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“Do not fear to be eccentric in opinion, for every opinion now 
accepted was once eccentric.”—Bertrand Russell.

Breast imaging across three decades

In the last 25 years, breast imaging has undergone a 
profound transformation, driven by four main trends. 

First ,  large-scale implementation of  screening 
mammography for breast cancer reached huge volumes in 
the early 2000s (1), both in Europe (2) and in the United 
States (1). As already postulated in the 1960s, breast cancer 
screening—combined with improved treatments—is 
effectively able to reduce breast cancer mortality (1,3). 

Second, needle biopsy progressively replaced surgical 
breast biopsy which had shown various technical and clinical 
shortcomings (4). While fine-needle aspiration was initially 
widely employed, needle caliper steadily increased, as in core-
needle biopsy and ultimately vacuum-assisted biopsy (5). This 
currently allows to collect larger tissue samples that provide 
the pathologist more ease to elaborate a diagnosis (6). 

Third, established breast imaging modalities went through 
relevant technical improvements. Breast ultrasound—already 
known to be fast, readily available and cost-effective—has 
been enriched by multiparametric approaches (Doppler 
techniques and elastography) and supplemented by contrast-
enhanced ultrasound (7,8). Automated breast ultrasound 
was also developed to address the poor reproducibility of 
conventional hand-held breast ultrasound (7). However, 

the real clinical impact of all these technical innovations 
remains limited and only partially demonstrated. In 
X-ray based imaging, screen-film mammography—
while still widely used globally—has been replaced in 
high-income countries by digital mammography (9),  
which offers radiation exposure reduction, easier integration 
with modern radiology information systems, higher 
workflow efficiency, and lower running costs, also boosting 
detection rates in young women and in women with dense 
breasts (9,10). The yet ongoing implementation of digital 
breast tomosynthesis (DBT) represented a further turning 
point. DBT is a digital evolution of mammography and 
is able to significantly improve cancer detection rates in 
various age groups, regardless of breast density (11,12). 
At least in some studies, DBT use also led to a reduction 
in recall rates, in particular when recall rates are relatively 
high (13). However, the evidence of a significant reduction 
in interval cancer rates—which would robustly substantiate 
the use of DBT for breast cancer screening in the general 
population—has yet to be demonstrated (11,14).

Fourth, contrast-enhanced breast magnetic resonance 
imaging (CE-MRI) has seen extensive introduction in 
clinical practice (15). International guidelines began 
to recommend its use in a wide range of settings (16), 
namely in three paramount situations of the breast cancer 
diagnostic pathway: screening of high-risk women, pre-
treatment staging, evaluation of the response to neoadjuvant 
therapy (15,16). While mammography and ultrasound 
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only generated a morphological evaluation, CE-MRI 
offered a comprehensive assessment of morphologic and 
functional properties of breast tissues (15), with an insight 
on in-vivo pathophysiological conditions tightly linked 
to carcinogenesis. Tumoral neoangiogenesis invariably 
occurs when breast cancer grows larger than 2 mm, but is 
incapable of producing architecturally sound vessels (17).  
Permeable ones are created instead, allowing for the 
extravasation of gadolinium-based contrast agents and for 
their accumulation in the cancer stroma (18). This results 
into modifications of local T1 properties recognizable on 
T1-weighted sequences (15), allowing to assess the wash-in 
and wash-out curve and its correlations with different tissue 
properties (18). Contrast enhancement explains the steep 
increase in sensitivity of CE-MRI compared to ultrasound 
and mammography. CE-MRI sensitivity often approaches 
95–100%, as demonstrated by large-scale multicenter trials 
employing CE-MRI to screen high-risk women (19). The 
introduction of breast CE-MRI represented a breakthrough 
into a previously uncharted territory, de facto inaugurating 
a new combined morphofunctional approach, identifiable as 
“contrast-enhanced breast imaging”.

