UNIVERSITA DEGLI STUDI DI MILANO
FACOLTA DI SCIENZE E TECNOLOGIE

DIPARTIMENTO DI MATEMATICA “F. ENRIQUES”
CORSO DI DOTTORATO IN SCIENZE MATEMATICHE
XXXII CicLo

Tesi di Dottorato di Ricerca

AN INTRINSIC APPROACH TO
THE NON-ABELIAN TENSOR PRODUCT
MAT! 02

Candidato

] Davide di Micco
Relatori

Prof.ssa Sandra Mantovani
Prof. Tim Van der Linden

Coordinatore
Prof. Vieri Mastropietro

Anno Accademico 2018/2019



ii



Contents

Introduction|

[ Profiminaries

1.1 Basic categorical tools| . . . . . .. ... ... ..

[1.1.1  Categorical context and basic results| . . .
[1.1.2  Regular Pushouts|. . . . . . ... ... ..
(1.1.3  The bifunctorpl . . . . .. ... ... ...
[1.1.4  The cosmash product of . . ... ... ..
[1.1.5 The ternary cosmash product| . . . . . . .
[1.1.6  Some notions in commutator theory| . . .
(1.2 Points and actionsl . . . ... ... ... ... ..
[1.2.1 The categories Pt(A) and Act(A)|. . . . .
[1.2.2  The categories Pty (A) and Acty(A) . . .

[1.3  Internal graphs, groupoids and categories| . . . .

3.1

The category RG(A)[. . . . ... ... ..

M3.2

The category RMG(A) . . ... ... ..

3.3

The category Cat(A) of internal categories|

M3.4

The category Grpd(A) of internal groupoids| . . . . .. ... ...

M35

Comparisons between these categories| . .

4.1

The category PreXMod(A)[. . . . . . ..

M4.2

The category XMod(A)[ . . . . . ... ..

[2

Compatible actions in semi-abelian categories|

2.1 Compatible actions of groups| . . . . . . ... ..

[2.2 Compatible actions of Lie algebras| . . . .. . ..

R21

Preliminaries for Lie algebras| . . . . . . .

2.2

Compatible actions of Lie algebras| . . . .

P23

The Peifter product as a coproduct| . . . .

2.3 Compatible actions in semi-abelian categories| . .

P31

Universal properties of the Peiffer product|

iii



v

|3 Non-abelian tensor product|
[3.1  'Two-dimensional background| . . . . . ...

CONTENTS

[3.1.1  Double groupoids and double reflexive graphs| . . . . . . . . . . ..

13.1.2  Double groupoids induced by particular double reflexive graphs| . .

3.1.3  Crossed squares|. . . . .. ... ...

3.2 Construction of the Non-Abelian Tensor Productf . . . . . . . . ... ...

3.2.1 Groupscasel. ... ... ... ....

13.2.2  Construction in semi-abelian categories| . . . . .. ... ... ...

[3.2.3  The Lie algebras casel . . ... ...

13.3  Towards crossed squares through the non-abelian tensor product| . . . . .

4.4 Galois theory interpretation, quasi-pointed setting] . . . . . .. . ... ..

4.5 Galois theory interpretation, pointed setting

|Acknowledgements|

83
86
86
88
93
99
99
101
107
112

125
126
129
138
147
160

173



Introduction

The notion of a non-abelian tensor product of groups first appeared in [15] where Brown
and Loday generalised the following theorem from [2]:

Theorem 0.0.1. Consider a CW-complex X, two subcomplexes A and B such that
X = Avu B, and denote C = An B. If A, B and C are connected, (A,C) is (p — 1)-
connected, (B, C) is (¢ — 1)-connected and C' is simply connected, then the natural map

7TP<A> C) ®z ﬂq(Bv C) - 7rp+q—1(X§ Aa B)
is an isomorphism.

They managed to remove the requirement of simple connectedness on C' by using the
new notion of non-abelian tensor product of two groups acting on each other, instead of
the usual tensor product ®z of abelian groups. In particular, they took two groups M
and N acting on each other and they defined their non-abelian tensor product M ® N
via an explicit presentation.

This led to the development of an algebraic theory based on this construction. Many
results were obtained treating the properties which are satisfied by this non-abelian tensor
product as well as some explicit calculations in particular classes of groups.

In order to state many of their results regarding this tensor product, Brown and
Loday needed to require, as an additional condition, that the two groups acted on each
other “compatibly”. A key fact that we will need is that these compatibility conditions
are equivalent to the existence of a group L and of two crossed modules structures
(M LNy €yr) and (N % L, £y) such that the original actions are induced from &, and
&N by composition with g and v.

Furthermore, they proved that the non-abelian tensor product is part of a so called
crossed square of groups: this particular crossed square is the pushout of a specific
diagram in the category XSqr(Grp) of crossed squares of groups. Note that crossed
squares are a 2-dimensional version of crossed modules of groups. Indeed XMod(Grp)
is equivalent to the category of groupoids, whereas XSqr(Grp) is equivalent to the
category of double groupoids, that is groupoids of groupoids or crossed modules of crossed
modules.

Following the idea of generalising the algebraic theory arising from the study of the
non-abelian tensor product of groups, Ellis gave a definition of non-abelian tensor product
of Lie algebras in [37], and obtained similar results. Further generalisations have been
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studied in the contexts of Leibniz algebras [43], restricted Lie algebras [60], Lie-Rinehart
algebras [26], Hom-Lie algebras |20, 22], Hom-Leibniz algebras [21], Hom-Lie-Rinchart
algebras [63], Lie superalgebras [41] and restricted Lie superalgebras [70].

The aim of our work is to build a general version of non-abelian tensor product,
having the specific definitions in Grp and Lieg as particular instances. In order to do
so we first extend the concept of a pair of compatible actions (introduced in the case of
groups by Brown and Loday [I5] and in the case of Lie algebras by Ellis [37]) to semi-
abelian categories (in the sense of [58]). This is indeed the most general environment in
which we are able to talk about actions, thanks to [I1], 5] where the authors introduced
the concept of internal actions. In this general context, we give a diagrammatic definition
of the compatibility conditions for internal actions, which specialises to the particular
definitions known for groups and Lie algebras. We then give a new construction of the
Peiffer product in this setting and we use these tools to show that in any semi-abelian
category satisfying the Smith-is-Hug condition (denoted as (SH) from now on), asking
that two actions are compatible is the same as requiring that these actions are induced
from a pair of internal crossed modules over a common base object.

Thanks to this equivalence, in order to deal with the generalisation to the semi-abelian
context of the non-abelian tensor product, we are able to use a pair of internal crossed
modules over a common base object instead of a pair of compatible internal actions,
whose formalism is far more intricate.

Now we fix a semi-abelian category A satisfying (SH) and we show that, for each pair
of internal crossed modules (M £ L,&y) and (N % L, &y) over a common base object
L, it is possible to construct an internal crossed square which is the pushout in XSqr(A)
of the general version of the diagram used in Proposition 2.15 of [15] in the groups case.
The non-abelian tensor product M @ N is then defined as a piece of this internal crossed
square. We show that if A = Grp or A = Lieg, this general construction coincides with
the specific notions of non-abelian tensor products already known for groups and Lie
algebras. We construct an L-crossed module structure on this M ® N, some additional
universal properties are shown and by using these we prove that — & — is a bifunctor.

Once we have the non-abelian tensor product among our tools, we are also able to
state the new definition of weak crossed square: the idea behind this is to generalise the
explicit presentations of crossed squares given for groups in [48| [I5] and for Lie algebras
in [36, 23]. These equivalent definitions, which (contrarily to the semi-abelian one) do not
rely on the formalism of internal groupoids but include some set-theoretic constructions,
are shown to be equivalent to the implicit ones, where, by definition, crossed squares
are crossed modules of crossed modules and hence normalisations of double groupoids.
Our idea is to give an alternative explicit description of crossed squares of groups (resp.
Lie algebras) using the non-abelian tensor product, so that it does not involve anymore
the so-called crossed pairing (resp. Lie pairing), which is not a morphism in the base
category but only a set-theoretic function; in its place we use a morphism from the
non-abelian tensor product which is more suitable for generalisations. Doing so, the
explicit definitions can be summarised by saying that a crossed square is a commutative
square of crossed modules, compatible with an additional crossed module structure on
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the diagonal, and endowed with a morphism out of the non-abelian tensor product.

Our definition of weak crossed squares is based on the one of non-abelian tensor
product and plays the role of the explicit version of the definition of internal crossed
squares: in particular we proved that it restricts to the explicit definitions for groups and
Lie algebras and hence that in these cases weak crossed squares are equivalent to crossed
squares. So far we have shown that any internal crossed square is automatically a weak
crossed square, but we are currently missing precise conditions on the base category under
which the converse is true: this means that any internal crossed square can be described
explicitly as a particular weak crossed square, but this is not a complete characterisation.

In order to give a direct application of our non-abelian tensor product construction, we
focus on universal central extensions in the category XMody,(A): in [25] Casas and Van
der Linden studied the theory of universal central extensions in semi-abelian categories,
using the general notion of central extension (with respect to a Birkhoff subcategory)
given by Janelidze and Kelly in [56]. We are mainly interested in one of their results,
namely the following theorem.

Theorem 0.0.2. Given a Birkhoff subcategory B of a semi-abelian category X with
enough projectives, the following holds:

An object of X is B-perfect iff it admits a universal B-central extension. (1)

In [35] Edalatzadeh considered the category X = XMod/ (Lieg) and crossed modules
with vanishing aspherical commutator as Birkhoff subcategory B = AAXMod, (Lieg).
Since the category XMod,(Lieg) is not semi-abelian (because not pointed) the existing
theory does not apply in this situation: nevertheless he managed to prove the same result
as the one stated in and furthermore he gave an explicit construction of the universal
B-central extensions by using the non-abelian tensor product of Lie algebras.

Using our general definition of non-abelian tensor product of L-crossed modules as
given in the third chapter, we are able to extend Edalatzadeh’s results to XModp(A)
(with Birkhoff subcategory AAXMod/,(A)) for each semi-abelian category A satisfying
the (SH) condition: this is a useful application of the construction of the non-abelian
tensor product, which again manages to express in this more general setting exactly the
same properties as in its known particular instances.

Furthermore, taking B = Ab(A) as Birkhoff subcategory of XMod(A), we are able
to show that, whenever the category A has enough projectives, our generalisation of
Edalatzadeh’s work is partly a consequence of Theorem [0.0.2] reframing Edalatzadeh’s
result within the “standard” theory of universal central extensions in the semi-abelian
context.

There are two non-trivial consequences of this fact. First of all, besides the existence
of the universal B-central extension for each B-perfect object in XMod(A), we are also
able to give its explicit construction by using the non-abelian tensor product: notice that
this construction is completely unrelated to what has been done in [25]. Secondly, this
construction of universal B-central extensions is valid even when A (and consequently
also XMod(A)) does not have enough projectives, whereas within the general theory
this is a key requirement for to hold.
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Structure of the text

In the first chapter we recall the basic categorical notions and tools that we are going
to use in the rest of the text: after a recap on the semi-abelian context, we recall some
definitions and results regarding internal actions, the cosmash product and commutator
theory; finally we give a quick description of the categories of internal points, reflexive
(multiplicative) graphs, categories, groupoids and crossed modules.

In the second chapter we study compatible actions of groups and Lie algebras, reframing
them in an internal language which is more suitable for generalisations (this change of
perspective and its consequences are presented in [3I]). We extend the notion of com-
patibility to internal actions in the context of semi-abelian categories with (SH). We give
a new construction of the Peiffer product, which specialises to the definitions known for
groups and Lie algebras and we use it to prove the main result of this chapter: an equi-
valence between pairs of compatible actions and pairs of crossed modules over a common
base object. We also study the Peiffer product in its own right, in terms of its universal
properties, and prove its equivalence with existing definitions in specific cases. All the
results on semi-abelian categories contained in this chapter can be found in the submitted
paper [33].

The third chapter is mainly devoted to the construction of the non-abelian tensor product:
by imitating the reasoning that appears in Proposition 2.15 of [I5] we are able to define
the non-abelian tensor product of two coterminal crossed modules in any semi-abelian
category that satisfy (SH): this construction and the following results will appear in the
paper in preparation [34]. We show that this construction has as particular cases the
non-abelian tensor products already existing for groups and Lie algebras. Through this
new construction we are also able to state the new definition of weak crossed squares:
these objects are designed to generalise to the semi-abelian context an explicit approach
to crossed squares (possible in Grp, Lier and many other categories) which aims to
describe them not as normalisations of double groupoids, but as commutative squares
of crossed modules endowed with an additional explicit structure. We were not able to
find precise categorical conditions on the base category A such that weak crossed squares
and crossed squares would coincide, but we show this equivalence in some particular cases.

In the last chapter an application of the previous construction is presented: in the con-
text of internal crossed modules over a fixed base object in a given semi-abelian category,
we use the non-abelian tensor product in order to prove that an object is perfect (in an
appropriate sense) if and only if it admits a universal central extension. This extends
results of Brown and Loday ([I5], in the case of groups) and Edalatzadeh ([35], in the
case of Lie algebras). We also explain how those results can be understood in terms
of categorical Galois theory: Edalatzadeh’s interpretation in terms of quasi-pointed cat-
egories applies, but a more straightforward approach based on the theory developed in a
pointed setting by Casas and Van der Linden [25] works as well. All the material in this
chapter is part of the paper in preparation [32].
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Further developments and open questions

Starting from what is presented in this thesis, there are many aspects that would benefit
from further investigation.

e For what concerns compatible actions, the (SH) condition made calculations much
easier, but it is probably not stricly necessary. It should be checked that even
without this additional requirement things work smoothly.

e Many other particular definitions of compatible actions have been given in different
settings: one should check that all the ones that fall under the semi-abelian context
are indeed a particular case of Definition

e We also need to understand what are the additional conditions on the base category
A in order for the conditions in Definition to collapse to simpler ones as it
happens in Grp and Liegr, where, for example, the existence of the coproduct
action is always guaranteed.

e As for the non-abelian tensor product, we would like to know whether there is
a way to explicitly compute it, at least in more concrete cases like when A is a
semi-abelian variety of algebras, or when the involved actions are trivial: the latter
case is closely related to currently unpublished work on intrinsic tensor products
by Hartl and Van der Linden.

e Once again, there are many definitions of non-abelian tensor products in specific
semi-abelian categories: a theoretically interesting but tedious step would be to
verify whether these are particular instances of Definition as it happens for
groups and Lie algebras. This question applies also to different existing notions of
tensor products which are apparently unrelated with the non-abelian one.

e As regards internal crossed squares and weak crossed squares, some additional
categorical conditions on A are probably needed in order to have the equivalence
between these two notions (and consequently an explicit description for internal
crossed squares). The author is currently studying the case of semi-abelian varieties
of algebras in order to understand if in this simpler context the two already coincide.

Notation
We will use the following notation for standard categorical objects:

e the kernel of the map f is (Ky, ky);

e the cokernel of the map f is (Cy,cy);

e the equaliser of the maps f and g is (E(s,),€(s,4));

e the coequaliser of the maps f and g is (C(f,g), c(f.9));
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the kernel pair of the map f is (Kp(f),ro,71);
the pullback of the map f along the map g is ¢*(f);
the pushout of the map f along the map g is g«(f);

in diagrams we will use the notations A>—> B, Ar—> B and A—> B re-
spectively for monomorphism, normal monomorphisms (which in our context con-
cide with kernels) and regular epimorphisms (including cokernels).



Chapter 1

Preliminaries

1.1 Basic categorical tools

1.1.1 Categorical context and basic results

Our base category A will almost always be “semi-abelian”, but since we will also deal
with the category XModp (A) of crossed module in A over a fixed object, which is not
semi-abelian, we need to introduce a wider range of categorical notions included in the
“semi-abelian context”. The idea behind semi-abelian categories is to express a categorical
generalisation of groups in the same way as abelian categories generalise abelian groups.
This problem was first introduced by Mac Lane in [62] and after many results based on
different requirements, a definition of semi-abelian category was given in [58], including
those previous results as part of this new theory. We will later recall some of the useful
constructions and definitions that are possible in a semi-abelian category, such as internal
actions, internal crossed modules and different types of commutators. Let us start by
introducing the ingredients that we need for the definition of a semi-abelian category.

Definition 1.1.1. A category A is said to be pointed if it has an initial object 0 which is
also terminal, that is 0 = 1. We call a map f: A — B the zero map (and we denote it as
0) if it is the (necessarily unique) map from A to B factorising through the zero object
0. In a pointed category we are able to define the kernel of a map f as the equaliser of
f and 0. Similarly we define the cokernel of f as the coequaliser of f and 0.

Lemma 1.1.2 (Lemma 4.2.4 in [3]). Let A be a pointed category and consider the diagram

K%A%B

R

Kpr—>A ——> B
k‘f/ f’

where Ky is the kernel of f'. When 8 is a monomorphism, K is the kernel of f iff the
left-hand side square is a pullback. ]
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Definition 1.1.3. A category A is said to be quasi-pointed if it has an initial object
0, a terminal object 1 and the unique morphism 0 — 1 is a monomorphism. In this
context there is no zero morphism between two given objects, but we can define kernels
and cokernels as follows: the kernel f: A — B is the pullback of f along the (necessarily
unique) map from 0 to B, whereas the cokernel of f is the pushout of f along the (unique
if it exists) map from A to 0.

kg f
KfJHA A——B
|l |k

r
0——B 0——C

~

Notice that in a quasi-pointed category, it suffices to have pullback in order to be
able to compute the kernel of each map, but only few objects can end up being kernels:
indeed in order for A to be a kernel, it has to admit a map from A to the initial object,
which is not a trivial requirement. Conversely even if a quasi-pointed category has all
pushouts, we may not be able to compute every cokernel: indeed the pushout that we
want to construct to build the cokernel of f involves a map from the domain of f to
the initial object and if this doesn’t exist, then also the desired cokernel is not defined
(notice that this is due to the non existence of the diagram that we want to compute the
pushout of, so this doesn’t imply that the category in exam is not cocomplete).

Ezxample 1.1.4. The most basic example of a quasi-pointed category which is not pointed
is the category Set. Here the initial object is the empty set ¢, whereas the terminal
object is the singleton {*} and obviously the unique map ¢J — {*} is a monomorphism.
If we consider an arrow f: A — B, its kernel is always given by F itself because it is
the unique set which admits an arrow entering ¢J. Conversely we are able to compute
its cokernel iff A = ¢, and in this case we obtain that (Cy,cf) = (B, 1B).

The next one is a common property of many important classes of categories, such
as abelian categories, toposes (also quasi-toposes) and obviously semi-abelian categories.
The key idea behind regularity is the existence of a good notion of factorisation for
each map: in particular in the abelian context this means that every morphism can be
decomposed as a cokernel followed by a kernel, but this is too strict as a requirement for
the semi-abelian case.

Definition 1.1.5. We say that a category A is regular if
e it is finitely complete (or LEX),
e it has coequalisers of kernel pairs and
e regular epimorphism are pullback stable.
An equivalent way to state this is saying that A is regular if

e it is finitely complete (or LEX),
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e any arrow factorises as a regular epimorphism followed by a monomorphism and

e these factorisations are pullback stable.

Therefore in a regular category A each morphism has a factorisation f = moe as
a regular epimorphism followed by a monomorphism (from now on denoted as REM-
factorisation) which moreover is functorial and unique up to isomorhisms: in particular
we can find this factorisation through the following construction

!

Kp(f):ﬁffl

C(rg,r1) §
I(f)

where e = ¢(; ) and m is the dotted map induced by the universal property of the
coequaliser ¢, ). We call the object I(f) direct image of f.

Example 1.1.6. It is trivial to see that Set is a regular category, as for Grp. A counter-
example is given by the category Top, in which regular epimorphisms are not pullback
stable.

Regular categories are a suitable environment where to study relations in an abstract
context.

Definition 1.1.7 ([I]). A regular category A is said to be (Barr) ezact if every equival-
ence relation is effective (i.e. a kernel pair).

Example 1.1.8. Any abelian category, Set, Grp and also the category HComp of com-
pact Hausdorff spaces are examples of (Barr) exact categories. On the other hand two
classical example of regular categories which are not exact are given by the category
Abrp of torsion-free abelian groups and the category Grp(Top) of topological groups
(that is internal groups in Top).

One more ingredient of semi-abelian categories is called Bourn protomodularity and
it has been first defined in [6].

Lemma 1.1.9. Consider the following diagram in any category

A%B%C

al (x1) %J(*Q) lw (1.1)

A’ f/;B/ IEC/
g

where the square #9 is a pullback. Then the square +1 is a pullback if and only if the outer
rectangle is a pullback. O

Definition 1.1.10 ([6]). A lex category A is said to be (Bourn) protomodular if the
converse of the previous lemma holds whenever 5 is a split epimorphism: looking at
this means that if both the outer rectangle and the square (#1) are pullbacks, then also
(#2) is a pullback.
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If A is quasi-pointed, protomodularity implies that every regular epimorphism is a
cokernel. If moreover A is regular, protomodularity is equivalent to requiring the validity
of the (Regular) Short Five Lemma.

Lemma 1.1.11 (Regular Short Five Lemma). Consider the diagram

K kg f
fHAH>B

N

Kpr—>A' —> B’
kf/ f’

with both f and f' being reqular epimorphisms. If v and [ are isomorphisms, then « is

50.

When A is regular, it is also possible to prove that the requirement of having a split
epimorphism in Definition can be weakened as shown in the following.

Lemma 1.1.12 (Proposition 4.1.4 in [3]). Let A be a regular category. Then A is pro-
tomodular iff whenever 8 in (L.1) is a regular epimorphism and both (x1) and the outer
rectangle are pullbacks, then (x2) is a pullback too. O

Definition 1.1.13 ([58]). A category A is said to be semi-abelian if it is pointed, (Barr)
exact, protomodular and if it has binary coproducts. Since semi-abelian categories are
regular and pointed by definition, requiring protomodularity amounts to requiring the
Regular Short Five Lemma.

Every abelian category is semi-abelian, but the converse is false: a semi-abelian
category is abelian iff it is additive iff its dual is again semi-abelian. Even if we require
explicitly only binary coproducts to exist, semi-abelian categories are actually finally
cocomplete. The principal example of semi-abelian category is Grp, but also Rng (that
is the category of rings without unit) is so: notice that Ring is not semi-abelian since it
is not pointed. If A is an exact category, then Grp(A) is semi-abelian as soon as it has
finite coproducts. The categories of Lie algebras and crossed modules are semi-abelian as
well, as their internal versions Lier(A) and XMod(A) where A is already semi-abelian.

We will sometimes use intermediate notions such as Mal’cev, sequentiable and homo-
gical categories.

Definition 1.1.14 ([I8]). A lex category A is said to be a Mal’tsev category if the
following axiom holds:

Any reflexive relation R on X € A is an equivalence relation. (M)
Proposition 1.1.15 ([3]). Let A be a regular category. TFAE:
. holds in A;

o Any reflexive relation is symmetric;
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o Any reflexive relation is transitive. O

Definition 1.1.16 ([8]). A category A is said to be sequentiable if it is quasi-pointed,
regular and protomodular. If A is also pointed we say that it is a homological category.

Ezxample 1.1.17. Let A be a category and X € A an object, then we define the slice
category A/X as the category whose objects are arrows to X and morphisms between
two arrows are commutative triangles

A— N S

N

If A is a semi-abelian category, then for every choice of X € A we know that A/X is

sequentiable. It is quasi-pointed since 0 — X is the initial object, X 1%, X is the
terminal object and the morphism

00— X

NS

X

is a monomorphism. Furthermore regularity and protomodularity are preserved by taking
slice categories.

In the rest of this subsection we are going to state some useful properties that hold
in the context of semi-abelian categories and that we will use throughout the text.

Lemma 1.1.18 ([8]). Let A be a sequentiable category and consider the diagram

K kg f
f>—>A—>>DB

I
Kf/WA/HB/

fl

where f is a reqular epimorphism and the objects on the left are the kernels of f and f'.
Then the following hold:

e if v is an isomorphism, then the right-hand side square is a pullback;

e if B is an isomorphism, then v is a reqular epimorphism iff a is so;

e if v and (B are reqular epimorphisms, then a is so.

e if v is a reqular epimorphism, then the induced map f: Ko — Kg is so0.

Proof. See Proposition 7, Proposition 8, Corollary 9 and Corollary 10 in [§]. O



6 CHAPTER 1. PRELIMINARIES

Lemma 1.1.19. Let A be semi-abelian and consider a morphism of exact sequences

0 Al .B_ 95 ¢ 0
al lﬁ lv (1.3)
0 Al>—>B —= (' 0
f g

If v is an isomorphism, then (]g) s a reqular epimorphism.

Proof. Given the REM-factorisation

A+B——>

we can construct the following diagram

Abf%BHg>C

¢ \4

e e
AT -0, |7

\'

A —r> B’ —> c’
Notice that e is a kernel since i o e; = f’ is a kernel and 4 is a monomorphism: this
implies that e; is the kernel of its cokernel. Furthermore, since v is an isomorphism, o
is a split epimorphism, and hence a regular epimorphism. By applying Lemma to
the lower squares we deduce that ¢ is a regular epimorphism since both 14 and 79 are
so. This means that ¢ is an isomorphism and hence (Jg ) is a regular epimorphism. O

The following result appears in [9] in a slightly more general context given by regular
protomodular categories.

Lemma 1.1.20 (Theorem 4.1 in [9]). Let A be a semi-abelian category and consider the
following diagram

A-"s B
|
C?>D

with p,q regular epimorphisms, m a monomorphism and k a normal monomorphism.
Then also m is normal. O
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Definition 1.1.21. Let A be a semi-abelian category and consider an object X with two

subobjects A <% X and B <% X. We define the join A v B as the subobject of X defined
through the REM-factorisation of the map

A+ B X
\ avb
Av B
Remark 1.1.22. Notice that the inclusions
A Ja Av B B L Av B
=7 =7
X / X /
A+ B A+ B

are actually monomorphisms since postcomposing with a v b we obtain respectively the
monomorphisms a and b. Furthermore if both a and b are normal monomorphisms, then
sois a v b: in particular if @ = ky and b = kg, then a v b is the kernel of the diagonal of the
pushout of f along g. For the proof of this fact and for more details see Proposition 2.7
in [40].

As a particular case we have the following lemma.

Lemma 1.1.23 (Section 2.4 in [40]). Consider two regular epimorphisms and their
pushout.

Hf> B

A_'
v ALY
C

D
g*(f)

Then the kernel of the diagonal is given by the join of the kernels of the two regqular
epimorphisms, that is K, = Ky v K. L]
1.1.2 Regular Pushouts

Definition 1.1.24 ([9]). A regular pushout is a commutative square of regular epi-
morphisms such that the comparison map to the induced pullback square is a regular
epimorphism as well.

Lemma 1.1.25 ([9]). Let A be a regular category. Then every reqular pushout is a
pushout.

Proof. See Definition 2.2 (and what comes after it) in [9). O



8 CHAPTER 1. PRELIMINARIES

Remark 1.1.26. In a semi-abelian category a commutative square of regular epimorphisms
is a regular pushout if and only if it is a pushout. This actually holds in any regular exact
Mal’cev category (see Theorem 5.7 in [I7]), but if A is semi-abelian there is a simpler
proof which goes as follows.

Consider two regular epimorphisms f and g with the same domain: in order to build
their pushout consider the following diagram

kg f
Kip—>A—>1B

el/ gl g
v v %

where e and i are defined as the REM-factorisation of g o ky and ¢; is the cokernel of
1. Since f is a regular epimorphism, it is the cokernel of its kernel, and this gives us
the dotted map on the right. In particular Lemma [I.1.20] tells us that ¢ is a normal
monomorphism, and hence we have a morphism of short exact sequences. Since the map
on the left is a regular epimorphism, the square on the right is a pushout. Due to this
explicit construction of the pushout we are then able to show that the square on the right
is actually a regular pushout. Take the pullback of ¢; along g and consider the induced
diagram

kg
KfHA%>B

|

4 kp
K, S po B

L)
\4 \4

It suffices to use Lemma to obtain that ¢ is a regular epimorphism, which is the
thesis.

Lemma 1.1.27 ([9]). Consider a regular pushout in a reqular category and take the
kernels of two of its parallel morphisms

K kg !
f>—>A—>>DB

L)

v v -V

K > A ?> B’
f/

Then the induced map k is again a reqular epimorphism.

Proof. Consider the pullback of f’ and 8 and the induced comparison map which is a
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regular epimorphism.
ky

Kfl>

k)l (*1) <a7f>
Vooky
Kpy 2 A xB/B%>B

_
ko p1l (*2) \LB
\2 \4 \4
Kf/ > A/ > B/
kf/ f

Since (#1) is a pullback, k; is a regular epimorphism as well. Furthermore, since (x2)
is a pullback, ko is an isomorphism and the composition k = ko o kp is again a regular
epimorphism. O

1.1.3 The bifunctor b
From now on we will consider A to be a semi-abelian category.

Definition 1.1.28 (|5]). The bifunctor b: A x A — A is defined on objects as the kernel

k 1
w88 a5 W,y

Using the universal property of kernels together with the functoriality of coproducts, its
behaviour on arrows is determined by

1y
B 4 g )y

fbg f +gl J/f
v

ADB >—> A"+ B ——> A’
A1 (')
Example 1.1.29. In the category Grp the coproduct A + B is the group freely generated
by the disjoint union of A and B, modulo the relations that hold in A or in B. This
means that an element in A + B can be represented as a word obtained by juxtaposition
of elements in A and in B. Then it is easy to deduce that AbB is the subgroup of
A + B whose elements are represented by the words of the form a1b; - - - a,b, such that
ai---ap = 1 € A. Furthermore, it can be shown that each word in AbB can be written
as a juxtaposition of formal conjugations, that is

AbB = (aba™' |a € A,be B).

The following example expresses the idea of the proof, which easily generalises to any
word in AbB.

alblagbgagbg, = (alblal_l)(alagbgaglafl)(alagag)bg
= (alblal_l)(alagbg(alag)*l)l(1b31*1)
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There are two natural transformations that will be useful in the following chapters:
we are going to define them and to explain what is their role.

Definition 1.1.30. If we consider the second projection functor ma: A x A — A, we can
define a natural transformation

n: g —> (—b—).

For A, B € A we define the morphism né: B — AbB using the universal property of the
kernel AbB

B

ng; \ o

0

ka,B
AbB—">A+B——= A

since (é) oig = 0.

Remark 1.1.31. The naturality of n follows from the universal property of kernels and
says that for each pair of morphisms (f,g), the square

N5
B—> AbB

| Iz

B'—> AbB'

Mgt
commutes. This can be shown by postcomposing with the monomorphism k 4/ g obtain-
ing the equalities
kA’,B’ O?’]g, Og = iB/ Og
=(f+g)oip
= (f+9)okapong
=ka profbgo ng.

Definition 1.1.32. If we define the functor —b(—b—): A x A — A which sends the pair
(A, B) into Ab(AbB) we have another natural transformation

i —b(=b—) — (=b—).
Its component s : Ab(AbB) — AbB is induced from the following diagram

ka arB ((1))

Ab(ADB)>—— A+ (ADB) ——= A
P L(k;ﬁ?)
A

v
ADBr— > A+ B—>

ka.s (o)

since the right-hand square commutes.



1.1. BASIC CATEGORICAL TOOLS 11

Remark 1.1.33. The naturality of p follows from the universal property of kernels and
says that for each pair of morphisms (f,g), the square

A
Ap(AvB) —E > ApB

fb(fbg)l ifbg

AD(ADB') — > ADB'

Hpr

commutes. This can be shown again by postcomposing with the monomorphism k4 pr
obtaining the equalities

/

) o karanm © (f5(f59))

a0l o (Pooa) = (1

— < L > o(f+(fr9) okan

kar g
1A
=(f+g)o (k > oka B
AB

= (7 +g)o ka0 uh
= kA’,B’ O (fbg) (0] /,Lg

Corollary 1.1.34 ([5]). For any fized object A € A the triple (Ab(—),n, u) is a monad.
O

Lemma 1.1.35. In a semi-abelian category, consider reqular epimorphisms a: A — A’
and 3: B — B’. Then both o + 8 and abf are regular epimorphisms as well.

