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Abstract. One of the open questions in modern cosmology is the small scale crisis of the
cold dark matter paradigm. Increasing attention has recently been devoted to self-interacting
dark matter models as a possible answer. However, solving the so-called “missing satellites”
problem requires in addition the presence of an extra relativistic particle (dubbed dark radi-
ation) scattering with dark matter in the early universe. Here we investigate the impact of
different theoretical models devising dark matter dark radiation interactions on large scale
cosmological observables. We use cosmic microwave background data to put constraints on
the dark radiation component and its coupling to dark matter. We find that the values of
the coupling allowed by the data imply a cut-off scale of the halo mass function consistent
with the one required to match the observations of satellites in the Milky Way.
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1 Introduction

The existence of a non-relativistic non-baryonic component of the Universe, namely dark
matter, is one of the building blocks of modern cosmology and astrophysics. Large scale
observations have set cold dark matter as the dominant paradigm for the interpretation of
cosmological and astrophysical data. The cold dark matter paradigm implies that the new
non-relativistic particle is collisionless and interacts only through gravity.

However simulations of pure cold dark matter are at odds with observations at small
scales: the satellites predicted by simulations are too many (“missing satellites” problem [1]),
with a cuspy profile (“cusp vs core” problem [2]) and with a larger circular velocity, i.e., larger
enclosed mass, (“too big to fail” problem [3]) compared to the dwarf galaxies gravitationally
bounded to the Milky Way.

Baryonic physics can mitigate some of these problems [4], however hydrodynamical
simulations show that baryons cannot fully solve all the problems at once [5].

Self-interacting dark matter (SIDM) models [6–16], supplementary to baryonic physics,
provide a solution to the last two problems. Dark matter self-interactions arise from a
secluded force, mediated by a new light boson. The Yukawa potential related to the hidden
force induces a velocity dependent cross section: when the velocity dispersion is around the
typical value of the relative velocity of dark matter particles in dwarf galaxies (vrel ∼ 10 km/s),
the cross section shows a Sommerfeld-like enhancement. The scatterings flatten the inner
density profile and dissipate energy outwards, making the internal structure of the simulated
satellites consistent with the morphology of the dwarf galaxies observed in the Milky Way
(see ref. [17] for the first SIDM simulation).

The solution of the “missing satellites” problem requires the existence of a non-standard
relativistic partner of dark matter, namely dark radiation [18–22]. The scattering between
the relativistic dark radiation particle and the non-relativistic dark matter particle keeps the
latter in thermal equilibrium until the kinetic decoupling, when the momentum transfer rate
κ̇ falls below the expansion rate of the Universe H.1 Perturbations on scales smaller than

1Since H is proportional to T during radiation domination, dark radiation and dark matter decouple if
κ̇ ∝ Tn with n ≥ 1, otherwise they would re-couple.

– 1 –



J
C
A
P
1
1
(
2
0
1
7
)
0
1
0

the scale entering the horizon at the time of kinetic decoupling cannot grow; therefore the
matter power spectrum is suppressed on those small scales and the number of satellites is
reduced.

The hypothesis of sterile neutrinos playing the role of the relativistic dark matter part-
ner [23–28] is of particular interest. Indeed, if sterile neutrinos are charged under the same
new force, then the new dark sector can provide a comprehensive solution, not only to the
small scale crisis of cold dark matter, but also of the tension between neutrino oscillation
anomalies and cosmic microwave background (CMB) data [29]. Moreover, secluded ster-
ile neutrinos [30–34], mixing with the active neutrinos, can potentially be constrained at
IceCube [35–37].

This work is aimed at verifying if cosmology is sensitive to the microphysics behind the
phenomenological model and if the CMB constraints on the coupling constant are consistent
with the astrophysical requirements to solve the small scale crisis.

