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diversity of oursense-experience correspond to 

a logically uniform system of thought. 
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Sommario 

 

 

I livelli d’espressione genica dei campioni biologici sono influenzati 

dalla composizione intrinsecamente eterogenea delle cellule e dei 

tessuti che li compongono. Ciononostante, nell’analisi dei profili 

trascrizionali, il segnale di ogni campione viene quantificato senza 

considerare la presenza di sottopopolazioni cellulari 

trascrizionalmente molto diverse tra loro (analisi in bulk). Questa 

limitazione può essere estremamente critica quando si analizzano i 

profili di espressione genica in campioni tumorali, dove definire la 

composizione cellulare del tessuto rappresenta un aspetto 

fondamentale per svelare l'eterogeneità intratumorale e i meccanismi 

molecolari che determinano i diversi comportamenti del cancro. 

Poiché cambiamenti nella composizione cellulare del tessuto 

tumorale possono influenzare sia la previsione della sopravvivenza 

sia la risposta al trattamento del paziente, è estremamente 

importante poter quantificare in maniera accurata i sottotipi cellulari 

contenuti nella massa tumorale. A tal fine sono stati sviluppati una 

serie di metodi computazionali di deconvoluzione che vengono 

utilizzati per inferire, dall’espressione genica del campione in toto, le 

quantità relative dei sottotipi cellulari che lo compongono. 

Storicamente, questi metodi sono stati sviluppati per quantificare le 

proporzioni delle popolazioni leucocitarie e le loro prestazioni sono 

state validate soprattutto su profili di cellule purificate. 
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In questo progetto, abbiamo inizialmente stabilito lo stato dell'arte 

degli attuali metodi di deconvoluzione del segnale di espressione 

genica. Dopo la loro valutazione, abbiamo selezionato quattro metodi 

(CIBERSORT, EPIC, ssGSEA e xCell) per definire una pipeline per 

l’analisi di deconvoluzione. Successivamente, attraverso l'uso di studi 

indipendenti e selezionati, abbiamo analizzato come questi metodi 

stimino i diversi tipi cellulari originati da differenti formati di dati. 

Innanzitutto, abbiamo valutato potenziali errori di stima dei metodi di 

deconvoluzione usando profili di cellule purificate raccolte da diversi 

dataset pubblici. Quindi, utilizzando tre dataset pubblici di single cell 

RNA-seq da diversi tumori (carcinoma mammario, carcinoma 

polmonare e melanoma), abbiamo valutato la capacità di ogni 

metodo di stimare diversi tipi cellulari a diverse proporzioni. I risultati 

di tutte le analisi sono pubblicamente fruibili attraverso l'applicazione 

web ARDESIA (https://bicciatolab.shinyapps.io/ardesia/). 

Nella seconda parte di questo lavoro abbiamo valutato l'applicabilità 

della pipeline di deconvoluzione a dati provenienti da organismi 

diversi o per la determinazione dei sottotipi molecolari in campioni 

tumorali. Nel primo caso, abbiamo sfruttato un database murino 

contenente dati d’espressione generati in condizioni rigorosamente 

standardizzate (ImmGen) per creare una nuova firma genica in grado 

di discriminare un ampio numero di popolazioni immunitarie, in 

particolare della linea mieloide. Testata su campioni purificati murini, 

questa nuova firma è stata in grado di discriminare cellule 

strettamente correlate e con profili trascrizionali simili, come lo stesso 

sottotipo leucocitario estratto da tessuti diversi (ad esempio 

https://bicciatolab.shinyapps.io/ardesia/
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macrofagi da tessuto alveolare o peritoneale). Nel secondo caso, 

abbiamo applicato i diversi metodi di deconvoluzione per studiare 

l'eterogeneità molecolare del carcinoma mammario (BC). A tal fine, 

siamo partiti da un dataset di carcinoma mammario, i cui campioni 

erano stati etichettati in diversi sottotipi molecolari sulla base di 

segnali di immunoistochimica (IHC), per creare una firma genica di 

230 geni caratterizzanti i diversi sottotipi molecolari. 

Successivamente, abbiamo applicato questa firma per la 

deconvoluzione di 2 coorti di campioni di carcinoma mammario triplo 

negativo (TNBC). Sebbene i campioni dovessero essere 

clinicamente omogenei, l'analisi di deconvoluzione ha evidenziato 

che circa il 40% dei campioni presenta invece un grado variabile di 

co-presenza di più di un sottotipo molecolare. L’analisi di 

associazione della frazione TNBC, definita attraverso la 

deconvoluzione, e della risposta clinica o della sopravvivenza ha 

evidenziato l’esistenza di un sottogruppo di pazienti caratterizzato da 

una risposta e una sopravvivenza inferiori, proprio in virtù 

dell’eterogeneità molecolare della massa tumorale. 

In conclusione, abbiamo creato una pipeline computazionale per 

identificare sottopopolazioni cellulari da dati trascrizionali di campioni 

mediante analisi di deconvoluzione. Inoltre, abbiamo generato due 

firme molecolari per determinare la presenza di popolazioni 

immunitarie (umane o murine) e di sottotipi molecolari del carcinoma 

mammario. 
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Summary 

 

 

Expression levels of biological samples are affected by the intrinsic 

heterogeneity of cells and tissue composition. Nevertheless, in bulk 

transcriptional profiling, each sample is evaluated without considering 

the presence of multiple subpopulations. This limitation might be 

extremely critical when analyzing bulk gene expression profiles of 

cancer samples, where dissecting the mix of cell populations could 

shed light on the intratumoral heterogeneity and on the molecular 

mechanisms shaping different cancer behaviors. Since changes in 

tumor composition can both impact the prediction of patient survival 

and therapeutic response, reaching high confidence about the real 

content within these bulk tissues is extremely significant. For this 

reason, several deconvolution tools have been developed to infer 

(deconvolve) the signals of each constituent cell type from bulk gene 

expression data. Historically, these tools have been mainly 

developed to define leukocyte proportions, and their performance 

has been mostly validated on profiles of purified cells.  

In this project, we initially established the state-of-art of existing 

methods for transcriptional deconvolution. After their evaluation, we 

finally retained four tools (CIBERSORT, EPIC, ssGSEA and xCell) to 

define a bioinformatics framework for the deconvolution analysis. 

Next, using independent and selected studies, we investigated how 

these selected tools perform on different cell types and data format. 
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First, we assessed presence of potential biases of deconvolution 

methods using profiles of purified cells from different public datasets. 

Then, based upon three public single cell RNA-seq datasets from 

different tumors (breast cancer, lung cancer and melanoma), we 

evaluated tools capability in estimating different cell types at variable 

abundances, eventually wrapping these results in an interactive web 

application named ARDESIA 

(https://bicciatolab.shinyapps.io/ardesia/).  

The second part of this work investigated adaptability of the 

deconvolution analysis pipeline and its application in different 

conditions. To this end, we exploited a mouse database containing 

expression data generated in rigorously standardized conditions 

(ImmGen) to create a novel gene signature able to discriminate a 

widespread number of immune cellular populations, in particular from 

the myeloid lineage. When tested on murine purified samples, this 

new signature was able to discriminate closely related cells with 

similar transcriptional profiles, like the same cell type from different 

tissues (e.g. macrophages from alveolar or peritoneal tissue). Based 

on this validation, we applied the same approach to further 

investigate subtype heterogeneity in breast cancer (BC). To this end, 

we started from a dataset of breast cancer subtypes based on 

immunohistochemistry (IHC) to create a custom gene signature of 

230 genes. Then, we applied this signature to deconvolve 2 cohorts 

of clinically-defined triple negative breast cancer (TNBC) samples. 

Although both datasets were clinically uniform, deconvolution 

analysis highlighted a variable degree of heterogeneity in tumor 

https://bicciatolab.shinyapps.io/ardesia/
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subtypes for about 40% of samples. Test of the TNBC fraction 

identified through deconvolution with either clinical response or 

survival refined a subgroup of patients characterized by poorer 

response and survival due to heterogeneous composition of the 

tumor. 

In conclusion, we created a general bioinformatics framework to 

identify cell subpopulations from bulk transcriptional data by 

deconvolution analysis. Furthermore, we generated two molecular 

signatures to addressed bulk heterogeneity either for immune 

populations in mouse or tumor subtypes in breast tumors. 
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aDC activated Dendritic Cells 

BC Breast Cancer 

CD4 T-cells CD4+ 

CD8 T-cells CD8+ 

cDC conventional Dendritic Cells 

CN Condition Number 

CPM Count Per Million 

DEG Differentially Expressed Genes 

EPIC Estimate the Proportion of Immune and Cancer 

ES Enrichment Score 

GSEA Gene Set Enrichment Analysis 

iDC immature Dendritic Cells 

IHC ImmunoHistoChemistry 

MФ Macrophages 

NES Normalized Enrichment Score 

NK Natural Killer 

PBMC Peripheral Blood Mononuclear Cell 

PCA Principal Component Analysis 

pCR Pathological Complete Response 

pDC plasmacytoid Dendritic Cells 

RNA-seq RNA sequencing 

sc single cell 

scRNA-seq single cell RNA sequencing 

SVM Support Vector Machine 

TCGA The Cancer Genome Atlas 

TME Tissue Micro-Environment 

TPM Transcript Per Million 
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1. Introduction  

 

 

Usually, expression levels in biological samples are determined by 

the heterogeneity of cells and tissue composing the analyzed 

sample. Indeed, a sample generally comprises the investigated 

tissue along with a variable presence of several other components, 

such as fibroblast, blood vessels and, importantly, infiltrating 

leukocytes. Nevertheless, when analyzing transcriptional profiles, 

each sample is generally evaluated as a bulk, without considering the 

presence of multiple subpopulations [1], making sample 

heterogeneity one of the major confounders in gene expression 

studies. This is especially true when considering samples derived 

from pathological biopsies [2], due to the presence of variable 

proportions of tumor and healthy tissues, along potentially relevant 

infiltration of multiple components of the hematopoietic system. 

Recent advances depict a wide repertoire of immune cellular 

subtypes [3] and an unexpected complex ecosystem of cells in the 

tumor microenvironment (TME) [4]. Tumor-infiltrating lymphocytes 

(TIL), tumor-infiltrating myeloid cells (TIM), tumor-associated 

macrophages (TAM) terms are examples of the close interaction 

between cancer cells and the surrounding elements of the immune 

system. However, immune cells can play different roles in cancer and 

act in distinct or even opposite manners, with either tumor or 

antitumor activity: cells originating from the same type but 

characterized by different marker expression landscapes are 
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considered as separated and sometimes counterpoised entities [5,6] 

(Figure 1.1).  

 
Figure 1.1. A classic example of immune counterpoised roles in cancer: 
monocytes can be activated in two distinct phenotypes with opposite roles in tumor 
progression and response, the M1 or M2 macrophages. The first phenotype is a 
classical activation of monocytes with immunostimulatory activity and production of 
pro-inflammatory cytokines, which promote an anti-tumor activity; on the contrary, 
M2 is an alternative activation with an opposite activity by production of anti-
inflammatory cytokines and an immunosuppressive action. Image modified from 
[10]. 
 

In cancer, the definition of the non-tumoral proportion in each 

biological sample significantly improves the accuracy of response 

prediction by expression data analysis [7]. It is now well established 

that the immune response has the potential to enhance clinical 

prediction, thus providing potential candidates for immunotherapy [8]. 

Also, small differences in immune infiltrate are associated to both 

prognosis and response to treatment [9]. Thus, detailed identification 

of infiltrating cells composition is increasingly important both in 
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pathological and physiological conditions. However, routinely 

addressing patients to best treatment needs dependable and 

validated approaches for quantitative estimating of TME that are still 

missing. 

To date, flow cytometry is the reference method for the identification 

of cell subtypes in the immune system, however, it requires large 

amount of material and can be sometimes equivocal due to the 

association of a specific surface marker to multiple cell types. Other 

dedicated techniques for single-cell isolation are available, e.g. the 

laser micro-capture dissection or microfluidics, but nowadays they 

are expensive and require highly specialized resource, further to be 

low-throughput in some cases [11]. An effective alternative to 

accurately disclose the fractions of the cellular content within a tumor 

is the emerging single cell (SC) technology. scRNA-seq is, in fact, a 

method that allows the analysis of the transcriptome of every single 

cell present in a sample. This technique has enhanced a 

considerable progression in the understanding of samples 

heterogeneity. Also, in cancer studies, it highlighted a complexity and 

heterogeneity of TME not previously hypothesized [4]. For these 

reasons, scRNA-seq is a useful tool for the evaluation of the diverse 

cellular content within the samples, even though with several 

limitations: (i) the complexity required to analyze this kind of data; (ii) 

high costs; (iii) recent introduction; (iv) infeasibility on fixed samples, 

which importantly hampers its use in the clinical setting. All these 

drawbacks hinder the creation of large case studies with scRNA-seq, 

which on the contrary are currently available for bulk profiles. 
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Nowadays, large repositories containing the profile of thousands of 

bulk samples are available for interrogation and investigation, either 

of healthy (GTEx) or tumor samples (TCGA). Indeed, gene 

expression profiling by array or RNA-seq is a consolidated and 

cheaper technique and expression data from most, if not all cell 

subpopulations, are already publicly available. 

 

1.1. Define immune infiltration by transcriptional deconvolution 

Deconvolution was introduced in the 1950s in seismology, but it was 

rapidly and extensively deployed to the correction of optical images, 

especially in telescope observation (Figure 1.2). Each space image 

is actually a mixture of different signals at different wavelengths, 

which correspond to the different chemical elements observed in the 

patch of the sky that the instrument is looking at. The application of 

deconvolution algorithms better clarifies the reflectance of materials 

at different wavelengths that are mixed according to the material 

composition of each pixel [12], thus improving the final image 

definition. In 2001, Venet and colleagues [13] for the first time applied 

a deconvolution algorithm to transcriptional data analysis. Similarly, 

to optical images, each gene signal in a bulk is a mix of the 

expressions of that gene from the constituent cell types of the 

sample. However, the inherent heterogeneity of tissue composition 

makes difficult to define the real expression level of each cell type, 

also considering that further noise factors take over on expression 
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determination, such as cross-hybridization or library protocol, 

depending on the technique. 

Importantly, differential gene expression analysis can be influenced 

by unexpected changes in cell types composition rather than real 

gene expression modifications between conditions. Thus, the 

composition and variation in cell types are important factors in 

determining several biological conditions, such as the definition of 

diagnosis, response to therapy or a specific pathological state. For 

these reasons, several deconvolution tools have been developed to 

infer in silico (deconvolve) the signals of each constituent cell type 

from bulk gene expression and reconstitute the cellular composition 

of the sample. 
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Figure 1.2. A) Two examples of optical deconvolution: the Crab Nebula, a remnant 
after a supernova explosion as acquired by Hubble telescope [14] and a HeLa cell 
in metaphase (adapted from [15]). In both cases, on raw images (on left) a specific 
type of deconvolution for optical images, e.g. blind deconvolution, is applied to 
obtain an improved image (on right) and clarify the observed composition; B) 
Framework for the application of deconvolution to transcriptional analysis. Purified 
cells (first row) are collected, from FACS or other techniques; a signature matrix or 
a gene list is derived from purified cell transcriptional profiles to distinguish among 
the selected cell types. The bulk profile (second row) is a mix of the expression 
signals from the constituent cell types; nevertheless, by transcriptional 
deconvolution we can infer a score, e.g., the fraction or enrichment, enlightening 
sample composition. 
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There exist three main different purposes for the utilization of 

deconvolution methods: (i) estimate the proportion of the different cell 

types in a bulk; (ii) calculate the proportion and gene expression 

profile of each of the constituent cell types in a bulk; (iii) in tumor 

analysis, estimate the purity of samples for quantifying both the non-

tumoral and tumoral fractions. In this thesis, I’ll mainly focus on the 

first application of deconvolution methods. 

 

1.2. Deconvolution algorithms and gene signatures 

Tools for transcriptional deconvolution are based on two 

components: the algorithm and the gene signature (see Figure 1.3, 

―Tools selection‖ box for details of the tools used in this work). 

