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Abstract. We present a workflow for efficient construction
and calibration of large-scale groundwater models that in-
cludes the integration of airborne electromagnetic (AEM)
data and hydrological data. In the first step, the AEM data
are inverted to form a 3-D geophysical model. In the sec-
ond step, the 3-D geophysical model is translated, using a
spatially dependent petrophysical relationship, to form a 3-D
hydraulic conductivity distribution. The geophysical models
and the hydrological data are used to estimate spatially dis-
tributed petrophysical shape factors. The shape factors pri-
marily work as translators between resistivity and hydraulic
conductivity, but they can also compensate for structural de-
fects in the geophysical model.

The method is demonstrated for a synthetic case study
with sharp transitions among various types of deposits. Be-
sides demonstrating the methodology, we demonstrate the
importance of using geophysical regularization constraints
that conform well to the depositional environment. This is
done by inverting the AEM data using either smoothness
(smooth) constraints or minimum gradient support (sharp)
constraints, where the use of sharp constraints conforms best
to the environment. The dependency on AEM data quality is
also tested by inverting the geophysical model using data cor-
rupted with four different levels of background noise. Subse-
quently, the geophysical models are used to construct com-
peting groundwater models for which the shape factors are
calibrated. The performance of each groundwater model is
tested with respect to four types of prediction that are be-
yond the calibration base: a pumping well’s recharge area
and groundwater age, respectively, are predicted by applying
the same stress as for the hydrologic model calibration; and

head and stream discharge are predicted for a different stress
situation.

As expected, in this case the predictive capability of a
groundwater model is better when it is based on a sharp geo-
physical model instead of a smoothness constraint. This is
true for predictions of recharge area, head change, and stream
discharge, while we find no improvement for prediction of
groundwater age. Furthermore, we show that the model pre-
diction accuracy improves with AEM data quality for predic-
tions of recharge area, head change, and stream discharge,
while there appears to be no accuracy improvement for the
prediction of groundwater age.

1 Introduction

Large-scale geological and groundwater models are used ex-
tensively to support aquifer management. (Here “large-scale”
refers to an area of tens to thousands of square kilome-
ters.) Determining the distribution of hydraulic properties
and the geometry and connectivity of the groundwater sys-
tem is of significant importance because these features con-
trol the flow paths (Desbarats and Srivastava, 1991; Fogg
et al., 1999; Weissmann and Fogg, 1999). Incorrect recon-
struction of the geological structures has thus been recog-
nized as an important source of uncertainty when a ground-
water model is used to make predictions outside its calibra-
tion base (Refsgaard et al., 2012; Seifert et al., 2012; Zhou
et al., 2014). The data traditionally used for structural map-
ping include lithological logs from boreholes, hydrological
data, and hydraulic testing results, but these data are often
sparse and unevenly distributed within an investigated do-
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main. In these (very common) cases, data scarcity becomes
a major obstacle for structural mapping in relation to large-
scale groundwater modeling (Refsgaard et al., 2012; Zhou et
al., 2014).

Ground-based and airborne electromagnetic methods have
shown great potential for mapping geological structures (Jør-
gensen et al., 2003; Thomsen et al., 2004; Abraham et al.,
2012; Oldenborger et al., 2013; He et al., 2014; Munday et
al., 2015). For large-scale mapping, the airborne electromag-
netic method (AEM) is efficient and cost-effective, supple-
menting traditional data with dense estimates of electrical
resistivity which, in some environments, inform about the
lithology and thereby about the structure (Robinson et al.,
2008; Binley et al., 2015). AEM measurements can be made
quickly over large areas, and the resolution can be as fine
as 25 m in the horizontal direction and 5 m in the vertical
(Schamper et al., 2014), with a penetration depth of up to
several hundred meters (Siemon et al., 2009).

Various methods to incorporate resistivity estimates (here-
after referred to as resistivity models) into groundwa-
ter model construction have been reported. Manual and
knowledge-driven approaches have been used to combine
geological, hydrological, and geophysical data with expert
knowledge (Jørgensen et al., 2013). However, the manual ap-
proach is subjective and can be very time consuming and ex-
pensive to use when resistivity models from large AEM sur-
veys are to be incorporated into model construction. Alterna-
tively, more objective and cost-efficient geostatistical mod-
eling approaches (Carle and Fogg, 1996; Deutsch and Jour-
nel, 1998; Strebelle, 2002) are available for generating mod-
els from a combination of borehole information and AEM-
determined resistivity models. For example: He et al. (2014)
used a transition probability indicator simulation approach
(Carle and Fogg, 1996), while Gunnink and Siemon (2015)
used sequential indicator simulation (Deutsch, 2006). Marker
et al. (2015) used a deterministic strategy for the integration
of AEM resistivity models into the hydrological modeling
process.

The studies just mentioned all used sequential hydrogeo-
physical inversion approaches (SHI, as defined by Ferré et
al., 2009). In SHI the geophysical data are inverted first and
independently from the later inversion of the hydrological
data. For large-scale groundwater modeling, Herckenrath et
al. (2013) and Christensen et al. (2016) used both SHI and
joint hydrogeophysical inversion approaches (JHI; as defined
by Ferré et al., 2009). In JHI, the geophysical and hydro-
logical data are inverted jointly by linking the geophysical
and hydrological models directly through some of their pa-
rameters. The linking can, for example, be done by using
an Archie’s law inspired petrophysical relationship (Archie,
1942) to translate between the geophysical and hydrologic
parameters.

In general, petrophysical relationships are difficult to es-
tablish because such translation tends to be site-, scale- and
facies-specific (Chen et al., 2001; Hyndman and Tronicke,

2005; Slater, 2007) and uncertain (Mazáč et al., 1985; Slater,
2007). The studies by Herckenrath et al. (2013) and Chris-
tensen et al. (2016) used a fixed petrophysical relationship
throughout the model domain. Better results can be obtained
by using a spatially variable relationship, which allows for
local translation between hydraulic conductivity and electri-
cal resistivity, and by including the spatially dependent petro-
physical parameters in the optimization process (Linde et al.,
2006).

There are two other challenges for incorporating resistivity
models into large-scale groundwater modeling: differences
in model discretization and choice of geophysical regulariza-
tion methodology. Groundwater models are often discretized
in a regular voxel grid, while the traditional resistivity models
are 1-D and placed at the respective sounding location. For
airborne surveys, for example, the resistivity models are nor-
mally located along the flight lines (Christiansen et al., 2006).
Such resistivity models therefore need to be relocated to con-
form to the grid of the groundwater model. The relocation
will often be a subtle process where information can be lost.
To address this issue, Fiandaca et al. (2015) presented a geo-
physical modeling approach referred to as “voxel inversion”,
which decouples the geophysical inversion model space from
the geophysical measurement positions. This allows estima-
tion of a 3-D geophysical model that is discretized on the
same voxel grid as the groundwater model.

