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Abstract

We review recent results [3] concerning the evolution of fermionic systems. We are
interested in the mean field regime, where particles experience many weak collisions. For
fermions, the mean field regime is naturally linked with a semiclassical limit. Assuming
some regularity of the interaction potential we show that the many body evolution of
initial states close to Slater determinants exhibiting the appropriate semiclassical struc-
ture can be approximated by the Hartree-Fock equation. Our method provides precise
bounds on the rate of the convergence.

1 Introduction

We consider systems of N fermions, described by wave functions ψN ∈ L2(R3N , dx1 . . . dxN ),
antisymmetric with respect to permutations. Since it does not play any role in our analysis,
we neglect the spin of the particles.

Initially, particles are confined by a trapping potential in a volume of order one (we will
consider the system at or close to zero temperature; hence the initial data will be chosen
close to the ground state of the trapped Hamiltonian). We are interested in understanding
the evolution of the system resulting from a change of the external fields. For example, we
study the dynamics generated by the translation invariant Hamiltonian

HN =

N∑

j=1

−∆xj + λ

N∑

i<j

V (xi − xj).

In this case, the external fields have been completely switched off. Because of the Pauli
principle, the kinetic energy of the N fermions at time t = 0 is of the order N5/3. The
potential energy, on the other hand, is of the order λN2. Hence, to observe a non-trivial
effective dynamics, we have to choose the coupling constant λ to be of the order N−1/3. Also,
since the typical velocity of particles is large, of the order N1/3, we can only hope to follow
the evolution for times of the order N−1/3. Rescaling time, we are led to the Schrödinger
equation

iN1/3∂tψN,t =




N∑

j=1

−∆xj +
1

N1/3

N∑

i<j

V (xi − xj)


ψN,t.
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To write this equation in a more familiar form, we set ε = N−1/3 and we multiply it by ε2.
We find

iε∂tψN,t =




N∑

j=1

−ε2∆xj +
1

N

N∑

i<j

V (xi − xj)


ψN,t. (1.1)

In Eq. (1.1) we recover the coupling constant of the order N−1 characterizing the mean
field limit of bosonic systems. We observe, however, that in the fermionic case, the mean
field regime is naturally linked with a semiclassical limit, with ε = N−1/3 playing the role of
Planck’s constant and converging to zero as N → ∞.

As explained above, we would like to study the solution of the Schrödinger equation (1.1)
for initial data ψN,0 describing particles trapped in a volume of order one. In particular, at
(or close to) zero temperature, we are interested in initial data close to the ground state of
an Hamiltonian of the form

Htrap
N =

N∑

j=1

(
−ε2∆xj + Vext(xj)

)
+

1

N

N∑

i<j

V (xi − xj) (1.2)

where Vext is a confining external potential.
The ground state of (1.2) is expected to be approximated by a Slater determinant

ψslater
N (x1, . . . , xN ) =

1√
N !

det (fi(xj))1≤i,j≤N (1.3)

where {fj}Nj=1 is an orthonormal system of N functions in L2(R3). For an arbitrary ψN ∈
L2(R3N ), antisymmetric with respect to permutations, we define the reduced one-particle
density by taking the partial trace of the orthogonal projection |ψN 〉〈ψN | onto ψN over
(N − 1) particles (the result is a non-negative trace class operator on L2(R3); we normalize
reduced densities so that their trace is N). For the Slater determinant (1.3), the reduced
one-particle density ωN can be easily computed to be the orthogonal projection onto the N
dimensional space spanned by f1, . . . , fN , i.e.

ωN =
N∑

j=1

|fj〉〈fj |.

Slater determinants are quasi-free states; the expectation of any observable in the state ψslater
N

can be expressed (through Wick’s theorem) as a function of the reduced one-particle density
ωN . In particular, if we restrict our attention to Slater determinants, the expectation of the
Hamiltonian (1.2) can be expressed as a function of ωN . We obtain the Hartree-Fock energy
functional

EHF(ωN ) = tr
(
−ε2∆+ Vext

)
ωN

+
1

2N

∫
dxdy V (x− y)

[
ωN (x, x)ωN (y, y)− |ωN (x, y)|2

]
.

