denote by Bb the set of bounded Borel functions and H−1(BR) := (W 1,2

0 (BR))∗.

Lemma 3.10. Suppose that ũω is a weak solution to equation (3.2) of class Lm(Lmloc) according to
Definition 3.3, for some fixed ω ∈ Ω. Then there exists a representative of ũω (that is, a measurable
map [0, T ] → D′(Rd) which coincides with ũω up to negligible sets in [0, T ]), still denoted by ũω,
which belongs to ∩R>0Bb([0, T ];H−1(BR)) and satisfies formula (3.3) for every t ∈ [0, T ].

Unless otherwise stated, we will use this representative ũω (and the validity of formula (3.3)
for every t ∈ [0, T ]).

Proof. We will omit the superscript ω in the following. In order to construct the representative,
we fix t ∈ [0, T ] and define Ft : C

∞
c (Rd)→ R via

〈Ft, ϕ〉 = 〈u0, ϕ〉+

∫ t

0

〈ũ(s), b̃(s) · ∇ϕ− c̃(s)ϕ〉ds.

By our integrability assumption on b and c, if ϕ has support in BR, then |〈Ft, ϕ〉| is bounded by
CR‖ϕ‖W 1,2 , with a constant CR which is independent of t. So, for any R > 0, Ft can be extended
to a linear continuous functional on W 1,2

0 (BR), with norms uniformly bounded in t.
Let us verify that F is a representative of ũ. By equation (3.3), for every time-independent

test function ϕ in C∞c (Rd), there exists a full L1-measure set Aϕ in [0, T ] such that, for all t in
Aϕ, 〈Ft, ϕ〉 coincides with 〈ũt, ϕ〉. Hence, for a countable dense set D in C∞c (Rd), Ft and ũt must
coincide for all t in ∩ϕ∈DAϕ, which is still a full measure set in [0, T ].

It remains to prove that F satisfies the identity (3.3) for time-dependent test functions ϕ in
C1([0, T ];C∞c (Rd)). To this end we notice that, since F is a representative of ũ, it must verify (3.3)
for a.e. t ∈ [0, T ]. Moreover, t 7→ 〈Ft, ϕ(t)〉 is continuous, which follows from the uniform (in time)
bound of the H−1 norm of F : indeed |〈Ft, ϕ(t)〉−〈Fs, ϕ(s)〉| ≤ |〈Ft−Fs, ϕ(t)〉|+ |〈Fs, ϕ(t)−ϕ(s)〉|;
so when s → t, then |〈Ft − Fs, ϕ(t)〉| → 0, as a consequence of the definition of F , and also
|〈Fs, ϕ(t)−ϕ(s)〉| → 0, since ϕ(s)→ ϕ(t) and sups∈[0,T ] ‖Fs‖H−1(BR) ≤ CR for every R > 0. Since
the right-hand side of (3.3) is continuous in time as well, we conclude that (3.3) holds in fact for
every t ∈ [0, T ], and the proof of the lemma is complete.

Remark 3.11. The map (t, ω) 7→ ũω(t) is actually H−1-weakly-∗ progressively measurable: indeed,
for every test function ϕ, the weak-∗ continuity of ũ(t) implies that the map (t, ω) 7→ 〈ũω(t), ϕ〉
can be approximated by simple progressively measurable functions: we can take for instance

ũn(t) =

b2nTc∑
j=1

2n
∫ tj

tj−1

ũ(s)ds1[tj ,tj+1)(t),

where tj = 2−nj, j ∈ N, is a dyadic partition of [0, T ]. Analogously, the H−1-weakly-∗ continuous
version of u, defined from the weakly-∗ continuous representative of ũ via u(t) = ũ(t, · − σW ), is
H−1-weakly-∗ progressively measurable. Mind that these continuous, distribution-valued versions,
do not need to be functions in (t, x, ω).

With this “weakly continuous” representative, we can now state the duality formula for ap-
proximations.
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Proposition 3.12. Given tf ∈ [0, T ], v0 ∈ C∞c (Rd) and ε > 0, let vε be the smooth solution of the
backward stochastic equation (3.17). For some ω ∈ Ω assume that vωε ∈ C1([0, T ];C∞c (Rd)) and
that identity (3.19) holds for ṽωε . If ũω is any weak solution of equation (3.2) of class Lm(Lmloc)
corresponding to that ω, then we have〈

ũω(tf ), v0(·+ σWtf (ω))
〉

= 〈u0, ṽ
ω
ε (0)〉+

∫ tf

0

〈
ũω(s), (̃bω(s)− b̃ωε (s)) · ∇ṽωε (s)− (c̃ω(s)− c̃ωε (s))ṽωε (s)

〉
ds. (3.20)

Proof. This follows directly from (3.3) (which can be stated for t = tf fixed, by the previous
Lemma 3.10) for ϕ = ṽωε and identity (3.19).

3.4 Path-by-path uniqueness

By linearity of equation (sgTE), in order to prove uniqueness it is sufficient to prove that u0 = 0
implies u = 0. To this aim, we will combine identity (3.20) and Corollary 3.7, similarly to the idea
explained in Section 3.1 for the deterministic case. The problem in the stochastic case, however, is
that we have regularity control in average and we want to deduce path-by-path uniqueness. Let us
first state the analog of (3.14). Here, we need to impose m > 2 (while the Definition 3.3 of weak
Lm-solutions requires only m ≥ 2).

Lemma 3.13. Take m > 2, β > 0 and assume Condition 2.2 on b and c and Condition 2.14 on
the families (bε)ε and (cε)ε. Given tf ∈ [0, T ] and v0 ∈ C∞c (Rd), let (vε)ε be the family of smooth
solutions of the backward stochastic equation (3.17). Then

lim
ε→0

E

[ ∫ tf

0

∫
Rd

(1 + |x|)β
(
|(b− bε) · ∇vε|+ |(c− cε)vε|

)m′
dxds

]
= 0.

Proof. We only prove the convergence in the case c = 0, since the terms with c are similar to or
easier than those with b. We will prove the assertion for every b and family (bε)ε which satisfy∫ T

0

(∫
Rd

(1 + |x|)−α|b− bε|p̃dx
)m′/p̃

ds→ 0 (3.21)

for some α ≥ 0 and p̃ > m′. This condition is more general than the LPS condition and includes
the cases of

• b(1) as in Condition 2.2 1a), for p <∞, or b(1) as in 1b) or in 1c), with α = 0, p̃ = p;

• b(1) as in Condition 2.2 1a) for (p, q) = (∞, 2), with α > d, any p̃ with m′ < p̃ < 2: indeed

|b− bε| converges a.e. to 0 and
∫ T

0

∫
Rd(1+ |x|)−α|b− bε|2dxds is uniformly (in ε) bounded (by

Hölder’s inequality), thus (3.21) follows from Vitali’s theorem, in this form: if ν is a finite
measure (here (1 + |x|)−αdxds), fn converges to 0 ν-a.e. and

∫
|fn|adν is uniformly bounded

for some a > 1 (here a = 2/p̃), then fn tends to 0 in L1;

• b(2) as in Condition 2.2 2), with α > d + 2, p̃ = 2 (here we need L2 integrability in time
instead of L1 for b(2), see Remark 2.3).

Assuming (3.21), we write β = (β + αm′/p̃) − αm′/p̃ and apply Hölder’s inequality, first in x
and ω with exponent p̃/m′ > 1, then in time with exponent 1. In this way, we find

E

[ ∫ tf

0

∫
Rd

(1 + |x|)β |(b− bε) · ∇vε|m
′
dxds

]
≤
(∫ tf

0

(∫
Rd

(1 + |x|)−α|b− bε|p̃dx
)m′/p̃

ds

)
× sup
t∈[0,tf ]

E

[(∫
Rd

(1 + |x|)(βp̃+αm′)/(p̃−m′)|∇vε|m
′p̃/(p̃−m′)dx

)1−m′/p̃
]
.

Now Corollary 3.7 gives that the second term is uniformly bounded and we get the claim.

39



For the following uniqueness statement we have to restrict the behavior at infinity of weak
Lm-solutions (in the definition, they are just Lmloc(Rd)). The restriction is not severe: we just need
at most polynomial growth at infinity. To be precise, we need that for some α > 0 we have∫ T

0

∫
Rd

1

1 + |x|α
|ũω(t, x)|mdxdt <∞. (3.22)

Theorem 3.14. Assume m > 2. There exists a full measure set Ω0 ⊂ Ω such that for all ω ∈ Ω0

the following property holds: for every u0 : Rd → R such that
∫
Rd(1 + |x|α)−1|u0(x)|mdx < ∞ for

some α > 0, equation (3.2) has at most one weak solution ũω : [0, T ]× Rd → R of class Lm(Lmloc)
which satisfies the additional condition (3.22).

Proof. Step 1: Identification of Ω0. From Lemma 3.13, given tf ∈ [0, T ] and v0 ∈ C∞c (Rd), there
exist a full measure set Ωtf ,v0 ⊂ Ω and a sequence (εn)n∈N with εn → 0 as n→∞ such that

ṽωεnbelongs to C1([0, T ];C∞c (Rd)) and satisfies (3.19), for all n ∈ N, (3.23)

lim
n→∞

∥∥(1 + | · |α/m)(bω − bωεn) · ∇vωεn
∥∥
Lm′ ([0,tf ]×Rd)

= 0

for all ω ∈ Ωtf ,v0 . Hence, we also have

lim
n→∞

∥∥(1 + | ·+σW (ω)|α/m)(̃bω − b̃ωεn) · ∇ṽωεn
∥∥
Lm′ ([0,tf ]×Rd)

= 0 (3.24)

for all ω ∈ Ωtf ,v0 . By a diagonal procedure, given a countable set D in C∞c (Rd) which is dense

in L2(Rd), there exist a full measure set Ωb ⊂ Ω and a sequence (εn)n∈N with εn → 0 as n → ∞
such that properties (3.23) and (3.24) hold for all tf ∈ [0, T ] ∩Q, v0 ∈ D and ω ∈ Ωb. Since, for a
given ω, there exists a constant Cω > 0 such that

(1 + |x|α/m) ≤ Cω(1 + |x+ σWt(ω)|α/m)

for all x ∈ Rd and t ∈ [0, T ], we may replace (3.24) by

lim
n→∞

∥∥(1 + | · |α/m)(̃bω − b̃ωεn) · ∇ṽωεn
∥∥
Lm′ ([0,tf ]×Rd)

= 0. (3.25)

An analogous selection is possible for (1+ | · |α/m)(c̃ω− c̃ωεn)ṽωεn , which provides another full measure
set Ωc, and Ω0 is then defined as the intersection Ωb ∩ Ωc.