2 Methodology

We have modified the Boltzmann solver class2 [38–40] to include the very flexible ETHOS [9]
parametrization of dark radiation-dark matter interactions. Compared to the implementation
of ETHOS in CAMB [41] that has been released by the authors of ref. [9], we added the
dark radiation self-interaction term that was derived analytically in ref. [9]. The parameter
space is the standard ΛCDM, plus five additional parameters {α, ξ,mDM, α`, β`} that encode
the whole information about the interaction: α is the amplitude of the scattering rate,
ξ = TDR/Tγ is related to the amount of dark radiation, mDM is the dark matter mass, α` and
β` are coefficients depending on the angular dependence of the scattering rate, all defined in
the appendix. We focus on a specific case of 3-particle interaction (i.e. fermionic dark matter
+ fermionic dark radiation + mediator), which leads to a comoving scattering rate ∝ T 4.
Note that there exist alternative dark sector set-ups not covered by the present analysis, like
e.g. the models discussed in refs. [21, 42] that lead to a scattering rate ∝ T 0. Finally, notice
that the code treats dark radiation as a relativistic massless component. Therefore, for the
time being, the analogy with eV sterile neutrinos has to be taken with some grain of salt.

3 Impact on cosmological observables

Before investigating the cosmological bounds on the strength of the interaction, let us review
the effects of dark radiation dark matter interactions on the cosmological observables at
large scales.

Figure 1 shows the residuals of various interacting models based on different micro-
physics with respect to a ΛCDM model with an equivalent number of extra neutrinos
(ΛCDM+∆Neff , for the definition of ∆Neff , eq. (A.11) in the appendix), to get rid of back-
ground effects.3 The spectrum of the baseline interacting model (black thick solid line) is
less suppressed w.r.t. ΛCDM than the ΛCDM+∆Neff spectrum on small scales. These scales
enter the horizon while dark matter and dark radiation are still coupled, i.e. the extra ∆Neff

is not free-streaming. In the absence of additional anisotropic stress, the gravitational source

2http://class-code.net.
3The main background effects due to an increased Neff [43–46] are the delay of the radiation-matter

equivalence, the enhanced early Integrated Sachs Wolfe Effect, the shift of the CMB acoustic peaks towards
higher ` and the increase of the amount of Silk damping.
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Figure 1. Residuals in the CMB temperature anisotropy power spectrum induced by changing the
microphysics governing the interaction. The reference model is ΛCDM plus an equivalent number of
extra neutrinos corresponding to ξ = 0.5. The baseline interacting model (black thick solid line) is
obtained with a dark matter mass mDM = 100 GeV, dark radiation parameterized as an imperfect
fluid, and a vector boson mediator. With respect to the baseline model, the yellow solid line does not
include dark radiation self-interactions, the red dashed line represents a perfect dark radiation fluid,
the cyan dot-dashed line replaces the vector mediator with a scalar mediator, the magenta dotted
line has a reduced dark matter mass mDM = 1 GeV, and finally the green thin solid line has a larger
interaction constant α = 5 × 1010 Mpc−1 (in the other cases the constant is α = 109 Mpc−1). The
gray and pink shaded area depict, respectively, cosmic variance and Planck observational error for a
bin width ∆` = 30.

term of the photon oscillations is not affected by the presence of extra radiation and the
suppression is alleviated. If the onset of dark radiation free-streaming is delayed after the
time when all the scales contributing to CMB primary anisotropies have crossed the hori-
zon, then a second effect is also visible and it amounts to a phase shift w.r.t. ΛCDM+∆Neff

(α = 5× 1010 Mpc−1, green thin solid line). Extra relativistic neutrinos induce a phase shift
because they free-stream before photon decoupling. Thus, neutrino perturbations are super-
sonic in the photon fluid and can generate metric perturbations outside the sound horizon.
An additional dark radiation component with a late free-streaming would not induce the
same phase-shift. A third effect is induced by dark matter and dark radiation forming one
single tightly coupled fluid, so that dark matter is not pressureless anymore and its perturba-
tions develop a fast mode [47, 48]. As a consequence, dark matter clusters less and, through
gravitational interaction, this refelects into a suppression of the clustering of the baryon-
photon fluid too. The latter effect is clearly visible in the troughs at ` ∼ 750, 1400, 2000 for
α = 5× 1010 Mpc−1 (green thin solid line): the troughs are located in correspondence of the
odd peaks that reflect the compression phases and that are more suppressed in this scenario.
Finally, dark radiation can be described as a perfect fluid, by truncating the Boltzmann hier-
archy at ` = 2, and setting the anisotropic stress σDR to zero (eq. (A.3) in the appendix). In
this case (red dashed line), the dark monopole and the dipole are prevented from transferring
power to the higher order momenta. Thus, neutrinos remain more clustered and enhance also
the photon perturbations through gravitational coupling. This boosts the temperature spec-
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Figure 2. Matter power spectrum for the same models discussed in figure 1, but here α = 108 Mpc−1

and we also show the baseline case for α = 107 Mpc−1 (green thin solid line). The gray shaded area
defines the linear regime.

trum on most causal scales. Therefore, even if the interaction is confined to the dark radiation
component and does not affect Standard Model particles, the free-streaming nature of the
new relativistic component is relevant, and has to be carefully considered in model building.