(1.4)

Hence, coming back to the dynamics, we are interested in understanding the solution of
the Schrödinger equation (1.1) for initial data close to Slater determinants whose reduced one-
particle density ωN minimizes the Hartree-Fock energy (1.4) among all orthogonal projections
with trace equal to N . Because of the mean field character of the evolution, it is natural to
expect that the evolution of such an initial data remains close to a Slater determinant, with
an evolved reduced density ωN,t. If we assume for a moment that this is indeed the case,
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it is easy to show that the evolution of the reduced density ωN,t must be governed by the
time-dependent Hartree-Fock equation

iε∂tωN,t =
[
−ε2∆+ (V ∗ ρt)−Xt, ωN,t

]
(1.5)

with the initial data ωN,0 = ωN . Here we defined the density ρt(x) = N−1ωN,t(x, x) and the
exchange operator Xt, having the integral kernel Xt(x, y) = N−1V (x−y)ωN,t(x, y). In order
to prove that the evolution of the initial Slater determinant, minimizing (1.4), remains close
to a Slater determinant, we need to have a closer look at its reduced density ωN . It turns
out that ωN is characterized by a special semiclassical structure which plays a crucial role
in the analysis of the evolution.

Acknowledgements. M. Porta and B. Schlein gratefully acknowledge support by the ERC
starting grant MAQD-240518.

2 Semiclassical structure

Let us begin this section by considering a system of N free fermions moving in the box
Λ = [0; 2π]3 ⊂ R

3 (for example, with periodic boundary conditions). The one-particle
Hamiltonian (i.e. the Laplace operator on Λ, with periodic boundary conditions) has the
eigenmodes eip·x, for p ∈ Z

3, with energy p2. The ground state of the N -particle system
is therefore the Slater determinant (Fermi sea) obtained by filling the N eigenmodes of the
one-particle Hamiltonian having the N smallest energies (because of the Pauli principle, we
cannot occupy the same mode with more than one particle). Thus, the reduced one-particle
density ωN of the free ground state has the integral kernel

ωN (x, y) =
∑

p∈Z3:|p|≤cN1/3

eip·(x−y)

for an appropriate constant c > 0 of order one. Changing variable p→ εp = N−1/3p, we find

ωN (x, y) =
∑

p∈εZ3:|p|≤c

eip·(x−y)/ε

= N
∑

p∈εZ3:|p|<c

ε3eip·(x−y)/ε ≃ N

∫

|p|≤c
eip·(x−y)/εdp.

We find that ωN (x, y) ≃ Nϕ((x − y)/ε) for a function ϕ decaying to zero at infinity (it is
possible to compute ϕ explicitly, but the result is not very important for our purposes). The
important observation is that the kernel ωN (x, y) is concentrated close to the diagonal x = y,
and that it decays to zero, for |x− y| ≫ ε.

If instead of imposing periodic boundary conditions we trap the particles with an external
confining potential, we still expect the reduced one-particle density of the Slater determinant
minimizing the energy to be concentrated close to the diagonal; in this case, however, it will
also depend on the variable (x+ y), so that the density of the particles can vary locally, to
better adapt to the profile of the external potential. In other words, we expect

ωN (x, y) ≃ Nϕ((x− y)/ε)ρ(x + y) (2.6)

for appropriate functions ϕ, ρ (normalizing ϕ so that ϕ(0) = 1, ρ(x) ≃ N−1ωN (x, x) is the
density of particles at point x). We expect therefore a clear separation of scales. The kernel
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ωN (x, y) should vary on the microscopic scale ε in the (x− y) direction; on the other hand,
it should only vary on scales of order one in the (x+ y) direction.

In order to characterize the structure (2.6), it is useful to consider the commutators
[x, ωN ] and [ε∇, ωN ], having the integral kernels

[x, ωN ](x, y) = (x− y)ωN (x, y)

[ε∇, ωN ](x, y) = ε(∇x +∇y)ωN (x, y).

