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We develop an analytical model to describe the phonon dispersion relations of host-guest lattices
with heavy guest atoms (rattlers). Crucially, the model also accounts for phonon damping arising
from anharmonicity. The spectrum of low energy states contains acoustic-like and (soft) optical-
like modes, which display the typical avoided crossing, and which can be derived analytically by
considering the dynamical coupling between host lattice and guest rattlers. Inclusion of viscous
anharmonic damping in the model allows us, for the first time, to compute the vibrational den-
sity of states (VDOS) and the specific heat, unveiling the presence of a boson peak (BP) linked
to an anharmonicity-smeared van Hove singularity. Upon increasing the coupling strength between
the host and the guest dynamics, and by decreasing the energy of the soft optical modes, the BP
anomaly becomes stronger and it moves towards lower frequencies. Moreover, we find a robust linear
correlation between the BP frequency and the energy of the soft optical-like modes. This frame-
work provides a useful model for tuning the thermal properties of host-guest lattices by controlling
the VDOS, which is crucial for optimizing thermal conductivity and hence the energy conversion
efficiency in these materials.

In glasses, contrarily to crystalline structures with
long-range order, standard propagating phononic modes
with ballistic dispersion relation ω = vL,T q, where L, T
refer to longitudinal and transverse modes [1–3] are not
the only or the dominant vibrational excitations. Rather,
the breakdown of continuum elasticity at sufficiently low
length scales generates a proliferation of quasi-localized
modes which are characterized by diffusive-like propaga-
tion due to scattering [2]. Both dissipation-less (”har-
monic”) scattering due to static disorder as well as scat-
tering due to anharmonicity contribute to an excess of
vibrational modes which appears as a peak (the boson
peak) in the vibrational density of states (VDOS) when
normalized by the Debye ∼ ω2 law of ballistic phonons.
This observation is the fundamental reason behind the
anomalies observed experimentally in the VDOS, the spe-
cific heat and the thermal conductivity of amorphous and
strongly disordered systems [4, 5].

Recently, the observation of glassy, or more precisely
glassy-like, anomalies has been extended to systems with
minimal or orientational disorder and simple crystalline
structures [6–10]. A possible theoretical explanation
has been proposed for these systems [11], in terms of
the interplay of elasticity and ballistic propagation with
damping and effective viscosity. Additionally, glassy fea-
tures (referred as ”phonon glass”) have been observed
in thermoelectric host-guest materials [12–16], such as
clathrates, tetrahedrites and skutterudites with guest
inclusions (rattlers) which display interesting thermal
transport features and which could provide important
technological applications [17].

Perhaps the most prominent quality of thermoelectrics

FIG. 1. A pictorial representation of guest-host interplay as-
sociated with the presence of quasi-localized rattler modes.
The host-guest lattice is approximated by a finite concen-
tration of caged guest atoms or ”defects” (typically, heavier
atoms compared to the host lattice atoms). Each defect con-
sists of a caged guest atom with a single localized soft mode
with energy E = ~ω0 � ~ωD, where ω0 is the energy of the
optical-like modes and ωD is the Debye frequency. Upon in-
creasing the concentration c of the caged guest atoms, the
glassy phonon features become more and more pronounced.

is their ability to conduct electricity efficiently, like a
crystalline solid, and at the same time to conduct heat
poorly, like a glass, i.e. the ”phonon glass-electron
crystal” paradigm [18, 19]. Many of these systems have
a perfectly ordered crystalline (host) lattice but they
contain caged (typically heavier) atoms referred to as
”rattlers” (see Fig.1), which give rise to quasi-localized
vibrational modes [20–23]. The interactions between the
guest rattlers and the host lattice modes might be crucial
to understand and control the thermal conductivity of
these crystalline materials, although a theory of this
effect is still lacking. Moreover, the presence of the
rattlers produce the avoided crossing phenomenon [24],
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which is typical of the host-guest materials [25, 26].

In this work we focus on a specific framework, known
as soft-mode dynamics theory (SMD) [27–29], and in
particular on the simple theoretical model proposed by
Klinger and Kosevich (KK) in [30]. In the original KK
framework, the model consists of the usual elastodynamic
equation for the displacement field of an elastic solid with
an extra term given by the dynamic (mutual) coupling to
the coordinate of a defect particle (the guest atom). The
dynamics of the latter is governed by a Newton’s equa-
tion in a harmonic force-field with likewise an extra term
due to the coupling with the elastic embedding solid.

