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Historical reanalyses that span more than a century are
7
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needed for a wide range of studies, from understanding
8
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large-scale climate trends to diagnosing the impacts of in-
9
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dividual historical extremeweather events. The Twentieth
Century Reanalysis (20CR) Project is an effort to fill this
need. It is supported by the National Oceanic and Atmo-
spheric Administration (NOAA), the Cooperative Institute
for Research in Environmental Sciences (CIRES), and the De-
partment of Energy (DOE), and is facilitated by collaboration
with the international Atmospheric Circulation Reconstruc-
tions over the Earth initiative. 20CR is the first ensemble
of sub-daily global atmospheric conditions spanning over
100 years. This provides a best estimate of theweather at
any given place and time as well as an estimate of its con-
fidence and uncertainty. While extremely useful, version
2c of this dataset (20CRv2c) has several significant issues,
including inaccurate estimates of confidence and a global
sea level pressure bias in themid-19th century. These and
other issues can reduce the effectiveness of studies at many
spatial and temporal scales. Therefore, the 20CR system
underwent a series of developments to generate a signifi-
cant new version of the reanalysis. The version 3 system
(NOAA-CIRES-DOE 20CRv3) uses upgraded data assimila-
tionmethods including an adaptive inflation algorithm; has
a newer, higher-resolution forecast model that specifies dry
air mass; and assimilates a larger set of pressure observa-
tions. These changes have improved the ensemble-based
estimates of confidence, removed spin-up effects in the pre-
cipitation fields, and diminished the sea level pressure bias.
Other improvements includemoreaccurate representations
of storm intensity, smaller errors, and large-scale reductions
in model bias. The 20CRv3 system is comprehensively re-
viewed, focusing on the aspects that have ameliorated is-
sues in 20CRv2c. Despite the many improvements, some
challenges remain, including a systematic bias in tropical pre-
cipitation and time-varying biases in southern high latitude
pressure fields.
K E YWORD S
reanalysis, data assimilation, surface pressure
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1 | INTRODUCTION11

In order to study historical and contemporary weather events including extremes within a broader climate context, long12

time series of accurate, reliable, sub-daily atmospheric variables are essential. Retrospective analyses, or ‘reanalyses’,13

take advantage of the benefits of past observations andmodernweather forecast models by combining the two in a14

process called ‘data assimilation’ (DA; Daley (1993)). The idea of ‘reanalysis’ arguably began in the early 19th century15

with Brandes’ hand-drawn synoptic weathermaps (Monmonier, 1999), and hasmatured significantly in the centuries16

since; see Compo et al. (2006) and Compo et al. (2011) for a detailed history. Historical reanalyses, which span a century17

or longer, act as a bridge betweenweather and climate since they are intended to capture individual weather events18

around the globe as well as larger climatic trends overmany decades within the context of a single, consistent dataset19

(Slivinski, 2018).20

In contrast to historical reanalyses, ‘modern’ reanalyses generally only extend back to the 1950s, andmore often21

only to 1979, when upper-air and satellite data are available for assimilation. These reanalyses include the European22

Centre forMedium-RangeWeather Forecasts (ECMWF) interim Re-Analysis ERA-Interim (Dee et al., 2011), the Na-23

tional Aeronautics and Space Administration (NASA)Modern-Era Retrospective analysis for Research and Applications24

version 2 (MERRA-2) (Gelaro et al., 2017), the 55-year Japanese Re-Analysis JRA-55 (Kobayashi et al., 2015), and the25

reanalysis produced jointly by the USNational Centers for Environmental Prediction (NCEP) and the National Center26

for Atmospheric Research (NCAR), the NCEP-NCAR Reanalysis (Kalnay et al., 1996; Kistler et al., 2001), among others27

(see Fujiwara et al. (2017) for a review of reanalysis systems). At present, long-term studies usingmodern reanalyses28

are restricted to span as few as 40-60 years, preventing in-depth investigation of infrequent extreme weather and29

climate events. Another difficulty is that significant changes to the observing system, such as the introduction of satellite30

data, can yield non-climatic discontinuities in some reanalysis fields, including an apparent shift in tropical divergent31

circulation (Kinter III et al., 2004) and trends in temperature, integrated water vapor, kinetic energy, and precipitation32

(Bengtsson et al., 2004; Bosilovich et al., 2011; Zhang et al., 2012). In order to avoid such artifacts, historical reanalyses33

that span at least a century assimilate only near-surface conventional observations, which have been available for the34

entire time period: specifically, surface pressure andmarine winds.35

The NOAA-CIRES Twentieth Century Reanalysis (20CR) marked the introduction of recent efforts to generate36

historical reanalyses, as it was the first reanalysis to assimilate only surface pressure observations (Compo et al., 2011).37

Since then, the range of studies to use these types of data has grown, and other centennial reanalyses were developed38

that assimilated these data. ECMWF produced ERA-20C (Poli et al., 2016), an atmospheric reanalysis spanning 1900 to39

2010 that assimilated surface pressure as well as marine winds, and CERA-20C (Laloyaux et al., 2018), which utilizes a40

coupled ocean-atmospheremodel and spans 1901 to 2010. In addition, NOAA and CIRES produced an update to the41

20CR version 2 described by Compo et al. (2011) that spanned 1871 to 2012; this update, 20CR version 2c (20CRv2c;42

see Giese et al. (2016) and detailed below), extended back to 1851 and ameliorates several issues with 20CRv2. Finally,43

the latest 20CR version 3 (20CRv3) is currently being produced by NOAA, CIRES, and DOE. It will extend back to 183644

andwill be released in 2019.45

Historical reanalyses have broad areas of application because they span timescales of weather to climate by46

providing sub-daily estimates of the Earth systemwith global coverage for a century or longer. These datasets have been47

utilized in studies including: climate change (Compo et al., 2013; Huang et al., 2016); climate dynamics (Huang et al.,48

2017); trends in hurricanes (Burn and Palmer, 2015), extra-tropical cyclones (Wang et al., 2013, 2016), and extremes in49

temperature and precipitation (Donat et al., 2016); blocking (Häkkinen et al., 2011; Rohrer et al., 2018); individual case50

studies of particular storms (Moore andBabij, 2017); historic climatology in remote regions (Lorrey andChappell, 2016);51

El Niño (Giese et al., 2010; Deser et al., 2017); the Madden-Julian Oscillation (Klotzbach et al., 2016); convergence52
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zone activity (Lorrey et al., 2012; Harvey et al., 2019); seasonal and climatic responses to volcanic eruptions (Brohan53

et al., 2016; Paik andMin, 2017); weather typing (Jones et al., 2013, 2016); and the emerging field of decadal climate54

prediction (Mueller et al., 2014), amongmany others.55

A key aspect for informed application of reanalyses is properly accounting for their uncertainty (e.g. Parker (2016)).56

Comparing different reanalyses that span similar time periods is oneway to cross-validate the datasets and determine a57

‘meta-confidence’ by agreement or disagreement among the datasets (Slivinski, 2018). Nevertheless, it is important58

that each historical reanalysis dataset is as accurate as possible, both in terms of past climate state estimates as well59

as internal quantification of its uncertainty (as measured by ensemble standard deviation or ‘spread’, for instance).60

As an example, a historical reanalysis may display a long-term trend in one variable that, according to the quantified61

uncertainty of the dataset, is significant. However, researchers may be unaware that the trend is an artificial one due to62

a bias in the observations, and appears to be significant solely due to errors in the uncertainty estimate. Continuing to63

work towardsmore reliable historical reanalyses allows studies on all timescales, such as those listed above, to avoid64

erroneous conclusions andmake use of the best data possible.65

In this vein, despite several major improvements from 20CRv2 to 20CRv2c, certain issues remain. While some are66

obvious, such as artificial large-scale trends and a lack of certain major storm systems, others aremore subtle, such as67

suboptimal usage of observations and inaccurate estimates of confidence. These problems can hinder the effectiveness68

of 20CRv2c for climate analysis applications. Investigations intomany of these issues occurred prior or in parallel to69

development of version 3, informing the implementation of particular algorithms that improved the efficacy of the70

reanalysis. In other cases, version 3 benefited from general improvements and upgrades to the system, as well as a71

larger observational database. This work discusses how the significant issues in version 2c were addressed, as well72

as other upgrades to the version 3 system. While results may strongly suggest some improvements were caused by73

particular changes to the system, many updates weremade simultaneously. Thus, a single improvement in the 20CRv374

dataset can rarely be attributed to a specific change in the 20CRv3 system. Finally, this work is intended to review the75

