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Minimizing Transitive Trust Threats in Software
Management Systems

Jaap Boender, Giuseppe Primiero, Franco Raimondi
Department of Computer Science

Middlesex University, United Kingdom
E-mail:J.Boender—G.Primiero—F.Raimondi@mdx.ac.uk

Abstract—We consider security threats in software installation
processes, posed by transitively trusted dependencies between
packages from distinct repositories. To analyse them, we present
SecureNDC, a Coq implemented calculus using an explicit
trust function to bridge repository access and software package
installation rights. Thereby, we resolve a version of the minimum
install problem under trust conditions on repositories.

I. INTRODUCTION

Trusted interactions between humans and computational
systems are at the core of various security applications. Deter-
mining the extent and limits of such trust relations is crucial.
Moreover, it is not unusual for the actual behaviour of trusted
(computational) parties to remain hidden to the human users.
This increases risks for both the user and for the stability and
security of the system.

Recently, a number of different formal approaches com-
bining security and reputation models with trust in uncertain
environments, autonomous systems and social networks have
been presented that study trust propagation, trust interference
and distrust blocking, see e.g. [GM82], [CNS03], [GKRT04],
[ZL05], [MD05], [JP05], [CCX09], [KG10], [CVW+11],
[DGS11]. Trust has been applied in many Internet-based
services, see e.g. [GS00] for an overview, with specific ap-
plications to component-based systems [Her03], [YP11], soft-
ware management systems related to security and reputation
[BDS11], accuracy [AGA13], trust transferability in context-
aware [TKH08] and mobile applications [DYT+14], and epis-
temic reliability [Zel13]. A problem related to (on- and off-
line) trust-based interactions is their (possibly unintentional)
transitive nature: “Agent A trusts agent B, and agent B
trusts agent C. Therefore, agent A trusts agent C”. This
problem [CH96] is considered explicitly in the context of
logical models for trust management, e.g. Datalog [LM03] and
Cassandra [BS04], with a standard solution being that of fixing
a bound to transitivity delegation depth, see e.g. [CSW08]. The
formalism of subjective logic is used in [JMP06] to define
different trust transitivity operators to account for uncertainty
and individuality of beliefs in a way compatible with standard
logic and probability calculus; in [JAM12] trust transitivity
is instead based on conditional belief reasoning similarly to
analysing competing hypotheses and weighing evidence to

draw conclusions about the trust target. The subjective logic
approach explicitly deals with the resolution of uncertainty
related to subjective opinions. Subjectivity is also approached
as a problem in trust management and recommendation, see
[HBPB09]. Besides the probabilistic approach, crisp and fuzzy
evaluation methods have also been presented, see e.g. [GH06],
[SSDC07], [NBL10].

Software packages management and installation processes
offer a novel field to explore trust transitivity. Consider the
following example. A user interacts with a software package
system, like apt-get on a Debian platform; through such
a system, the user is able to install or remove applications,
each operation requiring preservation of validity for the current
installation profile, i.e. one which meets all dependencies
and avoids conflicts for all the packages installed. Then the
following problem can be formulated (see [TSJL07]):

Definition 1 (Minimum install problem). Determine the way
to install a new package p such that the minimal amount
of dependencies is satisfied and conflicts are avoided to
guarantee a valid installation profile.

This problem has obvious implications for security: to be
aware of the required dependencies means to be able to
monitor and prevent the installation of undesired packages
which can turn out to be malwares or trojans. In [TSJL07],
the Minimum Install Problem is formulated in view of an
objective function aimed at minimizing the number and size
of packages required and delivered for obtaining a valid
profile under installation. In the present paper we introduce a
version of the Minimum install problem involving transitively
trusted packages, retrieved from repositories for installation.
Repositories are of two sorts: those used by default by the
OS, e.g. the official repositories where the basic system and the
authorised upgrades are available; and those that the user needs
to explicitly authorize, e.g. to install and then automatically
update packages that are not included in the official version of
the system. This difference in implicit vs. explicit authorization
is reflected in the way packages satisfy dependencies during an
installation process. Unfortunately, the trust chain of required
packages does not terminate after one step. Both official and
third-party repositories might be using software from further
repositories, automatically adding them to the user’s system. In
most cases, these are bona fide services. Sometimes, though,