Traditionally, geophysical regularization includes horizon-
tal and vertical smoothing constraints (Constable et al., 1987)
or is limited to a few-layer inversion (Auken and Chris-
tiansen, 2004), whereas a groundwater system often has
sharp-layer or body boundaries. It has therefore been recog-
nized, e.g., by Day-Lewis (2005) and others, that the reg-
ularization used to stabilize the geophysical inversion may
not reflect the actual hydrologic conditions unless it is cho-
sen carefully. If, for example, smooth regularization is used
to estimate resistivity models in a sharply layered system, it
will produce a blurred resistivity distribution from which one
should be careful with inferring the spatial distribution of hy-
draulic conductivity to be used in a groundwater model. In
this case, it would be better to use minimum gradient support
regularization (Portniaguine and Zhdanov, 1999; Blaschek
et al., 2008; Vignoli et al., 2015) for the geophysical inver-
sion because the estimated resistivity distribution will tend to
consist of fewer, more sharply defined layer boundaries (ver-
tically and horizontally). However, it is often ignored that
geophysical data can be inverted using alternative regular-
ization schemes, and to test whether the alternative geophys-
ical models affect the predictive capability of a groundwater
model.

The main objective of the present study is to present
a novel sequential hydrogeophysical approach whereby a
voxel-based 3-D resistivity model is used to parameterize and
calibrate a groundwater model. The model parameterization
methodology allows the calibration to compensate for errors
in the resistivity model. Furthermore, we will demonstrate
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Figure 1. Conceptual flowchart for the sequential hydrogeophysical inversion. First step (box 1): geophysical inversion. Second step (box 2):
groundwater model calibration where shape factors of the petrophysical relationship are estimated using hydrological data. Third step (box 3):
the calibrated groundwater model is used for predictive modeling.

that it is important for groundwater flow simulations that the
underlying resistivity model is estimated using regularization
constraints that conform well to the geological environment.
Finally, we analyze how groundwater model prediction ac-
curacy depends on the quality of the geophysical data that
were used to estimate the resistivity model. Section 2 of the
paper presents the methodology. Section 3 describes the syn-
thetic test case used for our demonstration purposes. Sec-
tion 4 presents the results, while Sects. 5 and 6 present dis-
cussions and conclusions of the work, respectively.

2 Methodology

Conceptually, we define a translator function that describes
the petrophysical relationship between electrical resistivity
and hydraulic conductivity. The petrophysical relationship
can vary horizontally and vertically, thereby adapting to the
local conditions in translation from the geophysical model
space to the hydrological model space. Through inversion,
the 3-D spatially dependent optimal parameters of the petro-
physical relationship are estimated for each layer interval,
thereby covering the entire 3-D model space.

Figure 1 provides a workflow for the method. First, the
gathered airborne electromagnetic (AEM) data from the sur-
vey area are inverted with smooth or sharp horizontal and
vertical constraints (Vignoli et al., 2015). This is done by us-
ing a recently developed voxel inversion scheme which de-
couples the geophysical model from the position of the ac-
quired data (Fiandaca et al., 2015). The geophysical model
space thus corresponds to the full 3-D hydrological model

grid. Secondly, the geophysical voxel-based resistivity model
is used as input for the sequential hydrological inversion.
The geophysical model parameter (resistivity) is linked to
the main investigated parameter (hydraulic conductivity)
through a petrophysical relationship that has unknown shape
factor values. The shape factor values are estimated through
a hydrological inversion which minimizes an objective func-
tion describing the misfit between simulated groundwater
model responses and corresponding observed hydrological
data. Finally, the calibrated groundwater model can be used
to make a set of relevant hydrologic predictions. The various
steps of the methodology are explained in more detail in the
following.

2.1 Geophysical voxel inversion

In the first step (Fig. 1, box 1), the AEM data undergo
constrained deterministic inversion using recently developed
voxel inversion approaches. This approach allows the geo-
physical model spaces to be spatially decoupled from the
geophysical measurement positions (Fiandaca et al., 2015).
In most inversion schemes, the forward and inverse formu-
lations use the same model discretization. In the voxel for-
mulation, the two model discretizations are decoupled. The
voxel model space thus defines the geophysical properties on
the nodes of a regular 3-D grid.

For calculating the forward responses, a “virtual” 1-D
model is built at each sounding position. The “virtual” 1-
D model is defined by a number of layers, and layer thick-
nesses. The geophysical properties are interpolated from the
voxel model space into the layer centers of the virtual model
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that is subsequently used to simulate the forward response
for the corresponding sounding.

The voxel inversion approach thus allows for inversion of
AEM data into a geophysical model defined on a 3-D reg-
ular grid, regardless of the sounding positions. As a result,
the geophysical inversion can be conducted using the same
grid as that defined for a 3-D groundwater model, thereby
minimizing scaling issues in the coupling of geophysical and
hydrological models.

The general solution to the non-linear geophysical inver-
sion problem can be found in Auken et al. (2014). To stabi-
lize the inverse problem, either of two types of regularization
methods can be applied. The first regularization method is
commonly referred to as smoothness-constrained inversion
(Constable et al., 1987). The smoothness-constrained inver-
sion tends to reduce contrasts and the resulting geophysical
model may appear blurred. The reason for this is found in its
minimum-structure L2 norm inversion formalism (Constable
et al., 1987; Menke, 2012). Following the notation used by
Vignoli et al. (2015), this can be expressed as(
mi −mj

)2
/σ 2
i,j , (1)

wheremi andmj are the constrained parameters and σi,j de-
fines the constraint strength. The penalization of structures is
clearly seen in Eq. (1), where (mi−mj )2k/σ

2
i,j is proportional

to the square of the value of the variation (mi −mj ). This
implies that an increase in model parameter variation will al-
ways result in a penalization in the stabilizer. The smoothness
regularization thus prevents reconstruction of sharp transi-
tions.

The second regularization method is the minimum gra-
dient support (Portniaguine and Zhdanov, 1999; Blaschek
et al., 2008; Vignoli et al., 2015), which allows for large
sharp vertical and horizontal model transitions. The mini-
mum gradient support regularization seeks to minimize the
spatial variations vertically and laterally by penalizing the
vertical and horizontal model gradients through the stabilizer
expressed as (Vignoli et al., 2015)(

mi −mj
)2
/σ 2
i,j(

mi −mj
)2
/σ 2
i,j + 1

. (2)

In Eq. (2), σi,j is a parameter used to control the sharpness
of the regularization constraints. The stabilizer contribution
to the objective function is thus one when

∣∣mi −mj ∣∣� σi,j
and zero when σi,j �

∣∣mi −mj ∣∣. The minimum gradient
support functional thus counts the number of model varia-
tions larger than σi,j for the stabilizer term of the objective
function. This formalism allows sharp vertical and horizon-
tal model transitions, which are penalized excessively by the
smoothness-constrained inversion.