20CRv3 system itself; thus, results with the 20CRv3 dataset shown here will focus on a few ‘test periods’ between 185476

and 2002, and are intended to be representative of different time periods (in terms of quality, confidence, observational77

network density, biases, etc.) Results from the complete 20CRv3 dataset and deeper investigations of it on climatic and78

synoptic scales are left for future works.79

The Twentieth Century Reanalysis system is described in detail in Section 2. Aspects of the system that changed80

from 20CRv2c to 20CRv3 are highlighted, as well as features of the version of the NCEP Global Forecast System81

(GFS) coupled atmosphere-land model used to generate the datasets. Section 3 discusses several large-scale issues82

in the confidence derived from ensemble spread and in the biases of sea level pressure (SLP), precipitation, andwind83

in 20CRv2c. Results show that updates to the forecast model and data assimilation algorithm have improved the84

confidence estimation and reduced most of these biases in 20CRv3. In addition to addressing known issues, other85

developments in the version 3 system have resulted in further improvements. As shown in Section 4, updates to the86

localization procedure, quality control, and observation errors have improved the use of observations and resulted in87

more accurate representations of variability and extremes, such as tropical cyclones. Despite significant improvements88

across the board, several issues remain in the 20CRv3 system. These are discussed in Section 5. Section 6 concludes89

with a discussion and final remarks.90
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2 | SYSTEM OVERVIEW91

In several basic ways, each iteration of the Twentieth Century Reanalysis system remains the same as that proposed92

originally by Compo et al. (2006). First, modernweather forecast models are used to generate the background fields.93

Second, an ensemble method assimilates historical observations to update the background fields, yielding ‘analysis’94

fields. Ensemble methods are particularly useful as they allow for estimates of uncertainty and confidence via ensemble95

spread (e.g., ensemble standard deviation) as well as the atmospheric state via the ensemble mean. Finally, surface96

pressure values are the only type of observations that are ever assimilated. While the temporal frequency, spatial97

density, and quality of these observations has changed over time as a result of developments in instrumentation and98

theory (Middleton, 1964), the 20CR system assumes that the most important part of the observation error is its so-99

called ‘error of representativeness’ (Lorenc, 1986; Janjić and Cohn, 2006). Observation errors are therefore assumed100

to be constant in time. Feedback from reanalysis datasets that assimilate these observations can be used to improve101

this estimate in the future (e.g., see Figure 10 in Poli et al. (2013)). Below, specific details of the 20CRv2c and 20CRv3102

systems are described.103

20CRv2c consists of a 56-member ensemble of 3- to 6-hourly atmospheric fields at a spatial resolution of total104

spherical wavenumber 62 (about 2 deg.) with 28 vertical hybrid sigma-pressure levels. The model is based on an105

experimental version of the 2008NCEPGFS, a spectral coupled atmosphere-landmodel with a comprehensive suite106

of physical parameterizations and processes including representing the radiative effects of time-varying CO2 con-107

centrations, volcanic aerosols, and an 11 year solar cycle (Compo et al., 2011). It assimilated surface pressure from108

the International Surface Pressure Databank (ISPD) version 3.2.9 (Cram et al., 2015; Compo, 2015), which consists109

of station observations, marine observations from the International Comprehensive Ocean-Atmosphere Data Set110

(ICOADS,Worley et al. (2005);Woodruff et al. (2011)) version 2.5.P, and pressure reports for tropical cyclones from the111

International Best Track Archive for Climate Stewardship (IBTrACS) V03r05 (Knapp et al., 2010; Kruk et al., 2010). The112

station component is a blend of many national and international collections, with the largest contributor being surface113

and sea level pressure observations from the International Surface Database (ISD, Lott et al. (2008)). Procedures for114

blending the station component are described by Yin et al. (2008). The observationswere assimilated via a deterministic,115

square-root ensemble Kalman filter (EnKF) (Whitaker et al., 2004; Compo et al., 2006;Whitaker and Hamill, 2002).116

The sea surface temperatures (SSTs) were prescribed using the fields from the Simple Ocean Data Assimilation system117

with sparse observational input version 2 (SODAsi.2; Giese et al. (2016)), which consists of 18 pentad realizations that118

used 20CRv2 atmospheric fields as boundary forcing, tapered to COBE v2 SSTs poleward of 60 degrees N and S (Giese119

et al., 2016; Hirahara et al., 2014). Amisspecification in the sea ice concentration for 20CRv2was fixed in 20CRv2c,120

which used COBE v2 sea ice concentration down to fractions of 0.15 (Hirahara et al., 2014). All other components of the121

system are only constrained by the assimilation of pressure observations. More details on the 20CRv2c system are122

given in Appendix A.123

To address significant issues in the 20CRv2c dataset, and as a result of general progress in the fields of modeling124

and data assimilation, several aspects of the 20CR systemwere updated before producing 20CRv3. Broadly, 20CRv3125

benefits from an improved, higher-resolutionmodel; a larger observational database; updated data assimilationmeth-126

ods; and a larger ensemble size. The atmospheric model used in 20CRv3was updated to the 2017 version of the NCEP127

GFSwith a resolution of total spherical wavenumber 254 (about 0.5 deg. horizontal resolution) and 64 vertical hybrid128

sigma-pressure levels; differences between the version of the GFS operational in fall 2017 and the version used for129

20CRv3 are detailed in Appendix A. Additionally, the version 2c system allowed the assimilation to update the dry air130

pressure, resulting in a feedback loopwith biased observations that caused significant artificial trends in themid-19th131

century. In version 3, the dry air pressure was constrained; see Section 3.132
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The 20CRv2c dataset began in 1851 since the COBE sea ice fields were first available in 1850; this year was133

considered ‘spin-up’. The addition of more 19th century observations available to the 20CRv3 assimilation system, as134

well as early investigations of confidence and forecast errors (not shown), suggested that 20CRv3 could span further135

back in time than 20CRv2c with appropriate boundary conditions. 1804 is the first year that every 6-hour window has136

at least one observation (globally) to be assimilated. Due to computational and storage resource limitations, 1836was137

the earliest year that 20CRv3 could be produced. Experiments for the years 1804-1835 are ongoing.138

20CRv3will consist of two overlapping sub-versions: 20CRv3si (1836–2012) and 20CRv3mo (1981–2015), where139

the only difference between the two sub-versions is the prescribed SSTs. 20CRv3mo prescribes SSTs fromHadISST2.2140

(Rayner et al., 2006; Poli et al., 2016; Laloyaux et al., 2018), which consists of an ensemble of 5-day average SST fields141

interpolated to daily resolution. Of the 10members available, two of the ensemblemembers had quite different bias142

adjustments from the others; thus, 20CRv3mo only uses the remaining 8members as boundary conditions. 20CRv3si143

prescribes SSTs from the pentad 8-member Simple OceanData Assimilation with sparse input version 3 (SODAsi.3)144

ensemble that itself used 20CRv2c fields as atmospheric boundary conditions and forcing (Giese et al., 2016). The145

SODAsi.3 SSTs used for 20CRv3si were seasonally adjusted to the 1981–2010HadISST2.2 daily climatology. For both146

versions, the 8-member SST ensemble was duplicated 10 times to create 80members. Sea ice concentrations were147

specified fromHadISST2.3, which is identical to HadISST2.2 (Titchner and Rayner, 2014) from 1972 onwards. From148

1850 to 1971, HadISST2.3 specifies Arctic sea ice extent from the Sea Ice Back To 1850 dataset (SIBT1850;Walsh et al.149