The main result of the KK theory is a polariton-
like phonon spectrum with the coexistence of acoustic-
like and soft optical-like modes separated by a charac-
teristic avoided-crossing feature, due to dynamical cou-
pling of the defects to the elastic lattice matrix. The
two branches display a distinctive avoided crossing fea-
ture. Furthermore they provide a close approximation
for the phononics of thermoelectric materials such as e.g.
Ba8Ga16Ge30 [26] as well as clathrate hydrates [25] and
tetrahedrites [22]. A representation is provided in Fig.2.
Moreover, the typical energy of the gapped soft optical
modes ω0 has been claimed to be related to the Ioffe-
Regel energy scale ωIR, which is connected with the fre-
quency ωBP of the so-called boson peak anomaly (excess
of Debye’s law ∼ ω2) measured in the vibrational spec-
trum of glasses [30].

However, the KK model has remained rather limited
in its applicability for predictions of thermal properties
of materials, because in its previous formulation it can-
not provide access to the vibrational density of states
(VDOS). The latter is the key quantity which enters the
integrals that yield the specific heat and the thermal con-
ductivity of a material. Furthermore, also the original
speculation by Klinger and Kosevich that the soft-mode
coupled dynamics in the KK model could lead to a bo-
son peak in the VDOS, and its relation to a Ioffe-Regel
crossover, have not been verified.

In this paper we provide a working answer to all these
questions, by extending the KK model to realistic crys-
talline lattices where both wave propagation through the
lattice as well as the rattler motion are damped by an-
harmonicity. This extension allows us, for the first time,
to evaluate the VDOS analytically for host-guest lattices.
The calculation reveals the presence of a boson peak in
the VDOS, at a frequency which is close to the frequency
of the van Hove peak occurring as the group velocity
dω/dk = 0. This effect results in a peak in the specific
heat as well. Such analytical model, which gives access
to the VDOS as a function of key structural parameters
such as defect density c and the dynamic coupling be-
tween defect and matrix, may play a crucial role for the
understanding and design of host-guest materials where
thermal conductivity is controlled by the features of the

VDOS.
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FIG. 2. (Color online) The two branches of low energy modes
present in the KK model of [30]. The avoided crossing is
determined by an energy separation ∆ω which is physically
controlled by the concentration of defects c.
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FIG. 3. (Color online) Left: The dispersion relation of the
two-branches of modes in the extended KK model with damp-
ing (Eq.(1)). The different colors correspond to different val-
ues of the density of defects, encoded in the parameter c,
see legend. In all calculations the damping coefficients are
γ1 = 1, γ2 = 0.1. Right: The corresponding normalized
VDOS. Bottom: The normalized specific heat.

Let us briefly summarize the setup used for our deriva-
tions; for more details see [31]. In particular, we general-
ize the KK model [30] by introducing finite anharmonic
damping contributions for both the dynamics of the host
lattice matrix (which becomes effectively a visceolastic
medium) and the dynamics of the guest defect atom. The
resulting equations read as [30]{

ρ ∂
2u
∂2t ' ρ s20 M u + c β ∂x

∂R + γ1
∂4u
∂t

µ∂
2x
∂t2 ' −µω

2
0x− β ε(R) + γ2

∂x
∂t

(1)

where ρ is the density of the embedding viscoelastic ma-
trix and µ is an effective mass parameter of the ”soft
mode” guest atom. Furthermore, we defined the elas-
tic displacement vector u, the scalar strain parameter
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ε ≡ divu, the location of the defect site R and the
soft mode dynamical (scalar) coordinate x, such that
U = 1

2µω0x
2 is the potential energy of the soft mode,

while Uint = βεx is the coupling energy between the soft
mode and the host matrix. The coupling strength is con-
trolled by the parameter β while the density of defects
is given by c. The bare speed of sound is indicated with
s0 and the natural oscillation frequency of the soft mode
with ω0.

