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Abstract Since financial series are usually heavy-tailed and skewed, research has formerly considered well-

known leptokurtic distributions to model these series and, recently, has focused on the technique of ad-

justing the moments of a probability law by using its orthogonal polynomials. This paper combines these

approaches by modifying the moments of the convoluted hyperbolic-secant (CHS). The resulting density is

a Gram-Charlier-like (GC-like) expansion capable to account for skewness and excess kurtosis. Multivariate

extensions of these expansions are obtained on an argument using spherical distributions. Both the univariate

and multivariate (GC-like) expansions prove to be effective in modelling heavy-tailed series and computing

risk measures.

Keywords: Convoluted hyperbolic-secant distribution, orthogonal polynomials, kurtosis, skewness, Gram-
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1. Introduction

A substantial body of evidence shows that empirical distributions of returns and financial data usually ex-

hibit accentuated peakedness, thick tails and frequent skewness. This is duly acknowledged in the financial

literature (see e.g., Szego, 2004, and references therein). The well-known Gaussian law fails to accom-

modate these stylized facts and does not provide, accordingly, a valid paradigm for the representation and

interpretation of financial data. This explains why, in several instances, research has moved towards lep-

tokurtic distributions such as the Student-t, the Pearson type VII, the normal inverse Gaussian and stable

distributions (see e.g., Mills, 1999, Rachev et al., 2010), which, by and large, maintain desirable properties

like the bell-shapedness. Heavy tailed and peaked distributions have also been modelled by densities gener-

ated via a mixed approach (see e.g., Barakat, 2015 and Garcia et al., 2011), or kernel estimators obtained by

appropriate techniques (see Ruppert et al., 2008).
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A different stream of research has recently come to the fore (see e.g., Faliva et al., 2016, Jondeau & Rock-

ing, 2001, Zoia, 2010). This hinges on the basic idea of the Gram-Charlier expansion (GC in short), which

is used to reshape the Gaussian law by using its own orthogonal polynomials which are the Hermite ones

(see Cheah et al., 1993). This paper combines the two aforementioned approaches, as it aims at reshaping

a leptokurtic symmetric distribution by using its own orthogonal polynomials to meet the requirements of

possibly severe kurtosis and skewness.

The distribution considered in the paper is the convoluted hyperbolic-secant distribution, (CHS henceforth),

which arises from the self-convolution of the hyperbolic secant (see e.g., Baten 1934, Bracewell 1986, Fisher

2013), and we investigate its capacity to fit in with financial data once it is reshaped by means of its own

orthogonal polynomials. As risk modelling applications typically require that several variables are jointly

modelled, a multivariate extension of both the CHS distribution and its orthogonal polynomial expansion are

provided. This latter follows from spherical distribution theory (see Fang Kai-Tai et al., 1965).

Applications to financial univariate and multivariate asset returns, characterized by substantial excess kur-

tosis, show the usefulness of this choice by highlighting the extent to which the polynomially-adjusted con-

voluted hyperbolic-secant distribution matches up with empirical evidences. The goodness of the proposed

distributions in computing some risk measures, like the Value at Risk and the Expected Shortfall, by using

both an unconditional and a conditional approach based on GARCH models, is also investigated.

The paper is organized as follows. In Section 2, we introduce the CHS distribution and move to its spherical

extension. Then we design the polynomial shape-adapter tailored to build its Gram-Charlier-like (GC-like)

expansions both for the univariate and multivariate context. In Section 3, the performance of these GC-like

distributions is tested by an application involving both univariate and bivariate financial returns. Section 4

draws the conclusions. An Appendix, providing the essential about orthogonal polynomials and spherical

distributions, completes the paper.

2. Univariate and multivariate Gram-Charlier-like expansions of the convoluted hyperbolic-distribution

In this Section, we will devise a GC-like expansion for the even density

f (x) = x
(
sinh(

π
√

2
x)

)−1

x ∈ R, (1)

hereafter named convoluted hyperbolic-secant (CHS) distribution. The CHS distribution, which is the self-

convolution of the hyperbolic secant law and the Fourier image of the logistic function as well (see, e.g.,

Gradshteyn and Ryzhik 1980, Johnson and Kotz, vol 2, 1994), enjoys several desirable properties like bell

shapedness, leptokurtosis and existence of moments and orthogonal polynomials of every order. As far
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as even moments are concerned, they can be obtained from the following integral (see Gradshteyn and

Ryzhik,ibidem, p. 348, formula 3.523.2)∫ ∞

0

x2h−1

sinh(bx)
dx =

22h − 1
2h

(
π

b

)2h
|B2h|, h = 1, 2.... (2)

where B2h denotes the 2h-th Bernoulli number. By setting h = 1, 2, 3, 4, 5 in (2) we obtain the first five even

moments for this density

m0 = 1, m2 = 1, m4 = 4, m6 = 34, m8 = 496 . (3)

These values can be used to determine the coefficients of the polynomial shape adapter of the Gram-Charlier

(GC)-like expansions for the CHS distribution. The term GC-like expansion is adopted to indicate a density,

g̃(x, α, β, ..) hereafter, obtained by reshaping an arbitrary distribution f (x) by using its own orthogonal poly-

nomials, that is polynomials with coefficients built from the moments of this law. The term can be traced

back to the well known Gram-Charlier (GC) expansion referred to the Gaussian law and Hermite polyno-

mials. The GC-like expansion based on the j-th orthogonal polynomial, p j(x), associated to a density f (x)

takes the form

g̃(x, α) = q(x, α) f (x) (4)

Here q(x, α) =

(
1 + α

γ j
p j(x)

)
is a shape adapter whose role is that to increase the j-th moment of the density

f (x) by a quantity equal to α and γ j is the squared norm of p j(x) (see Appendix A1 for more details on

orthogonal polynomials and GC-like expansions).