The rise of contrast-enhanced mammography 
(CEM)

The combined morphofunctional approach underpins the 
rationale of CEM (20), which was developed by translating 
into an X-ray modality the same physio-pathological 
principles that allowed for the development of CE-MRI. 
CEM exploits the preferential uptake of iodinated contrast 
agents (ICAs) by breast tumors, observed both in computed 
tomography and in subtraction angiography (21). At first, 
the visualization of contrast uptake in the breast against 
fibroglandular tissue and fat was attempted with a temporal 
subtraction technique (21). However, since technical 
drawbacks made this procedure highly impractical, a digital 
recombination of low- and high-energy images acquired 
after intravenous injection of ICA was adopted (22). This 
recombination is generated by vendor-specific algorithms that 
gave rise to different denominations of the same technique: 
contrast-enhanced digital mammography (CEDM), contrast-
enhanced spectral mammography (CESM), contrast-
enhanced dual-energy mammography (CEDEM).

Notwithstanding the still persisting lack of technical and 
procedural standardization (23), across the last 16 years  
CEM has been experimentally introduced in various 
breast imaging settings, such as the diagnostic work-up of 

symptomatic women and screening recalls, problem-solving 
of specific mammographic findings, pre-operative local 
staging, post-operative surveillance, neoadjuvant therapy 
monitoring, and screening of women at increased risk or 
with dense breasts (20,24). Due to the morphofunctional 
nature of its images, in all these applications CEM 
consistently improved diagnostic performance when 
compared to digital mammography, ultrasound, and DBT, 
frequently matching CE-MRI overall performance (24). 

Another relevant advantage of CEM was also observed 
considering patient experience and preferences: two surveys 
pitching CEM against CE-MRI in high-risk women 
screening (25) and in the problem-solving setting (26) 
found that shorter examination time and globally less taxing 
procedure made CEM much better tolerated by patients.

Screening by CEM 

In this context, an article by Sung et al. (27)—assessing the 
diagnostic performance of CEM as a screening tool for 
women at increased risk of breast cancer—was recently 
published in Radiology. Several valuable points highlighted 
by its results deserve to be discussed. First, to the best of 
our knowledge (23), this is—by sheer number of performed 
CEM examinations, 1,069—the second largest study yet 
published. It is surpassed only by an institutional practice 
review by Bhimani et al. (28), who performed over 2,300 
CEMs on various clinical indications. It is therefore the 
“overall first” according to the number of screening CEMs 
performed [1,069], largely surpassing the retrospective 
study by Klang et al. (29) which declared that 725 CEMs 
out of its total 953 examinations were performed for 
screening purposes. As acknowledged by the authors, the 
study by Sung et al. (27) is moreover the first to describe 
CEM application on such a large—and essentially quite 
homogeneous—group of women at increased risk of 
breast cancer, incorporating a previous study from their 
own research group (30) with 307 patients. The authors 
ultimately included 904 baseline CEM examinations, 
performed in a time-frame of little more than 3 years 
[2012–2016] with technical and procedural choices partly 
shared by other research groups around the world (23). Of 
note, the authors chose to initiate image acquisition slightly 
later (2.5–3 minutes after contrast injection) than most 
other centers (exactly 2 minutes after contrast injection). 
This was presumably done to maximize ICA circulation and 
extravasation in breast lesions prior to breast compression, 
without extending the examination over 10 minutes, i.e., 
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the upper threshold of the time frame in which ICA wash-
out and increasing background parenchymal enhancement 
do not hinder CEM interpretation (31,32). Moreover the 
acquisition order, one of the most controversial details 
of CEM technique (23), was left by Sung et al. (27) at the 
discretion of the radiographer, in accordance with one of 
their previous studies that found diagnostic equivalence 
between different sequences (31). 

The second point regards adverse reactions to ICAs, 
which in this study were 15 in 904 patients (1.7%). This 
value is over two times the pooled value of 0.82% (95% 
confidence interval. 0.64–1.05%) we recently obtained in 
a meta-analysis of 14,012 patients from 84 studies up to 
January 2019 (23). We already envisaged how that pooled 
rate could probably be underestimated due to sporadic 
reporting of the vast number of mild adverse reactions that 
resolve without any medical intervention, as were 13 out of 
15 (87%) adverse reactions reported by Sung et al. (27).