Proof. The first statement is easily shown checking that, if & = coeq(x1,x2) and g =
coeq(y1,y2), then a + 8 = coeq(x1 + y1,x2 + y2). As for the second statement, we build
the diagram

(‘s)

k
AbBr—22 oA+ B 4

o s |

v \
A/bBIDﬁA/ + B —— A

ALB (@)

Thanks to Lemma|[I.1.27 and Remark it suffices to show that the right-hand square
is a pushout in order to obtain that ab8 is a regular epimorphism as well. This is easy
to do by direct calculation. O

1.1.4 The cosmash product ¢
Definition 1.1.36 (65, [16, 51]). Given two objects A and B in A, consider the map

s (1) () s —aes
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Since A is semi-abelian, the morphism ¥4 p is a regular epimorphism. By taking its
kernel we find the short exact sequence

A,B

h SaB
0 Ao B> A+B———>AxB—>0

where A ¢ B is called cosmash product of A and B.

Remark 1.1.37. Notice that the inclusion of A< B into A + B factors through AbB due
to the fact that the latter is the kernel of (16‘) : A+ B — A. Moreover we have another
split short exact sequence involving the cosmash product, that is

. ’TA
O%AOB;A%BAI)B@TXBHO
B

where Té = ((1)) o ka,p is the trivial action of A on B. This can be seen by constructing

the 3 x 3 diagram
0 0 0

0—> Ao B> B —5 B—>0

. Y
iB,A ﬁA,B_ ka,B
= o
0 BI7A|>}C A—I—Bg>B%O
B,A
. &) |
V% \
00— > A———2A 0 0
0 0 0

from the bottom-right square by taking kernels, and then by noticing that the top-left
object is the kernel of the comparison morphism from A + B to the pullback induced by
the lower-right square: since this morphism is precisely ¥4 g, its kernel is A ¢ B.

Moreover the upper left square is a pullback and hence A< B can be seen as the inter-
section of the subobjects AbB and BbA of A+ B. Furthermore, being A a protomodular
category, each split short exact sequence leads to a regular epimorphism which covers
the object in the middle with the sum of the two adjacent ones. In this particular case
we obtain the regular epimorphism

iA,B
(42)

(Ao B) + B—= AbB.

Lemma 1.1.38. Let X be an object in a semi-abelian category A. Then the functor
—bX : A — A preserves coequalisers of reflexive graphs.
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Proof. Consider a reflexive graph (see Definition [1.3.1)) with its coequaliser

d
q
A==B—">Q

and the induced diagram

dol
AOX%BOX%ngOX
X
iA,XI iB,XI IiQ’X
dle qle
ApX ﬁbl BhX —= QhX
chlx
vy Tl ¢
\ 1x \ \
X lﬁ X — X
< X

By using Corollary 2.27 in [50] we know that go 1x is again the coequaliser of d¢ 1y and
colyx. We already know that gbly is a regular epimorphism by Lemma and that
(gblx) o (dblyx) = (gblx) o (cblx), so it remains to show the universal property. First
of all, by examining the squares on the right, one can see that they form a morphism of
short exact sequences, and being 1 x an isomorphism, we conclude that the top square is a
pullback. This implies that it is also a pushout: indeed if we take kernels horizontally we
obtain an induced isomorphism between them and this in turn implies that it is a pushout.
Now suppose that there exists a map z: BbX — Z such that z o (dblx) = z o (¢blx).
This in turn implies that z o i% o (do 1x) = z 0% o (co 1x) and hence there exists a
unique map ¢: Qo X — Z such that gpo(golyx) =z oiﬁ. Now by the universal property
of the pushout we obtain the thesis. O

1.1.5 The ternary cosmash product

Following [52, 16], in [5I] Hartl and Van der Linden define the m-ary version of the
cosmash product. We are interested in the ternary one and in some relations between
this and the binary one.

Definition 1.1.39 ([51]). Given three objects A, B and C' in A, consider the map

14 14 O
Yapc=\|ig 0 ip |:A+B+C— (A+B)x(A+C)x(B+C)
0 ic ic

Its kernel is denoted as

ha,B,c
AosBoCr—""——>A+B+C

and it is called ternary cosmash product of A, B and C. It is trivial to notice that,
as it happens for the binary cosmash product, the ternary one does not depend (up to
isomorphism) on the order of the objects.
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In [5I] the authors define folding operations linking cosmash product of different
arities: for our purposes we only need to recall one of them.

Definition 1.1.40. Given two objects A and B we can construct a map
Sé’lB: AoAoB - AoB
through the diagram

3A,A,B

Ao Ao B2 A4 A+ B2 (A4 A) x (A+ B) x (A+ B)
s GARE [IR(CARS

v

AoBr—> A+ B Ax B
ha,B YaA,B

Finally we need a map that links objects of the form (A + B)bC to the corresponding
ternary cosmash product A ¢ B o C.

Definition 1.1.41. Consider the object (A + B)bC and define the map ja g ¢ as in the
diagram

AoBo(C

ha,B,c

JjA,B,C
(*452)

A%
(A+ BpCr——>A+B+C > A+ B

ka+py,c
1

(A+B) x (A+C) x (B+C)

In particular if A = B we have the commutative diagram
ha,aB

ja,Ac k(a+a),c

AoAoC—5 (A+APpCr—"SA+A+C
S?fl e e
AoC> - AbC > - A+C

ha,B

Lemma 1.1.42. [t is possible to cover the object (A + B)bC with the three components
(Ao Bo (), (AC) and (BvC).

Proof. By Lemma 2.12 in [51] we know that there is a regular epimorphism of the form

(Ao BoC)+ (Ao Q)+ (BoC) ——(A+ B)oC



1.1. BASIC CATEGORICAL TOOLS 15

Using Remark [I.1.37] we are able to construct the square

(0 +()

(AoBoC)+ (AoC) + (BoC)+C+C—S— "% (Ao BoC) + (AC) + (BHC)

| JjaB.c
e+(,9) iable
\7 V7 ighle

> (A+ B)hC

(32)
c

from which we can see that the vertical map on the right is a regular epimorphism. [

1.1.6 Some notions in commutator theory

Definition 1.1.43 (|52, [65]). Given two subobjects (L,[) and (M, m) of X, we define
their Higgins commutator as the image of the map (Tln) o hr, ., that is the subobject of
X given by the following factorisation

h
LoMve—Y 1+ M

| |

[L, M} >—— X.

Proposition 1.1.44 (Theorem 5.3 in [65]). Let A be a semi-abelian category and K — X
a monomorphism. Then K is a normal subobject of X iff [ K, X]}{( 1s a subobject of K. [

Lemma 1.1.45. Consider a diagram of the form

Then there exists a unique induced morphism
[or, B1%: [A, B]¥ — [A', B']%

Moreover, if vy is a monomorphism, then also [c, B]Zf is a monomorphism. If furthermore
«a and B are regular epimorphisms, then [a,ﬁ]?f 18 an isomorphism.

Proof. The map |[a, B]y is given by the universal properties of the cokernels involved in
the definition of the REM-factorisation. When -y is a monomorphism, then the lower face
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in the cube
AoBr—"2E L ALpB
aof a+f

(%)

Ao B » ha e A + B

J ()

[A, B]% - X
.
[o«ﬁ]?\; \
[A/, B/];'t(/ . X/

shows us that also [a, 5]1{ is so. Now, if a and S are regular epimorphisms, they are
isomorphisms since from = being a monomorphism we can deduce that they are mono-
morphisms as well. Hence a ¢ 8 is an isomorphism and from the left face of the cube we
deduce that [«, 6]1{ is also a regular epimorphism. O

Definition 1.1.46 ([53]). Given a coterminal pair
K—fsacl L

we say that k and [ Hug-commute if there exists a (necessarily unique) map ¢ such that
the diagram
K

2N
¢ >A

K x L

m/
L

We are mainly interested in the case in which both K and L are (normal) subobjects
of A.

Definition 1.1.47 ([53]). Given a pair of subobjects

(1.4)

commutes.

K%A&L

we define the Huq commutator of (K, k) and (L,[), denoted by [K, L]g as follow

>
K+ L2 KL

@l Q& (1.5)
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where the square on the right is a pushout. Since Xk 1, is a regular epimorphism, so is
q (the pushout of a regular epimorphism is again a regular epimorphism): in particular
this implies that ¢ = ¢k, = ¢; (since A is both pointed and protomodular).

Remark 1.1.48. It is trivial to observe that two coterminal morphisms Hug-commute iff
their Huq commutator is trivial: indeed a map ¢ as in exists iff ¢ as in is an
isomorphism, and since it is always a regular epimorphism, this is equivalent to ¢ being
a monomorphism and hence to its kernel being 0.

Remark 1.1.49. Notice that the Hug commutator is the normalisation of the Higgins one.
In order to see this, consider the diagram

h >
KoLt Ky L 58S K« L

] J#

(K, L A——>Q (1.6)
kcm

\2

(K, L]}

Since Y 1, is the cokernel of hi ; and since the square on the right is a pushout, we
have that c,, is the cokernel of m. Hence, being the Huq commutator the kernel of the
cokernel of m, it is the normalisation of [K, L]’}

Moreover if K and L cover A, that is if (I;) is a regular epimorphism, by Lemma
we obtain that m is already a normal monomorphism, and therefore it is the kernel of
its cokernel: this means that

(K, L)% ~ [K, L]S.

Remark 1.1.50. Looking at it is easy to see that [K,L]¥ = 0 iff [K, L]% = 0
indeed if the first one vanishes, then its cokernel is the identity on A and being the Huq
commutator the kernel of this map, it is again trivial; the other implication is given by
the fact that the Higgins commutator is a subobject of the Huq commutator.

Proposition 1.1.51 (Proposition 5.1.2 in [27]). The construction of the Huq commutator
is functorial. This means that if we have a commutative diagram as on the left

K—Fsat [K,L]2
I h g — J/[f,g];?
/ / / 1 Tn<
K k/ A l/ L [K 7L ]A/

we can construct a map as on the right. O
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Remark 1.1.52. Notice that by definition of the induced map on the Huq commutators
we have that the following square commutes

[K, L]%HA
wl
[K' ] — A

Lemma 1.1.53 (Lemma 5.1.3 in [27]). If K and L are normal subobjects of A, then
K, L]g is a normal subobject of both K and L (and hence of K A L). O

Proposition 1.1.54 (Lemma 5.1.5 in [27]). Consider a pair of subobjects
K>fsa<lar
and a reqular epimorphism h: A — A’. Construct the morphism of coterminal pairs

K%AQL

o

v v v
K’ — A << L
induced by the REM-factorisation. Then

(K", L'13 = [h(K), ML) ) = h([EK, L]S).

that is the morphism [hg, hL],? is a reqular epimorphism. O

Proposition 1.1.55 (Proposition 5.1.6 in [27]). If K and L are normal subobjects of A,

then the commutator o
K L
[K’L]%’ [K’L]% A

[x.L1S

vanishes. O

Definition 1.1.56 (|71, [74]). Given two equivalence relations R and S on the same
object A, depicted as

To S50
= A S5

consider the pullback
R x A S——S

R—p—A
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We say that R and S commute in the sense of Smith (or Smith-commute) if there exists
a (necessarily unique) map 6 such that the following diagram commutes

R

<1,5W Y
o >A

RXAS

<6RO:0X %
S

There is a correspondent definition of Smith-commutator between two equivalence
relations on the same object A: this commutator R, S]i is again an equivalence relation
on A and it can easily be proved that [R,S]§ = A4 (the discrete relation on A) iff R
and S Smith-commute. For more details on this see [72, [71].

Definition 1.1.57 ([67]). We say that in A the Smith-is-Huq condition (from now on
denoted simply with SH) holds if two effective equivalence relations commute in the sense
of Smith as soon as their normalisations commute in the sense of Hugq.

(1.7)

Definition 1.1.58. Let A be a semi-abelian category. We say that A € A is an abelian
object if it carries the structure of an internal abelian group. In particular the subcat-
egory Ab(A) is defined as the category of abelian objects and morphisms between them:
notice that all morphisms between abelian objects automatically preserve the additional
structure since we are in a semi-abelian category (for more details see Lemma 3.9 in [46]).
An equivalent condition for A to be an abelian object is that [A, A]% = 0 (see Section 2.3
in [3]).

1.2 Points and actions

Throughout this section we consider A to be any category unless explicitly stated oth-
erwise: in particular we will require A to be semi-abelian only when dealing with the
equivalence between internal actions and points.

1.2.1 The categories Pt(A) and Act(A)

Definition 1.2.1. A point in A is a split epimorphism p with a chosen splitting s, that

18
p

A ? B
with po s = 1. A morphism of points is given by a pair of vertical maps (f,g) such
that the left-pointing and the right-pointing squares in

AéB

S

p/
A== P

s/
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commute. The category of points in A and morphisms between them is denoted with
Pt(A).

Lemma 1.2.2. Consider a morphism of points of the form

Po
Ag=—= By
S0

4o,k

Ai=—=DB
S1

If f and g are epimorphisms then the right pointing square is a pushout. Dually, if f and
g are monomorphisms, then the left pointing square is a pullback.

Proof. We only prove the first result since the second one is obtained by taking the dual

proof. Consider (Z, a, 3)

Po
Ag=—= By

80
|l
p1

A=—=hB
s1

such that o f = S opg. We want to construct a unique ¢: By — Z such that pog =
and ¢ o p; = . The uniqueness is given by the fact that ¢ is an epimorphism, whereas
to show existence we define ¢ = a0 51 and we show that

{aoslog=ﬁ

QoS op; =«
holds. In particular since both pg and f are epimorphisms, it suffices to show
{a081 ogopy=popo
aosjopiof=aof
The first one is given by

aosiogopyg=ao fosyopg
Bopoosgopo=PBopo

whereas the second one is given by

aosjopiof=aosiogopy
=ao fosgopy = [0pyosyopo
Bopy=aof. =
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Corollary 1.2.3. Consider a point in Pt(A), that is a commutative diagram of the form

p1
AMA=——=hB

s1
SAT pA SBT PB (1.8)
Po

A T> By

in which every pair of parallel arrows is a morphism of points. Then the right-down
pointing square of split epimorphisms is a pushout. Dually the left-up pointing square of
split monomorphisms is a pullback. L]

Having described the category of points, we now shift to internal actions, whose
category is equivalent to the former whenever the base category A is semi-abelian.

Definition 1.2.4 ([5]). An internal action (or simply action) in A is a triple (A, X, )
with £: AbX — X amap in A such that (X, §) is an algebra for the monad Ab(—): A — A.
A morphism of actions from (A, X, &) to (A’, X', &’) is given by a pair (f,g) of maps in
A, with f: A—> A’ and g: X — X', such that the following diagram commutes:

Abx % A x

I

X — X'
The category of actions and morphisms between them is denoted by Act(A).

Ezxample 1.2.5 ([5]). If we fix A = Grp we find that internal actions coincide with the
usual notion of group action. Indeed due to Example [[.1.29] in order to define such an
internal action &: AbX — X it suffices to define it only on elements of the form axa™!
since they generate the whole subgroup AbX; now an internal action £ corresponds to
the group action 1: A x X — X given by ¥(a, ) := £(ara™?); viceversa starting from
a group action 1 we define £: AbX — X on the generators by ¢(axa™?) == ¢(a,z). It
is easy to show that these are actions in the corresponding sense (the fact that £ is a
morphism and the axioms for it to be an internal action amounts to requiring the group
action axioms for the function ) and that the correspondence just depicted is a bijection
between internal and group actions.

Remark 1.2.6. Every time we have an action £: AbX — X we can construct the corres-
ponding action core °6: Ao X — X as the composition of £ and iq x: Ao X — AX
(this is firstly defined in [51] and then studied also in [49]). Furthermore we obtain that
the image of this action core is given by Im(°§) = [A, X]%ng (see Proposition for
more details).
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Remark 1.2.7 (JI1]). Whenever the base category A is semi-abelian we have an equivalence
of categories Pt(A) ~ Act(A). This sends a split epimorphism
Az==B

%
S

into the action (B, Kj, {) where ¢ is the unique morphism making the following diagram
commute

(‘%)

kB, K,
BbK, —— B+ K, —> B

K> A B
kp p

that is the map induced by the universal properties of kernels.
Viceversa, it sends an action (A, X, ) into the split epimorphism

e
XxeAz=——=A
ig

where X x¢ A is defined as the coequaliser
ix0& o
AMX:%;::3A+QX—————>XNEA,
A, X
the map 7¢ is the unique map such that

A+XUH5X xe A

e
TA,X v

A

commutes, and finally 7¢ = 0¢ 0is. We will also denote X x¢ A just with X x A if
there is no risk of confusion regarding the action involved, and we will sometimes use the
notation m¢ = <16“| since T4 x = (10“). Notice that the map

ki=o0¢oix: X > X x¢ A

is the kernel of m¢: it’s trivial to see that m¢ o k = 0 whereas for the universal property
we have some work to do. Consider the following diagram

k (5)
X Ay X ——> A

[

4 4 ﬂ'f
23



1.2. POINTS AND ACTIONS 23

Notice that the square on the left commutes by the definition of o¢. The fact that k is a
monomorphism is shown in Proposition 31 in [66]. Thus it is a normal monomorphism by
Lemma @ and hence to show that k = kr, it suffices to prove that m¢ is the cokernel
of k. This is done as follows, through the diagram

k 3
X——>XxcA—=>A
\ 201
z v
7

with z 0k = 0. We want to show that z o i¢ o m¢ = z (the uniqueness comes from ¢
being an epimorphism), but since o¢ is an epimorphism, this amounts to showing that
zoigomeoo0g = z00e. We can use the fact that A and X cover A + X to decompose
this condition into the system

2014g0Me00g0lg =200¢0104
Z200gOMg 00 0lx =200¢01x

which is trivially satisfied.

Remark 1.2.8. Notice that by the definition of the semidirect product, it is easy to show

that the diagram

XA AL X

;|

XX xc A
kﬁg

is a pushout. Thanks to this commutativity we can show that also the square

AbX ¢ X

o] I

(X )45 A)b(X Ng A)WX ><1€A

commutes, which means that “computing an action” is the same as “computing the con-
jugation in the induced semidirect product”.

Ezxample 1.2.9. Consider the trivial action (A, X, 7) given by

T = ((1)> okax: AX — X.
Then we have that

(X %, A 0,) = Coeq(ix o (<(1)> okax) kax).
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Both ((1)) and ((1)) coequalise the two maps, so the first guess (also reasoning on the trivial
action in Grp) would be that

Coeqlix o (2) o kax, kax) = (A x X,<<é>, (g) ).

In order to prove this, since it is quite difficult to show directly the universal property, we
use once again the equivalence Pt(A) ~ Act(A). In particular we claim that the desired
point is given by
K
Ax X ﬁfx A
1,0
and hence it suffices to show that 7 = ((1)) o k,x makes the following diagram commute

AbX A 4L x

| J@

X——AxX
0,1)

and this is done by direct and easy calculations.

Ezample 1.2.10. Consider the conjugation action (A, A, x4) given by

1
XA = (1> okaa: ADA— A,
Then we have that

. 1
(A %y, A oy ,) = Coeq(iz o (<1> okana) kaa)

Both ((1)) and (}) coequalise the two maps, so the first guess (again thinking about the
case of Grp) would be that

Coeqlis o G) o b kaa) = (A x A,<((1)>, <1>>).

In order to prove this, we use the same strategy of the previous example.
In particular we claim that the desired point is given by

Ax Az——=> A

L1
and hence it suffices to show that y4 = G) o k4. a makes the following diagram commute

AbA A A4

l l(éézii)

and this is done by direct and easy calculations.
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Remark 1.2.11. Notice that if (B, X,{: BbX — X) is an action and f: A — B is any
map, then also (A, X, o (fblyx): AbX — X) is an action. Indeed we can obtain the
commutativity of the diagrams required by the action axioms by using the naturality of
1 and p and the axioms for £ to be an action:

n4 1
XX Apx Ap(ADX) AbX
lfblx 1Ab(fb1x)l >|7(fb1x) lfblx

T]A
X 2 pyx Ap(ByX) X By (Bhx) 55 BoX
N RO

X >
AbX BbX X
frix 3

The action £ o (fblx) is often called pullback action of £ along f and the reason is the
following. Consider the diagram

¢ el

XHX Ng;AﬁA

R
1x><1f f
v ™
XHX NgBﬁB
g o¢

where the bottom row is the point associated to &, whereas the first row is obtained
taking the pullback of m¢ along f. The action &’ is called pullback action and it is easy
to see that this coincides with £ o (fb1ly), indeed we have the commutative diagram

(o)

k
ADX b A X A
fbl , f+1 f
(%) \ \
nlx (o)
& B Xp»—" s B+ X B
D W
X 's kﬂ'/ X Ng/A 7T£’ A
3
f
\ 1% \
X v o X >4§B e B

£

1.2.2 The categories Pt (A) and Act,(A)

In the following we will also need the categories of points and actions over a fixed object
L and some basic results about them: we think that all of them are well-known results,
but we recall some of the proofs for completeness.
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Definition 1.2.12. A point over L (or L-point) in A for a fixed L € A is a split epi-
morphism with codomain L and with a chosen splitting, that is

with pos = 17. A morphism of points over L is given by a vertical map such that the
two squares

commute. The category of points over L is denoted with Pty (A).

Definition 1.2.13. An L-action in A with fixed L € A is an action (L, X, ) in which
the acting object is L. A morphism of L-actions from (L, X, &) to (L, X', &’) is given by a
map of actions in which the first component is the identity over L, that is an f: X — X’
such that the following diagram commutes:

X 2L rhx

[k

XTX’

The category of L-actions and morphisms between them is denoted by Actr,(A).

Remark 1.2.14. As for the general case, when A is a semi-abelian category we have
an equivalence of categories Pty (A) ~ Acty(A) which is simply the restriction of the
previous equivalence to these subcategories. Therefore also in this case we will often
switch from one formalism to the other if there is no risk of confusion.

Definition 1.2.15. Given two L-actions £: LbX — X and ¢': Lb X’ — X’ and a morph-
ism f: X — X'in A, we say that f is equivariant with respect to & and &' if it forms with
the identity over L a map of L-actions. This corresponds to (1, f) being a morphism
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between the corresponding L-points, as can be seen through the diagram

k (o)
IhX » LX L+X - L
1 f " 1+f
\ (ere) \ x
. . (o)
13 X — s L4+ X - L
kr X!
¢ (&)
kﬂg € e
X v X Mg L L
\ f& \
, , ’TI'{/
X f kﬂg, X Nf/ L L

Lemma 1.2.16. A map in the category Ptr(A) is a reqular epimorphism if and only if
the morphism between the domains is a reqular epimorphism in A.

Proof. First of all we are going to show how coequalisers are computed in Pt (A).
Consider two parallel morphism in Pt (A) and the point over L induced by the
coequaliser of the morphisms between the domains

Aél}

Here the map p is induced by the universal property of Cy, since p'o f = p =p'og,
whereas the map 3 is defined as the composition ¢y 4 0 §': it is trivial to see that pos =
pocfgos =p'os =1p. Now suppose that there is another point coequalising the two
morphisms of points

AHL

e,

A’HL

iy

ZHL
5

Obviously we find a map ¢: C, — Z such that h = ¢pocy 4 since h coequalises f and g.
The only thing that remains to be proved is that this ¢ is a morphism of points over L,
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which corresponds to the commutativity of the left-pointing and right-pointing squares
in

ZHL

Cfg

But we have that
podocrg=poh=p =pocy

which means po ¢ = P since ¢y 4 is an epimorphism, and finally § = hos’ = ¢ocsg08 =
¢os.

This means that in order to take the coequaliser of two morphisms of L-points it
suffices to compute the coequaliser of the morphisms between the domains and then take
the induced structure. In other words we just showed that if a morphism is a regular
epimorphism in Pty (A), then the morphism between the domain is a regular epimorphism
in A.

Let us show the converse: suppose that we have a morphism of points in which the
first component is the coequaliser of two maps in A

A

i

A’HL

We want to construct two morphisms of points such that the lower square is their co-
equaliser. The first step is to observe that cy 4 is also the coequaliser of its kernel pair

Cfg

p
Kp(cf,g) <z L

S
To||"T1
/

then we construct the structure of point over L as follows: first we define p :=p/ o rg =
p ory and then we define s using the universal property of the kernel pair (which is a
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pullback)

obtaining pos=p'orgos=p' os =1p. O

Lemma 1.2.17. A square in the category Ptp(A) is a pushout if and only if the square
between the domains is a pushout in A. The same holds for pullbacks. This means that
pushouts and pullbacks can be computed in the base category using only the domains and
then inducing the additional structure.

Proof. First of all we want to show that the diagram

A > L

sA
pc N
L
sc

AN
» L

is a pushout of L-points. So consider a point

Z——L

!
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with morphism in Ptz (A) given by 5: B — Z and v: C — Z such that the cube

pa
A » L

SA \
N
L
sc

Q

U:J
&~

f/

N
™~

e

commutes. By the universal property of B+ 4 C we have that there exists a unique arrow
¢: B+ C — Z such that ¢ o fi(g) = 8 and ¢ o g«(f) = 7. It remains to show that ¢ is
a morphism of L-points, that is the commutativity of the squares

B+AC$L

Z%L

s

As far as it concerns the left-pointing square, we have
s=posp=¢o fg)osp=¢os

whereas for the right-pointing one it suffices to use the universal property of the pushout
as depicted in

A—2L s

f \Lg*(f )

BHB—FAC
x(9)

and the fact that both 7 and p o ¢ satisfy the property of the dotted map and hence they
have to coincide. This means that the diagram (1.9)) is a pushout in Pty (A).
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In order to show that the same holds for pullbacks it suffices to show that the diagram

p
A X B — L
W) | \
gx(f) A L
sA
1.1
. H (1.10)
PB
B L
sB
fx(9) \
pC
C L
sc

is a pullback in Pt (A): in order to see this, one can simply repeat the same reasoning

that we used for pushouts. O
As a consequence we have a simple way to compute kernels in Ptz (A).
Corollary 1.2.18. Consider a morphism of L-points
A pﬁA L
f
pB
B @ L
Then its kernel is the L-point induced by the pullback diagram
PAxpgL
A XB L < » L
\ SAxpgL \
A —)
sA
f
1p
L L
1p
R \
PB
B L
SB
in Ptz (A). O
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1.3 Internal graphs, groupoids and categories

Each notion mentioned in the title of this section is well-known. We will recall some
basic definitions and results, explicitly stating the properties that the category A has to
satisfy: for the sake of simplicity one can always consider A to be semi-abelian with (SH),
since this is the most stringent requirement within this section.

1.3.1 The category RG(A)

Definition 1.3.1. A reflexive graph (C1,Cy,d,c,e) in A is given by a diagram

d

C1 === Cy
such that
Co
/ l\ (1.11)
C() ﬁ 01 ﬁ 00
commutes.

A morphism of reflexive graphs from (Cy,Cy,d,c,e) to (C1,Cj,d',c',€') is a pair
(fi: C1 — C1, fo: Cop — Cf) such that

C()%Cﬁ Cl$00 01$C()
foi lfl f1l \Lfo fll \Lfo
Cy——C C’{?C{) Cl——C}

commute. This completes the definition of the category RG(A).

Lemma 1.3.2 (Proposition 3.9 in [39]). Let A be a pointed protomodular category and
consider a reflexive graph with its normalisation

d

k
Kyb—2 > (0 <—e
C

Co
Then Ccok,j = C(d,c)- O

1.3.2 The category RMG(A)

Definition 1.3.3. A reflexive multiplicative graph (C1,Cy,d,c,e,m) in A is given by a
diagram

d
%
Cl X Co Cl BELLLEN Cl ee—; Co
c
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such that (C1,Cy,d, ¢, e) is a reflexive graph and such that the multiplication m makes
the following diagram commute

01%01 XCo Cl%(}’l
\ lm/ (1.12)

A morphism of reflexive multiplicative graph from (C1, Cy, d, ¢, e,m) to (C1, C},d’,c, e/ ,m')
is morphism (f1, fo) of the underlying reflexive graphs such that

Cl XC’O Cl $01

f1XCOf1\L \Lh

1 Yot C1 e 1
This completes the definition of the category RMG(A).

1.3.3 The category Cat(A) of internal categories

Definition 1.3.4. Let A be a category with pullbacks. An internal category C =
(C1,Co,d,c,e,m) in A is a reflexive multiplicative graph in A

d
—_—
Cl X Co 01 Hm Cl eé* C()
c

such that the following additional diagrams commute:

Cl Xy 01$Cl Cl Xy 01%01

S B

01 T Co Cl ﬁ C(]
1cl><com

Cl Xy C1 X o Cl %Cl X Co Cl

mxcolcll lm

Cl Xy Cl Cl

m

Remark 1.3.5. Sometimes the condition (1.12) is stated in an equivalent way by asking
that the following diagram commutes

€><Colcl 1C1><Coe
Co X o Cl %Cl XCo Cl %Cl XCo Co

! \Lm !
) U5

Cy
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In order to see that the two are equivalent one has to use the diagram

01:01TC0

to deduce that (1,ed) = (1 x¢, €)(1,d) and from this equality it is easy to show that
m(lxg,e) =7 <= ml,ed)=1¢,.
Inverting the roles of ¢ and d leads to the equivalence of the other two equalities.

Definition 1.3.6. Let C' and D be internal categories in A, then an internal functor
f: C — D is given by a morphism (fi, fo) of the underlying reflexive multiplicative
graphs.

This completes the definition of the category Cat(A) of internal categories and func-
tors in A.

1.3.4 The category Grpd(A) of internal groupoids

Definition 1.3.7. A groupoid in A is an internal category endowed with an additional
map

01%401

such that the following diagrams commute

Cl Cl %Cl XCh Cl C’lgCl X o Cl
S DV N
CQ%C&?CO Cgﬁcl Coﬁcl

Notice that being a groupoid is a property that an internal category may have of not:
it is not an additional structure because ¢ is uniquely determined whenever it exists.

Definition 1.3.8. The category Grpd(A) of internal groupoid in A is given by the full
subcategory of Cat(A) with groupoids as objects.
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1.3.5 Comparisons between these categories

Let us start by noticing that there is a chain of forgetful functors given by

Grpd(A)—L> Cat(A) > RMG(A) > RG(A)

In general both U and V are full and faithful, whereas W is only faithful. If the base
category is Mal’tsev we have the following

Theorem 1.3.9 ([19]). Let A be a Mal’tsev category. Then
1) W is full;
2) U and V are isomorphisms;

3) Any internal reflexive graph admits at most one structure of reflexive multiplicative
graph.

Proof. See Proposition 2.1 and Theorem 2.2 in [19]. O

It is possible to define a functor F': RG(A) > RMG(A), which is left adjoint to the
inclusion W. In order to construct the functor F' we need to use the following results.

Lemma 1.3.10 ([72]). Let A be a semi-abelian category (it suffices Mal’cev and exact).
Given a reflexive graph (C1,Cy,d,c,e), it admits a (unique) internal groupoid structure
if and only if [Kp(d), Kp(c)]‘g1 = Aq, (that is iff Kp(d) and Kp(c) Smith-commute).

Proof. See Proposition 1.8 and Corollary 1.9 in [72]. O

Now we restrict ourselves to categories in which the SH condition holds, and this
gives us a better way to state the previous result.

Lemma 1.3.11 ([67]). Let A be a semi-abelian category with SH. Given a reflexive
graph (C1,Cy,d,c,e), it admits a (unique) internal groupoid structure if and only if
[Kq, Kc]g, = 0.