Mathematically, the deconvolution problem applied to bulk gene 

expression is generally defined with the formula: 

 

where M is the bulk gene expression matrix, f is the unknown 

fractions of each cell type in the mixture and B is the gene signature 

matrix (with the constrain of the number of genes in B > number of 

cell types to determine, which is usually respected in gene 

expression studies). However, in bulk deconvolution M is the only 

known factor, whereas f and B should be estimated. Different types 

of algorithms have been applied in deconvolution analysis: the most 

used are based on regression, enrichment, non-negative matrix 

factorization and probabilistic methods. Briefly, regression-based 
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algorithms define the mixture profiles as variables dependent (Y) on 

the profiles of the reference signature (X). Different models of 

regression algorithms exist, such as the least-square regression [16] 

or the Support Vector Machine (SVM) [17]. However, independently 

of the specific model, the use of regression-based methods results in 

a determination of the relative fraction of the cell types present in the 

mixture. Conversely, enrichment algorithms have been initially 

conceived to define differential enrichment of gene sets between two 

different conditions, e.g. pathways or gene ontologies. In detail, 

genes are ranked according to a statistic, i.e. significance or fold 

change between conditions, and a score, named enrichment score 

(ES), defines if genes from a signature are significantly enriched in 

the top or down ranked list. In 2009, Barbie and colleagues [18] 

proposed an adaptation to calculate the enrichment score within a 

single sample, wherein this specific case the gene list is ranked by 

the absolute expression in that sample. The generated enrichment 

score can be applied without modifications [19], or after correction to 

make it linearly associated with the mixture fraction [20]. Importantly, 

the score calculated by enrichment analysis corresponds to the 

cellular activity of the analyzed gene signature, rather than to the 

cellular proportion. 

The second fundamental component for deconvolution analysis is the 

gene reference. It is composed of marker genes used by the 

algorithm to infer either the proportion or enrichment for a specific 

cell type. Ideally, a marker gene should be expressed uniquely in a 

specific cell type, but constantly expressed across different biological 
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conditions, e.g., in response to a stimulus or pathological disease, at 

satisfactory levels to be detected and platform-independent. If we 

consider the intrinsic gene expression variability across different 

tissues or states during differentiation processing, the definition of a 

marker gene is often challenging. Generally, the selection of markers 

takes place by differential expression of a purified cell type compared 

to the other populations that compose the gene reference, and the 

most significant genes are included in the gene signature. In some 

cases, highly modulated genes according to fold change are used 

upon filtering based on significance [17]. Alternatively, additional 

filtering on genes can be performed by manual selection [16], 

exclusion of non-hematopoietic genes [17], high expression in cancer 

cell lines [17,20] or by correlation across all specific immune genes in 

the same cell type [19]. 

For enrichment-based tools the list of the genes is sufficient to 

perform the deconvolution [19], whereas regression methods also 

require a measure of genes variability across cell types of the 

reference, either it being the gene expression [17] or the standard 

deviation [16]. A signature can be composed by tens to hundreds 

genes, and the definition of the optimal number is often dependent by 

a mix of biological and technical considerations; a short list can be 

more easily defined by highly cell-specific genes, but some of them 

could be absent in the mixture to deconvolve and the impact of 

missing genes in a signature has not yet been completely addressed. 

On the other hand, excessively large number of genes in the 

signature can be source of noise during the deconvolution. To at 
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least partially address this problem, in some pipeline [17] multiple 

gene references are generated with an increasing number of marker 

genes per cell type, and the ―most stable‖ reference is finally used. 

The reference stability is a mathematical property measured by 

introducing input variation or noise and it is evaluated by a score 

called condition number (CN); lower CN corresponds to higher matrix 

stability. In other cases [20], multiple gene signatures are generated 

for each cell type, and top signatures, which are reliable also on test 

set data, are finally chosen. In the gene reference generation, a 

further condition should be considered: closely related cell types can 

also have similar gene signatures (multicollinearity), which influence 

each other and can result in their inaccurate estimates; specifically, 

high abundance of a cell type can influence quantification of a less 

abundant population with which it shares common marker genes.  

For now, there is no method that can be defined as optimal for the 

selection of marker genes. The main indication remains the use of 

marker genes from reference profiles as close as possible to the 

samples to be examined. Usually, reference profiles used for the 

generation of gene signature derive from purified cells, mainly 

isolated from blood: their expression profiles from different datasets 

profiled using different platforms are then collected to create a meta-

dataset with all the cell types that will be included in the gene 

signature [17,19]. In almost all gene signature generations, 

hematopoietic cells from a health condition are generally considered 

an ideal reference also for immune infiltrating cells [17,19,20], with 

the exception of few tumor-specific cell types, e.g. M2 Macrophages 
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[17]. In some cases, different gene signatures are specifically 

available for the evaluation of immune infiltration in either healthy or 

tumor tissues [16]: signatures for healthy tissues are generated by 

RNA-Seq from bulk of Peripheral Blood Mononuclear Cell (PBMC) 

samples and sorted immune cells of either healthy or pathological 

non-cancer samples, e.g. multiple sclerosis or type one diabetes. 

Conversely, a second gene reference is created using tumor-

infiltrating cells from scRNA-seq [21]. Some authors [20], created a 

big compendium of gene signatures after collection of a large set of 

populations from several big data sources, e.g. ENCODE [22] or 

Blueprint [23] projects, and preserving only signatures reliable on 

several data sources. 

 

My thesis project is organized as follow (Figure 1.3): I initially 

established the state-of-art of existing methods for transcriptional 

deconvolution, searching for tools with a modifiable framework (ch: 

―Define deconvolution tools for a customizable framework‖; Figure 

1.3., ―Tools selection‖ section); afterwards, for a selection of 

deconvolution tools, I assessed presence of potential biases using 

profiles of purified cells from different conditions, achieving important 

indications and drawbacks in the use of deconvolution methods (ch: 

―Test deconvolution tools on human leukocyte populations‖). Then, I 

took advantage of three different single-cell RNA-seq datasets to 

evaluate the ability of deconvolution tools in estimating different cell 

types at variable abundances; these results have been thereafter 

aggregated in an interactive web application (ch: ―Single-cell RNA-
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seq as a gold standard to test tools performance‖; Figure 1.3., ―Tools 

validation‖ section). In a later step, to evaluate to which extent 

deconvolution framework can be modified, I changed the organism 

for which it has been designed for. By creation of a large murine 

meta-dataset, I moved the deconvolution framework from human to 

mouse immune populations detection. (ch: ―Creation of a murine 

gene signature for immune heterogeneity‖). Finally, I assessed 

molecular subtype heterogeneity in breast cancer bulk tumors by 

deconvolution analysis; the detected cellular fractions have been 

lastly tested for association with clinical response and survival (ch: 

―Define tumor heterogeneity in breast cancer‖; Figure 1.3., ―Address 

heterogeneity‖ section). 
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Figure 1.3. The first part (light green) focused on a survey of the available 
deconvolution methods and selection of the tools with a modifiable framework; the 
selected tools are listed together with their main features. The second the second 
part (light blue) performed an assessment of the four selected tools by the use of 
both purified immune cells and single cell RNA-seq datasets. These steps helped 
in the definition of the tool, i.e., CIBERSORT, used in the final part of the project 
(orange) to address transcriptional heterogeneity either for murine immune 
populations first and for subtypes heterogenity in breast cancer finally. 
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2. Aim of the thesis 
 

 

Gene expression levels are partially affected by the intrinsic 

heterogeneity of cells and tissue composition of biological samples. 

Nevertheless, when analyzing transcriptional profiles each sample is 

generally evaluated as a bulk, without considering the presence of 

multiple subpopulations. For this reason, several deconvolution tools 

have been developed to infer in silico the signals of each constituent 

cell type from bulk gene expression and reconstruct the cellular 

composition of the sample, i.e. transcriptional deconvolution. 

Historically, these tools have been mainly developed to define 

leukocyte proportions and are still lacking a gold standard protocol 

for validation in solid tumors. 

Given these premises, the main focus of this project has been the 

definition of a bioinformatics framework aimed at the investigation of 

heterogeneity in bulk transcriptional data of healthy and tumor 

samples, using deconvolution methods. A preliminary assessment of 

these methods, based on independent and selected studies from 

bulk profiles of purified cells and of scRNA-seq experiments was 

necessary, due to the lack of a gold standard to evaluate 

transcriptional deconvolution performances. These results guided the 

development of an accurate computational deconvolution analysis 

framework, tested in different conditions and datasets. At first, it was 

evaluated through the generation of a dedicated murine signature for 

immune populations detection. Finally, it has been applied to address 
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intratumoral heterogeneity in breast cancer, testing the detected 

cellular fractions for significant association with clinical response and 

survival. 
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3. Materials and methods 

 

 

3.1 Tools for transcriptional deconvolution 

Selection of deconvolution tools has been based on three criteria: (i) 

tool usability (ii) availability of a well-defined immunological signature 

(iii) customizable gene signature at the time of my survey (December 

2017). 

Selected tools could be classified according to the information they 

report to the user in fraction-based methods (CIBERSORT[17] and 

EPIC[16]) and enrichment-based methods (ssGSEA[19] or xCell[20]). 

In the former, for each sample the output corresponds to fractions of 

the cell types from the gene signature: fractions can be calculated as 

either a ratio among all immunological subtypes only (CIBERSORT) 

or a ratio including both hematopoietic and non-hematopoietic 

tissues (EPIC). In the latter method, the output for each sample is a 

score of each cell type (enrichment score) which corresponds to an 

amount of activity of a given list of genes. 

Each tool was implemented with a gene signature able to identify a 

variable number of immunological populations and, in some case, 

also for possible surrounding tissues. In these tools, the gene 

signature can be replaced with a custom, user-defined one, providing 

the ability to identify a different set of populations; however, each tool 
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may require a different input setting, being either a list of marker 

genes or a gene expression matrix. 

In my work, all the deconvolution analyses have been performed 

using the predefined parameters of each tool or, if otherwise, as 

detailed for each specific analysis. For all tools and analyses, the 

deconvolution data was subsequently analyzed using different 

packages and functions in R on the base of the purpose (see below 

for details). 

 

3.1.1. CIBERSORT 

CIBERSORT[17] is a deconvolution tool based on a modification of a 

largely used classifier algorithm, the Support Vector Machine (SVM). 

This tool is available via a web page (https://cibersort.stanford.edu/, 

Figure. 2.1) upon free registration. An R version also exists but is 

available only upon request from authors. CIBERSORT reports the 

relative proportion, named ―relative mode‖, of 22 different human 

leukocyte populations. Recently, a method called ―absolute mode‖ 

has been made available: it transforms cellular fractions into a score 

that reflects the absolute proportion of each cell type in the whole 

sample. This method was not discussed in the original paper and it is 

still under development, so it was not applied in this thesis. Further to 

fractions, different statistics are reported for each analyzed sample, 

e.g. p-value, Pearson’s correlation and RMSE: these metrics are 

generated by the comparison of the mixture profile with the gene 

signature, meaning that a significant p-value indicates a considerable 

https://cibersort.stanford.edu/
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presence of some of 22 populations in the bulk. These metrics are 

better discussed in the chapter below ―Statistics for performance 

evaluation‖. 

CIBERSORT is based upon a signature called ―LM22‖, which is 

defined by a gene expression matrix composed of 547 genes for 

each of the 22 investigated cell subtypes. This signature was 

generated and validated using gene expression data of immune 

purified cells profiled both by Affymetrix and by Illumina microarrays. 

The populations in the gene signature matrix are: 

 Lymphoid lineage: B-cells naïve, B-cells memory, Plasma 

cells, T cells CD8+, T cells CD4+ naïve, T cells CD4+ memory 

resting, T cells CD4+ memory activated, T cells follicular 

helper, T cells regulatory (Tregs), T cells gamma delta, NK 

cells resting, NK cells activated; 

 Myeloid lineage: Monocytes, Macrophages M0, Macrophages 

M1, Macrophages M2, Dendritic cells resting, Dendritic cells 

activated, Mast cells resting, Mast cells activated, Eosinophils, 

Neutrophils. 

This tool has been designed to work mainly on array data, but it is 

also widely used for RNA-seq data [24], for which there is a specific 

option to set in the analysis. The input data should contain positive 

values in linear scale; however, the tool automatically detects and 

converts log2 data into non-log linear space. 
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In my project, the analyses with CIBERSORT have been performed 

using the web interface. Expression data have been uploaded in 

CIBERSORT as either log2 or as CPM (Count Per Million) and TPM 

(Transcript Per Million) normalized expression data, respectively for 

datasets profiled by array or by RNA-seq. All the analyses have been 

performed in relative mode, e.g. fractions detection, using 1000 

permutations (the maximum available in the tool) and disabling the 

quantile normalization for RNA-seq data only. Results have been 

downloaded as tabular data (.txt file). 

 

Figure 2.1. The CIBERSORT web page: the deconvolution analysis starts 
selecting the immunological signature, loading the gene expression data, and 
setting the appropriate parameters. The tool is accessible only upon free 
registration. 
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3.1.2. EPIC 

EPIC [16] is a tool based on a linear regression algorithm and it is 

accessible both as a web application (http://epic.gfellerlab.org/, 

Figure 2.2) and as an R package at github repository 

(https://github.com/GfellerLab/EPIC). Two different reference profiles 

are available with this tool: one reference, named ―blood circulating 

immune cells”, is used to determine the proportion of immune 

populations of circulating cells, while a second reference, named 

―tumor-infiltrating cells‖, contains also the signatures for tumor-

infiltrating non-malignant cell types (stroma and endothelial cells). A 

further class, named as "other cells", is automatically generated 

during the analysis by the tool; this class comprises tumor cells or 

tissues different from the previous ones. In my thesis, the ―blood 

circulating immune cells‖ signature has been used and it is 

composed of: 

 Lymphoid lineage: B-cells, CD4 T-cells, CD8 T-cells; 

 Myeloid lineage: Monocytes, Neutrophils, NK cells. 

This tool was designed specifically for RNA-seq data, but it can be 

applied on any mixture sample: it requires as input a gene 

expression data matrix, which should be normalized also for the 

length of the gene, e.g. TPM or RPKM, for the analysis of RNA-seq. 

No other assumptions are required about expression distribution (use 

of log2 or linear data). As for CIBERSORT, the total sum of all 

population fractions is equal to 1. However, it differentiates from 

CIBERSORT for both the algorithm (it used the linear regression), 

http://epic.gfellerlab.org/
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and because it introduces weights related to gene variability per gene 

per cell type, e.g. the interquartile range of the expression or the 

standard deviation, either for the circulating or the tumor-infiltrating 

references, respectively.  

All the analyses have been performed using the web application. 

Expression data have been uploaded in EPIC as either log2 or as 

CPM and TPM normalized expression data, respectively for array or 

RNA-seq datasets. No parameters should be specified during the 

analysis. Results are presented as cells fraction and are available as 

tabular data. 

 

Figure 2.2. The EPIC homepage. 
 



 

25 

 

3.1.3. single sample GSEA (ssGSEA) 

This algorithm is an adaptation of the most popular GSEA (Gene Set 

Enrichment Analysis)[25] that, although initially conceived for 

detecting enrichment among conditions, in 2009 Barbie and 

colleagues [18] modified for single sample analysis. Later on, this 

approach has been used by Charoentong and its collaborators [19] 

for analyzing the immune composition of 20 different tumors from the 

TCGA. In particular, they created immunological signatures able to 

distinguish among 28 different leukocyte subtypes to be used with 

the ssGSEA: 

 Leukocyte lineage: activated B-cell, activated CD4 T-cell, 

activated CD8 T-cell, central memory CD4 T-cell, central 

memory CD8 T-cell, effector memory CD4 T-cell, effector 

memory CD8 T-cell, gamma delta T-cell, immature B-cell, 

memory B-cell, regulatory T-cell, T follicular helper, type 1 T 

helper, type 17 T helper, type 2 T helper, CD56bright NK cell, 

CD56dim NK; 

 Myeloid lineage: activated dendritic cell (aDC), eosinophil, 

immature dendritic cell (iDC), macrophage, mast cell, MDSC, 

monocyte, NK, NK-T, neutrophil, plasmacytoid dendritic cell 

(pDC). 