Step 2: Path-by-path uniqueness for equation (3.2) on Ω0. Given ω ∈ Ω0 and a weak solution ũω

to (3.2) of class Lm(Lmloc) with u0 = 0, by identity (3.20) and property (3.23) we have

〈
ũω(tf ), v0(·+ σWtf (ω))

〉
=

∫ tf

0

〈
ũω, (̃bω − b̃ωεn) · ∇ṽωεn − (c̃ω − c̃ωεn)ṽωεn

〉
ds

for all tf ∈ [0, T ] ∩Q, v0 ∈ D and n ∈ N. Now we pass to the limit. By Hölder’s inequality we get∣∣ 〈ũω(tf ), v0(·+ σWtf (ω))
〉 ∣∣

≤
(∫ tf

0

∫
Rd

1

(1 + |x|α/m)m
|ũω(s, x)|mdxds

)1/m

×
(∫ tf

0

∫
Rd

(1 + |x|α/m)m
′ ∣∣(̃bω − b̃ωεn) · ∇ṽωεn − (c̃ω − c̃ωεn)ṽωεn

∣∣m′dxds)1/m′

and thus
〈
ũω(tf ), v0(·+ σWtf (ω))

〉
= 0 by (3.25) (and the analogue for (1 + | · |α/m)(c̃ω− c̃ωεn)ṽωεn).

This is equivalent to
〈
ũω(tf , · − σWtf (ω)), v0

〉
= 0, which implies ũω(tf , · − σWtf (ω)) = 0 by the

density of D in L2(Rd) and thus ũω(tf , ·) = 0. This holds true for every tf ∈ [0, T ] ∩ Q; since
t 7→ ũω(t) is continuous in the sense of distributions, we get ũω(t, ·) = 0 for every t ∈ [0, T ]. The
proof of the theorem is complete.
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3.5 Existence for (3.1)

So far we have proved that path-by-path uniqueness holds for the stochastic equation (3.1). It
remains to prove existence of a (distributional) solution. The proof is based on a priori estimates
and is somehow similar to that of Theorem 2.7 and Theorem 2.17, without the difficulty of taking
derivatives. Thus, we will state the result and only sketch the proof.

Proposition 3.15. Let p, q be in (2,∞) satisfying 2
q + d

p ≤ 1 or (p, q) = (∞, 2). Assume that b

and c are a vector field and a scalar field, respectively, such that b = b(1) + b(2), c = c(1) + c(2), with
b(i), c(i) in C∞c ([0, T ] × Rd) for i = 1, 2. Let χ be a function satisfying (2.8). Then there exists
a constant C such that, for every u0 in C∞c (Rd), the smooth solution u of equation (3.1) starting
from u0, given by Lemma 2.6, verifies

sup
t∈[0,T ]

∫
Rd
E [(u(t, x))m]

2
χ(x)dx ≤ C ‖u0‖2mL2m

χ (Rd) .

Moreover, the constant C can be chosen to have continuous dependence on m, d, σ, χ, p, q and on
the Lq([0, T ];Lp(Rd)) norms of b(1) and c(1), on the L1([0, T ];C1

lin(Rd)) norm of b(2), and on the
L1([0, T ];C1

b (Rd)) norm of c(2).
The result holds also for (p, q) = (d,∞) with the additional hypothesis that the L∞([0, T ];Ld(Rd))
norms of b(1) and c(1) are smaller than δ, see Condition 2.2, 1c) (in this case the continuous
dependence of C on these norms is up to δ).

Proof. We proceed similarly as in the the proof of Theorem 2.7, but aiming for a priori estimates
for u and not for its derivatives. To this end, we consider the equation for E[um], which is a
parabolic closed equation. The same method of proof as in Theorem 2.7 can then be applied
(without the difficulty of having a system with many indices), which then shows the claim..

Theorem 3.16. Let m ≥ 4 be an even integer and let s be a real number. Assume that b, c satisfy
Condition 2.2 and let u0 ∈ L2m

(1+|·|)2s+d+1(Rd). There exists a weak solution u to equation (3.1) of

class Lm(Lmloc). Moreover,

ess sup
t∈[0,T ]

E
[
‖u(t, ·)‖mLm

(1+|·|)s (Rd)

]
<∞.

Finally, pathwise uniqueness holds among such solutions and actually among all solutions such
that ũ satisfies (3.22) for a.s..

Proof. The existence of a weak solution to equation (3.1) of class Lm(Lmloc) follows by the same
arguments as in the proof of Theorem 2.17. The main differences are that weak-∗ convergence
holds in L∞([0, T ];Lm(Ω;Lm(BR))) instead of in L∞([0, T ];Lm(Ω;W 1,m(BR))) and that all the
derivatives must be carried over to the test function ϕ.

Pathwise uniqueness follows from Theorem 3.14: Let u, u1 be two solutions to (3.1) satisfy-
ing (3.22) on the same filtered probability space (Ω, (Gt)t, P ), such that W is a Brownian mo-
tion with respect to (Gt)t. Then, according to Lemma 3.4, the function ũ1 given by ũ1(t, x) =
u1(t, x + σWt) solves the deterministic PDE (3.2) for a.e. ω ∈ Ω, so ũ1 must coincide with ũ for
a.e. (t, x, ω), which implies the claim u1 = u.

Remark 3.17. For solution to equation (3.1), non-negativity of initial values is preserved, i.e. if
u0 ≥ 0, then u(t, x, ω) ≥ 0 for a.e. (t, x, ω): this is true in the regular case (for u, b and c smooth
and compactly supported), thanks to the representation formula (2.5) (where, for the application to
equation (3.1), c is replaced by c+div b). This carries over to the general case, since u is constructed
as weak-∗ limit in L∞([0, T ];Lm(Ω;W 1,m(BR))) of solutions with regularized coefficients and initial
condition.

4 Path-by-path uniqueness and regularity of the flow solv-
ing the sDE

In this section we want to apply the previous results to study equation (sDE). We will get existence,
strong (even path-by-path) uniqueness and regularity for the stochastic flow solving the sDE,
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where b is in the LPS class and σ 6= 0. Once again, we recall that no such result holds in the
deterministic case (σ = 0), which means that for the stochastic case (σ 6= 0) the evolution of the
finite-dimensional system gets better due to the additional stochastic term.

In order to state the result, we need to make the formal links between (sDE) and (sCE) precise.
This will be done for the deterministic case, in the first subsection, using Ambrosio’s theory of
Lagrangian flows. Then we will use this link (read in a proper way in the stochastic case) combined
with uniqueness and regularity for the stochastic equations to arrive at our result.

4.1 The deterministic case

Consider the ODE
d

dt
X = f(t,X) (4.1)

on Rd. If f is a regular field (e.g. C1
c ([0, T ]×Rd)), there exists a unique flow Φ: [0, T ]→ Diff(Rd)

of diffeomorphisms on Rd solving the ODE, i.e. for every x in Rd, t 7→ Φ(t, x) is of class C1 and
solves the ODE starting from Φ(0, x) = x. If ϕ is a test function in C∞c (Rd), then the chain rule
gives the following equation for ϕ(Φ):

d

dt
ϕ(Φt) = ∇ϕ(Φt) · f(t,Φt).

If we integrate this equation with respect to a finite signed measure µ0 on Rd, we get

〈µt, ϕ〉 = 〈µ0, ϕ〉+

∫ t

0

〈µs, f(s, ·) · ∇ϕ〉ds, (4.2)

where µt = (Φt)#µ0 is the image measure on Rd of µ0 under Φt, i.e.
∫
gdµt =

∫
g(Φt)dµ0 for

every measurable bounded function g on Rd. Equation (4.2) is the continuity equation (CE) for µ
(starting from µ0), which we have written so far in compact form as

∂tµ+ div(fµ) = 0. (CE)

It is easy to see that the previous passages still hold when f is not regular. Starting from this
remark, DiPerna–Lions’ and Ambrosio’s theory extends the above link between the ODE and the
CE (in some generalized sense) to the irregular case, so that one can study the CE in order to
study the ODE. We will follow Ambrosio’s theory of Lagrangian flows, which allows to transfer a
well-posedness result for the CE to a well-posedness result for the ODE.

In the general theory, one considers a convex set Lf of solutions µ = (µt)t to the equa-
tion (CE), with values in the set M+(Rd) of finite positive measures on Rd, which satisfies∫ T

0

∫
Rd(1 + |x|)−1|f(t, x)|µt(dx)dt <∞ for every µ in Lf and

0 ≤ µ′t ≤ µt, µ ∈ Lf , µ′ solves (CE) ⇒ µ′ ∈ Lf (4.3)

(“solution of (CE)” is here intended in the sense of distributions). For our purposes, Lf will be,
for some m fixed a priori, the set

Lf =

{
µ = (µt)t : µ solves (CE), µt = utLd for some non-negative u ∈ L1 ∩ Lm([0, T ]× Rd),∫ T

0

∫
Rd

|f(t, x)|
1 + |x|

µt(dx)dt <∞
}
.

Sometimes, we will use u to indicate also µ and viceversa.

Definition 4.1. A Lf (local) Lagrangian flow, starting from some fixed (non-negligible) Borel
set S in Rd, is a Borel map Φ: [0, T ]× Rd → Rd such that

• for Ld-a.e. x in S, for every t, Φt(x) = x+
∫ t

0
f(s,Φs(x))ds;

• µt := (Φt)#(1SLd) is in Lf .
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A Lf global Lagrangian flow is a Borel map [0, T ] × Rd → Rd which is a local Lagrangian flow
from every (non-negligible) Borel set S.

Theorem 4.2. Suppose that uniqueness holds for the CE, starting from every 1SLd, in the
class Lf . Then local uniqueness (i.e. uniqueness from every S) holds among Lf Lagrangian flows
(that is, if Φ1 and Φ2 are two such flows, then, for a.e. x in S: for every t, Φ1

t (x) = Φ2
t (x)). If in

addition existence holds for the CE in the class Lf starting from 1BNLd, for every positive integer
N , then there exists a global Lagrangian flow.

This theorem is stated and proved in [3, Theorem 18]. We give here a concise proof (similar
to the one in [3]) only of uniqueness, since the existence part is more technical and long (though
not difficult). The idea for uniqueness is again to use the link between the ODE and the CE:
whenever one has two flows Φ1 and Φ2, then (Φ1

t )#1SLd and (Φ2
t )#1SLd are solutions to (CE) in

the class Lf , so, by uniqueness, they must coincide, so that Φ1 and Φ2 coincide on S.

Proof. By continuity in time of the Lagrangian flow (for a.e. fixed x), it is enough to show that,
given two Lf Lagrangian flows Φ1, Φ2 starting from the same S, then, for every t, we have
Φ1
t (x) = Φ2

t (x) for a.e. x ∈ S. Suppose by contradiction this is not the case. Then there exist a
time t ∈ [0, T ], two disjoint Borel sets E1, E2 in Rd and a Borel set S′ in S with 0 < Ld(S′) <∞
such that Φit(x) is in Ei for every x in S′, i = 1, 2. Define µit as (Φit)#1S′Ld for i = 1, 2. Then
µ1 and µ2 are maps from [0, T ] to M+(Rd), which are weakly continuous solutions to (CE), still
in the class Lf (as they are restrictions of (Φ1

t )#1SLd and (Φ2
t )# 1SLd), and differ at least in one

point t. This is a contradiction and uniqueness is proved.