Proof. We use SH to go from the description in terms of kernel pairs to the one in terms
of kernels, that is to show that

[Kp(d), Kp(c)]g, = Ac, —=  [K4KJZ =0 m
Construction 1.3.12. Consider C' € RG(A) given by

d
—
Cr == Cy
C

We want to construct F(C) € RMG(A) ~ Grpd(A). Let us denote it as (C1, C}, d', ', ¢/)
and let us define it as follows
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o C(/) = CQ;

C
o O =Q = —=
1 Q [Kd’KC]%l ’

the map d’ is constructed using the universal property of the cokernel @ as follows

[K4, Kc]g1 LN o LN Q

AN

K, d CO

similarly the map ¢ is constructed using the universal property of the cokernel @
as follows

[Ka, K& "> C1 —5Q

e finally the map €’ is defined as €’ = ge.

It is trivial to verify that (1.11]) is satisfied and therefore this is again a reflexive graph.
In order to show that there exists a multiplicative structure on F(C') it suffices to use
Lemma [I.3.T1] But from the diagram

])/ 0 0
0— [Kg, K& —> Kg—25 Ky 0
Y Y
Q i q /
OH[Kd;Kc]01’> Cl >Cl 0
L
\4 \4 \4
0 0 00 Co —>0
0 0 0

(notice that g is a regular epimorphism thanks to Lemma [I.1.18]) and from the similar
one involving ¢ instead of d we can deduce that
Kd Kc

Ky~—"% _ Ky~—° _
[Ka, K2, © T [Ka KE
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Therefore we have

Ky K.
[KdeC]g1 ’ [Kd’KC]g1 1

o eIg,

[Kd/, KC']gi =

and this is 0 thanks to Proposition [1.1.55| Hence F(C) € RMG(A).
Now consider a morphism of reflexive graphs

(flaf(]): (BlaB(deaCBaeB) - (C17007d0760160)7

in order to define the morphism F((f1, fo)) = (f, f{;) (which is automatically a morph-
isms of reflexive multiplicative graphs since W is full and faithful) we notice that f
induces a morphism of coterminal pairs

kdB kcB
Kgp > B1 <——< K,

|
4 4

Kjo>——>C1 <—~ K.,
kg, ke

which, thanks to Proposition [I.1.51] gives us a map

[KdB7KCB]gl - [ch’ch]g .

1

This, in turn, by the universal property of cokernels gives us the dotted map

i q
(K, KCB]g1 2> B) —>> B

L

. Y
7 qc
[Kagr Keo ] gl > O] —S O

Finally by putting f; = fo it can be easily shown that (f], f}) is a morphism of reflexive
graphs.

Proposition 1.3.13. The functor F: RG(A) — RMG(A) is left adjoint to the in-
clusion W: RMG(A) — RG(A). This means that we have an adjunction F' 4 W and
consequently also an adjunction (U~1oV=toF) - (WoVoU) between internal groupoids
and reflexive graphs.

Proof. First of all notice that if we take a reflexive multiplicative graph C' = (Cy, Cy,d, c,e,m) €
RMG(A) and we take W (C), since it obviously admits a reflexive multiplicative struc-

ture, we have that [ Ky, Kc]g1 = 0 and therefore F(W(C)) = C.

Let us define the unit of the adjunction and show it’s universal property. Consider
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C = (C1,Cy,d,c,e) € RG(A) and take WF(C) = (C1,Co,d',',€¢’). The map (g, 1¢,)
makes the following triple square commute

C—Ls
e <l
Co Co

and therefore it is a morphism of reflexive graphs. We denote it as
ne = (q,1¢,): C - WF(C)

and our aim is to prove that this is the unit of the adjunction. Notice that n: 1rga) —
W F is a natural transformation: indeed by definition of F'(f) we have that the following
naturality square in RG(A) commutes

X -5 WF(X)
fl lWFU)
Y ——> WEF(Y)

Now consider a map f: X — W(Z), we want to show that there exists a unique
f: F(X) — Z such that

XH>WF X)

f (1.13)
ya W

W(Z)

commutes, that is W(f) o 77X = f.
This f is given by W~ (7]‘;,1( 7) © WF(f)): indeed Mw(z) is the isomorphism induced
by quotienting W (Z) for the subobject 0. From the naturality square

X " S WF(X)

fi lWF(f)

W (Z) WFW(Z)

nw(z)
we deduce the commutativity of (1.13)). Finally this is the unique choice for f since W
is full and faithful and nx is an epimorphism. O
1.4 Pre-crossed modules and crossed modules

In this section we recall the concepts of internal pre-crossed modules and internal crossed
modules (first defined by Janelidze in [55] in the context of semi-abelian categories), which
are respectively equivalent to reflexive graphs and to groupoids.
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1.4.1 The category PreXMod(A)

Definition 1.4.1 (|55 64]). An internal pre-crossed module (X N A, €) is given by an
internal action (A, X, ) with a morphism 0: X — A such that the following diagram
commutes

X s x

ubal la (1.14)

AbA—— A
XA

Ezample 1.4.2. One of the easiest examples of internal pre-crossed module (actually an

internal crossed module) is given by (A 14, A, x 4) for which the previous commutativity
is trivial.

Definition 1.4.3. Consider two internal pre-crossed modules (X LR A, €) and (X' LR
A’ ¢"). A morphism of internal pre-crossed modules is given by a pair (g, ) with a: A —
A’ and g: X — X’ such that the following diagrams commute:

Ab X~ At X X2 x
fl J/é’ al la’
XX’ y —

The first of the two diagrams says that the pair (f, g) is equivariant with respect to the
actions & and ¢’ (i.e. (a,g) is a morphism of actions).

Remark 1.4.4. In particular from this definition one can deduce that each pre-crossed
module (X 2 A, ) gives rise to a morphism of internal pre-crossed modules

0 (a’lA)
—_—>

(x5 A8 (A A xa)

Remark 1.4.5. The first definition of internal pre-crossed module was given in [55] and

it was stated in a slightly different way: an internal pre-crossed module (X 9, A€ is
given by an internal action (A, X, ) with a morphism ¢: X — A such that the following
diagram commutes

AX X AL x
| e (1.15)
XTA
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The two definitions are equivalent, indeed it suffices to consider the following diagram

('s)
XS A4 x 04 4

lAba\L J/].A-i-a

AbAHA-}-AHA
Kaa ()

to go from diagram ([1.14]) to diagram (1.15]) since
14
XA o (14h0) = 1 okaao(1ab0)
A

= <1A> o(la+0)okax

1a

1
= (aA) OkA,X-

Being more similar to the group one we will always use the first definition from now on.

1.4.2 The category XMod(A)

Let us recall the definition of internal crossed module in a semi-abelian category A that
satisfies the (SH) condition.

Definition 1.4.6 (55,64, 51]). An internal crossed module (in a semi-abelian category A

with SH), is given by (X KN A, &) where 0: X — A is a morphism in A and £: ADX — X
is an internal action such that the following diagram commutes

XbX =

AbX%X

Lo | |2

AbA—— A
XA

Remark 1.4.7. In particular an internal crossed module in A is an internal pre-crossed

module (X 5, A, €) satisfying the so called Peiffer condition, which is the commutativity
of the following diagram

XbX —

T 1o
AbX HX
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A morphism of internal crossed modules is just a morphism of the underlying internal
pre-crossed modules, that is XMod(A) is the full subcategory of PreXMod(A) whose
objects are internal crossed modules.

Construction 1.4.8. By using the correspondence between Pt(A) and Act(A) we can
map each internal pre-crossed module into a particular reflexive graph, precisely given
by a diagram of the form

5 d
Xp—2 X Mg As—e
C

A

where ce = 14 = de. Precisely this is given as follows:

e First we obtain X x¢ A, and the maps d, e and k4 by computing the point associated
to the action &; recall from Remark that X x¢ A is defined as the coequaliser

ix0§
X =———SA+X ———> X x A
A, X

T O

A A

and that the point

d
XDLX NgA?A

is given by e = g¢ 0y, by dooge = ((1)), that is d = <1()“|, and by kg = o¢oix.

e Similarly we define the map ¢, so that co o = ((19), that is ¢ = <1§‘|, using the
diagram

ix 0§

X T—F A+ X ———> X x A
A X
iXT () . (1.17)

\%

X p A

Notice that (é) o(ixof) = (é) o ka x due to the fact that (A, X, ¢, 0) is a crossed
module. Finally we deduce that co k = ¢ and that ce = 14.

From now on we will often use this formalism instead of the one given by the ac-
tion and by the crossed module conditions. In particular from a pre-crossed module
(A, X,&,0) we will construct a reflexive graph given by the point (A, X x¢ A e, d) en-
dowed with additional maps ¢ and k such that ce = 14 = de, k = k4 and ck = 6.
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Ezample 1.4.9. Consider the pre-crossed module (X 9 A, T?) given by the trivial action.
Then the diagram (|1.17)) becomes (see Example [1.2.9))

mx:ﬁgézA P QRIS o)-(2))
(o)

s

Sod = ma, ¢c = 7m4, e = (1,0) and k = (0,1). This means that the reflexive graph
associated to the trivial pre-crossed module is given by

> A x X
TA

\'4
—>A

TA
X>LA X X%(}T?—; A

Furthermore we are able to show that if (X 2 4, 74) is a crossed module, then X is an
abelian object. In order to prove this, we use the equivalent condition [X, X ]7; =0 and
the definition of this commutator through the diagram

h
XoX 25 X4 X

| o

[X, X% X

It suffices to show that G) o hx x = 0 but this is given by the Peiffer condition through
the equalities

1
<1> okx xoixx = XX Olx,X =740 (0b1) oix x
=14o0iaxo(0o1)

0
= (1> O]fA,X O’L'A7X o (001)
=mo¥axohaxo(0ol)

mp000(001)=0.

FEzample 1.4.10. Consider the Crossed module (A 14,4 X4) given by the conjugation
action. Then the diagram ((1.17)) becomes (see Example [1.2.10] -

2oxa ()G
A== AT A— s A x A

T ON

A=A
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Sod =m, c=me e=<11)and k = {0,1). This means that the reflexive graph
associated to the conjugation crossed module is given by

0,1)

m
—_—
A A x A%%?—A

Proposition 1.4.11. Given a crossed module (X 94 A, &) we have that [Kp, X% = 0.

Proof. Looking at the diagram

hik,yx
Koo X>—>Ky+ X

| 15

[Ko, X|>——> M

defining [Ky, X]% we just want to show that the equality (kf’) okk,x oir,x = 0. In
order to do this we use the equality (k”l") o kg, x =&o (0pl) given by the diagram

(*7)

kr,,x i
KpX>——>Ky+ X —>

kabll \Lka+1

XhXp—> X+ X — X

x.x (1)
.
X

AbX

where the two top squares commute trivially whereas the lower one is given by the
Peiffer condition. Furthermore we have that 0b1 = 74 o 7')[(("’: to show this, it suffices to
postcompone with the monomorphism k4 x. Now it remains to compute the following
chain of equalities

ko . .
( L ) okrax ot x = €0 (1) ok, x
A Ko .
=&ony oty OlK,x
ZT)I((()O’L'K(%X =0. ]

Lemma 1.4.12 ([8]). Consider the following diagram

k
A%Béc

)

A s B ———> ("'
]Cp/ S/
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withpos = 1g, p os’ = 1¢ and ~ being a reqular epimorphism. Then « is a reqular
epimorphism iff B is so.

Proof. If « is a regular epimorphism, then § is so by Lemma [1.1.18] Instead if § is a
regular epimorphism, the right-pointing square on the right is a pushout by Lemma|1.2.2

Consequently it is a regular pushout by Remark[I.1.26] Finally by applying Lemmal[I.1.27]
we obtain that « is a regular epimorphism as well. O

Lemma 1.4.13. Consider a morphism of internal crossed modules

(XiA,€> (f ) (X/i,)Al,ﬁl).
Then (f,«) is a regular epimorphism in XMod(A) if and only f and « are regular
epimorphisms in A.

Proof. In the category RG(A) of reflexive graphs in A, coequalisers are computed point-
wise, and due to Theorem 3.1 and Lemma 3.1 in [44] this implies that also in Cat(A)
the coequalisers are computed pointwise. This means that a morphism

(A, Ay, d,c,e,m) (@), (A" AL, d L el,m)

is the coequaliser of (g, go) and (h, hg) in Cat(A) if and only if a is the coequaliser ¢4 5, and
if ag is the coequaliser cg, .. Using the equivalence of categories XMod(A) ~ Cat(A)
and the diagram

kq

M > Ao € A

C
f o o
d/

S ——
M- A6 % A
kg >
d s

we conclude that (f,«) is a regular epimorphism in XMod(A) iff both « and «g are
regular epimorphisms in A. Now it suffices to apply Lemma [[.4.12] to conclude the
proof. O

Another category that we will deal with, is denoted by XMod (A) for a fixed object
L € A: it is the subcategory of XMod(A) whose objects are the internal crossed modules

of the form (M KN L, ¢) and whose maps between (M LR L,&) and (M’ LR L,¢&') are the
morphisms of internal crossed modules of the form (M % M’ L L, L).

Remark 1.4.14. The category XModp (A) is not semi-abelian only because there is no
zero object, but it is quasi-pointed (and sequentiable). Indeed we have that (0 — L, )

is the initial object, that (L 1z, L, xp) is the terminal object and that the morphism

00— 1L

%
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is a monomorphism of internal crossed modules.
Lemma 1.4.15. Consider a morphism of L-crossed modules

(M S p,e) L e,

Then (f,11) is a monomorphism in XModp(A) if and only f is a monomorphism in A.
Proof.

(<) Suppose that (a,17) and (8,11) are two morphisms of L-crossed modules such
that (f,17) o (a,11) = (f,11) o (B,1): we have foa = f o 3 and since f is a
monomorphism in A we deduce o = 3, that is («a, 1) = (5, 11).

(=) Suppose (f,1r) is a monomorphism in XMody (A): we construct the kernel pair
(Kp(f),r0,71) of f in A and we want to show that ro = r; in order to show that

f is a monomorphism. We start by defining a L-crossed module structure around
Kp(f) by using the diagrams

1bry

LhEp(f) LbM Kp(f) 0>L
“y i
1brg Kp(f)%M M?L
l ;
LbM M M
3 f

It is easy to show that & is actually an action, that (Kp(f) 9, L¢ ) is an L-crossed
module and that the maps (r;, 17) are morphisms of L-crossed modules. Now we
use the fact that (f,17) is a monomorphism in XMody (A): therefore from the
equality (f,1r)o (ro,11) = (f,11) o (r1, 1) we can deduce that (ro,11) = (r1,11),
that is g = 71, which in turn is equivalent to f being a monomorphism in A. [

Remark 1.4.16. Consider a morphism of L-crossed modules

(M S p,e) L r Loe.

The kernel of this morphism is given by

(kf71L)
—_

(K; % L,€) (M 5 L)

where the action £ is induced by the universal property of K as shown in the following
diagram

17bk
LhE; ~2 ponr 2L ph

C

K> M M’
ky f

The fact that this is an L-crossed module is trivial to check.
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Chapter 2

Compatible actions in semi-abelian
categories

The concept of a pair of compatible actions was first introduced in the category of
groups by Brown and Loday, in relation to their work on the non-abelian tensor product
of groups [15]. Later, in [37], the definition was adapted to the context of Lie algebras,
where it was further studied in [59]. Since then, several other particular instances of
compatible actions have been defined, in various settings: see for example [43] 21} 20].
The aim of this chapter is to provide a general definition in semi-abelian categories (in the
sense of [58]), in a way that extends these as special cases. In particular this will give us
the tools to develop a unified theory, in such a way that computing the non-abelian tensor
product of compatible actions is the same as computing the non-abelian tensor product
of internal crossed modules. This process generalises the diverse particular notions of
non-abelian tensor product that appear in the literature so far.

With this idea in mind, we first examine the cases of groups and Lie algebras from
a new perspective, aiming to use a diagrammatic and internal approach whenever this
is possible. To do so, we take advantage of the equivalence between group actions (resp.
Lie algebra actions) in the usual sense and internal actions (introduced in [11 [5]) in the
category Grp (resp. Lieg), as well as the equivalence (see [55]) between crossed modules
of groups (resp. crossed modules of Lie algebras) and internal crossed modules in Grp
(resp. Lieg). Thus we may separate properties which are specific for groups and Lie
algebras from those that are purely categorical.

The conditions which we single out in the categories Grp and Lieg in terms of
the internal action formalism become our general definition of “a pair of compatible
actions”. This definition makes sense as soon as the surrounding category is semi-abelian.
However, we shall always assume the (SH) condition to hold as well: this is a relatively
mild condition which excludes loops, for instance, but includes all categories of groups
with operations; see [67, 29]. This simplifies our work, since under (SH) internal crossed
modules allow an easier description [55, [67].

Our main tool is an extension, to the semi-abelian context, of the Peiffer product
M > N of two objects M and N acting on each other (via an action fj\]\} of N on M

47
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and an action 5% of M on N). A notion of Peiffer product has already been introduced
in [30], in the special case of a pair of internal precrossed modules over a common base
object. Ours, however, is a different approach, and a priori the two notions do not
coincide. Our definition is a direct generalisation of the group and Lie algebra versions
of the Peiffer product, which were originally introduced respectively in [75] and in [37].
It is well defined as soon as the two objects M and N act on each other, whereas for
the definition in [30] they also need to satisfy some compatibility conditions. Moreover,
when the actions fﬂj\/; and & J]{,/[ are compatible, the Peiffer product M > N is endowed with

internal crossed module structures (M DA s N, &Ny and (N N, M s N, ey,

We use this as an ingredient in the generalisation of a result, stated in [I5] for groups
and in [59] for Lie algebras, to any semi-abelian category that satisfies the condition (SH).
We show namely that two objects M and N act on each other compatibly if and only if
there exists a third object L with two internal crossed module structures (M £ L, 137D
and (N 5 L,¢k). Amongst other things, this allows us to deduce that our definition of
compatibility for pairs of internal actions restricts to the classical definitions for groups
and Lie algebras. Another consequence of this result is that the non-abelian tensor
product introduced in Chapter [3| has two natural interpretations: either as a tensor
product of compatible internal actions, or equivalently as a tensor product of crossed
modules over a common base object.

Finally, we study the Peiffer product via its universal properties. We also prove
that, under the additional hypothesis of algebraic coherence [29], our definition of Peiffer
product coincides with the one given in [30].

The chapter is organised as follows:

e In Section[2.1]we examine the concept of a pair of compatible actions in the category
of groups. First we consider the definition of compatibility given in [I5] and we
translate it into its diagrammatic form. Then we construct the Peiffer product as
a coequaliser and we prove that it coincides with the definition already known for
the case of groups. In Proposition we prove a result stated in [I5], namely
that two groups M and N act on each other compatibly if and only if there exists a
third group L with two crossed module structures (M %> L, &%) and (N % L, ¢%).

e In order to deal with the Lie algebra case we open Section [2.2] with a quick recap of
some specific tools that we are going to use in the rest of the section. We then show
the link between the notions of compatible actions for groups and for Lie algebras,
supporting the idea of a possible generalisation to semi-abelian categories. We show
that two crossed modules with a common codomain in Lier induce compatible
actions and, in order to prove the converse, we use the Lie algebra version of
the internal construction of the Peiffer product introduced in the previous section,
endowing it with crossed module structures. Lastly, we prove that the coproduct
in XMod (Lieg) can be obtained through the Peiffer product and we draw some
consequences of this result.

e Section [2.3| contains this chapter’s main results. We work in the context of a semi-
abelian category A that satisfies the (SH) condition. We express the definition of



2.1.

COMPATIBLE ACTIONS OF GROUPS 49

compatibility in this general context and show in Proposition [2.3.3] that whenever
we have a pair of internal crossed modules over a common base object, they induce
a pair of compatible internal actions. Then we construct the Peiffer product of two
internal actions in three distinct ways: first we imitate what happens in the case
of groups, constructing the Peiffer product for each pair of objects acting on each
other. In Proposition [2.3.5| we prove that this is the same as taking the pushout of
the two semi-direct products. Then we give a more specific definition that requires
the actions to be compatible. Finally, we show in Proposition [2.3.8] that, if the
compatibility conditions are satisfied, then the two definitions coincide.

We prove in Proposition [2.3.9] that whenever the actions are compatible, their
Peiffer product is automatically endowed with internal crossed module structures

(M 25 M s NEN) and (N 2 M s N,EM™N) This leads to The-
orem [2.3.10] which is a generalisation to semi-abelian categories of Proposition[2.1.10]
proven for groups in Section two objects M and N act on each other compat-
ibly if and only if there exists a third object L with two internal crossed module
structures (M %5 L, ¢5) and (N % L,€%). Via this result we obtain Corol-
lary 2:3.17] and Corollary [2:3.12] as confirmations of the equivalence between our
general definition of compatibility and the specific ones in the cases of groups and
Lie algebras.

We conclude the chapter with a study of the Peiffer product via its universal prop-
erties. Here we also prove that, under the additional hypothesis of algebraic co-
herence [29], our definition of the Peiffer product coincides with the one given
in [30]. Via results in [30], this further implies that under an additional condition
called (UA), the actions induced by two L-crossed module structures have a Peiffer
product which is again an L-crossed module; furthermore, it is the coproduct in
XMody (A) of the given L-crossed modules. This generalises Proposition in
Section 2.2

2.1 Compatible actions of groups

Definition 2.1.1. Consider two groups M and N acting on each other via

and on themselves by conjugation. We are able to define induced actions &
M+N

N

M. MbN — N &l NoM — M

M+N
Y and

of the coproduct M + N on M and on N, that is such that the following diagrams
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commute:
MON 2 (A 4 NN NoM XN (4 N M
> \LE%‘FN 3 \L£%+N
£N é.]\/f
N M
(2.1)

NoN NN a4 NN MbM MM (A 4 Ny M
XN \nglb“N XM \Lgﬁﬂv

N M

This is done simply by defining the action &/ (M + N)bM — M on the generators
sms~! with m e M and s € M + N, inductively on the length of s:

m if s =,
MAN(gms) = { N (SeN (nmn~ )8’ if Ine N | s = s'n, (2.2)

MIN (s'xar(mmm=1)s'~1) if Ime M | s = s'm.

and similarly for f% N
Remark 2.1.2. In particular we have that the following always hold
("m)m/ _ (nm)m/(nm)fl _ n(m(n_lm/)mfl) _ nmn_lrrnl7 (23)
(mn)n/ _ (mn)nl(mn)fl _ m(n(m_ln/)nfl) _ mnm_lnl7 (24)
where the right-hand side of each equality is given by the induced action of the coproduct.
This is given diagrammatically by the commutativity of the squares

kN, amblnr knr,nbln

(NO MM 222 r 4 Ny M (MONHNY (4 4 NN
55\%11% lgﬁw 5%1% lgjb”N (2.5)
XM XN

Definition 2.1.3. Two actions are said to be compatible if also the following equalities
hold for each m,m’ € M and n,n’ € N

m / —1 n /
( n)m _ mnm ml’ ( m)nl — nmn= 1 (26)
If once again we examine these equalities from a diagrammatic point of view, we obtain

that they are equivalent to the commutativity of

kye Nb1ag kN, ambln

(MONYM 2N (0r 4 Ny (NOMPNZY (0f 4 NN
£%b1]\/jl l/ Q;JFN gﬁblN\L \ngltlIJrN (27)
NoM ————— > M MHN—— >N

SM éN
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A second look on these four equalities leads us to the following remark.

Remark 2.1.4. The meaning of the equations (2.3)) and (2.4) is that for each m € M and
neN

o ("m)nm~In~! acts trivially on M,

1

o (Mn)mn~tm~! acts trivially on N,

whereas the meaning of equations (2.6 is that for each m € M and ne N

1

o ("m)nm~In~! acts trivially on N,

o (Mn)mn~tm~! acts trivially on M.

If we define K < M + N to be the normal closure of the subgroup generated by elements

of the form ("m)nm=In=! or (™n)mn=tm~!, we have that K acts trivially on both M

and N if and only if the two actions are compatible.

The previous remark leads to the following definition given in [42].

Definition 2.1.5. Given a pair of compatible actions as above, we define their Peiffer
product M < N of M and N as the quotient

K>—>M+ N -5 M N = MEN

Remark 2.1.6. Notice that the map ¢x and the Peiffer product M < N can also be
defined in the following equivalent way, as the coequaliser in the diagram

(‘:N,J\/I)
(NOM) + (MON) =3 M + N —"— M = N (2.8)
€N +el

In order to show why this definition is equivalent to the previous one, consider the map
qx given by the first definition. It is easy to show that

qr im0 &Y = qx o knm
qr o in o &N = qrx o kun

since this is exactly what taking the quotient by K means. But this is the same as saying

qx © (E57 + EX) o invnr = ar © knyu
qx © (& + EX) o iann = ai © kN

which in turn is

k
ar o (E + &) = qx o (kN’M>.
M.N

The universal property of the coequaliser is given by the universal property of the quotient
by K in a straightforward way.
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Since K acts trivially on both M and N we can define induced actions f%MN and

% MN of M > N on M and N, that is such that the following diagrams commute
b b
(M + N)DM L% (M 1 N)pM (M + N)BN P28 (M sa NN
MwN MxN (2.9)
M M N M

We can describe these actions of the Peiffer product through its universal property, but
in order to do this, we need Lemma [1.1.38 and a preliminar remark.

Remark 2.1.7. Note that the two composites

N M (:N’M)
M+ N— "N (NbM) + (MbN) S M4 N
EMHEN

are equal to 1574 n: one is obvious and the other one is clear once we draw the diagram
involved. Hence we have that

kN, M
Gy )

(NDM) + (MbN) Dl M+ N

M HEN

is a reflexive graph.

Lemma [1.1.38| implies that ¢bly; is the coequaliser of (Zgj%)blM and

(EN +EM)D1 s and that gh1y is the coequaliser of (ZN*%)I)IN and (€ +&)b1y. We want

M
to use these universal properties to define induced actions §%MN and f%f MN of M > N

on M and N as in the following diagram

(A )o1as

((NDM) + (MbN )M ———% (M + N)pM (M 1 N)pbM

(§%+£%)b1M \ EMMN
M
YA v

M

qblys

k
(k];f%)bhv

((NDM) + (MDN )N ———= (M + N)pN (M < N)bN

(51]5]1"'51]{74)“1\’ gMN
M+N V4 N
o N

In order to do this, we need the following result.

ghly
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Proposition 2.1.8. The action S%JFN coequalises (IZAN/Z)MM and (&8 + EMb1yy. Sim-
ilarly, the action §%+N coequalises (Zﬁj’%)bl]\f and (£} + b1y,

Proof. Consider a generator sims ! of (NbM)+(MbN))bM and write s as juxtapposition
of generators of NbM and MDN, that is s = s1--- 55 with s; = njmjnj_l € NbM or

5 = mjnjmj_l € MbN. We are going to prove the equality

k m —_—
]]\\/[4+N (<<kMN>b1M> (ss™ )> §M+N (((5]‘1\2 + &J\VJ) blM) (sis 1))
by induction on k. First of all notice that this is equivalent to the equality
]\J\Z[[-&-N (sms_l) _ ]\J\Z[[—&-N (e(s)me(s)—l) (2.1())

where €(s) = (EAA} + f%) (s) € M + N. In order to prove it when s is the empty word,
it suffices to notice that also €(s) is the empty word. Now suppose we proved for
each word whose decomposition involves at most k — 1 generators of NbM and MbN,
consider s = s1 -+ - s, and denote s’ = s1---s,_1: we have the chain of equalities

§M+N (Sms_l) :§M+N (S’Skms 1 / 1)

M+N (S, Skm )

where
My, if s = nkmkngl € NbM,
(sk) =

Mhpy,  if s, = mknkmlzl € MbN.
M+N
Finally we apply the same reasoning to &y O
Proposition 2.1.9. We have two crossed module structures

(M 225 M oa N, M) (N 5 M sa N, M=)

where the actions of the Peiffer product are induced as above and the maps Iy and Iy
are defined through the compositions

M N
M /
- M+ N Iy (2.11)
o
\4
M N
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Proof. We will show the thesis only for §M >N gince the proof in the other case uses the
same strategy. We need to show the commutativity of the following squares

MbM X

leljw\L
MpaN

(M = NOM ——F——— B

leqNblM\L ilM

For what regards the commutativity of the upper square we have the following chain of

equalities

MeN o (Id1ar) = 37N o (gb1ar) © (iard1ar)

= %"‘No (tarb1ar)

= XM

given by commutativity of diagrams (2.5)) and .

For what regards the lower square, 1t can be shown to be commutative by direct
calculations, using the explicit definition of the coproduct action given in . First of
all we can precompose with the regular epimorphism ¢b1,;: this shows that the required
commutativity is equivalent to the equation

qoxmin o (1ips) = qoip o &Y. (2.12)

Now we can take a word s € M + N, an element M € M and prove by induction on
the length of s that the generator sms~! e (M + N)bM is sent through the two maps

in (212) to

q (°m) = q(sms™1). (2.13)
Let us first show thls equality for s w1th length 0, that is the empty word: we have that
i = m = sms ' and hence . For the inductive step we are going to use the
equality ¢ ("m) = q(nmn ') coming from the definition of the Peiffer product. Suppose
that holds for words s with length I(s) < k. Given s with length k we can write
itas s =xs withx =me M orz =ne N and I(s') = k — 1: now we have the chain of
equalities

Hence (M 2 M »a N, €377Y) and (N N, M s N, €3N are crossed modules. O
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Furthermore we know that the actions &%/ v and ey 37 are in turn induced by §M N and
§JJ‘VJNN through the maps ) and [y, that is

MON P (01 s NN NoM N (0f e NYoM
N M
N M

commute. This can be proved by using the commutativity of diagrams (2.1]), (2.9)

and (Z11).

Proposition 2.1.10 (Remark 2.16 in [15]). Two actions as above are compatible if and
only if there exists a group L with two crossed module  structures
(M £ Lgas) and (N % L,apy) such that the action of M on N and the action of
N on M are induced from L and its actions.

Proof. (<) Let us first show that the actions €3 = ¢ o (ubly) and &5 := ¥pr o (b1 )
are compatible. To see that they are actually actions it suffices to use Remark
In order to show (2.6) (we will show only one of the two equalities since the proof of
the other follows the same steps) we are going to use the commutative diagrams induced
from the crossed module structures involving L, that is

MbM s NoN 2
ol wf
LhM M IhN Vs
“% v lu l””l "y l
DL ———>L IDL———>L

Therefore we have the following chain of equalities

(m

)t — PCIR) o p(m(n)p(m )

— n(m)v(n) ( /) _ n(m)v(n) (m-lm/)
— w(m) (u(n) ( *1m/>> — u(m) (n (mflm/»
= () = ()

(=) This implication is given by Proposition m O
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2.2 Compatible actions of Lie algebras

2.2.1 Preliminaries for Lie algebras

We start by recalling some well-known facts that we are going to use in the following. In
the meantime we use this subsection to fix some notation.

Definition 2.2.1. Let R be a commutative ring and let M be an R-module. We say
that M is a Lie algebra over R if it is endowed with a binary operation

[ -]: MxM— M
called Lie bracket, such that the following conditions hold:
1) [azx + by, z] = a[z, z] + by, 2] and [z, ay + bz] = a[z,y]| + b[x, z] (R-bilinearity);
2) [z,z] =0 and [z,y] + [y, z] = 0 (alternating);
3) [z, y], z] + [ly, 2], =] + [[2, =], y] = 0 (Jacobi identity).

Remark 2.2.2. We recall that the above definition is redundant: notice that the two
conditions in 1) are equivalent under the condition 2), so it suffices to check just one
of them. Moreover, [z,2] = 0 always implies [z,y] + [y,2z] = 0, and the converse
is true whenever the multiplication by 2 is injective in M (that is, M is 2-torsion free).
Furthermore, the equation [[x, y], z]+[[y, ], ] +[[2, ], y] = 0 is equivalent to [z, [y, z]]+
[y, [z, z]] + [, [z, y]] = 0 thanks to 2).

Definition 2.2.3. Let M and L be R-Lie algebras. A morphism of R-Lie algebras
f: M — L is a morphism of R-modules such that

[z, y]) = [f (@), f(w)].
This defines the category Lier of R-Lie algebras and R-Lie algebra morphisms.