(2015, updated 2016)). Prior to 1850, sea ice extent and concentration are specified as the 1860–1891HadISST2.3150

climatology.151

Thanks to international efforts facilitated by the Atmospheric Circulation Reconstructions over the Earth (ACRE)152

initiative (Allan et al., 2011) andmany volunteer efforts, there aremillionsmore observations assimilated in 20CRv3153

than in 20CRv2c. The new observational dataset, ISPD version 4.7, blends ISD version 3.0 with additional station154

observations, archived and previously undigitized terrestrial data submitted to the ISPD from international ACRE155

partners, IBTrACS version 3, and ICOADS3+ version 2. The latter is our own improvement to ICOADS3 that includes156

recently-digitized and better positioned and quality-controlled observations fromACRE-recovered expeditions, Old-157

Weather.org, and theAustralianWeatherDetective project (see https://github.com/oldweather/ICOADS3.plus/releases158

and Appendices A-B).159

Unlike 20CRv2c, which used a 56-member ensemble Kalman filter with a digital filter applied to the background160

forecast, 20CRv3 assimilates observations with an 80-member ensemble Kalman filter that utilizes a 4-dimensional161

incremental analysis update (Bloom et al., 1996; Lei andWhitaker, 2016) and no digital filtering; see Section 3 and162

AppendixA. Additionally, 20CRv2c interpolated station pressure observations to themodel surface prior to assimilation,163

while 20CRv3 assimilates them at the observation level and absorbs the vertical interpolation of the background164

forecast into the observation operator (H). Aswill be discussed in Section 4, 20CRv3 includes a nonlinear quality control165

algorithm for the observations, an adaptive localization algorithm, an inflationmethod based on relaxation-to-prior-166

spread, and an offline bias correction for marine observations prior to 1871 (see Appendices B-D for more details).167

20CRv3 also includes an updated bias correction for station data over land: these biases are ‘learned’ over a 60-day168

time period. That is, they are calculated as the average difference between the observation and the first guess over169

the 60-day window (with aminimum of 31 days’ worth of data in the window) prior to the current assimilation step;170

if significant, these differences are subsequently removed from the observation at the step prior to assimilation (see171

Compo et al. (2011), their Appendix B, for more details). Finally, the baseline observation errors used in 20CRv3 are172

given in Table 1. Column 4 (‘station’) refers to observations of surface pressure, while column 5 (‘SLP only’) refers to173

stations that only reported pressure reduced to sea level. Observation errors are increased by 0.001 hPa permeter174

difference between the observation elevation and themodel orography. These are the same errors used in 20CRv2c,175
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with the exception of tropical cyclone data (see Table A.1).176

3 | ADDRESSING ISSUES IN 20CRV2C177

The 20CRv2 dataset represented an important step forward for weather and climate research because it filled a need178

for a consistent, long-term, sub-daily gridded atmospheric dataset using instrumental observations. As of the time of179

writing, the paper describing the 20CRv2 dataset (Compo et al., 2011) hasmore than 2000 citations (Google Scholar,180

accessed 4 Feb 2019). While useful, the 20CRv2 dataset has several issues including amisspecification of polar sea ice181

that resulted in warm near-surface temperature biases (Brönnimann et al., 2012) and inhomogeneities associated with182

variations in observation density and its covariance inflation algorithm prior to 1952 (Ferguson and Villarini, 2012).183

The20CRv2c dataset (described briefly inGiese et al. (2016) and in detail here)was an effort to address those issues,184

use a novel SST specification, and include additional observations compared to 20CRv2. However, as more studies185

delved into different aspects of 20CRv2c, limitations of it became apparent. Simultaneously, themany studies using186

20CRv2cmotivated further data rescue efforts, and the amount of pressure observations available to be assimilated187

grew significantly, particularly in early years. Figure 1 illustrates the global annual average number of observations188

available to be assimilated in a 6-hour window of 20CRv2c (solid black) and 20CRv3 (dashed gray). Here, ‘available’189

refers to observations that were rescued, digitized, externally quality controlled, and blended into the version of the190

ISPD used in the given reanalysis; it includes observations that may be flagged or thinned by the internal 20CR quality191

control system (see Section 4 and Appendix C for details.)192

A new version of the 20CR system couldmake use of this growing set of observations, as well as general progress in193

modeling and data assimilationmethods, and would provide a significantly improved dataset. Major issues in 20CRv2c,194

including inaccurate representations of uncertainty as well as large-scale biases and artifacts in sea level pressure,195

precipitation, andwind, also informed andmotivated the development of the 20CRv3 system.196

3.1 | Estimation of confidence197

In order tomake conclusions about the significance of trends, signals, and extrema from reanalyses, wemust be able198

to quantitatively measure confidence in the dataset. A defining characteristic of 20CR is its use of an ensemble data199

assimilationmethod, which yields both a single best estimate of the analysis (themean) as well as a quantification of200

the uncertainty around that estimate via the ensemble spread (the standard deviation). More spread implies more201

uncertainty, and less spread implies less uncertainty. In general, the uncertainty in the ensemblemean as an estimate202

will correlate negatively with the density of the available observational network. As an example, Figure 2 includes time203

series of uncertainty in sea level pressure over the zonal band from 65◦S to 40◦S. This region is particularly important204

for investigations of anthropogenic CO2 uptake, and long time series are needed for studies of its decadal variability (eg,205

Landschützer et al. (2015)). The analyzed sea level pressure ensemble spread is plotted (thick red curve) along with the206

temporal spread of the analyzed sea level pressure ensemble mean (thin orange curve) and the number of observations207

assimilated per 6-hour window (black curve) in this region. This region has relatively few observations available208

(compare with Fig. 1), and the effects of World War I (1914–1918) andWorld War II (1939–1945) are particularly209

striking. The temporal spread is calculated as the standard deviation of the ensemblemean across a centered 61-day210

window, and all time series have a 1-year running average applied. The correlation r between the ensemble spread and211

the log of the number of observations assimilated per window is -0.96, demonstrating the strong inverse relationship212

between the ensemble spread and the observational network density.213
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Ensemble spread is only an estimate of uncertainty, though, and it is not always reliable. For instance, a well-known214

issue with the EnKF is the tendency for the ensembles to ‘over-tighten’ towards the mean, resulting in an ensemble215

spread that is overconfident and ultimately in filter divergence (that is, when the background ensemble standard216

deviation approaches 0 and the ensemble is unable to use information about observations) (Anderson and Anderson,217

1999;Whitaker andHamill, 2002). A common solution to this problem is ‘covariance inflation’; generally, this refers218

to artificially increasing the ensemble spread by, for example, applying a multiplicative factor greater than 1 to the219

ensemble covariance. When many observations are assimilated, the ensemble is more prone to collapse, and thus220

requires more inflation. In 20CRv2c, a simplemultiplicative inflation factor (Anderson and Anderson, 1999) was applied221

to the ensemble covariancematrix at each step; this factor was predefined based on year and latitude. Table 2 shows222

the inflation parameters used in 20CRv2c. These time periods were chosen to loosely reflect availability and density223

of observations: for example, there were fewNationalMeteorological Services organized prior to 1870, and thus the224

observational networkwas relatively sparse. The period 1871–1890 represents a transition period, with the foundation225

of the InternationalMeteorological Committee in 1873, and the network of observations in the Northern Hemisphere226

becomes denser. Conversely, the Southern Hemisphere observation network remains relatively sparse into the 20th227

century.228

While this method ensured that larger inflation parameters were applied when the observation network was229

more dense (e.g., in the Northern Hemisphere and inmodern time periods), the abrupt changes in the parameters are230

responsible for artificial signals in the time series of uncertainty. The spike in ensemble spread in 1951 (Fig. 2) is an231

artifact of themultiplicative inflation algorithm used in 20CRv2c: this is the year the inflation parameter in the Southern232

Hemisphere increased from 1.02 to 1.07 (Table 2), and there is no corresponding decrease in number of observations233

assimilated. In fact, 1951marks an increase in assimilated SLP observations; this originally motivated increasing the234

inflation parameter in that particular year.235

Another issue demonstrated by Fig. 2 is the under-confidence of the ensemble spread. The temporal spread (thin236

orange curve) can be used as a proxy for a climatological spread. Until the 1980s, the ensemble spread is larger than237

the temporal spread, suggesting that the ensemble was less confident than a climatological estimate. The inverse also238

occurs: the fixed inflation algorithm can result in too little inflation over data-rich regions, leading to overconfidence in239

these areas (not shown).240

The version 3 system uses an improved inflation algorithm referred to as relaxation-to-prior-spread (Whitaker241

andHamill, 2012). Using this algorithm, the inflation adapts to the observation network density. When there are few242

observations, the ensemble spread is hardly changed; when there are dense observations, the ensemble spread is243