Remark 4.3. If existence and uniqueness (starting from every 1SLd in the class Lf ) hold for (CE)
and if f is in L2

loc([0, T ] × Rd), then for every t ∈ [0, T ] there holds 〈u0, ϕ(Φt)〉 = 〈ut, ϕ〉, where
we have denoted by Φ the Lagrangian flow and by u the H−1-weakly-∗ continuous version of the
solution to (CE). Indeed, t 7→ (Φt)#u0 is also a H−1-weakly-∗ continuous solution too (CE), hence
it must coincide with u at all times.

Having Theorem 4.2 at our disposal, we can employ existence and uniqueness for the CE in the
class Lf in order to prove well-posedness for the Lagrangian flow associated with the ODE. This
is what DiPerna–Lions and Ambrosio have done (using mainly the transport equation instead of
the CE and with a different Lf ) for weakly differentiable functions f ([29, 2]). We will follow this
strategy, but for f in LPS class and with noise, using our well-posedness result for (sCE).

4.2 Stochastic Lagrangian flow: existence, uniqueness and regularity

We consider the equation (sDE) on Rd. Since we use also here the results of the previous sections,
we again assume the same LPS Condition 2.2 on b. As before, we consider the purely stochastic case
σ 6= 0, and W is a standard d-dimensional Brownian motion, endowed with its natural completed
filtration (Ft)t (the smallest among all the possible filtrations), which is also right-continuous (see
[8, Proposition 2.5]).

With the change of variable X̃t = Xt − σWt, this sDE becomes a family of (random) ODEs,
parametrized by ω ∈ Ω:

d

dt
X̃ = b̃ω(t, X̃), (4.4)

where, as usual, b̃ω(t, x) = b(t, x + σWt(ω)). More precisely, if X is a progressively measurable
process, then X solves (sDE) if and only if X̃ solves the ODE (4.4) for a.e. ω. For this family of
ODEs, the concepts of Lagrangian flow and CE (at ω fixed) make sense and the CE associated
with this ODE is precisely the random PDE (3.2) with c = 0, that is the random CE

∂tũ+ div(b̃ũ) = 0. (4.5)

Thus we can hope to apply our existence and uniqueness result for (sCE) (remembering that,
by Lemma 3.4, a solution to the random CE (4.5) is given by ũ(t, x) = u(t, x + σWt), when u
solves (sCE)).
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Definition 4.4. A stochastic (global) Lagrangian flow solving the equation (sDE) is a measurable
map Φ: [0, T ]× Rd × Ω→ Rd with the following properties:

• for a.e. ω ∈ Ω, (t, x) 7→ Φ̃ωt (x) := Φωt (x) − σWt(ω) := Φ(t, x, ω) − σWt(ω) is a Lb̃ω (global)
Lagrangian flow (solving the ODE (4.4) with that ω fixed);

• Φ is progressively measurable, i.e. it is P ⊗ B(Rd)-measurable, where P is the progressive
σ-algebra.

Given a certain class A of functions from Rd to Rd, e.g. W 1,m
loc (Rd), the flow is said to be of class A

if, for every t ∈ [0, T ], Φt is in class A with probability 1.

Let us now state the main result of this section:

Theorem 4.5. Let m ≥ 4 be an even integer and assume that b verifies Condition 2.2. Then

1. local path-by-path uniqueness holds among Lagrangian flows solving (sDE), i.e., for a.e. ω ∈
Ω, local uniqueness holds among Lb̃ω Lagrangian flows solving the ODE (4.4) with that ω
fixed;

2. there exists a global stochastic Lagrangian flow solving (sDE);

3. this flow is of class W 1,m
loc (Rd).

Remark 4.6. If m > d, we deduce by Sobolev embedding that, for every t ∈ [0, T ], there exists
a representative of Φt which is of class C0,α

loc (Rd) for α = 1 − d/m. However, we are not able
to show that this representative is jointly continuous in (t, x) (we actually do not even show joint
measurability), though such joint continuity is known to be true in the subcritical case (see [35]).

Before proceeding to the proof, which is essentially an application of our well-posedness result
for the deterministic PDE (3.2), we make some comments on this result.

Remark 4.7. The existence part gives essentially a family a flows Φω, parametrized by ω in Ω,
such that Φ(x) solves (sDE) for a.e. x. The regularity part gives local weak differentiability of the
flow and, if m > d, even Hölder continuity for a.e. ω and every t (unfortunately, the full P -measure
set Ωt where this property holds can depend on t). The uniqueness part implies pathwise uniqueness
among stochastic Lagrangian flows: given stochastic Lagrangian flows Φ1 and Φ2 solving (sDE)
(even adapted to some filtration larger than (Ft)t) and starting from the same initial datum of the
form 1SLd, they necessarily coincide. Indeed, for a.e. ω, Φ̃1(ω) and Φ̃2(ω) are Lagrangian flows
solving the random ODE (4.4) (with that ω), so Φ1 = Φ2 a.e..

Let us emphasize that path-by-path uniqueness is stronger than pathwise uniqueness: it says
that, for each fixed ω in a full P -measure set, any two Lagrangian flows, solving (sDE) (interpreted
as the random ODE (4.4)) with ω fixed, must coincide, without any need to have adapted flows.
On the other hands, while we can manage flows, we are not able to compare two solutions to the
ODE (4.4), at ω fixed, starting from a fixed x, so we have no uniqueness result for (sDE) with x
as initial datum. Let us remind however that pathwise uniqueness holds for (sDE) (with x fixed)
under Krylov-Röckner conditions, see [54].

Remark 4.8. We wish to recall a basic argument in measure theory, that we will use quite often:
Let (E, E , µ), (F,F , ν) be two σ-finite measure spaces and let f : E × F → R be a map such that,
for ν-a.e. z, the map y 7→ f(y, z) is E-measurable. Assume that f has a E ⊗F-measurable version
g : E × F → R, i.e. there exist a full measure set F0 and, for every z ∈ F0, a full measure set Ez0 ,
such that f(y, z) = g(y, z) for all z ∈ F0 and y ∈ Ez0 . Let BP = BP (a) be a Borel property defined
for a ∈ R (in the sense that the subset where BP is true is a Borel set), for example ϕ(a) = 0
for some Borel function ϕ. Assume that, for ν-a.e. z, it holds: BP (f(y, z)) for µ-a.e. y. Then
BP (g(y, z)) holds for (µ×ν)-a.e. (y, z). A similar property also holds for more than two variables.

Proof. If this were not true, then the set A = {(y, z) ∈ E×F : ¬BP (g(y, z))} is E ⊗F-measurable
(by measurability of BP and g) and of positive measure. Therefore, by Fubini theorem, there exists
a positive measure set F¬ ⊂ F such that, for every z ∈ F¬, the set Ez¬ := {y ∈ E : ¬BP (g(y, z))}
is E-measurable and of positive measure. But g is a version of f . Therefore, for every z in the
positive measure set F¬ ∩ F0, the set {y ∈ E : ¬BP (f(y, z))} contains the positive measure set
Ez¬ ∩ Ez0 , which is in contradiction with the assumption on BP (f).
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Proof of Theorem 4.5. Part 1: Uniqueness of Lagrangian flows solving the ODE (4.4). Theo-
rem 3.14, applied to the random CE (4.5), gives a full P -measure set Ω0 in Ω such that, for every
ω ∈ Ω0, for every Borel set S, there exists at most one solution ũω to the CE in the class Lb̃ω ,
which starts from 1S (note that Ω0 is independent of the initial datum). Thus, for every ω ∈ Ω0,
the first part of Theorem 4.2 gives local uniqueness among Lagrangian flows solving (4.4) at ω
fixed.

Part 2: Existence of a global stochastic Lagrangian flow. The idea is to proceed in three
steps and use Ambrosio’s theory for the random ODE (4.4) to get the existence, at ω fixed, of
a Lagrangian flow, then to use the progressive measurability of the solution to the sCE (sCE) to
show progressive measurability of (a version of) the Lagrangian flow and to conclude. As we are
going to take various modifications of the same function, we keep the following convention: we
use the notation Φ̄ for a solution of the sDE which is continuous in time (at x fixed), but not
necessarily measurable in ω, the notation Φ̃ for a solution of the random ODE and the notation
˜̄Φ for a solution of the random ODE which is also continuous in time (again at x fixed). For the
solution to the (s)CE, we do not use the “bar” as we consider, unless otherwise stated, versions
that are both weakly-∗ measurable and weakly-∗ continuous.

In the first step, we get the existence, at ω fixed, of a Lagrangian flow ˜̄Φω solving the ODE (4.4).
We take S = BN for an arbitrary positive integer N . By Theorem 3.16 (applied with c = 0),
Remark 3.17 and Proposition 3.4, we find a full P -measure set Ω0 in Ω, independently of N (by a
diagonal procedure), such that, for every ω ∈ Ω0 and N , there exists a (unique) solution ũω,N to
the CE (4.5) in the class Lb̃ω , starting from 1BN . Thus, the second part of Theorem 4.2 gives the

claimed existence of a global Lagrangian flow ˜̄Φω solving the ODE (4.4).

Now we define Φ̄ = ˜̄Φ + σW , which seems at first the natural candidate for the stochastic
Lagrangian flow solution to (sDE). The main problem is that Φ̄ does not have any measurability
property in ω. Therefore, in the second step, we find a progressively measurable map Φ: [0, T ] ×
Rd × Ω→ Rd version on Φ̄, that is P (Φ̄(t, x, ω) = Φ(t, x, ω) for a.e. (t, x)) = 1 (keep in mind that
this set is not a priori measurable in ω). To this end, we shall use the link between ODE and CE
(at the deterministic level) and the progressive measurability of the solution to (sCE).

In what follows, we denote by ϕn functions in C∞c (Rd) with ϕn(x) = x for |x| ≤ n. By the
deterministic theory (Theorem 4.2 and Remark 4.3), we know that, for every n and u0 ∈ C∞c (Rd),
we have for every ω in a full measure set Ωu0,n: for every t ∈ [0, T ] there holds 〈u0, ϕn( ˜̄Φωt )〉 =
〈ũω(t), ϕn〉 and so 〈u0, ϕn(Φ̄ωt )〉 = 〈uω(t), ϕn〉, where uω(t) is the H−1-weakly-∗ continuous version,
as in Remark 3.11, of the solution to (sCE) starting from u0. In particular, the map (t, ω) 7→
〈u0, ϕn(Φ̄ωt )〉 coincides with a progressively measurable map for every t ∈ [0, T ], for a.e. ω (with
the exceptional set independent of t) for every u0 ∈ C∞c (Rd). Hence, up to redefining Φ̄ωt on a P -
null set independent of t, 〈u0, ϕn(Φ̄ωt )〉 is progressively measurable for every ϕ in C∞c (Rd) and thus
by density also for every u0 ∈ L2(BR). Therefore, ϕn(Φ̄ωt ) is weakly-∗ progressively measurable
in L2(BR). Since L2(BR) is a separable reflexive space, Pettis measurability theorem applies and
gives that ϕn(Φ̄ωt ) is strongly progressively measurable with values in L2(BR), in particular there
exists Φn : [0, T ] × BR × Ω → Rd, P ⊗ B(Rd)-measurable, version of ϕn(Φ̄), that is, for a.e. (t, ω)
there holds Φn(t, x, ω) = ϕn(Φ̄ωt (x)) for a.e. x ∈ BR (cf. [62, Proposition A.6]). Using Remark 4.8
and the analogous properties for Φ̄, one can check that Φn does not depend on R and is definitively
constant in n (for a.e. (t, x, ω)), so we get Φ, which is P × B(Rd)-measurable and a version of Φ̄.
The second step is complete.