The signatures comprise a total of 782 genes which have been 

identified from different studies with purified samples profiled by 

Affymetrix arrays. 
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The ssGSEA analyses in this thesis have been carried out with the 

java file of the GSEA software [25] (v. 3.0) using a bash script on a 

local machine. For each analyzed sample, the expression has been 

log2 transformed and not expressed genes (expression=0) have 

been removed. For RNA-seq data, the log2 values have been 

normalized by their median expression to obtain a ranked gene list 

for each sample. The resulting file has been used as input for the 

GSEA software, using 10.000 permutations and the weighted 

statistic. Resulting files have been parsed by bash scripts to obtain a 

tabular data file containing all enrichment scores and their adjusted 

p-values (FDR) for all populations. 

 

3.1.4. xCell 

xCell[20] is a deconvolution tool designed for the analysis of RNA-

seq data. It uses an adaptation of the ssGSEA algorithm to calculate 

an enrichment score for each population in the analyzed samples. 

Differently from the ssGSEA, xCell transforms the original score 

(raw) to an adjusted score linearly associated to the abundance of 

the cell population through the use of a dedicated pipeline; also, a 

spillover compensation technique is applied on score calculation to 

reduce dependencies between closely related cell types. The 

algorithm requires some heterogeneity across the samples of the 

dataset to perform at best, therefore the result also partially depends 

on the dataset each sample is analyzed with. The tool is available 

through a web interface (http://xcell.ucsf.edu/, Figure 2.3) and as an 

http://xcell.ucsf.edu/
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R package (https://github.com/dviraran/xCell). The analysis can be 

performed using different built-in signatures, which derive from 

different publications; however, we tested the new signatures 

collection published with the paper, a compendium for 64 different 

tissues, including immune, epithelial, and extracellular matrix cell 

subsets. Cell profiles for generating gene signatures have been 

collected by several public data sources: ENCODE [22], FANTOM5 

[26], Blueprint [23], IRIS [27], and publicly available datasets from 

GEO. Expression profiles were generated by either microarray or 

RNA-seq. A total of 37 out of the 64 populations are hematopoietic 

tissues: 

 Leukocyte lineage: B-cells, Memory B-cells, Class-switched 

memory B-cells, naive B-cells, pro B-cells, Plasma cells, CD4+ 

T-cells, CD4+ Tcm, CD4+ Tem, CD4+ memory T-cells, CD4+ 

naive T-cells, CD8+ T-cells, CD8+ Tcm, CD8+ Tem, CD8+ 

naive T-cells, Tgd cells, Th1 cells, Th2 cells, Tregs, NK cells, 

NKT; 

 Myeloid lineage: Basophils, Eosinophils, Erythrocytes, 

Macrophages, Macrophages M1, Macrophages M2, Mast 

cells, Megakaryocytes, Monocytes, Neutrophils, Platelets, DC, 

aDC, cDC, iDC, pDC. 

A heterogeneous list of non-immune populations or early 

myelopoiesis progenitors (which can be attributed with difficulty to 

specific cell types) has been removed from the analysis. Specifically, 

I filtered out the gene lists of Adipocytes, Astrocytes, CLP (common 

https://github.com/dviraran/xCell


 

28 

 

lymphoid progenitor), CMP (common myeloid progenitor), 

Chondrocytes, Endothelial cells, Epithelial cells, Fibroblasts, GMP 

(granulocyte/macrophage progenitors), HSC (hemopoietic stem cell), 

Hepatocytes, Keratinocytes, MEP (megakaryocytic and erythroid 

progenitor), MPP (Multipotent Progenitor), MSC (Mesenchymal stem 

cells), Mesangial cells, Myocytes, Neurons, Osteoblast, Pericytes, 

Preadipocytes, Sebocytes, Skeletal muscle, Smooth muscle, ly (Ly-

6C) Endothelial cells and mv (Measles virus) Endothelial cells. 

In my analyses, expression data have been uploaded using the web 

interface of xCell as either log2 or as CPM and TPM normalized 

expression data, for datasets profiled by array or by RNA-seq, 

respectively. No parameters need to be specified before performing 

the analysis. Results are presented in two separated tabular files 

containing respectively the population enrichment scores and their p-

value for each analyzed sample. The adjusted score has been used 

in all the analyses. 
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Figure 2.3. The web page of xCell. The drop-down menu showing the different 
gene signatures available has been highlighted. The preselected gene signature is 
composed of 64 cell types (1

st
 line of the drop-down menu). 

 

3.2. Purified immune population datasets 

Several public datasets containing the profile of different purified 

immune populations have been used to test the performances of the 

various tools. Datasets have been mainly downloaded from the GEO 

repository. The tested GEO datasets contain multiple immunological 

populations profiled by array, either from healthy or pathological 

samples: 
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 GSE28490 [28] is composed by a total of 47 hematopoietic 

samples from nine cell subsets, CD16+CD66b+ 

Neutrophils, CD16-CD66b+ Eosinophils, CD14+ 

Monocytes, CD4+ T cells, CD8+ T cells, CD56+ NK cells, 

CD19+ B cells, CD123+ pDCs and CD11c+ mDCs. Part of 

the cells was isolated by positive selection and enrichment 

kits. For each cell type, from 4 to 10 biological replicates are 

available. The purity of the isolated cell population was 

assessed by FACS. Profiles have been generated using 

Affymetrix HG-U133Plus 2.0 microarrays; 

 GSE28491 [28] is composed by 33 samples from 7 cell 

subsets. This is a subset contained in the same GEO 

SuperSeries of the previous GSE28490 dataset. As 

compared to the data of GSE28490, the only difference 

consists in the laboratory where the cells were isolated. 

This dataset contains the same populations of GSE28490, 

except for the Dendritic cells; 

 GSE50008 [29] is composed by 50 samples of 4 

hematopioetic subtypes, CD4+, CD8+ T cells, B cells and 

monocytes, profiled using Illumina HumanHT-12 V4.0 

expression beadchip arrays. Interestingly, each cell subtype 

has been isolated with three different methods, e.g. positive 

or negative selection or FACS, from each of the 5 tested 

subjects; however, not all combinations of subject and 

isolation method are available; 
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 GSE21029 [30] is composed by purified tumor cells from 26 

patients affected by CLL (Chronic Lymphocytic Leukemia); 

interestingly, samples from three different tissues were 

used as the source of cells for each subject, peripheral 

blood, bone marrow and Lymph Node. Samples were 

profiled using Affymetrix HG-U133Plus 2.0 arrays. 

Mononuclear cells were isolated by centrifugation over 

lymphocyte separation followed by CD19+ selection; 

 GSE48978 [31] is a time-course experiment using purified 

memory T-cells activated under Th17 condition. 

Interestingly, the 12 samples have been profiled using both 

arrays (Affymetrix HT HG-U133) and RNA-seq; this dataset 

has been used to evaluate CIBERSORT deconvolution 

differences between the two types of technology for 

transcriptional profiling. 

For all datasets profiled using Affymetrix arrays, expression data 

were downloaded as raw CEL files with the GEOquery package (v. 

2.40). The raw intensity signals were extracted from CEL files and 

normalized using the justRMA function of the affy package (v. 1.52). 

Fluorescence intensities were background-adjusted and normalized 

using quantile normalization; log2 expression values were calculated 

using the median polish summarization and custom Brain Array chip 

definition files based on Entrez genes for Human Affymetrix arrays 

(v. 21.0.0; hgu133plus2hsentrezg for Plus 2 arrays and 

hthgu133pluspmhsentrezg for HT arrays). 
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GSE50008 dataset was downloaded as normalized matrices from 

GEO. For this experiment, the available expression matrix contains 

only genes with IQR>0.7 (InterQuartile Range), for a total of 4,726 

genes.  

For GSE48978, array data has been processed as described above 

for Affymetrix arrays; RNA-seq expression data has been 

downloaded as RPKM normalized values from the original 

publication (Suppl. Tab. S6 of Zhao, Plos One, 2014). Only common 

genes (n. 16,016) between arrays and RNA-seq were retained for the 

comparison of the deconvolution analysis. 

 

3.3. Single-cell RNA-seq datasets 

Three different datasets profiled with scRNA-seq were used to 

evaluate the tool's performance; these datasets are composed of 

samples of three different tumor types: breast cancer, lung cancer 

and melanoma. The breast cancer dataset, alias Breast dataset in 

the text, is composed by 13 samples from 4 different breast tumor 

subtypes, for which both bulk and single-cell expression data have 

been performed. The lung cancer and melanoma datasets were 

among the larger single-cell datasets available in public repositories 

at the date of my analysis, composed by 4,645 and 52,698 cells, 

respectively. However, for these two datasets the expression profile 

of bulks was not available and was reconstructed in silico.  
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Breast cancer, Lung cancer and Melanoma datasets were 

downloaded from GEO or ArrayExpress repositories: GSE75688 [32], 

E-MTAB-6149 [4], GSE72056 [21], respectively. Single-cell 

annotation was downloaded from the corresponding repositories, 

except for the lung dataset [4], which was kindly provided by the 

authors of the original publication. For each dataset, single cells 

classification was used as is provided by the authors. However, the 

classification for the hematopoietic cells was verified by independent 

immunological signatures from the Immune Response In Silico (IRIS) 

collection [27]; IRIS signatures were recovered from the xCell 

package (v. 1.1) in R, which contains a compendium of multiple 

hematopoietic signatures. For each single cell, the activity for each 

signature was calculated as the mean expression of the 

corresponding genes; then, cells were divided according to the 

single-cell annotation, e.g. B-cells, T-cells, Myeloid or Macrophages 

and NK, and the signature activity plotted by violin plots. Accuracy of 

the annotations was evaluated by visual inspection. Finally, 

hematopoietic fractions in single-cell data were calculated as the 

fraction of each cell type respect to either the total number of cells in 

the sample or on the hematopoietic counterpart, for EPIC or 

CIBERSORT, ssGSEA and xCell, respectively. 

Due to the different available expression data, bulk profiles were 

generated differently between breast cancer and the melanoma and 

lung datasets. In the breast cancer dataset, the expression data of 

the bulk samples consists of TPM (Transcript Per Million) normalized 

values; then, multiple Ensembl ids matching the same gene symbol 
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were collapsed to the median of their expressions and genes not 

expressed in all samples in both the bulk and the single-cell 

experiment were removed. Differently, expression data in both lung 

and melanoma datasets consist respectively of either log2(CPM) or 

log2(TPM) values of each single cell. Duplicated genes were present 

in the melanoma dataset only; they were collapsed to the median of 

their expression values. Even though normalized data, we observed 

a high sparcity of expression matrices in both sc experiments, 18.7% 

and 4.9% for the melanoma and lung datasets, respectively; for this 

reason, we finally reconstructed the bulk expression for each sample 

using the sum of the normalized expression signals of its single cells 

instead of other statistics, e.g. mean or median. In all three datasets, 

we filter out samples with less than 5 hematopoietic cells according 

to scRNA-seq annotation, for a total of 5 and 2 samples from the 

Breast cancer and Melanoma datasets, respectively. 

To evaluate cellular fractions, the deconvolution analyses for each 

tool were performed through the respective web interface and default 

immunological signatures, with the exception of the single sample 

GSEA (ssGSEA), for which we used the method and the 

immunological signatures as in Charoentong et al [19], as described 

in detail in the above section ―Tools for transcriptional deconvolution‖. 

To correlate deconvolution results with single-cell fractions, main cell 

types were generated by merging the numerous cell subtypes 

according to their hematopoietic lineage. In detail, for tools reporting 

cell fractions (CIBERSORT, EPIC), the linear sum of the fractions 

from all subtypes was used as a measure of the main type fraction. 
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For tools reporting the enrichment (ssGSEA, xCell), since the score 

they generate corresponds to cellular activity and not to a cellular 

proportion, we firstly transformed the enrichment scores (ESs) to 

fractions. So, for each sample, we initially applied 3 preprocessing 

steps, using a CIBERSORT-like approach. In CIBERSORT, after the 

calculation of the regression coefficients with the SVM, ―negative 

values are set to 0 and the remaining regression coefficients are 

normalized to sum 1‖ [17], Similarly, in our approach: (1) negative 

ESs are set to 0 (2) non-significant populations, e.g. with p-value ≥ 

0.05, were considered with null (equal to 0) fraction, then (3) for 

remaining significant populations, we transformed the score to 

fractions by dividing each ES by the sum of the ESs within that 

sample, so to report the total sum to 1. Finally, as for the fraction-

based tools, the linear sum of the fractions from all subtypes was 

used as a measure of the main cell type fraction. For xCell, the 

analysis was performed filtering out all non-hematopoietic tissues (27 

out of 64 populations) from the beginning of the pipeline. 
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Figure 2.4. The flowchart describes the steps to merge the multiple subtypes from 
the deconvolution analysis (original deconvolution) into main cell types (merged 
deconvolution) before the comparison with the single-cell annotation. Both for 
ssGSEA and for xCell, we applied two intermediate steps: (1) the first step filters 
out non-significant populations (2) the enrichment scores are transformed into 
fractions. 

 

3.4. Web application to report deconvolution tools performance 

The web application has been developed using shiny library (v. 1.3) 

in Rstudio (v. 1.2). Several R packages have been used to generate 

the plots and the analysis within the web application: bar plots and 

bubble plots have been generated using the ggplot library. The 

correlation between fractions from single-cell annotation and from 

bulks deconvolution was calculated using the Pearson’s correlation 

score with the cor.test function from the stats package; only 

correlations with p-value ≤ 0.05 were considered significant. 

Correlation plots have been generated with the ggscatter function of 

the ggpubr package. 
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3.5. Statistics for performance evaluation 

Different measures can be used to estimate the effectiveness of bulk 

deconvolution respect to actual fractions [12]: 

1) the most used measure is the correlation distance, which 

calculates the linear dependence between two numerical 

vectors, e.g. the estimated fractions vs. actual fractions. 

Mathematically, it is defined by the formula (the higher the 

better): 

( )

( ) ( )
 

where  and  are vectors with fractions from deconvolution 

analysis or actual fraction, respectively, whereas cov and σ 

correspond to covariance and standard variation of vectors, 

respectively. Correlation ranges from -1 to 1. In all analysis, 

specifically we used Pearson’s correlation method; 

2) a largely used measure [17] is the root mean squared distance 

(RMSD), which outlines the dispersion from the regression line 

of the estimated fraction vs. actual fraction, so it is a measure 

of the accuracy of the estimation (the lower the better): 

√ ∑∑  

For cell-type  in sample  , with = - ; 
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3) a further measure is the mean absolute difference (mAD), 

which is the average difference for all cell types in all the 

analyzed mixture samples respect to the real fraction (the 

lower the better): 

∑∑  

where r is the fraction difference between the estimated 

fraction and actual fraction in the cell type k for sample j. 

When calculated on fraction matrices, it ranges from 0 to 1; 

4) when considering multiple datasets, we implemented above 

summation with a further factor, the number of datasets, to 

have a unique value for each tool in all the analysis (the lower 

the better): 

∑∑∑  

where  is the dataset. We named this measure throughout 

the text as gmAD, global mean absolute difference. 