downloading a package originating from a third-party source
offers a backdoor to the user’s system, becoming a security
threat. Cautious systems require super-user privileges, but they
hardly allow a strict control of all transitive trust relations. In
general, the user should perform the installation that requires
the minimum amount of such transitive dependencies because
each of those represents a threat. The minimum install problem
can now be reformulated under transitive trust relations:

Definition 2 (Minimally Trusted Install Problem). Determine
the way to install a new package p such that the minimal num-
ber of transitively trusted packages is required from external
repositories to guarantee a valid installation profile.

This version of the minimum install problem requires that a
valid installation profile is obtained by installing all dependen-
cies required by p with the minimal number of new transitively
trusted packages. The approach in [TSJL07] which encodes
propositional constraints over packages is not easily extended
to our version of the Minimum Install problem: we wish not
only to have a guarantee that the chosen path of dependencies
is the shortest one, but also that such path is as secure as one
where all required packages are located on a non-transitively
trusted repository. Our aims are:

1) to offer a provably correct calculus for operations on
software packages, including trust authorization from
third-party repositories;

2) to prove the equivalence of an installation under transi-
tively trusted packages from external repositories to one
under import on a local profile;

3) to define an algorithm that, taken each possible instal-
lation path for a package, it returns an ordering on the
basis of the number of transitive trust operations to be
eliminated, so as to choose the path with the minimal
number of such operations.

Our starting point is SecureND, a natural deduction calculus
introduced in [PR14] for an access control model with an ex-
plicit trust function. It resolves the problem of trust transitivity
by requiring explicit resources import in the installer’s local
profile. The cut elimination theorem proven for SecureND
satisfies point 2) above. In the present contribution, we in-
troduce SecureNDC, which implements SecureND in the
language of the theorem prover Coq, to validate correctness
of the logic underlying SecureND (point 1 above) and
formalize the algorithmic solution to the Minimally Trusted
Install Problem (point 3 above). This is, to our knowledge,
the first model of transitive trust relations in the context of
software management systems that uses a proof-theoretical
approach and is translated to and validated by a tool like Coq,
representing an opportunity for other research to build upon.

The rest of this paper is structured as follows. In section II
we briefly overview the principles of the calculus SecureND
from [PR14] and draw a first comparison to a simplified
real case scenario. In section III we give a brief overview
of the Coq system and of the libraries required for our
implementation. We present the inductively defined set of rules
of the calculus SecureNDC, with an interpretation that fits the

scenario of software management for security threats under
transitive trust. In section IV we offer an interpretation of
trusted installation via the structural properties of the system.
In section V we analyse the Minimally Trusted Install Prob-
lem, offering the algorithm computing for each installation
path the maximal number of trust relations to be eliminated.

II. THE CALCULUS SecureND

SecureND [PR14] is a typed natural deduction calculus
designed for trusted access control on resources. Its syntax and
derivability relation are interpreted for a software management
scenario.

Definition 3 (Syntax). The syntax of SecureND is defined by
the following alphabet:

S := {A,B, . . . }
φS := aA | φA1 → φA2 | φA1 ∧ φA2 | φA1 ∨ φA2 |
Read(φA) |Write(φA) | Trust(φA)
ΓA := {φA1 , . . . , φAn };

where S is a set of Software Repositories; φA is a software
package inductively defined from atomic formulas typed by its
originating repository A ∈ S; ΓA expresses an installation
profile that includes software packages from a repository A.