To conclude the proof of existence, we have to prove that Φ−σW is a (global) Lagrangian flow
solving (4.4). However, since Φ coincides with Φ̄ only for a.e. (t, x) (for fixed ω), Φ(·, x, ω)−σW (ω)
does not need to be continuous in time and satisfies (4.4) only for a.e. t ∈ [0, T ]. In the third step,
we prove that there exists a measurable version of Φ, and so of Φ̄, which is continuous in t for
a.e. (x, ω), and use this version to conclude. The conceptual idea is that, given a path γ which
has a continuous version, its continuous version can be constructed from γ in a measurable way,
so that this version is measurable (with respect to some other variable) if γ is measurable.

For any N ∈ N, we choose a dyadic partition tNj = 2−N j, we set INj := [tNj , t
N
j+2) and,

for t ∈ [0, T ], we define IN (t) as INj for the minimal j with t ∈ INj . Note that, for a.e. ω, it holds:

for a.e. (t, x), Φ(t, x, ω) = Φ̄(t, x, ω) (as Φ is a modification of Φ̄ and both are measurable in (t, x)
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for ω fixed). In particular, for a.e. ω, it holds: for a.e. x,

max
j

[
ess sup
t∈INj

Φ(t, x, ω)− ess inf
t∈INj

Φ(t, x, ω)
]

= max
j

[
ess sup
t∈INj

Φ̄(t, x, ω)− ess inf
t∈INj

Φ̄(t, x, ω)
]
.

The continuity property of Φ̄ implies that for a.e. ω the following is true: for a.e. x and every
m ∈ N, there exists N ∈ N such that maxj [ess supt∈INj Φ̄(t, x, ω) − ess inft∈INj Φ̄(t, x, ω)] < 1/m.

Therefore, by Remark 4.8, the set⋂
m∈N

⋃
N∈N

{
(x, ω) : max

j

[
ess sup
t∈INj

Φ(t, x, ω)− ess inf
t∈INj

Φ(t, x, ω)
]
< 1/m

}
has full measure. Then, for a.e. (x, ω), the limit

A(t, x, ω) = lim
N→∞

ess sup
s∈IN (t)

Φ(s, x, ω)

is well-defined and finite for every t. Moreover, the map A (defined zero on the exceptional set where
the above limit does not exist) is measurable in (t, x, ω), and continuous in t for a.e. (x, ω). For a.e. ω
it holds: A(t, x, ω) = Φ̄(t, x, ω) for a.e. (t, x) (since Φ̄(t, x, ω) = limN→∞ ess sups∈IN (t) Φ̄(s, x, ω)
for a.e. (t, x)). So, again by Remark 4.8, A = Φ for a.e. (t, x, ω). With a little abuse of notation,
we will use now Φ also for its modification which is continuous in t.

It remains to show that Φ̃ = Φ − σW is a Lagrangian flow solving (4.4). The integrand b(Φ̃)
is in L1(0, T ) for a.e. (x, ω) and the ODE (4.4) is satisfied for a.e. (t, x, ω): otherwise, since Φ is
a version of Φ̄, reasoning as in Remark 4.8, for some ω in a positive measure set, the ODE would

not be satisfied even by ˜̄Φ. The continuity in time implies that, for a.e. (x, ω), the ODE (4.4) is
satisfied for every t. Therefore, this Φ is the desired stochastic Lagrangian flow.

Part 3: W 1,m
loc (Rd)-regularity of Φ. We prove a stability result, which is interesting in itself.

Lemma 4.9. Let m ≥ 4 be an even integer and assume that (bε)ε verifies Condition 2.14. If Φε

are the associated regular stochastic flows, then, for every t ∈ [0, T ], (Φεt )ε converges to Φt weakly
in Lm(Ω;W 1,m

(1+|·|)−d−1−m(Rd)).

This weak convergence result yields in particular that, for every t ∈ [0, T ], Φt belongs to
Lm(Ω;W 1,m

loc (Rd)) and, if m > d, to Lm(Ω;C0,α
loc (Rd)) (for α = 1 − d/m) by Sobolev immersion.

The proof is complete.

Proof of Lemma 4.9. Step 1: Representation formula for fixed time. For every u0 ∈ C∞c (Rd), for
every ϕ ∈ C∞c (Rd), for a.e. (t, x, ω), we have

〈u(t), ϕ〉 = 〈u0, ϕ(Φt)〉, (4.6)

as a consequence of the analogous property for Φ̄ and of Remark 4.8. In particular, taking the
H−1-valued weakly-∗ time continuous version for u (Remark 3.11), we get the above formula for
every t, for every ω (in a full measure set independent of t). Moreover, by Theorem 3.16 extended
to every time by weak-∗ continuity, suptE[‖u(t, ·)‖mLm

(1+|·|)α (Rd)] is finite for every real α (since u0 is

bounded compactly supported); therefore, calling again ϕn functions in C∞c (Rd) with ϕn(x) = x
for |x| ≤ n, we have that, for every t fixed: 〈u0,Φt〉 is in Lm(Ω) and

E
[
|〈u(t), id− ϕn〉|m

]
= E

[
|〈u0,Φt − ϕn(Φt)〉|m

]
→ 0 as n→∞.

Step 2: Approximation and conclusion. Fix t ∈ [0, T ] and u0 ∈ C∞c (Rd). Note that, for
every ϕ ∈ C∞c (Rd), ϕ(Φεt ) is the solution vε, at time 0, to the backward approximated stochastic
transport equation, with final time t and final datum ϕ. The approximated duality formula (3.20)
(for c = 0 and with a change of variable to avoid the “tilde”), the approximation Condition 2.14
on (bε)ε and equation (4.6) then give

E [|〈u0, ϕ(Φt)− ϕ(Φεt )〉|
m

] = E [|〈u(t), ϕ〉 − 〈u0, v
ε〉|m]→ 0 as ε→ 0. (4.7)
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On the other hand, Corollary 3.7 gives that vε(0) = ϕ(Φεt ) is bounded in Lm(Ω;W 1,m
(1+|·|)−(d+1+m)(Rd)),

uniformly in ε. Since this space is reflexive (see Remark 2.9), ϕ(Φεt ) converges weakly, as ε → 0
and up to the choice of a subsequence, to an element Ψϕ

t with

‖Ψϕ
t ‖Lm(Ω;W 1,m

(1+|·|)−(d+1+m)
(Rd)) ≤ C‖ϕ‖W 1,2m

(1+|·|)−(d+1+2m)
.

for a constant C which is independent of t. In particular, for every u0 ∈ C∞c (Rd) and F ∈ L∞(Ω),
we get

E
[
〈u0,Ψ

ϕ
t − ϕ(Φεt )〉F

]
→ 0 as ε→ 0.

Therefore, by (4.7) we find ϕ(Φt) = Ψϕ
t for a.e. (x, ω). Now, taking ϕ = ϕn (with bounded

W 1,2m
(1+|·|)−(d+1+2m) norm), we have

‖ϕn(Φt)‖Lm(Ω;W 1,m

(1+|·|)−(d+1+m)
(Rd)) ≤ C,

where the constant C is independent of n and t. As a consequence, ϕn(Φt) converges weakly in
Lm(Ω;W 1,m

(1+|·|)−(d+1+m)(Rd)), as n→∞ and up to the choice of a subsequence. On the other hand,

by Step 1 we know that 〈u0,Φt−ϕn(Φt)〉 → 0 in Lm(Ω), as n→∞. So, by a similar argument to
the one for ε→ 0, any weak limit of ϕn(Φt) has to be Φt, and hence

‖Φt‖Lm(Ω;W 1,m

(1+|·|)−(d+1+m)
(Rd)) ≤ C.

5 Towards classical pathwise uniqueness

So far we have investigated the problem of path-by-path uniqueness for the equations (sCE)
and (sDE). In some sense, this is the strongest type of uniqueness we know. Indeed, we can
come back heuristically to pathwise uniqueness for (sDE) in this way: given two processes X
and Y which are solutions to (sDE) with the same initial datum, then, for a.e. ω, X(ω) and Y (ω)
solve the sDE at fixed ω (more precisely, X̃ω and Ỹ ω solve the random ODE (4.4)), so that, by
path-by-path uniqueness, they must coincide. However, since we only deal with flows, we are not
able to give a “classical” pathwise uniqueness result (among processes instead of flows), as a direct
consequence of Theorem 4.5. Thus, we will now see how to modify the duality argument to get a
more classical pathwise uniqueness, though still the initial datum cannot be a single point x ∈ Rd,
but it has to be a suitable diffused random variable.

5.1 The first result

The easiest consequence of Theorem 3.14 (applied to the continuity equation) is pathwise unique-
ness among solutions with conditional laws (given the Brownian motion) in Lm([0, T ], Lm(1+|·|)−α(Rd)).

The relevant concept of solution and the result are shown below, but let us explain the idea. As
already mentioned, we need the initial datum X0 to be diffuse. We could take e.g. the probability
space (C([0, T ];Rd)×BR(y0), Q⊗Ld) (with the suitable σ-algebra), with Q as Wiener measure, for
some R > 0, y0 ∈ Rd, and X0(γ, x) = x, Wt(γ, x) = γt; the filtration must be any filtration (Gt)t
(satisfying the standard assumptions) such that Gt contains σ{X0,Ws|s ≤ t}. The solution X =
X(γ, x) should be thought of as a flow, for fixed γ ∈ C([0, T ];Rd), solving the sDE at this fixed γ.
Now we ask: among which class of processes path-by-path uniqueness applies, implying pathwise
uniqueness? We have to require (again heuristically) that, for Q-a.e. Brownian trajectory W = γ,
(Xt(γ, ·))#Ld is a diffuse measure. This is true in the case above, while for the general case (of a
general probability space and general initial datum X0), we must require that X0 has a diffuse law
and that “the law of Xt for fixed γ is diffuse” too. This law of Xt for fixed γ is the conditional law
of Xt given the Brownian motion W ; see e.g. [76, Chapter 1] for a reference on conditional law.

Definition 5.1. Let m ≥ 1, α ∈ R; let W be a Brownian motion (on a probability space (Ω,A, P )),
let (Ft)t be its natural completed filtration. An Rd-valued process X on Ω is said to have conditional
(marginal) laws (given the Brownian motion W ) in Lm([0, T ], Lm(1+|·|)α(Rd)) if, for a.e. t ∈ [0, T ],

the conditional law of Xt given Ft has a density (with respect to Lebesgue measure) ρ(t, x, ω) and,
for a.e. ω ∈ Ω, ρ(·, ·, ω) belongs to Lm([0, T ], Lm(1+|·|)α(Rd)).
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Theorem 5.2. Let m ≥ 4, s ∈ R. Let W , (Ft)t be as above and let X0 be a random variable
on Ω, independent of W , such that the law of X0 has a density (with respect to the Lebesgue
measure) in Lm(1+|·|)2s+d+1(Rd). Assume Condition 2.2. Then, for every α ≤ s, strong existence

and pathwise uniqueness hold for (sDE) with initial datum X0, among solutions with conditional
laws in Lm([0, T ], Lm(1+|·|)α(Rd)). More precisely, if (Gt)t is an admissible filtration (satisfying the

standard assumptions) on Ω (i.e. X0 is G0-measurable and W is a Brownian motion with respect
to (Gt)t), then there exists a unique G-adapted process solving (sDE), starting from X0 and with
conditional laws in Lm([0, T ], Lm(1+|·|)α(Rd)).