In the following we will focus on GC-like expansions which make use of the third and fourth orthogonal

polynomials of a given density f (x) in order to account for skewness and excess-kurtosis. The expansions at

stake take the form

g̃(x, α, β) = q(x, α, β) f (x), (5)

where q(x, α, β) is the trinomial

q(x, α, β) =

(
1 +

α

γ3
p3(x) +

β

γ4
p4(x)

)
. (6)

depending on the 3rd and 4th orthogonal polynomials, p3(x) and p4(x), associated to f (x) and the parameters

α, β, γ3 and γ4. The parameters α and β represent the increase in skewness and kurtosis attainable with the

polynomial expansion (5), γ3 and γ4 are the squared norms of p3(x) and p4(x), respectively (see formula

(53) in Appendix A1).
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The following theorem shows how to compute the third and fourth degree orthogonal polynomials associated

to CHS density which paves the way to obtaining the family of the GC-like expansion, defined as in (5), for

this density.

Theorem 1 The family of the GC-like expansions, defined as in (5), for the CHS density is given by

g̃(x, α, β) =

(
1 +

α

18
p3(x) +

β

180
p4(x)

)
x
(
sinh(

π
√

2
x)

)−1

, (7)

where α and β > 0 are parameters and

p3(x) = x3 − 4x, p4(x) = x4 − 10x2 + 6 (8)

are the third and fourth degree orthogonal polynomials associated to the CHS density. Under suitable con-

ditions on α and β, formula (7) defines a set of densities with skewness and kurtosis differing from those of

the parent CHS density by an extent equal to α and β, respectively.

Proof. As the CHS density is a symmetric law, its third and fourth-order orthogonal polynomials, p3(x)

and p4(x), are specified as in (57) of Appendix A1. The coefficients of these polynomials and their squared

norms, γ3, γ4 in the trinomial (6), are obtained from formulas (54) and (56) of Appendix A1. The proof

that the skewness and kurtosis of the GC-like expansion in (7) are modified by a quantity equal to α and β

respectively, is based on Theorem A1 in Appendix A1.

The positiveness of q(x, α, β) is mandatory in order for g̃(x, α, β) to be a density function. It is worth distin-

guishing the case when only extra kurtosis has to be accounted for, from the case when both excess kurtosis

and skewness are at work. Let’s start with the former case.

Lemma 1 For the binomial

q(x, 0, β) =

(
1 +

β

180

(
x4 − 10x2 + 6

))
(9)

to be non-negative for all x, it is required that the parameter β satisfies

0 ≤ β ≤
180
19

. (10)

Proof. The proof rests on the argument that p4(x) = x4 − ex2 + g is bounded from below, that is

inf
x

p4(x) =

(
4g − e2

4

)
= −19. (11)

This entails that q(x, 0, β) =
(
1 +

β
γ4

(
x4 − ex2 + g

))
is non-negative provided

β ≤
4γ4

(e2 − 4g)
. (12)
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Since q(x, 0, β) is not bounded from above, negative values of β are not allowed.

In the light of the foregoing theorem, the family of distributions

g̃(x, 0, β) =

(
1 +

β

180
p4(x)

)
x
(
sinh(

π
√

2
x)

)−1

(13)

proves suitable to model data with kurtosis K varying in the range

4 ≤ K ≤ 13, 4737. (14)

The first graph in Figure 1 compares the Gaussian law with the GC-like expansion of a CHS distribution,

GCCHS henceforth, when β = 4, 735, which is half of the maximum feasible value for this parameter (see

Lemma 1). The second graph in Figure 1 shows the difference between the two aforementioned distribu-

tions. In Figure 2 the said GCCHS density is compared with the parent CHS law.

As it is well known, kurtosis measures the movement of probability mass from the shoulders of a distribution

into its center and tails (see e.g., Balanda et al., 1988, Finucan, 1964). The greater the kurtosis, the lower the

concentration of probability mass in the shoulders (see, e.g., Groenveld et al., 1984) with an outplacement of

the concentration of probability mass near the mean (whence peakedness) and in the tails (whence thickness)

of the distribution. The re-balance of probability which occurs in the center, shoulders and tails of a CHS

density after a reshaping by using its orthogonal polynomials can be evaluated through some indexes. Fol-

lowing Darlington 1970 and Moors 1986, denoting with ±x1 and ±x2 the inner and the outer crossing points

of the Gaussian and the GCCHS density, the notion of shoulders turns out to tally with the area between ±x1

and ±x2 and the notion of tails with the area outside ±x2. The crossing points ±x1 and ±x2 are obtained by

solving the equation

h(x) − l(x) = 0, (15)

Upon the argument put forward by Finucan 1964, the ratios considered here below may prove useful as long

as the distributions cross four times.