With respect to the KK model, we introduced a sig-
nificant novelty in Eq.(1) by adding dissipative coeffi-
cients γ1,2 which determine the anharmonic damping of
the acoustic-like phonons and of the soft modes. No-
tice that γ1, the damping of the acoustic-like phonons,
is modelled by adding a dissipative (viscous) term to the
overall stress (as done in [32] p.366), which leads to a
diffusive-like dependence of the damping γ1 ∼ q2 on the
wavevector q. After some standard manipulations which
involve solving the secular determinant, and by going to
Fourier space, the key equation describing the vibrational
modes of the system is obtained as [31]

(ω2 − s20 q2 + i ω
γ1 q

2

ρ
)(ω2 − ω2

0 + i ω
γ2
µ

) = cQ2 s20 q
2

(2)

where we defined cQ2 ≡ c β2 /ρµs20 < ω2
0 . An example of

the polariton-like spectrum ω(q) with anharmonic damp-
ing computed using the above equation is shown in Fig.2.
In the regime of high defects concentration c, the interac-
tion between the two types of modes becomes strong near
the (avoided) intersection of the two branches, ω ∼ ω0,
thus producing an avoided-crossing behavior. Notice that
the energy separation ∆ω is controlled by the strength of
the interaction between the modes, β, and by the defects
density c. More precisely, neglecting the subleading con-
tributions coming from the damping coefficients, the en-
ergy separation between the two branches roughly reads
as ∆ω ∼ ω0 −

√
ω2
0 − cQ2.

The main question we want to address here is how
the above features affect the vibrational density of states
(VDOS) and the specific heat of the system. We compute
the VDOS using the standard formula

g(ω) = − 2ω

π q3D

∫ qD

0

ImG(q, ω) q2dq (3)

in terms of the Green’s function G(q, ω), which is derived
from the Plemelj identity and was already derived and
used in similar context in [3, 11, 33]. For the explicit form
of the Green’s function derived in full detail see Supple-
mental Material available at [31]. Upon implementing it
in Eq. (3), we obtain the final semi-analytical expression
for the reduced VDOS of the host-guest system lattice,

g(ω)

ω2
=

2

πq3D

∫ qD

0

−
[(

γ1q
2

ρ + γ2
µ

)
ω2 − (

ω2
0γ1q

2

ρ +
s20q

2γ2
µ )

]
q2[

ω4 −
(
s20q

2 + ω2
0 + γ1q2γ2

ρµ

)
ω2 + s20q

2(ω2
0 − cQ2)

]2
+
[(

γ1q2

ρ + γ2
µ

)
ω3 − (

ω2
0γ1q

2

ρ +
s20q

2γ2
µ )ω

]2 dq
(4)

where the poles of the integrand correspond to the roots
of Eq. (2).

We can then derive the specific heat of the system by
performing the standard integral [34]

C(T ) = kB

∫ ∞
0

(
~ω

2 kB T

)2

sinh

(
~ω

2 kB T

)−2
g(ω) dω.

(5)

Using formulae Eq.(4) and Eq.(5), we are now ready to
study in detail the features of the generalized KK model.
First we analyze the behavior of the system by varying
the parameter c, which controls the density of the guest
atoms while keeping fixed the characteristic energy of the
soft mode, ω0. Upon increasing the density of defects we
expect the interactions between the two types of modes to
increase, the avoided crossing to be more pronounced and
the glassy features to be more evident. The spectrum can
be observed in the left panel of Fig.3, for some benchmark
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FIG. 4. (Color online) The evolution of the boson peak fre-
quency ωBP and boson peak temperature TBP as a function
of the defect guest atom density c. The solid lines are em-
pirical fits to power-law functions with power exponents 2.02
and 2.02 for ωBP and TBP , respectively.

values of c. As already mentioned, by increasing this
parameter, the avoided crossing becomes stronger and
the energy separation ∆ω increases.

The reduced VDOS is shown in the right panel of
Fig.3. Increasing the density of defects c, the boson
peak becomes more pronounced and it shifts towards
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low energies. The same phenomenon occurs in the
specific heat of the system normalized by the Debye
∼ T 3 contribution (see the bottom panel of Fig.3). The
position of the boson peak frequency and boson peak
temperature follow a power-law scaling with the density
of defects c which is apparent in Fig.4.