We will not give all the details of the proof, also because the proof is similar to the one of the
next Theorem 5.4.

Proof. The proof of uniqueness is similar to the one of the first part of Theorem 4.2. Suppose by
contradiction that there exist two different solutions X and Y with the properties above. Then it
is possible to find a time t0, two disjoint Borel sets E and F in Rd and a measurable set Ω′ in Ω
with P (Ω′) > 0 such that Xt0(ω) belongs to E and Yt0(ω) belongs to F for every ω in Ω′.

On C([0, T ];Rd) we denote by Q the Wiener measure and by Γ the essential image of Ω′ under
the map W , i.e. Γ := {γ ∈ C([0, T ];Rd) : P (Ω′|W = γ) > 0} (this definition makes sense up to
Q-negligible sets). Since Q is the image measure of P under W , we have Q(Γ) > 0. For every t, we
define µ̃t as the conditional law on Rd of X̃t, restricted to Ω′, given W , i.e., for every ϕ in Cb(Rd),

〈µ̃γt , ϕ〉 = E[ϕ(X̃t)1Ω′ |W = γ], for Q-a.e. γ ∈ Γ.

We analogously define ν̃t for Ỹ instead of X̃. Then one can show that:

• for Q-a.e. γ ∈ Γ, µ̃γ and ν̃γ are weakly continuous (in time) solutions to the random CE (4.5)
at γ fixed;

• µ̃ and ν̃ belong to the Lb̃ class;

• µ̃ and ν̃ differ at time t0.

So we have found two different Lb̃γ solutions to the random CE at γ fixed, for a non-negligible set
of γ. This is a contradiction, and thus, the proof of uniqueness is complete.

Strong existence is a consequence of the existence of a stochastic Lagrangian flows Φ solv-
ing (sDE). Indeed, defining Xt(ω) := Φωt (X0(ω)), we observe the following facts:

• Since Φ(x) solves the sDE with initial datum x, for a.e. x, and X0 is absolutely continuous
(with respect to the Lebesgue measure), X verifies for a.e. ω

Xt = X0 +

∫ t

0

b(s,Xs)ds+Wt.

• X is obviously H-adapted, where Ht = σ({X0,Ws|s ≤ t} ∪ N ) is the minimal admissible
filtration (N are the P -null sets).

• Let u0 be the density of the law of X0 and u the solution in L∞([0, T ];Lm(Ω;Lm(1+|·|)s(R
d)))

to the sCE as in Theorem 3.16, with initial datum u0. Then the law of Xt has u(t) as
conditional density, givenW . To prove this, notice thatW and Φ are adapted to the Brownian
(completed) filtration F and that X0 is independent of FT , so, for any test function ϕ ∈
C∞c (Rd) and any ψ ∈ Cb(C([0, T ];Rd)), we have

E[ϕ(Xt)ψ(W )] = E[ϕ(Φt(X0))ψ(W )]

= E
[ ∫

Rd
ϕ(Φt(x))u0(x)ψ(W )dx

]
= E

[ ∫
Rd
ϕ(x)u(t, x)ψ(W )dx

]
,

where in the second passage we used independence (precisely, in the form of Lemma 5.5 in
the following paragraph) and the last passage is a consequence of u(t) = (Φt)#u0.

Thus, X is the desired solution and also existence is proved.

48



5.2 The second result

The previous result was somehow limited, at least for uniqueness, by our hypothesis on condi-
tional laws. In this paragraph we prove that actually pathwise uniqueness holds among processes
whose marginal laws are diffuse (the precise hypothesis is stated below), with no need to control
conditional laws.

To understand the relation with the previous Theorem 5.2, consider again the case discussed
at the beginning of the previous paragraph and notice that, given a process X on (C([0, T ];Rd)×
BR(y0), Q⊗ Ld), the law ρt of Xt is the Q-average, on C([0, T ];Rd), of the conditional laws ργt of
Xt(γ, x), given the Brownian trajectory γ. So the fact that the law (that is, the mean of the con-
ditional laws) is diffuse is a weaker condition than the hypothesis on Q-a.e. conditional law. Hence
the class of processes whose marginal laws are diffuse is larger that the class used in Theorem 5.2,
in particular the uniqueness result in the following Theorem 5.4 is morally stronger. Actually
no implication holds between the two uniqueness results (for a technicality on the bounds on the
densities, see the next definition), but still the idea is that uniqueness is stronger in Theorem 5.4.

Definition 5.3. Let m ≥ 1, α ∈ R. An Rd-valued process X is said to have (marginal) laws
in L∞([0, T ], Lm(1+|·|)α(Rd)) if, for a.e. t ∈ [0, T ], the law of Xt has a density (with respect to the

Lebesgue measure) ρ(t, x), which belongs to L∞([0, T ], Lm(1+|·|)α(Rd)).

As previously mentioned, this class seems to be larger than that of Definition 5.1. Rigorously
speaking, it is not: to deduce µt ∈ Lm([0, T ]× Rd) from µωt ∈ Lm([0, T ]× Rd) for a.e. ω, we need
the additional condition that

∫
‖µωt ‖Lm([0,T ]×Rd)P (dω) is finite.

Here is the main pathwise uniqueness result:

Theorem 5.4. Let m ≥ 4, s ∈ R. Let W be a Brownian motion (on a probability space (Ω,A, P )).
Let X0 be a random variable on Ω, independent of W , such that the law of X0 has a density (with
respect to the Lebesgue measure) in Lm(1+|·|)2s+d+1(Rd). Assume Condition 2.2. Then, for every

α ≤ s, strong existence and pathwise uniqueness hold for (sDE) with initial datum X0, among
solutions with laws in L∞([0, T ], Lm(1+|·|)α(Rd)). More precisely, if (Gt)t is an admissible filtration

(satisfying the standard assumptions) on Ω (i.e. X0 is G0-measurable and W is a Brownian motion
with respect to (Gt)t), then there exists a unique G-adapted process solving (sDE), starting from X0

and with laws in L∞([0, T ], Lm(1+|·|)α(Rd)).

Proof of uniqueness. First we give the idea of the proof. Let X, Y be two solutions to (sDE) which
are adapted to an admissible filtration (Gt)t. Set µt := δXt − δYt ; then µ is a random distribution
which solves the sCE

∂tµ+ div(bµ) +

d∑
k=1

∂kµ ◦ Ẇ = 0

in the sense of distributions, with µ0 = 0. We have to prove that µ ≡ 0. We again want to use
duality: if v solves the backward sTE

∂tv + b · ∇v +

d∑
k=1

∂kv ◦ Ẇ = 0

with final time tf and final condition v(tf ) = ϕ fixed, then formally it holds 〈µt, ϕ〉 = 〈µ0, v0〉 = 0.
But now we must be careful: expressions like

〈µs, b(s) · ∇v(s)〉, (5.1)

which appear naturally in the rigorous proof of the duality formula, are no more under control:
µs is only a measure, while b(s) and ∇v(s) are not continuous (not even bounded). There are two
key facts. The first one is where the integrability hypothesis plays a role: if we replace µs by its
average ρs = E[µs] = (Xs)#P − (Ys)#P , we can estimate (5.1) since the density of ρ is in the
correct integrability class for Hölder’s inequality. However, taking the expectation, we have to deal
with E[µs∇v(s)]. Here enters the second key fact, namely that µs and ∇v(s) are independent,
since µs is Gs-measurable, while v(t) (as backward solution) is adapted to the Brownian backward
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(completed) filtration Fs,t, which is independent of Gs. Having this in mind, we come to the
rigorous proof of the result.

Take tf ∈ [0, T ] and ϕ ∈ C∞c (Rd). Let bε be as in Condition 2.14, let vε be the solution to the
approximated backward transport equation

∂tvε + bε · ∇vε +

d∑
k=1

∂kvε ◦ Ẇ = 0

with final time tf and final datum vε(tf ) = ϕ. With the usual notation with tilde (ṽε(s, x) =

vε(s, x+ σWs), X̃s = Xs − σWs), the chain rule gives

dvε(t,Xt) = dṽε(t, X̃t) = b̃(t, X̃t) · ∇ṽε(t, X̃t)dt− b̃ε(t, X̃t) · ∇ṽε(t, X̃t)dt

= [(b− bε) · ∇vε](t,Xt)dt

and similarly for Y . Subtracting the expression for Y from that for X, we get

ϕ(Xtf )− ϕ(Ytf ) =

∫ tf

0

[(b− bε) · ∇vε](s,Xs)ds−
∫ tf

0

[(b− bε) · ∇vε](s, Ys)ds.

We now claim that

lim
ε→0

∫ tf

0

E
[
|(b− bε) · ∇vε|(s,Xs)

]
ds = 0 (5.2)

and similarly for Y . Assuming this, we obtain ϕ(Xtf ) = ϕ(Ytf ) and then, by the arbitrariness of ϕ
and tf , also X ≡ Y .

For proving (5.2), we want to exploit the independence of ∇vε(s) and Xs, for fixed s ∈ [0, T ].
To this end, we need the following elementary lemma:

Lemma 5.5. Consider two measurable spaces (F1,F1), (F2,F2) and a probability measure P on
(F2,F2). Let f : F1 × F2 → R, Z : F2 → F1 be two measurable functions and denote by ρ the law
of Z on F1. Suppose that there exists a σ-algebra A ⊂ F2 such that f is F1⊗A-measurable and Z
is independent of A. Assume also

∫
F1

∫
F2
|f(y, ω)|P (dω)ρ(dy) <∞. Then it holds∫

F2

f(Z(ω), ω)P (dω) =

∫
F1

∫
F2

f(y, ω)P (dω)ρ(dy).

Proof. The lemma is clear for f(y, ω) = g(y)h(ω), when g is F1-measurable and integrable (with
respect to η), and h is A-measurable and integrable (with respect to P ). The general case is
obtained by approximating f with sums of functions as above.

Applying this lemma with F1 = Rd, F2 = Ω, f = |(b − bε) · ∇vε| and Z = X with law ρ, for
fixed s ∈ [0, tf ], and then integrating over s ∈ [0, tf ], we obtain∫ tf

0

E
[
|(b− bε) · ∇vε|(s,Xs)

]
ds =

∫ tf

0

〈E[|(b(s)− bε(s)) · ∇vε(s)|], ρs〉ds.