‘relaxed’ back to the prior spread, by an amount λi nf determined jointly by a relaxation parameter pr el ax and the density244

of the observations in that region. pr el ax can vary from 0 (no inflation) to 1 (inflate to prior spread). Initial tests with the245

20CRv3 system used 0.9 globally. These tests (not shown) suggested that pr el ax = 0.9was too large in the Southern246

Hemisphere. Thus, the final 20CRv3 system has values of pr el ax = 0.9 for 20◦S–90◦Nand pr el ax = 0.7 for 90◦S–30◦S. In247

the transition zone 30◦S–20◦S, pr el ax varies linearly from 0.7 to 0.9. λi nf varies in both space and time, and is calculated248

at each assimilation step. Figure 3 shows representative examples of the adaptive inflation parameter λi nf from four249

different years; a value of 1 is equivalent to no inflation.250

TheGFSmodel in 20CRv3 uses stochastic physics (Appendix A), which increases the ensemble spread. This effect is251

particularly strong in the tropics, which reduces the need for inflation in this region (e.g., Fig. 3d). Outside of the tropics,252

the inflation factor depends on the observation network density: over the US and Europe, and throughout the Northern253

Hemisphere in recent years, the inflation factor is larger than elsewhere. Note also that the range of inflation parameter254

values used in 20CRv3 is much larger thanwas prescribed in 20CRv2c (compare Fig. 3 and Table 2).255

Figure 4 illustrates the boreal winter confidence in the early 20th century from versions 2c and 3 of 20CR. Here,256
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‘confidence’ is defined as the difference of the normalized time-averaged ensemble standard deviation from 1: conf =257

1 − spr ead ens/spr ead cl im , where spr ead ens is the time-averaged standard deviation of the ensemble of analyzed SLP258

from the stated version of 20CR, and spr ead cl im is the temporal standard deviation of the 20CRv2c ensemblemean259

6-hourly SLP over Jan-Feb-Mar from 1981-2010. In other words, spr ead cl im represents an estimate of the inherent260

weather variability; it is assumed to be time-invariant and independent of ensemble spread. Thus, a confidence value of261

zero (denoted by black contours in Fig. 4a-b) denotes ensemble spread identical to the climatological spread; greater262

confidence implies more certainty than climatology, and negative confidence implies less certainty than climatology.263

Aside from interannual variations in weather variability (e.g., Compo et al. (2001)), theminimum confidence value would264

be zero.265

These maps demonstrate features of the new estimates of confidence in 20CRv3. In particular, there is more266

certainty over the high Arctic latitudes in version 3 (red shading in Fig. 4c in this region), which was previously more267

uncertain than a climatological mean ‘analysis’. There is alsomore spread over the densely-observed regions of North268

America and Europe (blue shading in Fig. 4c in these regions). Results (not shown) using independent observations from269

U.K. DailyWeather Reports comparing expected and actual errors suggest that this is an improvement, as the 20CRv2c270

analyses are overconfident over Europe in the 1900s. Similar overconfidence is found for 20CRv2c first-guess fields (not271

shown). We expect that the results would be similar for independent observations over North America. In contrast, the272

larger-than-climatological uncertainty over the high southern latitudes has been reduced but not eliminated, despite273

the decrease in pr el ax discussed above. There is also a decrease in confidence in 20CRv3 throughout much of the274

tropics; this may be due to the stochastic physics described above. While many of the differences are likely due to the275

new adaptive inflation algorithm, recall that 20CRv3 uses an 80member ensemble, as opposed to the 56members in276

20CRv2c. The larger ensemble, as well as other updates to the 20CRv3 system, may also have contributed to greater277

consistency between the quantified confidence of version 3 and prior expectations.278

3.2 | Global sea level pressure bias279

Another significant issue in 20CRv2c, a sea level pressure bias prior to the 1870s, prevented this dataset from being as280

useful as it could have been for its full span. This bias is evident in globally-averaged time series of sea level pressure281

(Figure 5, blue curve) for most years prior to 1870. Relative to several reanalyses of varying timespans, including282

ERA-Interim (orange), the historical reanalyses ERA-20C (green) and CERA-20C (gold), and a 56-member ensemble283

of simulations with the 2008GFSmodel used in 20CRv2c but without assimilation (‘no DA’; red), the global SLP from284

20CRv2c is asmuch as 2-4 hPa too lowduring the period of concern. Shading on Fig. 5 represents one standard deviation285

when ensemble estimates are available; note that the 20CRv2c spread in the biased period is still several hPa away from286

the ‘no DA’ mean and standard deviation.287

The cause is revealed to be biased ship observations in the mid-19th century, first reported by ToddMitchell at288

a marine data workshop (Diaz et al., 2002; Ansell et al., 2006; Allan and Ansell, 2006), combined with the 20CRv2c289

system allowing the global dry pressure to be updated during the assimilation cycle. While 20CRv2c included a bias290

correction to land stations, it did not include amarine observation bias correction algorithm. Figure 6a shows amap of291

the 1851–1853 time-averaged SLP anomaly fields from 20CRv2c analyses: note the widespread negative anomalies,292

particularly over the oceans. Panel (b) differs from (a) in that it used an experiment that assimilated about 10% fewer293

ship observations than 20CRv2c, but with an otherwise identical setup. Overall, the anomalies are less negative.294

Thus, assimilatingmore ship observations from 1851–1853 negatively biased the globally-averaged analyzed sea level295

pressure by asmuch as 4 hPa.296

Two improvements in 20CRv3 have addressed this issue. First, the global dry pressure can no longer be updated297
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within the assimilation: instead, it is specified at 98.3050 kPa (Trenberth and Smith, 2005). This prevents the feedback298

loop with the biased ship observations that allowed the global sea level pressure bias to persist for nearly two decades299

of 20CRv2c data. Second, to directly address the observation bias, a correction is applied tomarine observations prior300

to 1870. Investigations into the individual observations found that the negative bias is not consistent across different301

voyages in this time period, suggesting that a single bias correction for all marine observations in this time period would302

not be sufficient. Thus, a bias for each individual ship is calculated as themean deviation from the 20CRv2c 1981-2010303

climatology, and subtracted from themarine observations prior to assimilation (see Appendix B for more details).304

Figure 7 illustrates a test of these new procedures. Fig. 7a shows the 20CRv2c SLP annual anomaly for 1854; note305

the consistently negative differences throughout the tropics andmidlatitudes. The effect of constraining dry pressure in306

the version 3 systemwithout bias correcting the observations is shown in Figure 7b. There are still negative anomalies307

in the highly-trafficked regions of the ocean (around CapeHorn, South America; the North Pacific Ocean off the coast of308

the US; and the North Atlantic Ocean). In order to retain the fixed dry pressure, this leads to an increased SLP anomaly309

where there are fewer observations, particularly around the poles. Figure 7c includes both the fixed dry pressure and310

the bias-corrected ship observations. The negative anomalies in high-density marine regions are now almost entirely311

removed, andwhile the positive anomaly over the high southern latitudes remains, it has been diminished.312

As with many bias correction schemes, it is possible that this method is removing real signals from historical313

observations by forcing them towards amodern climatology. For example, the negative SLP anomalies in the southern314

midlatitudes prior to bias correction (Fig. 7b) are assumed to be effects of biased observations from ships, as these315

anomalies are strongest in heavily-trafficked shipping lanes andwhaling areas. However, this pattern could be a real316

climatological shift in wave number 3 of the zonal flow in the Southern Hemisphere (see, for example, van Loon and317

