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Abstract

Gastric cancer, a leading worldwide cause of cancer mortality, shows high geographic and

ethnic variation in incidence rates, which are highest in East Asia. The anatomic locations

and clinical behavior also differ by geography, leading to the controversial idea that Eastern

and Western forms of the disease are distinct. In view of these differences, we investigated

whether gastric cancers from Eastern and Western patients show distinct genomic profiles.

We used high-density profiling of somatic copy-number aberrations to analyze the largest

collection to date of gastric adenocarcinomas and utilized genotyping data to rigorously

annotate ethnic status. The size of this collection allowed us to accurately identify regions of

significant copy-number alteration and separately to evaluate tumors arising in Eastern and

Western patients. Among molecular subtypes classified by The Cancer Genome Atlas, the

frequency of gastric cancers showing chromosomal instability was modestly higher in West-

ern patients. After accounting for this difference, however, gastric cancers arising in East-

erners and Westerners have highly similar somatic copy-number patterns. Only one

genomic event, focal deletion of the phosphatase gene PTPRD, was significantly enriched

in Western cases, though also detected in Eastern cases. Thus, despite the different risk

factors and clinical features, gastric cancer appears to be a fundamentally similar disease in

both populations and the divergent clinical outcomes cannot be ascribed to different under-

lying structural somatic genetic aberrations.
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Introduction

Each year more than 1 million people are diagnosed with gastric adenocarcinoma, the third

leading cause of global cancer-related death [1]. Gastric cancer is more common in the Far

East than in most western regions: incidence in East Asia approaches 50 cases per 100,000 peo-

ple, about 10 times higher than in North America [1]. Other areas of high incidence include

Eastern Europe and Andean regions in South America. Epidemiologic features, anatomic dis-

tributions, histologic subtypes, and association withH. pylori infection also differ between

Eastern and Western countries [2]. In the West, for example, tumors of the gastric cardia are

more common and associated with gastro-esophageal reflux and obesity, whereas tobacco, diet

andH. pylorimake proportionally larger contributions toward gastric cancer risk in Asia [3].

Survival of patients with gastric cancer is also superior in Japan and Korea [2, 3]. Some of this

effect may reflect mass-screening and early detection, but survival differences persist after

adjusting for treatment centers and disease stage [3–5], with a 5-year post-operative survival

rates of 61% in Japan and 23% to 28% in Europe and the United States [6, 7]. Different surgical

practices, with more extensive lymph node dissection in Asia, may explain some of this differ-

ence, but the benefit of this class of surgery is controversial [8–12] and systemic chemotherapy

or biologic agents also produce different response and survival rates in Eastern and Western

patients. The substantial differences in epidemiology and outcome have stimulated debate

whether gastric adenocarcinomas arising in Eastern and Western individuals represent dis-

tinct disease entities. If this is true, they would be predicted to carry distinct genomic features.

Molecular characterization of cancers from different parts of the world provides opportuni-

ties to address this question, though it is important also to consider the distinct histologic and

molecular subtypes of gastric adenocarcinoma. The Lauren pathologic classification distin-

guishes two principal types; those with diffuse and those with intestinal histology. The diffuse

variant is less associated withH. pylori and may carry a worse prognosis [13]. The intestinal

type, the more prevalent form of gastric cancer, arises through a sequence of chronic inflam-

mation, usually related toH. pylori infection; mucosal atrophy; intestinal metaplasia progress-

ing to dysplasia; and, eventually, invasive cancer [14]. Comprehensive molecular analysis of

295 gastric cancers recently led to a new classification into four distinct subtypes [15]: one vari-

ant characterized by Epstein-Barr virus (EBV) infection, one with microsatellite instability

(MSI), a highly aneuploid group with chromosomal instability (CIN), and one composed

largely of tumors with stable genomes and diffuse histology. However, subgroup analysis in

this study identified no clear enrichment in any group of tumors arising in Eastern or Western

individuals [15].