Rules for logical connectives, illustrated in Figure 1 are
used for modular package construction. Access functions are
understood as follows: Read is a query of a software package
in a repository; Write is the installation operation; Trust is the
addition of a package to the current installation profile under
consistency constraints. The role of this operation is to bridge
reading privileges (querying) to writing ones (installing). A
SecureND-formula ΓA ` φB states that under installation
profile Γ containing software from repository A, some access
operation on a package φ from repository B is valid. Profile
validity is expressed by context construction operations that
preserve consistency. For the base case: ΓA; · ` wf iff
ΓA 6= ∅ and ∀ψS ∈ ΓA, S = A, i.e. the profile is well-
formed if it is not empty and if every package it contains is
valid in the repository typing the profile. For the step case:
profile extension corresponds to import of a package within
a profile. If the import concerns a single package from the
same repository, extension is expressed as ΓA, φA; profile
extension by a package from a distinct repository is expressed
as ΓA;φB , i.e. it requires construction of an extended profile.
A profile ΓA satisfies a dependency clause {φ1∨ . . .∨φk} for
a package ψB iff at least one φi is present in ΓA. A profile
ΓA satisfies a conflict clause φi for a package ψB iff φi /∈ ΓA.
In the following, the possibility that a package may depend
from another one within the same repository is not explicitly
accounted for: this problem, dealt with in [MBC+06] for open
source software repositories, is simplified by considering the
dependency as always instantiated between different reposito-
ries (eventually, a repository can be considered as a singleton
when needed). Moreover, we further simplify the real-case
scenario by assuming always linear dependencies between
repositories, i.e. we ignore the possibility that a package φA1



ΓA; · ` wf
Atom, for any b ∈ ΓB

ΓA; ΓB ` b

ΓA ` φA
1 ΓB ` φB

2 ∧-I
ΓA; ΓB ` φA

1 ∧ φB
2

ΓA; ΓB ` φA
1 ∧ φB

2 ∧-E
ΓA; ΓB ` φI

i

ΓA; ΓB ` φI
i ∨-I

ΓA; ΓB ` φA
1 ∨ φB

2

ΓA; ΓB ` φA
1 ∨ φB

2 φI
i ` ψI

∨-E
ΓA; ΓB ` ψI

ΓA;φB
1 ` φB

2 →-I
ΓA ` φB

1 → φB
2

ΓA ` φB
1 → φB

2 ΓA ` φB
1 →-E

ΓA;φB
1 ` φB

2

ΓA; · ` wf
read

ΓA ` Read(φB)
ΓA ` Read(φB) ΓA;φB ` wf

trust
ΓA ` Trust(φB)

ΓA ` Read(φB) ΓA ` Trust(φB)
write

ΓA `Write(φB)

ΓA ` φB ΓB , φB ` ψB

↓ Cut
ΓA; ΓB ` ψB

ΓA ` φA ΓB ;φA ` ψB

↑ Cut1
ΓA; ΓB ` ψB

ΓB ` φB ΓA;φB ` ψA

↑ Cut2
ΓB ; ΓA ` ψA

Fig. 1. The system SecureND

depends from a package ψB
1 while there is also a package ψB

2

depending from φA2 . Finally, repositories (and hence therein
contained packages) are positioned in a partial order so that
each dependency is expressed in function of a higher position
in the dominance relation.

Definition 4 (Dependent Repositories). A relation ≤ over
S × S is a partial order such that S ≤ S′ iff there is at
least one package φS

′
that has a dependency relation on a

package ψS , and no dependency exists in the other direction.

Our system aims at implementing a strong security policy
for the transitivity of operations across distinct repositories, by
requiring explicit trust on imported packages. Given S < S′ <
S′′, if S reads a package from S′, and S′ is allowed to install
content from S′′, then S should be allowed to install from S′′

if and only if S′ trusts content from S′′. In other words, when
an installation profile accesses a package from a repository,
we do not extend the privileges directly to installing rights
even if the dependency is in favour of the accessed repository.
This is summarized in the following list of valid operations
according to the dominance relation among repositories:

• ΓS ` Read(φS) and Write(φS) hold;
• ΓS ` Read(φS

′≥S) holds;

• ΓS `Write(φS
′≥S) holds under trust;

• ¬∀(S′, S),ΓS ` Trust(φS′
).