Assuming the decomposition (2.6), the factors (x − y) and ε(∇x + ∇y) are both of size ε
(at least if ρ has some regularity). Hence, reduced densities with the semiclassical structure
(2.6) satisfy the bounds

tr |[x, ωN ]| ≤ CNε and tr |[ε∇, ωN ]| ≤ CNε. (2.7)

So far, we argued that ground states of non-interacting systems are Slater determinants
satisfying (2.7). What happens now if we turn on an interaction? Semiclassical analy-
sis suggests that the general picture remains essentially unchanged. The minimizer of the
Hartree-Fock functional (1.4), now with non-vanishing interaction, is expected to be close to
the Weyl quantization

ωN(x, y) ≃ OpwM (x, y) =
1

(2πε)3

∫
dpM

(
x+ y

2
, p

)
eip·(x−y)/ε (2.8)

of the phase-space density M(x, p) = χ(|p| ≤ (6π2ρTF (x))
1/3), where ρTF minimizes the

Thomas-Fermi energy functional

ETF(ρ) =
3

5
(3π2)2/3

∫
ρ5/3(x)dx+

∫
Vext(x)ρ(x)dx +

1

2

∫
V (x− y)ρ(x)ρ(y)

under the conditions ρ ≥ 0 and
∫
ρ dx = 1. One can interpret (2.8) as stating that, like in

the case of free fermions, the minimizer of (1.4) can be constructed by filling the one-particle
modes with the smallest momenta. Here, however, we fill the Fermi sea locally, depending
on x, according to the value of the Thomas-Fermi density. Taking (2.8) for granted, we find
that

[x, ωN ] = −iεOpw∇pM , and [ε∇, ωN ] = εOpw∇xM .

Semiclassical analysis gives

tr |[x, ωN ]| ≃ ε

(2πε)3

∫
dxdp|∇pM(x, p)| = CNε

∫
dx ρ

2/3
TF (x) ≤ CNε

and

tr |[ε∇, ωN ]| ≃ ε

(2πε)3

∫
dxdp|∇xM(x, p)| = CNε

∫
dx|∇ρTF(x)| ≤ CNε,

in accordance with (2.7).
The heuristic argument we just presented motivates the expectation that the initial data

we are interested in, namely data close to the ground state of a Hamiltonian of the form
(1.2), are approximate Slater determinants with one particle reduced density ωN satisfying
the semiclassical bounds (2.7). From now on, this will be our assumption; in other words,
our main theorem will describe the time evolution of initial data with these properties. For
such initial data, we will prove that the evolution stays close to the Slater determinant with
reduced density ωN,t satisfying the time dependent Hartree-Fock equation (1.5).
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3 Fock space representation

To state our theorem more precisely, we switch to a Fock space representation, so that the
number of particles is allowed to fluctuate. We denote by

F =
⊕

n≥0

L2
a(R

3n, dx1 . . . dxn)

the fermionic Fock space over L2(R3) (L2
a(R

3n) denotes the subspace of L2(R3n) consisting
of antisymmetric wave functions).

On F , we introduce as usual creation and annihilation operators satisfying the canonical
anticommutation relations

{a(f), a∗(g)} = 〈f, g〉, {a(f), a(g)} = {a∗(f), a∗(g)} = 0

for all f, g ∈ L2(R3). We will also use the operator valued distributions a∗x, ax, which are
formally creating and, respectively, annihilating a particle at the point x. In terms of these
distributions, we define the number of particles operator

N =

∫
dx a∗xax.

More generally, given a self-adjoint operator A on L2(R3), we define its second quantization
dΓ(A) by

(dΓ(A)ψ)(n) =
n∑

j=1

A(j)ψ(n)

where A(j) = 1⊗ · · · ⊗ A⊗ · · · ⊗ 1 denotes the operator A acting only on the j-th particle.
It is easy to check that, if A has the integral kernel A(x, y), its second quantization can be
expressed in terms of the operator valued distributions as

dΓ(A) =

∫
dxdy A(x, y)a∗xay.

With this notation, we have N = dΓ(1).

Next, we introduce an Hamilton operator on F , by setting (HNψ)
(n) = H(n)

N ψ(n), where

H(n)
N =

n∑

j=1

−ε2∆xj +
1

N

n∑

i<j

V (xi − xj).

By definition, the Hamiltonian HN leaves the number of particles invariant. In particular, on
the N -particle sector, HN coincides exactly with the Hamiltonian generating the evolution
(1.1). In terms of the operator valued distributions a∗x, ax, HN can be expressed as

HN = ε2
∫
dx∇xa

∗
x∇xax +

1

2N

∫
dxdy V (x− y)a∗xa

∗
yayax.