Index of peak up-thrust =

∫ 0.74
0 h(x)dx∫ 0.74
0 l(x)dx

(16)

Index of tails up-thrust =

∫ ∞
2.8 h(x)dx∫ ∞
2.8 l(x)dx

(17)

Index of shoulders down-thrust =

∫ 2.8
0.74 h(x)dx∫ 2.8
0.74 l(x)dx

. (18)

Table 1 provides the percentages of (up or down) thrust effects on peak, tails and shoulders, respectively,

registered by the above indexes when we move from the Gaussian to the CHS law, from the the CHS law to
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its GC-like expansion, obtained by setting β = 4, 735 and from the Gaussian to the said GC-like expansion,

respectively. Looking at the values of this table, we see that -on the one hand- the polynomial expansion

has increased significantly the mass of probability located in the tails and around the peak and - on the other

hand- has reduced the probability in the shoulders of the GC-like expansion with respect both its parent

density and the Gaussian law. Then, we can conclude that the orthogonal polynomial transformation proves

effective to face empirical evidence of thick tails and accentuated peakedness (see e.g., Ruppet et al., 1992).

As for the more general case, when both extra kurtosis and skewness are involved, we have the following

Lemma 2 The trinomial

q(x, α, β) = 1 +
α

18
p3(x) +

β

180
p4(x) (19)

is positive for all x if the pair of parameters α, β satisfy

[
(λ − 0, 8)2 + 0, 84

]
β < 21, 6 (20)

25
[
λ

(
39 +

810
β

)
− 49

]2

−

[
40λ + 39 +

540
β
− 37

]3

< 0, (21)

where λ = 15α2

2β2 + 2.

Proof. The trinomial q(x, α, β) is a quartic

β

180
x4 +

α

18
x3 −

β

18
x2 −

2α
9

x +
β

30
+ 1 (22)

whose signature is the same as its leading coefficient (positive in this case) provided its roots are complex

conjugate in pairs. This occurs when both the coefficients of the linear term and the discriminant of the

cubic resolvent are negative (see, e.g., Bronshtein et al., 1998, p. 119-125). Formulas (20) and (21) provide

convenient algebraic representations of the said conditions.

Figure 3 depicts the region of admissible values of skewness α vs. extra-kurtosis β for the GCCHS density.

So far the analysis has focused on a scalar random variable. In the following it will be extended to the vector

case by using the powerful argument of the so called spherical distributions (see Appendix A2). First we will

devise the spherical representation of the CHS density, that is a multivariate symmetric distribution whose

marginals are CHS densities, and then the same representation for its GC-like expansion. The following

theorem establishes the form of a multivariate extension of a CHS density (SCHS henceforth) which depends

on its modular variable. The second one proves that the GC-like expansion of the SCHS extension (GCSCHS

henceforth) follows from the polynomial extension of the same modular variable.
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Theorem 2 The n-dimensional spherical extension of the CHS law, (SCHS) hereafter, has the representation

gn(x) =
2

(n−3)
2 π

n
2 +1

z n
2 +1ζ(n + 1)(2n+1 − 1)

(x′x)
1
2

(
sinh

(
π
√

2
(x′x)

1
2

))−1

, (x′x) ∈ [0,∞) , (23)

where zθ and ζ(·) denote the Pochhammer symbol and the Riemann zeta function, respectively.

Proof. The spherical extension of a CHS density hinges on the density, fR, of its modular variable, R, which,

in turn, depends on the density generator (see formulas (62) and (64), Appendix A2). Now, taking

g(y) = y
1
2

(
sinh

(
π
√

2
y

1
2

))−1

, y ≥ 0 (24)

as density generator, whose affiliation from the CHS density is apparent, and by using the following integral

representation of the Riemann zeta function (see, e.g., Gradshteyn and Ryzhik, p. 348, 1980)

ζ(λ) = αλΓ−1(λ)
2λ−1

2λ − 1

∫ ∞

0
xλ−1(sinh(αx))−1dx, (25)

where α and λ are positive parameters and Γ(·) is the Euler-Gamma function, simple computations yield the

following expression for fR

fR(r) =
2

(n−1)
2 rnπn+1

ζ(n + 1)Γ(n + 1)(2n+1 − 1)

(
sinh

(
π
√

2
r
))−1

, r ∈ [0,∞). (26)

This, bearing in mind formulas (62) and (64) in Appendix A2, leads to (23). Trivially, g1(x) tallies with the

CHS distribution.

The graphs in Figure 4 compare the (standard) bivariate Gaussian and the bivariate SCHS density.The first

graph in Figure 4 shows the SCHS (in dark) overlapped to a Gaussian law (in light). As a SCHS density is

more peaked and it has fatter tails than a Gaussian law, the former distribution covers the peak and the tails

of the latter. Conversely, the shoulders of a SCHS density, being slimmer than those of a Gaussian low, are

covered by those of the latter density.

The following theorem provides GC-like expansions of SCHS densities (GCSCHS densities henceforth)

intended to model heavy-tailed bivariate series.

Theorem 3 Let gn(x) be as in (23) and let qn,4(x, β) be specified in term of the vector argument x′ =

[x1, x2, . . . , xn] as follows

qn,4(x, β) =

(
1 +

β

γ4
p4((x′x)

1
2 )
)

(27)

Here

p4((x′x)
1
2 ) = (x′x)2 − e(x′x) + g (28)
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is the fourth-order orthogonal polynomial in the Euclidean norm (x′x)1/2.

Then, as gn(x) is spherical and qn,4(x, β) is even, the product

g̃n(x, β) = qn,4(x, β)gn(x) (29)

defines a family of GCSCHS densities whose kurtosis is increased by a quantity equal to

β̃ = n2 β(
E(R)2)2 (30)

with respect that of the parent SCHS density.