We would like to use Hölder’s inequality to conclude with (5.2). Since the density of ρ belongs to
L∞([0, T ];Lm(1+|·|)−α(Rd)) by assumption, it is enough to prove that∫ tf

0

(∫
Rd
|b− bε|m

′
|E[|∇vε|m

′
](1 + |x|)αm

′/mdx
)1/m′

ds <∞. (5.3)

The proof of (5.3) is almost the same of that of Lemma 3.13. The only change is the exponent
1/m′ in the time integral. For this reason we need even less, namely it suffices that∫ T

0

(∫
Rd

(1 + |x|)−β |b− bε|p̃dx
)1/p̃

ds <∞

for some β ≥ 0 and p̃ > m′, which holds under Condition 2.2. The rest of the proof requires only
obvious changes compared to the proof of Lemma 3.13.

50



Proof of existence. As for Theorem 5.2, strong existence is an easy consequence of the existence of
a stochastic Lagrangian flows Φ solving (sDE). Indeed, defining Xt(ω) := Φωt (X0(ω)), we observe
the following facts.

• Since Φ(x) solves the sDE with initial datum x, for a.e. x, and X0 is absolutely continuous
(with respect to the Lebesgue measure), X verifies for a.e. ω

Xt = X0 +

∫ t

0

b(s,Xs)ds+Wt.

• X is obviously H-adapted, where Ht = σ({X0,Ws|s ≤ t} ∪ N ) is the minimal admissible
filtration (N are the P -null sets).

• Let u0 be the density of the law of X0 and u the solution in L∞([0, T ];Lm(Ω;Lm(1+|·|)s(R
d)))

to the sCE as in Theorem 3.16, with initial datum u0. Then the law of Xt has density given
by µt = E[u(t)]. Indeed Φ and X0 are independent (which allows to use Lemma 5.5), so, for
any test function ϕ ∈ C∞c (Rd), we have

E[ϕ(Xt)] = E[ϕ(Φt(X0))] = E
[ ∫

Rd
ϕ(Φt(x))u0(x)dx

]
= E

[ ∫
Rd
ϕ(x)u(t, x)dx

]
,

where the last passage is a consequence of u(t) = (Φt)#u0. We further have for µ

sup
t∈[0,T ]

∫
Rd
|µt|m(1 + |x|)−αdx ≤ sup

t∈[0,T ]

∫
Rd
E[|ut|m](1 + |x|)−αdx <∞,

so X has law in L∞([0, T ], Lm(1+|·|)s(R
d)).

Thus, X is the desired solution and also existence is proved.

6 Path-by-path results for sDE

6.1 Path-by-path uniqueness of individual trajectories

We next consider equation (sDE). Its integral formulation is

Xt(ω) = x+

∫ t

0

b(s,Xs(ω))ds+ σWt(ω)

and therefore we may give a path-by-path meaning to it. Assume for some constant C > 0 that
b : [0, T ]×Rd → Rd is a measurable locally bounded function (defined for all (t, x), not only a.e.).
As before, let us assume that W has continuous trajectories (everywhere). Given ω ∈ Ω, hence
given the continuous function t 7→ Wt(ω), consider all continuous functions y : [0, T ] → Rd which
satisfy the identity

y(t) = x+

∫ t

0

b(s, y(s))ds+ σWt(ω)

and call C(ω, x) the set of all such functions. Denote by Card(C(ω, x)) the cardinality of C(ω, x).

Remark 6.1. If b is continuous with |b(t, x)| ≤ C(1 + |x|) for all (t, x) ∈ [0, T ] × Rd, then by
classical deterministic arguments C(ω, x) is non empty.

Definition 6.2. We say that the sDE satisfies path-by-path uniqueness if

P
(
Card(C(ω, x)) ≤ 1 for all x ∈ Rd

)
= 1,

namely if for a.e. ω ∈ Ω, C(ω, x) is at most a singleton for every x in Rd.
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To our knowledge, the only two results on path-by-path uniqueness are [25] and [15]. We
present here a new strategy for this kind of results.

Let y ∈ C(ω, x) be a solution. Set

zω(t) := y(t)− σWt(ω)

solution of

zω(t) = x+

∫ t

0

b(s, zω(s) + σWs(ω))ds = x+

∫ t

0

b̃ω(s, zω(s))ds,

where, as usual, b̃ω(t, x) = b(t, x+ σWt(ω)). Consider the time-dependent Dirac measure µ̃ω(t) =
δzω(t) on Rd. For every ϕ ∈ C∞c (Rd), we write 〈µ̃ω(t), ϕ〉 for

∫
Rd ϕdµ̃

ω(t), which, in this particular
case, is simply ϕ(zω(t)).

Lemma 6.3. For all t ∈ [0, T ] and ϕ ∈ C1([0, T ];C∞c (Rd)), we have

〈µ̃ω(t), ϕ(t)〉 = 〈µ̃ω(0), ϕ(0)〉+

∫ t

0

〈
µ̃ω(s), b̃ω(s) · ∇ϕ(s) + ∂tϕ(s)

〉
ds.

Proof. We have to prove that

ϕ(t, zω(t)) = ϕ(0, zω(0)) +

∫ t

0

(
b̃ω(s, zω(s)) · ∇ϕ(s, zω(s)) + ∂tϕ(s, zω(s))

)
ds,

which is true by ordinary calculus.

We can now prove a central fact. For a bounded function f and a Borel set E, denote with
‖f‖0,E the supremum of f over E; in general, this is not the essential supremum, unless f is
continuous.

Theorem 6.4. Let (bε)ε∈(0,1) be a family in C∞c ([0, T ] × Rd). Assume that, for every tf ∈ [0, T ]

and v0 ∈ C∞c (Rd), we have

P − lim
ε→0

∫ tf

0

‖(b− bε) · ∇vωε ‖0,BRds = 0 (6.1)

for every positive R, and where, for every ε ∈ (0, 1), vε is the smooth solution of the backward
sPDEs (3.17) corresponding to bε and v0, with cε = 0 (vωε denotes vε(·, ·, ω) as before). Then
path-by-path uniqueness holds for (sDE).

Proof. Step 1: Identification of Ω0, independently of x. By assumption (6.1), given tf ∈ [0, T ] and
v0 ∈ C∞c (Rd), there exist a full measure set Ωtf ,v0 ⊂ Ω and a sequence εn → 0 such that

ṽωεn ∈ C
1([0, T ];C∞c (Rd)), identity (3.19) holds for ṽεn(ω) (with c = 0), for all n ∈ N (6.2)

lim
n→∞

∫ tf

0

∥∥(bω − bωεn) · ∇vωεn
∥∥

0,BR
ds = 0.

for all ω ∈ Ωtf ,v0 . Hence also

lim
n→∞

∫ tf

0

∥∥(̃bω − b̃ωεn) · ∇ṽωεn
∥∥

0,BR−σWt(ω)
ds = 0 (6.3)

for all ω ∈ Ωtf ,v0 . Let D ⊂ C∞c (Rd) be a countable set which separates points, i.e. for all

a 6= b ∈ Rd, there is v0 ∈ D with v0(a) 6= v0(b). By a diagonal procedure, there exist a full measure
set Ω0 ⊂ Ω and a sequence εn → 0 such that properties (6.2) and (6.3) hold for all tf ∈ [0, T ]∩Q,
v0 ∈ D, n,R ∈ N and ω ∈ Ω0. Since, given ω ∈ Ω0 and R ∈ N, there exists R′ω ∈ N such that
BR ⊂ BR′ω − σWt(ω) for all t ∈ [0, T ], we may replace (6.3) by

lim
n→∞

∫ tf

0

∥∥(̃bω − b̃ωεn) · ∇ṽωεn
∥∥

0,BR
ds = 0 (6.4)
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for all tf ∈ [0, T ] ∩Q, v0 ∈ D, R ∈ N and ω ∈ Ω0.
Step 2: C(ω, x) is a singleton for every x ∈ Rd and ω ∈ Ω0, i.e. path-by-path uniqueness. Given

ω ∈ Ω0 and y(i) ∈ C(ω, x), i = 1, 2, we define the (signed) measure

ρ̃ω(t) := δy(1)(t)−σWt(ω) − δy(2)(t)−σWt(ω),

which satisfies

〈ρ̃ω(tf ), ϕ(tf )〉 =

∫ tf

0

〈
ρ̃ω(s), b̃ω(s) · ∇ϕ(s) + ∂tϕ(s)

〉
ds

for all tf ∈ [0, T ] and ϕ ∈ C1([0, T ];C∞c (Rd)), due to Lemma 6.3. In particular, this holds for
ϕ = ṽωεn and thus, by (3.19), we get

〈
ρ̃ω(tf ), v0(·+ σWtf (ω))

〉
=

∫ tf

0

〈
ρ̃ω(s), (̃bω(s)− b̃ωεn(s)) · ∇ṽωεn(s)

〉
ds.

Then, if R > 0 is such that |y(i)(t)| ≤ R for t ∈ [0, T ] and i = 1, 2, we find

∣∣ 〈ρ̃ω(tf ), v0(·+ σWtf (ω))
〉 ∣∣ ≤ 2

∫ tf

0

∥∥(̃bω(s)− b̃ωεn(s)) · ∇ṽωεn(s)
∥∥

0,BR
ds,

and thus
〈
ρ̃ω(tf ), v0(·+ σWtf (ω))

〉
= 0 by (6.4). This is equivalent to

〈
ρ̃ω(tf , · − σWtf (ω)), v0

〉
=

0, which implies ρ̃ω(tf , · − σWtf (ω)) = 0 since v0 ∈ D was arbitrary and D separates points.

Consequently, y(1)(tf ) = y(2)(tf ) follows. This holds true for every tf ∈ [0, T ] ∩ Q, and since
t 7→ y(1)(t) is continuous, we get y(1)(t) = y(2)(t) for every t ∈ [0, T ]. This finishes the proof of the
Theorem.

Theorem 6.4 is, in a sense, our main result on path-by-path uniqueness, although assump-
tion (6.1) is not explicit in terms of b. Roughly speaking, this condition is true when we have
a uniform bound (in some probabilistic sense) for ‖∇ṽωεn‖0,BR . It introduces a new approach to
the very difficult question of path-by-path uniqueness, which may be easily generalized to sDEs in
infinite dimensions, for instance (this will be treated in separate works). A simple consequence is:

Corollary 6.5. Let (bε)ε∈(0,1) be a family in C∞c ([0, T ] × Rd) which converges uniformly to b
on compact sets [0, T ] × BR, for every R > 0. Assume that, for every tf ∈ [0, T ], R > 0 and
v0 ∈ C∞c (Rd), we have

sup
ε∈(0,1)

E

∫ tf

0

‖∇vε‖0,BR ds <∞ (6.5)

where vε is the smooth solution of the backward sPDEs (3.17) corresponding to bε and v0, with
cε = 0. Then path-by-path uniqueness holds for (sDE).

In Section 2.10 we have proved (reformulated for the backward sPDE) that, for every tf ∈ [0, T ],
R > 0, m an even positive integer and v0 ∈ C∞c (Rd),

sup
ε∈(0,1)

sup
[0,T ]

E
[
‖vε‖mW 2,m(BR)

]
<∞.