The geophysical voxel inversion is carried out on the log-
arithm of the resistivity values (m= log(ρ)), and the con-
straint values are expressed in terms of constraint factors

CFs, representing the relative strength of the constraints
(Auken et al., 2014). The actual values of the constraint stan-
dard deviations σi,j of Eqs. (1) and (2) are then computed
as σi,j = log

(
CFi,j

)
. For instance, a constraint factor value

of CFi,j = 1.9 gives
(
mi −mj

)2
/σ 2
i,j = 1 in Eq. (1) when

ρi/ρj = 1.9, i.e., when the resistivity values are 90 % differ-
ent (Vignoli et al., 2015).

2.2 Hydrological model parameterization

In the second step (Fig. 1, box 2), the 3-D distribution of elec-
trical resistivity values is linked to the hydrological parame-
ters (i.e., hydraulic conductivity) through a spatially varying
petrophysical relationship. Shape factors of this relationship
are calibrated.

Linking hydraulic conductivity and electrical resistivity is
not trivial because the parameter values and the form of the
petrophysical relationship may vary dramatically between
different types of environments. In addition, there can be
fundamental questions about how the effective properties
controlling electrical current flow are related to the effec-
tive properties controlling fluid flow (Slater, 2007). The pri-
mary factors controlling this relationship are porosity, pore
water conductivity, tortuosity, grain size, degree of satura-
tion, amount of clay minerals, etc. (McNeill, 1980). The sim-
plest petrophysical relationship is the empirical relationship
known as Archie’s law (Archie, 1942), which relates poros-
ity, pore water conductivity, and the degree of saturation to
bulk electrical conductivity. However, this type of relation-
ship does not take the electrical surface conductance of clay
minerals into account. The Waxman and Smits model (Wax-
man and Smits, 1968) combined with the dual-water model
by Clavier et al. (1984) provides a basis for establishing em-
pirical relationships for shaly sand and sediments contain-
ing clays (Revil and Cathles, 1999; Revil et al., 2012). For
glacial sedimentary environments, it is reported that clay has
low electrical resistivity and also low hydraulic conductiv-
ity, and sand has high electrical resistivity and high hydraulic
conductivity (Mazáč et al., 1985). For these environments, it
is common to use a power law relationship, which is given
some theoretical support by Purvance and Andricevic (2000).
The relationship is expressed as

K = α · ρβ , (3)

where K is the hydraulic conductivity (m s−1), ρ is the elec-
trical resistivity (ohm m), and α and β are two empirical
shape factors. To compute K for each element in the ground-
water model grid, α and β need to be parameterized and es-
timated. We suggest making the parameterization by pilot
points placed in a regular grid in each layer of the ground-
water model (Certes and De Marsily, 1991; Doherty, 2003).
Each pilot point holds a set of α and β parameters, and krig-
ing is used for spatial interpolation of α and β from the pilot
points to the model grid. This kind of parameterization cre-
ates smooth transitions in the parameter fields and allows for
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variation in both the horizontal and vertical directions of the
ρ toK translation. Hydraulic conductivity can thus be calcu-
lated by Eq. (3) for every element in the groundwater model
grid.

2.3 Hydrological inversion

The model parameters, α and β at the pilot points, are cali-
brated by fitting the groundwater model to hydrological data.
When the number of model parameters is large compared to
the number of observation data, the minimization must be
stabilized by regularization. The total objective function to
be minimized is therefore a balanced compromise between a
measurement term (8m) and a regularization term (8r). The
combined objective function has the form

8total =8m+µ ·8r

=

∑
i=1

n

d

ωd,i
(
dobs,i − dsim,i

)2
+µ ·8r (4)

where 8total is the total objective function, dobs,i and dsim,i
are measured and equivalent simulated data values, ωdi is
a data-dependent weight, µ is a weight factor, and φr is a
Tikhonov regularization term. Here, φr is defined as pre-
ferred difference regularization, where the preferred differ-
ence between neighboring parameter values is set to zero.
8total is minimized iteratively, and the regularization weight
factor, µ, is calculated during the iteration to ensure that8m,
the measurement part of the objective function, becomes ap-
proximately equal to a user-specified target value (Doherty,
2010).

3 Synthetic example

For illustrative purposes, we use a 3-D synthetic system
very similar to that presented by Christensen et al. (2016).
The only difference is that the active part of the groundwa-
ter system only consists of 5 layers, whereas Christensen et
al. (2016) used a 20-layer model.

3.1 Groundwater reference system and hydrological
data

The groundwater system is intended to mimic a glacial land-
scape and covers an area that is 7000 m (N–S) by 5000 m
(E–W). The geology of the system was generated using T-
PROGS (Carle, 1999) as having a horizontal discretization
of 25 m× 25 m and a vertical discretization of 10 m. The sys-
tem extends 50 m in the vertical direction, where it reaches
impermeable clay with a horizontal surface. The T-PROGS
generated geology above the impermeable clay consists of
categorical deposits of sand, silt, and clay. Within each of
the three types of deposits, hydraulic conductivity, recharge,
and porosity were generated as horizontally correlated ran-
dom fields using FIELDGEN (Doherty, 2010). All bound-

Figure 2. A map of locations of boreholes, a pumping well, pilot
points, head recovery prediction, and location of a geophysical cross
section.

aries of the domain were defined as having no-flow condi-
tions, except the southern boundary where hydraulic head
was defined as constant, h= 0 m. The local recharge de-
pends on the type of sediment at the uppermost layer. Most
groundwater discharges through the southern boundary, but
approximately 35 % discharges into a river running north to
south in the middle of the domain (Fig. 2). Groundwater
flow was simulated as confined steady-state flow employing
MODFLOW-2000 (Harbaugh et al., 2000) with the spatial
discretization equal to the geological discretization. Ground-
water is pumped at a rate of 0.015 m3 s−1 from a well located
at x = 2487.5 m and y = 1912.5 m and the well screens the
deepest 10 m of the groundwater system. In the following,
this system is called the reference system.

Thirty-five boreholes are found within the domain (Fig. 2).
Each borehole contains a monitoring well that screens the
deepest 10 m of sand registered in the borehole. For each
system realization, the hydraulic head in the 35 wells and
the river discharge at the southern boundary were extracted
from a forward simulation made by MODFLOW-2000. The
35 simulated hydraulic head values were contaminated by in-
dependent Gaussian error with zero mean and 0.1 m standard
deviation. The river discharge was corrupted with indepen-
dent Gaussian error with zero mean and a standard devia-
tion corresponding to 10 % of the true river discharge. The
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36 contaminated values constitute the hydrological data used
for groundwater model calibration.