Jenne (1972); Raphael (2004)) and would be erroneously removed by the bias correction scheme (Fig. 7c). Nevertheless,318

in the absence of more information about these pressure observations or independent reconstructions of themid-19th319

century SLP fields for validation, this procedure provides an improvement over uncorrected marine observations320

leading to spurious SLP trends (e.g., Fig. 5). Deeper investigations into the cause of this observational bias (such as321

changes inmeteorological logs or barometer-correction practices over the period 1850-1860) could allow formore322

realistic bias correction schemes in the future.323

3.3 | Artifacts in precipitation andwind324

While the global SLP trend prior to 1870 in Figure 5 could be attributed in someway to the observations, other artifacts325

can be traced back to the assimilationmethod. Once example stems from the use of a digital filter in the forecast step of326

20CRv2c (Lynch andHuang, 1992; Huang and Lynch, 1993) to temporally smooth the physical fields after the EnKF327

update (Appendix A).Without this filtering, imbalances introduced by the EnKFupdatewould have resulted in numerical328

noise during the forecast step, which in turn would have contaminated the forecasts and the covariance estimate during329

the next assimilation step, degrading the accuracy of the analysis. The digital filter was active for forecast hours 0-3,330

andwas turned off for hours 3-6. One effect of the digital filter switching on and off is an artificial positive trend in the331

tendency of precipitation rates from consecutive forecast windows (Figure 8a).332

Instead of a digital filter, the version 3 system uses a 4D incremental analysis update (4DIAU) (Bloom et al., 1996;333

Lei andWhitaker, 2016) tomitigate the imbalances introduced by the EnKF update. Essentially, the updates calculated334

by the EnKF analysis step are applied as amodel forcing at the time steps within the forecast, preventing gravity wave335

noise from contaminating its short-term evolution. Unlike the digital filter, the temporal smoothing in the 4DIAU is336

effectively only applied to analysis increments, not to the total model fields, thereby eliminating the spurious tendency337

trends seen during the forecasts of version 2c. Figure 8b demonstrates the improvement over the digital filter: the338
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precipitation rate biases have almost entirely disappeared. Note that the spatial average of the tendencies (difference339

between 3-6 hour and 0-3 hour forecasted precipitation rates) from 20CRv2c fields (Fig. 8a) is 0.72mm/day, while the340

average from 20CRv3 (Fig. 8b) is 0.05mm/day. These figures show the annual average for 2002 but are representative341

of all available years.342

Despite this change, the global annual average precipitation rate in tests with the 20CRv3 system is nearly the same343

as 20CRv2c. Figure 9 shows the year 2002 average precipitation rates for (a) 20CRv2c, (b) 20CRv3, and (c) the gridded,344

blended satellite/gauge precipitation dataset fromNASA’s Global Precipitation Climatology Project (GPCP; Adler et al.345

(2003)). The 20CRv3 field has a stronger separation in the western tropical rainband than 20CRv2c, leading to a double346

Inter-Tropical Convergence Zone (ITCZ) that is not as apparent in the GPCP dataset. Note that both versions of 20CR347

also overestimate global precipitation rates relative to GPCP; investigations into this issue are ongoing.348

Figures 8a and 9a show another artifact of 20CRv2c, previously identified by Kent et al. (2013): namely, a spectral349

ringing characteristic in the precipitationmean and difference fields. This artifact is evenmore apparent in the 10m350

wind fields (Figure 10). While it is possible that this is due to an error in the process of converting between the spectral351

model space and the physical grid space, a more likely cause is an error in the surface height field used in 20CRv2c. In352

particular, the spectral transform of a higher-resolution height field to the lower-resolution field used as an input to the353

modelmay have been incorrect, leading to a similar spectral signature in the 20CRv2c height field (not shown). However,354

the version 3 system does not suffer from this issue: the precipitation andwind fields lack any spectral ringing signals.355

4 | ADDITIONAL IMPROVEMENTS IN 20CRV3356

In addition to the specific developments in the version 3 system that were designed to ameliorate issues in 20CRv2c,357

20CRv3 benefited fromother updates to the system that led to overall improvements. In particular, the version 3 system358

uses adaptive quality control and localization and specifies smaller tropical cyclone observation errors. These changes,359

in conjunction with a newer, higher-resolution forecast model, a larger observational database, and the improvements360

described in Section 3, have resulted in smaller forecast errors, large-scale reductions in model bias, andmore accurate361

representations of storms.362

4.1 | Adaptivemethods for assimilating observations363

All versions of 20CR use an ensemble Kalman filter to assimilate observations. It is well-known that localization is364

required to prevent spurious ensemble cross-correlations from developing far away from the assimilated observations365

(Houtekamer andMitchell, 1998, 2001; Hamill et al., 2001; Anderson, 2007). The use of localization in ensemble data366

assimilation systems for weather prediction is crucial, since current-generation systems are being runwith ensemble367

sizesmany orders ofmagnitude smaller than the size of the forecastmodel state vector. Traditional localization schemes368

use a smooth cutoff function, such as the piecewise continuous fifth-order polynomial function described byGaspari and369

Cohn (1999), to taper the covariances to zero at a given distance away froman observation. Typically, this ‘Gaspari-Cohn’370

localization is a function of only the horizontal distance between an observation and a state variable, and is described by371

a single parameter that is related to the distance at which the Gaspar-Cohn function goes to zero. The optimal value for372

the localization length scalemay be a function of many aspects of the data assimilation system, such as the density of373

the observing system and the scale of the phenomena being observed. This makes tuning the localization length scale374

difficult, especially when the observing system is very inhomogeneous, andmany different scales are being observed375

simultaneously. The 20CRv2c system used a localization radius of 4000 km for all times and locations based on early376
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tests (Whitaker et al., 2004); a relatively large value was chosen to maximize the use of observations in data-sparse377

regions and tominimize the generation of small-scale noise by the EnKF update.378

In addition to localization, a five-step quality control (QC) process was employed in 20CRv2c. Briefly, this consisted379

of: (1) a gross error check that removed sea level pressure observations outside the plausible range of 880 to 1060380

hPa; (2) a background check that flagged observations that were too far from the first guess value; (3) a buddy check to381

determine whether assimilating each observation improves or degrades the fit of the analysis to nearby observations;382

(4) a thinning step, which ignored observations that would not significantly decrease the spread of the analysis if383

assimilated; and finally, (5) a bias correction to the station observations. More details on this quality control process are384

found in Appendix B of Compo et al. (2011).385

Since the 20CR system only assimilates surface pressure observations and the network can become quite sparse in386

the 19th century, it is important to extract themost information from each observation. In order tomake better use of387

the observations, 20CRv3 uses an adaptive quality control procedure jointly with an adaptive localization algorithm.388

Observations must still pass steps (1) and (2) above: if the observation is outside a plausible range or if the observation389

is too far from the first guess, the observation is rejected. In 20CRv3, the first step will reject observations that are390

outside the range 850 and 1090 hPa (note this is less strict than the first step used in 20CRv2c). The second stepwill391

reject an observation if the absolute difference between it and the first guess is greater than 3.2 ∗
√
σ2
b
+ σ2

ob
, where σ2

b
392

is the variance of the first guess ensemble interpolated to the observation time and location and σ2
ob
is the observation393

error variance. Unlike 20CRv2c, version 3 does not utilize a buddy check or a thinning algorithm {steps (3) and (4)394

above} to reject observations that do not decrease the analysis ensemble spread. Instead, the adaptive quality control395

assigns these observations larger errors and smaller localization radii, so that their region of influence is essentially zero.396

Details of the adaptive quality control and localization procedures used in 20CRv3 can be found in Appendices C-D.397

Figure 11 showsmaps of observations within a single assimilation window for four test years: 1854, 1915, 1935,398

and 2000. Note that, as the observation network becomes denser, the localization lengths generally decrease. In 1854399

and 1915, the observation network is relatively sparse, and most observations have localization length scales near400

the maximum allowed of 4000 km. In the year 2000, however, most observations located within densely observed401

areas have localization length scales closer to 1000 km, though there are a few observations within these areas that the402

algorithm selects for longer localization length scales. Observations locatedwithin areas that are sparsely observed403