Remark 2.2.4. There is an obvious forgetful functor U: Lieg — Set and it has a left
adjoint F': Set — Liep: this functor builds the free R-Lie algebra on a given set X by
means of the following well-known procedure.

i) First of all we build the free magma on X, denoted Mag(X), writing [—, —]: Mag(X)x
Mag(X) — Mag(X) for the binary operation: this means that an element of
Mag(X) is given by a word with square brackets, as for instance “[[z1, [x2, z3]], z4]”.

ii) Then we take the free R-module on it R[Mag(X)] and we extend the product by

defining
n m
DILZIDIT?
i=0 j=0

This product gives to R[Mag(X)] the structure of a R-algebra.

n

= Z Z ?”Z'Sj[lti,yj].

i=04=0
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iii) Finally consider the ideal I generated by the symbols
o [z,x],
o [z,y] + [y, z],
o [y, 2]l + [y, [z z]] + [z, [=,y]],
with x,y, 2z € X and define F(X) := R[Mag(X)]/I.

Remark 2.2.5. Let M and N be two R-Lie algebras. Their coproduct M + N is the R-Lie
algebra given by F(U(M) u U(N))/J where J is the ideal generated by the identities
coming separately from M and from N: this means that it is a quotient of the free
algebra on the disjoint union of the underlying sets of the two algebras.

Definition 2.2.6. Given a word s € M + N, we say that it is well nested if it is a simple
bracket—][z1, 2] where z1, x9 € M U N—or if it is obtained by taking the bracket of
an element with a well-nested word. Equivalently this means that s does not contain a
bracket between two brackets. The height of a well nested word is simply the number of
pair of brackets appearing in it. Given a word s € M + N, any simple bracket [z1,z2] is
contained in a maximal well nested subword of s and we say that the relative height of
x1 and of o in s is the height of this subword.

Since we couldn’t find a clear reference for the following lemma, we prove it here,
even if we think it is a well-known result.

Lemma 2.2.7. Every element in M + N can be written as a linear combination of
elements of the form

[Tk, [Tk—1, -, [x3, [T2, 21]] - - ]]] (2.14)
with x; € M or x; € N.

Proof. Consider a word s which has n pairs of brackets and apply the following algorithm:

1) Choose a subword t of s which is well nested: this always exists, because we can
take one of the innermost (and hence simple) brackets.

2) If t = s go to 3). Otherwise ¢ is contained in a subword of the form

[t, [w1, wa]] or [[w1, wa], t].

with w; and we subwords of s. Use the Jacobi identity to break [t, [wi,w2]] into
[wi, [t, wa]] + [[t,w1], w2] (and similarly in the other case). Now s can be seen
as the sum of the two words in which we substituted [t, [w1,w2]] with the two
summands resulted from the application of the Jacobi identity. For each of these
words repeat the step 2) choosing them as new s and the maximal well nested word
containing the old t as new t.

3) Since s is now well nested it suffices to apply the alternating property until all the
brackets have a simple element on the left. This has only the effect of possibly
changing the sign in front of the word.



58 CHAPTER 2. COMPATIBLE ACTIONS IN SEMI-ABELIAN CATEGORIES

The reason why this algorithm works is simply because at each application of 2) we
obtain one of the following;:

i) the relative height of ¢ increases by at least 1: this will eventually lead to the
relative height reaching n, which means that the word in question is well nested;

ii) the complexity of the bracket near ¢ decreases: in one application it goes from
[wy, w2] to both w; and wy which individually contains less brackets than [w1, ws].
This will eventually lead to w; or ws being a single element and hence to i) at the
next iteration. O]

Remark 2.2.8. Notice that for each word s € M + N and for each letter x in it, we can
decompose s as a linear combination of words of the form in such a way that each
word in the decomposition has x; = x. This is possible because, by using the Jacobi
identity, we can first decompose s as a linear combination of words in which x appears
in a simple bracket. Then we can use the algorithm described in Lemma choosing
as starting ¢ the simple bracket containing x.

Remark 2.2.9. By examining the general definition of the functor b and of its monad
structure when restricted to Lieg, we see that an element of the R-Lie algebra PbM is an
element of P+ M such that each of its monomials contains an element from M: indeed the
arrow ((1)) takes a linear combination of “words” and sends it to the linear combination of
“words” obtained by substituting every element from M with 0 (therefore only monomials
with an element in M go to zero). Notice that (PbM, kpar) = Ker(Coker(inr: M —
P + M)) and therefore PbM is the ideal generated by M in P + M.
In particular n7: 1pie, — Pb(—) is given by

nhr: M — POM:m — m
and pf: Ph(Pb(—)) — Pb(—) has components
phr: Po(PoM) — PoM

which map the two different brackets in Pb(PbM) to the one bracket in PhM.

Furthermore if f: A — B is a morphism, then Pb(f) = 1pbf: PbA — PbHB is given
by sending each linear combination of words in PbA into the one obtained by substituting
every element a € A with its image f(a) € B.

2.2.2 Compatible actions of Lie algebras

We start by recalling the equivalent definitions of action and internal action in Lieg.

Definition 2.2.10. Let M and P be R-Lie algebras. An action of P on M is given
by a R-bilinear map 1: P x M — M with (p,m) — Pm = 1(p, m), such that for each
p,p’ € P and m,m’ € M we have

o PPl = 2(P'm) — P (Pm) and
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e P[m,m'] = [Pm,m'] + [m,Pm/]

Remark 2.2.11. Recalling Definition we see that an internal action is a morphism
of R-Lie algebras £&: PhM — M such that

§(m) =m, &y (s)) = E((LpbE)(s))

for allm € M and s € Ph(PbM). For example if s = {p, [m, p']}, then pf,(s) = [p, [m, ]
and (1pb€)(s) = [p,&([m, p])], so we want that

&(p, [m, p'11) = &([p, &([m, p'D])-

This means that the image of the action on a complicated word can be obtained by
taking the image of the most internal bracket and iterating this process until there are
no brackets left. We will call this property decomposability.

Remark 2.2.12. Tt is easy to notice that there is an equivalence between actions and
internal actions. In particular this correspondence sends an internal action £: PboM — M
to the action ¢: P x M — M defined via ¢(p, m) = &([p,m]), and conversely it sends
an action ¢: P x M — M to the internal action £&: PhM — M defined via

{am) =m,
5([p’m]) = ¢(pam)'

The behavior of £ on more complex elements is uniquely determined by the hypothesis
of decomposability. From now one we are going to use actions or internal actions equi-
valently, depending on which is the more convenient approach in each specific case.

Ezample 2.2.13. Given an R-Lie algebra M, the conjugation action s : MbM — M
corresponds to the map M x M — M given by (m,m’) — [m,m/].

Definition 2.2.14. Consider an action fﬁ: NbM — M and the conjugation
Xnv: MbM — M. We can always construct an action £%+N: (M + N)pM — M of
the coproduct M + N on M such that it extends both 51\]\2 and xps. It is defined via

o [m,m| —> [m,m],
® [nam] — 51\]\/[1([”7m])

where m € M and m,n € M + N. Notice that the images of those three types of elements
are fixed by the fact that §%+N is an action and by the fact that it extends both the
conjugation of M and the action 51\1\/;. Furthermore, 5]\]\2”]\] is uniquely determined by
these requirements since we can easily deduce its behavior on more complex elements by
using the Jacobi identity and the decomposability of the action 51\]\2”]\[ . For example we
can show that

]\]\j[[-i_N([[nvm]?m]) = [é]\]\/[[([n7m])7m]
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by the following chain of equalities

5\\44+N([[ M+N

(=[[m,m], n] —[[m,n],m])
([, [m, m]] = [m, [n, m]])
N([ [m.m]]) — & ([m, [n, m]])
([, €877 ([m m))]) = €377 (I, €377 ([n,m])])

n,m],m]) =
+N

Sﬁ([n, xar([m,m])]) = xar([m, €37 ([n, m])))
= & ([, [m,m]]) — [m, &3} ([n, m])]
= [r([n, m]), 7] + [m, &8 ([n, m])] = [m, €3 ([n, )]
= [ ([n,m]), 7]

Definition 2.2.15. Given two R-Lie algebras M and N, we say that two actions
MM x N >N Y N x M — M

are compatible (see [37]) if the following equations hold

(Mn),,/ _ In

" = [ ], 01s)
("m)p/ = [n/,n].

Remark 2.2.16. The link between this definition and the compatibility condition in the

case of groups is given by the following general idea: the element ™n (resp. "m) has to

act as the formal conjugation of m and n in the coproduct would do. In particular in

Grp this amounts to requiring the equalities

{ ("m)n/ _ (nmn_l)n/,

(") gy ! (mnmfl)m/,

(2.16)

(see [15] for further details) whose internal translation is given by

&N (N@nwed@ ™) = d Y (an'a),
& (Mo ™) =ar™ (m'y ™).,

with © = nmn~! and y = mnm ™. Notice that these can also be seen as the commut-
ativity of the diagrams

kn Pl knr,NP1nr

(NOMPNY (af 4 NN MONPMNY (0r 4 N
sf&le l AN €M mMi l ey (217

MON ——— S N NoM — > M
&N &
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Besides (2.16)), we should also require the equalities
{("m)m/ _ (nmnil)m/

(mn)n/ _ (mnmfl) /

I

n,
or their internal version
o (N @med(@)") = Y (en'a ).
o (M@ o)) = NN (my ).
coming from the commutativity of the diagrams

kn,ablag kar,nbln

E%blM\L l AN §%I|71Nl l AN
MM ——m > M NbN N
XM XN

However, as one can easily check, these always hold for every pair of actions.
The same idea applied in Liep leads to the equations

{("m)n/ _ [n,m]n/7

(mn)m/ _ [m,n]m/7

whose internal version is given by the system

{g% ([€) ([n.m]) ,n']) = XN ([[n,m] ') ,
&N ([N (Im,m]) ,m/]) = N ([[m, m] ,m')

or again by the commutativity of (2.17)). By using the decomposability of the coproduct
actions one can show that these requirements are the same as (2.15)) in Definition [2.2.15
indeed we have the chains of equalities

[”’m]n’ =& Y ([[nym],n']) = [68 ([noml),n'] = [0, & ([m, n])] = [, "],

[m gMJrN ([[ma ’I’L] 7m,]) = I:gM([ma ’I’L]), m,] = [m/a 5]]\\/[[([’”” m])] = [m,a nm] .

Furthermore, in the case of Lier the other two equations

{ ("m)m/ _ [n,m]m/,

(Mn)p! = [m,n]n/,

are automatically satisfied: indeed by looking at their internal version
(37 ([n,m]),m'] = &3 ([[n,m],m']),
(& (Im.n]) '] = €37 ([, m] D).

one can see that they are precisely a consequence of the decomposability of the coproduct
actions shown in Definition 2.2.74]
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Definition 2.2.17. A crossed module of R-Lie algebras is given by (M, P, 0,1) where M
and P are R-Lie algebras, d: M — P is a morphism between them, and
: P x M — M is an action such that the diagram

XM

MxM-—M

6><1M\L
P

PxM-—M

10| ia

PxP——P
XP

commutes. That is, such that [m, m’] = ?™m/ and (Pm) = [p, d(m)].

Again by using the equivalence between actions and internal actions one can see that
crossed modules of R-Lie algebras are the same as internal crossed modules in Liep
according to Definition (see [67] for further details).

Proposition 2.2.18. Let M and N be R-Lie algebras. Consider two crossed module
structures (M 2> P,abyr) and (N 2> P,apy)

M

]l:

and construct two induced actions 1[1% and ’QZJ]]\E as follows:

N v

o Y,
M x N N N x M M
m wJVI m %
P x N Px M

These two actions are compatible.

Proof. We need to prove the equation "™n/ = [n/,”n] by using the crossed module
conditions [m,m’] = #™m’ and p(Pm) = [p, u(m)], and [n,n'] = Y™’ and v(Pn) =
[p,v(n)]. We have the chain of equalities

("m) 7 (m) s (") 1 () u(m)]

— —lum)p)],yr — v (*Mn) o w1,
= [—“(m)n,n’] = [n',“(m)n] = [n/,"n].

For the second equation, the reasoning is the same. O



2.2. COMPATIBLE ACTIONS OF LIE ALGEBRAS 63

Imitating what has been done in the case of groups in [75], [42], we are able to define
the Peiffer product of two Lie algebras acting on each other (this was firstly defined
in [59]).

Definition 2.2.19. Given two Lie algebras M and N acting on each other, consider
their coproduct M + N and its ideal K, generated by the elements

(nm) - [nv ’I?’L] and (mn) - [m7 7’L] 3
for m e M and n € N. We define the Peiffer product M =< N of M and N as the quotient
K>—> M+ N -5 MAN . 0 pq N,

By repeating what we did in Remark we can see that M = N is the following
coequaliser

k
G )

(NbM) + (MbN)ﬁM—I—N%>MMN
ENrHEN

Since K acts trivially on both M and N, we can define induced actions fM N and

JA\?NN of M N on M and N, that is such that the following diagrams commute

(M + NYM L2 (M 00 N)pM (M + NN L2 (A s NN
M \L&IZNN R \ngijN (218)
& IY; &N Y

We can describe these actions of the Peiffer product through its universal property, but

in order to do this, we need Lemma [I.1.38| and the Lie algebra version of Remark [2.1.7] -
Lemma [1.1.38 implies that gh1ys is the coequaliser of ( N, M)blM and (&3 + EMb1yy

and that gb1ly is the coequaliser of ( N, M)blN and (fM + fN )b1n. We want to use these

universal properties to define induced actions fM N and f% MN of M N on M and N
as in the next two diagrams
(kN M)bl "

kn,N Pl

(NDM) + (MbN))bM( ﬁ) (M + NHM —L2 0 (M w0 NYpM
€M+§N PLat MxN
m \/gM
M M

kN MYy
(kk ) N Py

((NDM) + (MON))PN ﬁ (M + N)HN —2N o (M s NN

(§M+£ )blN £]M><1N
M+N V4 N
N N

In order to do so, we need the following result.
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Proposition 2.2.20. The action §%+N coequalises (zi\;’%)blM and (&Y +EMb1,,. Sim-

ilarly, the action §JJ\V/[+N coequalises (Zz]x)blj\[ and (€Y + b1y .
Proof. We need to show that
kn
(e onar ) ) = 6 (@ + &)p) ) 219

ke,

holds for each element s € ((NbM) + (MbN))bM. By Lemma and Remark
it suffices to check this for the generators of the form s = [z, [...,[z1,m]--]] with
x; € NbM or z; € MbN and ™ € M. This means that to prove it suffices to show
the equality

ar (ows [ [l 1) = & (le(an), [ [e(an), m] - 1]) (2.20)

where
(a1) = eM(z;) if m; € MHN,
' EN (i) if 2 € NDM.

In order to see this, we can use the decomposability of the action §AA§+N on both sides
of (2.20]) obtaining that the one on the left becomes

A (g™ (1 () - 1)1)

whereas the one on the right becomes

A (el &7 (L 5 (et ml) - 1)1)
This means that it suffices to show
Y ([wm]) = &Y ([e(x),m])

for x € MbN or x € NbM, but this is given again by decomposability of 51\1\5+N'
Finally, we repeat the whole reasoning with 511‘\?[ A O

Proposition 2.2.21. We have two crossed module structures
(M 25, M1 o0 N, 119N (N 25 M s N, )N

where the actions of the Peiffer product are induced as above and the morphisms ly; and
Iy are defined through the compositions

M+ N (2.21)
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Proof. We will prove the claim only for §%NN , since the proof in the other case uses the

same strategy. We need to show the commutativity of the following squares

MbM X M
o
MxN
(M »a N)oM M

1M><NblM\L ilM

(M 50 N)p(M = N) ———> (M 51 N)

XM

For what concerns the commutativity of the upper square, we have the chain of equalities

N o (LabLar) = 377N o (qrd1ar) o (inblnr)

=& o (imblw)

= XM
given by the definition of the coproduct action and of the Peiffer product action.

As for the lower square, we can precompose with the regular epimorphism ¢b1,;: this
shows that the required commutativity is equivalent to the equation
qo xam+n © (1ing) = qoipr o &Y.

Consider a generator [sg,[...,[s1,m]---]] € (M + N))M with m € M and
sj€ M + N or s; € M (see Lemma and Remark [2.2.8): we want to show that

0 (S (s LTl 1)) =g s fsnm] 1) (222)

We are going to prove this by induction on k:

o If k = 0 we trivially have
a (€47 (m)) = q(m);

e Suppose that (2.22]) holds for j < k. Then by using the decomposability of {%J’N
and the equality

q([s,m]) = a(knr([s,m])) = q (€21 ([s, m]))

induced from the definition of the Peiffer product as coequaliser, we have the chain
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of equalities

a (6 (e Lo Tsrm] 1)

o6 (o G ]))
o[l - ])

q ([sw, [, &3 (Lsr,m]) -+ ]])
= [q(st), [ q (€37 ([s1,mD) -+ ]]
=la(sk), [ q([s1.,m])---]]
=q([sk, [ [s1,m] - ]]).

Notice that the induction hypothesis is used for the equality on the second line,
considering 37TV ([s1,m]) as m’ e M. O

Furthermore we know that the actions ¢/ N and &N 37 are in turn induced by ﬁM “N and
§JJ‘V/MN through the morphisms I and [, that is

MON MY (M s NN NoM YN (0 e NYoM
£AI><1N \LgMMN
3 l N R\ "
N M

commute. This can be proved by using the definition of the coproduct actions and the
commutativity of diagrams (2.18]) and -

Putting together Proposmon [2:2.18 and Proposition [2:2.:21] we find the following
characterisation of compatible actions.

Theorem 2.2.22. Consider two Lie algebras M and N acting on each other. These
actions are compatible if and only if there exists a Lie algebra L and two crossed module
structures (M £ L,abp) and (N 2 L,on) such that the action of M on N and the
action of N on M are induced from L and its actions, through pu and v. O

2.2.3 The Peiffer product as a coproduct

As an additional result we want to show that the coproduct in XMod/ (Lier) can be
obtained through the Peiffer product: this coproduct has already been characterised in
a different way in [24] by using semi-direct products instead of the Peiffer product, but
this approach generalises the one used for XMody (Grp) in [I3]. Consequently, we also
obtain that the Peiffer product defined above (and hence the one from [59]) coincides
with the one defined in [30] when restricted to Lieg.

Definition 2.2.23. Given a pair of actions of L respectively on M and on N, we can
define an action of L on the coproduct M + N by imposing the equalities

bm ifs=meM
ls:={1p ifs=neN
[131,52] + [51,l52], if s =1[s1,82]e M+ N
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and by extending the definition by linearity. In order to see that this is well defined it
suffices to use Lemma and induction on the length of s € M + N.

Proposition 2.2.24. The action Yy n restricts to an action on K. Consequently it
induces an action YN of L on the quotient M < N.

Proof. Let us show that 'k lies in K (that is ¢ (k) = 0) as soon as k € K. In order to
do this, it suffices to prove it for the generators

("m) — [n,m] and (Mn) — [m,n],

We prove it for the first one since the reasoning can be repeated for the other one:

a("C'm = nmD) =a (' ('m) —q (" ([n,m))

(“(" m)+a (0 () = a (I'nm) = a (o, 'm)
a(0m) +a([n'm]) a (') = a (o, ')
o ("m) = a (['nmi)

—q ((ln)m _ [ln,m]) -0

For the second part of the claim it suffices to apply Theorem 5.5 in [69] and use the fact
that, as shown in [64], Liep is a strongly protomodular category in the sense of [7]. O

Il I
S

Proposition 2.2.25. If in the previous situation the actions on M and N are part of
crossed module structures (M 2> L, Yar) and (N 5 L,abn), then also the induced action
on the Peiffer product is part of a crossed module structure

2l

(M > N = L,Ypran).

Proof. Since ¢: M + N — M = N is an epimorphism, it suffices to show that for each
s,8' € M + N and for each [ € L the equalities

() ) o2 C)e]) o) =at

We are going to show them only in the case in which s = [m, n] and s’ = [m/, n/], but
the reasoning easily generalises to give the induction step needed for a complete proof
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by induction on the complexity of s and s’. Notice that we already have the equalities

(&) Ctmont) = () ([mn] « [n'a])
=[x () w0 = [om.o ()

= [ll; p(m)] s v(n)] + [u(m), [I, v(n)]]
= [L, [n(m), v(n)]]

hence by applying ¢ to both sides we obtain the first equation. As for the second one we
have

a (DD () = g (0 (0, ] ) =0 (40 im, ] ) )
[

Proposition 2.2.26. Given a pair of L-crossed modules

(MLL7¢M> and (NLLal(/}N)a

B

their coproduct in XMody, (Liegr) is given by (M < N = L prn)-

Proof. Suppose we have a crossed module (Z 2 L,1z) with two morphisms (zas,17)
and (zn,17) as in the following diagram

(M 5 L) (N % L,yn)

(Ip,1r) (In1r)

m
(M > N ﬂ) L, Yran)

(2as1,1L)

(|ZZ%‘71L)

(Z = L7¢Z)

We want to construct the dotted morphism of crossed modules such that the two triangles
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commute. The first step is constructing the arrow ’Zv\f ’ through the diagram

(:N M)
(NbM) + (MbN) % M+N—% S MxN
€N+l -
ZN
(1) A

In order to do so we need to show that (Zx)

is done by using the Peiffer condition for (Z % L,1)z) and the fact that (zj7,17) and
(zn5,11) are morphisms of crossed modules:

EMY | (eN L oMy ZMOf]]\V/1> B <¢ZO(VbZM)>
<2N> (Ehr +EN) <ZN oM Yz o (pbzn)
B bz (2b1) o (2nbzar)
=vz° <usz) =vz° <(zb1) (szzN)>
=1z o(2bl)o (ZNbZM> =Xz o0 (szzM>
Zvben ZybzN

- () ey = ()« (1),

ZN

coequalises the arrows on the left. This

Finally we need to show the commutativity of the diagrams

1b|z]\/1 |

Lh(M = N) —% IhZ Mx N7
meN\L \Liﬁz | |\L l
M>xN——>Z L——1L

To obtain the second one it suffices to precompose with the epimorphism ¢

- ()-(2)-

whereas for the first one, we need to use the fact that Liegr is an algebraically coherent
category, and hence 1bly; and 1bly; are jointly strongly epimorphic, since Iy, and Iy are
so (see Theorem 3.18 in [29] for further details). This means that in order to prove the
claim, we only need to check the commutativity of the outer rectangles

7
v

M
ZN

°q

lb] 1|*M
IhM 2 Ih(M s N) —2% [h7 ION 2 h(M s N) —2% Lhz
wMi meNl \sz ¢N\L ’l/iMle le
M——sMwxN—sZ N sMwxN—>7
Inr |2 In d

which is given by hypothesis. O
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2.3 Compatible actions in semi-abelian categories

From now on we will consider A to be a semi-abelian category in which the condition SH

holds.

We are going to give a definition of compatible internal actions which comes from
Definition [2.1.1] and Definition 2.1.3] with some differences that we will explain in the
rest of this section. Notice that, as explained in Remark for a pair of actions, being
compatible is a property, and not additional structure.

Definition 2.3.1. Consider two objects M, N € A which act on each other and on
themselves by conjugation and denote the actions as

xa: MbM — M xn: NbDN - N
¥ MbN — N el NoM — M.

We say that the actions f% and fﬁ are compatible if there exist two actions
M+N. (M + NN - N MAN (M + N)HpM — M

N :

“induced” from ff\v/[, 5]\]\/[1 and the conjugations, that is such that

NoM MM (0 4 N M MON N (Af 4 NN
gﬁ l§%+N R lgkfuz\f
M N
MbM M1 (A 4 Ny M NON NI (A 4 NN
XM \L i x lgkaN (CA0)
M N
Mo N oM™ (0M + NpM Mo No N2 (M + NBN

N,M M4+N M,N MaN
S18 j/ \Ll‘/ﬁ 513 '

NoM————>M MoN——>N
M N
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with the additional property that the following diagrams commute

N M
(NDM) + (MON))pM — NI N
@ﬁﬁﬁhﬂ/ lﬁ*N (CAM)
(M + N)pM — M
M+
N M
(NDM) + (MON) N — MNP NN
(G| |t (CAN)
(M + N)N e N

This definition obviously implies the one given in the case of groups, but we will see
later (Corollary [2.3.11]) that in Grp the two definitions coincide. The difference between
these two definitions is threefold.

e First of all, in the case of groups we know that the actions 51\]‘/4[“\[ and f% N of the
coproduct are given (uniquely) for free as soon as we have the actions 51\]\9 and 5]1‘\;[
of the single components (together with the conjugation actions). The conditions
on the base category required to obtain such a construction for free are still not
well characterised.

e The fact that the two squares in involving the ternary cosmash products are
commutative for free in Grp and Lier. These commutativities are a key require-
ment to have the uniqueness of the coproduct action once we fix its components,
but right now it is not clear to us what are the conditions that the category A
must satisfy for the commutativity of these squares to be implied by the other four
triangles in (CAO).

e Similarly, we see a difference between diagrams (CA.M|) and (CA.N|), and their
group version given by . In particular the former two can be decomposed into
the latter, together with and with additional conditions involving higher order
cosmash products and bemolle: also this aspect still needs further investigation.

Remark 2.3.2. Notice that in the situation of the previous definition, the coproduct
actions §%+N and fjj‘v/f N are uniquely determined by the commutativities of (CAO) due
to Lemma [[.1.42]

Proposition 2.3.3. Given a pair of coterminal crossed modules

(M5 L) (N5 L,yy)
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we can define actions 51]\\;[ and fj\]\g through the diagrams

&
MbN NbM M

LbM

These actions are then compatible in the sense of Definition [2.3.1}

Proof. First of all, notice that f% and 51\]\9 are actually actions due to Remark [1.2.11
Now, in order to show that they are compatible, we need to define the coproduct actions

MAN (M + N)HN - N MAN (M + N)pM — M

such that diagrams (CAO), (CA.M) and (CA.N) commute. These are defined as the

compositions

1M+N 1\/I+N

(M + N)bM (M + N)»)N

m/ m/

Once again the fact that they are actions is given by Remark [1.2.11] In order to show
that the four triangles in (CA0) commute, we simply compute the following

a0 (iadlar) = ar o ((5)“1\4) o (indlar) = Yar o (Udlar) = X,
MV o (indlas) = ar o <<5>b1M) o (inblar) = s o (vhlyy) = &,
N Vo (inbln) = ¢y o <(5)b1N> o (iad1n) = ¢ o (ubly) = &N,
N Vo (indln) =N o <(5)b1N> o (indly) = ¢n o (hln) = xn,

by using the crossed module conditions. For what regards the first square in (CAQ), we
use the diagrams

N,M

S o
Mo N oM™ (0 + NpM MoNoMa2s NoM—S 5
poyolMi i(#*‘”)blM 1M<>1/<>1MJ/ u<>1MJ/
LOL(}MJLL]W (L+L)bM MOLOMWLQMWM
SQL,lMi l(lL)blM NOlLolM\L e
, 1r
LoM ' LhM LoLoM?LoMﬁM

LM 2,1
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induced by naturality and by the crossed module conditions (see Theorem 5.6 in [51]),
to obtain the chain of equalities

N o gvN =Y o ((5) b1M) O JM,N,M

:@Z)MoiL’MoSQL’IMo;LOVOIM

o¢N N,M
= fMOSLz

With the same reasoning we can show the commutativity of the other square in (CAO).
Finally we need to show the commutativity of (CA.M), that is the fact that &y "
coequalises the maps

k
(kﬁ’,%)blM

(€l +EXb1n

but we have the chain of equalities

]\J‘A/{+N o (gﬁ + {%)blM =y 0 <'Z> plar o (((Yar o vblpg) + (Y o publn)) blay)
= e (1) o (Gar o 1an) + (o 0 1) ) o1 )
o (motaowly
=M (Voz/;N oub1N>b1M
_ o (XE OV
v (XL o ubV>b1M
_ () OkN,M>
= wM O <(/Ij) 5 k:M’N bl
o () (e
1% kM,N

= ]]\\/[/[+N o <(kN’M> b1M> .
ke,

With the same reasoning we can show that (CA.N)) commutes. O

Let us consider the construction of the Peiffer product given in (2.8)) as a definition
in the general case.

Definition 2.3.4. Given two objects M and N acting on each other with actions 51\]\/[[
and 511‘\,4 , we define their Peiffer product M = N as the following coequaliser

(N2)
(NOM) + (MON) ———3 M + N — s M = N (2.23)

NN
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An equivalent definition of the Peiffer product of two actions can be given through
the following proposition, which characterises it as the pushout of the two semi-direct
products induced by the two actions.

Proposition 2.3.5. Given a pair of actions €X' : MbN — N and £3,: NoM — M we
can obtain the Peiffer product M < N as the pushout

O'EAN/I
M+N—MxN
ray| S mes (2.24)
\'4 \f\/
N xM-— Mx N
AN x M

of the two semi-direct products.

Proof. Recall that the semi-direct products are defined as the coequalisers

lMogjyj OeN

NbMﬁM+N%>M>«N

ino&N

sz:::3M+N———»NxM

By definition we know that g coequalises each of these pairs of maps, and hence we obtain
the unique regular epimorphisms gy and qaswn making the triangles

o.M
M N N M+N—%NxM
\ J/q[\/INN \ \LCINNJ\J
NV ™\ Y
M N M < N

commute. Now in order to prove that (2.24)) is a pushout, suppose there exist f: M xN —
Z and g: N x M — Z such that v := fo OeN = g0 0en. It suffices to show that
coequalises the maps defining ¢:

<kNM> (’yokNM> (foagzv okN7M>
’YO ) — ’ — M
kN v o kN gooeu o kv
B (foaéﬁoiMo§ﬁ> B <fyo7jMo§]\A/fl>
goaglz\\?oiNO§% ’YOiNofzj‘v/I
=70 (& +EN).

This gives us a unique map v': M < N — Z such that ¥ oqyuny = f and v oqnxun = ¢
because Ten and Ty are epimorphisms. O
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The idea behind the Peiffer product M > N is that it should be the universal object
acting on M and N with two crossed modules structures, as soon as these two objects
act on each other compatibly. In particular, if we are in the situation of two compatible
actions, we have induced coproduct actions whose precrossed module conditions

§M+N £M+N
(M + N)pM —"—> M (M + N)pN —"— >N
1]vI+Nbi]\1\L \LiM 1M+NbiN\L \LiN (2.25)
(M+Np(M+N)—>M+N (M+NpM+N)—>M+N
XM+N XM+N

are not satisfied (whereas the Peiffer conditions already hold for free).

Hence we want to do two things: we want to define actions of the Peiffer product
on M and N induced from the coproduct actions, and then we want to show that the
postcomposition with the quotient defining the Peiffer product makes the previous square
commute, obtaining two crossed module structure.

Again by using Lemma and Remark we deduce that in order to define
the actions E%MN and {f\v/[ “N of the Peiffer product as in

i

(NDM) + (MON)OM ———% (M + N)pM —L2 5 (M 00 N)pM

(=¥ o e (2.26)
M+ N V4 M
M

M
(2o )o1 b
((NDM) + (MbN))PN ——% (M + N)PN —" 5 (M s NN
(eN+eM 1y iy (2.27)
vty ]\\/7

it suffices to show that 51‘1\//[[+N coequalises the parallel maps in and that 5% +N
coequalises the parallel maps in . But these are precisely given by and
by (CAN).

Now we have the desired actions of the Peiffer product, but in order to obtain the
crossed module structures we need to show that postcomposing with the quotient ¢ makes
the diagrams commute. In fact we are going to prove more than this: the Peiffer
product is the coequaliser of those maps.

Definition 2.3.6. Given a pair of compatible actions 51\]\9 and f%, we define the strong
Peiffer product M g N as the coequaliser in the diagram

XM+N (i%:xi:l;\f)
((M+N)bM)+((M+N)bN)jM+N$>MM5N (2.28)
€£§+N+§%+N

Remark 2.3.7. Tt is important to notice that in principle there is a huge difference between

the coequaliser in (2.23) and the one in ([2.28)):
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e the latter makes sense only if the two actions are already compatible (otherwise
the existence of the coproduct actions is not guaranteed) and it is directly asking
that the Peiffer product coequalises the compositions in ([2.25));

e the former makes sense even when the two actions are not compatible and it is
obtained following the ideas from the particular compatibility conditions in the
case of Grp through Remark and Remark

This means that taking as a definition of M < N, we would not immediately have
that the Peiffer product is the universal way to coequalises the compositions in (2.25).
Obviously if we precompose the maps in with (indlas) + (ipb1n), we see that gg
coequalises also the maps defining ¢

k
aso (@ + ) = as o (1)
M,N

but for the converse we need the following proposition.