3.2 Geophysical reference system and data

The geophysical reference system was designed so that there
is perfect correlation between hydraulic conductivity and
electrical resistivity. This implies that a relationship between
hydraulic conductivity and measured electrical resistivity is
likely to exist. The true relationship is of the same form as
Eq. (3), and it uses constant shape factor values α = 1e−12

and β = 4. This corresponds to conditions where clay has
low electrical resistivity and also low hydraulic conductiv-
ity, and sand has high electrical resistivity and high hydraulic
conductivity. The impermeable clay at the base of the refer-
ence system was assigned a constant value of 5 ohm m.

The AEM data were simulated using AarhusInv (Auken
et al., 2014) for a system setup similar to a typical dual-
moment SkyTEM-304 system (Sørensen and Auken, 2004).
The simulated survey consists of 35 E–W flight lines with
200 m spacing between the flight lines. AEM system re-
sponses were simulated for every 25 m along the flight lines,
giving a total of 6300 sounding locations for both the trans-
mitted high and low moments. AarhusInv is a 1-D modeling
code. To mimic the loss of resolution with layer depth we
simulated the responses using the 2-D logarithmic average
resistivity of all model cells inside the radius of the footprint
at a given depth. To obtain the geophysical data set, the sim-
ulated data were contaminated with noise according to the
noise model suggested by Auken et al. (2008):

Vresp = V ·

1+G(0,1) ·

[
SD2

uni+

(
Vnoise

V

)2
]1/2

 , (5)

where Vresp is the perturbed synthetic data, V is the synthetic
noiseless data,G(0,1) is standard Gaussian noise (with zero
mean and unit standard deviation), and SD2

uni is uniform
noise variance. Vnoise is the background noise contribution
given by

Vnoise = b ·

(
t

10−3

)−1/2

, (6)

where t is the gate center time in seconds, and b is the back-
ground noise level at 1 ms. For the following analysis we gen-
erated geophysical data sets with four levels of background
noise, i.e., b equal to 1, 3, 5, and 10 nV m−2, respectively.
The uniform standard deviation, which accounts for instru-
ment and other non-specified noise contributions, was set
to 3 % for dB/dt responses. After the data were perturbed
with noise, they were processed as a field data set (Auken
et al., 2009), resulting in an uneven number of gates per
sounding. Figure 3 illustrates the resulting low and high-
moment AEM sounding data, respectively, for the different
background noise levels.

Figure 3. AEM sounding data corrupted by four levels of back-
ground noise. The value on top of each subplot corresponds to the
noise level at 1 ms and to the b value in Eq. 6. The black dashed
curves indicate the background noise levels, low and high-moment
earth responses are illustrated as red and blue error bars, respec-
tively, and the black error bars illustrate data which are removed by
the data processing.

3.3 Geophysical voxel inversion

The geophysical data were inverted by voxel inversion (Fian-
daca et al., 2015) using AarhusInv (Auken et al., 2014). The
voxel inversion was conducted in two different ways: by us-
ing L2-norm “smooth” constraints, or by using minimum
gradient support “sharp” constraints (both implemented in
AarhusInv; Auken et al., 2014).

To avoid the influence of numerical discretization errors,
the geophysical voxel inversion uses the same spatial dis-
cretization as the reference system and the groundwater
model. For both smooth and sharp inversions, a 40 ohm m
uniform half-space was used as the starting model and spatial
regularization was applied using the same settings through-
out all inversions. Considering the small number of layers
and the shallow discretization, it was unnecessary to apply
vertical constraints for any of the inversions. By contrast,
depth- and direction-dependent horizontal constraint factors
were used for both smooth and sharp inversions. The strength
given to the horizontal constraints is based on experience,
keeping in mind that the constraint factors should not prevent
data fitting, but promote model consistency. Therefore, a few
experiments were made to “manually” tune the magnitude of
the constraint factors. Different values along the flight lines
and perpendicular to them, respectively, were found to give
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better results. This is a result of having higher data density
along the flight lines compared to the perpendicular direc-
tion. In these synthetic tests (similar to what is done with
field data with analogous data density) the smooth regular-
ization constraint factors of CF= 1.9 along the flight lines
and CF= 1.05 perpendicular to the flight lines were used for
the first layer.

In contrast to the conventional inversion of geophysical
data, where the vertical discretization of the geophysical
model is normally characterized by logarithmically increas-
ing layer thicknesses, in this study fixed layer thicknesses
were used in the geophysical models. To account for the loss
of resolution with depth without increasing the layer thick-
nesses, the horizontal constraint factors were set to decrease
linearly with depth (tighter bands for the deeper layers), re-
sulting in constraint factors of 1.4 along the flight lines and
1.02 perpendicular to the flight lines for the sixth layer.

The same directional and depth-dependent tuning used for
smooth regularization was also applied to the sharp inver-
sion. In this case constraint factors of CF= 1.0625 along the
flight lines and 1.01 perpendicular to the flight lines were
used for the first layer, while factors of CF= 1.025 along the
flight lines and CF= 1.01 perpendicular to the flight lines
were used for the sixth layer. The smaller values of the con-
straint factors in the sharp inversion are due to the different
role that the factors play in the regularization definition, as
is evident when comparing Eqs. (1) and (2). The difference
in constraint values between smooth and sharp inversion is
analogous to what has been used in other studies (e.g., Vig-
noli et al., 2015). All the constraint values used in this study
represent typical values working also in other applications,
both for synthetic and filed data.

3.4 Groundwater model parameterization and
calibration

In the following, the groundwater model will be parameter-
ized in two different ways. Both approaches treat the shape
factors between hydraulic conductivity and resistivity, α and
β, in a relationship (Eq. 3), as spatially dependent parame-
ters to be estimated. The two parameterizations differ by the
resistivity model that is used to calculate the hydraulic con-
ductivity field of the groundwater model.

– The first type of parameterization uses a resistiv-
ity model estimated by smooth voxel inversion of
AEM data collected with a background noise level of
3 nV m−2. These models will be referred to as SHI-
smooth-3.

– The second type of parameterization uses a resistivity
model estimated by sharp voxel inversion of AEM data
collected with a background noise level of either 1, 3, 5,
or 10 nV m−2. These models will be referred to as SHI-
sharp-1, SHI-sharp-3, SHI-sharp-5, and SHI-sharp-10,
respectively.

The shape factors, α and β, of the petrophysical relationship
are parameterized by placing pilot points in a uniform grid,
with five nodes in the x direction and seven in the y direction.
Hence, in total the groundwater model is parameterized by
5× 7× 5= 175 petrophysical relationships, each having two
parameters (the shape factors).