To make a preliminary comparison with a real case scenario
consider the Debian distribution and its apt-get software
management system. It implements the ordering main ≤
non− free ≤ contrib where:
• the main repository contains all free packages;
• the non-free repository contains all packages with onerous

license conditions that need packages in main;
• and the contrib repository contains all freely licensed

packages that depends from packages in non-free.
In our language, we express the validity of an operation on
a package available from a given repository, under a certain
installation profile containing all packages available from a
given repository (possibly the same). Possible instances of
valid expressions are:
• Γmain ` φmain, which expresses an operation on a

package in main, performed from an installation profile
that contains software from the same repository;

• Γmain ` φnon−free, which expresses an operation on
a package in non-free, performed from an installation
profile that contains software from main;

• Γnon−free ` φmain, which expresses an operation on a
package in main, performed from an installation profile
that contains software from non-free.

In the actual case of the Debian distribution, installing a
package from non−free in a profile typed by main requires
authorizations, while an installation of a package from main
in a profile typed by non − free is admissible by default.
Because of the transitivity of the dominance relation among
repositories (if S < S′ and S′ < S′′, then S < S′′), as a side
effect we also have that if Γcontrib `Write(ψnon−free), and
ψnon−free ` Read(φmain) then Γcontrib ` Read(φmain), by
default. For querying operations this is usually trivial and not
harmful, but it leaves space to possible threats especially for
installing operations. As such, it represents a behaviour that
one might want to restrict, in particular in those cases where
the repository that is transitively trusted on installing a package
is not main, but a third-party one.

III. THE IMPLEMENTATION SecureNDC

Coq is a proof-assistant based on the language of type
theory and the calculus of inductive constructions. It embeds
the formulas-as-types identity originating in the Curry-Howard
isomorphism and its computational counterpart, the proofs-as-
programs identity ([CF58], [How80], [ML84], [CH88]). Its
language is both a pure functional programming language
and a type system. A proof-assistant is typically used to
check proofs, in order to testify their correctness. By the
formal identity underlying proofs and programs, one can use
a proof assistant to test the correctness of a program that
has the same logical structure of a given derivation. Coq
uses the sort Prop for propositions (equivalent to Set); only
terms in this sort (proof-terms) may depend on other terms
in Prop. The underlying logic for terms is the intuitionistic



fragment {∧,→,∨}, extended to quantifiers and equality.
Goals are reached by derivation of appropriate sub-goals by
applying tactics that use assumptions and provide rules to
introduce or eliminate auxiliary propositions (different for
each logical form available). Standard libraries include basic
logical notations and properties, basic data types (boolean and
natural numbers), operations such as (+,×,min) and relations
such as (<,≤). The logic can be axiomatically extended to
a classical setting by introducing excluded middle. Additional
libraries include e.g. the rules for algebraic laws or proper-
ties of orders, lists, basic functions and properties of lists.
Programs use definitions of inductive types, predicates and
families, structurally recursive programs, pattern matching.

The full Coq-implementation SecureNDC is freely avail-
able as [BPR15]. It uses:
• the Coq.Structures.Orders library to define or-

dered types, required for the dominance relation between
installation profiles available from repositories, and hence
the dependency between packages;

• the MSets library for finite modular sets, used for both
the sets of packages and installation profiles.

• equivalence on resources is fully defined in terms of
reflexivity, symmetry and transitivity and is hence decid-
able. This typically means that terms are convertible and
that a proof of a ≡ b allows one to substitute a for b
everywhere inside a term.