Proposition 2.3.8. Consider two actions {% and 5}\1\//{ which are compatible in the sense

of Definition m Then the two coequalisers (2.23)) and (2.28]) are isomorphic, so that
the Peiffer product M v N coincides with the strong Peiffer product M =g N.

Proof. In order to show the isomorphism between the two Peiffer products it suffices
to show that ¢ coequalises the maps defining ¢g: since the converse already holds due
to Remark [2.3.7] we obtain the thesis by the universal properties of the coequalisers.
Recalling Lemma [I.1.42] we just need to show that g coequalises the two compositions in

(MbM)+(NOM)+(M o N o M)+ (MbN)+(NbN)+(M o N o N)
1M+NWM)

inhlag imbly
inblayr |+ | inbly
JM,N,M JM,N,N XM N(
v PN i

(M + N)»M) + ((M + N)HPN) gMAN L (MAN M+N

By the universal property of the coproduct we can consider each component separately
and since the last three are similar to the first three (it suffices to change the role of M
and N), we are going to examine only the first three.

e Precomposing with the inclusion of MbM, we obtain

ISVESNI3YE

- ) o1 0 (iadlar) = q o xar+n © (iarbing)
Ipm4nbin

qOXM+N<
= qOinOXM
= qoiMo‘f%JrNo(iMblM)

— qo (&N + e *N) oy o (ingd1ur).
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e Precomposing with the inclusion of NbM, and using the definition of ¢ we obtain

Lyenbing) . . _ L
4O XM+N ) oidro(indlar) = qoxamen o (inbing)
Ipmnbin
= qoknm
= qoin o€l

=qoiy o&%JFN o (inb1py)

—go ( MEN g]AV“N) oy o (inblar).

e Precomposing with the inclusion of M ¢ N ¢ M, we obtain

Ly NDing

. ) 0110 jp,NM = qO0 XM+N © (a4 nDing) © v N v
Ly nbin

QOXM+N(

=qOhN7MOS{\’[éM
:quN,MOiN,MOS{YéM
:quN,MOiN,MOS{YéM
:qoiMogz\]\/[[oiMMoS{\gM
=qoin o &y o g

=gqo ( 5\\/[/[+N —l-f]]tf/“_]v) o1 OjM,N,M- O

This means that M g N = M » N and that ¢ is the universal map making (2.25))

commute through postcomposition.

Our aim now is to show that &3 and €}/**N are indeed actions and that they give

to M < N two crossed module structures over M and N.

Proposition 2.3.9. The maps 5]]\\/[/MN and 5%“‘1\7 are internal actions and we have two
crossed module structures

(M 25 M 50 N, €)Y (N 2 M ba N, )
where the maps lyr and Iy are defined through the compositions

M N

iM iN

M+ N

Iy IN
o
\
M N
Furthermore the compatible actions induced by these crossed module structures as in

Proposition coincide with actions §]\]\g and 5%.
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Proof. We are going to prove the thesis only for §M PN

be repeated for 3N and ly.
In order to see that &3 i

and [p; since the reasoning can

is automatically an action it suffices to follow these steps:

e from diagram

M
M
M+N
77M+ \L

(M + NpMEEYS O + N) + M

qblM\L llﬁ'lM

(M s N MM 00 NY + M

M~ N (qbl ) M+N

we can see that 7, ony, " and consequently the first axiom

M>N M~N _ «M=N M+N M+N M+N _ .
M °Nm A oty omy N =&y omy T = 1

e by using the fact that ¢b(gblys) is a regular epimorphism (due to Lemma [1.1.35))
we can show the second axiom

%MN OM%MN _ ]\]\//[[MN ( MNbeMN)

through the commutativity of the outer rectangle in

M+N

(M + N)D((M + NpM) s (M + N)pM
qb(qblM)l \qulM
(M 3 NY((M ¢ N)pM) 2 (M s N)pM

1A{MNb§%NN\L \Li%NN
(M > N)bM M

MxN
é]bf

given by the second axiom for the action fM N

It remains to prove that (M — M > N, §M N} is indeed a crossed module. We need
to show the commutativity of the following squares

MbM X M
MpaN
[ _
(M > N)bM —2 M

(M > N)b(M > N) i (M > N)
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For what regards the commutativity of the upper square we have the following chain of
equalities

MAN o (b 1ar) = XN o (gh1ar) o (inrb1ar)

M+N
:é.M

= XM

o (ipblar)

In order to show the commutativity of the lower square, consider the following diagram

(M + N)pPM
A
qblM\L
\V4 5M><1N
(M NObM —2— > M

lMMNblM\L ilM

(M > N)b(M N)W(M > V)
and since gbl,; is a regular epimorphism, it suffices to show that this last one commutes.
To deduce this, we decompose it as

M+N
£+

(M + NoM — > M

1M+NbiM\L liM

(M+Np»M+N)—>M+ N

XM+N

| l

It is trivial to check that the lower square commutes and thanks to this, by using Pro-
position [2.3.8] we obtain that the whole rectangle commutes.

Finally we know that the actions & %I and & ]\]\/f[ are in turn induced by 5% “N and 5% PN
through the maps ;s and [, that is

MON 2P (M e NN NoM B (0 e N M
e e
N M

commute. This can be proved by using the definition of [;; and [y and the commutativity

of diagrams (CAT), (2.:26) and ([2.27). O

Combining Proposition and Proposition [2.3.9] we obtain the following charac-
terisation of compatible actions.
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Theorem 2.3.10. Two actions 5% and Q\]\g are compatible if and only if there exists an
object L and two crossed module structures

(M 5 L, ) (N = L)
which induce the given actions via the commutative triangles

N
£]M

NbM M

M
N N
N LbM

b

MbN :

L

Consequently we obtain that our definition of compatible internal actions is indeed a
generalisation of the specific ones in the group and Lie algebra cases.

Corollary 2.3.11. In Grp Definition coincides with Definition [2.1.5.
Proof. This is a corollary of Theorem [2.3.10| and Proposition [2.1.10] O

Corollary 2.3.12. The definition of compatible actions of Lie algebras given in [37]
coincides with Definition restricted to the category Lieg.

Proof. This is a corollary of Theorem [2.3.10] and Theorem [2.2.22] O

2.3.1 Universal properties of the Peiffer product

The Peiffer product M < N is the universal way to associate a coterminal pair of crossed
modules to a pair of compatible actions.

Proposition 2.3.13. Consider a pair of compatible actions 511‘\,4 and 51\]\9 and all the pairs
of coterminal crossed modules inducing them. The pair given by the Peiffer product is
the universal one, in the sense that for each other pair of crossed module

(M5 L) (N5 L,yy)

mducing f% and 51\]\} there exists a unique morphism |5| M »x N — L making the
diagram
M

ZM\L

N5 Mo N

14

commute.
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Proof. It suffices to show that (’lf) M + N — L coequalises the two maps defining
M < N. Indeed that would give us a unique map |‘If | such that

M+N-—21sMwN
*) v

and then by precomposing with the inclusion we would get

= (o) = oo,
= oip =1 |ogoiy =\ |oly,
v v v
~(0) e oo =,
v = oiy=1| |ogoiny=| |oln.
v v v
Therefore we have to show that the two compositions
k
b )
(NbM) + (MbHN) M+ N————1L
eN+eM

are equal and this is obtained through the chain of equalities

K\ o (eN L My _ potbn ovbln) (M) o knou _ (M, kn v
(1/) (£M+§N)_<VO¢NOMb1N>_<(5)OkM7N>_<V> <7<5M,N>' 0

Lemma 2.3.14. Consider two different pairs of coterminal crossed modules

M M
J# J»
N ——L N—L

v

such that they induce the same actions between M and N, that is such that the following
diagrams commute

l/blM ;LblN

NbM —= LbM MbN —= LbN
I/Iblnfl \511\\2 l’[l}M ulblN\L \f%[ \LwN
“\ N
LM ——> M )N — >N
(oY YN

Then they induce the same Peiffer product M = N.

Proof. The induced actions f%”N and fg\]/\f N (resp. 5% +N and 5?{‘,4 V) coincide when
restricted to MbM, NbM and M o N o M (resp. MbN, NbN and M ¢ N o N), therefore
it suffices to use Remark to obtain that £37 7Y = ¢iHN (resp. €TV = ¢+,
As a consequence they induce the same Peiffer product and the same crossed module
structures. O
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Remark 2.3.15. We know from Proposition 3.2 in [30] that, as soon as (M £ L,4)
and (N % L, 1) are (pre)crossed modules, we have induced actions of L on M x N and
N x M with corresponding (pre)crossed module structures. In general this is not true
for M v« N, but if A is algebraically coherent, by Proposition 4.1 and Proposition 4.3
in [30], and by Proposition we obtain that our definition of Peiffer product coincides
with the one given by Cigoli, Mantovani and Metere: consequently M < N is endowed
u
with a precrossed module structure (M = N M L,Ypan) as soon as M and N are so.
Finally when A satisfies also the condition (UA), Theorem 5.2 in [30] tells us that the
Peiffer product precrossed module is actually a crossed module as soon as M and N are

so, and it is the coproduct of (M £ L. 4pps) and (N % L, 1y) in XMody (A).

Remark 2.3.16. We do not know whether L acts on M < N when A is not algebraically
coherent. If so, it is also not clear to us whether this action defines a precrossed module
structure.



Chapter 3

Non-abelian tensor product

The aim of this chapter is to explain how, in the context of a semi-abelian category, the
concept of an internal crossed square may be used to set up an intrinsic approach to
the non-abelian tensor product. Both concepts were originally introduced for groups by
Brown and Loday in [I5] and for Lie algebras by Ellis in [37].

A crossed square (of groups) is a two-dimensional crossed module, in the following
precise sense. The internal groupoid construction may be repeated, obtaining the cat-
egory Grpd?(Grp) = Grpd(Grpd(Grp)) of internal double groupoids in Grp. Given
such an internal double groupoid

. —
Z <—=¢u

du

X
B

T : T

cr erldr, CR [ER| dR

( dp F
—

Y <—-ep L

D

R —
C

viewed as a diagram in Grp (in which the composition maps are omitted), we may take
the normalisation functor vertically and horizontally to obtain a commutative square

P pm M

S

NﬁL.

The given double groupoid structure naturally induces actions of L on M, P and N (and
consequently also actions of M on P and N, and of N on P and M) that satisfy some
properties. One may now ask, whether it is possible to equip a given commutative square
of group homomorphisms with suitable actions (and, possibly, additional maps), in such a
way that an internal double groupoid may be recovered, thus extending the equivalence
XMod ~ Grpd(Grp) in order to capture double groupoids in Grp as commutative

83
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squares equipped with extra structure. The concept of a crossed square [15] answers this
question, and does indeed give rise to a category equivalence XSqr ~ Grpd?(Grp).

Internal crossed squares answer the same question, now asked for a different, general
base category A, which we take to be semi-abelian. The work of Janelidze [55] provides
an explicit description of internal crossed modules in A, together with an equivalence of
categories XMod(A) ~ Grpd(A) which reduces to the well-known equivalence when A =
Grp. Since the category of internal crossed modules in a semi-abelian category is again
semi-abelian, this construction may be repeated, and thus we see that XMod?(A) ~
Grpd?(A). We may now write XSqr(A) := XMod?(A) and say that a crossed square in
A is an internal crossed module of internal crossed modules in A. Indeed, any such double
internal crossed module has an underlying commutative square in A, which the crossed
module structures equip with suitable internal actions in such a way that an internal
double groupoid may be recovered. The internal action structure is, however, far from
being transparent, and thus merits further explicitation.

Yet, we shall see that even this tentative and very abstract general definition is
concrete enough to serve as a basis for an intrinsic approach to the non-abelian tensor
product. Originally this tensor product (of two groups M and N acting on each other
compatibly) was defined in [I5] via a presentation in terms of generators and relations.
In Chapter [2] we investigated how to extend the concept of a pair of compatible actions
to the semi-abelian setting, showing that such a pair of compatible actions is equivalent
to the datum of a third object L and two internal crossed module structures p: M — L
and v: N — L. According to Proposition 2.15 in [I5], given two L-crossed modules p
and v, and a crossed square of groups

Pm
— M

P
w |
NﬁL

the crossed module

ppy =vpN: P — L

happens to be the tensor product of M and N (with respect to the actions of M and N
on each other, induced by the crossed module structures of u: M — L and v: N — L) if
and only if the crossed square is the initial object in the category of all crossed squares
over the given crossed modules p and v. This property of course determines the tensor
product, and it may actually be taken as a definition.

Concretely this means that in a semi-abelian category (satisfying (SH)), the non-
abelian tensor product of two objects acting compatibly on one another may be con-
structed as follows.

1. Consider the internal L-crossed modules u: M — L and v: N — L corresponding
to the given actions.
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2. Use the equivalence XMod(A) ~ Grpd(A) to transform these into internal group-
oids

M x L
cM dyr
dn
T~ —
N xL<———=n L
cN

3. Take the pushout of ex and ey to find the double reflexive graph

cr, le dL CM T d]w
( dn T

N x L <——en L
cN

4. This double reflexive graph is not yet a double groupoid; it may be reflected into
Grpd? (A) by taking the quotient of @ by the join of commutators

[KCL’ KdL] 4 [KCU’ KdU]‘

5. The resulting internal double groupoid normalises to a crossed square

M®N

T
MN-———M
o
N——I,

whose structure involves a crossed module M ® N — L. By definition, this is the
non-abelian tensor product of M and N with respect to the given pair of compatible
actions.

By known properties of the non-abelian tensor product for groups and Lie algebras,

this reduces to the classical definitions in those cases (Proposition and Proposi-

tion [3.2.17).

This chapter is devoted to exploring some basic properties of the definition, and

showing that in some cases, the tensor product may be used to give an explicit description
of an object of XSqr(A) as a square

Pm
— M

P
pwl I

N——1L
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in A equipped with suitable actions and a morphism h: M @ N — P. This extends the
explicit descriptions for groups and monoids to the general setting. It is, however, not
yet clear to us whether this description is always valid (see Section .

The chapter is organised as follows:

e In Section we recall the notions of double reflexive graphs and internal double
groupoids; we construct the reflection into Grpd?(A) of a particular type of double
reflexive graphs that we will encounter in the following; then we give a quick recap
on the basic theory of crossed squares.

e Section is devoted to the non-abelian tensor product: we explain in detail how
the tools from the previous section may be used to obtain an intrinsic approach
to the non-abelian tensor product in any semi-abelian category satisfying (SH); we
show that this approach coincides with the already existing ones in simpler cases
like Grp and Lieg.

e In Section We give a (partial) description of internal crossed squares in terms of
the non-abelian tensor product, by introducing the new definition of weak crossed
square and showing some conditions under which the two notions coincide.

3.1 Two-dimensional background

In this section and in the following ones we will always assume A to be a semi-abelian
category with the (SH)condition, even if for most of the results this is not strictly neces-
sary.

3.1.1 Double groupoids and double reflexive graphs

We recall the categories of double groupoids and double reflexive graphs, and describe
how one is embedded into the other as a reflective subcategory.

Definition 3.1.1. A double reflexive graph in A is a reflexive graph in RG(A). This
means that the category RG2(A) is defined as RG(RG(A)).

Lemma 3.1.2. Every double reflexive graph can be depicted as a diagram of the form

di
-—
Ay %27 B
CA da cB dp (31)
r do r
A() <—=o By

co

in which every pair of adjacent vertices form a reflexive graph.
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Proof. In order to prove this it suffices to explicit the definition. Consider two reflexive
graphs in A

A= (A1, Ap,da,ca,en) B := (B, By,dp,cp,eB)
and the double reflexive graph
C = (B, .A, d, C, 6) = (B,A, (dl,do), (01,00), (61,60)).

By writing diagrammatically the commutativities that it has to satisfy, we easily see that
they are the same conditions for the diagram (3.1) to commute. O

Definition 3.1.3. A double reflexive multiplicative graph in A is a reflexive multiplicative
graph in RMG(A). This means that the category RMG?(A) is defined as RMG(RMG (A)).

Lemma 3.1.4. A double reflexive multiplicative graph can be depicted as a diagram of
the form (3.1) in which every pair of adjacent vertices form a reflexive multiplicative
graph (that is it is endowed with a multiplication).

Proof. By using the previous result, we say that a double reflexive multiplicative graph
is given by a diagram of the form (3.1)) endowed with multiplications
AleoAlgAl leBOBlgBl

and with a multiplication (mg,m1): A xg A — A in RMG(A) given by

m m
AlelAl%Al AoXBvoHOAO

It is easy to show that also these two maps satisfy the properties of multiplication for
a reflexive multiplicative graph: this means that in the diagram (3.1)) not only are the
vertical reflexive graphs multiplicative, but also the horizontal ones. O

Definition 3.1.5. An internal double groupoid in A is an internal groupoid in Grpd(A).
This means that the category Grpd?(A) is defined as Grpd(Grpd(A)).

Corollary 3.1.6. Double groupoids are diagrams of the form (3.1]) in which each reflexive
graph has an internal groupoid structure.

Proof. Being A a Mal’cev category, RMG(A) is Mal’cev as well (see [44] for more details),
and since the isomorphism RMG(C) ~ Grpd(C) holds for each Mal’cev category C, we
have

Grpd?(A) ~ Grpd(Grpd(A)) ~ Grpd(RMG (A))
~ RMG(RMG(A)) ~ RMG?(A).
This means that a double groupoid is a double reflexive multiplicative graph, which by

the previous lemma is just a square of reflexive multiplicative graphs, which in turn is a
square of internal groupoids. O
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3.1.2 Double groupoids induced by particular double reflexive graphs

Consider a double reflexive graph

%

A<—-ev
I

crL ler| dy, c
(‘ dp

C <—ep

:U j
O——m——w
S
=
—~
w
N/

|

{

such that the reflexive graph on the right and the one at the bottom already admit a
multiplicative structure, that is such that

[KdR7KCR]% = 0 [KdD7KCD]g = 0

We want to construct an induced double reflexive multiplicative graph by means of the
following construction.

Construction 3.1.7. Consider the diagram

S
SvT is
qr A
T p” A > 5 (3.3)
q
as l@s
A4 AV
A A
S gr > SvT
where S and T are two normal subobjects of A such that
15 = kqg, i7 = kgp,
qs = Cig, qr = Cip-

Recall from Definition and Remark [[.1.22] that S v T is a normal subobject of A
with ¢ = kg, where ﬁ is defined as the pushout of ¢r along gqg, and ¢ is its diagonal:
this immediately implies that g = ¢;.

Now we are going to apply this result to the particular situation depicted in
with

S = [KdL’KCL] T = [KdU7KCU]



3.1. TWO-DIMENSIONAL BACKGROUND 89

So let us consider the special double reflexive graph depicted in (3.2]) and using Con-
struction |1.3.12| we define the maps dj;, c};, e, and d7, ¢}, €} as shown in the following
diagram

duy
A ey B
cu
d/
PRIy p—
o i —" ) —
<
q
cr ler| dy, as gs  (*1) (3'4)
1 Y dy;
4 o A il B
. U
S ar SvT
/!
A cy T
C/L er, d/L (*2) cZ e” d” (*5) CR er dp
ViV

C C C—o——= %GD

D

We want to define the dotted maps so that each square of parallel arrows in (3.4) com-
mutes. This means that the following must hold:

"o~ ’ "o~ /
dUQS = ay, 4T = ar,

"o~ /
CUqS = CU7 ¢rqr = Cr, (35)
"o o~ "o o~
ey = 4séy, €r = dgrey,.

Indeed notice that if holds, then not only do the three squares at (x1) and the three
at (*2) commute, but also the nine at (#3) (in order to show this it suffices to use the fact
that ¢ is an epimorphism). Furthermore we immediately have that ( SéT, B, dj;, cf;,efy)
and ( %, C,d],c],e]) are reflexive graphs.

We can define ef; and €] using , therefore it remains to show the existence of
the other four maps satisfying and that both the reflexive graphs just constructed
have a multiplicative structure, that is

[Kd'{ch’{J]QA =0 [Kd” K, ”]QA =0 (3.6)

SvT SvT

Let us define for example df; (the other three maps are defined using the same strategy).
In order to have the existence of such a map, we will take the following steps:

e we will show that dy oig =0,

e this will give us a map ¢: % — B such that ¢ o qs = dy = dj; o qr,
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e finally the universal property of the pushout will give us the map df;.

The only point that we need to treat more in detail is the first one since the others are
straightforward.
Consider the commutative diagrams induced by taking kernels vertically

K > K, K., > Kep,

Y L,

L

Q<—n<—— 4

——B A—">B
dy, ldR CL\L lcR
— D C—D
dD dD

The dotted maps give us a morphism of coterminal pairs
Kyg —>A<——K,,
v v
Kgp>—> B<—< K.,

which by Remark implies the commutativity of

(K, Koy )95 A

I

[Kap, Keplg>—> B

Finally it suffices to use that (B, D, dg, cgr, er) already admits a multiplicative structure:
hence [KdR,KCR]g >~ (0 and dy oig = 0.

The last step of this construction is the proof of the equalities : we prove only
the first one since the strategy for the second one is the same. Consider the diagram of
exact sequences

0 0 0

0 Kq~5 > Kd’ > Kd/l,J 0

Y

() I

0 Ky > 2 LR 59T 0
[
\4 \4 \

0 (1= B B——0
0 0 0
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Once again the fact that we have a regular epimorphism on the first row is given by

Lemma hence the REM-factorisation of gg o kg, is the one given by the square

(#x). In the exact same way it is possible to describe the REM-factorisation of gg o ke
Now we can apply Proposition to the diagram

Ky —> 8 «—<K,
U U

|

A
Kd//HS Tﬁun

obtaining that the induced morphism

Q Q
[Kay . K ]T —> [Kgy, Koy 1=4

SvT
is a regular epimorphism. But we know that

(K Ko 15 =0

e [FN\9)

by construction (see Construction [1.3.12]) therefore we deduce that

[Kgy, K12, =0

SvT

This means that (S =, B,dj;, ¢, ef;) admits a (unique) multiplicative structure. The
same reasoning works for (SéT’ C,d7,c],€]) giving us that the square (*3) in isa
double reflexive multiplicative graph.

Proposition 3.1.8. Consider a special double reflexive graph as in (3.2)), then the morph-
ism of double reflexive graphs

d//

%
X

A%ig B ST B
| | oww [l T
cr lerldy, CR IC 1D A // ! CRr [eRr| dr (37)
( dp F F
C<—-ep D %GD D
cD D

constructed in Construction[3.1.7 coincides with the unit of the adjunction between double
groupoids and double reflexive graphs induced by the adjunction between groupoids and

reflexive graphs (see Construction and Proposition .
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Proof. Consider another morphism of double reflexive graphs

dn
f—
'<—exn—— B’

L ISR
||

D C'<—es—= D

cs

J&

A<—=u

cr, T‘

c %ep

l

L

in which the codomain is a double groupoid. We want to define a map ¢: SViT — A
such that ¢ o ¢ = v and in order to do this, consider the diagrams

dU dL
A ey B A er, C
Yﬂ cu y cr,
L dy; W dr
— e
« T %e’U B « 5 < elL C
. —_— . —_—
o v ig o L \L
g er dn E s dw
Al Py B Al oW C’
CN cw

with the same notation as in (3.4). Here the dotted maps are defined through the
universal property of the unit of the adjunction between RG(A) and Grpd(A) (see
Proposition [1.3.13)). Now we can simply define ¢ by using the universal property of the
pushout

D><$ Sl

Now it is trivial to see that (‘: g) is a morphism of double groupoids and that it is the

only one such that
¢ B\ (a1l _(aFB 0
v lc 1p v 4d)

Corollary 3.1.9. Consider two groupoids of the form
B

A

C<—-ep—=D

cp
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and construct the following span

1 1
-— -—
D%i D B%i B
w 1 am, | T
1 —=>cCR rdﬁ: CR rdR
1 1
D%l D D<——1 D

1
(cr ig)i (3.9)

C %ED

in Grpd?(A). Then in order to obtain its pushout in Grpd?(A), we can see it as a
diagram in RG2(A) (through the inclusion functor J: Grpd?(A) — RGZ2(A)), take its
pushout in RG2(A) and then apply Construction to the double reflexive graph that
we obtained.

Proof. By computing the pushout in RG?(A) (which is done componentwise) we ob-
tain a special double reflexive graph of the form (3.2). Consequently, by Proposi-
tion [3.1.§ we deduce that applying Construction is the same as applying the reflector
R: RG%(A) — Grpd?(A). But being the reflector a left adjoint, it preserves colimits:
in particular it sends the pushout in RG?(A) to a pushout in Grpd?(A), that is the
thesis. O

3.1.3 Crossed squares

Definition 3.1.10 ([48, 61} 15]). A crossed square (of groups) is given by a commutative
square

pPm
— M

P
le "
NHL

in Grp, together with actions of L on M, N and P (and hence actions of M on P
and N via u, and of N on M and P via v) and a function (not a group morphism!)
h: M x N — P such that the following axioms hold:

0) h(mm/,n) ="h(m’,n)h(m,n) and h(m,nn’) = h(m,n)"h(m,n’);



94 CHAPTER 3. NON-ABELIAN TENSOR PRODUCT

i) the maps pys and py preserve the actions of L, furthermore with the given actions
(M5 L), (N5 L) and (P EPMZYPN, 1) are crossed modules;

i) par(h(m,n)) = m"m~! and py(h(m,n)) = mnn"1;

m,,.,—1

iii) h(pam(p),n) = p"p~! and h(m,pn(p)) = "pp~ Y
iv) th(m,n) = h('m,'n);

forallle L, m,m'e M, n,n" € N and pe P.

A map of crossed squares is given by four group morphisms which are compatible
with the actions and with the map h. Crossed squares and morphisms between them
form the category XSqr(Grp).

Definition 3.1.11 (|I5]). Given a pair of L-crossed modules (M % L,&y) and (N %
L,¢n) in Grp we have an action f% of M on N induced via p and an action 51\]\/; of N on
M induced via v. We say that a map h: M x N — P is a crossed pairing if the following
hold for each m,m' € M and n,n’ € N

e h(mm/,n) = h("™m/,™n)h(m,n),
o h(m,nn') = h(m,n)h("m,™n’).

Remark 3.1.12. Notice that if we have a crossed square, then the map h: M x N — P
is actually a crossed pairing. Indeed by using iv) and the fact that the actions involved
are induced from the actions of L we can show the equivalence between condition 0) and
h being a crossed pairing, through the equalities

3
=
3
S
|

=
2
=
s
=
I
>
=
2
SR
=
2
=
I
=
E
S8
e
=

nh(m7n/) _ ”(")h(m, TZ/) _ (Z/(n)m7u(n)n/) _ h(nmjnn/)'

In Proposition 5.2 in [61] and in Theorem 18 of [73], it is proved that Definition [3.1.10]
is equivalent to the one of a cat?-group. By using the fact that crossed modules can be
equivalently described as groupoids or as cat!'-groups, that is by using the equivalences
of categories

cat!-Grp ~ Grpd(A) ~ XMod(A)

one can then show that any crossed square can be depicted as an internal crossed module
in the category of crossed modules of groups. This means that we have the equivalences

XSqr(Grp) ~ cat’>-Grp ~ Grpd?(A) ~ XMod(XMod(A))

In particular the functor from Grpd?(Grp) to XSqr(Grp) is given by normalisation.

In general internal crossed square don’t have an explicit description as in Defini-
tion but, following the idea of the previous chain of equivalences, they are directly
defined as follows.
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Definition 3.1.13. An internal crossed square in A is an internal crossed module in
XMod(A). This means that the category XSqr(A) is defined as XMod(XMod(A)).

This means that an internal crossed square is simply a square (endowed with addi-
tional structure) obtained by normalising a double groupoid.

Lemma 3.1.14. An internal crossed square in A is the normalisation of a double groupoid
i A, that is the outer square in the diagram

Kay dr
P[> KdL p% KdR
Y- v cr v
de de de
dy
. ——
KdU > A €U B (310)
kdU cy
cw Wl dyy cLler|dr CR [ER| dR
dp
-_—
KdD > C €D D
de CD

obtained taking kernels of the domain morphisms and the induced maps. Similarly a
morphism of internal crossed squares is the (unique) normalisation of a morphism of
double groupoids.

Proof. Tt suffices to use the equivalence XMod(A) ~ Grpd(A) given by normalisation
and denormalisation to obtain

XSqr(A) = XMod(XMod(A)) ~ Grpd?(A). O

One can easily see that there is a lack of a definition of internal crossed square that
follows the lines of Definition [3.1.10} that is one that describes explicitly these objects as
squares of crossed modules with additional structure satisfying some axioms. We will do
a step in this direction with the definition of weak crossed squares (see Section .

Referring to the diagram (3.10) we will denote with j the diagonal of the upper left
square, with (D, A, ¢,d, e) the reflexive graph structure induced diagonally in the lower
right square and with A the composition c o j.

Remark 3.1.15. Given a double groupoid as in (3.10) we can define an action of D on P
in the following different ways:

e First of all we can define it as the dotted arrow in the diagram

DhPp—— @b gy A XA B oYy(B X O)

¢ iXA \LX(BXC) (3.11)

Pr A BxC
k (dy,dp)
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where k = kg4, © kq, = kq, © kq,, is the kernel of {dy, dr,);

e either we induce it through the diagram

bk
DoP % BhKcy s Dok,
3 l¢U le (3.12)
v
P k}dw KdU dW KdD
e or simmetrically we can also use
D dT dDde
DbP — ChKy, —— Db Ky,
§ l¢L le (3.13)
v
P DT KdL T KdR

T

Notice that these three actions are uniquely determined by the universal property of the
kernels and that they are actually the same: indeed it suffices to show that if such a &
makes one of the previous diagrams commute, then also the other two are satisfied. This
is easily shown by the diagrams

bk, bk
Dyp S By Ky, ——> Y DvP 27 vy, BTN
3 le lXA 3 le lXA
\'2 \'2
Pr ™ K, > ™ A P ™ K4, > b A

In each rectangle the rightmost square commutes by Remark [T.2.8] therefore the leftmost
square in each rectangle commutes if and only if the corresponding rectangle commutes
(also because kg, and kg, are monomorphisms), but both the rectangles are the same as
the left square in . Hence the three definitions are the same.

Remark 3.1.16. We can also define an action of D on P in the following way. Consider
the diagram

Fap
P> Ky, Kg, K,

S |
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and denote with [ the map going from P to Ky, v Kg,. Consider the diagonal point
defined through diagram ([3.10)

d
Kq, v Kq, DL A ? D
Notice that Ky, v K, is the kernel of d (and that kq = kg, vkq,, ) because of Lemmal(l.1.23
and Corollary [[.2.3] Now since kq o is a normal monomorphism, through Lemma 2.6

in [28], we can construct the diagram

P ¢

II (3.14)

KdL VKdUD?A%D

which gives us an action of D on P through the equivalence between points and actions.

Lemma 3.1.17. The actions defined in Remark [3.1.15 and in Remark are the

same action &.

Proof. In order to show this, it suffices to prove that the equivalence Act(A) ~ Pt(A)
sends the point constructed in (3.14) into the action £ uniquely defined through the
commutativity of (3.11)). To do this consider the diagram
kD (o)
DhP—2"5 D —l— P——>D

;L

and let us prove that kjo & = (;) okp p. The map [ x 1 is a monomorphism since [ is
d

so, therefore the thesis become

(I x l)okdof =(x1l)o (;) okp,p.
d
The lefthand side is equal to ko & which in turn (by definition of &) is x 4 o (ebk), whereas
for the righthand side we have the following chain of equalities

e (£t ({20 o
()wm (>o<e+k>okw

( >kAAo (ebk) = x4 o (ebk). O
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Proposition 3.1.18. In the previous situation we have that (P A D,¢) is a crossed
module.