On the Fock space F , Slater determinants can be very conveniently generated by Bo-
goliubov transformations. Let ωN =

∑N
j=1 |fj〉〈fj | be the reduced density of an N -particle

Slater determinant. The orthonormal family {fj}Nj=1 can be completed to an orthonormal

basis {fj}j∈N of L2(R3). Then there exists a unitary operator RωN
: F → F such that

RωN
Ω = a∗(f1) . . . a

∗(fN )Ω

5



is the Slater determinant with reduced density ωN (here Ω = {1, 0, 0, . . . } denotes the Fock
space vacuum), and

R∗
ωN
a∗(fj)RωN

=

{
a∗(fj), if j > N
a(fj), if j ≤ N

. (3.9)

Taking the adjoint, we obtain a similar formula also for the action of RωN
on annihilation

operators. The idea here is that the Bogoliubov transformation RωN
allows us to switch to

a new representation of the canonical anticommutation relations. The new vacuum RωN
Ω is

the Slater determinant with reduced density ωN . The new creation operators R∗
ωN
a(fj)RωN

create a particle with wave function fj if j > N , while they create a hole in the Slater
determinant if j ≤ N . The new number of particles operator R∗

ωN
NRωN

measures the
number of particles outside the Slater determinant combined with the number of holes in
the Slater determinant. In other words, it measures the number of excitations w.r.t. the
Slater determinant; since our goal is exactly to prove closeness to a Slater determinant, this
explains why Bogoliubov transformations are so useful for us, and play such an important
role in our analysis.

From (3.9), we conclude that, for arbitrary f ∈ L2(R3),

R∗
ωN
a∗(f)RωN

= a∗(uNf) + a(vNf) (3.10)

where uN = 1 − ωN and vN =
∑N

j=1 |f j〉〈fj | (recall that creation operators are linear
and annihilation operators are antilinear in their arguments; this explains the emergence of
complex conjugation).

4 Main results

We are now ready to present our main theorem, which describes the many-body (Fock space)
evolution of approximate initial Slater determinants in terms of the Hartree-Fock equation.

Theorem 4.1. Let V ∈ L1(R3) with Fourier transform V̂ satisfying
∫

|V̂ (p)|(1 + p2)dp <∞. (4.11)

Let ωN be a sequence of orthogonal projections on L2(R3) with trωN = N and such that

tr |[x, ωN ]| ≤ CNε, and tr |[ε∇, ωN ]| ≤ CNε. (4.12)

Let ξN ∈ F be a sequence with ‖ξN‖ = 1 and 〈ξN ,N ξN 〉 ≤ C, uniformly in N . We consider
the evolution

ψN,t = e−iHN t/εRωN
ξN

and we denote by γ
(1)
N,t the reduced one-particle density associated with ψN,t. Then there exist

constants C, c > 0 such that
∥∥∥γ(1)N,t − ωN,t

∥∥∥
HS

≤ C exp (c exp(c|t|)) (4.13)

where ωN,t is the solution of the Hartree-Fock equation

iε∂tωN,t =
[
−ε2∆+ (V ∗ ρt)−Xt, ωN,t

]
(4.14)

with the initial data ωN,0 = ωN . Assuming additionally that 〈ξN ,N 2ξN 〉 ≤ C and the
orthogonality condition dΓ(ωN )ξN = 0, we find constants C, c > 0 such that

tr
∣∣∣γ(1)N,t − ωN,t

∣∣∣ ≤ CN1/6 exp (c exp(c|t|)) . (4.15)
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Remark. i) Taking ξN = Ω, the theorem describes the time-evolution of the initial Slater
determinant RωN

Ω. Even if ξN 6= Ω, the assumption that 〈ξN ,N ξN 〉 ≤ C, uniformly
in N , guarantees that the initial data is close to the Slater determinant with reduced
density ωN (for example, in the sense of (4.13), which holds, in particular, at t = 0).
It is easy to extend the bound (4.13) to the evolution of initial data of the form RωN

ξN ,
where 〈ξN ,N ξN 〉 ≤ CNα for 0 ≤ α < 1. In this case, we have to replace (4.13) by

∥∥∥γ(1)N,t − ωN,t

∥∥∥
HS

≤ CNα/2 exp(c exp(c|t|)) . (4.16)

ii) The bound (4.13) is optimal in its N dependence; it should be compared with ‖γ(1)N,t‖HS ≃
N1/2 and ‖ωN,t‖HS = N1/2. The bound (4.15) is not expected to be optimal (the optimal
estimate should probably be of the order one in N); still it gives more precise informa-
tion on the many-body evolution (since it should be compared with the normalization

tr γ
(1)
N,t = trωN,t = N).