The parameter values are estimated by fitting the available
hydrological data consisting of the 35 observations of the hy-
draulic head and one river discharge observation. Calibration
is done by minimization of the total objective function given
by Eq. (4), where the measurement objective function is com-
puted as

8m = n
−1
h

∑
i=1

n

h

ωh
(
hobs,i −hsim,i

)2
+ n−1

r

nr∑
i=1

ωr
(
robs,i − rsim,i

)2
, (7)

where nh and nr are the number of head and river measure-
ments, respectively; hobs and hsim are observed and corre-
sponding simulated hydraulic heads; robs and rsim are ob-
served and corresponding simulated river discharge; and ωh
and ωr are subjectively chosen weights for head and dis-
charge data, respectively. If a model is expected not to
have structural defects, then it would be ideal to choose the
weights ωh = σ

−1
h and ωr = σ

−1
r , where σh and σr are the

standard deviations of measurement error for head and river
measurements, respectively. However, in this case (as in all
real cases) the model has structural errors that make the misfit
between hydraulic head data and equivalent simulated val-
ues much larger than what can be explained by measure-
ment error. In accordance with common groundwater mod-
eling practice (e.g., Christensen et al., 1998), we therefore
conducted residual analysis and a few experiments to esti-
mate the magnitude of the total head error (which is the sum
of observation error and structural error). This indicated that
the standard deviation for the total error on the hydraulic
head is approximately 10 · σh, while the total error for the
river discharge is totally dominated by measurement error.
As weights we therefore used ωh = (10 · σh)

−2
= 1.0 and

ωr = (σr)
−2
= 1.38 · 105, respectively. Using these weights,

and averaging over the 20 system realizations, gave a mini-
mized objective function value of φm = 2.5. This is close to
the value of 2.0, which would be expected from (Eq. 7) if the
weighting used reflects the error magnitudes.

Calibration was performed using BeoPEST, a version of
PEST (Doherty, 2010) that allows the inversion to run in par-
allel using multiple cores and computers.

It should be noted that for calibration and model prediction
we applied the recharge field and boundary conditions of the
reference system.
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3.5 Model predictions

In step 3 (Fig. 1, box), the calibrated groundwater model is
used to make predictions.

In the following synthetic demonstration study, the cali-
brated SHI-smooth and SHI-sharp groundwater models are
evaluated by comparing their simulated model predictions
with corresponding predictions simulated for the (synthetic
and, therefore, known) reference system. The former are
called “model predictions”; the latter are called “reference
predictions”.

Prediction types 1 and 2 relate to steady-state flow when
groundwater is pumped from the well. This is also the con-
dition for which the hydrologic data used for calibration
were sampled. Type 1 is the average age of the groundwa-
ter pumped from the well. Type 2 is the size of the recharge
area of the pumping well. Both of these predictions differ in
type from the calibration data. For these model predictions,
we used a homogeneous porosity of 0.2 (the average value of
the reference system porosity fields is 0.184).

Prediction types 3 and 4 relate to a new stress situation
long after pumping from the well has ceased: type 3 is
groundwater discharge into the stream, and type 4 is head re-
covery for a well screening a layer northeast of the pumping
well (the location is shown in Fig. 2).

Reference and model prediction types 3 and 4 were sim-
ulated by MODFLOW-2000 (Harbaugh et al., 2000), while
types 1 and 2 were simulated by forward particle tracking us-
ing MODPATH version 5 (Pollock, 1994) and MODFLOW-
2000 results.

The first two types of prediction are interesting from the
perspectives of protection and resource management of a
well field, while the latter two are relevant in the case of
possible change in management practice resulting in a new
stress.

3.6 Evaluation of prediction performance

As said at the beginning of Sect. 2, steps 1–3 of the frame-
work can be repeated for a number of system realizations
to provide consistent statistical interference regarding the
model prediction results. Here, 20 different reference sys-
tem realizations were used. For each prediction, we there-
fore have 20 corresponding sets of reference predictions and
model predictions that can be used to evaluate the perfor-
mance of a calibrated model with respect to that prediction.
The performance is evaluated for the SHI-smooth and SHI-
sharp models, respectively, and it is done in the following
ways.

Prediction error characteristics are quantified by the mean
absolute error (MAE), the mean error (ME) following

MAE=
1
N

N∑
i=1

|xi − ti | , (8)

Figure 4. The figure shows an east–west cross section of resistiv-
ity for the reference system (realization number 20), and inversion
results for smooth and sharp inversion, respectively. The last row
shows a histogram of resistivity for each layer. The black curve is
the resistivity distribution for the reference system, the red curve
shows the resistivity distribution for the smooth inversion, and fi-
nally the green curve shows the resistivity distribution for the sharp
inversion.

ME=
1
N

N∑
i=1

xi − ti, (9)

where xi is the model prediction of realization i, ti is the ref-
erence prediction of realization i, and N = 20 is the number
of system realizations. MAE measures how close the model
prediction tends to be to the reference prediction; ME mea-
sures the tendency of positive or negative bias in the model
prediction.

4 Results

4.1 Geophysical results

Figure 4 shows a representative cross section for 1 of the 20
system realizations. Both geophysical models in Fig. 4 were
inverted using data perturbed with a background noise level
of 3 nV m−2. Comparing the geophysical model results with
the reference model, we find that SHI-smooth-3 resolves the
main features reasonably well for the upper layers. The main
discrepancy is found in the fifth layer, where the sand bodies
are not resolved. In general, the resistivity of the sand bod-
ies (dark orange in the reference system) is underestimated,
and the transitions between the categorical deposits are arti-
ficially smooth.
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Figure 5. Scatter plot of true and estimated electrical resistivity fields for smooth geophysical inversion and sharp geophysical inversion for
different data qualities of the AEM data for model realization number 20. On top of each window a Pearson correlation coefficient (PCC) is
calculated.

Figure 4 shows that SHI-sharp-3 resolves the sand body
in layer 5 much better than SHI-smooth-3. Moreover, the lo-
cations and boundaries of the geological deposits tend to be
less smeared out when using the sharp constraints. Inspec-
tion of the histograms at the bottom of Fig. 4 shows that the
SHI-sharp-3 model tends to produce resistivity distributions
that are more similar to the reference distributions than the
SHI-smooth-3 model. This improvement could allow for eas-
ier translation from electrical resistivity into hydraulic con-
ductivity and correspondingly more faithful representation of
hydrogeologic structure and connectivity.