Proof. Notice that if we define ¢ := co (I x 1) we have that cok; = coj = A. Therefore it
suffices to show that the first row in is actually a groupoid once it is endowed with
¢ as second leg. In order to prove this, by using Remark[I.1.50|and Lemma[I.3.11] we only
need to show that [P, Kz] = 0 since P = K;. But Kz — K, implies [P, K¢] — [P, K],
hence it suffices to show that [P, K.| = 0. We have the following chain of monomorphisms

[P, K] =[P, K¢y v Ke, |
=[P, Key] v [P Ke ] v [P Key, Ko, ]

[ de ] [KdL’KC ] [KCU’KCU7A]
~0vOvO0O=0

N

where the first isomorphism is given by Lemma the second one is given by the
join decomposition formula described in Proposition 2.22 in [51] and the last ones are
due to Theorem 5.2 again in [51]. O

Proposition 3.1.19. Given a morphism of double groupoids

> / > !/

A<— B AA<—B
(5 %)
—_ >

! /

C<——=D C'<———=D

consider the unique morphism of internal crossed squares induced between their normal-
isations, and denote p: P — P’ the upper-left component. Then

(pd), N
(P2 D) L0 (P X ¢
1s a morphism of internal crossed module.

Proof. We want to show the commutativity of the diagrams

P—2sD Dp—Ssp
pl lg abpl lp
P DP' —> P

The first one is obvious by construction of the map p. For the second one we need to use
one of the explicit constructions for the actions £ and &', in particular the one depicted
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in (3.11). From this we construct the cube

DbP cbk AbA

XA aba

/ ! \
ok Ab A

XA’

P «
\ AN \/
P = A

We want to show that the face on the left commutes, but since we already know that
every other face commutes, it suffice to postcompose with the monomorphism &’ to obtain

K o€ o(dbp) = xa o (ebk") o (dbp)
— v o (abar) o (e0h)
= o x4 o (edk)
=qokof
=K opok. O

3.2 Construction of the Non-Abelian Tensor Product

3.2.1 Groups case

First of all, let us examine what happens in the category Grp: the aim of this subsection
is to show how to construct the non-abelian tensor product of two coterminal crossed
modules of groups, without passing through set-theoretical constructions.

Consider two groups M and N acting on each other via f% MHN — N and
51\1\2: NbM — M and denote with ™n the action of m € M on n € N and with "m
the action of n € N on me M.

Definition 3.2.1. Given two groups M and N acting on each other (and on themselves
by conjugation) we define their non-abelian tensor product M@ N as the group generated
by the symbols m ® n with m € M and n € N with the relations

o (mm!)®n = ("m' ®™n)(m@n),
e m® (n') = (M®n)("m®"n),

for all m,m’ € M and n,n’ € N.
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Even if it is possible to give a definition of the non-abelian tensor product even when
the two actions are not compatible, the main results of [I5] that we are interested in,
always assume compatibility. Hence from now on we will do the same, dealing only with
non-abelian tensor products of two compatible actions.

Remark 3.2.2. Notice that by Chapter [2] we can equivalently use pairs of compatible
actions or pair of coterminal crossed modules, both in the group case and in the semi-
abelian one. Therefore we choose to use the latter from now on.

In order to describe the alternative construction of the non-abelian tensor product in
the semi-abelian context we need to recall the following result from [15].

Proposition 3.2.3 (Proposition 2.15 in [15]). Let (M % L. &) and (N % L,£x) be
crossed modules, so that M and N act on both M and N wvia P. Then there is a crossed
square

M®N s M
TFN\L 14
N—'>1L

where Ty (m@n) = m"m~L, an(m@n) = ™nn~t and h(m,n) = m @n. This crossed

square is universal in the sense that it satisfies the following two equivalent conditions:

(1) If

Pm
P—M
PN H

NﬁL

is another crossed square (with the same p and v), then there is a unique morphism

MN - M ) LN Vs
N——>1L N——1L

of crossed squares, which is the identity on M, N and L.
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(2) The diagram of inclusions of crossed squares

0———0 00— M
— 1
0——1L 00— 1L
& )] ) O B.15)
L M@N
0—>0 M®N —— M
\L \L . v ﬂj]g@N\L '
(1N 1,
N— L N— 1L
is a pushout in XSqr(Grp). O

We can reinterpret this result as a way to construct the non-abelian tensor product
M ® N as the upper-left group in the pushout crossed square: this process does not
involve generators and relations and hence completely avoids the use of set-theoretical
tools. In order to generalise this construction to XSqr(A) we need what we have done
in the previous section, that is a description of how to compute pushouts of the previous
kind in the category of Grpd?(A) (since it is equivalent to XSqr(A)).

3.2.2 Construction in semi-abelian categories

Imitating in a semi-abelian category A what we’ve done so far for groups we have the
following construction.

Construction 3.2.4. Consider two L-crossed modules (M LN L,&y) and (N 5 L, €y)
and their induced internal groupoid structures

M

IkM

M x L (3.16)

. ay }%w

—
NHNNLeifo

We construct the span (3.9) in Grpd? (A) and in order to compute its pushout we use
Lemma This means that we see it as a diagram in RG?(A) and we compute the
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pushout
du
Q<—-cu M x L
|
crler|dy, M dns (317)
( dn

in RG2(A), which is given by the pointwise pushout of the previous diagram: this means
that

Q:=(MxL)+y (N xL)

is the pushout of ep;s along e and that the maps dy, ¢y, dp and ¢y, are defined as follows,
using the universal property of the pushout:

0 Inrxr g (N O dyy
U Nemody L InxL
oy = < Ivxr > o = <€N OCM>
€M O CN Inwr

Finally Corollary tells us that by applying Construction to (3.17)) we obtain
the desired pushout

du
QM@N <—er—— M x L
T
er Br|d. ey eM das (3.18)
(‘ dn

N x L <—-en L

CN

of (3.9) in Grpd?(A) (the notation for the maps here is a bit different: we use an overline
instead of double apices). Here Qg is given by

. (MxL)+p(NxL)
Quen = [Kay, Kep] v [Kay, Key ]

By normalising this double groupoid (that is computing the kernels of the “domain”
morphisms and of the induced maps), we go back from Grpd?(A) to XSqr(A) obtaining
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the crossed square

M ® N > KT M
Yy - VL E— i
A
Kgr————=>0Quen<—v— M = L (3.19)
[
QeL@ CM E1 d]u
dn

Np>———> N xL<—-=n L
CN

Using the equivalence XSqr(A) ~ Grpd?(A) we now have that this crossed square is the
pushout in XSqr(A) depicted in (3.15]).

Definition 3.2.5. Given a pair of L-crossed modules (M £ L, &y) and (N % L, £y)
we define their non-abelian tensor product M ® N as the top left object in the crossed
square

constructed above.

Corollary 3.2.6. The non-abelian tensor product M QN has an L-crossed module struc-
ture, namely (M ® N 2, L, &) where the action & is defined as in Remark .

Proof. This is just an application of Proposition [3.1.1§ O

Notice that the previous corollary implies that the non-abelian tensor product is a
“binary operation” on the objects

— ®—: XMod/(A) x XMod (A) — XMod(A).

This is obviously commutative, up to isomorphism, by construction; but it is not associ-
ative (see [37]).

Proposition 3.2.7. Consider two L-crossed modules
(M 5 L,&xy), (N % L,&x),
two L’'-crossed modules

(M5 1/ e, (N'" 5 I/ €58,



104 CHAPTER 3. NON-ABELIAN TENSOR PRODUCT

and two morphisms of internal crossed modules

(f,0) ! /
(M5 L ¢hy) == (M5 L&)

v | 14 ’
(N 5 Lek)y 2 (v 2 1 gl

Then there exists a unique morphism f® g: M @ N — M’ ® N’ such that (f%g lf) s a
morphism of internal crossed squares.

Proof. Consider the following diagram:

Mg:)N»—> (M®N).><1M<—]LJ
®g (f@g)xf

U ot
M’@N/b—>(M/®N’)NM’%M'

¥

¥

(M@N).NN%%QM@)N%i)MNL

) fxl
e IF';J
(M'@N)x N b Qurgny' —=—— M’ x L

I

N N x L L

NN S

N’ N' % L L

(f@g) xg

Here ¢ is uniquely determined by the universal property of

QM®N%M><IL

Il

—
NxL<——Z1L

being defined as a pushout in Grpdz(A): in particular ¢ is the only morphism which
makes (g(il I 7l) a morphism of double groupoids. Since the other dotted maps are
uniquely induced by taking kernels, f ® g is automatically the unique morphism such
that (f %g lf ) is a morphism of internal crossed squares. ]

Corollary 3.2.8. In the situation depicted in the previous proposition

(M®NA>L,€) (f®g,1) (M/®N/)\—/>L/,§I)
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is a morphism of internal crossed modules, and consequently the non-abelian tensor
product

-&® —: XMOdL(A) X XMOdL(A) - XMOdL(A).

s a bifunctor.

Proof. The first result is just an application of Proposition to the morphism of
internal crossed square (f (?g lf ) The second part is simply a particular case in which
l=1p. O

Example 3.2.9. Consider the two crossed modules
(N5 L,&x) (0 L, 7).
Let us compute their non-abelian tensor product. First of all we need to explicit their

internal groupoid structure: to do this, we follow Construction and Example
obtaining

0
Y

0

kn N

-—
NHNNLeﬁJAJ—L

But now the double groupoid given by Construction is clearly

dn
N x L <—-en
cN

L

which means that 0® N =~ 0.

At this point one would hope that taking the non-abelian tensor product of an L-
crossed module with the conjugation crossed module on L would give us back the first
L-crossed module: this would mean that the conjugation L-crossed module is precisely
the neutral element for the non-abelian tensor product. Unfortunately this happens to
be false even in Grp and even when the starting L-crossed modules are both given by
the conjugation on L. A simple counterexample is given by the Klein group: if we take L
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to be the Klein group endowed with the conjugation action, then the non-abelian tensor
square is

L®L:ZQXZQXZQXZQ;7§ZQXZQZL

For this example, other computations of the non-abelian tensor product in Grp and for
further details look on [14] and [68].

Proposition 3.2.10. Consider an internal crossed square of the form

pMm

P M

|

NﬁL

Then there exists a unique ¢ such that the following diagram commutes

making ({bN lﬁ) a morphism of crossed squares.

Proof. We first shift to the double-groupoid setting and construct the following diagram
M®N’>—>(M®N)>4M<:>M

¢‘. 4)-)411”

W
)

N
N

N N x L L

Here ¢g is induced by the fact that the double groupoid involving Qg is defined as
a pushout in Grde(A), whereas the maps ¢ x 137 and ¢ x 1x are the maps induced
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between the kernels and finally ¢ is given by the front square in the upper-left cube
1m

being a pullback. The fact that ¢ is the unique map making (1¢N 1L) a morphism of

o 1]M>4L) is

crossed squares comes from the fact that ¢g is the unique map such that (1N>4L 0

a morphism of double groupoids.

3.2.3 The Lie algebras case

The aim of this subsection is to show that the non-abelian tensor product of Lie algebras
defined in [37] coincides with the general definition of non-abelian tensor product when
A = Liegr. In order to do that we need to recall some definitions and results regarding
the Lie algebra case from [37, 23].

From now on we will assume that M and N are two Lie algebras with crossed module
structures on a common Lie algebra L, since in Chapter 2] we proved that this is the same
as having two compatible actions of Lie algebras.

Definition 3.2.11 (37]). Given two R-Lie algebras M and N acting on each other,
their non-abelian tensor product M ®y;. N is the Lie algebra generated by the symbols
m@n with m € M and n € N, subject to the relations:

i) (Am)@n=Am®n)=m® (An),
i) (m+m)@n=m@n+m' @nand m (n+n') =mn+men’,
i) [, m] ®n = m® ("n) — m' ® ("n) and m® [, ] = ("m) @ n — ("m) @,
iv) [m@n,m' @n'] = —("m)® ("'n'),
forall A\ e R, m,m’ € M and n,n’ € N.

Definition 3.2.12 ([37]). Given two R-Lie algebras M and N acting on each other, and
a third Lie Algebra P, we say that a bilinear function h: M x N — P is a Lie paring if

’

i) h([m,m'],n) = h(m,™n) — h(m',™n),

/

i) h(m,[n,n']) = h(m,n) — h("m,n’),

’

iii) h("m,™n') = —[h(m,n), h(m’,n')],
for all m,m’ € M and n,n’ € N. The Lie pairing h is said to be universal if for any other

Lie pairing h': M x N — P’ there exists a unique Lie homomorphism ¢: P — P’ that
makes the following triangle commute

MxN-—"sp

RN

Pl
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Proposition 3.2.13 (Proposition 1 in [37]). Given two R-Lie algebras M and N acting
on each other, the mapping

h: M x N —> MQ®riN

(m,n) » m®n

1s a universal Lie pairing. Hence the mon-abelian tensor product M Qr;e N of two Lie
algebras acting on each other is uniquely characterised (up to isomorphism) as the codo-
main of their universal Lie pairing. O

Definition 3.2.14 (|36, 23]). A crossed square in Liepr is a commutative square of Lie

algebras
DM

P——M

PN H

N——1L

endowed with Lie actions of L on P, M and N (and hence Lie actions of M on N and
L via p, and of N on M and L via v) and a function h: M x N — P such that

0) his bilinear and such that h([m,m'],n) = ™h(m/,n)=""h(m,n) and h(m, [n,n']) =
"h(m,n') =" h(m,n);

i) the maps pys and py preserve the actions of L, furthermore with the given actions
(M5 Leyp), (NS L éy) and (P EEYZYPN, 1 ¢p) are crossed modules;

m

ii) pM(h(mv n)) = —"m and pN(h(mv n)) =1

m

iii) h(par(p),n) = —"p and h(m,pn(p)) =

iv) ‘h(m,n) = h(*m,n) + h(m,'n);

p;

forallle L, m,m' € M, n,n' € N and p e P.

Lemma 3.2.15 (Theorem 30 in [23]). Lie crossed squares, as just defined, coincide with
internal crossed squares in the category Lieg. O

Lemma 3.2.16 ([59]). For a pair of crossed modules (M £ L,&y) and (N % L, Ex),

the square
M

M®rie N— M

o | ]lj

N——>

in Lier, with pyr and py defined via

pu(m@n) = ="m pn(m@n) ="n

endowed with
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e the actions &y, En,
e the action of L on M ;e N given by
l(m ®n) = (lm> RX/nN+m (ln> , (3.21)
e the map h: M x N — M ® N defined in Proposition
is a crossed square (according to Definition :
Proof. Let us check conditions 0) - iv) in Definition

i) The first step is to show that the maps pys preserves the actions of L. This amounts
to showing the equality

orrm@n) = pa ({(m@n))

We prove this by using the fact that £y; is an action of Lie algebras, obtaining the
chain of equalities

o () - () 5) s (2 ()
= () — (")
v () — v('n)
) (L — )]y
_l(l/(n)m)
='(="m)
='(pm(m@n)).

The same reasoning works for py. Now it remains to show that the diagonal
A= popy =vopy is a crossed module once endowed with the action : in
order to do that we use the compatibility conditions as stated in [37], the crossed
module conditions for (M £ L, &) and (N % L, £y), and the equation A\(m®n) =
[p(m),v(n)] obtained through

Am®@n) = p(pp(m@n)) = p(="m)
=~ (") = ~[v(n), p(m)]
= [p(m),v(n)].

In particular we obtain the following chains of equalities

A(’<m®n>)=A((lm)®n)+ ( (”l))
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A'@) (1, @ ) = <A(m’®n’)m> n+m® (A(m’@n’)n)

= [—"/m', m] Xn+me [m/n/, n]

(~"'m) ® ("n) —m ® <<""”'> n) +m®|"n,n|

/

<wa®mm+m®qwmq_ﬁwh)

= (-"'m)® ("n)
= [m' ®@n',;m®n].

0) The map h is bilinear by construction and by using the definition of the tensor
product M ®r;. N we have the following chain of equalities

!

m,m’]®n+m'®(mn)—[m’,m]@n—m@(mn>
m

mh(m/¢ n) - m,h(mv n) =

and similarly for the second equality required.
i) py(h(m,n)) = ="m and py(h(m,n)) = "n by definition of pys and py.
iii) Again by definition of M ®r;c N we have
B(pn(m®n), w') = h(="m, ) = — ("m) @’
=~ ("m)@n—me,n)
=-—"(m®n)
and similarly for the second equality.
iv) th(m,n) = (m®@n) = (m@n) + (m®n) = h('m,n) + h(m,'n). O

Proposition 3.2.17. When A = Lieg, the non-abelian tensor product M & N as de-
seribed in Definition [3.2.9) coincides with the tensor product of Lie algebras M ®r;e N

defined Definition [3.2.11]

Proof. By Proposition it suffices to show that the general version of M ® N has
the same universal property as M Qe N.

The first step is to construct a Lie pairing from M x N to M ® N. In order to do
this, consider diagram and denote with jps and jn the diagonal inclusions of M
and N in Qugn. We are going to define a function h from M x N to QugnN, we are
going to show that it factors through M @ N as h: M x N — M ® N and then we are
going to prove that it is a universal Lie pairing.

Since we are in Lieg we can define h directly on the elements by imposing h(m,n) =
[ja(m), jn(n)]. To prove that it factors through M ® N it suffices to show that dyoh =
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0 = dr, o h (the rest is trivial since M ® N is the pullback of the kernels K3 and Kg),
and this is done through the equalities

dy o h(m,n) = dy ([ja(m), jn(n)]) = [du(Gar(m)), du(jn(n))]
= [du(jar(m)),0] = 0,

dg o h(m,n) = dp ([ja(m), jn (n)]) = [dL(ja(m)), dL(jn(n))]
= [0.dr(jn(n))] = 0.

Now we have shown that the image of h lies in M ® N obtaining h: M x N - M ® N.
Let us prove that it is a Lie pairing according to Definition [3.2.12

e for i) we have the following chain of equalities

h([mym']an)=[ ([, ])JN(”)] Ly (m),jM(m')],jN(n)
()], g

=[ (m)a[JM(m’),JN(n)]] [ m(m’), [jar(m), jn(n)]]
= [iae(m), i (")) = [ina (m), in (")
(m,mln) h(m',n)

and a similar one shows ii);

e for 7i7) we have

’

A("m, ') = |ja ("m), i (") |
= [ (). ag (m). Ling (m) i (']
= — [linr(m > <>7[M< v )]
= = [A(m, n), h(m', ).

It remains to prove that h is a universal Lie pairing. In order to do that, we take a
universal Lie pairing h (we know that it exists by Proposition |3.2.13]) and we show that

there exists a morphism ¢ such that

MxN—sMeN

X lqb (3.22)

M ®Lie N

This would imply that h is automatically universal and hence by uniqueness (up to
isomorphism) of the universal Lie pairing we would obtain that M @ N = M ®r;e N
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Let us show that such a ¢ exist. The first step is to use Lemma [3.2.16| which shows
that the non-abelian tensor product M ®y;. N induces a crossed square of Lie algebras

M ®pie N— M
N———L

according to Definition [3.2.14] By Lemma|[3.2.15 we know that in Lier Definition [3.1.13
coincides with Definition and hence we can use the universal property of M ® N,

which gives us a map ¢: M @ N - M ®p;. N such that (3.22) commutes. O
Consequently from now on can denote pys and py respectively as TF%®N and 7711\\;[ ®N,

3.3 Towards crossed squares through the non-abelian tensor
product

The aim of this section is to generalise the explicit description of crossed squares of
groups (given in Definition and Lie algebras (given in Definition to the
semi-abelian case (with SH), without passing through the double groupoid formalism.
In order to obtain this, we are going to use the construction of the non-abelian tensor
product, first in the categories Grp and Lieg, and then in A. We call this object weak
crossed square, and we prove that it is the same as a crossed square as soon as we are
in Grp or Lieg. We then show that the canonical definition of crossed square in the
semi-abelian context implies the one of weak crossed square. The converse is still an open
question: the aim would be to find suitable conditions under which the two definitions
coincide. This would mean that an “explicit” definition of crossed square is possible in
such a general setting.

The idea behind this internalisation is given by a bijection introduced in [I5] (see
Definition 2.2 and following): the authors say that, given a pair of compatible group
actions, to each crossed pairing h: M x N — P it corresponds a group homomorphism
h*: M ® N — P defined by extending h*(m ® n) = h(m,n) (from now on we will drop
this notation and we will write h for both these maps since there is no risk of confusion).

Using this hint as the basis of our reasoning we can give the following definition.

Definition 3.3.1. A weak crossed square in A is given by a commutative square

P2 M
N i A lu
N % L
in A, together with internal actions
&k IbM — M ¢k IbN - N ¢ P — P

and a morphism h: M ® N — P such that the following axioms hold:
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i’) the maps py and py are equivariant with respect to the L-actions, that is the

squares
¢k 33
bP —Ls P P s P
bl l lprl le
LbM ? M LbN ? N

L&), (N

commute, and furthermore (M £
L-crossed modules.

ii’) the diagram
M

M®N
V
N PN

N

M@N
K
pPm M

®

)

<=

comimutes;

iii’) the diagram

pM@lN 1 ®pN

— MQN <—

\L%

Y L,ek) and (P 2 L,£L) are

commutes;
iv’) the map h is equivariant with respect to the action 51%/[®N: Ib(M®N) > M® N
(induced as in Remark [3.1.15)), that is the square
137
h(M@N)22M®N
1 Lbhl lh
LbPp—— P
33
commutes.
A morphism of weak crossed squares of the form
pPm plwl
P——M P —— M
¢ 1)
DN M QHZ Py w
N L N ——1TI'

v
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is given by a quadruple of morphisms

p: P— P f:M— M
g: N - N’ I: L - 1L
such that the cube
P > M
\Pl \M/
N > L
\N, \L,

commutes and the h-maps are respected, that is the square

MeN2%% v e N

A
P — > P’
commutes as well.

Remark 3.3.2. Notice that from the three L-actions 51%4, 51%, and §}L;. we are able to con-
struct the actions Sy, fg, 5% and 5]\]\/[1 through the diagrams

¥ &
MbP P NbP P
LhP Lhpr
¥ oY
MbvN N NbM M
N N
LbN LbM

and condition 7) implies that also (P 225 M, M) and (P 2% N, £Y) are crossed modules.
This is just an application of the following lemma.

Lemma 3.3.3. Let A be a semi-abelian category with SH. Consider a triangle

P

N

L
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with internal crossed module structures (M > L, €X,) and (P AL ¢L), and the induced
action gPM = glé o (ublp). If p is equivariant with respect to the L-actions, that is if the
square

32
hP ——

b |

LbM —> M

M
commutes, then also (P 2 M, {f\;/[) s an internal crossed module.

Proof. We need to show the commutativity of the diagram

PP X p

pbll
§M

Mbp 2> P

| I

MOM —— M
XM

For the upper square we have the chain of equalities

&M o (ph1) = €h o (1b1) o (pb1) = €5 0 (A1) = xp,

whereas for the lower one we have

po&p =po&po (uhl) = &y o (1bp) o (ub1)
= &fy o (ub1) o (1bp) = xar © (1op). O
Proposition 3.3.4. If A = Grp, then weak crossed squares are the same as internal

crossed squares, that is the group wversion of Definition [3.3.1] coincides with Defini-
tion [3 110

Proof. As explained in [I5], given a crossed pairing h: M x N — P (see Remark|3.1.12)),
we can decompose it as

M x N h

—@o %

M®N

P

where the first map, which sends (m,n) to m ® n, is called universal crossed pairing,
whereas h* is a morphism of groups. Viceversa, we can associate a crossed pairing
h* o (—® —) to every morphism of groups h*: M ® N — P. This means that having
a crossed pairing amounts to having a morphism going out of the non-abelian tensor
product (for the sake of simplicity we are going to name both of them as h).
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Notice that i’) is only the internal reformulation of i), and hence they are clearly
equivalent. Let us prove that i) <= ii#’). The only non-trivial step is given by the

explicit description
TN (m®@n) = m"m~,
W%@V(m ®n) = "nn"1,

for the projection maps: for further details see Proposition 2.3 (b) in [I5]. Using these
equations together with

{pmh(m@n)) = par(h(m,n)),
py(A(m @n)) = py (h(m,n)),

we obtain the desired equivalence.
Similarly, in order to show iii) <= iii'), we use the equations

{P@N@@m ppt, {h( 2 (p) ®n) = hipy(p),n),
PO (m®p) ="pp?, h(m ®pn(p)) = h(m,pn(p))-

We've already explained that, whenever iv) holds, 0) is equivalent to the requirement
that h: M x N — P is a crossed pairing and that this is in turn equivalent to having a
morphism h: M @ N — P.

Finally, to show that iv) <= iv’), we first take the action 51%4®N as defined in
Remark [3.1.15} in the particular case of groups it can be described through the equation

(m@n) = ('m) @ ('n)

(for more details about this action see Proposition 2.3 (a) in [I5]). Then, to obtain the
thesis, we use the equations

th(m®@n) = 'h(m, n), h(('m) ® ('n)) = h('m,'n). O

Remark 3.3.5. Consider a crossed square of groups as in Definition [3.1.10} according
to Proposition we have a unique morphism ¢: M ® N — P such that (f’N 1?4L )
is a morphism of crossed squares. In particular this map ¢ is the same as the map
h: M ® N — P induced by the crossed pairing h: M x N — P. To see this, it suffices
to show that (h lﬁ ) is again a morphism of crossed squares: following the description
of morphisms given in Definition this amounts to proving that h makes the outer

cube in (3.20) commute as well as the diagram

MIN=—7—==MQRN
J
M®NTP

The latter is trivial due to the fact 1yygn: M @ N — M ® N is the h-map associated to
the crossed square defining the non-abelian tensor product, and the former is given by
condition #i").
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From the last remark we can deduce that, if there is a way to show the equivalence
between the notion of weak crossed square and the one of internal crossed square, then
the morphism h: M ® N — P has to be the one given by Proposition [3.2.10

Proposition 3.3.6. If A = Lieg, then weak crossed squares are the same as internal
crossed squares, that is the Lie algebra version of Definition [3.3.1] coincides with Defini-

tion [3-2.13)

Proof. Let us consider conditions 0) —iv) as in Definition and conditions ') — iv’)
as in Definition B.3.1]

As follows from Proposition having a function h: M x N — P such that 0)
holds (that is a Lie pairing) is the same as having a morphism
h*: M ® N — P (from now on denoted again with h).

Notice that i’) is only the internal reformulation of i), and hence they are clearly
equivalent. The equivalence i) <= i’) is given by the equivalence between the
systems

o (m®n) = par(h(m @n)), ="m = pa(h(m,n)),
my @ (m®@n) = py (h(m @n)), "n = px(h(m,n)),
which in turn is obtained via the explicit description of the maps FAA//[[®N and 7[']\]\//[[®N in

the Lie algebra case. Similarly, in order to show iii’) <= iii), we use the equivalence
between the systems

{wfi@N(p@n) — h((py ® L) (p® 1)), {h(pmp),n) — —p,
TMEP (1 @ p) = h((1a @ par) (M @ p)), h(m, px (p)) = ™p.

Finally, to show that iv) <= iv’), we first take the action 51%4@]\, as defined in Re-
mark [3.1.15} in the particular case of Lie algebras it can be described through the
equation

m@n)=(m)@n+m® (‘n).

Then we use the equivalent equalities

p(fm@n)) ='(h(m@n)),

h((tm) @n +m® (') i '(hm @),

h((my@n)+n(me(n) E '(h(m®@mn)),
h (lm, n) +h <m,ln> il(h(m,n)). 0
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Proposition 3.3.7. An internal crossed square is automatically a weak crossed square,
that is Definition implies Definition |3.5.1).

Proof. Consider an internal crossed square with respect to the implicit definition

kay dr
—
Pr— > PxM<—-er M
Y . Y cr Y
kay, k kaj, kag

(3.23)

Let us start by fixing the basic ingredients. We define the maps pys := cr o kq,., PN =
cw ©kqy, and A := cok. The actions 51%4 and f{(, are already given, whereas 5113 and 5]%4®N
are constructed as in Remark and h: M ® N — P is given by Proposition [3.2.10
Now we are ready to show the properties of these objects.

As far as it concerns '), we already know by hypothesis that (M L,¢8) and

(N 5 L,&L) are crossed modules. The fact that also (P A L,£L) is so, is given by
Proposition It remains to show that pps: P — M is equivariant with respect to
these actions (for py the reasoning is totally similar). Consider the diagram

ks —

é
lI k. ZNI\L

kd\ d
pm KdHQP< = 7; L

\'2 dr
Mr—>Mx L———=>1L

de eRr

where the two top squares are the ones defining the action fILD, whereas the dotted map
is induced by the fact that M is the kernel of dg. In order to show that (pys, 1) is a map
of points from the top row to the bottom one (and hence an equivariant map), it suffices
to show that pys = ¢ o, since each square commutes: this is done using the chain of
equalities

k‘dROgbOlZdUOk‘dOZZdUOk‘deROpM

and the fact that k4, is a monomorphism.
Condition 4i") is already given by definition of the map h.
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In order to show iii’) it suffices to prove that

M®

P
MP——M <P

) P M

MQ®P
7TP l l ho 1®PN) 1 l \L
P—\—1L o N——L

are both morphisms of crossed squares, so that the thesis follows from the universal
property of M ® P (and similarly for P ® N). The map ﬂf\;/[@P clearly satisfies the
universal property depicted in Proposition and therefore it induces the morphism
of crossed squares on the top. As far as it concerns the second one, it is easy to see that
it is obtained as the composition

ho(1®pn) 1 h 1 1®py 1
PN 1 11 py 1
The first one is a morphism of crossed squares by definition of 1®py, whereas the second

one is so by definition of i (and by Remark [3.3.5).
It remains to show that iv’) holds and to do so, consider the following diagram:

ID(M®N) ——— L+ (M®N) & L

AN AN \
1bh 1+h
¢ N
o LbP L+P L
3 i
M®N +——|—— Quen L
T\ AN \
h ]
NV Y
Py Qp L
Apygn ————|— QuenN L
\? \¢ \
N Ny
AP e Qp L

We want to show that the top square in the left face commutes. Notice that by definition
of ¢ and ¢ we already know that the squares on the bottom face commute, and similarly,
by definition of h the bottom square on the left face commutes. The two lower cubes
then commute by construction of Q/M&V, 6/2; and ¢ (see Lemma 2.6 in [28]). This means
that (h,1) is a morphism between the lifted points and therefore h is equivariant. O



120 CHAPTER 3. NON-ABELIAN TENSOR PRODUCT

It remains an open question whether the converse of Proposition [3.3.7 holds; a
stronger condition on the base category A might be necessary for this to be the case.
We have a partially positive answer in the situation where h happens to be a regular
epimorphism: such a weak crossed square is always a crossed square, as soon as in the
induced diagram

M@N»—>(M®N)>4M4><—>JL4

T T N \
h hxly
Y N

P PxM M

(M®N) x N +—|— QueN —— *ﬁiMxL

hxly s \ (3.24)
Y T
PxN v > Q% "M x L
N

I Il

> N

NN RN

N ¢ N x L

X

the kernel of h is normal in Qugn-

In this situation, we can construct the object Q" and the dotted arrows in in
such a way that the double reflexive graph in the front face is an internal double groupoid.
We may then use the idea contained in the following remark.

Remark 3.3.8. Suppose for the moment that the front face in (3.24) is already an internal
crossed square. Then both squares in the diagram

M@J]VH(M@N)JN M —— Quen
hl (*1) h><1‘11\/[ (*2) l/}} (325)
\ v

4 \4
P sPxM— ()

are pullbacks and hence the outer rectangle is so. This implies that K} =~ Kj, but since h
is a regular epimorphism if and only if so is h (by applying the Lemma twice), it
is the cokernel of its kernel: this means that ()’ can be described as the cokernel of the
inclusion of K, into Qprgn. Furthermore, this inclusion is normal.