Proof. Following Gomez et al 2003, the Mardia’s kurtosis index for a spherical variable is

Kn = n2 E(R4)
(E(R2))2 . (31)

According to (31), an increase in the kurtosis of a spherical variable can be attained by pushing up the fourth

moment of the modular variable R. This, as proved in Theorem A3 in Appendix A2, can be achieved through

a GC-like expansion of this latter variable with a shape adapter specified as in (27). The coefficients, e , g

of the fourth-order polynomial p4(.) and its square norm γ4 are, as usual, functions of the moments of R.

Finally, formula (30) can be read a by-product of (31), upon noting that the effect of the shape adapter (27)

is to increase the fourth moment of the modular variable by a quantity equal to β.

The case n = 2, which will be dealt with in the following, is worth considering in some detail.

Corollary 1 The density of a bivariate GCSCHS is

g̃2(x) =

(
1 +

β

854.8198

[
(x′x)2 − 14.6345(x′x) + 19.9269

])
g2(x) , (32)

where x is a two dimensional vector and

g2(x) =
π

√
27Γ(3)ζ(3)

(x′x)
1
2

sinh
(
π
√

2
(x′x)

1
2

) (33)

is the density of the parent bivariate SCHS. The kurtosis, K2(β), of a GCSCHS lies within the following range

10, 4276 ≤ K2(β) ≤ 29, 2854 (34)

where the lower and upper bounds correspond to β = 0 and to its admissible maximum value, respectively.

Proof. As proved in Theorem A3 in Appendix A2, the coefficients of the orthogonal polynomials needed to

obtain the GC-like expansion of a SCHS density are functions of the moments m j of its modular variable.
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These latter can be found by using formula (65) in Appendix A2 with a density generator g specified as in

(24) and can be computed by using the integral (25). Some computations yield

m j =
Γ(n + j + 1)ζ(n + j + 1)(2n+ j+1 − 1)

2 jΓ(n + 1)ζ(n + 1)(2n+1 − 1)

 √2
π

 j

(35)

which for n = 2 formula becomes

m j =
Γ(3 + j)ζ(3 + j)(23+ j − 1)

2 jΓ(3)ζ(3)(23 − 1)

 √2
π

 j

. (36)

The values of the lower-order even moments follows accordingly

m2 = 2, 3224, m4 = 14, 0616, m6 = 159, 5036, m8 = 2908, 864. (37)

As a by-product, the coefficients of the polynomial in brackets of formula (32) can be computed by using

formulas (54) and (56) in Appendix A1. The same moments can be used to evaluate the Mardia’s kurtosis

index. The lower bound of (34) is computed in accordance to formula (31). As far as the upper bound of

(34) is concerned, note that, in light of formula (12), β turns out to be bounded from above by 25, 4298. This

entails that, in light of formula (30), the maximum admissible increase of kurtosis is 18, 8578.

3. Application to financial returns data

In the application which follows, we have considered three daily financial series: the Nikkei 225 index, the

ESTX50 EUR P index and the FTSE MIB index. The returns from these series, computed as difference

between the adjusted closing prices of two consecutive periods divided by the adjusted closing price of the

first period, will be denoted by N̂225, Ŝ TOXX50E and FTS EMIB.MI respectively, from now on. All these

series are recorded from 2009/01/01 to 2014/12/31. In the following we will prove the capability of GC-like

expansions of both CHS and SCHS distributions in fitting these returns and in assessing some risk measures

like the Value at Risk (VaR) and the expected shortfall (ES ). Let start with an analysis focused on univariate

financial series.

3.1 Univariate approach

Table 2 reports the main descriptive statistics of all series. As we can see, all data exhibit excess kurtosis

and skewness. The Jarque-Bera test (JB) shows that the null hypothesis of normality is strongly rejected

for all returns. In addition, the Ljung-Box (LB) statistics on the squared series denotes significant presence

of volatility clustering or time dependent heteroskedasticity. The skewness and extra-kurtosis estimates,

α and β, reported in Table 2, have been used to build GCCHS distributions which have been fitted to the
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return series. Figure 5 shows the Gaussian kernel densities1 of the financial returns superimposed by their

empirical distributions (the histogram of the empirical frequencies), the (standard) normal and the fitted

GCCHS. Figure 6 shows the QQplots of the quantiles of the financial returns against, respectively, the

Gaussian (in the first column) and the GCCHS quantiles (in the second column). In order to evaluate the

goodness of fit of both GCCHS and Gaussian distributions to data, reference can be made to some indexes

based on the absolute differences between the frequencies f̂i of the empirical kernels and the corresponding

frequencies f (xi) estimated by using the GCCHS and the Gaussian densities, namely

A1 = 1
2 h

∑N
i=1 | f (xi) − f̂i| (38)

A2 = 1
N

∑N
i=1
| f (xi)− f̂i |
f̂i+ f (xi)

(39)

In the above formulas h represents the width of the histogram rectangles, f̂i is the height of the i-th rectangle

and f (xi) is the ordinate of the GCCHS or Gaussian distribution at the midpoint of the basis of the i-th

rectangle. The latter index has the advantage to be bounded, that is

0 ≤ A2 ≤ 1 (40)

with the lower value corresponding to a perfect fit. The fit worsens as the index moves towards the upper

bound. Table 3 gives the values taken by these indexes for the series under examination which prove the

better fit of GCCHS to data in comparison with the Gaussian law.