Here we compare somatic genomic alterations between gastric cancers of Eastern and

Western origin. Recent studies of cancer genomics have found that distinct patterns in somatic

copy-number alterations (SCNAs) can be used to discriminate between cancer types [16] and

subtypes [17–19]. We focus on patterns of SCNAs across 657 gastric adenocarcinomas, com-

prising the largest composite set of this disease studied to date. We mapped with improved

accuracy the loci that are subject to recurrent gain or loss and determined the incidence of dis-

tinct lesions in cancers of Eastern and Western origin. Our copy-number analysis reveals that

the two groups of gastric cancer have highly similar genomes, which provides evidence that

the different epidemiologic and clinical features typical of Eastern and Western cases do not

represent distinct disease entities.

Materials and methods

This analysis evaluated a composite collection of gastric adenocarcinomas including 581

tumors that have already been previously published and another 76 tumors being first reported
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in this study. The 76 novel tissue samples selected for this study were provided by the Bio-

Resource Center of Asan Medical Center, Korea Biobank Network (2010-6(25)), and their use

for cancer research approved by the Asan Medical Center Institutional Review Board. All sam-

ples were fresh-frozen after resection. Cells from gastric tumor samples were evaluated by a

pathologist for disease presence and tumor content. DNA was extracted using salt precipita-

tion, quantified with Picogreen dye, and hybridized to SNP 6.0 arrays at the Broad Institute

according to the instructions provided by the manufacturer (Affymetrix). The data for 76

tumor and 35 normal samples are available at the Gene Expression Omnibus (GEO) under the

accession GSE77775.

Probe-level signal intensities from Affymetrix SNP6.CEL files for 657 gastric tumor samples

were combined, calibrated, normalized, and segmented in uniform fashion using the Broad

Institute SNP6.0 copy number pipeline (S1 Text). The resulting segmented copy number pro-

files were analyzed to determine significant recurrent SCNAs using GISTIC 2.0 with noise

threshold 0.1, focal cutoff 0.5 chromosome arms, and peak confidence window 0.95. The gene-

GISTIC algorithm was used to analyze deletions and arm-level peel-off was used to resolve

peaks. Genes were associated with a peak if the peak and gene footprint overlapped; a peak

overlapping no genes was associated with the nearest gene.

Genotype calls at the SNP6 loci were made using the Birdseed algorithm [20]. These calls

were analyzed to determine the genetic ancestry of the samples using the SmartPCA program

from the EIGENSTRAT software suite, version 4.2 [21].

Genomic disruption of a sample was measured by the fraction of the genome differing from

the median copy number by more than 0.1. Tumor purity and ploidy were determined using

the HAPSEG [22] and ABSOLUTE [23] methods for 462 of our 657 samples. Where available,

we used these purity/ploidy values to correct a each sample’s copy number profile to remove

the effect of admixed normal cells as described previously [24]. SCNAs were called by compar-

ing the corrected profile to a threshold of 0.2 above and below the median.

We used the support vector machine functions from the Matlab Machine Learning

Toolbox (release 2012b) to classify our samples into CIN and non-CIN subtypes using a vector

space defined by arm-level median copy number and a Gaussian radial basis function kernel

with σ = 1.

Focal SCNAs were distinguished from arm-level SCNAs by the ziggurat deconstruction

part of the GISTIC 2.0 analysis. Chromosome arm rates were assessed using median purity-

corrected copy levels, and significant differences were tested using a Fisher exact test for each

arm. To test for significant differences in focal SCNAs we used a permutation test developed

to identify correlations that controls for focal event rates and subtype structure [24]. We

looked for correlations between East-West cohort membership and focal events within the sig-

nificant regions identified by our GISTIC analysis by running 49,000 permutations that con-

trolled for CIN status and focal genomic disruption in the ISAR-corrected data. We excluded

underpowered loci from the FDR calculation.

Throughout this study, we considered one of multiple hypotheses significant if its false dis-

covery rate (FDR) was < 0.05 [25] and a single test significant if P< 0.05. We compared distri-

butions of values (genomic disruption, purity, event counts) using a two-sided Wilcoxon rank

sum test; for categorical comparisons we used a two-sided Fisher exact test.

Results

Analysis of somatic copy number profiles

We analyzed copy-number profiles in 657 gastric adenocarcinomas that had all been using

Affymetrix SNP 6.0 microarrays. The 76 novel tumor samples presented in this study were

SCNAs in gastric cancer East/West
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entirely from Korean patients. We combined these with 95 cases from an Italian cohort pub-

lished in a study of gut adenocarcinomas [26], 193 cases from a published Singaporean study

[27] and 293 cases published by The Cancer Genome Atlas (TCGA) Research Network [15].