Proposition 3.3.9. In a semi-abelian category that satisfies (SH), a weak crossed square
where h is a reqular epimorphism is also an internal crossed square—that is, Defini-

tion implies Definition in that case—as soon as in the induced diagram (3.24)),
the kernel of h is normal in Qren -
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Proof. By using the idea in the previous remark we define @’ as the cokernel of v o ky,
where ~ is the composition depicted in the first row of (3.25). In particular we obtain
that
M®N —> Quen
hl l/i} 3.26
! (3.26)

v
P———
¥
is a pushout. Since Q' is the cokernel of 7 o ky,, from dyy oy = 0 = dy, o v we find unique
morphisms

v:Q — MxL dp:Q — NxL

such that dy; o h = dy and d; o h = dy,. Similarly, by using the universal property of the
pushout (3.26]) we obtain unique morphisms

Q> MxL Q- NxL

such that ¢}, o h = ¢y and o h = cr. Then we define ey = ho ey and e = hoey.
With these data we already have that (Q', M x L,dy;, ¢y, ep;) and (Q',N x L, d}, ¢}, e})
are reflexive graphs. Since they are quotients of groupoids, they are groupoids as well.
In particular the square of groupoids involving them is a double groupoid: this can be
shown by proving the commutativity of each of the nine squares by using the fact that
his a regular epimorphism.

It remains to define two morphisms

a:MxL—Q B:NxL—Q

making commute and to show that a = kd/L and f = kd/U . We are going to
construct only « since a symmetric strategy works also for 8. Let us first of all notice
that the square

(erk]Lw)

M+ (M®N) —-%Quen

1+hl li} (3.27)

M+P——sQ
(Vo)
Y

is commutative due to the commutativity of the two components

M%MMLHQM(@N M®N$QM®N
I A
MHMNL;Q’ P——Q

Y
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Also the triangle

O.M

3
M+ (M®N) MeN (M®N) x M
\\\\ K/// (3.28)
erkM
QMeN

commutes, due to the commutativity of the two components

M—" s (M®N)xM MON — L (M@N) x M
kLMl lkd,; k'iwi \7\ \Lkdl/

MXLTQM@N (M®N)>4NTQM®N
U

Now we can use the definition of the semidirect product P x M as a coequaliser to obtain
the dotted arrow « from the commutative diagram of solid arrows

kn, MmN e
Mb(M ® N) ¢ M+ (M ®N) Mer (MQN)x M
77M®NO€%®N
Um /
1bh QumeN hx1
kn,p TeM
MbP M+ P P P x M
ipogy \ N
ookl e
( U’YfAJ) Q/ L

In particular we need to show that (E,UffLM ) coequalises kjrp and ip o g\j/[ : this is done
by precomposing with the regular epimorphism 1bh and by using the commutativity of
(3.27) and (3.28)). In a similar way we build also 5: P x N — @Q’. Let us now show that
every square in (3.24)) involving o and S commutes:

e We already know that the square

k
(M®N) x M —E Qe

o] I

PxM——sQ

commutes by construction and similarly for the one involving 5;
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e The square
M

PNNTQ’

commutes because both the compositions are equal to 7' by construction;

e Finally we need to show that the two right-pointing squares and the left-pointing
square in
dM

P
PxM<=—d—M

commute. For the left-pointing one we have the chain of equalities

/ L
aoeM =qoomoip=aoo.moip= v © K oip =cée) okt
L [ M PP = ~! P =°¢y M>

whereas for the right-pointing ones we need to precompose with the regular epi-
morphism Tem obtaining

dr;oel okl kL 1
U U U M M L
dU oo Ug}Jy = ( d/ o ,_)// ) < 0 ) kM (0)

L M
=ky odp 0 0eM,

L L
om0 (Y g (1)
& ¢y oy kY o pur Py

= kfjocyo%y.

and

Finally we can repeat the same argument for the corresponding squares involving
B.
It remains to prove that o = kg, (and similarly that 5 = kg, ): to do this, we first show
that dy, is the cokernel of o and then that « is a normal monomorphism, which implies
the thesis. The first step is easily done by directly showing the universal property of the
cokernel through the diagram

kay, dr,
<A4-C>]V) X A4-444%>(2Aﬂ3A{444%>]V X L

o] |

Px M Q' N x L

[0} dlL
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and the universal property of the cokernel dy,.

The kernel K of h is normal in Qugn if and only if is a pullback. Let
us show that then « is a monomorphism. Since A is protomodular, pullbacks reflect
monomorphisms; since kg, is a monomorphism, so is . Furthermore it is normal as a
direct image of a normal monomorphism, which implies our claim. O



Chapter 4

Universal central extensions
through the non-abelian tensor
product

The aim of this chapter is to show a direct application of the non-abelian tensor product
construction by studying a result on universal central extensions of crossed modules due
of Brown-Loday ([15], in the case of groups) and Edalatzadeh ([35], in the case of Lie
algebras). We prove, namely, that a crossed module over a fixed base object is perfect (in
an appropriate sense) if and only if it admits a universal central extension. We first follow
an ad-hoc approach, extending it to the context of semi-abelian categories by using a
general version of the non-abelian tensor product of Brown and Loday. We then provide
two interpretations from the perspective of categorical Galois theory. A first one follows
the line of Edalatzadeh [35] in the context of quasi-pointed categories. This allows to
capture centrality, but we couldn’t find a natural way to treat perfectness in this setting.
We then switch to the pointed context where the theory developed by Casas and Van
der Linden can be used. In this simpler environment we find a convenient interpretation
both of centrality and of perfectness.
The chapter is oganised as follows:

o In Section[4.I|we recall well-known results on central extension theory in the context
of semi-abelian categories following [56] 25].

e Section[4.2]is devoted to the construction of the Birkhoff subcategory TrivActy (A)
of Actr(A) and to the study of the so-called coinvariance commutator: we show
some of its useful properties and we prove that it is isomorphic to the Higgins
commutator.

e In Section we generalise, with an ad-hoc approach, the definitions of central
extensions and perfect objects from the category of L-crossed modules of groups
and Lie algebras to the categories of internal L-crossed modules in any semi-abelian

125
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category with (SH). We then show in Theorem that an internal crossed module

admits a universal central extension if and only if it is perfect.

e By using the coinvariance reflector defined in Section[4.2] in Section[d.4]we construct
a Birkhoff subcategory of XModp,(A) which generalises the approach adopted by
Edalatzadeh [35]: in this way we are able to show that the previous ad-hoc defin-
itions of central extensions and perfect objects coincides with the more general
version of the definitions given in [35].

e Finally in Section we describe a more natural approach, through which we are
able to reinterpret what we have done so far, in the theory of central extension in
the semi-abelian context. This means that we can construct a Birkhoff subcategory
of XMod(A) in such a way that the definitions of central extensions of crossed
modules and of perfect crossed modules induced by the standard theory from [25]
coincide with the former definitions given in the previous sections.

4.1 Extensions and central extensions in semi-abelian cat-
egories
We recall some basic definitions and results of categorical Galois theory [4} 54l 56] 57].

Definition 4.1.1 (J56]). Let C be an exact category and X a subcategory of C. We say
that X is a Birkhoff subcategory of C if the following hold:

(a) X is a full and reflective subcategory of C,
(b) X is closed under subobjects in C and
(c) Xis closed under quotients (i.e., regular epimorphisms) in C.

We usually denote the left adjoint as I: C — X and, when we do not omit it, the right
adjoint as J: X — C. The largest Birkhoff subcategory of C is obviously C itself, whereas
the smallest one is given by Sub(1) where 1 denotes the terminal object. When C is a
variety, being a Birkhoff subcategory is the same as being a subvariety.

Lemma 4.1.2 (|56]). A reflective subcategory X of an exact category C is a Birkhoff
subcategory if and only if for each reqular epimorphism f: A — B, the naturality square

A" JI(A)

fl lJI(f)
-

B —5> JI(B)
is a reqular pushout. In particular X is closed under subobjects if na is a regular epi-
morphism for each A € C, and it is closed under reqular quotients when the above square
s a reqular pushout. O
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Since we shall always be dealing with categories that are Mal’'tsev, for each Birkhoff
subcategory there is a Galois theory a la Janelidze (see [54] [56, 4]). We recall the main
definitions.

Definition 4.1.3 ([56]). We denote with (C | B) or with Eztc(B) the category of
extensions of B, which is the full subcategory of C/B whose objects are the regular
epimorphisms having B as codomain; notice that a morphism in Eztc(B) is any triangle
in C from a regular epimorphism to another regular epimorphism with the same codomain
B.

Definition 4.1.4 ([56]). Given a Birkhoff subcategory X < C we say that an extension
f: A — B is an X-trivial extension (of B) when the naturality square

A J1(A)

J
fl lﬂ(f)

B ——>JI(B)

is a pullback. We will denote with Trivg(B) the full subcategory of Erxtc(B) whose
objects are the X-trivial extensions of B.

Definition 4.1.5 ([56]). Given a Birkhoff subcategory X < C we say that an extension
f: A — B is an X-central extension (of B) when there exists an extension g: C — B

such that the pullback g*(f)
C
A B

of f along g is a X-trivial extension. We will denote by C’entré(B ) the full subcategory of
Eztc(B) whose objects are the X-central extensions of B. We have the chain of inclusions

%

Trivg(B) € Centrg(B) < Extc(B).

Remark 4.1.6. In the general setting of [56] an X-normal extension is defined as an
extension f: A — B such that one of the projections rg,r; in the kernel pair

Ep(f) —>4
Tll f

is a X-trivial extension. Of course this is a stronger notion than the one of X-central
extension, but in our context the two coincide, as stated in the following.
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Lemma 4.1.7 (|56]). In the context of an exact protomodular category C, an extension
1s X-central if and only if it is X-normal. Furthermore a split epimorphism is a X-central
extension if and only if it is X-trivial.

Proof. Proposition 4.7 in [56] tells us that the two claims are equivalent and Theorem 4.8
again in [50] proves that they hold in every Goursat category. Exactness and protomod-
ularity imply the Mal’cev property which is stronger than the Goursat property. O

The following definitions are borrowed from [25], where the theory of universal central
extensions is explored in detail.

Definition 4.1.8 (|25]). We say that an extension u: U — B is a universal X-central
extension of B if it is an initial object in Centr(B).

Definition 4.1.9 (|25]). Given a Birkhoff subcategory X of a pointed exact category C,
we say that an object A € C is X-perfect whenever its reflection I(A) is the zero object
0eX

Ezxample 4.1.10. A key example of a Birkhoff subcategory is the subcategory of abelian
objects in any semi-abelian category, which are those objects that admit an internal
abelian group structure. For instance, abelian groups in the category of all groups, or
vector spaces equipped with a trivial (zero) multiplication in the category of Lie algebras
over any field. It is clear that Ab(A) is an abelian category, but it is also a Birkhoff
subcategory of A: indeed it is a full reflective subcategory of A, closed under subobjects
and regular quotients.

This means that we have a definition of Ab(A)-central extensions, also called categor-
ically central extensions in contrast with algebraically central extensions: the former ones
are given through Definition whereas the latter ones arise naturally from commut-
ator theory (see [45], [57] for further details). They are the extensions f: A — B whose
kernel pair congruence Kp(f) is contained in the center of A, or equivalently commutes
with V4: this means [Kp(f),VA]‘Z = Ay, where V4 and A4 are the largest and the
smallest congruences on A.

Lemma 4.1.11 ([47, [65]). Lef f: A — B be a regular epimorphism. It is an Ab(A)-
central extension iff [Ky, Af = 0.

Proof. From Theorem 6.1 in [46] we know that f is a categorically central extension
iff it is a algebraically central extension, that is iff [Kp(f),Va]§ = Aa. But since
Va=Kp(ty) (with t4: A — 0 the only map from A to the terminal object), we know
that

[Kp(f).Vali=24 = [K;K,]3=0.

Notice that for this equivalence to hold we need not SH: indeed it holds whenever the two
subobjects of A cover it (see Proposition 4.6 in [40]) and we obviously have Kyv K;, = A
since Ky, = A. This also implies that their Huq commutator coincides with their Higgins
commutator, obtaining the equivalent condition [Ky, A]% = 0. O
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4.2 'Trivial actions and coinvariants

In this section we work out a less trivial example of a Galois structure, which later on
will be useful for us: we study the so-called coinvariants reflector from internal actions
to trivial actions. This is a categorical conceptualisation of a classical construction, well
known in group cohomology (see [12]). Throughout, we let L be a fixed object in a
semi-abelian category A.

Let us start by defining a suitable Birkhoff subcategory of Acty(A): the subcategory
TrivActy(A) of trivial L-actions.

Definition 4.2.1. Consider an L-action expressed as a point with a chosen kernel
kp P
00— M —X ? L——0.

We say that it is a trivial action when there exists an isomorphism of split short exact
sequences

k
0 M L X#L%O
¢
0 M MxLe——>[ 50
{1n,0) 0,11)

with the splitting induced by the product. The category TrivActy (A) of trivial L-actions
is the full subcategory of Actr(A) whose objects are trivial L-actions.

Construction 4.2.2. We wish to construct a functor I: Acty(A) — TrivActy(A)
which is left adjoint to the inclusion functor J: TrivActy(A) — Act(A). Given a split
epimorphism, the first step is to construct another split epimorphism using the cokernel
Cs of s. That is, taking the pushout of s along the zero morphism:

kp p

0 M X@L%O
csokpi J/CS l (41)
\
0——Cy———Cy=——=0——0.

Then we take the pullback of the morphisms with codomain 0, thus obtaining the product

1c,,0 s
0 Csl><os7> CSXLﬁL%O
- 0,15
I |
\
0——Cg——Cy=—>0——0.

This trivial L-action in the upper sequence is called the objects of coinvariants of the
given action, and it is the image through I of the action we began with. This gives us



130 CHAPTER 4. UNIVERSAL CENTRAL EXTENSIONS

the morphism

k
0 M X %+> L—— 50
- \
l “
0 Car O ey N
ey, 00 0,11)

which happens to be the unit 1: Idact, (o) — HI(—) of the adjunction. When there is
no risk of confusion, we will denote the component of 1 depicted in the diagram by 1.

The following definition follows the pattern of [39, [40]: the kernel of the unit of a
Birkhoff reflector is viewed as a commutator, relative to this reflector.

Definition 4.2.3. With the notation of the previous construction we take the kernel of
the unit nys

00— [L,M]———[L,M] ———=0——->0
k<c5okp>I I’%s,m
0 Mo X <+> L[ —— 0
csokp - <cs¢,p>
.
0 Cor——5; cst@’é;m%()

and we define the coinvariants commutator (the reason behind the commutator notation
will become clear in the following sections) [L, M] as the top left kernel. Notice that the
equality in the first row comes from the fact that the lower left hand square is a pullback.
Therefore we could equivalently define [L, M] as the kernel of ¢, o k,, computed in A.

Remark 4.2.4. The mapping which sends an L-point as above to [L, M] is functorial,
indeed for each morphism of L-points as in (4.6)) (not necessarily a regular epimorphism)
we have a unique map [1, f]: [L, M] — [L, M'] induced by the universal properties of
the kernels and cokernels involved.

Remark 4.2.5. By construction we have the diagram

0 M R E 3
0 Cs1> o) C’SXL?SL%O
| i

00— Ci———Cy=—>0———>0



4.2. TRIVIAL ACTIONS AND COINVARIANTS 131

where the rightmost vertical composite rectangle

is a pushout of regular epimorphisms, that is a regular pushout: indeed the universal
property can be shown directly by using the fact that p o s = 1 and that ¢4 is the
cokernel of s. Since {cs,p) is the comparison morphism to the induced pullback, it is
automatically a regular epimorphism. By Lemma [I.2.16] this is equivalent to 7y, being
a regular epimorphism of L-points. Furthermore, since the top left square is a pullback,
also ¢s o k), is a regular epimorphism.

Proposition 4.2.6. TrivActy(A) is a Birkhoff subcategory of Actr(A).
Proof. According to Lemma we need to prove three things:

(a) TrivActy(A) is a reflective subcategory of Actr(A), that is the inclusion functor
has a left adjoint;

(b) for each L-action
P
X ? L
the unit nx is a regular epimorphism of L-actions;

(c) for each regular epimorphism of L-actions

X$L

X’HL

its associated naturality square is a regular pushout of L-actions.

For (a) it suffices to show the universal property of n: consider a morphism of L-actions
with a trivial L-action as codomain

k
0 M= X%LHO
gokpl <97p> (4.2)
OHM’HM’XLHLHO
(1,0 <0 1

We know that
gos=7r10<g,p>08=7Tlo<0a1>20
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and therefore there exists a unique map ¢: Cs — M’ such that

X = Cs
g \/d)
M/

commutes. But this means that we can decompose in a unique way the morphism (4.2)
as

k
0 M2 %LHO

Cs OkP\L Cs :p

0——Cs—> C XLHLHO
1,0 | <01>
¢\L ¢>1/1L

0—>M>—>MxLe—>L—>0
1,0 <01>

Step (b) is already proved in Remark It remains to show that (¢) holds, and
by Lemma [1.2.17] (and Lemma [1.2.16)) this amounts to showing that for each regular
epimorphism f: X — X' the left face of the cube

> L
(eo ) \ | \
p
! > L
<C /,p> H
Cs x L 3 ?
<0,1)
Cﬂx \
CS’ X L
€0,1)

is a regular pushout in A. By definition it suffices to show that the comparison morphism

¢

is a regular epimorphism.
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In order to prove this, we need two steps: the first one is to show an equivalent
description of the pullback P, that is the fact that it can be obtained also as the pullback

P X
l i (4.4)
C C

s T ¢ s

p2

—
2

—

since this can be decomposed as the two pullbacks

(4.5)

The second step consists into showing that the outer square in (4.5)) is a regular pushout
and since the four maps are already regular epimorphisms it amounts to showing that it
has the desired universal property.

We have that

/
uos =uofos=vocsos=0
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and therefore by the universal property of Cy there exists a unique w: Cy — Z such
that w o ¢y = u. The commutativity of the other triangle is given by the fact that cs is
an epimorphism.

Consequently (##) is a regular pushout and the induced comparison morphism ¢
in (4.5) is a regular epimorphism. This in turn implies that the outer square in (4.3)) is
a regular pushout, that is the thesis. ]

Remark 4.2.7. According to Definition [£.1.9] we have that an L-action
O— Mp>—>X=—L—>0

is TrivActy (A)-perfect iff its image through the reflector TrivActy(A) — Actr(A) is
the zero L-action, that is the point

1
OHOHLlﬁLI/%O.
L

This in turn is equivalent to the equality of subobjects [L, M] = M since a map is zero
iff its kernel is an isomorphism. Hence an L-action is perfect iff [L, M] = M.

The following is a special case of a result in [39).

Lemma 4.2.8. Consider a regular epimorphism in Pty (A)

OHMHXHLHO

.

OHM’D?X’HL%O
p S

(4.6)

then the induced map [1, f]: [L, M] — [L, M'] is again a regular epimorphism.
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Proof. Consider the following diagram

[L, M]
¥ W‘
E(esokp) [L, M']
k(CS/Okp/)
Mo X £ > L
S
g 4.7
\ ( s p) \ \ 4.7
ceohy M X' - >
sl
! cs/okp/ L <Cs/7p/>
C, B C.x L ——
0,1
\ < fh ﬂ_g\
C ’ b C/ L Z ” L
3 (1,0) ¥ XT3 0,1

and consider the leftmost face of the cube on the left, denoted (#) from now on: the
strategy is to prove that (x) is a regular pushout since the map induced between the
kernels of a regular pushout is again a regular epimorphism.

So the first thing to do is to notice that every map in (*) is a regular epimorphism
(the only one we need to say something about is f, but this is a regular epimorphism
from the fact that it is the second map in a composition which is regular epimorphism).

Now to show the universal property of the pushout we use Lemma [1.1.25| and hence
it suffices to show that the comparison map ¢; (see (4.8))) induced by the pullback
Py is a regular epimorphism. In order to prove this we can use the fact that ¢, is a
regular epimorphism: this is because the middle square is a regular pushout due to #i7)
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in Proposition [£.2.6]

csokyp

But since the square

P1 ?PQ

is a pullback, also ¢; is a regular epimorphism and hence the square (*) is a regular
pushout.

Finally it suffices to use Lemma to obtain that [1, f] is a regular epimorphism.

O

Proposition 4.2.9. Given an L-point
P
0—>M>tsX=—=1—>0. (4.9)
its coinvariance commutator [L, M], seen as a subobject of X, coincides with the Higgins

commutator [L, M) of L and M.

Proof. Consider the action £: LbM — M associated to the point in (4.9)) and the induced
“action core” £°: Lo M — M. We have a morphism of split short exact sequences

1

k
0 MMLML+M—%L—»O
o
0 M > X——%L—»o

k
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Precomposing the first square with the map iz, 37 we obtain the commutative triangle of

solid arrows

k oi N
0— s LoMEM Y A M ——>LxM—>s0

T 0o

X

Here we can see that ko £° = 0 iff s and k cooperate: first of all s and k cooperate iff
there exists a map ¢, such that the triangle on the right commutes; if this map exists
we deduce that

kot = <Z> okrpmoinm
=¢sroXrmokrmoipm =0

On the other hand if k0 &® = 0 then (Z) okr v oir,m = 0 and by the universal property
of the cokernel Xy, a7, such a ¢, exists.

Notice that the existence of ¢, is equivalent to the triviality of the action &, as
shown by applying the Short Five Lemma to the diagram

1,0

O%M MXLﬁL%O
0,1)
4
0 X——=L——>0
p S

We then have that k o ¢ = 0 if and only if its image is 0, and its image is precisely
[L, M]%. Hence we have shown that [L, M]% = 0 iff the action ¢ is trivial. Resuming
what we have so far: [L, M]¥ is a normal subobject of X (since X = L v M), contained
in M (we always have [L, M]%¥ < [X, M]% and being k normal implies [ X, M]% «— M),
such that [L, M]% = 0 iff the action ¢ is trivial.

But the coinvariance commutator share all these properties, therefore the two satisfy
the same universal property and hence they are isomorphic. ]

Remark 4.2.10. In order to justify the last sentence in the previous proof it suffices to
think of constructing two functors starting from the two commutators: in both cases,
dividing out the commutator (which is a normal subobject) determines an adjunction
to a RE-reflective subcategory defined by the condition that this commutator vanishes.
But both commutators are zero at the same time, so they describe the same reflective
subcategory. Therefore the two adjunctions are the same and consequently the units are
the same. Finally their kernels are the same.

Lemma 4.2.11. Given an internal crossed module (M 9, L&) the object i ]\Ai[[]ﬂ 18
L x

abelian.
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Proof. First of all notice that the Higgins commutator [L, M ]E{( can always be obtained
as the image of the action core: indeed we already know that it is the image of ko £° but
since the second map is a monomorphism, the image of £° is the same. Then by using
the Peiffer condition and precomposing with 4,73/ we obtain the commutative diagram

Mo MM 0

oo

Now by computing the REM-factorisation we find

Mo M —s> [M,M]jl\f[

ool ®
A\

> M
LoM—s[L,M{>——sM

Finally by taking cokernels of the horizontal maps in the square on the right we obtain

H M
[M, M]y; M >[M,M]j’\f[
|
)
\’ \
H M
L, M]x M= g
Since ﬁ is an abelian object and since 7 J]\\/[/[]H is obtained as its quotient, it is
’ M ’ X
abelian as well. O

Remark 4.2.12. Notice that, if we consider the diagram in Definition [4.2.3], since cs o k,
is a regular epimorphism (see Remark , it is the cokernel of its kernel. This means

~ M
that C =~ TATIiA

4.3 Central extensions of crossed modules, ad-hoc approach

We let A be a semi-abelian category. Imitating what has been done for groups and Lie
algebras, we give the following definitions. Later on we will justify them from a Galois
theory perspective.

Definition 4.3.1. Let L be an object of A. A central extension in XModp(A) is a
regular epimorphism of crossed modules

0

(M N (f:lL)

L,¢) (' L 1,e)

where for the kernel Ky of f we have that [L, K¢]% = 0.
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Remark 4.3.2. Notice that this means that the kernel K % L of (f,11) has a trivial
L-action: indeed by Proposition we have [L, Kf] = [L, K;]%

Definition 4.3.3. Let L be an object of A. A perfect object in XModp(A) is an L-
crossed module (M N L,€) such that [L, M]% = M.

Lemma 4.3.4. An L-crossed module (M 9, L, &) is perfect if and only if in the corres-
ponding internal groupoid

d
X <= Gi— L

the normal closure L of e is all of X.
Proof. Consider the diagram

doke,
[L, M]]HL%L

[, -,

Mt s Xz—— % L
S
V \4 \

6 Ce %; 0

whose rows are split short exact sequences and whose columns are short exact sequences.
If [L, M] = M then by the Short Five Lemma applied to the first two rows, we obtain
that L = X. The converse holds because the upper left square is a pullback. The result
now follows from Proposition O

Proposition 4.3.5. Given a crossed module (M LR L,&) we can construct the crossed
0
M—>M

square
®
|k
L——1L

by taking the non-abelian tensor product. Then dpr is a reqular epimorphism iff (M 5,
L,§) is perfect.

L

Proof. Let us recall the construction of the non-abelian tensor product. First of all we
denormalise both (M 9, L,§) and (L L, L, xr) and we take the pushout of the two
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split monomorphisms e and Ay, obtaining the square of reflexive graphs

™
L X L <——Ap
™2

L

Then we take a quotient of P in order to obtain a double groupoid

P M x L
D2
p1
S
P<«<——— "~ MxL
D2
c d
T
LxL——L x L<—A; L

2

and finally we normalise back the whole double groupoid obtaining

LOIM>—m— > (LOM)x M<—— M
Y v E— i
k.- v p~1
(LQ M) x L = P M x L
D2
cle|d
1
L L x L Ap, L

™2

Now we are ready to prove the result. First of all, by applying Lemma [I.1.1§] to the
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diagram

LQM— 2 o

| |

(L®M) » LN s I (4.10)

oo bl o u; ld

L L

we deduce that s is a regular epimorphism iff dp; x 1, is so. Then using the diagram

5M><]1L

we see that dp; x 17, is a regular epimorphism if and only if §p is so.

Being dp a proper map (see Lemma , it is a regular epimorphism iff it has
trivial cokernel.

On the other hand, Lemma [1.3.2]says that for any reflexive graph the cokernel of the
normalisation is the same as the coequaliser of the two split epimorphisms: this implies
that the first one is trivial iff the second one is. Let us draw the picture involving the
desired coequaliser @)

p1
_—
P<—s MNL%>Q
T P2 :
| C%d W
jv 1 v viv
LxL Ar L >0
™2

Here the second row involves also the coequaliser of 7; and 79 which is 0 (because it is
the cokernel of the normalisation 17).

Let us prove by hand that ¢ is the cokernel of e. Consider v: M x L — Z such that
v oe = 0: in order to have the unique map ¢: Q — Z such that ¢ o ¢ = ~ it suffices to
show that v op; = o ps since ¢ is the coequaliser of p; and po. For that we use the fact
that P is the pushout of e and Ay, and hence that (s,e’) is a jointly epimorphic pair:
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we have the equalities

yopios=f=vopyos
'yoploelz'yoeo7r1:Oz'yoeowzzfyopzoel

and so v o p; = yo py. This means that () = C..

Finally by Lemma we know that C, = 0 iff (M KR L,¢) is perfect, and this gives
us the thesis. O

Proposition 4.3.6. Consider a regular epimorphism of crossed module

0 (falL)

(M S L) 2t o &g,

Then f considered as a morphism in A is a central extension (with respect to Ab(A)).

Proof. Since (M 4 L,€) is a crossed module we have that [Kp, M|}, = 0. From the
commutativity of the triangle

ML

N

L

we can construct a monomorphism Ky < Kj which in turn induces a monomorphism
, — | Ky, since the Higgins commutator 1s monotone). 1s means that
Ky, M% — [Ka, M1}, (since the Higgi i Thi h
(K, M ]}\*‘4 = (0 and therefore by Lemma [4.1.11| we obtain that f is central as a morphism
in A with respect to Ab(A). O

Proposition 4.3.7. In the situation of Proposition if (M 9, L,¢) is perfect, then

the map (dpr,11) is a central extension of L-crossed modules.

Proof. We know from the proof of Proposition that &7 x 17, is a regular epimorph-
ism. Since it is also the differential of a crossed module (coming from a double groupoid
square), it is a central extension in A with respect to the Birkhoff subcategory Ab(A).

Notice that, being the upper square in a pullback, we have an equality between
kernels K5,, = Ks,,x1. Consider the following diagram

d
Ksy,>——>Ks5, x L=—7/—=>1L

hl e l (4.11)

Ks,, >—>(L® M) NLW>M><1L
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where the square on the right is a pullback according to Corollary [[.2.18] The right
inverse € of d is induced by the diagram

A :
K5y, ¥ L ——— L

(LQM)x L——>M xL

51\4 x1
The first row in (4.11)) is the L-action which is part of the L-crossed module structure of
the kernel of (dpr,17). In order to conclude the proof, we need to show that this action
is trivial, so that [L, K5,,] = [L, K5,,] = 0 as in Remark The map d is obviously

a split extension, so it suffices to show that it is central with respect to ADb(A): but we
already know that dp; x 1 is so and because d is its pullback it is central as well. O

Proposition 4.3.8. Suppose that A satisfies the Smith is Huq condition. Then any
central extension of L-crossed modules

(Mi)L,g) (f?lL) (M/a—/)L,fl)
nduces a crossed square
ML
0 i
L——=1I.

Proof. The first step is to prove that
[M x L,K¢x] =0.
In order to do that we use the decomposition formula given in [67]
[M L’folﬁ\{qu = [M, folﬁ\{/[m v [L’fol]?\-f[xL v [M»L,fol]ﬁw:
= [M, Kpal3y v [L K pal¥ur v (M, L K pa 13

and we show that each component is trivial:

e notice that Ky = K, since f is the pullback of f x 1;

e since (f, 1) is a central extension, we know that [L, Kf] = 0;

e from Proposition it follows that f is a central extension with respect to Ab(A),
and therefore [M, K|¥ = [M, K¢)¥ ... = 0;
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e since both Ky and M are normal subobjects of M x L, the Smith is Huq condition
implies that [K, M, M x L)%, = 0, which in turn implies [M, L, K]% ., =0
since this is a subobject of the previous one.

Now consider the extension f x 1 (it is a regular epimorphism because f is so): since
[M x L, fol]g\{ML = 0 we deduce that f x 1 is a central extension with respect to Ab(A)
and therefore it is the differential of a crossed module.
We now use the fact that in Grpd(A) the central extensions (with respect to Ab(Grpd(A)))
are computed pointwise, that is they are couples of central extensions in A (with respect
to Ab(A)): this is shown in Proposition 4.1 of [10]. Since both f x 17, and 1, are central
with respect to Ab(A), the lower square in the diagram

M—

k;dI Ik‘d/
fxlpg

Mx L5 M« L

il

L:L

is a central extension in Grpd(A) (with respect to Ab(Grpd(A))) and therefore it is
the differential of an internal crossed module in Grpd(A). This means that its denorm-
alisation is a double groupoid and therefore the square we are interested in is an internal
crossed square. ]

Theorem 4.3.9. An L-crossed module is perfect iff it admits an universal central exten-
s10M.

We split the proof in the two following implications.

Theorem 4.3.10. FEvery perfect L-crossed module has a universal central extension.

Proof. Let (M KN L,¢) be a perfect L-crossed module and consider the crossed square
LOM - M

% f

By Proposition [£.3.7 (6a,11) is a central extension of L-crossed modules. Now we
want to show that this central extension is universal, that is it is initial among central

extensions of (M LR L,¢§). So consider another central extension

(01 S 1, &) L, (a2, g
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Due to Proposition [£.3.8 we know that also

M%f>

S

D
h%
D

L—==

is a crossed square. Now it suffices to use the universal property of the non-abelian tensor
product (see Proposition |3.2.10)) to conclude that there exists a unique map ¢: LQ M —
M such that the diagram

O

LM

commutes. This implies that (das, 17,) is initial as central extension of L-crossed modules.
O

Also the converse of this result holds.