 

No measure overlooks the others since each one is giving different 

information on the difference between fractions determined by 

deconvolution tools and actual fraction. 
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3.6. Generation of a signature for murine immune populations 

To generate a gene signature for the definition of immune 

populations in mouse, we selected gene expression profiles of 

purified cells from the ImmGen project and further publicly available 

datasets from GEO. In detail, we collected the samples from 

following datasets: 

 GSE15907 [33]: it has been the main source for profiles of 

immune populations. This series comprises the samples 

from the ImmGen project, a large compendium of 

expression profiles from mouse cell populations generated 

in rigorously standardized conditions. Cells were isolated 

from different tissues and purified using different sorting 

protocol and mAbs depending on the subtype. From this 

dataset, we selected samples of the macrophages, 

monocytes, dendritic cells and granulocytes. Samples were 

profiled using the Affymetrix Mouse Gene 1.0 ST array; 

 GSE35435 [34]: this dataset contains macrophages from 

the bone marrow, either resting or IL-4 treated to 

differentiate into macrophages M2. Samples were profiled 

using the Mouse Genome 430 2 Affymetrix array; 

 GSE69607 [35]: it contains bone marrow-derived 

macrophages of wild-type mice (n=2-3 independent mice) 

treated in M0, M1 or M2 conditions. Samples were profiled 

using the Mouse Genome 430 2 Affymetrix array; 
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 GSE53321 [36]: this dataset contains cultured mouse 

untreated macrophages M0 and treated to differentiate into 

M1 or M2 macrophages. Samples were profiled using the 

Mouse Genome 430 2 Affymetrix array. 

For all datasets, expression data were downloaded from the GEO 

database as raw CEL files with the GEOquery package (v. 2.40). The 

raw intensity signals were extracted from CEL files and normalized 

using the justRMA function of the affy package (v. 1.52). 

Fluorescence intensities were background-adjusted and normalized 

using the quantile normalization; log2 expression values were 

calculated using the median polish summarization and custom Brain 

Array chip definition files based on Entrez genes v.21.0.0 (the 

mogene10stmmentrez and the mouse4302mmentrezg for the 

ImmGen or Macrophages datasets, respectively). Expression data 

from the different datasets were merged into a single meta-dataset 

keeping only the 16,805 common genes between the two platform 

types. Then, expression data were corrected for batch effect using 

the combat function from the sva package (v. 3.22), with the GEO 

dataset set as batch and the cell subtype as covariate. Effects on 

batch correction were visually evaluated both by a PCA analysis 

using the made4 package (v. 1.48) or by clustering analysis using the 

heatmap3 package (v. 1.1), with the Pearson’s correlation as 

distance measure and the average as linkage method.  

 

The new murine reference matrix has been created through the 

following pseudocode: 
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 detect the differentially expressed genes between 

each population and all other populations; 

 order the genes by decreasing fold change (FC); 

 remove genes enriched in non-hematopoietic tissues; 

 combine top N marker genes in a matrix; 

 Iterate N from 10 to 100 across all subsets to create M 

matrices; 

 test the M matrices stability and retaining the most 

stable reference matrix. 

In detail, cellular subtypes comparison for the creation of the 

reference matrix was performed by Welch’s t-test; p-values were 

adjusted by false discovery rate correction (FDR) and only significant 

genes were further considered (corrected p-value ≤ 0.05). Stability of 

the signature matrices was evaluated on the base of their relative 

condition number by the kappa function in R. The matrix with the 

lower condition number was retained. All analyses were performed in 

R (v.3.3). 

The new murine gene signature was tested using samples of purified 

cells from several publicly available datasets. Treated samples, if 

available, were excluded from the test. The following datasets have 

been tested:  
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 GSE28621 [37] is composed of tissue-resident 

macrophages and Ly-6B+ bone marrow monocytes from 

the peritoneal cavity of naive mice; 

 GSE339 [38] is composed of normal mouse dendritic cells 

from spleen and isolated by FACS. Cells were selected by 

positive selection of either CD4 or CD8 populations or by 

negative selection of both CD4 and CD8; 

 E-MTAB-5012 [39] dataset is composed of monocytes and 

macrophages from lung tissue and isolated by flow 

cytometry strategy. Macrophages are isolated from both 

interstitial and alveolar compartments of the lung. 

 

3.7. Generation of a signature for breast cancer subtyping 

Training and validation breast cancer (BC) datasets were collected 

from formalin-fixed embedded tissue BC samples profiled on Illumina 

WG DASL HT arrays. Each sample was clinically evaluated for 

subtype by immunohistochemistry (IHC). Expression profiles were 

quantile normalized using the normaliseIllumina function of the 

BeadArray package in R (version 3.3). Multiple probes for the same 

gene were collapsed to the median of their expression. 

The TCGA dataset was downloaded as log2 lowess normalized ratio 

of sample to reference signal (cy5/cy3) collapsed by gene with the 

TCGAbiolinks package in R. The ER, PR and Her2 status were used 

to define triple-negative samples. 
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The BC subtype genes signature (BCsig) was created using the 

following pseudocode: 

 detect the differentially expressed genes between 

each molecular subtype and all other subtypes; 

 order the genes by decreasing fold change (FC); 

 combine top N marker genes in a matrix; 

 Iterate N from 3 to 200 across all subsets to create M 

matrices; 

 test the M matrices stability and retaining the most 

stable reference matrix. 

In detail, each subtype was compared to the rest of samples by 

Welch’s t-test; p-values were adjusted by false discovery rate 

correction (FDR) and only significant genes were further considered 

(FDR ≤ 0.1). Then, the top n modulated genes of each comparison 

were merged to create a gene signature; the number of top N genes 

was iterated from 3 to 200 and the most stable matrix according to 

the lowest Condition Number was used.  

Subtypes fraction of each bulk sample was calculated using the 

BCsig for all four tools with the parameters as described in the above 

section ‖Tools for transcriptional deconvolution‖. The correlation 

between the TNBC fraction and pathological response vs. non-

response or alive vs. dead status was investigated using boxplots 

and 2-sides, 2 sample Welch’s t-test; assess of performance was 

tested by receiver-operating characteristic (ROC) curve and by the 
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area under the curve (AUC) with the survcomp and ROCR packages; 

probability of survival events was tested by Kaplan-Meier curves and 

log-rank test in the survival R package (v. 3.3). 
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4. Results 

 

 

4.1 Deconvolution: biases and criticisms in populations 

detection 

We initially searched for deconvolution tools specific for 

transcriptomic analysis, evaluating their usability in the proposed 

framework. To define indications and potential biases of 

deconvolution analysis, we tested a selection of tools using the 

profile of purified cells from different publicly available datasets. 

These datasets differentiate for profiling technology, sorting method 

or tissue from which samples were extracted. 

 

4.1.1. Define deconvolution tools for a customizable framework 

At the date of my survey (December 2017), 17 different algorithms 

were available for deconvolution on bulk transcriptional data (Table 

3.1). To be inserted in the framework, each tool has to satisfy three 

different criteria: (i) its usability; (ii) the availability of a well-defined 

immunological signature; and (iii) the possibility to customize gene 

signature. Based on these requirements, I selected four tools, i.e., 

CIBERSORT[17], EPIC[16], ssGSEA (i.e., GSEA[25] with the single 

sample method from [19]), and xCell[20]. 
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Table 3.1. Deconvolution tools as surveyed in December 2017. Sig.=Signature. 

Tool 
Environment 

Sig. Custom Usability Availability Ref. 
R Web Java 

CIBERSORT (*)
  (*)

   H 
https://cibersort.stanfor
d.edu/ 

[17] 

EPIC      H http://epic.gfellerlab.org/ [16] 
ssGSEA 
(TCIA) 

       H (https://tcia.at/) [18,19] 

xCell       H http://xcell.ucsf.edu/ [20] 

TIMER         H 
https://cistrome.shinyap
ps.io/timer/ 

[47] 

CellMix      M  [52] 

CellPred          M 
http://webarraydb.org/w
ebarray/index.html 

[48] 

COD          M http://csgi.tau.ac.il/CoD/ [46] 

Dsection          M 
http://informatics.syste
msbiology.net/DSection 

[43] 

ImmQuant          M 
http://csgi.tau.ac.il/Imm
Quant/ 

[44] 

DCQ      L 
https://rdrr.io/cran/ComI
CS/man/dcq.html 

[40] 

MCP-counter         L 
https://cit.ligue-
cancer.net/mcp-
counter/ 

[51] 

DeconRNASeq      L 
http://bioconductor.org/
packages 

[42] 

Deconf          L Repsilber, 2010 [41] 

ESTIMATE         L 
https://bioinformatics.m
danderson.org/estimate
/index.html 

[49] 

quantiSeq      L 
https://icbi.i-
med.ac.at/software/qua
ntiseq/doc/ 

[50] 

SPEC          L 
http://clip.med.yale.edu/
SPEC/ 

[45] 

(*) available only upon request to the authors; Custom=customizable gene signature. 

 

The majority of tools have been discarded either because (i) they 

represented implementation of new algorithms without a specific 

gene signature (this applies to DCQ[40], deconf[41], DeconRNA-

seq[42], DSection[43], ImmQuant[44] and SPEC[45]); (ii) their 

pipeline cannot be modified for including different gene signatures 

(as for COD[46] and TIMER[47]); (iii) they just provide scores for 
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tumor purity (as for CellPred[48] and ESTIMATE[49]); (iv) despite 

multiple trials, the cannot be installed in any OS (this was the case of 

quantiSeq[50] and MCP-counter[51]). A specific remark should be 

dedicated to CellMix[52]: this is an important R package which 

enormously simplified the deconvolution analysis by implementing all 

previous methods, but it is mainly a wrapper of very old frameworks 

and algorithms published before 2013 and, for this reason, it has 

been excluded. 

Finally, the four selected tools can be grouped in 2 different 

categories according to the method they report cell types content in 

bulk (Table 3.2): tools detecting cell type fraction (CIBERSORT and 

EPIC), and tools detecting cell type enrichment (ssGSEA and xCell). 

The number of detectable leukocyte populations changes widely, 

from 5 to 37, thus providing different levels of detail when 

recapitulating the immune infiltration.  

Table 3.2. Tools included in the framework and details about the input data 

(profiling tech) and algorithms.  

Tool 
Profiling tech Immune 

classes 
(Total) 

Category Algorithm Ref 
Array RNA-seq 

CIBERSORT  
(*)

 22 Fraction SVM modified [17] 

EPIC   5 (8) Fraction regression [16] 

ssGSEA 

(TCIA) 
  28 Enrichment GSEA [18,19] 

xCell   37 (64) Enrichment GSEA [20] 

(*) 
No proof of validation on RNA-seq data has been reported in the original manuscript, but 

the tool has been subsequently adapted also for this type of data. 
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4.1.2. Test deconvolution tools on human leukocyte populations  

Initially, I tested the performance of the selected tools on many 

datasets with different populations of leukocytes derived from both 

healthy and pathological samples. These datasets are composed by 

profiles of purified cells, providing accurate inputs for the evaluation 

of deconvolution tools performance. 

The first analysis was performed on 2 large datasets (GSE28490 and 

GSE28491 from Allantaz and collegues [28]) composed by leukocyte 

samples isolated by flow cytometry from pools of healthy donors and 

accounting for 9 different populations with a variable number or 

replicates (from 3 to 15). These are two subsets of a unique GEO 

SuperSeries and no differences exist in samples processing, with the 

exception of the laboratory they were isolated from. In general, all 

algorithms correctly identify enrichment of the cell subtype 

corresponding to the tagged cellular type. In particular, CIBERSORT 

detects fractions above 90% for monocyte, eosinophils, neutrophils 

or NK cells (Figure S1 and Figure S2). Some samples are assigned 

across multiple subtypes of a unique parental cell, e.g., the naïve and 

memory subtypes of the B or T cells (Figure 3.1). On the contrary, 

dendritic cells of myeloid (mDC) or plasmacytoid (pDC) origin are not 

framed in the dendritic cell type: while the former contains variable 

fractions of monocyte (33.7%-36.7%) and, interestingly, of M2 

macrophages (26.0%-34.3%), the latter are fragmented across B 

cells, Plasma cells and M2 macrophages (from 67.1% to 75.6% in 

total), and fraction of dendritic cells is almost null. 
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Figure 3.1. Detail of CIBERSORT analysis of the test dataset from Allantaz et al. 
For each sample (on column) colors correspond to a deconvoluted fraction. The 
complete image on all 9 cell subtypes is available in Figure S1, first row. 
 

Deconvolution analysis of these datasets with EPIC was initially 

performed on log2 expression data since no specific signal 

distribution of the mixture sample is assumed by the tool. However, 

the considerable low fractions of immune cell types and the low 

consistency with the annotated cell types (see Figure 3.2, plot 

above) suggested a further test using linear expression values. The 

clear improvement in subtypes detection (Figure 3.2, plot below, and 

Figure S1) lead to the use of linear expression for the following 

analyses with this tool on array data. Then, in the analysis of the first 

dataset of Allantaz et al (i.e., GSE28490) [28] transformed to a linear 

scale, monocytes and T-cell types are correctly detected, despite 

CD8 T subtype is mainly recognized as CD4 cells (average 
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CD4=70.0%; average CD8=27.7%). B-cells, Neutrophils and overall 

the NK cells are detected with fractions lower than deconvolution 

using CIBERSORT, 61.2%, 65.6% and 39.0% on average, 

respectively. No signature is available for dendritic cells, which are 

mainly classified as Monocytes or other cells, depending on the 

dendritic subtype. Surprisingly, deconvolution on the second dataset 

from Allantaz et al (i.e., GSE28491) [28] (Figure S2) showed lower 

consistency respect to previous dataset for almost all annotated cell 

types despite the use of the same protocol. Only CD4 and, partially, 

Neutrophils subtypes are correctly detected. A feeble decreasing in 

population classification was noticed in CIBERSORT analysis too, 

suggesting some batch effect due to the laboratories; however, this 

effect impacts with a stronger effect on several classes of EPIC 

deconvolution, with on average 54.9% of the ―other‖ component for B-cells, 

Eosinophils, NK and Neutrophils subtypes. 
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Figure 3.2. Deconvolution analysis with EPIC on either log2 (above) or linear 
(below) expression data on the second dataset from Allantaz et al. 
Eos=eosinophils; Neu=neutrophils 

 

The analysis using ssGSEA on both datasets from Allantaz and 

collegues (detail in Figure 3.3, complete deconvolution in Figure S1, 

S2) highlighted a widespread and unspecific enrichment of several 

populations, with a more evident effect in the first dataset. Some 

populations, e.g. Central Memory CD4, MDSC, Monocyte and pDC 

are significantly enriched in all samples from the first dataset; for all 

these populations, there is a higher but modest enrichment in the 

tagged cell type respect to the other populations (data not shown). 
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This widespread and unspecific enrichment was observed also in the 

second dataset.  

 
Figure 3.3. Detail of enrichment analysis using ssGSEA and xCell tools on B-cells, 
CD4, CD8 and monocytes populations of the first dataset from Allantaz et al. 
ssGSEA detects an unspecific enrichment also among not related cell types, 
whereas xCells deconvolution reflects cell types annotation with higher 
consistency. 
 

 

We supposed some inability of the enrichment algorithm to correctly 

detect populations from these datasets, but the analysis with xCell 

showed more accurate classification for several cell types: B-cells 

CD8, Eosinophils, monocytes, pDC and mDC (classified as cDC) 

(Figure S1 and Figure S2). Differently, NK and neutrophils 

populations are detected with low specificity. Of note, CD4 

populations are fragmented in CD4 but also CD8 subpopulations in 

both datasets. Table 3.3 summarizes the evaluation on the observed 

deconvolution results for all four tools in these two datasets. 
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Table 3.3. Synthetic evaluation of tools performance in the deconvolution analysis 
of multiple purified cell types from both datasets of Allantaz et al. 

Dataset Population CIBERSORT EPIC ssGSEA xCell 
      

GSE28490 

B-cells +++ ++ ++ +++ 

CD4 T-cells +++ +++ ++ + 

CD8 T-cells +++ + ++ +++ 

Eosinophils +++ / + ++ 

Monocytes +++ +++ + +++ 

Neutrophils +++ +++ + ++ 

NK +++ + + ++ 

mDC + / + +++ (as cDC) 

pDC + / ++ +++ 
      

GSE28491 

B-cells +++ + ++ +++ 

CD4 T-cells +++ +++ +++ + 

CD8 T-cells +++ ++ ++ +++ 

Eosinophils +++ / + ++ 

Monocytes +++ ++ ++ +++ 

Neutrophils +++ ++ ++ ++ 

NK +++ + ns ++ 
      

Legend: 
+++: the annotated cell type is recognized with high specificity 
++: cell types other than the tagged type are significantly recognized 
+: cell types of both myeloid and lymphoid lineage are recognized 
ns: the annotated cell type is not significantly recognized. 