Figure 5 shows voxel-by-voxel density plots of refer-
ence versus estimated electrical resistivity for a SHI-smooth
model and corresponding SHI-sharp models. Pearson’s cor-
relation coefficient (PCC; Cooley and Naff, 1990) is shown
on top of the density plot for each layer. A comparison of
the density plots and the PCC values of the SHI-smooth-3
and SHI-sharp-3 models shows that using sharp instead of
smooth constraints improves the inverted geophysical model.
The improvement is seen most clearly for the sand deposits.

For both the SHI-smooth and SHI-sharp models there is
a strong correlation between the electrical resistivity esti-
mates and the true electrical resistivities of the first layer,

but the SHI-smooth model has weaker correlation than the
SHI-sharp models. For both types of models, the correlation
weakens with depth and background noise. The former is
caused by the resolution limitations of AEM data. However,
the depth and resistivity of the low-resistivity clay at the base
of the model are well resolved by both the SHI-smooth and
SHI-sharp model inversions (results not shown).

4.2 Hydrological calibration results

The calibration results for the 20 different system realizations
are shown in Fig. 6. The figure shows that the measurement
objective function value, 8m, for most system realizations is
close to 2.0. This is the case for almost all of the SHI-sharp
model realizations, even for large background noise levels.
For many of the realizations, the SHI-smooth model also fits
the data well; but, several realizations lead to higher misfit
than desired. This makes E [8m] equal to 5.8 for the SHI-
smooth-3 models, while it is 2.5 for the SHI-sharp-3 models.
That is, the estimated hydraulic conductivity field tends to be
better for sharp models than for smooth models.
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Figure 6. Measurement objective function value obtained for the
various groundwater model calibration cases, while E [8m] is the
mean value across all 20 different system realizations. The dashed
line indicates the expected target value for the model calibrations.

4.3 Parameter estimation

Figure 7 shows a cross section of the estimated K-, α- and
β-fields for one of the system realizations. The two columns
show estimates for the SHI-smooth-3 and SHI-sharp-3 mod-
els. Figure 8 shows a density plot of the reference hydraulic
conductivity distribution and the estimated hydraulic con-
ductivity distributions. The results in Figs. 7 and 8 are typical
for all 20 system realizations.

From Fig. 7a and b it is seen that the estimated α and β
parameter values change smoothly in the horizontal direc-
tion but have sharp transitions in the vertical direction. The
second row of Fig. 7 shows the corresponding estimated K
fields whose main features are determined by the underlying
resistivity models (Fig. 4), but they are “corrected” during
model calibration to make the groundwater model fit the hy-
drological data.

For the SHI-smooth-3 model, α and β take compensatory
roles, particularly in the first layer. Here, the estimated α and
β values are higher than the shape factors of the true rela-
tionship that was used to construct the geophysical reference
system. This increases the hydraulic conductivity in layer 1
to compensate for the too low hydraulic conductivity (and re-
sistivity, Fig. 4) in layer 2 and deeper layers. The estimated
α and β values are not sufficient to compensate for the miss-
ing deep high-resistivity body in layer 5 of the SHI-smooth-3
model (Fig. 4).

For the SHI-sharp-3 model, the estimated α and β param-
eter values only vary slightly from the shape factor values
of the true relationship, except for layer 5 (Fig. 7b). This in-
dicates that for the shallower layers the sharp inversion of
AEM data sufficiently resolves the resistivity of features that
are important for groundwater model calibration. In layer 5

Figure 7. East–west cross section for model realization number
20. (a) shows the parameter fields for the SHI-smooth-3 calibrated
model. (b) shows the parameter fields for the SHI-sharp-3 calibrated
model. The first row shows the reference K-field, the second row
shows the estimated K-field, and the third and fourth rows show
shape factors of the petrophysical relationship for α and β, respec-
tively.

the estimate of shape factor β turns out to be fairly high to
compensate for the too low resistivity estimates in this layer
(Fig. 4).

Figure 8 shows voxel-by-voxel density plots of reference
versus estimated hydraulic conductivity for the SHI-smooth
and SHI-sharp models. The results confirm that the K field
tends to be overestimated for the first layer, in particular for
the SHI-smooth-3 model. From the second layer and deeper,
the hydraulic conductivity values tend to be underestimated
for sand but overestimated for silt and clay. Moreover, the
distributions of estimated K smear out with depth. Judged
by PCC values and visual inspection of Fig. 8 (highlighting
the connectivity of the K field), the hydraulic conductivity
field estimated for any SHI-sharp model is in better agree-
ment with the reference field than the field estimated by the
SHI-smooth-3 model.

Model structural accuracy is quantified in Table 1 for both
the SHI-smooth and SHI-sharp models. Structural accuracy
is calculated here as the fraction of the total number of
voxels for which the estimated log10-hydraulic conductivity
plus/minus 20 % contains the true log10-hydraulic conduc-
tivity value of the reference model. The results are averaged
over the 20 system realizations. From Table 1 it is seen that
all SHI-sharp models outperform the accuracy of the SHI-
smooth models, except for layer 5. The exception occurs be-
cause the SHI-smooth models are fairly good at estimating
the K distributions for silt and clays, but underestimate K for
sand (Fig. 8). In contrast, SHI-sharp models overestimate the
K distributions for silt and clays, but only slightly underes-
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Figure 8. Scatter plot of true and estimated hydraulic conductivity fields for smooth geophysical inversion and sharp geophysical inversion
for different data qualities of the AEM data for model realization number 20. On top of each window the Pearson correlation coefficient
(PCC) is calculated.

Table 1. Model structural accuracy comparison for the groundwater
model using both smooth or sharp geophysical models and different
background noise levels. The results are averaged over the 20 sys-
tem realizations. A value of 1.0 means that the model’s hydraulic
conductivity field is in good agreement with the reference field; a
value of 0.0 means no agreement (see the body text for an exact
definition of “structural accuracy”).

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

SHI-3 smooth 0.89 0.79 0.56 0.54 0.64
SHI-1 sharp 0.96 0.91 0.81 0.61 0.48
SHI-3 sharp 0.96 0.92 0.82 0.64 0.5
SHI-5 sharp 0.96 0.91 0.78 0.64 0.49
SHI-10 sharp 0.96 0.90 0.78 0.6 0.46

timate K for sand (Fig. 8). Therefore, for layer 5, the model
structural accuracy appears to be better for SHI-smooth than
for SHI-sharp models.

4.4 Prediction results

For each of the 20 system realizations, the calibrated ground-
water models were used to make the model predictions de-
scribed in Sect. 3.5. Figure 9 shows scatter plots of the refer-
ence prediction versus the calibrated model prediction; each
plotted point corresponds to a particular system realization
and the corresponding SHI-smooth-3 or SHI-sharp-3 model.
The mean error (ME) and mean absolute error (MAE) of the
prediction are also given in Fig. 9. Figure 10 shows a MAE
contour map for head recovery predictions.