In order to gain a deeper insight into the effectiveness of the GCCHS distributions in fitting financial series,

we have compared their performance with those of other distributions. These distributions are: the Gaussian,

the Student-t, the Skew-t (Fernandez et al., 1998), the normal inverse Gaussian, NIG (Barndorff-Nielsen et

al., 1983), the Fischer’s generalized hyperbolic density, GH, the generalized secant hyperbolic, GSH, and

the skew generalized hyperbolic secant, SGSH (see e.g., Fischer, 2010, 2013). All these distributions have

been estimated via maximum likelihood with the functions fitdistrplus, and ghyp (for the NIG and GH) of

the R np package. Table 4 reports the estimates of the parameters of all these distributions once fitted to

returns. Then, the test for equality of univariate densities, proposed by Maasoumi et al., 2002, and based on

metric entropy, has been implemented. The function npunitest in the R np package (Hayfield et al., 2008)

has been used for testing the null of equality of two densities. The test statistic is given by

S ρ =
1
2

∫ ∞

−∞

(
f (x)

1
2 − g(x)

1
2

)2
dx (41)

1The kernel densities have been estimated by using the command density in R software which, after scattering the probability mass

of the empirical distribution on a regular grid, provides a linear approximation of the discretized version of the kernel.
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where f (x) and g(x) are the two densities under comparison, that is are the kernel density of a return series

and the corresponding fitting distribution, which is one of the aforementioned densities. 2 The test has been

carried out for each of the three returns by assuming as fitting distribution each of the densities introduced

before (GCCHS, Gaussian, Students t, Skew t, GSH, SGSH, NIG and GH distribution). Trivially, under the

null that the two distributions are equal S ρ = 0, otherwise S ρ > 0. Table 5 displays the test statistics and the

corresponding p-values (in brackets) for the above mentioned distributions. According to the results shown

in Table 5, the null hypothesis cannot be rejected for the GCCHS, GSH, SGSH, NIG and GH distributions

at the level α = 0.01. This confirms that for these series the empirical and the fitting distributions are not

significantly different.

Further information on the performance of the GCCHS densities and the other distributions is provided by

Table 6 which shows the indexes of peak up-thrust, tails up-thrust and shoulders down-thrust provided by

formulas (16)-(18), by assuming as reference density the Gaussian law. In this regard, notice that it is not

always possible to calculate both the down-thrust shoulder and the up-thrust tail indexes. This happens,

when the two compared distributions cross only twice instead of four times, making impossible to distin-

guish between shoulders and tails. This occurs for the t-Student and the Skew-t. In these cases we can only

evaluate the up-thrust index for the peak and for the tails. Looking at Table 6, we can see that, as far as the

tail up-thrust and the shoulder-down-thrust are concerned, the GCCHS expansions outperform all the other

distributions. The values of these indexes indicate that, with respect the Gaussian, GCCHS has an higher

probability percentage in the tails and a lower percentage in the shoulders than other distributions.

Figures 7-9 show the QQplots of the empirical quantiles in the left tail, in the peak and in the right tail,

respectively, against the corresponding theoretical quantiles of the CGCHS, GSH, SGSH, NIG and GH

quantiles. All these plots show that all the aforementioned densities fit quite well the return kernel densities,

expecially the middle parts of these densities.

To gain a better insight into the fitting of the GCCHS densities, we have also computed, for each of them,

the relative densities with respect their empirical counterpart (the return kernel densities) (Handcock et al.,

1999). For the case under exam, each relative density is the ratio between a given GCCHS density and a

return kernel density, both evaluated in correspondence of the empirical quantiles. They have been estimated

as in Handcock et al., 2014 with the command reldist in R reldist package. As a relative density is distributed

as an uniform variable when the compared densities are identical, values of this distribution above (below) 1

2The integral 1
2

∫ ∞
−∞

(
f (x)

1
2 − g(x)

1
2

)2
dx is known as Hellinger distance. As it satisfies the triangular inequality, it is a proper

measures of distance (see Hellinger of Granger et al., 2004.
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provide evidence that the fitted distribution overestimate (underestimate) the frequency of the corresponding

outcome. The graphs in Figure 10 show these relative densities together with their 95% confidence intervals.

Looking at Figure 10, we can see that GCCHS densities neither overestimate nor underestimate the kernel

densities at hand. We can therefore draw the conclusion that the CHS distribution, once adjusted by its

orthogonal polynomials, proves effective in fitting leptokurtic and skewed series.

The validity of a GCCHS distribution in computing some risk measures, like the Value at Risk (VaR) and

the expected shortfall (ES), has been also evaluated. As it is well known, VaR provides the minor loss we

can expect to run within a certain period for a given probability (see Jorion, 2006). The expected shortfall

provides information about the size of losses exceeding VaR, namely the possible average loss (see Lands-

man, 2004). Table 7 shows both VaR and ES estimates, computed at different significance levels α, by using

GCCHS, Normal, Student t, Skew t, GSH, SGSH NIG and GH densities. In this table the estimated VaR and

ES are compared with their corresponding empirical values. Empirical VaR has been computed as α-quantile

of the empirical distribution, while the empirical ES as average of losses exceeding empirical VaR. Looking

at Table 7, we see that GCCHS densities provide estimates of both VaR and ES that are very close to the

empirical values.Table 7 reports also the lower and upper bounds of percentage-bootstrap intervals (CIboot)

for VaRemp and ES emp which have been built by selecting 10000 bootstrap samples from the empirical den-

sity of each series. The results shown in this table confirm the validity of VaRα and ES α obtained by using

GCCHS densities which never fall outside the bootstrap intervals for the corresponding empirical values.