The matter power spectrum depicted in figure 2 reflects the fact that dark matter per-
turbations cannot grow as long as dark matter is coupled to dark radiation. As a consequence,
the scales entering the horizon before kinetic decoupling are exponentially damped, as in the
case of warm dark matter [49, 50]. The difference compared to warm dark matter is that the
interactions also leave an imprint on the matter power spectrum through acoustic oscillations
of the dark plasma [51]. For smaller values of the coupling, the spectrum starts deviating
from ΛCDM+∆Neff at smaller scales (green solid line). However, the deviations are always
located at non-linear scales.

Concerning the microphysics of the specific particle physics models behind our phe-
nomenological parameterization, we notice that the nature of the mediator (vector α` = 3/2
or scalar α` = 3/4, eq. (A.3) in the appendix) does not have a significant impact (cyan
dot-dashed line). Therefore, the constraints can be extended to particle physics models with
different mediators [23]. Moreover, removing dark radiation self-interactions (yellow solid
line), which amounts in setting β` to zero (eq. (A.3) in the appendix), does not lead to an
observable deviation neither in the CMB temperature anisotropies nor in the matter power
spectrum. Thus, dark radiation self-interactions can be neglected. Finally, neither the CMB
temperature anisotropy power spectrum nor the matter power spectrum are affected by the
variation of the dark matter mass (decreasing from 100 GeV to 1 GeV, magenta dotted line).
The reason is that in our parameterization the dark matter mass enters explicitly only in the
expression for the dark matter sound speed c2

DM (eq. (A.6) in the appendix), which is much
smaller than the one of the tightly coupled DM-DR fluid, and has a minor impact on dark
matter perturbations.
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Figure 3. One dimensional marginalized posterior for ξ (left panel) and α (right panel).

4 Results

Given the considerations drawn in the previous paragraph, we have sampled only the
ΛCDM+{α, ξ} (mDM = 100 GeV) parameter space, with a logarithmic prior on α in the
range [−3, 14]. For too large values of α, the cut-off in the power spectrum and the kinetic
decoupling temperature are expected to be in conflict with Lyman-α data and galaxy for-
mation. We do not study these bounds in the present paper and leave this study for future
work. However this motivates the fact that we do not consider larger values of α in the
present CMB analysis.

Our pipeline is based on MultiNest [52–54] in combination with MontePython4 [55],
and interfaced with our modified version of class. We use Planck 2015 polarization and
temperature data (dubbed Planck low-` P + high-` TTTEEE [56]). We have checked the
conclusions that we have drawn above about the dark matter mass and about the nature
of the mediator, do not affect the cosmological bounds on {α, ξ}. We obtain ξ < 0.487 and
ξ < 0.441 at 95% c.l. for the imperfect fluid and the perfect fluid, respectively. Translated
into an equivalent neutrino number these values correspond to ∆Neff < 0.217 (imperfect
fluid) and ∆Neff < 0.146 (perfect fluid) at 95% c.l..

5 Connection with the small scale crisis

The constraints on α and ξ can be converted into constraints on the kinetic decoupling
temperature Tkd, corresponding to the temperature of the dark sector at the time when
κ̇DM−DR = H. Solving this equation for Tkd, we obtain:

Tkd = 0.25 keV

(
61.7 Mpc−1

α

)1/4(
ξ

ξkd

)1/2

, (5.1)

which is consistent with the definitions given in refs. [8, 23], once they are rewritten in terms

of ξ and α. The factor
(

ξ
ξkd

)1/2
is due to α being defined as a function of ξ today. In what

follows we assume that there is no entropy density variation in the dark sector and in the
standard model sector between kinetic decoupling and today, i.e. ξkd = ξ.