Therefore, by Sobolev embedding, we obtain for m > d

sup
ε∈(0,1)

sup
[0,T ]

E
[
‖∇vε‖m0,BR

]
<∞, (6.6)

which implies condition (6.5) of Corollary 6.5. Hence, we have:

Corollary 6.6. Under the conditions of Section 2.10 (Db of class LPS ) we have path-by-path
uniqueness for (sDE).
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Notice that the conditions of Section 2.10 with m > d imply b ∈ Cεloc(Rd,Rd) for some ε > 0.
Thus, in the case m > d, this result is included in Corollary 6.8 below and already in [25]. However,
also the limit case m = d ≥ 3 is included in our statement. Otherwise, we may take estimate (6.6)
from [41] in the case

b ∈ L∞(0, T ;Cαb (Rd)); (6.7)

(essential boundedness in time, with values in Cαb (Rd), is actually enough, since the measure
solutions to the continuity equation are only space-valued). Precisely, the following result is proved
in [41]. We give here an independent proof for the sake of completeness.

Lemma 6.7. Let b satisfy (6.7) and take a family bε ∈ C∞c ([0, T ]×Rd) which converges uniformly
to b on compact sets. Then the flows Φεt associated to (sDE) with coefficients bε satisfy for every
m ≥ 1

sup
ε∈(0,1)

sup
[0,T ]

E
[
‖DΦεt‖m∞,BR

]
<∞. (6.8)

Proof. Step 1: Formula for DΦεt (x) via Itô–Tanaka trick. Let us introduce the vector field Uε(t, x),
for t ∈ [0, T ], x ∈ Rd, and with components U iε(t, x), for i = 1, . . . , d, satisfying the backward
parabolic equation (where biε is the i-component of bε)

∂tU
i
ε + bε ·DU iε +

σ2

2
∆U iε = −biε + λU iε, U iε(T, x) = 0 (6.9)

for some λ > 0. As explained in [41, Section 2] based on classical results of [53] (see also a partial
probabilistic proof in [38]), this equation has a unique solution of class U iε ∈ C1([0, T ];Cαb (Rd)) ∩
C([0, T ];C2,α

b (Rd)), and there is a uniform constant C > 0 such that

sup
ε∈(0,1)

sup
[0,T ]

‖Uε‖C2,α
b (Rd) ≤ C. (6.10)

Moreover, given any δ > 0, there exists λ > 0 large enough such that

‖DUε‖∞ ≤ δ. (6.11)

Here and below we denote by ‖·‖∞ the L∞ norm both in time and space. We may apply the Itô
formula to U iε(t,Φ

ε
t (x)) and use (6.9) to get

U iε(t,Φ
ε
t (x)) = U iε(0, x) +

∫ t

0

(−bi + λU iε)(s,Φ
ε
s(x))ds+ σ

∫ t

0

∇U iε(s,Φεs(x)) · dWs.

This allows us to rewrite the equation

Φε,it (x) = xi +

∫ t

0

biε(s,Φ
ε
s(x))ds+ σW i

t

in the form

Φε,it (x) = xi + U iε(0, x)− U iε(t,Φεt (x)) +

∫ t

0

λU iε(s,Φ
ε
s(x))ds+ σ

∫ t

0

∇U iε(s,Φεs(x)) · dWs + σW i
t .

Since bε is smooth and compactly supported, we a priori know from [56] that Φεt is differentiable;
hence we may use the differentiability properties of Uε and the result of differentiation under
stochastic integral of [56] to have

∂kΦε,it (x) = δik + ∂kU
i
ε(0, x)−

d∑
j=1

∂jU
i
ε(t,Φ

ε
t (x))∂kΦε,jt (x)

+

∫ t

0

λ

d∑
j=1

∂jU
i
ε(s,Φ

ε
s(x))∂kΦε,js (x)ds+ σ

∫ t

0

d∑
j,l=1

∂l∂jU
i
ε(s,Φ

ε
s(x))∂kΦε,js (x)dW l

s. (6.12)
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Step 2: Uniform pointwise estimate for DΦεt (x). We first use the previous identity to estimate
E[|∂kΦε,it (x)|r] uniformly in (t, x) and ε, for each r > 1. Denoting by Cr > 0 a generic constant
depending only on r, we have

E[|∂kΦεt (x)|r] ≤ Cr + Cr‖DUε‖r∞ + Cr‖DUε‖r∞E[|∂kΦεt (x)|r]

+ λrCr‖DUε‖r∞
∫ t

0

E[|∂kΦεs(x)|r]ds+ σrCr‖D2Uε‖r∞
∫ t

0

E[|∂kΦεs(x)|r]ds,

where we have used the Burkholder–Davis–Gundy inequality in the last term. By choosing λ so
large that Cr ‖DUε‖r∞ ≤ 1/2 (possible by (6.11), we find

1

2
E[|∂kΦεt (x)|r] ≤ Cr + λr

∫ t

0

E[|∂kΦεs(x)|r]ds+ σrCr‖D2Uε‖r∞
∫ t

0

E[|∂kΦεs(x)|r]ds.

Now it is sufficient to apply Gronwall’s lemma and the uniform estimate (6.10) to conclude that

sup
ε∈(0,1)

sup
t∈[0,T ]

sup
x∈Rd

E[|DΦεt (x)|r] <∞. (6.13)

Step 3: Conclusion via Kolmogorov’s regularity criterion. To get the supremum in x inside the
expectation, let us try to apply the Kolmogorov regularity criterion. Given x, y ∈ Rd, r > 1, we
derive from (6.12) (using suitable vector notations)

E[|∂kΦεt (x)− ∂kΦεt (y)|r] ≤ Cr(I1 + I21 + I22 + λrI31 + λrI32 + σrI41 + σrI42)

with the following abbreviations

I1 = |∂kUε(0, x)− ∂kUε(0, y)|r

I21 = E[|DUε(t,Φε,t(x))|r|∂kΦεt (x)− ∂kΦεt (y)|r]

I22 = E[|DUε(t,Φε,t(x))−DUε(t,Φε,t(y))|r|∂kΦεt (y)|r]

I31 =

∫ t

0

E[|DUε(s,Φεt (x))|r|∂kΦεs(x)− ∂kΦεs(y)|r]ds

I32 =

∫ t

0

E[|DUε(s,Φεs(x))−DUε(s,Φεs(y))|r|∂kΦεs(y)|r]ds

I41 =

∫ t

0

E[|D2Uε(s,Φ
ε
t (x))|r|∂kΦεs(x)− ∂kΦεs(y)|r]ds

I42 =

∫ t

0

E
[
|D2Uε(s,Φ

ε
s(x))−D2Uε(s,Φ

ε
s(y))|r|∂kΦεs(y)|r

]
ds.

For the last term we have used again the Burkholder–Davis–Gundy inequality. Let us denote by
CU > 0 (resp. Cr,Φ > 0) a constant independent of ε ∈ (0, 1), based on the uniform estimate (6.10)
(resp. on (6.13)) and let us write δ > 0 for the constant in (6.11). We have

I1 ≤ ‖DUε‖r∞|x− y|r ≤ CrU |x− y|r

I21 ≤ ‖DUε‖r∞E[|∂kΦεt (x)− ∂kΦεt (y)|r] ≤ δrE[|∂kΦεt (x)− ∂kΦεt (y)|r]

I22 ≤ ‖D2Uε‖r∞E
[ ∫ 1

0

|DΦεt (θx+ (1− θ)y)|rdθ|∂kΦεt (y)|r
]
|x− y|r

≤ ‖D2Uε‖r∞E
[
|∂kΦεt (y)|2r

]1/2(∫ 1

0

E
[
|DΦεt (ux+ (1− u)y)|2r

]
du
)1/2

|x− y|r

≤ CrUC
1/2
2r,ΦC

1/2
2r,Φ|x− y|

r = CrUC2r,Φ|x− y|r.

Similarly, we get

I31 ≤ CrU
∫ t

0

E[|∂kΦεs(x)− ∂kΦεs(y)|r]ds
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I32 ≤ TCrUC2r,Φ|x− y|r

and finally

I41 ≤ CrU
∫ t

0

E
[
|∂kΦεs(x)− ∂kΦεs(y)|r

]
ds

I42 ≤ sup
[0,T ]

‖D2Uε‖rCα
∫ t

0

E
[ ∫ 1

0

|DΦεs(ux+ (1− u)y)|αrdu|∂kΦεs(y)|r
]
ds|x− y|αr

≤ TCrUC
1/2
2αr,ΦC

1/2
2r,Φ|x− y|

αr.

Taking δ sufficiently small (and thus λ large enough), from Gronwall’s lemma we deduce

E
[
|∂kΦεt (x)− ∂kΦεt (y)|r

]
≤ Cr|x− y|αr.

Since r > 1 is arbitrary, we may apply Kolmogorov’s regularity criterion (see for instance the
quantitative version of [56] for the bound on the moments of supremum norm in x) and entail (6.8),
which finishes the proof of the lemma.

It follows:

Corollary 6.8. Under condition (6.7) we have path-by-path uniqueness for (sDE).

Proof. In view of the formula vε(t, x) = v0(Φεt (x)) and (6.8), the estimate (6.6) holds, which in
turn implies (6.1). Hence, the path-by-path uniqueness follows immediately from Theorem 6.4.

7 Examples and counterexamples

In this section we present some examples of drifts under LPS conditions, which exhibit regulariza-
tion by noise phenomena (i.e. the ODE is ill-posed, while the sDE is well-posed), and an example
outside of the LPS conditions where our results do not hold.

7.1 Examples of regularization by noise

Example 7.1. Given a real number α, we consider on Rd the autonomous vector field

b(x) := 10<|x|≤1|x|αx̂+ 1|x|>1x,

where x̂ = x/|x| for x 6= 0 (and 0̂ = 0). The vector field b is Lipschitz continuous if and only
if α ≥ 1 and it satisfies the LPS conditions if and only if α > −1. In the deterministic case, if
−1 < α < 1, we see that:

• if x0 6= 0, then there exists a unique solution Y to the ODE dXt/dt = b(t,Xt) (that is (sDE)
with σ = 0) starting from x0, namely

Y (t) = (|x0|1−α + (1− α)t)1/(1−α)x̂01t≤t1 + et−t1 x̂01t>t1 ,

where t1 is the first time that |Y | = 1 (t1 = 0 if |x0| > 1);

• if x0 = 0, then there is an infinite number of solutions to the ODE starting from 0, namely
any

Y (t) = 1t>ta((1− α)(t− t0))1/(1−α)x̂a1t≤t1 + et−t1 x̂a1t>t1

for some ta in [0,∞] (for ta = ∞, we find the null solution) and some xa in the unit
sphere Sd−1 (and with t1 as before).
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Figure 1: Non-uniqueness of trajectories

Consequently, if −1 < α < 1, there cannot exist
a continuous flow solving the ODE: continuity fails
in x0 = 0. This also implies that non-uniqueness
appears for the transport equation with discontinu-
ous (at 0) initial datum.

On the contrary, for α > −1 the drift is in the
LPS class, hence all our results apply to this ex-
ample and show regularization by noise in various
ways. In particular, the discontinuity of the flow in
the origin is removed ω-wise; moreover, for α > 0
(when b is Hölder continuous), we have proved path-
by-path uniqueness starting from x0 = 0. Let us
also remind that pathwise uniqueness holds, starting
from 0, by [54].