iii) Results similar to Theorem 4.1 have been recently [4] obtained also for fermions with
a relativistic dispersion; in this case, the many body Schrödinger evolution is approxi-
mated by a semirelativistic Hartree-Fock equation.

iv) It is easy to show that the exchange term appearing in the Hartree-Fock equation (1.5)
is of smaller order, compared with the other terms. For example, using the formula

[Xt, ωN,t](x, y) = N−1

∫
dz(V (x− z)− V (y − z))ωN,t(x, z)ωN,t(z, y)

we can estimate the Hilbert-Schmidt norm of the commutator [Xt, ωN,t] (assuming the
potential to be bounded, as follows from (4.11)) by

‖[Xt,ωN,t]‖2HS

=
1

N2

∫
dxdydz1dz2ωN,t(x, z1)ωN,t(z1, y)ωN,t(x, z2)ωN,t(z2, y)

× (V (x− z1)− V (y − z1)) (V (x− z2)− V (y − z2))

≤ C

N2
‖ωN,t‖4HS ≤ C.

For this reason, it is possible to absorb the contribution of the exchange term in the
error on the r.h.s. of (4.13) (and, similarly, on the r.h.s. of (4.15)). As a consequence,
the bounds (4.13) and (4.15) remain valid if we replace the solution ωN,t of the Hartree-
Fock equation (1.5) with the solution ω̃N,t of the fermionic Hartree equation

iε∂tω̃N,t =
[
−ε2∆+ (V ∗ ρ̃t), ω̃N,t

]
(4.17)

of course with the initial data ω̃N,0 = ωN and with ρ̃t(x) = N−1ω̃N,t(x, x).

v) The Hartree-Fock equation (4.14) and the Hartree equation (4.17) still depend on N
through the semiclassical parameter ε = N−1/3. As N → ∞, the Hartree-Fock and the
Hartree dynamics can be approximated by the Vlasov equation. We define the Wigner
transform WN,t associated to the solution ωN,t of the Hartree-Fock equation by setting

WN,t(x, v) =
ε3

(2π)3

∫
dy ωN,t

(
x+

εy

2
, x− εy

2

)
e−iv·y.
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As N → ∞ we have, in an appropriate sense, WN,t → W∞,t, where W∞,t solves the
Vlasov equation

∂tW∞,t + 2v · ∇xW∞,t −∇ (V ∗ ρ∞,t) · ∇vW∞,t = 0

with the density ρ∞,t(x) =
∫
W∞,t(x, v)dv. It should be observed, however, that the

Hartree-Fock and the Hartree equation give a better approximation to many body quan-
tum mechanics, compared with the classical Vlasov equation. While the relative size of
the corrections to the Vlasov equation is of the order ε = N−1/3, (4.15) shows that the
Hartree-Fock equation is correct up to errors of relative size N−5/6.

Using Theorem 4.1, it is also possible to study the evolution of approximated Slater
determinants with fixed number of particles N . This is the content of the next corollary.

Corollary 4.2. Let V ∈ L1(R3) with Fourier transform V̂ satisfying (4.11). Let ωN be
a sequence of orthogonal projections on L2(R3) with trωN = N and satisfying (4.12). Let

ψN ∈ L2
a(R

3N ) be a sequence with ‖ψN‖ = 1 and with one-particle reduced density γ
(1)
N

satisfying

tr
∣∣∣γ(1)N − ωN

∣∣∣ ≤ CNα (4.18)

for some α ∈ [0; 1). Let ψN,t = e−iHN t/εψN and denote by γ
(1)
N,t the reduced one-particle

density associated with ψN,t. Then there exist constants C, c > 0 such that

∥∥∥γ(1)N,t − ωN,t

∥∥∥
HS

≤ CNα/2 exp(c exp(c|t|))

where ωN,t is the solution of the Hartree-Fock equation (4.14) or of the Hartree equation
(4.17) with initial data ωN,0 = ωN .

Proof. We identify ψN with the Fock space vector {0, . . . , 0, ψN , 0 . . . } and we set

ξN = R∗
ωN
ψN .