 

Subsequently, we tested samples from a study from Beliakova-

Bethell et al [29] which investigated the effects on expression profile 

for different sorting methods in four leukocyte subtypes, CD4, CD8, 

monocytes and B-cells isolated by FACS, positive and negative 

selection (Figure S3). The analysis with CIBERSORT on expression 

mixtures reported a high fraction of the correct cell type for all 

samples. Nonetheless, detected percentage changes depend on the 

combination between the sorting method and the cell type: this is 

particularly true for the CD4+ T cells sorted with positive selection 
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which are detected with lower fraction (sum of T cells CD4+ naïve+ 

memory: 29.3%-44.1%) respect to FACS or negative selection 

(61.3%-74.8%; 56.4%-65.0%, respectively). Interestingly, this dataset 

was profiled on the Illumina beadchip array, highlighting the ability of 

the algorithm to properly work on profiles from different profiling 

technologies. Deconvolution with EPIC shows highly variable 

consistency among the 4 cell types: while CD4 and monocytes are 

correctly recognized (on average 79.9% and 57.3%, respectively), 

the CD8 population are mainly fragmented into CD4 and CD8 cells, 

and the B-cells are poorly recognized (12.5% on average). The 

ssGSEA algorithm shows a pattern similar to EPIC for T-cells: while 

CD4 are correctly identified as activated CD4 T-cells or central 

memory CD4 T-cells, despite with minor enrichment of activated CD8 

cells, CD8 are mainly enriched in both CD4 and CD8. B-cells are 

enriched with variable patterns of activated B-cells, T-cells and 

unexpectedly iDC, depending on the sample. Strangely, monocytes 

samples enrich in macrophages, MDSC, mast cell and pDC, but 

monocyte gene signature is not significant in all samples. xCell 

analysis was not performed because required the whole gene 

expression (see ―Purified immune population datasets‖ section of 

Materials and Methods for detail). Interestingly, overall the positive 

selection of cells influences positively (for monocytes) or negatively 

(for CD4) deconvolution with EPIC respect to negative or FACS cells 

selection. A similar effect was also noticed in CIBERSORT and 

ssGSEA deconvolution, but only for CD4 cells (Table 3.4). 
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Finally, we tested samples enriched for specific cell populations from 

pathological patients: we analyzed expression data from the dataset 

of McCoy JP et al [30] of Chronic Lymphocytic Leukemia (CLL) which 

have been processed by CD19+ positive selection. CIBERSORT 

correctly identifies the expected clinic expansion of the B-cells, with 

fractions from 73.1% to 92.7% (Figure S4). Interestingly, the CLL 

dataset comprised multiple samples of the same patient from 

different origin: Peripheral Blood, Bone Marrow and Lymph Nodes. 

Even though the fraction of memory or naïve B-cells changes across 

patients, it seems consistent within the samples of the same subject. 

The different combinations of memory and naïve cells could be an 

interesting observation to investigate in further studies. EPIC 

detected a relevant fraction of B-cells (from 31.5% to 41.9%), but 

with a prevalence of the ―other‖ component (50.6% on average). 

ssGSEA analysis is significantly enriched in activated or immature B-

cells, despite a lower but constantly significant enrichment was found 

for several other cell types, both of B-cells or myeloid lineage. 

Strangely, xCell detects enrichment of populations uncorrelated with 

the pathology, mainly Tregs, DC or Megakaryocytes, at higher level 

than cells from B lymphocyte lineage (Figure 3.4). Then, as a first 

step, we investigated the enrichment of all 64 populations, noticing 

relevant (ES range=0.21-0.52, average ES=0.34) and significant 

enrichment of multipotent progenitor (MPP) cells in 14 out 24 

samples, which was absent in previous healthy datasets (ES=0 for all 

cells except for DCs, average ES=0.02). As a further step, we 

verified if low enrichment was caused by poor variability across 
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samples: xCell requires a heterogeneous dataset to perform at best. 

No healthy controls were available in the CLL dataset, so we created 

a meta-dataset composed by samples from the dataset of McCoy et 

al. [30] with samples from the first dataset of Allantaz et al. [28]. The 

ES for B-cells strongly increases (average ES=0.895). 

 

 
Figure 3.4. xCell deconvolution of pathological samples from CLL [30]. The MPP 
population is in the last row. Only samples from the first 8 patients are shown for 
clarity. PB; peripheral blood; BM: bone marrow; LN: lymph node. 
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Table 3.4 Synthetic evaluation of tools performance in deconvolution of samples 
from Beliakova-Bethell et al. [29] and McCoy et al [30]. For GSE21029 al. [30], we 
expected an enrichment of B-cells population because of the CD19+ selection in 
sample processing. na=not analyzed, rest of legend as in Table 3.3. 

Dataset Population CIBERSORT EPIC ssGSEA xCell 

      

 
GSE50008 

B-cells ++ + + na 

CD4 T-cells ++ +++ +++ na 

CD8 T-cells ++ ++ ++ na 

Monocytes ++ +++ ns na 

      
GSE21029 B-cells +++ ++ + + 
      

Legend: 
+++: the annotated cell type is recognized with high specificity 
++: cell types other than the tagged type are significantly recognized 
+: cell types of both myeloid and lymphoid lineage are recognized 
ns: the annotated cell type is not significantly recognized. 
 

CIBERSORT has been built and tested on microarray data only, 

despite the author's state in the tool web page that it can be used 

also on RNA-seq data. The limiting element seems mainly the gene 

signature than the algorithm used for deconvolution. Indeed, the 

authors performed several tests on RNA-seq data, and they are "in 

the process of deriving an immune signature matrix for RNA-seq" 

(see CIBERSORT web app, FAQ page). However, this is still an 

open debate, with both papers for [24] and against [53] its application 

on RNA-seq data. For this reason, we searched for datasets of 

purified cells where the same sample is profiled by both 

technologies. We performed the analysis with CIBERSORT on the 

dataset from Zhao et al. [31], which is composed by 12 samples of 

memory T-cells stimulated toward activated T-cells. To reduce the 

possible biases related to different marker genes available by the two 

profiling technologies types, the analysis has been restricted to 
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16,016 common genes. There is a high superimposition between the 

deconvolution results of either the T-cells memory or T-cells 

activated profiled by the two platforms (Pearson’s r correlations: 0.99 

and 0.98, respectively) (Figure 3.5). After cells activation, there is a 

clear decrease of the memory component for the benefit of the 

activated population, as expected. Interestingly, fraction comprising 

both subtypes is higher when using the RNA-seq expression as input 

data, suggesting good confidence for using CIBERSORT on this 

profiling technology. 

 

Figure 3.5. The fractions reconstructed by CIBERSORT on samples profiled both 
by Array and RNA-seq of the Zhao et al. dataset. As expected, there is a clear 
decreasing portion of memory resting cells (light brown color) for the increasing of 
activated cells (brown color). 
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4.1.3. Single-cell RNA-seq as a gold standard to test tools 

performance 

Single-cell technology is currently the gold standard to identify the 

heterogeneity of populations in bulk samples. For this reason, we 

took advantage of three different single-cell RNA-seq datasets to 

evaluate the ability of deconvolution tools in estimating both cell 

types and cell abundances. These results have been finally 

aggregated in an interactive web application named ARDESIA. 

 

We initially searched for datasets to be tested, focusing on 

experiments with matched bulk and single-cell RNA-seq data. 

Despite an extensive search in public resources as GEO [54], 

arrayExpress[55], single-cell Expression Atlas[56], scRNASeqDB 

[57] and SRA [58], we could find only one dataset with matched 

human bulk and single-cell data, i.e. the study on breast cancer from 

Chung and collaborators [32]. The restriction in the available 

datasets is due to the several required constraints for this type of 

validation: (i) matched bulk and single-cell gene expression from the 

same sample; (ii) human organism; (iii) no filter for the immune 

component during sample processing; (iv) a minimal presence of 

leukocytes infiltration; and (v) availability of both bulk and single-cell 

expression data. 

To cope with this lack of data, we opted to reconstruct synthetic bulks 

from two of the largest scRNA-seq public cancer datasets, both 

comprising 19 or 17 samples and 52,698 or 4,645 cells from lung 

cancer [4] or melanoma [21]), respectively. Importantly, the 
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melanoma dataset was already analyzed in EPIC manuscript, even 

though authors reported only an aggregated correlation between bulk 

deconvolution and single-cell data, considering all available 

populations at once (i.e., B-cells, CD4, CD8, macrophages, NK, 

melanoma cells and cancer-associated fibroblast; , Figure 3C of 

[16]). Nevertheless, we opted to include this dataset in our framework 

to obtain consistency evaluation at single population level and to by-

pass the shortage of single-cell datasets with suitable features for our 

pipeline. 

In all three works, the subset of cells from the immune system was 

classified into 4 major leukocyte types at most: B-cells, T-cells, 

Myeloid or Macrophages, and NK (Table 3.1). Despite the available 

annotations, we opted for verifying the transcriptional profiles by 

independent immunological human signatures from the IRIS 

collection [27] (Figure 3.6, panel A), mainly confirming the 

classifications proposed by the authors. In general, the immune cell 

types within each dataset covered different immunological 

admixtures, e.g., from the less abundant NK cells to a high fraction of 

T-cells, further to a variable presence of B-cells and Myeloid or 

Macrophages components (Table 3.5 and Figure 3.6, panel B). 
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Figure 3.6. A) The agreement between the annotated cell type and the 
transcriptional profile was verified by visual inspection using independent 
immunological signatures. In this example, the expression of the gene signature for 
Macrophages is higher in either Myeloid or Macrophages respect to cells from the 
leukocyte lineage. For each plot, columns correspond to different annotated cell 
types, while on the secondary axis the expression levels of the signature are 
shown. The analysis was performed for all combinations of annotated cell types 
with IRIS signatures, for a total of 39 plots, thus, for clarity, only an example using 
the Macrophages signature on each dataset is shown; B) The immunological 
content of the three datasets used in the analysis according to the original 
annotation of the papers. Each column corresponds to a different sample. On the 
upper row, the total number of cells, whereas on the lower row their corresponding 
immunological fractions are shown. The higher component is the T-cells, in green, 
whereas few cells of NKs, in orange, exist in the Melanoma dataset only. ―Other‖: 
either the tumoral or non-annotated cells. 
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Table 3.5. The hematopoietic cell types and their fractions according to the 
annotations from the papers’ authors. Fractions are calculated either as 
percentages within the leukocyte component only (Leukocyte) or on the total 
number of cells of the dataset (Total), thus including tumoral, stroma or non-
annotated cells. na=annotation not used in the dataset. 

  Breast  Lung  Melanoma 

  Leukocyte  
(%) 

Total 
(%) 

 Leukocyte 
(%) 

Total 
(%) 

 Leukocyte 
(%) 

Total 
(%) 

B-cells  48.3 26.2  13.9 10.6  18.6 11.1 
Macrophages  na na  na na  4.6 2.7 
Myeloid  20.3 11.1  24.2 18.5  na na 
NK  na na  na na  1.9 1.1 
T-cells  31.4 17.1  61.9 47.3  74.9 44.5 
TOT  100 54.4  100 76.4  100 59.4 

 

 

Then, we performed the deconvolution analysis on the transcriptional 

profile of both real and in silico bulks. The quantification obtained by 

this analysis can be now compared with the true positive, e.g. the 

fractions from the single-cell annotation. However, the 

straightforward use of deconvolution results was puzzling due to two 

different problems: (i) the comparison between the deconvolution and 

scRNA-seq quantifications was not immediate, due to the high 

parceling out of cell types in the deconvolution analysis respect to the 

less detailed leukocytes classification of the single cell, and (ii) the 

difficulties to compare the results of the fraction-based and 

enrichment-based tools, reporting two different biological information, 

a quantification or an activity, respectively. For these reasons, we 

carried out two consequential steps: (i) merge the multiple cell 

subtypes from deconvolution analysis into main cell types, named 

―Merged deconvolution‖; and (ii) for the enrichment-based tools, 

transform the enrichment scores to fractions, using a CIBERSORT-

like approach (see M&M for details). By these steps, we finally 
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performed the correlation between the bulk fractions defined by 

deconvolution and the single-cell fractions. All steps described above 

are summarized in Figure 3.7. Table 3.6. specifies into which main 

types the different subtypes have been merged; this merge changes 

depending on the populations detectable by the deconvolution tool 

and the cell types annotated in each dataset. 

 
 

 

Figure 3.7. Pipeline resuming the steps from the deconvolution data to the final 
bulk-sc correlation. Above row: for fraction-based tools, e.g. CIBERSORT and 
EPIC, the linear aggregation (e.g. sum) of the different sub-populations has been 
applied before comparing with the sc data, while for the enrichment-based tools a 
more complex approach has been generated. 
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Table 3.6. The cell subtypes from the deconvolution analysis have been merged 
into the main subtypes to be compared with the single-cell annotation. For each 
sub-table, the first column shows the populations from the tool, while the other 
columns report the cell type each population is merged according to dataset 
annotation. For xCell, only immune component is shown. na=not used in the 
merged deconvolution calculation. 
CIBERSORT Subtype Breast Melanoma Lung 

B cells memory B-cells B-cells B-cells 
B cells naïve B-cells B-cells B-cells 
Dendritic cells activated na na na  
Dendritic cells resting na na na 
Eosinophils Myeloid lineage na Myeloid lineage 
Macrophages M0 Myeloid lineage Macrophages Myeloid lineage 
Macrophages M1 Myeloid lineage Macrophages Myeloid lineage 
Macrophages M2 Myeloid lineage Macrophages Myeloid lineage 
Mast cells activated Myeloid lineage na  Myeloid lineage 
Mast cells resting Myeloid lineage na  Myeloid lineage 
Monocytes Myeloid lineage na Myeloid lineage 
Neutrophils Myeloid lineage na  Myeloid lineage 
NK cells activated na NK cells na  
NK cells resting na  NK cells na  
Plasma cells B-cells B-cells B-cells 
T cells CD4 memory activated T-cells T-cells T-cells 
T cells CD4 memory resting T-cells T-cells T-cells 
T cells CD4 naive T-cells T-cells T-cells 
T cells CD8 T-cells T-cells T-cells 
T cells follicular helper T-cells T-cells T-cells 
T cells gamma delta T-cells T-cells T-cells 
T cells regulatory Tregs  T-cells T-cells T-cells 
 