In this particular example it is possible to get an intuitive idea, “by hands”, of what happens.
If one consider the ODE without noise starting from 0, any solution Y grows near 0 no faster
than t1/(1−α); on the contrary, the Brownian motion W near 0 grows as t1/2 (up to a logarithmic
correction, which does not affect the intuition). Heuristically, we could say that the “speed” of Y
near 0 caused by the drift is like tα/(1−α), while the one caused by W is like t−1/2. So what we
expect to happen is that the Brownian motion moves the particle immediately away from 0, faster
than the action of the drift, and this prevents the formation of non-uniqueness or singularities. At
least in the one-dimensional case, this can be seen also through speed measure and scale function,
see [13].

Notice that if α < −1 the opposite phenomenon appears (Y is faster than W ), so that we expect
ill-posedness. This is also an argument for the optimality of the LPS conditions (even if, in this
case, we do not look at critical cases in LPS hypotheses), see also Example 7.4.

Example 7.2. We consider a similar autonomous vector field as in the previous example, but
change sign:

b(x) := −10<|x|≤1|x|αx̂− 1|x|>1x.

In this case, we see that, for every initial x0, there exists a unique solution Y to the ODE, which
reaches 0 in finite time and then stays in 0. Thus, concentration happens in 0, so that there does
not exist a Lagrangian flow (the image measure of the flow at time t can have a Dirac delta in 0).
Moreover the solution to the continuity equation concentrates in 0. Again our results apply when
α > −1, so these concentration phenomena disappear in the stochastic case.

Example 7.3. Take d = 2 for simplicity. The following field is a combination of the previous two
examples:

b(x) = 1x∈A
[
10<|x|≤1|x|αx̂+ 1|x|>1x

]
+ 1x∈Ac

[
− 10<|x|≤1|x|αx̂− 1|x|>1x

]
,

where A = {x ∈ R2 : x1 > 0 or (x1 = 0, x2 > 0)}. It is easy to see that, for α < 1, in the
deterministic case one can construct flows with discontinuity, concentration of the mass in 0 or
both; in particular, non-uniqueness holds. Again, for α > −1, well-posedness (as in Theorem 4.5)
is restored.

7.2 A counterexample in the supercritical case

Example 7.4. Finally let us show that outside the LPS class there are equations and diffuse initial
conditions without any solution; in particular the statement of Theorem 5.4 does not hold in this
case. We now consider equation (sDE) on Rd, with σ = 1 and drift b defined as

b(x) := −β|x|−2x1x 6=0,

with β > d/2. Notice that, for d ≥ 2, this drift is just outside the LPS class (in the sense that
|x|α−1x belongs to that class for any α > −1). For this particular sDE, we have: for some T > 0
and M > 0, if X0 is a random variable, independent of W and uniformly distributed on [−M,M ],
then there does not exist a weak solution, starting from X0.
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Proof. Step 1: (sDE) does not have a weak solution for X0 = 0 (for any T > 0). Notice that this
does not prevent from extending Theorem 5.4 to this case (because the initial datum is concentrated
on 0), but it is a first step. The method is taken from [17].

Assume, by contradiction, that a weak solution on [0, T ] exists, i.e. there is a filtered probability
space (Ω,A,Gt, P ) (satisfying standard assumptions), a Brownian motion W in Rd with respect to

(Gt)t, an (Gt)t-adapted continuous process (Xt)t≥0 in Rd, such that
∫ T

0
|b(Xt)|dt <∞ and, a.s.,

Xt =

∫ t

0

b(Xs)ds+Wt.

Hence, X is a continuous semimartingale, with quadratic covariation
〈
Xi, Xj

〉
t

= δijt. By the Itô
formula, we have

d |Xt|2 = −2β1Xt 6=0dt+ 2Xt · dWt + d · dt
= (d1Xt=0 − (2β − d)1Xt 6=0)dt+ 2Xt · dWt.

We now claim that ∫ T

0

1Xs=0ds = 0 (7.1)

holds with probability one. This implies

|Xt|2 = −(2β − d)

∫ t

0

1Xs 6=0ds+

∫ t

0

2Xs · dWs.

Therefore, |Xt|2 is a positive local supermartingale, vanishing at t = 0. This implies |Xt|2 ≡ 0,
hence Xt ≡ 0, which contradicts the fact that

〈
Xi, Xj

〉
t

= δijt.
It remains to prove the claim (7.1). Consider the random set {t ∈ [0, T ] : Xt = 0}. Since it

is a subset of A1 = {t ∈ [0, T ] : X1
t = 0}, it is sufficient to prove that A1 is of Lebesgue mea-

sure zero, P -a.s. and this is equivalent to P
( ∫ T

0
1Xis=0ds = 0

)
= 1. Since X is a continuous

semimartingale with quadratic covariation
〈
Xi, Xj

〉
t

= δijt, also X1 is a continuous semimartin-

gale, with quadratic covariation
〈
X1, X1

〉
t

= t. Hence, by the occupation times formula (see [72,
Chapter VI, Corollary 1.6]) ∫ T

0

1X1
s=0ds =

∫
R
1a=0L

a
T (X1)da

where LaT (X1) is the local time at a on [0, T ] of the process X1. Hence, a.s.,
∫ T

0
1X1

s=0ds = 0.
Step 2: (sDE) does not have a weak solution starting from X0 uniformly distributed on [−M,M ]

(for some T > 0 and M > 0). Again, we suppose by contradiction that there exists such a
solution X (associated with some filtration (Gt)t), on a probability space (Ω,A, P ). Let τ be the
first time when X hits 0 (it is a stopping time with respect to (Gt)t), with τ = ∞ when X does
not hit 0. We now claim that

P (τ <∞) > 0. (7.2)

Assuming this, we can construct a new process Y , which is a weak solution to (sDE), starting from
Y0 = 0. This is in contradiction with Step 1. The process Y is built as follows. Take Ω̃ = {τ <∞},
Ã = {A ∩ Ω̃ : A ∈ A}, Q = P (Ω̃)−1P |Ã, then define Yt := Xt+τ , W̃t := Wt+τ −Wτ on Ω̃ and

Ht = σ({W̃s, Ys|s ≤ t} ∪ Ñ ) (σ-algebra on Ω̃), where Ñ is the set of Q-null sets of Ω̃. We observe
the following facts:

• W̃ is a natural Brownian motion on the space (Ω̃,A, Q), i.e., for every positive integer n, for
every 0 < t1 < . . . < tn and for every f1, . . . , fn in Cb(Rd), there holds

E
[
1Ω̃

n∏
j=1

fj(W (tj + τ)−W (tj−1 + τ))
]

= P (Ω̃)
n∏
j=1

∫
Rd
fjdN (0, (tj − tj−1)I), (7.3)

where N (m,A) is the Gaussian law of mean m and covariance matrix A. This can be
verified, for a general G-stopping time, with a standard argument: first one proves (7.3)
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when τ is a stopping time with discrete range in [0,∞], then, for the general case, one uses
an approximation of τ with stopping times τk with discrete range such that τk ↓ τ (as k →∞)
and {τ =∞} = {τk =∞} for every k.

• W̃ is a Brownian motion with respect to the filtration H, i.e., for every 0 = t0 < t1 < . . . <
tn ≤ s < t and for every f, g1, . . . , gn in Cb(Rd), there holds

E
[
1Ω̃f(W (t+ τ)−W (s+ τ))

n∏
j=0

gj(X(tj + τ))
]

=

∫
Rd
fdN (0, (t− s)I)E

[ n∏
j=0

gj(X(tj + τ))
]
.

Again this can be shown by approximation (with stopping times with discrete range).

• Y is a weak solution to (sDE), starting from Y0 = 0. This follows immediately from

Xs′ = Xs +

∫ s′

s

b(Xr)dr +Ws′ −Ws,

setting s′ = t+ τ and s = τ .

It remains to prove claim (7.2). We suppose by contradiction that τ = ∞ a.s.; this implies
that, for every t ∈ [0, T ], we have P (Xt 6= 0) = 1. Then, computing E[|X|2] by the Itô formula,
we get

d

dt
E[|Xt|2] = −2βP (Xt 6= 0) + d = −2β + d < 0,

hence, there exists a time t0 > 0 such that E[|Xt0 |2] < 0, which is a contradiction. This completes
the proof.

Remark 7.5. The restriction on β is due to the first step. The claim (7.2) holds in fact for the
more general case β > (d− 2)/2, which can be achieved by an alternative approach.

Sketch of proof. The idea is that the symmetry properties of the drift allow to reduce the solutionX
to the sDE to a one-dimensional Bessel process, for which the probability of hitting 0 is known.
Fix R > 0 and, for any ε > 0, x ∈ BR \ B̄ε, denote by τε(x) the exit time from the annulus BR \ B̄ε
of the solution Z(x) to (sDE), starting from x (Z exists up to τε(x) since the drift is regular in
the annulus). If we prove that, for every x 6= 0, there exist T > 0, δ > 0 and R large enough such
that, for every ε > 0,

P
(
τε(x) < T,Z(x, τε(x)) = ε

)
> δ, (7.4)

we have shown the claim. In order to prove (7.4) we notice that P (τε(x) < T,Z(x, τε(x)) = ε) =
u(0, x), where u solves the backward parabolic PDE, on BR \ B̄ε,

∂tu+ b · ∇u+
1

2
∆u = 0,

with final and boundary conditions

u(T, ·) ≡ 0 in BR \ B̄ε, u(t, ·) ≡ 1 on ∂Bε and u(t, ·) ≡ 1 on ∂BR, for all t ∈ [0, T ].

By the symmetry properties of the drift b, the solution u is given by u(t, x) = v(t, |x|), where
v : [0, T ]× (ε,R)→ R solves the PDE

∂tv + b̄ · ∇v +
1

2
∆v = 0

for b̄(r) = (−β + (d− 1)/2)|r|−1
1r 6=0, with final and boundary conditions

v(T, ·) ≡ 0, v(·, ε) ≡ 1, v(·, R) ≡ 0.

Then
P
(
τε(x) < T,Z(x, τε(x)) = ε

)
= v(0, |x|) = P

(
σε(|x|) < T, ξ(|x|, σε(|x|)) = ε

)
, (7.5)
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where ξ = ξ(r) is the one-dimensional process solution to the sDE

dξ =
(
− β +

d− 1

2

)
|ξ|−1

1ξ 6=0dt+ dBt

(B is a one-dimensional Brownian motion), with initial condition ξ0(r) = r, and σε(r) is the exit
time of ξ(r) from the interval (ε,R). Now standard tools of one-dimensional diffusion processes
(speed measure and scale function, see [13, Chapter 16]) allow to deduce that, since β > (d− 2)/2,
for every r > 0, ξ(r) hits 0 in finite time with positive probability. This implies that, for every
r > 0, there exist T > 0, δ > 0 and R large enough such that, for every ε > 0, P (σε(r) <
T, ξ(r, σε(r)) = ε) > δ. In view of (7.5) we have established (7.4) and the sketch of proof of the
final Remark is complete.
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