We compute

〈ξN ,N ξN 〉 = 〈ψN , RωN
NR∗

ωN
ψN 〉

= 〈ψN , (N − 2dΓ(ωN ) +N)ψN 〉
= 2〈ψN , dΓ(1 − ωN)ψN 〉 = 2 tr γ

(1)
N (1− ωN )

= 2 tr (γ
(1)
N − ωN ) (1− ωN ) ≤ 2 tr |γ(1)N − ωN |.

The assumption (4.18) implies 〈ξN ,N ξN 〉 ≤ CNα. Therefore, the corollary follows from the
observation (4.16).

Let us compare Theorem 4.1 and Corollary 4.2 with previous results available in the
literature. The first rigorous result on mean field evolution of fermions has been obtained
by Narnhofer and Sewell [8], who showed the convergence of the solution of the many body
Schrödinger equation towards the Vlasov equation, for analytic potentials. Spohn [9] ex-
tended the previous result proving convergence towards Vlasov for potentials V ∈ C2(R3).
The last two results do not give bounds on the rate of the convergence. More recently [5],
convergence towards Hartree dynamics has been established for analytic interaction poten-
tials and for short times. Theorem 4.1 is comparable with this last result, but it improves it
because it holds for all times (of order one) and for a larger class of interaction potentials.
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Convergence of the many body dynamics towards the Hartree-Fock equation has also been
established for different scalings by Bardos-Golse-Gottlieb-Mauser [2] (for bounded poten-
tials) e by Knowles-Fröhlich [6] (for a Coulomb interaction); in the regime considered in
these papers there is no semiclassical limit involved. Related results proving that Hartree-
Fock theory approximates the many body ground state energy, up to errors of the (relative)
size N−2/3−δ, for a δ > 0, have been obtained for models of atoms and molecules (in which
electrons interact through a Coulomb potential) by Bach [1] and by Graf and Solovej [7].

5 Strategy of the proof

We define the fluctuation vector ξN,t ∈ F by requiring that

ψN,t = e−iHN t/εRωN
ξN = RωN,t

ξN,t

where ωN,t is the solution of the Hartree-Fock equation (1.5). Equivalently, ξN,t = UN (t)ξN ,
where we defined the fluctuation dynamics

UN (t) = R∗
ωN,t

e−iHN t/εRωN
.

Having ξN,t = Ω would imply that ψN,t is exactly the Slater determinant with reduced
density ωN,t. Of course, for t 6= 0, this will never be the case, even if initially ξN = Ω. Still,
this remark suggests that, in order to prove that ψN,t is close to a Slater determinant, it is
enough to show that, in an appropriate sense, ξN,t is close to the vacuum Ω. In fact, using
(3.10), it is easy to show that

‖γ(1)N,t − ωN,t‖2HS ≤ 2 tr γ
(1)
N,t(1− ωN,t) = 2〈ψN,t, dΓ(1 − ωN,t)ψN,t〉 = 〈ξN,t,N ξN,t〉. (5.19)

Hence, (4.13) follows from bounds on the expectation of N in the state ξN,t (the estimate
(4.15) requires substantially more work [3]; we will not discuss it here).

To obtain these bounds, we intend to use Gronwall’s lemma. Hence, we compute the
derivative

iε ∂t〈 ξN,t,N ξN,t〉
= iε ∂t

〈
RωN

ξN , e
iHN t/ε (N − 2dΓ(ωN,t) +N) e−iHN t/εRωN

ξN

〉

= 2
〈
e−iHN t/εRωN

ξN , {[HN , dΓ(ωN,t)]− dΓ(iε ∂tωN,t)} e−iHN t/εRωN
ξN

〉
.

There are many cancellations between the two summands in the parenthesis. In particular,
all contributions which are quadratic in creation and annihilation operators cancel exactly.
After some algebraic manipulations, we find the identity

iε ∂t〈 ξN,t,N ξN,t〉 = −4iIm
1

N

∫
dxdyV (x− y)

×
〈
ξN,t,

{
a∗(uN,t,y)a

∗(v̄N,t,y)a
∗(v̄N,t,x)a(v̄N,t,x)

+ a∗(uN,t,x)a(uN,t,x)a(v̄N,t,y)a(uN,t,y)