EPIC Subtype Breast Melanoma Lung 

B cells B-cells B-cells B-cells 
CD4 Tcells T-cells T-cells T-cells 
CD8 Tcells T-cells T-cells T-cells 
Monocytes Myeloid lineage Macrophages Myeloid lineage 
Neutrophils Myeloid lineage na Myeloid lineage 
NK cells na NK cells na 
otherCells na  na  na  
 

ssGSEA Subtype Breast Melanoma Lung 

Activated B Cells B-cells B-cells B-cells 
Activated Cd4 T Cell T-cells T-cells T-cells 
Activated Cd8 T Cell T-cells T-cells T-cells 
Activated Dendritic Cell Myeloid lineage na Myeloid lineage 
Cd56Bright Natural Killer Cell na  NK cells na  
Cd56Dim Natural Killer Cell na  NK cells na  
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Central Memory Cd4 T Cell T-cells T-cells T-cells 
Central Memory Cd8 T Cell T-cells T-cells T-cells 
Effector Memory Cd4 T Cell T-cells T-cells T-cells 
Effector Memory Cd8 T Cell T-cells T-cells T-cells 
Eosinophil Myeloid lineage na Myeloid lineage 
Gamma Delta T Cell T-cells T-cells T-cells 
Immature B Cell B-cells B-cells B-cells 
Immature Dendritic Cell Myeloid lineage na Myeloid lineage 
Macrophage Myeloid lineage Macrophages Myeloid lineage 
Mast Cell Myeloid lineage na  Myeloid lineage 
Mdsc Myeloid lineage na  Myeloid lineage 
Memory B Cell B-cells B-cells B-cells 
Monocyte Myeloid lineage na Myeloid lineage 
Natural Killer Cell na  NK cells na  
Natural Killer T Cell na  NK cells na  
Neutrophil Myeloid lineage na  Myeloid lineage 
Plasmacytoid Dendritic Cell Myeloid lineage na  Myeloid lineage 
Regulatory T Cell T-cells T-cells T-cells 
T Follicular Helper Cell T-cells T-cells T-cells 
Type 17 T Helper Cell T-cells T-cells T-cells 
Type 1 T Helper Cell T-cells T-cells T-cells 
Type 2 T Helper Cell T-cells T-cells T-cells 
 

xCell Subtype Breast Melanoma Lung 

aDC Myeloid lineage na  Myeloid lineage 
Basophils Myeloid lineage na  Myeloid lineage 
B-cells B-cells B-cells B-cells 
CD4+ memory T-cells T-cells T-cells T-cells 
CD4+ naive T-cells T-cells T-cells T-cells 
CD4+ T-cells T-cells T-cells T-cells 
CD4+ Tcm T-cells T-cells T-cells 
CD4+ Tem T-cells T-cells T-cells 
CD8+ naive T-cells T-cells T-cells T-cells 
CD8+ T-cells T-cells T-cells T-cells 
CD8+ Tcm T-cells T-cells T-cells 
CD8+ Tem T-cells T-cells T-cells 
cDC Myeloid lineage na Myeloid lineage 
Class-switched memory B-cells B-cells B-cells B-cells 
DC Myeloid lineage na  Myeloid lineage 
Eosinophils Myeloid lineage na  Myeloid lineage 
Erythrocytes Myeloid lineage na  Myeloid lineage 
iDC Myeloid lineage na  Myeloid lineage 
Macrophages Myeloid lineage Macrophages Myeloid lineage 
Macrophages M1 Myeloid lineage Macrophages Myeloid lineage 
Macrophages M2 Myeloid lineage Macrophages Myeloid lineage 
Mast cells Myeloid lineage na  Myeloid lineage 
Megakaryocytes Myeloid lineage na  Myeloid lineage 
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Memory B-cells B-cells B-cells B-cells 
Monocytes Myeloid lineage na Myeloid lineage 
naive B-cells B-cells B-cells B-cells 
Neutrophils Myeloid lineage na Myeloid lineage 
NK cells na  NK cells na  
NKT na  NK cells na  
pDC Myeloid lineage na Myeloid lineage 
Plasma cells B-cells B-cells B-cells 
Platelets Myeloid lineage na Myeloid lineage 
pro B-cells B-cells B-cells B-cells 
Tgd cells T-cells T-cells T-cells 
Th1 cells T-cells T-cells T-cells 
Th2 cells T-cells T-cells T-cells 
Tregs T-cells T-cells T-cells 
 

 

Then, we performed bulk-sc correlations (Table 3.7). Despite all 

correlation coefficients are all positives, there are considerable 

variations, depending on the dataset and the tool evaluated. The 

most evident result is the difficulty in assessing several cell type 

fractions from the unique real bulk dataset. Indeed, in the Breast 

dataset, few correlations are significant, though this outcome is at 

least partially caused by the lower number of samples as compared 

to the in-silico bulk datasets (Figure 3.8A). However, EPIC and 

ssGSEA can’t reconstruct any of the cellular fractions. For this 

reason, we verified if this difficulty in quantifying cell types could be 

related to significant changes between bulk and sc sample 

composition. The correlation analysis of bulk and single-cell pairwise 

transcriptional profiles (average r=0.680, Figure 3.8B) indicated that 

the low correlations could be only partially ascribed to compositional 

differences. Instead, the poor correlation of the Myeloid component in 

3 out of 4 tools could be due to two different reasons: (i) the Myeloid 

class includes a wide repertoire of transcriptionally different 
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populations, and (ii) deconvolution tools are assigning anyhow some 

fractions or enrichment to absent populations, as is for half of the 

samples of this dataset (see Figure S.5). 

 

Table 3.7. Bulk-sc correlation between fractions from sc annotations and fractions 
from the deconvolution analysis. 

  CIBERSORT EPIC ssGSEA xCell 

Dataset Cell Line r p r p r p r p 
          

Breast 
 B cells 0.713 0.072 0.568 0.183 0.544 0.206 0.732 0.061 
 T cells 0.806 0.028 0.523 0.228 0.200 0.666 0.552 0.198 
 Myeloid 0.210 0.650 0.601 0.154 0.302 0.510 0.776 0.040 

          

Lung 
 B cells 0.840 <0.001 0.887 <0.001 0.432 0.064 0.874 <0.001 
 T cells 0.681 0.001 0.598 0.007 0.678 0.001 0.908 <0.001 
 Myeloid 0.826 <0.001 0.643 0.003 0.737 <0.001 0.868 <0.001 

           

  B cells 0.934 <0.001 0.947 <0.001 0.777 0.018 0.975 <0.001 

Melanoma  T cells 0.914 <0.001 0.141 0.588 0.255 0.322 0.854 <0.001 
  MΦ 0.827 <0.001 0.504 0.039 na na 0.771 <0.001 
  NK 0.436 0.078 0.676 0.003 0.297 0.245 0.237 0.359 
          

Average 
correlation 

 0.719  0.609  0.503  0.755  

Legend: r=Pearson’s correlation coefficients, p=p-value of Pearson’s correlation. na=r 
calculation not feasible. MΦ=Macrophages. 

 

On the contrary, in the in-silico bulk datasets, there is a high 

agreement between the sc composition and the quantification from 

the deconvolution tools, where almost all correlations are significant. 

In the Lung dataset, all populations are correctly quantified by all 

tools, whereas in the Melanoma dataset we can observe high 

correlations when using CIBERSORT or xCell and a more 

heterogeneous result for EPIC or ssGSEA tools. Curiously, EPIC 

deconvolution correlates very poorly in the T-cell population of the 

Melanoma dataset, while the same population is significantly 

detected in the Lung dataset. To investigate the possible causes of 

this bizarre result, we repeated the whole pipeline for EPIC in the 
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Melanoma dataset using the ―tumour-infiltrating cells‖ signature 

available in the tool. The correlation significantly increases (r=0.491, 

p=0.0327), but to a small extent as compared to CIBERSORT or 

xCell, suggesting that both the gene signature and the tool could 

affect to the low consistency in the detection of T-cells from this 

dataset. Interestingly, the less abundant population of NK cells is 

wrongly detected by all tools, EPIC included (this correlation can be 

considered as a false positive, according to Figure 3.8C).  

All bulk-sc correlation plots and statistics are available at the 

ARDESIA web application in the ―Bulk-Single Cell Correlation‖ page, 

either in the ―Across Datasets‖ or in the ―Across tools‖ drop-down 

menu, where the user can respectively visualize the deconvolution 

results of one tool across different datasets or across different tools 

in a single dataset. 

 

 

 



 

69 

 

 
Figure 3.8. A) bulk-sc correlation for B-cells from the Breast (first row) or lung 
dataset; B) for the Breast dataset, the heatmap shows the correlation between the 
transcriptional profiles of bulk vs. in silico sc samples, calculated for each gene as 
the median expression among all sc of the sample. The diagonal corresponds to 
matched bulk-sc samples from same patient (mean r=0.680±0.19 SD); C) the bulk-
sc correlation on NK cells from the Melanoma dataset: the deconvolution analysis 
is not able to correctly detect the low fractions of these cells, also for EPIC (top-
right box), for which the significant correlation should be considered as a false 
positive. 
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Figure 3.9. mAD estimation between bulk and single-cell fractions calculated A) for 
each dataset or B) singularly for each subtype. 
 

 

Finally, to assess absolute discrepancies between the actual 

fractions from a single cell and the estimated fractions, we calculated 

mAD (mean absolute deviation) and gmAD (global mean absolute 

deviation) estimates for all tools (Figure 3.9). In the Breast cancer 

dataset, we observed a 0.227 gmAD, that is 22.7% of difference 

between the sc fractions and fractions detected by deconvolution 

(Figure 3.9A). The high gmAD observed in the Breast cancer 

dataset was expected considering the low Pearson’s correlations 

observed for all tools. However, high mADs were observed also in 

the analysis of the Lung in silico dataset. To better investigate this 
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result, we calculated the single mAD for each cell type in all three 

datasets (Figure 3.9B). Interestingly, the higher error in fractions 

estimation in the Breast dataset is for B-cells, which are constantly 

underestimated (Figure S.5). Indeed, there is an estimated fraction 

of 49.9% of B-cells at most by all tools, while the immune population 

is almost exclusively composed by this cell type in 3 out of 7 samples 

(Figure 3.6B). In the Lung dataset, xCell showed a mAD of 0.206: 

this result is caused by the underestimation of T-cells for the benefit 

of an overestimation in the myeloid counterpart. Finally, 

deconvolution of the Lung dataset showed high consistency with the 

sc annotation, but with low performance on T-cell quantification by 

both enrichment tools. 

 

In conclusion, the use of single-cell data suggested that no tool 

significantly correlates with all cell types in all datasets. In general, 

there is higher consistency between the single-cell data and bulk 

deconvolution when using in silico than real bulk transcriptional 

signals, despite the breast cancer dataset is composed of a 

considerably lower number of samples. The less abundant 

population, the NK cells, is poorly detected: however, this limitation is 

expected when considering the almost null frequency of these cells 

(1.1% mean on total cells 1.1%, range 0%-6.9%, Table 3.5), which is 

near to or lower than the detection limit declared by several tools 

(e.g. 0.5% for CIBERSORT). Indeed, the macrophages in the lung 

dataset account for about the 4% of the immune cells and less than 

3% of total cells, suggesting that fractions slightly higher than 1% can 
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be correctly detected by all tools except the ssGSEA. The analysis 

by mAD highlighted a better performance for the tools based on 

fractions determination, where, with the exclusion of the breast 

dataset, there is a high consistency of the proportions estimated by 

deconvolution. 

  



 

73 

 

4.1.4. ARDESIA: a web app for Automatic Report of 

DEconvolution tools by SIngle cell Annotation 

To better illustrate all the analyses of the bulk-sc correlations, we 

created a web application, ARDESIA (Automatic Report of 

DEconvolution tools by SIngle cell Annotation) (Figure 3.10), using 

the features of the Shiny package; this package allows the build and 

the host standalone of interactive web apps straight from R. The app 

is available at:  

https://bicciatolab.shinyapps.io/ardesia/ 

The web application consists of: (i) the home page, briefly describing 

the analyzed tools, datasets and analyses reported in the app; (ii) the 

―Dataset display‖ page, showing the immunological content within 

each single cell dataset; (iii) the ―Deconvolution results‖, where 

results of all deconvolution analyses for each tool are shown; (iv) the 

―Bulk-single cell correlation‖, where the app reports statistics and 

plots of bulk-sc correlations; and (v) the ―More‖ page, with the detail 

of the Materials and Methods used in the analyses and a dedicated 

FAQs (Frequently Asked Questions) section. 

https://bicciatolab.shinyapps.io/ardesia/
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Figure 3.10. The home page of ARDESIA, describing objectives of the application 
and content of each page. The upper bar allows the navigation across the pages of 
datasets summary and analysis. In the ―More‖ drop-down menu, pages containing 
both FAQs and materials & methods are available to the user. 
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4.1.5. Conclusions on performance evaluation of deconvolution 

tools 

Analyses of profiles from purified cells for detection of the 

subpopulation from bulk profiles returned highly variable results 

among the used tools. In summary, we can highlight some general 

indications and drawbacks: 

 CIBERSORT correctly classifies almost all populations from 

either physiological or pathological conditions with the 

exception of dendritic cells, even if this population originate 

from one single dataset. Furthermore, although designed and 

tested only on array data, it is also able to work with RNA-seq 

data, at least for the tested populations; 

 EPIC, of note, is influenced by the distribution of expression 

data, so use of unlogged expression data is recommended; 

furthermore, B-cells populations are usually poorly detected 

and CD4 often fragmented in CD4 and CD8 cell subtypes; 

 ssGSEA displays a general and unspecific enrichment in 

several and often uncorrelated cell types, even from both 

myeloid and lymphoid lineage simultaneously, for several 

purified cell types from different datasets;  

 xCell performs correctly in several cell types from different 

conditions. Modifications performed on the distribution of the 

enrichment score improved the interpretation of populations in 

the mixtures respect to classical ES from ssGSEA. however, 

heterogeneity of the dataset is a constraint for its use, as 

showed for the CLL dataset. 
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As a final note, the p-value for each single population reported by 

enrichment algorithms is a practical instrument to outline populations 

in the mixture; on the contrary, assessment of abundance 

significance in fraction-based tools can be user-dependent. However, 

ES interpretation is more complex when several p-values related to 

either similar or different populations within the same samples are 

significant. 

 

Deconvolution analyses of bulks from single-cell RNA-seq provided 

further indications in estimating both different cell types and different 

cell abundances: 

 CIBERSORT fractions significantly correlate with almost all 

populations from scRNA-seq datasets: it also detects with high 

confidence two out of three populations from the real bulk 

dataset, the B-cells and T-cells. The mAD estimate indicates a 

high accuracy in detecting fraction from both in silico datasets, 

where CIBERSORT has the lower error; 

 EPIC deconvolution generally correlates with sc fractions of in 

silico datasets; however, correlation scores are lower respect 

to CIBERSORT or Xcell tools and with some incorrect 

quantification of highly present populations, the T-cells of the 

Melanoma dataset. On the contrary, the gmAD estimate is the 

lower across tools; 

 ssGSEA solves fractions for fewer populations than rest of 

tools; the low abundance population of macrophages from 
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Melanoma dataset is not detected in all samples at all; the 

mAD estimate indicates good accuracy in the Lung dataset, 

whereas the low mAD in the Melanoma dataset is affected by 

several not significant correlations. 

 xCell reconstructs with high correlation fractions from both in 

silico sc datasets; moreover, there is high accuracy in 

detecting two out of three populations of the Breast dataset, 

as is the case of CIBERSORT. However, its gmAD is the 

highest, mostly for the incorrect estimate of myeloid and T-

cells populations in the lung dataset. 

 

Considering performances of tools in detecting both purified 

populations and fractions from single-cell data, in the second part of 

my thesis project, finally opted for the use of CIBERSORT to 

generate a custom framework able to detect heterogeneity in bulk 

transcriptional data other than immune populations. This purpose 

required multiple enforces, because CIBERSORT, as all the other 

deconvolution tools, has been specifically designed to detect distinct 

leucocyte populations by the use of a specific immunological gene 

signatures. Initially, I changed both the gene signature and the 

organism for which the tool has been created for, i.e., to detect 

immune populations in mouse, and I tested the tool responses 

afterwards. Specifically, we were interested to what extent 

deconvolution analysis can perform fine-grained tasks e.g., 

discriminate very similar populations with close transcriptional 



 

78 

 

profiles. Subsequently, I reapplied the pipeline just defined in mouse 

to assess molecular subtype heterogeneity in breast tumor bulks. 

This analysis addresses two main interrogations: if deconvolution 

tools can be adapted to a different context than immune populations 

and if the defined transcriptional heterogeneity can be associated to 

a specific clinical outcome in breast tumors. 
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4.2. Generation of a bioinformatics framework to 

identify cell subpopulations from bulk transcriptional 

data 

 

 

4.2.1. Creation of a murine gene signature for immune 

heterogeneity 

To evaluate to which extent the deconvolution framework could be 

modified, we changed the organism for which deconvolution has 

been designed for, switching the detection of immune subpopulations 

from human to mouse. 

The mouse is still the leading model organism to study human 

diseases. In the context of the immune system, the Immunological 

Genome Project (ImmGen) represents the complete compendium of 

genome-wide data containing expression of protein-coding genes for 

all defined cell populations of the mouse immune system, comprising 

the expression profiles of more than 200 cell populations generated 

in rigorously standardized conditions [59]. These data could, 

therefore, be a perfect base to create a reference profile to monitor 

the presence of any subpopulation of immune cells in mouse. To 

build a new signature matrix for the deconvolution analysis, I created 

a large murine meta-dataset composed by a wide repertoire of 

murine immunological samples. Mouse leukocytes expression has 

been mainly collected from the ImmGen project and, for missing 

populations as e.g. alternative macrophages, from other publicly 
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available data. Since the datasets originate from different 

experiments, we paid particular attention to minimize the presence of 

batch effects. 