The minimal mass of sub-structures that can form in a galaxy Mcut corresponds to the
mass enclosed in the Hubble radius at the time of kinetic decoupling. We obtain:

Mcut = 2.2× 108

(
ωDM

0.12

)
ξ3

kd

(
1 keV

Tkd

)3

M�, (5.2)

4http://baudren.github.io/montepython.html.
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Figure 4. One and two σ marginalized contours (black solid lines) in the plane (α, ξ) for the case of
the imperfect fluid. The scatter points are coloured according to the corresponding value of Mcut. The
black, blue and red bands depict the regions of dark matter (mDM = 100 GeV) thermal freeze-out
for different values of the mass of the mediator (mφ = 0.1, 1, 10 MeV, respectively), and assuming
gDR = gDM.

which is consistent with the results of refs. [6, 17, 23]. If Mcut is above 109M� (i.e., Tkd .
0.6 ξkd keV), the cut-off is at the scales of the dwarf galaxies, thus, the “missing satellite”
problem is alleviated [8]. Figure 4 shows the one and two σ marginalized constraints in the
plane (α, ξ), with the points coloured according to the values of Mcut. We can see that the
parameter space allowed by CMB data is consistent with Mcut > 109M�.

This parameterization implies a one-to-one correspondence between each point in the
(α, ξ) plane and the mass of the mediator mφ. Indeed, assuming thermal freeze-out, the dark

matter relic density is ΩDMh
2 ∝ m2

DM/g
4
DM [6, 23], and, thus, α ∝

(
ΩDMh

2
)−1/2

. Therefore,
for any given dark matter mass and ΩDMh

2, we can derive the value of gDM(= gDR), and,
thus, the value of mφ for each point in parameter space:

mφ =

(
61.7 Mpc−1

α

)1/4(
ξ

0.5

)1/2 ( mDM

100 GeV

)−1/4 (gDM

0.2

)
MeV. (5.3)

Figure 4 shows that the highest probability region corresponds to 0.1 MeV ≤ mφ ≤ 10 MeV.

Finally, we find that the Bayes factor, i.e. the ratio of the bayesian evidence between
the interaction model and the pure ΛCDM model, is 1, as expected from the behaviour of
the one dimensional posterior of α (figure 3), which is flat over many orders of magnitude
(α = 0.001− 108).

6 Discussion

We have studied the impact of a 3-particle interaction (fermionic dark matter + fermionic
dark radiation + mediator) on large scale cosmological observables, namely the CMB temper-
ature power spectrum and the matter power spectrum. To this aim we have implemented a
phenomenological description of the aforementioned scenario in class, following the ETHOS
parameterization of ref. [9].

– 6 –
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We find that variations of the theoretical model, concerning, e.g., the dark matter
mass, the vector or scalar nature of the mediator, and the presence of dark radiation self-
interactions, have little or no impact on the cosmological observables. Whether dark radiation
behaves as a perfect fluid with no anisotropic stress or resembles additional free-streaming
neutrinos does not affect the cut-off scale in the matter power spectrum. However, for a
given value of the amplitude of the scattering rate, a dark fluid shows a deviation w.r.t.
ΛCDM+∆Neff larger than a neutrino-like dark radiation.

We have performed a MultiNest Markov Chain Monte Carlo run, fitting the interaction
model to the Planck CMB temperature and polarization data. The region in parameter space
corresponding to a cut-off mass in the range desirable for mitigating the “missing satellite”
problem is allowed by CMB data, with a bayesian evidence consistent with the one of a pure
ΛCDM model. In conclusion, this interaction model can induce a small scale cut-off in the
halo mass function, without diminishing the goodness of fit to large scale CMB data.

Finally, the parameter space allowed by CMB can be restricted by including informa-
tion on clustering at non-linear scales. In particular, Lyman-alpha data might pin down the
temperature of kinetic decoupling. However, notice that semi-analytical non-linear correc-
tions (e.g. halofit) derived from N-body simulations of collisionless cold dark matter cannot
be used in this context.