Within the TCGA cohort, 54 cases were from Asian countries, predominantly South Korea

and Vietnam, and 239 cases were from Western countries, including Russia and Ukraine. We

first used the dataset to define recurrent chromosome arm-level and focal alterations, on the

premise that a large combined dataset provides the power to detect rare events and to refine

putative gene targets within regions of recurrent alteration. Defining key recurrent alterations

across this large tumor set also enables systematic estimation of their prevalence in cases of dif-

ferent ethnic origin. All SNP profiles were uniformly re-analyzed (see Methods) and we identi-

fied recurrent events using GISTIC2.0 [16, 28].

The most significantly recurrent (q<10−6) arm-level gains occurred on chromosome arms

20q (59%), 20p (52%), 8q (55%), 8p (42%), 7p (43%), 7q (36%), 13q (37%), and 1q (25%) (Fig

1A). The most significant losses were of 18q (40%), 21q (39%), 9p (37%), 4p (36%), 4q (35%),

17p (32%), 22q (31%), 5q (27%) and 9q (26%). Thus, chromosome 8 showed significant rates

of whole-chromosome gain and, among samples without such gain, significant rates of 8p

arm-level loss. We also identified 83 regions of significant focal copy-number alteration

(FDR<0.05; Fig 1B, S2 Table), including 34 regions of recurrent amplification and 49 regions

of significant deletion. For each such area, we focused on the sub-region showing maximal

Fig 1. Significant regions of (A) arm-level and (B) focal somatic copy number alteration across the genome (y-axis). The x-axis indicates

frequencies (A) or significance (as FDR q-values, B). Arms considered significant (q<0.05) are marked with an asterisk; the significance levels of focal events

are shown as green lines. The 35 most significant focal regions of each SCNA type are labeled by associated single genes, putative drivers, or cytoband

location. Labels of known oncogenes and tumor suppressors are highlighted in gray; tyrosine kinase genes are red, cell-cycle genes are green, transcription

factors are blue text and large genes are brown.

https://doi.org/10.1371/journal.pone.0176045.g001

SCNAs in gastric cancer East/West

PLOS ONE | https://doi.org/10.1371/journal.pone.0176045 April 20, 2017 4 / 16

https://doi.org/10.1371/journal.pone.0176045.g001
https://doi.org/10.1371/journal.pone.0176045


copy-number change, which would be expected to contain the oncogene and tumor suppres-

sor gene targets.

Thirteen amplification peaks contained or were immediately adjacent to a single putative

target gene, including eight established oncogenes (ERBB2,CCNE1,KRAS, FGFR2,MYC,

GATA6, ZNF217, and VEGFA). The remaining five peaks contained the stem cell marker

CD44, a transcription factor (CREB3L1) that activates VEGFA expression [29], a regulator of

epithelial proliferation (KLF5), and long non-coding RNAs LOC100422737and

LOC101927851. Twenty-one amplified areas contained two or more genes. Of these, 8 regions

contained previously characterized amplified oncogenes: GATA4, CCND1,CDK6,MDM2,

EGFR,MCL1, ERBB3 andMYB; this is the first report of significant and nearly isolatedMYB
amplification in gastric adenocarcinoma (S1A Fig). The ERBB3 region contains 12 genes,

including the cyclin-dependent kinase CDK2, which acts with Cyclin E1 to phosphorylate Rb

and control entry into S-phase of the cell cycle. The driver genes in the remaining 15 amplified

regions are unclear. The 11 genes contained in 5p13.1 include PRKAA1 and PTGER4, which

neighbor a gastric cancer risk allele found in genome-wide association studies [30, 31].