4.4.1 Particle tracking predictions

The first column of Fig. 9 shows results for prediction of
the average age of the groundwater pumped from the pump-
ing well. The scatter plot illustrates that SHI-sharp models
tend to overpredict average age. This is seen by the major-
ity of points plotting above the identity line as well as by
the value of ME= 32 (Fig. 9). The age prediction results
are similar for the SHI-smooth models, although the spread

www.hydrol-earth-syst-sci.net/21/1321/2017/ Hydrol. Earth Syst. Sci., 21, 1321–1337, 2017



1332 N. K. Christensen et al.: Voxel inversion of airborne electromagnetic data

Figure 9. Scatter plots of calibrated model prediction versus the reference model prediction using results from the 20 system realizations.
The plots in the first and second columns are the average groundwater age and recharge area, respectively, of the pumping well. Column
three is for head recovery when pumping has stopped in the observation well shown in Fig. 10, and column four is for groundwater discharge
to the river after pumping has ceased; ME and MAE are used to quantify the prediction error on the basis of the 20 realizations.

Figure 10. MAE contour map for head recovery prediction. (a) For
predictions using the SHI-smooth models. (b) For predictions using
the SHI-smooth models. (c) Difference between the maps shown
in (a) and (b). Red dots mark the location of the observation well for
the head recovery prediction shown in Fig. 9. The red cross marks
the location of the pumping well.

of points is larger than for SHI-sharp-3 (e.g., quantified by
the larger value of MAE). There are two major explanations
for these relatively “poor” predictive performances. First, the
calibrated K-fields underestimate the hydraulic conductivity
of sand deposits in the deeper layers (Fig. 8), which results
in too slow particle travel times at depth. Secondly, the re-
construction of the deepest layers is too smooth for both the
SHI-smooth and SHI-sharp models (Fig. 7) and does not re-

solve the small-scale variability that controls the transport of
particles.

The second column of Fig. 9 reports results related to pre-
diction of the recharge area of the pumping well. The scat-
ter plot shows that the SHI-smooth models underpredict the
recharge area. This happens because the smooth models lead
to estimation of hydraulic conductivities in the deepest lay-
ers that are too low. This creates a deep cone of depression
around the pumping well that extends upward locally to reach
the river bed. This induces a local discharge of water from the
stream through the groundwater system to the pumping well.
These models thus predict that a significant proportion of the
pumping will come from local discharge from the river. (This
is compensated for by increased model predicted groundwa-
ter discharge to other parts of the river.) For the true, refer-
ence system used to generate the data, the river does not lose
water, and all water pumped from the well originates from
groundwater recharge.

The SHI-sharp models are better predictors of the recharge
area, but these models also tend to predict an area that is
too small. These models also predict local discharge from
the river to the groundwater system, but to a lesser degree
than the SHI-smooth models. This is likely because the main
features of the reference system are better reconstructed by
the SHI-sharp-3 models.

4.4.2 Head recovery and discharge predictions

The prediction of head recovery at an observation well (lo-
cation shown in Fig. 10) is done poorly by SHI-smooth-3
(Fig. 9). The predicted head recovery is very small for most
of these models because they tend to have too little hydraulic
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Figure 11. Prediction error as a function of the background noise
on the geophysical data. The black dots are the SHI-smooth models
using a background noise level of 3 nV m−2. The red dots are the
SHI-sharp models as a function of background noise level.

connectivity between the deepest layers, the estimated hy-
draulic conductivities are too low in the deep sand layers,
and the simulated cone of depression is therefore too deep
and too local.

The SHI-sharp-3 models make less biased, fairly reason-
able predictions of the head recovery (Fig. 9) because they
resolve the variations of hydraulic conductivity at depth bet-
ter than the SHI-smooth-3 models. The superiority of SHI-
sharp-3 models for recovery prediction is also seen from the
MAE contour maps in Fig. 10. The MAE is seen to be spa-
tially dependent: it is largest at the pumping well, and small-
est at the constant head boundary to the south

The fourth column of Fig. 9 shows that both types of mod-
els are good predictors of discharge to the river after cessa-
tion of pumping. However, the SHI-sharp-3 model predic-
tion is superior (its points plot closer to the identity line). For
SHI-smooth-3, the prediction tends to be positively biased
and more spread than for SHI-sharp-3.

4.4.3 Prediction error as function of data quality

In Fig. 11 MAE is used as a metric to evaluate how the pre-
diction performance of SHI-sharp models depends on the
level of background noise for the geophysical data. The noise
levels were kept unchanged for the hydrological data.

Figure 11 shows that the average age prediction made by
SHI-sharp models is nearly unaffected by the quality of the
geophysical data. It is speculative, but this result may be be-
cause this prediction is highly dependent on small-scale vari-
ability in hydraulic conductivity and porosity that cannot be
resolved from any of the geophysical data sets. That is, even
the highest quality geophysical data are not highly informa-
tive, so reducing the data quality further has little effect.

It is different for the recharge area prediction (Fig. 11):
MAE increases for this by approximately 25 % when the
level of background noise is increased from 1 to 10 nV m−2.
This happens because the variations of resistivity (and thus

hydraulic conductivity) are less well resolved when using the
poor-quality geophysical data.

The third and fourth rows of Fig. 11 show the head re-
covery and river discharge prediction after cessation of the
pumping well. Head recovery and discharge predictions also
tend to depend on the quality of the geophysical data. The
MAE increases by 17 % for recovery prediction and 23 % for
discharge prediction when the noise level of the geophysical
data increases from 1 to 10 nV m−2.

5 Discussion

5.1 Estimation of parameters in the petrophysical
relation

Parameterizing the groundwater model by assuming a spa-
tially dependent petrophysical relationship between resistiv-
ity and hydraulic conductivity makes it possible to use a re-
sistivity voxel model for construction and calibration of a
groundwater model. Assuming that the relationship is spa-
tially dependent can account for two challenges: (i) there
may be actual changes in the petrophysical relationship
within an investigated domain, and (ii) there may be reso-
lution limitations in the estimated resistivity model.

Challenge (i) is likely to be the rule for many environ-
ments, especially sedimentary environments, where the for-
mation resistivity is primarily controlled by the pore water re-
sistivity and the clay content. In the case of spatial changes in
pore water resistivity and/or the content of various clay min-
eral content, the discrimination between clay and sands may
be less clear in the estimated resistivity values. For large-
scale groundwater systems, the variation of pore water resis-
tivity (e.g., saline pore water) is expected to vary smoothly,
which would be accounted for by the spatially varying petro-
physical relationship. However, the procedure only works as
applied here if the underlying assumption that clay-rich de-
posits have lower electrical resistivity than sand deposits is
valid.