Theorem 4.3.11. Every object that admits a universal central extension is perfect.

Proof. Consider an L-crossed module (M’ LR L,¢') and an abelian object A € Ab(A):

the fact that A is abelian can be seen as (A %L ,7k) being an L-crossed module. We

0'om 1

can construct the crossed module (A x M" ——=> L, &4« ) where the action €4y is

induced by the universal property of the product as shown in the diagram

Lb(A x M")
P
LbhA Eaxm’ LbM'
(4.12)
A x M’

/\

In order to see that this is an L-action it suffices to use the naturality diagrams for n and
w and the fact that both Tff and ¢ are L-actions. Similarly to see that this gives rise to

an L-crossed module it suffices to use that both (M’ 2, L,¢) and (A %1, L) are so.
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Now consider the triangle

Ax M — 20 zp

@k/

This is a morphism of L-crossed module (due to ) which is a regular epimorphism:
we want to follow Remark and show that it is a central extension by proving that
its kernel has a trivial L-action. But its kernel is simply (A 5 L,Tﬁ): to see this is
suffices to use the description of kernels in XModp (A), to notice that A = Ky, , in the
base category A and to show the commutativity of the square on the left in the following
diagram

1b7rp g0

oA 000 1o x M) 2 Ty

Tﬁi §A><]VI’\L 5’\L

Therefore since its action is trivial, (my, 11) is a central extension.
Now suppose that

0

(M N (f:lL)

L,¢) (' 5L,

is a universal central extension of L-crossed modules. By definition we have a unique
map from this extension to the previous one

(M5 L9 o (' 2 L)
(oIt s /M
(A M Lomar 0o pp1 I §A><Ml)

Let us focus on this induced map: the way we wrote it comes from the fact that it
makes the previous diagram commute, but what can we say about g: M — A? It is the
unique map that makes ({g, f), 1) a morphism of L-crossed modules, that is such that
the following squares commute

F 16g,f>

M——1L M ——— Lb(A X M/)
<97f>l ﬁl J/'EAXJW’
Ax M —— L M—— s Ax M

d'ompy {9,.>
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The first one trivially commutes for each choice of g, whereas the second one does so iff

oM 2% 1hA

gl lrg (4.13)

M — A
commutes. Now, since

L M TI{//I
LoM>—=>IbM — M

U
is a split short exact sequence, we have that the map (nM ) (L o M)+ M — LbM is
an epimorphism. This implies that the commutativity of is equivalent to the
commutativity of the same diagram precomposed with (Zﬁf ) Thls in turn amounts to

M

having that go & o iLM =0, that is g([L, M]¥) = 0.
Now fix A = AT M] - (it is abelian by Lemmal4.2.11)) in order to deduce that [L, M]% =
M. Notice that both the quotient g = q: M — LT
the condition g([L, M]¥) = 0, we conclude that ¢ = 0, that is [L, M]¥ = M. This

means that (M 9, L,¢) is perfect and consequently (M’ 7, L,¢’) is perfect too, since it
is a quotient of a perfect. O

—>Z_— and the zero map g = 0 satisfy

4.4 Galois theory interpretation, quasi-pointed setting

The aim here is to use the coinvariants reflector to construct a Birkhoff subcategory
of XModp(A) with respect to which we find the “right” class of central extensions of
L-crossed modules.

Definition 4.4.1. Consider an internal crossed module (M LR L, ¢) with the kernel Ky
and the commutator [L, M] induced by £ as in Definition

We say that an internal crossed module has an acyclic action when Ky n[L, M] = 0.
Here the intersection is the subobject of M defined via the pullback

Ky [L, M]>—>[L, M]

I l Ik<cs okp)

Kop—r—> M
o

Notice that since 7 is the diagonal of the pullback of a kernel along another kernel, it is
itself a kernel.

The idea behind this definition is that the action has no cycles (elements of Kp) in
its image.

We will denote AAXMod (A) the full subcategory of XMody,(A) whose objects are
the crossed modules with an acyclic action.
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Construction 4.4.2. We will now define the functor F': XMody(A) - AAXMody(A)
which is left adjoint to the inclusion functor J. Given an internal L-crossed module

(M %I, €), we start by defininig the subcrossed module (K n [L, M]) %0, T?(m[[L M)
where T?(am[[ L,M] is the trivial action: this is a crossed module, indeed in the diagram

X(KanlL,M])

(K@ﬁﬂL,Mﬂ)b(K@ﬁ[{L,M]}) (Kaﬁ[[L,M]])
oml )
0 (K  [L, M]) — 22D (ks A [, M])

) |

000 0

X0

the lower square trivially commutes (each composition is 0), whereas for the upper
one it suffices to use the fact that T(OKam[[L M]) is an isomorphism with inverse given

by n?Kam[[ L,M]) and the commutativity of the diagram

Kam[[L M])

(K«n[[L M])
(Ka N [[L M) —— s M
"(Kam[[L M]) "ﬁi <4~14)

3
M

in order to obtain
0 X(K,n[L,M]) = XM © (i) = § o (db1) o (ibi) = £ o (0bi) o (0b1)
=00 gz, © (001)

which is the thesis since ¢ is a monomorphism.
Furthermore the inclusion between the two crossed modules is given by the arrow

(i,0) € XMod(A):

0b(Kp ~ [L, M]) —2> LhM (Ko A [L,M]) —> M
T?(am[L,]M]]\L iﬁ O\L 0

here the commutativity of the second square is trivial whereas the first one is given

by (13,
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The image of (M 9, L, &) through F' is given by the cokernel in XMod(A) of the
previous inclusion, that is

(rmtmm 29

where the action £ is obtained as follows: first we pass to the category of points and we
take the cokernel

0——> Ko [L, M] == K» n [[L,M]]#OHO
ZI pri\L IO
k
0 M > ’ X%LHO (4.15)
C(k o1)
A\
0 Ky C(k Oz)ﬁLHO

and then we go back to the associated action € given by the diagram

(‘%)

k
Lb K5 >LL+K %>L

Kﬁ D%ki C(kpoz) %> L

The first thing we need, is to prove that Kz = C; and to do so, we need three steps:
i) We show that the outer square

Kan HIJ,M]]H [L, M] —=[L, M]

I Ik(CSOkP)

K, X

is again a pullback by using the universal property of the smaller pullback square
and the fact that k, is a monomorphism. This means that if we show that the maps
kp o ko and ky, o k(c,or,) are kernels, then k;, o is again a kernel, and in particular
the kernel of its cokernel.

ii) We show that the maps k), o ks and ky o k(¢ ok, are kernels. To see this, it suffices
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to take the following kernels of split epimorphisms

0—>[L, M]

[L, M]]ﬁ()%o

k(Csokp)I prk(Esokp) 0
0 il X % L——50
Cs Okpl <cs D)

0 Cor—ios CSXLWL%O
0%&}@@%%0%0
kaI kpoks Io
0 Mo )v( % L——0
v
0 L LxLTL%O

where the map z in the second diagram is part of the structure of the unique
morphism of points induced (through the equivalence Act(A) ~ Pt(A)) by the
morphism of actions

oM 2% 1hr

| |

MTL

(this commutativity is given by the precrossed module condition for (M 9, L,¢)).
In each diagram, the middle upper vertical arrow is a kernel by definition, and it
is identical to the desired composition since the lower left square is a pullback.

iii) With 4) and éi) we proved that the middle vertical sequence in is exact since
being kj, o 7 a kernel, it is the kernel of its cokernel. But since also the rightmost
vertical one and the three rows are exact, by the 3 x 3 Lemma (see [8]) we obtain
that the leftmost vertical sequence is exact, that is K7 = Cj.

At this point one would expect that the action £ just defined makes the diagram

lLbCi

0bs
(K, A [L, M]) — > IhM > Lb e
T?(am[[L,]M]]\L J/E () \L&
(Ko 0 [L, M]) ———— M ————
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commute and indeed this can be shown by using the diagram

()

IbM ————— L+ M L

1rbe; 14¢;
(zfp)

m\
¢ LbK AL * L+ ij[\[i,M]] - L
g J ()
M » W X m L
x‘ C<k& \
M

KonlLM] * &, Clkypoi)
The map 0 is induced via the universal property of the cokernel of

(K5~ [L,M]) ——> M — s M

Kan[L,M]
Ol 0 (%) F
A\
-
0 — L——1L

151

The fact that it is an internal crossed module is easy to show: it suffices to use that

(M 4, L,¢) is an internal crossed module and that both ¢bg and 17bg are (regular)
epimorphisms (by Lemma [1.1.35). From the commutativity of (*) and (x*) we conclude

that

0 (Ci71 ) El =
(M - Lag) - (Kgm][\[/[L,M}] - L?f)

is a morphism of L-crossed modules. Furthermore it can easily be checked that this map

has the universal property of the cokernel of (7,0) in XMod(A).

We should also verify that the internal L-crossed module obtained through F' is

actually an action-acyclic one and this is done in what follows.
Let us depict the situation through the diagram

M b X - L
C(kpoi)s
Ci <537p>

5 M . ky P

csokp Kon L] | X! 3 L
csoky J {esiBy
LY C.x L —
’ 0,1

Cg Cg x L L

(1,0 0,1)
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where the map €y, ;) is defined through the universal property of cokernels

L——=X >
Ck oi)l i
T V%p )
L . X' P > Cg
Now by defining the maps h as follows
K10 oM — 2 o
h Cil
¥ \
M
Kor— = monlea —5

we obtain the following commutative cube

Kyn [L,M] —— [L, M]

& T e

M l M
Kzn[L, KamﬂL,M]}]] b [, Kam[[L,M]]]]
Ky 012 . M
¢
h
N M
K » ks Kon[L,M]

in which the front face and the back face are pullbacks and the map ¢, induced by the
universal property of the former, is the zero morphism: this is due to the fact that the
diagonal of the pullback on the back face is exactly i. Also the lower face is a pullback
and this implies that the upper one is so. Finally, since [1,¢;] is a regular epimorphism
and the upper face is a pullback, also ¢ is a regular epimorphism. But an epimorphism
can be 0 only when its codomain is 0 itself, that is

M

KL, —— =
AL o S v LA

which means that the image through F' is always an action-acyclic L-crossed module.
Finally we will denote the previous cokernel map as

) neo,e)=(ci,11) ? -
(M5 L) (Kamf[‘[gw 2, L,§> :
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We now want to construct an exact sequence involving this map in the category XMod,(A),
and in order to do so we take its kernel

(Ko n [L,M]) % L,6) —— (M S L,¢)

\L \L(CiylL)

v

F] _
(Kam][\{L,M]] - va)

o L
(O LaTO ) (0,17)

where the action § is defined through the diagram

1pbi 1rbey

Lb(Ks n [L, M]) LbM Lb gt

¢ J/f l&
v M
(Ko N [L, M]) ——> M —— =17

We know that (¢;,17) is a regular epimorphism in XModp,(A) since ¢; is so in A. Due
to Proposition 2 in [8] we know that in a quasi-pointed protomodular category a map is
a regular epimorphism if and only if it is the cokernel of its kernel, therefore (¢;, 1) is
the cokernel of ((i,17)) and we have that the sequence

(i:12) (cir1r) 3,z
(Ko [L,M]) S L,6) s (M S 1,6) =22 (Kam][[”L,Mﬂ N L,§>

is exact.
Lemma 4.4.3. The category AAXMod[ (A) is a Birkhoff subcategory of XMody(A).
Proof. By using directly Definition we need to prove three things:

i) AAXModj(A) is a reflective subcategory of XModp(A), that is the inclusion
functor has a left adjoint;

ii) AAXMod is closed under subobjects;
iii) AAXMod is closed under quotients.

For ) it suffices to show the universal property of n: consider a morphism of L-crossed
modules with an action-acyclic L-crossed module as codomain, that is

(M 2, ng) (L), (M’ 2, L,g’) (4.16)
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where Ky n [L,M'] = 0. We want to show that there exists a unique morphism of
action-acyclic L-crossed module (f,17) such that the triangle

0 n:(cizlL) 5 =
(M % L.¢) (erttomm 2 £.5)
(4.17)
(f1z) (Fio)
(M’ , L,§’>

commutes. We will define the map f using the universal property of ¢;, therefore we
need to show that f o7 = 0. So consider the cube

Kyn [L,M] — [L, M]

N, Y

Ky A [L,M'] ———— [L, M]

N

Ka/ s 7 M/

(4.18)

Since 7 is the diagonal of the square on the back, the composition f o4 coincides with ¢
followed by the diagonal on the front face: now it suffices to notice that Ko n[L, M'] = 0
and hence that composition is the zero map. Therefore we have a unique map f such
that

C; M
M Kon[L,M]

X /f (4.19)

It remains to prove that (f, 1) is a morphism of (action-acyclic) L-crossed module, that
is the commutativity the diagrams

M pl M 1obf
KAl —— L Lhyemtram — Lh M
7| gl |
M ———>1L i M
i Kan[L,M]

For the first one it suffices to precompose with the regular epimorphism ¢; obtaining

dofoci=0of=0=0o0c.
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For the second one we use the fact that if ¢; is a regular epimorphism, then so is 17bc;:
therefore we precompose with 17bc; obtaining

g o(rhf)o(lpbe) =& o (1phf) = fol = fociof = fofo(lrhe)

and hence the thesis. Notice that the commutativity of is equivalent to the com-
mutativity of .

As for 4i) is concerned, let us consider a morphism as in which is also a
monomorphism in XMody,(A) (see Lemma and the induced cube as in (4.18]).
Since we can obtain the morphism from K3 n [L, M] to M’ as a composition of three
monomorphisms, it is a monomorphism itself. But this can also be seen as ¢ followed
by the diagonal of the front face: we then use the fact that if a composition is monic,
its first component is monic as well, to obtain that ¢ is a monomorphism as well. Now,
since the codomain Ky n [L, M'] is 0 by hypothesis, also the domain is 0, that is also
M is action-acyclic.

For what regards iii) consider a morphism as in which is also a quotient in
XMod/(A) (that is such that f is a regular epimorphism due to Lemma and the
induced cube as in . Following the reasoning at the end of Construction we
obtain that ¢ is a regular epimorphism, but since the domain is 0 by hypothesis, also the
codomain is 0, that is also M’ is action-acyclic too. O

Protoadditive functors were introduced and studied in [3§].

Theorem 4.4.4. The reflector F' is protoadditive: this means that is preserves split short
exact sequences.

Proof. The proof consists of the following steps:

1) Show that the functor that sends an L-crossed module (M 9, L,¢) to [L, M] is
protoadditive;

2) Show that this implies that the functor that sends (M KN L,¢) to Ky n [L, M] is
protoadditive;

3) Use the 3 x 3 Lemma to conclude that F' is protoadditive.

For what regards 1) the aim is to prove that any split short exact sequence of L-crossed
modules

(1,5) /
(K% Lo Sp == & e (4.20)
- (1,9)

induces a split short exact sequence of coinvariance commutators

[L.1]
0—— [L, K] 2L o, M) == [1, M] —>0.
[1.9]

1,9
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Using Proposition [£:2.9 we can reason with Higgins commutators instead, showing that

k] sl
[L, M| =—=[L,M']|—0

0—[L, K] —> [1g]

is still exact. From the fact that
k f ,
00— K>—>M_—=M ——>0
g

is a split exact sequence in the base category, by using Proposition 2.24 in [51] we obtain
that

lof
00— (LoKoM)x(LoK)—>LoMZ—=>LoM ——0
log

is a split exact sequence as well. We have the comparison arrows

lof
0——>(LoKoM)x (LoK)b—>LoM=—=LoM ——0

log
\L goi J/é‘lo
f

0 K M?M’%O

whose images, from right to left, are [L, M'], [L,M] and [L,K,M] v [L,K]|. These
images form a split short exact sequence: taking kernels to the left,

lof
0——= (LoKoM) x (LOK)HLOMHLOM/HO

Log

e
O%K[jfp%@,i [1’9] J/‘ —>0
0 K> p M#M’HO

we see that the bottom left square is a pullback, since the bottom right vertical arrow is a
monomorphism; likewise, the top right square is a regular pushout, so the top left vertical
arrow is a regular epimorphism. It follows that K[y s is the image [L, K, M] v [L, K] of
the left vertical composite. Now since K is central in M (we use the underlying crossed
module structures only here) we have [L, K, M| — [M,K,M] — [K,M] = 0. Hence
K1, = [L, K], which is the thesis.
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For what regards 2) consider the following diagram

Kon [L,K] [L, K]
¥ X‘ ¥ W
ka
Ky [L, M] ¢ = [L, M]
¥ \ ¥ w
k Ky m
K@/ N [[L,M/]] b — [[L,M/]]
Ky K
\ A\
Ky » k M
\ f
\ g
Ko » ko M

It is trivial to notice that [1, f] o [1,¢] = 1. Then it remains to show that k = k.

Suppose that A % K [L, M] is such that foa = 0then 0 = kyo foa = [1, floksoa
and since [1, k] = kp g we have a unique v: A — [L, K] such that [1,k] oy = kg o a.

Using that kj is a monomorphism and the equality [1,k] = ks o k we obtain ko~ = a
which is the thesis.
Finally, in order to prove 3), consider the following diagram:

(f:lL)

(Ko n [L,K] % L,6) > (K o [L,M] O L, ¢) 22 (Ko  [L,M7] S L, )

I [

(f1r) y
(K%L, (v - ' 2 Le)
\L - \L (9:1z) l
\4 \ \4
F(f)l ) /
FES L —" o por S L) = p(m' % L, ¢)
- F(g71L)

Each column is exact by definition of the functor F' and the middle row is exact by
hypothesis. From the description of kernels in Remark and from the previous
step, we deduce that the top row is exact as well. Now it suffices to use the 3 x 3-
lemma to obtain that also the bottom row is exact. The fact that it is split is given by
functoriality. O

Remark 4.4.5. If A is strongly protomodular we can give a simpler proof of the protoad-
ditivity of the functor F' by changing the way in which 1) is shown in Theorem m
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This proof uses Proposition [£.3.6] as follows.

Consider a split short exact sequence of L-crossed module as in : by Proposi-
tion we know that f is a central extension in A (with respect to Ab(A)), but since
it is also split, it is a trivial extension and hence a product projection. In particular g is
a normal monomorphism, and being A a strongly protomodular category we obtain that
(g9,1p) is a normal monomorphism of L-actions: since it is also split we that (g,17) is a
product injection and (f, 1) is a product projection in Actr,(A).

Notice that in the semi-abelian context, any RE-reflector R preserves products. In-
deed consider a product split short exact sequence

(1,0) Ty
X>— > X XY —/——=Y

0,1)

The images R(my) and R({0,1)) are again respectively a split monomorphism and split
epimorphism. Since R is a left adjoint, it preserves cokernels and consequently we know
that R(my) is the cokernel of R((1,0)), therefore in order to prove that R(X x Y) =
R(X) x R(Y) it suffices to show that the split monomorphism R({1,0)) is a normal
monomorphism (so that it is the kernel of its cokernel). However, this follows from the
assumption that the adjunction units are regular epimorphisms and from the fact that a
direct image of a kernel along a regular epimorphism is again a kernel (see Lemma:
here we also used the fact that (1,0) is a (split) monomorphism.

This means that F' preserves products, so it sends the split short exact sequence (|4.20)
into a sequence which is again split exact. Finally by the 3 x 3 lemma we deduce that
the induced sequence of coivariance commutators is split short exact as well.

Now, using Lemma we can reformulate centrality as follows.

Lemma 4.4.6. Consider an extension

0

(M N (falL)

L,¢) (M L),

It is central with respect to AAXMody(A) if and only if its kernel

Kipay) = (Kp > L&) — (M 5 L,¢)

l l(f:lL)

1 a crossed module with an acyclic action.

Proof. The previous is a central extension iff one of the projections

(ris12): Kp((1g, f)) — (M 5 L,¢)
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is a trivial extension. Since rg and 7 are split epimorphisms we can construct the diagram

(ri)1L) P

l l i (4.21)

\ v F((ri11)) i

0—> F(K(f1,)) > F(Kp((f,11))) =——=F((M = L,§)) —0

where the vertical maps are the components of the unit. Notice that the first row is exact
since K, 1,) = K(y,1,) as follows from the fact that both the square in the diagram

(ijlL)

K1) —— Kp((f,11)) (M 5 L,¢)

J/ (Ti,lL)l l(fvlL)

9, L 9, r 7, /
(0 LaTo)W(M L,f)W(M L)

are pullbacks and therefore the outer rectangle is a pullback as well. Going back to ,
the second row is exact since F' is protoadditive. Then by definition we have that (r;,11)
is a trivial extension iff the square on the right is a pullback, but this is true iff the
vertical map on the left is an isomorphism (see Lemma [1.1.18]). O

Theorem 4.4.7. An extension of L-crossed modules in A is central with respect to

AAXMod(A) if and only if it is a central extension in the sense of Definition |4.3.1].

Proof. Recall that an extension is central in the sense of Definition if and only if
[L, K] = 0 (by Proposition From the previous lemma we know that the extension

(f,11) is central with respect to AAXMody (A) iff the unit (K 2 L,§) - F(Ky 2
L,§) is an isomorphism.

(=) Ifit is an isomorphism, its kernel ((Kon[L, K¢]) %1, () is the initial object (0 2
L,7E): this implies that (Kon[L, K]) = 0. Now notice that Ky is the kernel of the
zero map Ky 9, L, therefore we have Ky = Ky and also (Ko n [L, K¢]) = [L, K¢]
since the pullback defining the intersection becomes

Ko n [L, Kj] ==L, K{]
I I
Ky ——o— K,

Putting together the two equations we obtain the thesis.

(<) Conversely if [L, Kf] = 0 we have that also Ko n [L, Kf] = 0 and therefore the
kernel of the unit is the initial object. This in turn is equivalent to the unit being
monic, but since it is already a regular epimorphism, it is an isomorphism. O
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We have to generalise Definition [£.1.9] to the quasi-pointed exact environment of
XMod(A). There seems to be no single categorically sound approach to this; so we
stick with the following ad-hoc interpretation:

Definition 4.4.8. Given an L-crossed module (M LA L,§), we say that it is perfect
(with respect to AAXMody (A)) whenever its underlying action is perfect (with respect
to TrivAct(A)).

Remark 4.4.9. Recalling Remark [£.2.7]and Proposition [£.2.9) we obtain that an L-crossed
module (M = L,¢€) is perfect iff [L, M] = [L, M]% = M.

The aim of the next section is to make this more natural: we set up a Galois theory
with respect to which both the central extensions and the perfect objects agree with
those needed in Section E.3]

4.5 Galois theory interpretation, pointed setting

Consider an internal crossed module (M N L,§). Lemma [4.2.11] tells us that % is
’ X

an abelian object. Furthermore the association

F: XMod(A) —> Ab(A)

0 M
M

is functorial. Indeed if we have a morphism of internal crossed modules of the form

01 % L. L% o & 1)

we can construct the cube

LM

LoM» s LhbM
\ \
lof bf
H
(L, M), J s M
Lo M 2™ f

N

[leM/]j\{/[’xL’ > M
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and consequently the map f through the diagram

H M
(L, M1} M— a7,
[z,f]l lf 7
Y
[, Mg > M —> ——2
M’'xL [leM/]M’xL’

The mapping F is clearly a functor and it has a right adjoint given by the inclusion of
abelian objects as particular crossed modules. In order to define this functor G: Ab(A) —
XMod(A) we first need the following lemma.

Lemma 4.5.1. If Ae Ab(A) then (A 2 0,79) is an internal crossed module.

Now the functor G is determined by

G: Ab(A) — XMod(A)
A (A% 0,79).

Notice that if f: A — B is a morphism in Ab(A) (that is a morphism in A), then
0 0 0 0
(fao): (A - OvTA) - (B - 0>TB)
is a morphism of internal crossed module.

Proposition 4.5.2. The functor G is right adjoint to F.

Proof. To prove the thesis we will show the universal property of the unit.
Let us start by considering G o F'(M 9, L)¢)) = (L 9 0,7') and constructing

[L,M]%
the unit
B M o
¢,0):(M—->L,§) — | ——= — 0,7
(0.0): (01 1.8) ([L i
The first step is showing that this is a morphism of internal crossed modules, that is the
commutativity of the diagrams

3 3

M——-1L IbM ————> M
Qi l/ Obqi iq
M M M
g Y O T 7 Ean®
The first one is obvious, whereas the second one comes from the isomorphism Cs ~ T %]H
L x

(see Remark |4.2.12)) and from the fact that (4.1)) is a morphism of points.



162 CHAPTER 4. UNIVERSAL CENTRAL EXTENSIONS

Now we want to show the universal property of the unit: given a morphism of internal
crossed modules of the form

(£,0): (M S L,¢) — (A3 0,79

we need to construct a unique f: T é‘\/l/[]ﬂ — A such that (f,0) o (¢q,0) = (f,0). Consider
the following diagram o
Mot ML . L
\f \f ’ H \
<CS7 > x0
N g N (
q A l A 0
C, Cox L —
\ AN <071>
f fx0
pY g
A A 0

Here the map f is uniquely determined by the construction of the lower layer via the
universal property of cokernels Cy and A. It is the unique map such that foq = f and
this immediately implies that it is the unique such that (f,0) o (¢,0) = (f,0). Finally,
(f,0) is a morphism of crossed modules by the construction of G. O

Proposition 4.5.3. The category Ab(A) is a Birkhoff subcategory of XMod(A).

Proof. We already know from the previous proposition that Ab(A) is a full reflective
subcategory of XMod(A). By using Lemma [4.1.2] it suffices to show that the unit (g, 0)
is a regular epimorphism in XMod(A) and that Ab(A) is closed under quotients in
XMod(A). Lemma tells us that (g, 0) is a regular epimorphism in XMod(A) if
and only if both ¢ and 0 are regular epimorphisms in A, and this is clear by construction.
Now consider an internal crossed module (A 9, 0,7‘2) coming from the subcategory
ADb(A), and a quotient of it in XMod(A)

(A% 0,79) 8 (1 2 g

Again by Lemma [I.4.13] we know that both ¢; and g2 are regular epimorphisms. Since go
has 0 as domain it has to be an isomorphism, giving us L =~ 0. From ¢; being a regular
epimorphism we deduce that M € Ab(A) (because it is a quotient of an abelian object)
and also that ¢ = 0 (from the equality 0o q; = g2 00 = 0). Finally the action £ has to
be trivial because it is the only possible action of the zero object. This means that

M5 Le) =M% 0,79 =GM)

i.e. Ab(A) is closed under quotients in XMod(A). O
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Remark 4.5.4. If XMod(A) has enough projectives then so does A, since A is included as a
Birkhoff subcategory and Birkhoff reflectors preserve the property of existence of enough
projectives. (Indeed, any left adjoint whose right adjoint preserves regular epimorphisms
does so.)

Proving the converse (that XMod(A) has enough projectives if so does A) is more
difficult. By general results on functor categories we know that if A has enough projectives
then the category of reflexive graphs in A has enough projectives as well. The claim
now follows from the same argument as above: XMod(A) is equivalent to a Birkhoff
subcategory of the category of reflexive graphs in A.

Now we are able to apply Theorem 3.5 in [25] to obtain the following.

Corollary 4.5.5. Suppose A is semi-abelian with enough projectives. An internal crossed

module (M 5, L,&) of A is perfect (with respect to the Birkhoff subcategory Ab(A) of
XMod(A)) iff it admits a universal central extension (with respect to the Birkhoff sub-
category Ab(A) of XMod(A)). O

We now have to explain that the central extensions and the perfect objects in this
sense agree with the definitions above. Once this is clear, we find Theorem [4.3.9] as a
consequence of Corollary [A.5.5}—under the condition that enough projectives exist in A.
If A happens to not have enough projectives, then Theorem [4.3.9|remains valid, of course.

Proposition 4.5.6. Given an extension of a crossed module (M 9, L,§), we have that
it is a universal central extension with respect to the Birkhoff subcategory

Ab(A) —=XMod(A), (B1)
if and only if it is a universal central extension with respect to the Birkhoff subcategory

AAXMod/ (A) = XMod(A). (B2)

Lemma 4.5.7. Consider an extension of crossed modules

(f,) 0

M Ly Y o Sone) (4.22)

which is central with respect to (B1)). Then [ is an isomorphism and (f,l) can be con-
sidered as an extension of L-crossed modules.

Proof. Let us start by proving that a morphism as in (4.22)) is a trivial extension with
respect to (B1)) iff the following hold

[ is an isomorphism,
[f,l]: [M',L'] - [M, L] is an isomorphism.
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By definition (f,1) is trivial with respect to (B1]), if and only if the cube on the right

[M', L] + M’ > L

f
[£.1] v

[M, L] » M g

N
AN O\JO

L

is a pullback in XMod(A). But since pullbacks are computed levelwise in XMod(A),
this is the same as asking that both the top and the bottom faces are pullbacks in A.
Now it’s trivial to see that the top face is a pullback iff [ f,[] is an isomorphism and that
the bottom face is a pullback iff [ is an isomorphism as well.

The next step amounts to showing that for any extension which is central with
respect to , [ is an isomorphism. In order to show this, recall that (f,) is central if
there exists another extension

~

~ 0¥ k 2
(5 1,8 2% (M S Lg)
such that the pullback (f,1) of (f,1) along (g, k) is trivial. By looking at the pullback

M
] \
M/
0/
L

~

> M

5\
» M
Ja
> L

l

7

AN

and by using the equivalent condition for triviality proven above, we know that [ is an
isomorphism and hence [ is an isomorphism too: this is given by the fact that [ is a regular
epimorphism by hypothesis (it is part of an extension) and a monomorphism because [
is so and because pullbacks reflect monomorphisms in protomodular categories. O

)4 !

Proof of Proposition[{.5.6. We already know that in order for an extension to be central
with respect to (B1)), it has to have an isomorphism in the second component. Let us
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therefore fix an extension (f,17). Consider its kernel pair

M 10 M’
i \ \
0 o'
M — s M
o
L

<~

and in particular one of the two projections (rg,17). We will use the following chain of
equivalent conditions to obtain the thesis:

1) (f,1) is central with respect to (B1]),

2) (ro, 1) is trivial with respect to (B1)),

3) K1) =0,
4) [Kro, L] =0,
5) [Kfa L] = O,

6) (f,1) is central with respect to (B2).

The equivalence between 1) and 2) is given by the fact that the extension (f, 1) is central
with respect to iff it is normal with respect to .

To show 2) <= 3) we use Lemma and the fact that [ro, 1] is already a split
epimorphism by construction (it is defined through a kernel pair): this means that it is
an isomorphism iff its kernel K7, 1) is trivial.

Now consider the diagram

Klrg1l = [ro,1] ,
[Kry, L)>—"— [M,L] ——= [M', L]

I I o I (4.23)

T o
| ——, v YV
0 k s
0 0

The functor that sends an L-crossed module (M 51, €) to [M, L] is protoadditive (see
Theorem 4.4.4) and hence the first row in (4.23)) is again a split short exact sequence:
this means that K, 1) = [Ky, L], that is 3) < 4).



166 CHAPTER 4. UNIVERSAL CENTRAL EXTENSIONS

The equivalence between 4) and 5) is simply given by the vertical isomorphism on
the left of the diagram

Ky > M——s M
7‘1\L \Lf
\'
Ki> M’ M
ky f

due to the fact that the square on the right is a pullback by construction.

The last step is given by Corollary £.4.7]

Finally it is trivial to observe that a central extension is universal with respect to (B1))
iff it is universal with respect to (B2). O

Proposition 4.5.8. An L-crossed module (M 3, L, &) is perfect with respect to Defini-
tion if and only if it is perfect with respect to the Birkhoff subcategory Ab(A) when
seen as an object in XMod(A).

Proof. Recalling Remark we have that (M N L, ¢§) is perfect with respect to Defini-

tion if and only if [L, M| = M. But this is equivalent to the requirement % =0,

which in turn is the same as F(M KN L,§) = 0, that is perfectness with respect to
Definition 1.9 O
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