(such as the SouthernOcean and Antarctica) still have fairly long localization length scales in the year 2000. This new404

procedure allowsmanymore observations to be assimilatedwithin 20CRv3while adaptively allowing observations405

with significant beneficial effects to have larger ranges of impact, and observations that have less beneficial effects to406

have smaller ranges.407

4.2 | Observation statistics408

Observations have a large impact on overall performance of reanalyses: inaccurate observations as well as the incorrect409

prescription of their errors can impact global fields and their trends (recall the global SLP bias in Figure 5). It is410

crucial, then, to be able to take advantage of these observations to the greatest extent possible, particularly when the411

observation network is fairly sparse. Here we show that, while 20CRv2c performs fairly well under manymeasures, the412

updated algorithms used in 20CRv3 produce clear improvements.413

Statistics of the departures of observations from the first-guess field can provide one measure of how well the414

entire system is performing, particularly when compared with statistics of the expected errors. These expected errors415

are defined as the root-mean of the sumof the observation error varianceσ2
ob
and the spread of the first guess ensemble416

interpolated to the observation time and location σ2
b
. The ‘actual’ errors are the root-mean-square of the difference417
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between the observed pressure and the first-guess pressure field interpolated to the observation time and location. As418

shown by Desroziers et al. (2005), under the assumptions that the observation and background errors are uncorrelated419

and unbiased, these errors should be equivalent. We consider time series of regionally- and annually-averaged forecast420

errors from 20CRv2c for the Northern Hemisphere (20◦N to 90◦N), Tropics (20◦S to 20◦N), and Southern Hemisphere421

(90◦S to 20◦S). These errors are averaged over all observations in the given region for each year and plotted in Figure 12,422

along with the number of assimilated observations per year (blue; right-hand axis).423

As expected from EnKF theory and seen with 20CRv2 (Compo et al., 2011), errors decrease in time as observations424

are denser andmore accurate. Note that this is not a result of any ‘tuning’. The Southern Hemisphere errors match the425

expected errors fairly well in all decades after 1860, but the error in the tropics seems to show effects of changes in426

observing networkmore strongly than in the Southern or Northern Hemispheres. With a few exceptions, the tropical427

errors are smaller than expected by the 20CRv2c system. Conversely, the errors in theNorthernHemisphere are almost428

always larger than the expected errors, by over 1 hPa in earlier decades and by 0.3-0.5 hPa in recent decades. This429

suggests that the errors assigned to observations might be too low, the first guess ensemble spread is too small, the430

observations or first guess fields are biased, or a combination of these.431

Recall from Section 3 that, prior to 1871, a bias correction wasmade tomarine observations in 20CRv3, in addition432

to the station observation bias correction. Although dry air mass conservation is mainly responsible for removing433

the low-pressure bias (Fig. 7), the ship bias correction provides further improvement. The overall result of the new434

algorithms in the version 3 system is that RMS errors have decreased overall in several different test periods. Figure 13435

shows the actual and expected errors in 1854 (when themarine observation bias correction was applied), 1935, and436

2000. The actual errors in 20CRv3 are lower than the actual errors in 20CRv2c in almost all cases, and the difference437

between the actual and expected errors is often smaller in v3 than in v2c. While the actual errors in 1854 are still larger438

than the expected errors in 20CRv3, this difference is smaller than in 20CRv2c. These years are generally representative439

of their respective time period; however, there is a period of time surroundingWorldWar I when the actual error from440

20CRv3 is still larger than the expected error (not shown).441

These improvements in RMS errorsmay be due to the updatedmodel, aswell as to the new algorithms implemented442

in the 20CRv3 system. This is supported by investigations into the station bias corrections: recall that these corrections443

are based on 60-day average differences between observations from each station and the first-guess pressure at that444

location. Ideally, the consistentmismatch between observations and themodel first guess are biases in the observations445

that are removed; however, themismatch could be due tomodel errors, and the algorithmwould actually be adjusting446

the observations away from reality and towards the biasedmodel state. In particular, it is likely that biases with large-447

scale spatial patterns are model errors, though they could result from national issues producing similar biases (Slonosky448

and Graham, 2005). Conversely, small-scale biases may point to a mis-assignment of station elevation or position: these449

are observational biases that should be corrected.450

Figure 14a-c shows the annual average station pressure biases from 1960, 1980, and 2000 that were removed451

from observations in 20CRv2c. Note the annual values in the region over eastern Europe andmuch of northern Asia452

are consistently negative, suggesting amodel bias (see also van den Besselaar et al. (2011)). Conversely, the version453

3 data does not show the same spatial or temporal consistency of negative values in this region (Fig. 14d-f). This may454

suggest that the model used in version 3 is less biased than in 20CRv2c. Another cause could be due to the process455

of the station bias correction: 20CRv2c calculated biases from the observations interpolated to the model surface,456

but inadvertently applied the correction at the level of the observation; in 20CRv3, the bias correction is calculated457

and applied at the level of the observation. Unlike the Eurasian biases, consistent regional biases over the US have458

hardly changed in 20CRv3; it is unclear whether this is a model bias effect or not. Other possible causes of large-scale459

biases include orography (biases overmountain ranges tend to be consistent; see the Himalaya) and nationality (due460
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to country-specific calibration and correctionmethods; c.f. the Canadian ‘50-foot rule’ (Slonosky and Graham, 2005)).461

Finally, version 3 includes many other changes to the assimilation method and the observation handling, as well as462

changes to the forecast model, so it is difficult to confidently conclude that the negative bias over northern Asia was a463

model error that has been fixed. Regardless, the overall mismatch between station observations and first-guess fields464

has been notably diminished in 20CRv3. This leads to analyzed SLP fields (Figure 15) and 500 hPa geopotential height465

fields (Figure 16) that are closer to those of ERA-Interim and JRA-55, particularly in northern Eurasia.466

4.3 | Representation ofmajor storms467

Historical reanalyses are especially useful for studying extreme weather events, since these are by definition rare468

but high-impact events. Tropical and extratropical cyclones are of particular interest as they can result in loss of life469

and enormous financial costs. To improve understanding and predictions of these storms, it is necessary to improve470

our understanding of the large-scale drivers of them as well as how storm characteristics are changing as the climate471

changes. If historical reanalyses can accurately capture these storms, they provide a long, consistent sample of such472

extreme events and their associate large-scale environment.473

In order to represent tropical cyclones (TCs), 20CRv2c assimilated TC data from IBTrACS (Knapp et al., 2010) in474

addition to land station andmarine pressure observations. IBTrACS consists of actual pressuremeasurements, pressure475

reports calculated as time-interpolated values from tropical cyclonewarning centers, andwind-derived central pressure476

reports; see Compo et al. (2011); Knapp et al. (2010) for more details. Since these data are often significantly lower477

than the nearby station observations, they would generally fail the ‘buddy check’ step of quality control that compares478

observations to their nearest neighbors (see Section 4.1 above and Appendix B of Compo et al. (2011)); therefore, the479

20CR system has IBTrACS data bypass these checks and assimilates these deep-low data.480

In version 2c, these data were assigned large observation errors (much higher than any other type of observation)481

to prevent numerical instabilities from arising immediately after assimilation; see Table A.1. Despite digital filtering to482

smooth the evolution of the post-update fields, tests using smaller errors would occasionally still generate amplifying483

gravitywaves andnumerical instability. While the large error assignment eliminated this problem, the resulting20CRv2c484

analyses can have central pressure values that aremuch higher than the IBTrACS data, sometimes by 40 hPa ormore.485

The version 3 system, however, can use these observationsmore effectively. Assimilating TC low-pressure values into486

the version 3 system, with an updated, higher-resolution forecast model and 4DIAU, does not generate instabilities, and487

so the IBTrACS data can be assigned smaller observation errors (see Table 1). This often yields stronger cyclones with488

central pressure analyses that are closer to the original IBTrACS value.489

As an example, we investigate a strong hurricane that hit Galveston, Texas in August 1915. Figure 17 illustrates the490

analyzed sea level pressure fields (contours) from 4 reanalyses, as well as locations of observations available between491

16 Aug 1915 2100UTC and 17 Aug 1915 0900UTC (circles); this windowwas chosen so that observations assimilated492

at 0000UTCwould be shown as well as those assimilated at 0600UTC. Observations that were assimilated are shown493

as solid circles, while observations that were rejected by theQC system are open circles. Blue circles represent station494

andmarine observations, and red circles represent IBTrACS data. 20CRv2c (panel a) assimilated the IBTrACS report of495