A third point worth discussing concerns the diagnostic 
performance reported by this study. Considering that 
repeated low-dose radiation exposure leads to an increased 
risk of radiation-induced breast cancer in high-risk women, 
particularly young carriers of deleterious mutations (33), 
these women could be screened with CE-MRI alone, as 
suggested in Australia (34) and some European countries 
such as Italy (35) and Germany (36). However, the most 
recent national guidelines in the United States (37) still 
recommend screening high-risk women with both CE-MRI 
and mammography, which are performed either concurrently 
or at a six months interval. In this framework – since CEM 
low-energy images have been demonstrated to be equivalent 
to plain digital mammography images (38)—Sung et al. (27)  
were able to compare the diagnostic performance of 
routine mammography interpretation (i.e., interpretation 
limited to low-energy images) with that of “integral” CEM 
interpretation (low-energy and recombined images). In 
accordance with previous studies, CEM provided a higher 
cancer detection rate (15.5/1,000) than low-energy images 
alone (8.8/1,000). Since however 51 CEM-observed 
lesions were biopsied, versus only 23 low-energy-observed 
lesions, CEM resulted in a lower positive predictive value 
(PPV) than low-energy images, with 29.4% and 34.8% 
respectively. While these values do not overstep specific 
PPV thresholds for mammography and CE-MRI defined 
in the Breast Imaging Reporting and Data System (BI-
RADS) (39), they indeed represent a drawback for CEM. 
This can indeed be explained by the fact that a number 
of benign lesions, or even normal gland tissue, may 

occasionally display conspicuous contrast enhancement (40).  
Diagnostic performance data obtained by Sung et al. (27) 
from 858 women with at least 1-year follow up further 
confirmed CEM trends toward a higher cancer detection 
rate and a lower PPV. Aside from 14 women with cancers 
already detected with CEM, two women with a previous 
negative CEM ultimately developed interval cancer: in one 
woman, CE-MRI detected an invasive ductal carcinoma 
contralateral to an equally CE-MRI-detected ductal 
carcinoma in situ (DCIS), while the other patient had an 
asymptomatic DCIS detected at ultrasound ten months after 
a negative CEM. As expected, also in this reduced cohort, 
CEM showed a statistically significant higher sensitivity 
compared to low-energy images (87.5% versus 50.0%, 
P=0.03) with a significant increase for the negative predictive 
value too (99.7% versus 99.0%, P=0.02). Moreover, while 
performance metrics for low-energy images showed  
24 false positives, this number grew to 53 for CEM, 
resulting in a statistically significant (P<0.001) 3.4% cutback 
for specificity (97.1% and 93.7% for low-energy images and 
CEM, respectively) mirrored by a non-significant (P=0.39) 
PPV reduction (from 25% to 20.9% for low-energy 
images and CEM, respectively). However, CEM specificity 
reported by this study is comparable to the ones of CE-
MRI and of combined applications of digital mammography 
and screening ultrasound found in other studies that 
have targeted the same increased-risk category of women 
(19,41,42). It should also be noted that the creation and 
implementation of a CEM-specific BI-RADS lexicon 
would help to refine lesion characterization. Studies aiming 
to explore this possibility resulted both in improvements 
of  CEM specif icity and more appropriate biopsy  
referral (30,43). 