The same does not occur when these risk measures are computed via other densities.

3.2 Multivariate approach

Finally, in order to evaluate the goodness of fit of GCSCHS densities in a multivariate context, we have

considered three bivariate daily series: (̂N225- Ŝ TOXX50E), (̂N225-FTS EMIB.MI) and (FTS EMIB.MI

-̂S TOXX50E). The scatter-plots of these series in the period 2009/01/01-2014/12/31 are reported in Figure

11. Table 8 shows the lengths (N), the Mardias kurtosis indexes of the bivariate returns and their excess

kurtosis, β̃ , with respect the kurtosis of the bivariate SCHS. The values of the parameter β characterizing the

polynomial shape adapter (27) needed to build GC expansions of these bivariate series has been determined

according to formula (30) and it is shown in the last column of this table. The function MVN of the R

package has been used to evaluate the Mardia’s multivariate kurtosis index. The graphs in Figure 12 show

the bivariate GCSCHS densities fitted to the returns. As in the univariate case, the validity of GCSCHS

densities in computing the VaR and the ES has been explored. Following Kamdem (2005), the VaR at a
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given level α, VaRα, of a linear portfolio represented by a spherical variable r can be evaluated as follows

VaRα = qα,n
√
δ′Σδ (42)

where δ is a weighting vector that, in this case, is the unit vector and Σ is the variance/covariance matrix of

r. The scalar qα,n is the unique positive solution of the trascendal equation

α =
2π

n−1
2

Γ
(

n−1
2

) ∫ ∞

qα,n

∫ ∞

z2
1

(u − z2
1)

n−1
2 gn(u)dudz1 (43)

where gn(u) is defined as in (66) and Γ(·) is the Euler-Gamma function.

According to (42), the theoretical ES at a given level α, (ES α), can be evaluated as follows

ES α = KES

√
δ′Σδ (44)

where

KES =
π

n−1
2

αΓ
(

n−1
2

) ∫ −∞

q2
α,n

(u − q2
α,n)

n−1
2 g̃n(u, β)du. (45)

As benchmarks for VaRα and ES α we have evaluated the corresponding empirical measures in two different

ways. Firstly, we have computed the empirical VaR as follows

VaRe1 =

√
VaR2

1 + VaR2
2 − 2cov(X1, X2) (46)

where VaR j is the VaR of the j-th univariate series and cov(.) denotes the covariance of the bivariate series

Xi, X j. The function VARES of the R package has been used for this scope. Then, after computing the ES j

of each univariate series X j by using VaRe1 as critical level, we have computed the empirical ES of the

bivariate series as follows

ES e1 = ES 1 + ES 2. (47)

Other measure of empirical VaR and ES , VaRe2 and ES e2 hereafter, have been obtained by applying Kan-

dems formulas (42) and (44) with gn(u) replaced by the empirical density of the bivariate series and qα,n

by the empirical quantile. Tables 9 and 10 compare both VaRα and ES α with the corresponding empirical

values (VaRe1 , VaRe2 ), and (ES e1 ,ES e2 ), respectively. As it happens in the univariate case, also in the bivari-

ate case, GCSCHS densities provide good estimates for both VaR and ES . Table 9 and 10 show empirical

VaR and ES respectively, compared with the corresponding theoretical risk measures - VaRα and ES α -

obtained via GCCHS. Looking at these tables we see that the estimates of these risk measures provided by

GCSCHS densities are always close to the corresponding empirical values and that they always lie inside
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the percentage-bootstrap intervals (CIboot) built for VaRemp and ES emp by selecting 10000 bootstrap sam-

ples from the empirical density of each series. Hence, we can draw the conclusion that GCSCHS densities

provide precautionary estimates of the risk measures here considered.

So far we have considered the unconditional approach for modelling the empirical distributions of financial

asset returns which assumes constant the location and scale parameters of the distributions used to fit them.

As it is well known, the presence of volatility clusters in the empirical distributions of financial asset returns

is a typical feature which can be modelled by using ARCH/GARCH models (Engle, 1982). This is why in

this section the validity of GCSCHS densities in estimation a risk measure, like VaR, via a GARCH model

has been tested (see T. Angelidis et al., 2004). To this end we have considered a GARCH model whose inno-

vation has a GCSCHS density. In order to reduce the number of parameters to estimate we have considered

a constant conditional correlation model (CCC) (Bollerslev, 1990) specified as follows

rt = ω + εt ,

εt = H
1
2 ηt

(48)

where rt is a n-dimensional vector of returns, ω denotes their conditional mean (assumed constant for sim-

plicity) and εt is a GARCH process whose innovation ηt is a leptokurtic vector with a GCSCHS density

ηt ∼ GCS CHS (0, I, β), (49)

and H is the positive-definite conditional variance of specified as follows

H = Dt RDt. (50)

Here Dt is a diagonal matrix whose diagonal entries are the standard conditional variances of the returns

and R is their correlation matrix (assumed time invariant). The predictive performance of the model (48)

has been assessed by evaluating the percentage of returns that exceed VaRα, for a given α, via the LR

unconditional coverage test (Kupiec, 1995). In order to evaluate VaRα, and accordingly the number of

exceeding returns, a recursive two-step procedure has been implemented. First, we have estimated the model

(48) for each of three bivariate series by using the maximum likelihood in the period 2009/01/01-2014/12/31.