940 hPa on 17 Aug 1915 at 0600UTC, producing an analyzed value of 986 hPa at the center of the storm. In version496

3 (panel b), the storm is even stronger, and the analyzed value at the center of the storm has decreased to 962 hPa,497

reducing the observation-analysis departure calculated from 20CRv2c by half. For comparison, ERA-20C (panel c)498

rejected the IBTrACS observations during quality control and analyzed a low pressure system that is weaker than that499

of 20CRv2c and has amisaligned center. The CERA-20C system also rejected the IBTrACS observations, but assigned500

larger errors to the nearby station data than ERA-20C (Laloyaux et al., 2018), thereby showing no trace of the storm501
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(panel d). Laloyaux et al. (2018) conducted experiments with the CERA-20C system in which these observations were502

white-listed, and found this yielded better performance than CERA-20C for two hurricanes in 1900 and 2005 (their503

Fig. 5).504

5 | REMAINING ISSUES505

While the changes from the version 2c system to the version 3 system have resulted in many improvements across506

the board, there are several remaining issues in 20CRv3 as well as new questions that have arisen. For instance, recall507

(Figure 9) the precipitation biases that have strengthened in 20CRv3, particularly the appearance of a double ITCZ and508

the overestimation of global precipitation rates relative to GPCP. The Southern Hemisphere confidence fields (Figure 4)509

also demonstrate that there is some remaining large uncertainty over Antarctica (though these areas are relatively510

small), despite tests that led to adjusting the inflation parameter in the Southern Hemisphere.511

Figure 7 and Figure 15a-b demonstrate another potential issuewith the Southern Hemisphere: a high pressure512

bias over Antarctica. Figure 7 shows that the 1854 annual average sea level pressure over Antarctica in 20CRv3 is513

several hPa higher than the 20CRv2cmodern climatology, and this anomaly is larger in 20CRv3 than it was in 20CRv2c.514

Figure 15 demonstrates that 20CRv3 also displays this high pressure bias in amodern difference calculatedwith respect515

to ERA-Interim. However, the strong difference relative to ERA-Interim ismainly over the Antarctic landmass, which has516

a fairly high topography, so the sea level pressure field is likely not an appropriate variable to consider when diagnosing517

themass or circulation field of this region. Indeed, the SLP difference with JRA-55 (Fig. 15c-d) is the opposite sign in this518

region.519

A third Southern Hemisphere issue, regarding a trend in sub-Antarctic sea level pressure, was first brought to520

light during an investigation of ERA-20C (Poli et al., 2015, 2016). This dataset has a high pressure bias south of 60◦S521

in the early 20th century that is particularly strong in austral summer (Dec-Jan-Feb). Comparisons with 20CRv2c522

show that it has a similar bias as ERA-20C, though it is not as strong in DJF. Figure 18 shows the seasonal time series523

of sea level pressure area-averaged poleward of 60◦S for several datasets including 20CRv2c, ERA-20C, CERA-20C,524

and ERA-Interim. Data from an ensemble of model simulations using the 20CRv2c system but that did not assimilate525

any observations (‘no DA’) is also included, as well as preliminary 20CRv3 data for the test periods 1910-1930 and526

1990-2010. There is a drop and subsequent increase in SLP from 20CRv2c in all seasons (most notably in Sept-Oct-Nov)527

from 1890-1910, with another significant drop-off between 1940 and 1960. The preliminary 20CRv3 data agrees with528

the 20CRv2c data for themost part, though the early 20th centuryMarch-April-May SLP has been diminished. In all529

seasons, though, themodern 20CRv3 SLP is still about 5 hPa lower than the early 20th century SLP.530

ERA-20C and the 20CR datasets used entirely different models and assimilationmethods but show similar trends,531

which suggests the culprit is in the observations. Poli et al. (2015) and Laloyaux et al. (2018) assert that the problem532

was caused not by a bias in the observations, but by the spatial pattern of observations at this time in the Southern533

Hemisphere. In particular, most of the observations are located in the subtropical high-pressure belt; the positive534

increments from assimilating these observations spread to the unobserved, and thus unconstrained, region farther535

south. They argue that this is due to assigning observation errors that are too small; in CERA-20C, the errors varied536

in time, and larger values were assigned in this time period. This has significantly decreased the trend in SLP from537

CERA-20C in all seasons, though it remains somewhat in DJF, when the bias in ERA-20Cwasmost obvious. Hegerl et al.538

(2018) point out that the years 1906-1915 also exhibit anomalously cold SSTs in the Southern Ocean (their Fig. 2c),539

possibly due to instrumental biases; investigations into this issue and possible connectionswith the SLP signals in Fig. 18540

are ongoing.541
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6 | CONCLUSIONS542

With the growing need to understand and predict climate and extremeweather variations on decadal to centennial543

timescales, the use of historical reanalyses continues to expand in areas such as assessments of long-term climate544

change, investigations of extreme events, and detailed histories of weather. It is, therefore, becomingmore important545

that these reanalyses are reliable, both in their state estimates and their quantification of uncertainty. Users must546

recognize when and where historical reanalyses can be confidently utilized, and when caution should be taken (or a547

different dataset chosen). Thiswork seeks to illuminate particular aspects of 20CRv2c that require careful consideration,548

the ways in which these issues informed the development of the 20CRv3 system, and particular aspects of 20CRv3 that549

show improvements over 20CRv2c.550

The Twentieth Century Reanalysis version 2c improved upon several issues discovered in the previous NOAA-551

CIRES historical reanalysis, 20CRv2, but other problems remained. They provided specific focus areas when developing552

the NOAA-CIRES-DOE 20CRv3 system. Indeed, many of the issues in 20CRv2c discussed here have been ameliorated553

in 20CRv3 due to a combination of factors: a newer NCEPGFS forecast model with higher resolution; improved data554

assimilation algorithms, observation processing, and quality control; and an updated ISPDobservation database. Several555

other issues with 20CRv2c exist that have not been discussed here, including spinup effects in sea ice thickness, snow556

depth, and soil moisture, and biases in the upper-stratospheric temperatures; some of these issues are reduced in557

20CRv3 andwill be discussed in future work.558

Preliminary results with the 20CRv3 dataset are quite promising, though they are already highlighting areas559

for future research, particularly in the ‘Deep South’ of the Southern Hemisphere. The confidence in that region560

remains too low; further work regarding the relaxation-to-prior-spread inflation algorithm in this region may be561

necessary to increase the confidence to more realistic values. A larger set of available observations in this region562

would also increase the confidence (recall Figure 2), motivating greater data rescue efforts here. In addition, there are563

high pressure biases over Antarctica and the Southern Ocean throughout time that may or may not be real signals;564

gathering high-quality independent observations to use for validation in these sparsely-observed regions remains a565

challenge within the data rescue community (Allan et al., 2011; Brönnimann et al., 2018), but new data rescue efforts566

(SouthernWeatherDiscovery.org) are beginning to address this challenge. More data are also needed in other sparsely-567

observed regions, as well as globally in the early 19th century. Other data rescue efforts (including ACRE activities, the568

Copernicus Climate Change Service South America data rescue project, and the UK/China Climate Science for Service569

Partnership) have the potential to significantly add to the observational database in these regions.570

Despite some remaining challenges with 20CRv3, there are early suggestions that this dataset will be useful571

for studies in which 20CRv2c required more cautious analysis: for example, tropical cyclones seem to show much572

stronger signals in 20CRv3 than in 20CRv2c. This suggests that 20CRv3may be used for validating ongoing historical573

tropical cyclone research that extends IBTrACS back in time (Diamond et al., 2012), and for corroborating partial or574

discontinuous storm track information (e.g. when storm systems passed close to islands or ships.) Utilizing an updated575

inflation algorithm also allows for more consistent studies of long-term trends and uncertainty, where 20CRv2c576

exhibited artificial signals due to abrupt parameter changes.577

Since the process of creating historical reanalyses is a continuous cycle of improvement, we are already looking578

ahead to further upgrades to the 20CR system. In particular, NCEP has recently significantly updated their global579

forecast systemwith a finite volume, cubed spheremodel (Harris and Lin, 2013) (preliminary documentation available580

at https://vlab.ncep.noaa.gov/group/fv3gfs); the changes resulting from this model versus the previous spectral model581

need to be investigated. Recent investigations into coupled data assimilation algorithms, and the first implementation of582

a quasi-strongly coupled data assimilation algorithm in CERA-20C (Laloyaux et al., 2018), suggest that future versions583
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of 20CR could benefit from coupled systems. Finally, while all versions of 20CR so far have only assimilated surface584

pressure, the possibility of assimilating other types of data (such as marine winds, sea ice observations, or precipitation)585

seems to bemore feasible as data assimilation algorithms continue tomature.586
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TABLE 1 Platform-dependent baseline observation errors in the 20CRv3 systems (in hPa). Note that only surface
pressure data are assimilated, including from radiosonde and dropsonde observing platforms. ‘SLP only’ refers to
stations that do not report surface pressure, only sea level pressure.