Challenge (ii) concerns the geophysical model resolution
of the true formation resistivity. EM methods are, by nature,
more sensitive to deposits of low electrical resistivity than to
deposits of high resistivity, and their vertical and horizontal
resolutions decrease with depth. This challenge affects the re-
sistivity models estimated in the present synthetic study. Spa-
tially dependent shape factors can take a compensatory role
for the resolution issues of the estimated geophysical voxel
model. The calibrated shape factors may thus no longer have
firm physical meaning because they mainly act as correction
parameters for absorbing structural errors of the geophysi-
cal model. This is acceptable as long as the resulting hy-
draulic conductivity values are reasonable. The idea of cal-
ibrating the shape factors is related to the concept of com-
pensatory parameters in highly parameterized calibration de-
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scribed by Doherty and Welter (2010) and by Doherty and
Christensen (2011).

Finally, Auken et al. (2008) showed that using borehole
data as a priori information in the geophysical inversion im-
proves the reconstruction of the model features significantly.
Estimation of EM-based resistivity models should therefore,
wherever possible, be supported by borehole information to
improve the decreasing spatial resolution of the EM methods.

5.2 Geophysical inversion strategy and data quality

Inversion of AEM data using a 1-D geophysical model usu-
ally applies smoothness constraints in order to regularize
the inversion (Auken and Christiansen, 2004; Viezzoli et al.,
2008). Traditionally, the regularization includes both lateral
and vertical smoothing constraints (Constable et al., 1987) or
a few-layer parameterization (Auken et al., 2008). Inversion
using the former type of regularization produces smooth im-
ages with blurred formation boundaries which can be prob-
lematic when it is important to resolve structural connections
in a complex geological system. The latter few-layer inver-
sion may also be prone to producing artifacts when used to
map such systems. Day-Lewis (2005) and others therefore
recognized that regularization used to stabilize the geophysi-
cal inversion can lead to artifacts that do not reflect the actual
hydrogeological conditions. Thoughtless use of such results
to construct groundwater models can have serious ramifica-
tions.

For the present case study, the number of vertical transi-
tions is a great challenge for the AEM method due to the
principle of high-resistivity equivalence. That is, it is difficult
to resolve a high-resistivity layer between two low-resistivity
layers because the energy loss, and therefore the sensitivity,
is concentrated in the less resistive layers. This will result in
layer suppression, because the data sensitivity to the high-
resistivity layer is low (Christiansen et al., 2006). This effect
is present for both the smooth and sharp inversions, but in
the sharp inversion the effect is less fuzzy, and features, espe-
cially for the fifth layer, could be more clearly reconstructed
(Fig. 4). When the sensitivity of the AEM method is too low,
the regularization may make information migrate from areas
with higher measurement sensitivity (Vignoli et al., 2015).
In contrast to the smooth regularization scheme, the sharp
regularization method is designed to penalize smooth tran-
sitions, which eventually improves the reconstruction of the
deeper sand bodies in the present study. Therefore, for the
studied case, the sharp regularization methodology should be
preferred over smooth regularization, because the sharp con-
straints correspond better to the actual structures of the refer-
ence system (sharp transitions between categorical deposits;
Fig. 4). Moreover, because the sharp regularization method-
ology leads to improved reconstruction of subsurface struc-
tures, these models lead to greater accuracy and improvement
of most groundwater model predictions (Fig. 9).

The groundwater system considered here is relatively shal-
low, at least as seen from the perspective of the AEM system
used in the demonstration example. This is evident from the
transmitted EM signal (Fig. 3). The background noise pri-
marily affects the last time gates (10−4–10−3 s) of the low-
moment and, only to a small degree, the high-moment time
gates (even for low-quality data). This implies that the reso-
lution of the AEM data is generally high for the upper layers.
Therefore, in the present case the upper layers of all the geo-
physical models (both SHI-smooth and SHI-sharp) are well
resolved and to a large extent unaffected by AEM data qual-
ity (Fig. 5). However, the deep sand units are difficult to re-
solve because they give only a weak signature in the AEM
data (Figs. 3 and 5). This is particularly true for the poorest
AEM data quality cases where the late time gates for the low-
moment measurements are disturbed by background noise.

6 Summary and conclusion

We present a workflow for efficient construction and cali-
bration of large-scale groundwater models using a combina-
tion of airborne electromagnetic (AEM) data and hydrologi-
cal data. Other types of data could be integrated as well fol-
lowing the same procedure. First, the AEM data are inverted
to form a 3-D geophysical model. Subsequently, the geo-
physical model is translated into a 3-D model of hydraulic
conductivity by using a spatially dependent petrophysical re-
lationship for which the shape parameters are estimated by
fitting the groundwater model to hydrological data. The es-
timated shape factors of the petrophysical relationship pri-
marily work as translators between resistivity and hydraulic
conductivity, but they can also compensate for structural de-
fects in the model.

The method is demonstrated for a synthetic case study
where the subsurface consists of categorical deposits with
different geophysical and hydraulic properties. The AEM
data are inverted using both smooth and sharp regularization
constraints, resulting in two competitive geophysical mod-
els. Furthermore, the influence of the AEM data quality is
tested by inverting the sharp geophysical models using data
corrupted with four different levels of background noise. The
resulting groundwater models are each calibrated on the ba-
sis of head and discharge data, and their predictive perfor-
mance is tested for four types of prediction beyond the cal-
ibration base. Predictions of a pumping well’s recharge area
and groundwater age apply the same stress situation as ap-
plied during hydrologic model calibration, while predictions
of head and stream discharge are done for a changed stress
situation.

It is found that a geophysical model inverted with sharp
constraints (SHI-sharp) leads to a more accurate groundwa-
ter model than one that is based on a geophysical model in-
verted with smooth constraints (SHI-smooth). The SHI-sharp
model leads to an estimated hydraulic conductivity field of

Hydrol. Earth Syst. Sci., 21, 1321–1337, 2017 www.hydrol-earth-syst-sci.net/21/1321/2017/



N. K. Christensen et al.: Voxel inversion of airborne electromagnetic data 1335

greater accuracy and to improvement of most groundwater
model predictions. The explanation is that the reference sys-
tem (like many real hydrogeologic systems) is characterized
by sharp transitions between categorical deposits; this is re-
solved better by the SHI-sharp resistivity model than by the
SHI-smooth model.

Finally, it is shown that prediction accuracy improves with
AEM data quality for predictions of recharge area, head
change, and stream discharge, while the accuracy appears to
be unaffected for prediction of groundwater age, which can-
not be predicted accurately even with high-quality geophysi-
cal data.

7 Data availability

All data are synthetic and are available by request to the cor-
responding author.
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