These estimates have been used to evaluate the parameter β characterizing the GCSCHS density (49) which,

according to formulas (42) and (43), is needed to compute VaRα. In a second step, a set of standardized

returns has been computed by using sample data from 2015/01/01 to 2016/12/31 (see Choi et al., 2008)

r̃t =
(δrt − ω)
√
δ′Σδ

. (51)
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For each t, r̃t has been compared with VaRα computed at time t−1, VaRα,t−1, and if r̃t < VaRα,t−1, the number

of returns exceeding VaRα is increased by one. The total number of returns exceeding VaRα, has been used

to perform the LR Kupiecs binomial test which verifies if the percentage of out of sample estimated losses

-provided by the CCC model with a GCSCHS innovation- which exceed VaRα is equal to α, which is the

expected number of exceptions for the given confidence level. A p-value lower than α can be interpreted as

evidence against the null hypothesis. Table 11 shows the Kupiecs statistics and the corresponding p-values

(in brackets). Since the test does not reject the null hypothesis that frequency of exceptions correspond

with the defined confidence level, we can conclude that GCSCHS distributions perform quite well also in

modelling the innovation of GARCH models.

4. Conclusion

This paper proposes a family of leptokurtic distributions obtained via a polynomial transformation of a lep-

tokurtic density, called convoluted hyperbolic-secant (CHS). The CHS density shares several desirable prop-

erties with the logistic and hyperbolic secant laws, to which it is connected by some intriguing relationships.

Reshaping the CHS by using its own orthogonal polynomials yields Gram-Charlier-like expansions (GC-

CHS) able to account for skewness and kurtosis found in empirical data. The multivariate extension of both

CHS and its GCCHS expansions can be obtained on a spherical distribution argument. The possibility of

encoding both excess kurtosis and skewness, by using the orthogonal polynomial technique, makes GCCHS

densities and their spherical version, a valuable resource for modelling financial asset return distributions.

This considerably broadens the application domain of the previous approach based on the transformation of

the Gaussian law by Hermite polynomials (see e.g., Zoia, 2010). An application to empirical financial re-

turns data provides practical evidence of the effectiveness of the proposed densities to fit leptokurtic, skewed

both univariate and multivariate distributions. Their capability in assessing some risk measures, like the

value at risk and the expected shortfall, using both an unconditional and a conditional approach based on

GARCH models, is also evaluated and leads to the conclusion that they compare favorably with the alterna-

tives considered by the extant literature.
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Appendix

A1. Orthogonal Polynomials

A sequence of polynomials

pn(x) = xn + an−1xn−1 + an−2xn−2 + · · · + a0 (52)

where a0, a1, . . . , an−1 are reals and n is a non-negative integer, is orthogonal with respect to a density

function f (x) with finite moments if the following holds∫ ∞

−∞

pn(x)pd(x) f (x)dx = γnδnd, d = 0, 1, ..., n − 1, n ∈ N ∪ {0}. (53)

Here γn > 0, δnd is the Kronecker symbol (δnd = 1 if n = d, and zero otherwise) and p0(x) = 1 by

convention. Condition (53) determines pn(x). The coefficients a0, a1, . . . , an−1 of pn(x) are functions of

the moments m j of the density f (x)

a j = (Mn+1,n+1)−1Mn+1, j+1, (54)

where Mn+1,i is the cofactor of the (n + 1, i) entry of the (n + 1, n + 1) moment matrix

m0 m1 m2 . . . mn

...
...

...
...

mn−1 mn mn+1 . . . m2n−1

1 x x2 . . . xn


. (55)

The quantity γn is given by

γn =
Mn+2,n+2

Mn+1,n+1
(56)

where reference is made to a moment matrix of dimensions (n + 2, n + 2) (see, e.g., Chihara, 1978,

Szego, 1967).

For even densities, odd moments are null and orthogonal polynomials pn(x) are even functions if n

is even, and odd otherwise (see Szego, 1967). In particular, the third and fourth order polynomials

orthogonal to an even density f (x) turn out to be of the form

p3(x) = x3 − dx, p4(x) = x4 − ex2 + g (57)

19



where d, g and e are functions of moments of the random variable x as specified in formula (54).

For our purposes the following trinomial

q(x, α, β) = 1 +
α

γ3
p3(x) +

β

γ4
p4(x) (58)

is of particular interest because it can be used to alter the third and fourth moments of f (x) to an extent

equal to α and β, respectively. To this end, consider the function

g̃(x, α, β) = q(x, α, β) f (x) (59)

where (q(x, α, β)) is subject to be positive. The function g̃(x, α, β) is called Gram-Charlier-like (GC-

like) expansion of f (x). The following theorem proves a fundamental result on moments of GC-like

expansions defined as in (59).

Theorem A1 The moments µ j up to the 4-th order of the GC-like expansion in (59) are related to the

moments m j of the parent density f (x) as follows
µ j = m j for j < 3

µ j = m j + α for j = 3

µ j = m j + β for j = 4.

(60)

Higher moments of g̃(x, α, β) turn out to be algebraic functions of the moments of f (x) likewise.

Proof. The proof follows from the properties of orthogonal polynomials as shown in Zoia, 2010 and

Faliva et al, 2016.

A2. Spherical Distributions

Spherical distributions and the corresponding random vectors are also called radial (Kelker, 1970) or

isotropic (Bingham et al., Kiesel, 2002) because they correspond to the class of rotationally symmetric

distributions. Accordingly, any spherical random vector admits a stochastic representation of the form

x = RU(n) (61)

where U(n) is a random vector uniformly distributed on the unit hypersphere with n-1 topological di-

mensions and R = (x′x)
1
2 is a non-negative random variable, called modular variable, independent of

U(n) . A nice property of spherical distributions is that their densities may be expressed via the density
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function of the modular variable, provided this is absolutely continuous.