Among the 49 deletion peaks, 25 lie in regions that may be mechanistically prone to dele-

tion rather than reflecting positive selective pressure. Seventeen of these peaks contained genes

that are among the 100 largest in terms of the length of their footprint across genomic DNA

(WWOX, PDE4D, CCSER1,GRID2, PTPRD, FHIT,DMD, PARK2, IMMP2L,DIAPH2,

PTPRN2,NTM,DSCAM, PARD3B, MGAT4C, RBFOX1, and NAALADL2). Deletion of these

genes has previously been ascribed to local structural fragility or a local paucity of essential

genes [16, 32] [33], though some are also implicated as tumor suppressors [34–36]. Seven

other peaks border telomeres, which are mechanistically vulnerable to deletion [24]. Five

known tumor suppressor genes (CDKN2A, PTEN,ARID1A, SMAD4, and SMARCA4) lie

among the 21 deletion peaks that contain fewer than 25 genes and are not located at telomeres

or contain genes with large footprints. Among these tumor suppressor genes, SMARCA4
encodes a component of the SWI/SNF chromatin remodeling complex, and significant dele-

tions have not previously been reported in gastric cancer (S1B Fig). The remaining 16 peak

regions of deletion may harbor yet unknown tumor suppressors.

To assess how our large data set improves identification of significant regions, we compared

these results to the analysis of focal peaks from The Cancer Genome Atlas (TCGA) study on

gastric adenocarcinoma [15]. Our analysis revealed 18 additional significant regions, including

those containingMYB and SMARCA4. Among the 68 peaks common to both studies, 37 peaks

were smaller than their counterparts in the TCGA study, indicating improved resolution (S2

Fig, S3 Table) and 21 peaks were of the same size; only 10 peaks became wider. A recurrent

amplicon at 9p24.1 provides an example of improved resolution. This peak overlapped with

JAK2, PDCD1LG2,CD274 and seven other genes in the TCGA analysis but was here narrowed

to encompass only PDCD1LG2 and CD274, which encode the immunosuppressant proteins

and therapeutic targets PD-L1 and PD-L2. An amplification peak at 3q26.2 overlapped with

102 genes in the TCGA study and was reduced to just three genes, including the putative onco-

gene PRKCI.

Evaluation of ancestry across gastric cancer samples

As our collection included large numbers of cases arising in East Asian or Caucasian patients,

we could compare somatic genetic alterations in the two populations, provided we could clas-

sify ancestry with confidence. To this end, we first applied principal component analysis

(PCA) to the germline SNP calls and robustly classified 605 of the 657 samples into two distinct

groups by the primary component, indicating two ethnically distinct populations (Fig 2A).

SCNAs in gastric cancer East/West
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This component had an eigenvalue of 50.9, more than ten times stronger than the secondary

component’s eigenvalue of 4.7. The remaining 52 samples were unclassified outliers or may

reflect mixed ancestry and included most cases arising in African Americans. Notably, all

evaluable Korean samples segregated distinctly from the Italian samples and, within the TCGA

cohort, the reported ethnic classification was perfectly concordant with how Eastern or West-

ern patients were aggregated in our PCA approach (Fig 2B). Accordingly, we used the primary

SNP component to classify the 605 non-ambiguous patients into Eastern and Western cohorts

of 323 and 282 patients, respectively (S1 Table).

Differences in disease subtype between Eastern and Western cohorts

Overall, Western cases exhibited more genomic disruption than Eastern cases (P = 0.0001, Fig

3A and 3B), which could occur for three reasons. First, the Eastern cohort may include more

samples with low tumor content, obscuring SCNAs in that population. Second, subtypes of

gastric cancer with greater disruption may be genuinely more prevalent in the Western cohort.

In particular, the TCGA analysis revealed that gastric cancers with chromosomal instability

(CIN) have more frequent copy-number alterations than other groups. Third, tumors of the

same subtype may exhibit different rates of genomic disruption between the two populations.

Using the ABSOLUTE algorithm [23], we indeed observed higher median tumor purity in

the Western than in the Eastern cohort (Fig 3C). The purity of 92 Eastern (28%) and 26 West-

ern tumors (9%) appeared insufficient to make confident SCNA calls, so we excluded these

cases from further analysis of ethnic differences. We re-normalized the copy-number profiles

of the remaining tumors to remove effects of tumor impurity, using an in-silico admixture

Fig 2. Classification of patient ancestry. (A) Distribution of projections of patient germline SNP genotypes on the principle component of SNP variation.