 

Table 3.9. Detail of the number of samples per myeloid subtype per tissue of the 
meta-dataset.  

Tissue 
Dendritic 

cells 
Granulocytes Monocytes MΦ 

MΦ 
M1 

MΦ 
M2 

Blood - 3 14 - - - 

Bone Marrow - 7 6 12 6 8 

Brain - - - 3 - - 

Iliac, axillary, inguinal 
LN 

12 - - - - - 

Kidney 3 - - - - - 

Liver 2 - - - - - 

Lung 7 - - 8 - - 

Mesenteric LN 14 - 3 - - - 

Peritoneal Cavity - 6 - 18 - - 

Salmonella - - - 8 - - 

Skin 2 - - - - - 

Skin LN 3 - - 6 - - 

Small Intestine - - - 12 - - 

Spleen 22 - - 3 - - 

Subcutaneous LN 12 - - - - - 

Synovial Fluid - 3 - - - - 

Thymus 6 - - - - - 
Legend. LN: lymph nodes; Salmonella: Macrophages from peritoneal cavity after salmonella 
infection. MΦ=Macrophages 

 

We collected expression data of mouse dendritic cells (DC), 

monocytes (MO), macrophages (MG) and granulocytes (GN) from 

various tissues of the ImmGen project (GSE15907 [33]). Despite a 

large number of available cell types, no classically (M1) or 

alternatively activate (M2) macrophages subtypes were available. 

Because of their emerging role in several cancers [10], we recovered 

their gene expression data from 3 further studies of resting and 
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activated macrophages [34–36]. Overall, the resulting meta-dataset 

was composed by 6 main leukocyte subtypes, DC, GN, MF, M1, M2, 

MO, from 17 different tissues, for a total of 209 samples (see Table 

3.9 for details); because not all the 6 cell types from all tissues were 

available, the final dataset consisted in 27 different leukocyte 

subtypes. 

Initially, the expression profiles were normalized singularly for each 

dataset. We performed an exhaustive quality control for potential 

biases by using different types of analysis (e.g. pseudo images, 

expression boxplots, degradation plots) and found no specific defects 

in any single array. Then, we created a unique meta-dataset using 

the 16,804 common genes shared by the different Affymetrix array 

types. The following quality control analysis by PCA highlighted a 

clear batch effect with two different main clusters corresponding to 

the GSE/platform version, which was confirmed by unsupervised 

clustering using most variable genes (Figure 3.11). To reduce this 

batch effect, we tested different combinations of batch removal using 

the sva algorithm in R and the available meta-information (GSE, 

platform type, cell type, tissue, weeks of age). We evaluated the 

effects of the different combinations by unsupervised cluster analysis 

using 10% of the most modulated genes, e.g. with higher CV 

(Coefficient of Variation). While no correction perfectly clustered all 

samples of the same leukocyte subtype, some combinations, e.g. 

those considering the type of array, were excluded from subsequent 

analysis because fragmented M1 and M2 populations in multiple 

clusters (data not shown). The final batch correction used to create 
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the meta-dataset was set using the GSE as batch and subtypes as 

covariate (Figure 3.12).  

 

 
Figure 3.11. A) PCA analysis of the meta-dataset highlights a clear batch effect 
corresponding to the different datasets/platform used; samples from the datasets 
other than ImmGen (GSE15907) are highlighted by the light-red box. B) The 
Unsupervised clustering using 10% of most modulated genes confirmed this effect. 
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Figure 3.12. Unsupervised clustering using the whole transcriptional profile of the 
meta-dataset with the batch correction (GEO dataset set as batch and the subtype 
as a covariate). The Pearson’s correlation was used as measure of distance and 
average as linkage method. Main annotations for each sample are summarized by 
color code. For brevity, we reported legends for dataset and leukocyte subtype 
annotations only. Color legend as in Figure 3.11. 
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Using the new murine meta-dataset, we defined a mouse gene 

signatures to distinguish among the above 27 combinations of 

cellular subtype and tissue. We performed all the pairwise 

comparisons across the different cell types: among the resulting 

significant genes, we progressively selected from 3 to 50 genes of 

each comparison. This approach resulted in the creation of 48 gene 

signatures, from where we finally selected the best gene signature 

according to the lower condition number (see Materials & Methods 

section for details). The final signature matrix was composed of 

1,060 genes and, as expected, is enriched in several hematopoietic-

related genes (Figure 3.13). Specifically, it includes several CD 

molecules, Receptor Tyrosine Kinases and Chemokines. The 

supervised clustering outlined clusters of up-regulated genes 

characteristics of the different leukocyte subtypes: e.g. DCs are 

mainly enriched in genes for T-cells activations (CDs molecules and 

HLA complex), whereas macrophages are enriched in cytokines 

(IL1A, IL6, IL10) and chemokines (CCL3/4/7/8). 
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Figure 3.13. A) The expression of the 1060 hematopoietic genes from the murine 
signature matrix; the Pearson’s correlation was used as a measure of distance and 
average as linkage method. B) Gene functional analysis on the murine signature 
matrix highlights a significant enrichment in genes pivotal for immune cells activity 
and signaling. 
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Then, the new murine reference matrix was tested using a 

transcriptional profile of several murine purified populations from 

independent public datasets. We collected samples from dendritic, 

macrophages and monocytes populations extracted from different 

mouse tissues. In general, the deconvolution on purified cells mainly 

classified each sample in the corresponding cell type annotation 

(Figure 3.14). Macrophages from interstitial tissue are the only 

exception: they are separated in similar proportions between 

macrophages, monocytes and dendritic cells. Interestingly, 

deconvolution with this gene signature distinguishes both the cell 

type and the tissue, or the most similar tissue, from which the cell 

has been extracted: e.g. dendritic cells from spleen are classified as 

a correct combination of cell and tissue with 51.3% on average and 

78.5% on average when considering all DC subtypes. 
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Figure 3.14. Test of the new mouse signature on different populations from 
multiple tissues. Expression profiles are a small collection of cell types from 
different public datasets. Interstiz.=interstizial tissue; LN=lymph node.  



 

88 

 

4.2.2. Define tumor heterogeneity in breast cancer 

In tumor samples, the definition of both TME and bulk cells 

composition is critically important to outline prognosis on tumor 

evolution and to correctly plan its treatment. An additional and 

significant confounding variable is determined by the accumulation of 

different genetic alterations, which could generate the co-presence of 

multiple subtypes within the same lesion. Clinical evaluation of tumor 

heterogeneity is an emergent issue to improve clinical oncology; 

indeed, intratumoral heterogeneity is closely related to cancer 

progression, resistance to therapy, and recurrences [60]. For this 

reason, we built on CIBERSORT [17] to design a framework for the 

identification of cellular subpopulations of cancer samples from their 

bulk gene expression.  

We started by collecting expression data of 57 breast cancer 

samples closely verified by immunohistochemistry (IHC) for 

expression of standard clinical markers in molecular subtype 

definition: estrogen receptor (ER), progesterone receptor (PR), 

human epidermal growth factor receptor-2 (HER2), and Ki-67. Based 

on the different markers combination, samples were classified in 5 

main molecular subtypes: Luminal A (LumA), Luminal B, HER2/ER+, 

HER2/ER- and TNBC (Table 3.9). By comparing each subtype 

against rest of samples, we generated a molecular gene signature 

composed by 230 genes, named BCsig (Figure 3.15); it includes 

common markers for BC subtyping, ERBB2 (erb-b2 receptor tyrosine 

kinase 2, alias HER2), ER, PR, and also other important players in 
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cell differentiation (GATA3, SOX10, SOX11), cell-cell signaling 

(APOE, MAPT, SSTR2, S100A9), metallopeptidases (MMP7, MMP1) 

or dysregulated in specific BC subtypes (FOXA1)[61]. 

 

Table 3.9. The number of samples and markers expression of each breast cancer 
subtype. 

Subtype #samples 
 Clinical markers 

ER  PR HER2 Ki-67 

LumA 15 pos. or pos. neg. or low neg. or low 

LumB 14 pos.  pos. neg. or low high 

HER2/ER+ 8 pos.  / pos. / 

HER2/ER- 6 neg.  / pos. / 

TNBC 14 neg.  neg. neg. variable 

neg.=negative; pos.=positive; low=up to 10% 
 

 
 

 
Figure 3.15 Heatmap with the 230 genes on the BC training set. 
 

We used CIBERSORT with the BCsig to classify two homogenous 

and clinically-defined BC datasets of 283 samples profiled using 
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Illumina arrays (test dataset) and of 88 samples from the TCGA 

project profiled using Agilent arrays (validation dataset): of note, both 

datasets are composed only by TNBC primary tumors. By 

deconvolution analysis with the BCsig, the algorithm estimates the 

proportion of BC subtypes for each bulk. According to clinical data, in 

both datasets, there is a high prevalence of the triple-negative 

subtype also at molecular level (Figure 3.16A). Interestingly, when 

we looked at each single sample, we noticed a variable intratumoral 

heterogeneity of subtypes, with a modest or high presence of 

subtypes other than TNBC for about 40% of samples (Figure 3.16B). 

A subset of samples (n = 40, 13%) shows an almost complete 

absence of TNBC-like cells (TNBC fraction < 5%). Similar results 

were found for the samples from the TCGA dataset, where 15 

samples (17%) are completely TNBC-negative. 

 
Figure 3.16. A) Subtype fraction distribution in the test dataset of 283 samples 
according to the deconvolution analysis with the BCsig; B) about two-third of 
samples are variably heterogeneous, with a modest or high presence of subtypes 
other than TNBC: about two-third of the dataset is concordantly TNBC at molecular 
level, whereas part of samples show a complete absence of the TNBC subtype. 
Colors as in panel A. 
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Finally, we tested the TNBC fraction for either clinical response to 

neoadjuvant chemotherapy or survival. In the test dataset, the 

analysis identified a poorer and significant prognosis in samples with 

lower fraction of TNBC cells (Figure 3.17A): specifically, patients 

with residual disease (RD) after treatment show a lower significant 

TNBC fraction (p=0.012). ROC curve confirms that the TNBC fraction 

can be efficiently used to identify patient samples which do not 

respond to therapy. A similar trend was observed also when we 

associated the TNBC fraction to survival (Figure 3.17B), both when 

we tested for differential distribution between alive or dead patients 

(boxplot, p=0.067) or for sensitivity and specificity in detecting patient 

outcome (ROC curve, p=0.082). The Kaplan-Meier curve still 

evidenced a better outcome in patient with high (>75%) TNBC 

fraction; even if the result was only almost statistically significant (p 

0.0742), the two groups of TNBC high or TNBC low fraction showed 

different hazard of survival events, respectively 20.4% or 33.1%, and 

their curves clearly separate. These results suggest subtypes 

heterogeneity has greater influence over the clinical response and 

less on the survival of TNBC patients from this cohort. Of note, a 

significant association was found between the TNBC fraction (as 

TNBC or non-TNBC) with the neoadjuvant treatment type (p=0.029), 

and IHC markers KI67 (p=4.43e-13) and HER2 (p=0.03). 

 



 

92 

 

 
Figure 3.17. Evaluation of the predictive power of TNBC fraction for the response 
to neoadjuvant therapy and survival. A) Analysis of the association between the 
TNBC fraction and clinical response in the test dataset of 283 samples by boxplots 
of the TNBC fraction in complete response (pCR, n=11) and residual disease (RD, 
n=56) samples (left) or by ROC curve (right); B) Association with survival in the 
same dataset by boxplot of the TNBC fraction in alive (n=210) vs. dead (n=73) 
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patients (left), ROC curves (center) or Kaplan-Meier curves of samples with a 
detected fraction of at least 75% of TNBC cells vs. remaining samples (right); C) 
Analysis of the association between the TNBC fraction with survival in the TCGA 
dataset, tested by boxplot of the TNBC fraction in alive (n= 73) vs. dead (n=15) 
patients (left), ROC curves of the association with a poor prognosis (center), or 
Kaplan-Meier curves of samples with a detected fraction of at least 50% of TNBC 
cells vs a lower fraction (right). 
 

To independently validate these findings, we verified the association 

between TNBC fraction and survival in the validation cohort of 88 

triple-negative samples from the TCGA (Figure 3.17C). The fraction 

of molecular TNBC subtype was associated to survival, both by 

comparing this fraction in alive vs. dead patients (p=0.063) and by 

ROC curves analysis (p=0.052). The Kaplan-Meier plot confirmed a 

higher survival rate in patients with at least 50% of TNBC cells 

(p=0.086). Unfortunately, response to treatment was not available for 

this dataset. 

In conclusions, deconvolution analysis uncovered intratumoral 

heterogeneity in clinically uniform cohorts of BC patients; thus, 

subtype fractions detected by deconvolution analysis can be a valid 

instrument to address triple-negative breast cancer patients to best 

existing therapy. 
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5. Discussion  
 

 

 

In the first part of my PhD project, I evaluated the accuracy of tools 

for the deconvolution of gene expression data from bulk samples in 

different conditions. I tested all available tools and selected 4 of 

them, namely CIBERSORT, EPIC, ssGSEA and xCell, on the base of 

the presence of a proprietary gene signature and of their usability. 

Indeed, these 4 tools are easy-to-use also for non-expert users, 

since they have been implemented as a user-friendly web interface, 

as well as R or Java applications for more specific analysis. Tools 

included in my framework were previously published with validations 

on several datasets and conditions. However, deconvolution 

analyses are still lacking a perfect gold standard protocol for 

validation: to this aim, large datasets of solid tumors with paired bulk 

samples and independent measurements of different cellular 

proportions are required to optimally assess tools performances. 

Unfortunately, this type of data is not yet available. As such, I 

extended the analyses presented in the authors’ paper using 

independent and selected studies, to highlight how deconvolution 

analysis performs on different cell types and data format. 

 

To evaluate deconvolution response to variations in sample 

processing, I initially tested datasets composed of purified cells 

prepared with the same protocol but from different laboratories 
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(GSE28490 / GSE28491[28]) or for the same patient and extracted 

from different tissues (GSE50008[29]). Also, I performed further tests 

on tumor samples (GSE21029[30]), to evaluate tools performance on 

bulks from pathological conditions. As general considerations, results 

were characterized by high variability, depending both on the tool 

and on the analyzed dataset. For example, CIBERSORT showed 

high accuracy in almost all tested datasets and conditions, with the 

exception of few specific populations (mDC and pDC). Differently, 

EPIC results were characterized by poor accuracy for several 

populations (B-cells, CD8 and partially for monocytes), despite the 

low granularity of its signature; also, low performances in the 

identification of B Cells and CD8 were afterwards confirmed by sc 

analysis and also recently discussed elsewhere [62]. Furthermore, 

EPIC results are dependent on the kind of provided input (linear or 

logarithmic) (Figure 3.2): even though the tool has been designed to 

work with RNA-seq data, no limitation is set to the data distribution. 

Given the wide availability of expression data profiled by array, a 

query option to distinguish between array or RNA-seq input may be 

sufficient, as available in CIBERSORT and xCell pipeline. 

Conversely, ssGSEA displayed inaccuracy in many analyses, with a 

generic enrichment when using either purified or single-cell bulk 

populations, as detailed below. This outcome is at least partially 

caused by the distribution of the enrichment score, which is not linear 

and does not have a maximum limit value to be used as reference 

across different samples. Although some attempts at scaling the 

enrichment scores of each analysis to a 0-1 scale were made, no 
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clear improvement in the enrichment accuracy were achieved, nor in 

discriminating most significant populations from rest (data not 

shown). On the contrary, xCell detects with high consistency all cell 

types from samples of healthy subjects, despite the high parceling 

out of the gene signature. However, the main limitation of xCell 

remains the constraint of a heterogeneous dataset, meaning that the 

same sample has different enrichment scores depending on the 

dataset in which it is analyzed with, as occurred in the test of CLL 

samples. 