A Parametrization

We use the ETHOS parameterization proposed in ref. [9], taking the dark radiation self-
interactions into account. The dark radiation Boltzmann hierarchy in Newtonian gauge
looks as follows:

δ̇DR +
4

3
θDR − 4φ̇ = 0, (A.1)

θ̇DR + k2

(
σDR −

1

4
δDR

)
− k2ψ = κ̇DR−DM (θDR − θDM) , (A.2)

π̇DR,` +
k

2`+ 1
((`+ 1)πDR,`+1 − `πDR,`−1) = (α`κ̇DR−DM + β`κ̇DR−DR)πDR,`, ` ≥ 2.

(A.3)

The dark matter perturbation equations are:

δ̇DM + θDM − 3φ̇ = 0, (A.4)

θ̇DM − k2c2
DMδDM +HθDM − k2ψ = κ̇DM−DR (θDM − θDR) . (A.5)

In the equations above δ and θ are, respectively, the density and velocity dispersion pertur-
bations, πDR = 2σDR with σDR the shear perturbation, φ and ψ the gravitational potentials.
The dark sound speed c2

DM, defined as

c2
DM =

TDM

mDM

(
1− ṪDM

3HTDM

)
(A.6)

depends on the heating rate and it amounts to a very small contribution for non-relativistic
dark matter. The terms on the right hand side of the dark matter and dark radiation dipole
and of the dark radiation higher order momenta represent the collisional integrals. The

– 7 –
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expression of the comoving interaction rate κ̇DR−DM can be found in ref. [9]. In the case
of fermionic dark matter and dark radiation interacting through a massive mediator, the
calculation of the matrix element of the scattering gives:

κ̇DR−DM = −aπ
g2

DRg
2
DM

m4
φ

(
310

441

)
nDMT

2
DR, (A.7)

where mφ is the mediator mass, nDM is the dark matter density, TDR is the dark radiation
temperature, parameterized as TDR = ξTγ , gDR is the coupling of dark radiation to the
mediator and gDM is the coupling of the dark matter particle to the mediator. In general,
when the interaction rate is a power law of the temperature κ̇ = antarget〈σv〉 ∝ Tn ∝ (1+z)n,
the inverse scattering rate is given by:

κ̇DM−DR =

(
4ρDR

3ρDM

)
κ̇DR−DM . (A.8)

In our case, equation (A.7) shows that this relation holds with n = 4.5 We parametrise the
scattering term as

κ̇DR−DM = −ΩDMh
2α

(
1 + z

1 + zd

)4

, (A.9)

where zd = 107 is a normalization factor related to the time of dark matter dark radiation
kinetic decoupling (zd = 107 roughly corresponds to Tkd ∼ 1 keV), and

α = (1 + zd)
4 πg

2
DMg

2
DR

(
ρcrit/h

2
)

m4
φmDM

(
310

441

)
ξ2T 2

CMB,0. (A.10)

In the large self-interaction limit, the DM and DR perturbation equations become stiff. We
do not need to devise a tight-coupling approximation scheme, since class handles stiff sys-
tems without significant slow-down through its ndf15 implicit integrator. However, we have
checked that the spectra with and without the tight coupling approximation are consistent.

For the dark radiation self-scattering κ̇DR−DR we have assumed that gDR = gDM as
the simplest model would predict. In that case the self-scattering κ̇DR−DR is equal to

κ̇DR−DM

(
ΩDRh

2

ΩDMh2

)
.

Finally, α` and β` that appear in the quadrupole and in the higher order momenta of the
dark radiation hierarchy are the angular coefficients; if the mediator is a vector (scalar) boson,
α` = 3/2 (α` = 3/4) for ` ≥ 2; in the presence of dark radiation self-interactions, β` = 1.

The dark radiation component can be casted into an equivalent extra neutrino number as

∆Neff =
ηDR

2

f

7/8
ξ4

(
Tγ
Tν

)4

, (A.11)

where ηDR is the dark radiation number of internal degrees of freedom (i.e. spin states,
assumed throughout this work to be equal to two like for neutrinos), f is 7/8 for fermionic dark

radiation and the factor
Tγ
Tν

=
(

11
4

)1/3
has to be taken into account after neutrino decoupling.

If we assume that the dark sector decouples from the standard model at T ∼ 100 GeV, we
obtain ξ ∼ 0.5, which implies Neff ∼ 0.24, still within Planck 1σ error.

5The factore 4/3 accounts for energy-momentum conservation, as explained in ref. [57].
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