The stacked bars of the histogram are colored by the data source and summarized in overlying proportionately sized pie charts. Outliers do not appear in

the histogram. (B) Ancestries determined by genotype among patients reporting Asian, Black, and White ancestry, respectively.

https://doi.org/10.1371/journal.pone.0176045.g002
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removal (ISAR) calculation [23]. After this adjustment, CIN tumors were still significantly

more common in the Western than in the Eastern cases (59% vs. 51%, p = 0.024, Fig 3D). We

classified CIN across both cohorts by training a support vector machine on the TCGA dataset,

where CIN and non-CIN subtypes were known. Within the resulting CIN and non-CIN

groups, Eastern and Western cases showed similar levels of overall genome disruption (Fig 4A

and 4B). Thus, the observed differences in overall levels of genome disruption reflect differ-

ences in tumor purity and modestly different rates of CIN rather than variable rates of genome

disruption within CIN and non-CIN groups (Fig 4A).

Surprisingly, the CIN status of our tumors did not correlate significantly with the histologi-

cal tumor stage, but showed a weak correlation with the intestinal (versus diffuse) Lauren

Fig 3. Genomic disruption between Eastern and Western samples. (A) Copy number profiles of Western (top) and Eastern (bottom) samples (x-axis;

decreasing genomic disruption towards the left) across the genome (y-axis). Amplifications are in red and deletions in blue. (B) Fraction of the genome

disrupted and (C) purity estimates of samples (circles) in each cohort. Solid lines represent median values; the dashed line represents the minimum purity

detection limit. (D) Rates of CIN in each cohorts. Single and triple asterisks indicate p�0.05 and p�0.001, respectively.

https://doi.org/10.1371/journal.pone.0176045.g003
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classification (P = 0.04, Fisher exact test). Neither the tumor stage nor its Lauren classification

was significantly correlated with East/West status.

We tested the SCNA events called on the purity corrected copy number data for patient

group associations using Fisher’s exact test. Unsurprisingly, focal events in most of our regions

(61 of 83) were significantly correlated with CIN status, including MYB amplification.

SMARCA4 deletion was not significantly associated with CIN. No events were significantly

associated with the patient’s Lauren status. However, MYB amplification was significantly

associated with tumor stage (FDR = 0.03).

Genome features in comparable groups of Eastern and Western gastric

cancer

Against this backdrop, we identified few differences in specific SCNAs in Eastern and Western

cases of gastric cancer. First examining rates of amplification and deletion separately across the

two cohorts, we detected larger numbers of focal deletions in the West cohort and of arm-level

deletions in the East cohort (P = 0.02 and 0.03, Wilcoxon rank sum test). There were no signifi-

cant differences in the rates of arm-level or focal amplification events. (S3A Fig). Even after con-

trolling for CIN status, focal deletion rates remained slightly higher in the West cohort in both

CIN and non-CIN groups (Wilcoxon P = 0.1 and 0.2 respectively, S3B and S3C Fig), whereas

Fig 4. Genomic disruption after purity correction within CIN and non-CIN subtypes. (A) Genomic disruption using purity-corrected data within

samples of each subtype. Circles represent samples and lines represent median values. (B) Purity-corrected copy-number profiles arranged by molecular

subtype and East/West cohort. Data are presented as in Fig 3A. “N.S.” indicates p>0.05.

https://doi.org/10.1371/journal.pone.0176045.g004
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arm-level deletions were enriched among Eastern non-CIN samples (Wilcoxon P = 0.007). This

difference was driven by a higher frequency (28%) of Western samples with no arm-level dele-

tions compared to 17% of Eastern cases (S3D Fig). If these samples are excluded, the remaining

non-CIN samples exhibited no significant difference in arm-level deletion rates, but retained a

significant difference in focal deletion rates (P = 0.007, S3E Fig).

We further explored the decreased rates of arm-level deletions in Western non-CIN sam-

ples. Among TCGA samples, lack of arm-level deletions was significantly correlated with the

MSI subtype after controlling for CIN (P = 10−7, S3F Fig). An independent assessment of MSI

was available in the TCGA samples but not the other cohorts. These results suggest that the

decreased arm-level deletion rates among Western samples could be due to a higher rate of

MSI. Within the TCGA cohort, a slightly higher fraction of Western samples exhibited MSI

relative to Eastern samples (23% vs 21%), but the difference was not statistically significant

(p = 0.9).