 

Later, I used data from single-cell as the gold standard for the 

identification of populations heterogeneity in transcriptional bulks. 

Thus, my first step consisted in searching for studies with paired 

bulk-sc RNA-seq profiles and additional features for their use in 

deconvolution analysis, i.e. the presence of the tumor infiltrate. 

Interestingly and also surprisingly, this type of datasets is not 

currently available in public databases, with the only exception of the 

Breast dataset [32]. On the other hand, this lack of data emphasizes 

that nowadays single-cell technology still requires a lot of resources 

to build large datasets. To cope with this need, I generated two in 

silico bulk datasets using two of most large public sc experiments on 

solid tumor samples: lung cancer [4] and melanoma [21]. Before 

performing the analysis, I excluded samples with very low immune 

cell composition (n<5), thus partially reducing original samples size 

both in the Breast and Melanoma datasets. I performed some test 

considering the whole dataset (data not shown), but samples with 
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few immune cells produced biases in the relative fractions of immune 

cell types, as a single immune cell in a sample corresponds to 100% 

of that particular immune cell subtype. Thus, I opted for a more 

conservative solution, excluding these samples when comparing bulk 

deconvolution and sc fractions. 

In bulk-sc correlation analysis, both CIBERSORT and xCell revealed 

a general high consistency, correctly quantifying very low 

populations, such as macrophages in the Melanoma dataset (2.7% of 

total cells). Two notes should be highlighted in xCell analysis: (i) 

correlations have been calculated on fractions generated with a 

custom pipeline and not directly on ES and (ii) despite authors clearly 

state that "inferences are strictly enrichment scores, and cannot be 

interpreted as proportion" [20], in our analysis the adjusted ES 

appears proportional with quantification, especially if we compare 

xCell score with the uncorrected ES obtained by ssGSEA. EPIC 

exhibited variable accuracy, with non-significant correlation for T-

cells in the Melanoma dataset, despite the high abundance of this 

population; a new deconvolution analysis performed using the 

second gene signature available for this tool only partially improved 

T-cells estimation, thus suggesting that low correlation can be 

attributed, to some extent, to the algorithm itself. Of note, the bulk-sc 

correlation was previously calculated in the EPIC manuscript for the 

melanoma dataset reporting high consistency (r=0.9, p<10-5), but all 

populations were analyzed jointly. Furthermore, we excluded two 

samples compared to their study due to their very low presence of 

leukocyte populations, for reasons stated above. Finally, both EPIC 



 

99 

 

and ssGSEA did not correctly detect any populations from the Breast 

dataset; ssGSEA especially showed low accuracy also for several 

populations from in silico datasets.  

It is important to highlight the different behavior of all tools when 

performing deconvolution on real or in silico bulks. The analyses 

reported in this work show high and generally significant correlations 

when using generated bulks: this is somehow attended, because the 

inputted gene expression for deconvolution analysis and cell type 

fractions used for the correlation analysis both originate from the 

same high-throughput data, the scRNA-seq experiment. More 

troubling and less attended are the low correlations observed for the 

real bulks from the breast dataset; the limited number of samples, 

seven, is a reason of the poorer deconvolution performance, at least 

partially. Additionally, the Myeloid class includes a widely 

heterogeneous set of cells which, despite categorized in different 

populations, can be considered a continuum, with closely related 

transcriptional profiles that are more challenging to distinguish by 

deconvolution algorithmsThe analyses discussed in the previous 

chapters provided further insights into the deconvolution workflow. 

Comparing results derived from fraction-based and enrichment-

based approaches was not straightforward, thus requiring the 

creation of a dedicated pipeline in the single-cell analysis. Moreover, 

it was also noticed that all tools often overestimate low abundant 

populations: some non-zero scores were attributed to non-existent 

cell populations, to the detriment of other cell types. This effect has 

been confirmed and more largely discussed in a recent paper [62].  
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In deconvolution analyses, it is complex to determine if low 

performances can be attributed to the algorithm or to the gene 

signature: a solution would be testing all pairwise combinations of 

signatures and tools, which is not straightforward due to different 

gene signatures format. Specifically, for each population, enrichment 

tools require a list of marker genes, whereas fraction-based ones 

require an expression profile to perform the linear regression analysis 

they are based upon. Moreover, the required format for gene 

signature expression profile differs between CIBERSORT and EPIC: 

the former exploits an expression matrix of 547 marker genes and 

their median expression in the 22 populations of the signature, while 

the latter leverages on an expression matrix containing the median 

expression and the variability (interquartile range) of the whole 

transcriptome for each of the 7 evaluated populations. Thus, in this 

work, I opted to test each tool with its own predefined gene signature. 

 

Finally, from the user perspective, fraction-based results are more 

easily interpretable than enrichment results. However, evaluation of a 

fraction significance can be user-dependent when considering low-

frequency populations. On the contrary, enrichment tools report a p-

value for each enrichment giving a well-defined objective assessment 

of significance, even though occasionally several significant and 

unrelated populations are retrieved using either ssGSEA or xCell. 

This effect is more prominent for the ssGSEA but has been observed 

also for xCell and in other datasets not presented in this thesis. In 
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these cases, the definition of sample composition could be tricky for 

the user. In ssGSEA this effect may be due either to the inaccuracy 

of the algorithm, of signatures or both; instead, in xCell the reason is 

at least partially due to the use of uncorrected p-value, which can be 

overcome by applying an adjusted statistics, thus potentially 

improving the analysis through reduction of false positives. 

 

In the second part of my work, I explore the possibility to apply the 

deconvolution pipeline to completely different scenarios. In the first 

phase, I crafted a dedicated gene signature for the deconvolution of 

hematopoietic system cells on a different organism, like mouse, and 

tested the tool response. The immune system plays a central role as 

mediator of many effective cancer immunotherapies in humans, as 

also recently reviewed [63]. In pathologies were systemic immunity is 

required for the effective cancer immunotherapy [64], detailed 

definition of the cellular composition of clinical samples could provide 

outstanding support in therapy selection. Mouse still remains a strong 

rationale to study human diseases; thus, definition of a mouse 

general framework for the identification of cell subpopulations from 

transcriptional data may provide strong potential, for cancer 

immunotherapy preclinical studies in particular. For this reason, I 

generated a murine gene signature able to discriminate a wide 

repertoire of immune cell types with potentially close transcriptional 

profiles, such as the same cellular subtype isolated from different 

tissues. Gene expression data from the ImmGen project has been 

the main reference for collecting publicly available dataset of 
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leukocyte cells; this database is a compendium of transcriptional 

profiles from immune populations generated by standardized 

protocols, thus reducing technical, conditions-based and also 

unknown possible biases. However, this database lacks immune 

populations from TME, meaning that classically (M1) or alternatively 

activate (M2) macrophages subtypes were recovered from other 

public datasets.  

Usually, when creating large meta-datasets, a critical step is the 

selection of the method for expression data combination from 

different experiments; for this reason, all known and available 

variables that could affect expression data generation have been 

carefully considered and evaluated. Several efforts were spent in the 

batch correction procedure and the construction of the final meta-

dataset; despite some analysis helped filtering out some combination 

of parameters, e.g. the array type was excluded after the 

unsupervised clustering, no ―best‖ correction method was defined. 

The analyses indicated that CIBERSORT deconvolution with the 

murine signature can discriminate very similar populations with close 

transcriptional profiles. However, a limitation of the analysis still 

remains the heterogeneity of the datasets used to test the new 

signature, both in terms of real cellular purity and of protocol for cells 

isolation. Further tests using profiles of murine populations isolated in 

rigorous and uniform conditions are required to confirm specificity 

and sensitivity of the signature. 
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Subsequently, we applied the framework to outline subtypes 

heterogeneity in breast cancer (BC). Early transcriptomic studies 

classified this tumor into four molecular intrinsic subtypes (Luminal A, 

Luminal B, HER2 enriched, and Basal-like) and a Normal Breast-like 

group [65,66] by a 50-gene assay (known as the PAM50). The 

PAM50 classifier has provided independent predictive information of 

pathologic complete response (pCR) to neoadjuvant therapy across 

all subtypes [67]. Importantly, all subtypes can be found in 

immunohistochemically defined triple-negative breast cancer 

(TNBC), but the basal-like subtype plays a leading role, 

characterizing from 50% to 75% of TNBC samples [68]. I focused my 

study on the TNBC subtype since it is currently the most challenging 

to treat and with overall survival shorter than other subtypes [68]. 

Indeed, when restricting analyses to TNBC, none of the PAM50 

subtypes at the time of diagnosis significantly correlated with pCR 

[69]. For this reason, even slight differences in survival can have an 

important clinical implication. 

To create a gene signature for breast cancer subtyping, I took 

advantage of a cohort of 57 breast cancer samples profiled using 

Illumina array. Each sample was closely verified by 

immunohistochemistry by clinicians, proving this dataset as an 

optimal reference for the generation of a molecular subtype gene 

signature, named BCsig. To evaluate subtypes heterogeneity using 

the BCsig signature, I took advantage of two cohorts composed by 

primary, untreated TNBC: importantly, they are both uniforms for 

sample composition, since they contain only pre-treatment primary 
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tumors all clinically-defined negative for ER, PR and HER2 markers. 

The first dataset is composed by 283 samples profiled with the same 

platform of the training test, Illumina array, whereas the second 

dataset is composed by the TNBC samples from the TCGA-BRCA 

project: despite the lower number of samples (88 in total), TCGA 

samples have been profiled using Agilent array, allowing the test of 

the BCsig on a different types of expression arrays. 

According to in silico deconvolution analysis with the BCsig, in both 

datasets almost 40% of samples showed a variable degree of 

heterogeneity. The association analysis between this TNBC fraction 

and either clinical response or survival defined a subgroup of TNBC 

patients characterized by poorer response and survival and by a 

heterogeneous composition of the tumor bulk. The outcome is more 

tightly related to treatment response (p=0.03 of ROC curve) than 

survival (p=0.08 and p=0.05 for the Illumina or TCGA dataset, 

respectively): however, clinical response data was not available for 

the TCGA dataset. It is now well established that, during their course, 

cancers generally become more heterogeneous: under therapeutic 

selective pressure, resistance to treatment can emerge as a result of 

the expansion of pre-existing subclonal populations or from the 

evolution of drug-tolerant cells [70]. Indeed, co-presence of multiple 

subtypes within the same lesion has been recently detected by 

single-cell RNA-seq in other tumors, for example in glioblastoma [71]. 

With these insights, deconvolution analysis using the BCsig might 

improve knowledge of TNBC and have potential therapeutic 

implications, by defining patients with higher heterogeneity and 
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poorer survival to be addressed to a more personalized treatment. 

However, the main limitation of this part of my study is the low 

number of samples used to validate the BCsig significance. For this 

reason, we are planning to perform deconvolution analyses on a 

large public dataset composed by more than 3,000 samples profiled 

by RNA-seq [72].  

During the writing of this thesis, two relevant works regarding 

transcriptional deconvolution were published and a significant project 

was started. In July 2019, Sturm and colleagues [62] published the 

first benchmarking work on deconvolution methods, including the 

tools CIBERSORT, EPIC and xCell. They used transcriptional profile 

from single-cell data [73] to generate in silico bulk with known and 

increasing proportions of nine cellular subtypes. Their conclusions 

indicate in general high accuracy of the deconvolution tools but given 

well-defined and reliable gene signatures. Also, they defined 

substantial spillover between DC and B-cells in several methods, 

EPIC included, as also previously discussed here. The second paper 

presented an extension of the tool CIBERSORT, named 

CIBERSORTx [74]. This new version extends the application of 

previous algorithm to both RNA-seq and single-cell RNA-seq data, 

but basically the new method can infer cell-type-specific gene 

expression profiles, potentially improving to high extent the decoding 

of cellular heterogeneity in bulk tissues. Finally, an open challenge 

was recently launched to evaluate the ability of computational 

methods to deconvolve bulk expression data, reflecting mixture of 

cell types into individual immune components. All authors of 
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deconvolution methods have been invited to participate in this 

challenge where specifically generated in vitro and in silico 

admixtures will be analyzed. After a training phase, an intensive 

benchmarking of the tools will be performed on several datasets at 

different granularities. Together with the performance, several other 

figures will be investigated and compared, comprising collinearity as 

well as probe limits of detection. 

The challenge is still in progress and results of both training and 

validation phases will be available at the end of the challenge, which 

is expected at the end of 2019 

(https://www.synapse.org/#!Synapse:syn15589870/wiki/582446). 

This project could be a cornerstone to determine the efficiency of 

existing methods and for the implementation of new algorithms for 

transcriptional deconvolution. 

 

https://www.synapse.org/#!Synapse:syn15589870/wiki/582446
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6. Conclusions 

 

 

This thesis defined a framework to investigate heterogeneity in bulk 

transcriptional data of healthy and tumor samples through the use of 

deconvolution methods. 

Lack of a gold standard to evaluate the performance of 

transcriptional deconvolution required a preliminary assessment of 

tool performances using independent and selected studies from bulk 

profiles of purified cells and of scRNA-seq experiments. 

The second part of this work focused on the creation of molecular 

signatures for deconvolution in specific settings. We firstly generated 

a murine signature which discriminated cells with close 

transcriptional profiles, like the same cell type from different tissues. 

Then, we defined a gene signature to address intratumoral 

heterogeneity in breast cancer; its application highlighted the 

existence of a subgroup of TNBC patients whose heterogeneous 

composition of the bulk correlates with a poorer prognosis. 

The first contribution of this work is the generation of the two 

molecular gene signatures, for either murine leukocytes or subtypes 

in breast cancer. 
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A second contribution is the characterization of the TNBC subtype, 

which is currently the most challenging to treat and with overall 

survival shorter than other subtypes. The analysis improved 

knowledge of TNBC with potential therapeutic implications by the 

identification of patients with higher heterogeneity. 

Finally, a third contribution is the creation of a web interactive 

application to display the correlation between the deconvolution of 

bulk tissues obtained with four deconvolution tools, and the 

frequency of subpopulations assessed by single-cell profiling. 

Perspectives and short-term objectives concern the evaluation of 

recent deconvolution tools to include in my pipeline and test of the 

breast cancer gene signature on other public datasets for the 

association on either clinical response or survival. 
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8. Appendix 
 

 

Figure S1. Deconvolution analysis by CIBERSORT, EPIC, ssGSEA 

and xCell on GSE28490 dataset composed of 9 cell types of purified 

cells profiled by Affymetrix array. 

Figure S2. Deconvolution analysis by CIBERSORT, EPIC, ssGSEA 

and xCell on GSE28491 dataset composed of 7 cell types of purified 

cells profiled by Affymetrix array. 

Figure S3. Deconvolution analysis by CIBERSORT, EPIC and 

ssGSEA on GSE50008 dataset composed of 4 cell types purified by 

positive selection, negative selection or FACS and profiled by 

Illumina array. 

Figure S4. Deconvolution analysis by CIBERSORT, EPIC, ssGSEA 

and xCell on GSE21029 dataset composed by samples from CLL 

patients profiled by Affymetrix array. 

Figure S5. Correlation plots of bulk-single cell correlations in the 

Breast cancer sc dataset. 

Figure S6. Correlation plots of bulk-single cell correlations in the 

Lung cancer sc dataset. 

Figure S7. Correlation plots of bulk-single cell correlations in the 

Melanoma sc dataset. 
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Figure S1. Deconvolution analysis on GSE28490. Neu=neutrophils, 
EOS=eosinophils. 
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Figure S2. Deconvolution analysis on GSE28491. 
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Figure S3. Deconvolution analysis on GSE50008. ―+‖: positive selection; ―-‖: 

negative selection; FACS: selection by FACS. 
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Figure S4. Deconvolution analysis on GSE21029. 
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Figure S5. Bulk-single cell correlations in the Breast cancer dataset. 

 

 

Figure S6. Bulk-single cell correlations in the Lung cancer dataset. 
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Figure S7. Bulk-single cell correlations in the Melanoma dataset. 
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