We can now study the behaviour as a function of the
characteristic energy scale ω0, which corresponds to the
energy (or energy gap) of the optical-like soft modes.
Here we keep the density of defects c constant, such that
the energy separation ∆ω between the two modes is ap-
proximately constant. The main results are presented in
Fig.5. We observe that the strength of the boson peak
in both the VDOS and the specific heat becomes weaker
upon increasing ω0. In other words, only soft optical-like
modes, whose energy is not too large compared to the
energy scale of the acoustic-like modes, contribute to the
low energy glassy-like behaviour. Moreover, increasing
the energy of the (no longer) soft modes, the boson peak
moves towards higher energy. In particular, we notice a
direct correlation between the position of the boson peak
and the frequency ω0 of the soft optical-like modes, which
is shown in Fig.6.

Both the boson peak frequency ωBP and the boson
peak temperature TBP display a very clear linear scaling
in terms of the ω0 energy parameter. Furthermore, it
is seen that the boson peak frequency is very close to
the frequency at which the van Hove singularity occurs,
i.e. the frequency at which band-flattening, dω/dq = 0,
occurs. This suggests that the origin of the boson peak
in these materials is related to a van Hove singularity
caused by band-flattening of the polariton-like spectrum,
smeared by anharmonicity.
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FIG. 5. (Color online) Left: The dispersion relation of
the two branches of modes in the extended KK model. The
different colors correspond to different values for the energy
of the optical-like mode ω0. Right: The corresponding
normalized VDOS. Bottom: The normalized specific heat.

In conclusion, we derived an extended version of the

Klinger-Kosevich model of soft mode dynamics [30],
which crucially accounts for viscous damping of vibra-
tional modes, to predict the vibrational anomalies experi-
mentally observed in thermoelectric host-guest materials,
such as the boson peak observed in the VDOS [22]. The
theory shows, semi-analytically, that the presence of rat-
tlers, associated with soft-gapped quasi-localized modes,
and the avoided crossing feature produced by their in-
teractions with the acoustic-like phonons, are the funda-
mental processes leading to a ”boson peak” in the VDOS
caused by a van Hove singularity from band-flattening of
the polariton-like spectrum, smeared out by anharmonic-
ity. Our results show that, upon increasing the density of
guest atoms, the strength of the boson peak (BP) in the
VDOS becomes larger and the BP moves in a power-law
fashion towards lower frequencies. This result quanti-
tatively establishes the idea that the VDOS of thermo-
electrics can be tuned by the density of the guest defects,
e.g. by the stoichiometry in tetrahedrites where this BP
effect has been measured experimentally. Additionally,
we observe a strong linear correlation between the po-
sition of the BP and the energy of the optical-like soft
modes. This provides a further confirmation regarding
the possible glassy-like effects induced by softly gapped
degrees of freedom, like the soft optical phonons consid-
ered in [33].
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FIG. 6. (Color online) The evolution of the boson peak fre-
quency and of the boson peak temperature as a function of
the energy of the soft modes ω0. The linear correlation is ev-
ident as confirmed by empirically fitting the numerical data
to a linear relation.

This simple theoretical model successfully explains
the peak in the VDOS observed experimentally in ther-
moelectric tetrahedrites [22]. Moreover, together with
recent experimental and theoretical results [7, 9, 11, 18],
it opens up the way of realizing technologically relevant
materials with crystal-like electronic behaviour and
glass-like phononic behaviour, where the boson peak
can be tuned by stoichiometry in order to minimize
the thermal conductivity of the material. For example,
in the thermoelectric tetrahedrite materials studied
in [22] the stoichimetry of the Cu atoms is directly
related to the parameter c used in our model. The
presence of these features seems to be more universal
and general than thought before and presumably tightly
connected with anharmonic damping mechanisms and
softly-gapped modes.
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Our results could have immediate generalizations to
the study of polaritonic systems displaying avoided cross-
ing. Moreover, they suggest a possible fundamental role
of softly-gapped vibrational modes for the onset of non-
standard superconductivity.
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M. Krisch, R. Rüffer, G. Baldi, G. Carini Jr., G. Carini,
G. D’Angelo, E. Gilioli, G. Tripodo, M. Zanatta, B. Win-
kler, V. Milman, K. Refson, M. T. Dove, N. Dubrovin-
skaia, L. Dubrovinsky, R. Keding, and Y. Z. Yue, Phys.
Rev. Lett. 112, 025502 (2014).

[9] M. Moratalla, J. F. Gebbia, M. A. Ramos, L. C. Pardo,
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