We next evaluated differences between rates of individual arm-level and focal SCNAs

between Eastern and Western samples. To this end, we used a permutation test that controls

for both overall levels of genomic disruption and disease subtype (CIN vs non-CIN; Fig 5; S4

and S5 Tables; and S4 Fig) [24]. Although individual chromosome arms exhibited different

rates of gain and loss (S4 Fig), none of these reached statistical significance (S5A–S5C Table).

We then compared rates of individual focal SCNAs at all significant peak regions of alteration

between Eastern and Western samples, using a permutation test that controls for both overall

levels of genomic disruption and disease subtype (CIN vs non-CIN) [24].

Only focal deletion of the phosphatase gene PTPRD reached significance (FDR = 0.007; Fig

5, S5 Fig, S4A–S4C Table), occurring in 27% of Western and 11% of Eastern samples for a

combined rate of 20. This difference in rates was evident in both CIN (West 29%, East 13%)

and non-CIN (West 25%, East 7%) cases. Varying the permutation test to control for tumor

stage or histological subtype instead of CIN also found PTPRD deletion as the event most

Fig 5. Event frequencies at regions of significant focal SCNA. A bar chart of comparative event

frequencies (black scale) is overlaid with a plot of the significance of the event rate difference (green scale).

Only those with FDR q<1.0 (all deletions) are shown. The arrow and dashed line indicate the significance

cutoff of 0.05.

https://doi.org/10.1371/journal.pone.0176045.g005
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correlated with East/West status (S4D and S4E Table). PTPRD deletions were enriched among

Western patients (P = 0.004) even within the TCGA cohort, suggesting that the difference was

not due to experimental technique. Among TCGA cases, where clinical and pathology infor-

mation is the most thorough, PTPRD deletions did not cluster in a specific location, gender,

Lauren or molecular subtype of gastric cancer. To ensure that our analysis was not missing the

correlation of a region found to be significant in only East or West, we repeated the CIN-con-

trolled analysis adding all significant regions found in only one cohort. Again, only PTPRD

deletions were found to be significantly correlated (S4F Table).

Discussion

There has been substantial debate within the gastric cancer field about whether there exist

intrinsic biologic differences between gastric cancers in patients from the Eastern and Western

worlds. Our assembly of large genomic SCNA datasets from Eastern and Western gastric can-

cer patients allowed us to evaluate copy-number differences in somatic genomes of tumors

from Eastern and Western populations, groups which show highly divergent incidence and

survival rates for gastric cancer. Moreover, the power of this dataset enabled us to refine recur-

rent copy-number alterations and to newly identify, for example,MYB amplifications and

SMARCA4 deletions in this disease. Through our analysis, we detected increased rates of

genome disruption in Western cases, with specific increases in focal deletions, especially those

involving PTPRD, and a relative paucity of arm-level chromosome losses.

The initially observed overall rates of genome disruption largely reflect a combination of

variations in tumor purity and modestly different rates of the CIN phenotypes in the Eastern

and Western patients in our cohort, rather than divergent frequencies of particular events in

Eastern and Western cancers of the same subtype. It is also possible that the decreased rates of

arm-level deletions among the Western non-CIN samples in our cohort is due to a modestly

higher fraction of MSI+ cancers. Our findings of higher rates of CIN tumors in patients of

Western descent is consistent with data demonstrating that CIN tumors are more prevalent in

the proximal stomach [15] as a predilection for proximal tumors are a characteristic of West-

ern stomach cancers. Prior studies have documented significantly lower rates of proximal can-

cers in Asians, including those who have immigrated to the West [37, 38].

Our results must also be evaluated in the context of known differences in clinical practice in

the Eastern compared to Western world. In the East, for example, greater surveillance and

awareness of gastric cancer, contributes to disease being found at earlier stages [39]. We can-

not exclude that the enhanced detection and resection of smaller tumors does not contribute

to the lower tumor purity we detected in the Eastern cohort. Additionally, the different rates of

distinct biologic subtypes also may contribute to these purity differences. EBV-positive and

MSI tumors are both more common in the more distal regions of the stomach. As these

tumors have greater inflammatory infiltrates, the presence of such non-malignant cells would

lead to reduced tumor cell purity.