Type Error (hPa)
radiosonde 1.2
dropsonde 2.0
marine 2.0
station 1.2
station (SLP only) 1.6
tropical cyclones 2.5
SLP, sea level pressure.

TABLE 2 Covariance inflation parameters used in 20CRv2c as a function of latitude and year. A value of 1
corresponds to no inflation. NH=90◦N–30◦N; Tropics = 30◦N–30◦S; SH = 30◦S–90◦S.

years NH Tropics SH
1851 – 1870 1.01 1.01 1.01
1871 – 1890 1.05 1.01 1.01
1891 – 1920 1.09 1.02 1.01
1921 – 1950 1.12 1.03 1.02
1951 – 2014 1.12 1.07 1.07
NH, Northern Hemisphere; SH, Southern
Hemisphere.
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F IGURE 1 Time series of the annual average number of observations available to be assimilated globally per 6-hour
windowwithin 20CRv2c (ISPDv3.2.9, solid black) and 20CRv3 (ISPDv4.7, dashed gray).
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F IGURE 2 Time series of ensemble spread (thick dark red curve) and temporal spread of the ensemblemean (thin
orange curve) for sea level pressure from 20CRv2c averaged over the zonal band from 65◦S to 40◦S. Number of
observations assimilated per 6-hour window in this region is shown in black. A 1-year running average was applied to all
curves. Correlation r is calculated between the smoothed ensemble spread and the smoothed logarithm of the number
of assimilated observations.
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F IGURE 3 Adaptive inflation parameter λi nf (unitless) used in 20CRv3 system for 0000 UTC on (a) 1 Sept 1854; (b)
1 June 1915; (c) 10 Feb 1935; (d) 1 Sept 2000. A value of 1 corresponds to no inflation.
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(a) 20CRv2c

(b) 20CRv3

(c) 20CRv3 minus 20CRv2c

F IGURE 4 Normalized confidence of SLP averaged over JFM for 1916-1918 from (a) 20CRv2c and (b) 20CRv3, as
well as (c) the difference (20CRv3minus 20CRv2c). In (a)-(b), zero (black contour) represents climatological uncertainty,
blue represents less certainty than climatology, and red represents more certainty. In (c), red represents an increase in
confidence from 20CRv2c to 20CRv3, and blue a decrease.
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F IGURE 5 Time series of annual global SLP from several reanalyses, as well as a non-assimilating ensemble of
model runs.

(a)

(b)

F IGURE 6 Analyzed sea level pressure anomalies (with respect to the analyzed 20CRv2c 1981–2010 climatology)
for 1851–1853 of (a) 20CRv2c and (b) an identical experiment with the 20CRv2c system that assimilated 10% fewer
ship observations.
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(a)

(b)

(c)

F IGURE 7 Annual-average sea level pressure anomaly (with respect to the 1981-2010 climatology) for 1854 of (a)
20CRv2c (without dry air mass specification), (b) preliminary version 3 tests without ship bias correction (with dry air
mass specification), and (c) preliminary version 3 tests with ship bias correction (with dry air mass specification).
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(a) 20CRv2c

(b) 20CRv3

average = 0.72 mm/day

average = 0.05 mm/day

F IGURE 8 Annual average differences (mm day−1) between 3-6 hour forecasted precipitation rate and 0-3 hour
forecasted precipitation rate in (a) 20CRv2c and (b) 20CRv3 for 2002.
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average = 3.09 mm/day

average = 3.10 mm/day

average = 2.70 mm/day

(a) 20CRv2c

(b) 20CRv3

(c) GPCP

F IGURE 9 Annual average forecasted precipitation rate (mm day−1) in (a) 20CRv2c, (b) 20CRv3, and (c) the GPCP
satellite/gauge blended fields for 2002.



LAURA C. SLIVINSKI ET AL. 35

20CRv2c 20CRv3
(a) 10m u-wind

(d) 10m v-wind(c) 10m v-wind

(b) 10m u-wind

F IGURE 10 Annual average from 2002 of 10-meter zonal (top) andmeridional (bottom) wind fields from 20CRv2c
(left) and 20CRv3 (right), ms−1.
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(a) 1854 (b) 1915

(c) 1935
(d)

km

(d) 2000

F IGURE 11 Localization values in km for all observations assimilated in 20CRv3 at 1200UTC on 1 June for the
year (a) 1854; (b) 1915; (c) 1935; and (d) 2000. Note that comparable plots for 20CRv2c would be entirely light orange
(localization value of 4000 km).
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(a) Northern Hemisphere

(c) Southern Hemisphere

(b) Tropics
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F IGURE 12 Actual (solid black) and expected (dashed) annual first-guess RMS errors for observations assimilated
in 20CRv2c in the (a) the Northern Hemisphere (20◦N to 90◦N), (b) the tropics (20◦S to 20◦N), and (c) the Southern
Hemisphere (90◦S to 20◦S). The number of observations assimilated in each region annually is plotted as a thin blue line
(right-hand axis).
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(a) Northern Hemisphere

(c) Southern Hemisphere

(b) Tropics

F IGURE 13 Actual and expected annual first-guess RMS errors for 20CRv2c (blue) and 20CRv3 (orange) for (a) the
Northern Hemisphere (20◦N to 90◦N), (b) the tropics (20◦S to 20◦N), and (c) the Southern Hemisphere (90◦S to 20◦S)
for three representative years.
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20CRv2c

20CRv3

1960 20001980(a) (b) (c)

(d) (e) (f)

hPa

F IGURE 14 Annual average station pressure biases in hPa for 1960, 1980, and 2000, calculated from 20CRv2c (top
row) and 20CRv3 (bottom row).

(a) 20CRv2c minus ERA-Interim (b) 20CRv3 minus ERA-Interim

(d) 20CRv3 minus JRA-55(c) 20CRv2c minus JRA-55

F IGURE 15 Annual average sea level pressure differences between the labelled for 2000 of (a) 20CRv2c and (b)
20CRv3.
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(a) 20CRv2c minus ERA-Interim (b) 20CRv3 minus ERA-Interim

(d) 20CRv3 minus JRA-55(c) 20CRv2c minus JRA-55

F IGURE 16 Annual average 500 hPa geopotential height differences from ERA-Interim for 2000 of (a) 20CRv2c
and (b) 20CRv3.
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(a) 20CRv2c (b) 20CRv3

(c) ERA-20C (d) CERA-20C

F IGURE 17 Sea level pressure (orange contours; interval by 5 hPa) andwind fields (vectors; ms−1) for the 1915
Galveston hurricane, 17 Aug 1915 0600UTC, from (a) 20CRv2c, (b) 20CRv3, (c) ERA-20C, and (d) CERA-20C. Locations
of available observations taken between 16 Aug 1915 2100UTC and 17 Aug 1915 0900UTC are shown by circles:
station andmarine observations are blue, IBTrACS data are red, solid circles denote observations that were assimilated,
and open circles denote observations that were rejected.

(a) (b)

(c) (d)

F IGURE 18 Time series of seasonal sea level pressure poleward of 60◦S from 20CRv2c (blue), ERA-20C (green),
CERA-20C (gold), ERA-Interim (orange), a non-assimilating model run using the 20CRv2c system (red), and preliminary
20CRv3 data without confidence intervals (black). Shading represents one standard deviation when available.