Theorem A2 If an n-dimensional spherical random vector x has a density gn(x), then it has the form

gn(x) = k fR
(
(x′x)

1
2

)
, (62)

where fR is the density of the modular variable R = (x′x)
1
2 ,

k =
Γ
(

n
2

)
2(π)

n
2

r1−n (63)

and Γ(·) is the Euler-Gamma function. Besides, the density fR has the integral representation

fR(r) =
2rn−1∫ ∞

0 y
n
2−1g(y)dy

g(r2) (64)

in terms of a non-negative Lebesgue measurable function g(·) called density generator.

Proof. For the proof see Fang Kai-Tai et al., 1965, and Gomez et al., 2003.

The issue of density reshaping based on orthogonal polynomials can be extended to n-dimensional

spherical distributions. In fact, as in the univariate case, (even) moments of a spherical distribution can

be properly modified by adjusting this latter with ad hoc orthogonal polynomials. These latter have

coefficients which are built from the moments of the modular variable characterizing the spherical law.

Accordingly, multiplication of a spherical variable by a polynomial shape adapter depending on these

orthogonal polynomials leads to a GC-like expansions of the same variable.

Theorem A3 Let gn(x) be a spherical density and qn,4(x, β) be a shape adapter specified as in (27)

in terms of a 4-th order orthogonal polynomial. If the coefficients of this polynomial are based on the

moments m j

m j =

∫ ∞
0 y

n+ j
2 −1g(y)dy∫ ∞

0 y
n
2−1g(y)dy

. (65)

of the modular variable R, then the expansion

g̃n(x, β) = qn,4(x, β)gn(x) (66)

is the GC-like expansion associated with the spherical density gn(x).

Proof. Upon noting that, in light of (62) and (64), the density of a spherical variable is an even function

in ||x||2 = R2,

gn(x) =
Γ
(

n
2

)
(π)

n
2

∫ ∞
0 y

n
2−1g(y)dy

g(x′x) =
Γ
(

n
2

)
(π)

n
2

∫ ∞
0 y

n
2−1g(y)dy

g(||x||2) (67)
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the argument of density reshaping by orthogonal polynomials can be extended to n dimensional spheri-

cal distributions by using the polynomials in the variable ||x||2, that is polynomials which are orthogonal

to the density of R2, fR2 (r) hereafter. In this connection note that, in light of the following relationship

fR(r) = 2r fR2 (r), (68)

the density of a spherical variable can be directly expressed in terms of fR2 (r) as follows

gn(x) = 2rk fR2

((
x′x

)1/2
)

(69)

Accordingly, the GC-like expansions of gn(x) can be obtained by reshaping fR2 (r) with the binomial

qn,4(x, β). To this end, consider the following GC-like expansion of the density fR2

fR̃2 (r, β) = qn,2(r2, β) fR2 (r) (70)

where qn,2(r2, β) =
(
1 +

β
γ4

p2(r2)
)

can be read either as binomial depending on a complete second order

polynomial, p2 (x′x), in the variable x′x = r2, or as an incomplete fourth-order polynomial in the

variable (x′x)1/2 = r, that is

p2(r2) = [(r2)2 − er2 + g] = [r4 − er2 + g] = p4(r4) (71)

This entails that the following identity

qn,2(r2, β) = qn,4(r, β) (72)

holds true. Now, according to formula (54), the coefficients, e and g, of the second order polynomial

p2(r2) can be expressed n terms of the moments m̃ j of the variable R2 as follows

e =
M3,2

M3,3

m̃3m̃0 − m̃1m̃2

m̃2m̃0 − m̃2
1

, g =
M3,1

M3,3

m̃3m̃1 − m̃2
2

m̃2m̃0 − m̃2
1

(73)

Upon noting that m̃0 = 1, the above coefficients can be expressed in terms of the moments, m j, of the

modular variable R as follows

e =
m6 − m2m4

m4 − m2
2

, g =
m6m2 − m2

4

m4 − m2
2

(74)

Now, simple computations prove that the spherical variable defined in terms of the reshaped modular

variable R̃

ĝn(x) = k fR̃
((

x′x
)1/2

)
(75)
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coincides with the GC-like expansion (66). In fact, taking into account (68), (69) and (70), some

computations yield

ĝn(x) = k fR̃
((

x′x
)1/2

)
= 2rk fR̃2

((
x′x

)1/2
)

= (76)

= 2rkqn,2(r2, β) fR2

((
x′x

)1/2
)

= kqn,4(r, β) fR
((

x′x
)1/2

)
= g̃n(x, β) (77)

It follows that the GC-like expansion g̃n(x, β) can be obtained by reshaping the modular variable, R

with the binomial qn,4(r, β). Accordingly, the coefficients of the polynomial p4(x′x)1/2characterizing

this binomial are functions of the moments of R which are specified as in (65), as proved in Theorem 3

on page 349 in Gomez et al.,2003.

The following graph compares the density fR2 of a bivariate convoluted hyperbolic secant distribution

with the polynomially modified distribution fR̃2 =
(
1 +

β
γ4

[(r2)2 − er2 + g]
)

fR2 for β = 4, 7, 9

This other graph shows the spherical densities gn(x) = k fR and g̃n(x) = qn,4(r, β)k fR̃ with β = 7.
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