A potential enrichment of CIN tumors in Western patients may therefore provide some

explanation for why gastric cancer is associated with poorer survival in the West Both genome

disruption [40] and cancer of the proximal stomach [41] are associated with poor survival.

Indeed, our analysis suggests that the longstanding debate regarding Eastern and Western

stomach cancer is confounded by different distributions of stomach cancer subtypes in these

populations. After controlling for CIN, gastric cancers arising in Eastern and Western patients

showed strikingly similar genomes.

Nevertheless, increased rates of focal deletion, particularly of PTPRD, among Western non-

CIN samples are not easily explained by varied representations of gastric cancer subtypes.
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Intriguingly, deletions that we find enriched in the Western patients are not necessarily at loci

clearly established to functionally promote tumorigenesis. Even PTPRD deletions have been

proposed to be secondary to DNA fragility rather than driver events, as PTPRD is a large gene

and a known fragile site [16, 42]. Our findings raise the additional hypothesis that differences

in Eastern and Western germ line haplotypes or environmental exposures generate influence

the phenotype of genomic instability leading to alternative rates of alteration of PTPRD and

other loci.

If CIN tumors are more common in the West, then other subtypes of stomach cancer may

be enriched in Eastern populations. One small study did report significant enrichment of MSI

+ cases in Japan, compared to the West [43]. Additionally, both MSI+ and EBV+ tumors are

less prevalent in the proximal stomach [44, 45] and associated with higher survival [44–46],

thus potentially contributing to discrepant survival in Eastern and Western patients. Although

gastric cancers with diffuse histology include both those with and without CIN, the greater

proportion in the recent TCGA study lacked CIN [15]. While several studies identify higher

rates of diffuse-type tumors in Eastern populations [38, 47], other reports note higher rates of

diffuse disease in Western patients [39]. Unlike MSI+ and EBV+ tumors, however, diffuse-

type gastric cancers carry a worse prognosis, implying that this bias likely contributes little to

the survival advantage reported in the East.

Our comparison between populations relied on a strictly genetic designation of ethnicity.

As these genetic features overlap with environmental risk factors for gastric cancer, we can-

not determine if particular discrepant somatic features of Eastern and Western gastric cancer

have a genetic or environmental basis. For example, H. pylori infection is less prevalent in

the West [48] and absence of H. pylori infection is associated with proximal cancers [49].

Most specimen collections are incompletely annotated for H. pylori infection because the

bacteria is only present in regions of pre-neoplastic gastritis and is typically lost following

development of intestinal metaplasia. Therefore, we are not able to specifically query whether

H. Pylori status influences our results. In addition to this limitation, our composite study

lacks the complete tumor EBV, MSI and histologic status necessary to completely address

these questions, as well as certain basic clinical parameters such as gender, age, and disease

treatment.

Within these limitations, our study indicates that gastric adenocarcinoma encompasses dis-

tinct biological but not absolute distinct ethnic subtypes. Nevertheless, different ethnic groups

may differ in the predisposition to distinct subtypes of gastric cancer for genetic or environ-

mental reasons, and we show that variation in the subtype prevalence accounts for nearly all

the difference in the rates of somatic copy-number aberrations. We note that our analysis did

not consider differences in gene expression, DNA methylation or gene mutation. Another

recent meta-analysis of Eastern and Western stomach cancer patients identified specific

inflammatory genes to be enriched in expression in the Western patients [50]. Indeed, further

studies of potential differences in the inflammatory composition of tumors of distinct geo-

graphic origin are called for and could identify non-genetic differences between tumors which

could influence survival and optimal therapy, especially given the burgeoning field of

immunotherapy.

Overall, our data support the supposition that Eastern and Western gastric cancers are not

fundamentally distinct diseases and are consistent with emerging thinking that rather than

geography or ethnicity, it is the molecular subtypes of this disease that are the primary catego-

ries we should evaluate to sub-divide these tumors. As we further explore the biology and ther-

apeutics for these cancers in different patient populations, it will be essential to take these

molecular subtypes into account to avoid comparisons that are confounded because of distinct

distributions of gastric cancer subtypes across different populations of patients.
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