A fourth and final point regards CEM performance in 
the “very-high-risk” echelons of the high-risk category, 
such as in BRCA/TP53 mutation carriers and women who 
underwent thoracic radiation therapy. Sung et al. (27) 
reported to have performed 100/904 CEM examinations 
(11.1%) in such women, 82 of them being BRCA mutation 
carriers (9.1%). As already mentioned, and as acknowledged 
by the authors themselves, their strategy is surely beneficial 
in countries, such as the United States, where these 
women would be subjected to mammography screening 
techniques. The morphofunctional information provided 
by CEM should be preferred to purely morphological 
information garnered from mammography, to create a 
screening schedule in which a high-sensitivity contrast-
enhanced breast imaging study is performed every six 
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months. Conversely, we would suggest—especially when 
CE-MRI alone is used to screen high-risk women—the 
more cautionary approach in which CEM-based breast 
cancer screening of high-risk women is performed only 
when CE-MRI is unavailable or when a woman has major 
contraindications to MRI, as aptly implemented by Sung  
et al. (27). As a notable exception, a specific indication 
in favor of CEM as a one-stop alternative to the 
combination of CE-MRI and mammography could be 
the annual screening of previously irradiated women, 
who have a higher incidence of DCIS with possible low 
neoangiogenesis that may be missed at CE-MRI (44). 
However, since these DCIS display microcalcifications, 
they could be detected with low-energy images of CEM. 
This is a subgroup of high-risk women who would 
probably most benefit from CEM-based screening. 
Finally, we remark that large-scale extension of CEM-
based breast cancer screening to the whole increased-risk 
cohort—or to even larger cohorts such as the intermediate 
or average risk ones—would need to be substantiated 
by studies demonstrating a reduction in interval cancer 
rates compared to mammography screening. As already 
mentioned for DBT (11,14), we can also observe how a 
recently published study by Wernli et al. (45) comparing 
CE-MRI and digital mammography for breast cancer 
screening in over 13,000 women with previous breast 
cancer history did not display any statistically significant 
difference in the interval cancer rate, albeit showing an 
increased cancer detection rate for CE-MRI. 

Perspectives

We are witnessing how CEM is challenging the hitherto 
uncontested CE-MRI dominance in crucial aspects of 
breast imaging (15,20,24) such as pre-operative staging, 
post-operative surveillance, identification of occult primary 
breast cancer, problem solving for equivocal findings at 
first-level examinations, and neoadjuvant therapy response 
monitoring. CEM is able to offer an immediately available 
work-up option for recalled suspicious findings (20,24) and 
also to easily solve one of the most irksome shortcomings 
of CE-MRI by providing a direct parallel visualization 
of microcalcifications in low-energy images and in their 
eventually associated contrast enhancement area (46). The 
article of Sung et al. (27) gave a valuable demonstration of 
CEM versatility in previously neglected tasks, once more 
highlighting the diagnostic superiority of the combined 
morphofunctional assessment provided by contrast-
enhanced breast imaging. Competition between CE-MRI 
and CEM is therefore wide open: Table 1 summarizes and 
compares each modality’s major characteristics. 

Another turning point could eventually be represented by 
a response to concerns on gadolinium-based contrast agents 
and ICAs. Indeed, since 2014 the use of gadolinium-based 
contrast agents in CE-MRI has come under close scrutiny, 
due to its retention in various structures of the central nervous 
system (47). While gadolinium retention in the brain has yet 
to display any pathological effect subsequently detectable at 
neurologic examination (47), this unresolved issue stimulated 

Table 1 Main technical, procedural, and diagnostic features of contrast-enhanced breast MRI and contrast-enhanced mammography

Features Contrast-enhanced breast MRI Contrast-enhanced mammography

Images Three-dimensional Two-dimensional

Multiparametric technique Yes No

Radiation exposure No Yes

Contraindications Several Very few

Contrast-related health issues Yes Yes

Kinetic contrast analysis Yes No

Ease of interpretation Low High

Accessibility Low to intermediate Intermediate to high

Cost High Low

Diagnostic performance High High

Patient preference Lower Higher

MRI, magnetic resonance imaging. 
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research into unenhanced MRI protocols, such as those 
based on diffusion-weighted imaging (48). Exploiting 
different MRI multiparametric properties these sequences 
still grant a morphofunctional assessment of the breast, 
which is of utmost importance in a screening setting (48).  
Similarly, the combined application of radiomics and of 
spectral X-ray-based material decomposition to contrast-
free dual-energy digital mammography recently paved 
the way for the extension of quantitative image analysis to 
X-ray-based techniques (49). These advancements allow for 
systematic tissue characterization without ICA administration 
(49,50). Paradoxically, the quest for an ever-easier access to 
in-deep breast tissue characterization may exit the terrain 
of contrast-enhanced breast imaging, only to swiftly open a 
new competition between MRI and mammography in their 
contrast-free quantitative applications.
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