+ a(uN,t,x)a(v̄N,t,x)a(v̄N,t,y)a(uN,t,y)
}
ξN,t

〉

(5.20)

where uN,t = 1 − ωN,t and vN,t is constructed from ωN,t as explained after (3.10) (we use
here the notation uN,t,x(z) = uN,t(x, z) and similarly for v̄N,t,x).
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In order to apply Gronwall’s inequality, we need to bound the r.h.s. of (5.20) in terms
of 〈ξN,t,N ξN,t〉. Let us consider, for example, the contribution of the last term in the
parenthesis. Expanding the potential in a Fourier integral, we find

1

N

∫
dxdy V (x− y) 〈ξN,t, a(uN,t,x)a(v̄N,t,x)a(v̄N,t,y)a(uN,t,y)ξN,t〉

=
1

N

∫
dp V̂ (p)

〈∫
dr1ds1(v̄N,te

ip·xuN,t)(r1, s1)a
∗
r1a

∗
s1 ξN,t,

∫
dr2ds2(v̄N,te

ip·xuN,t)(r2, s2)ar2as2 ξN,t

〉
.

(5.21)

To estimate the r.h.s. of (5.21), we observe that, for any operator A on L2(R3) with
integral kernel A(x, y), we have the inequality

∥∥∥∥
∫
dxdy A(x, y) a♯xa

♯
yψ

∥∥∥∥ ≤ ‖A‖HS‖(N + 1)1/2ψ‖

where a♯ is either an annihilation operator a or a creation operator a∗. Applying this bound
to (5.21), we conclude that

∣∣∣ 1
N

∫
dxdyV (x− y) 〈ξN,t, a(uN,t,x)a(v̄N,t,x)a(v̄N,t,y)a(uN,t,y)ξN,t〉

∣∣∣

≤ 1

N

∫
dp |V̂ (p)| ‖v̄N,t e

ip·xuN,t‖2HS ‖(N + 1)1/2 ξN,t‖2.
(5.22)

Since the operator norm of uN,t is bounded by one, we find

‖v̄N,t e
ip·xuN,t‖2HS ≤ ‖v̄N,t‖2HS = tr ωN,t = N. (5.23)

Hence, assuming (4.11), we obtain

∣∣∣ 1
N

∫
dxdyV (x− y) 〈ξN,t, a(uN,t,x)a(ωN,t,x)a(ωN,t,y)a(uN,t,y)ξN,t〉

∣∣∣

≤ C〈 ξN,t, (N + 1)ξN,t〉.

However, because of the factor ε = N−1/3 on the l.h.s. of (5.20), this bound is not sufficient,
yet. Instead, we have to squeeze out an additional factor of ε. To this end, we notice that,
using the orthogonality v̄N,tuN,t = 0, the estimate (5.23) can be improved to

‖v̄N,t e
ip·xuN,t‖2HS = ‖v̄N,t [e

ip·x, uN,t]‖2HS = ‖v̄N,t [e
ip·x, ωN,t]‖2HS

≤ ‖[eip·x, ωN,t]‖2HS ≤ tr |[eip·x, ωN,t]|
≤ C(1 + |p|) tr |[x, ωN,t]|.

(5.24)

At time t = 0, the r.h.s. of (5.24) is bounded, according to the first semiclassical bound
in (4.12), by C(1 + |p|)Nε (and hence it is smaller than (5.23) by a factor ε, as desired).
Using also the second semiclassical bound in (4.12) for the initial density ωN , it is possible
to propagate these estimates along the solution of the Hartree-Fock equation, showing in
particular that, for any t ∈ R,

tr |[x, ωN,t]| ≤ CNε exp(c|t|) .
Inserting this inequality in (5.24) and then plugging the result in (5.22), we conclude that

∣∣∣ 1
N

∫
dxdyV (x− y) 〈ξN,t, a(uN,t,x)a(v̄N,t,x)a(v̄N,t,y)a(uN,t,y)ξN,t〉

∣∣∣

≤ Cε exp(c|t|)〈ξN,t,N ξN,t〉.
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This estimate, together with similar bounds for the other terms on the r.h.s. of (5.20),
implies that ∣∣∣∣

d

dt
〈ξN,t,N ξN,t〉

∣∣∣∣ ≤ Cec|t|〈ξN,t, (N + 1)ξN,t〉.

From Gronwall’s inequality, we find

〈ξN,t, (N + 1)ξN,t〉 ≤ C exp(c exp(c|t|)).

With (5.19), this implies the claim (4.13).
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