In the following, read operations are performed by user
installation profiles who are granted access to software pack-
ages from repositories; trust on a package is the explicit
inclusion of the package from the corresponding repository
(e.g. by means of a trusted key) in the installation profile;
write is package installation within the profile. Repositories
are list of software packages, with axioms for equality and
decidability, ordered by a dominance relation mimicking de-
pendency. Each software package is a resource belonging to a
repository, closed under equivalence and logical connectives:

Inductive Resource {A: Type} {S: Type}: Type :=
| nd_atom: A -> Resource
| nd_impl: Resource -> Resource -> Resource
| nd_and: Resource -> Resource -> Resource
| nd_or: Resource -> Resource -> Resource
| nd_read: Resource -> Resource
| nd_write: Resource -> Resource
| nd_trust: Resource -> Resource.

An installation profile is a set of packages typed by a repos-
itory; a profile is typable if all its packages are typable from
a repository, and well-formed if not empty (typability is a
decidable property):

Module Profile (R: REPOSITORY) (A: ATOM R).
Module E := Resource(R)(A).
Include WSetsOn E.

End Profile.

Parameter typable:
Repository.t -> P.E.t -> Prop.

Definition typable_profile

(R: Repository.t) (P: P.t): Prop :=
forall f, In f P -> typable R f.

Definition well_formed (P: P.t): Prop :=
˜Empty P.

Variable Ra: Repository.t.
Variable Rb: { x | Repository.lt Ra x }.

Variable Pa: { x | typable_profile Ra x }.
Variable Pb: { x | typable_profile (‘Rb) x }.

A SecureNDC-formula NDProof (Pa::Pb::nil) b
expresses that a software package b typable in Pb is ac-
cessible from a profile Pa typable by repository Ra. Fig-
ure 2 offers the inductive definition of the package con-
structions under logical connectives. nd_atom_mess de-
fines the behaviour of an atomic package with respect to
profiles and repositories: it types an individual package b
typable in Rb as available to all profiles Pa in reposi-
tory Ra above in the dominance relation when accessing
profile Pb. nd_and_intro constructs packages f1, f2
from distinct profiles Pa,Pb typed from different reposito-
ries, respectively Ra,Rb; by each of nd_and_elim_l and
nd_and_elim_r, each component f1 or f2 of a modular
package can be obtained from the combined repositories. Each
of nd_or_intro_l and nd_or_intro_r allows to access
a package f1 (respectively f2) within an extended profile
(Pa::Pb::nil) to form an extended package (nd_or f1
f2). The corresponding elimination nd_or_elim allows
to operate on a new package f from the current extended
profile (Pa::Pb::nil) when each profile allows to operate
on f individually. nd_impl_intro and nd_impl_elim
establish packages dependency within a profile authorised
downward in the domination relation between repositories.
nd_read_intro says that a package f that can be ob-
tained by repository Rb, is readable under a profile Pa
in repository Ra, i.e. going up in the dominance relation.
nd_trust_intro says that a package f that can be read
under Pa and added to it, is trustable under Ra. Trusting a
package can be interpreted as extending the current installation
profile with the package’s source. nd_write_intro says
that a package f accessible in Rb and that is read and trusted
under Pa, can be written (installed) under that profile.

If under a well-formed installation profile Pa in Ra one
wants to deduct a constant b available from a profile Pb in
Rb, one needs to import the latter profile in the former. The
relation between repositories is expressed by properties of the
dominance relation:

Parameter typable_1_read: forall f R P P’,
typable_profile R P -> typable R f ->
NDProof P P’ (P::nil) (nd_read f).

Parameter typable_1_write: forall f R P,
typable_profile R P -> typable R f ->
NDProof (P::nil) (nd_write f).

Parameter typable_2_read: forall f R R’ P,
typable_profile R P -> typable R’ f ->
Repository.lt R R’ ->
NDProof (P::nil) (nd_read f).



Parameter typable_3_write: forall f R R’ P,
typable_profile R P -> typable R’ f ->
(NDProof (P::nil) (nd_write f) <->
NDProof (P::nil) (nd_read f) /\
NDProof (P::nil) (nd_trust f)).

Assuming Ra<Rb in a ‘write-down’ policy, when installing
from Ra, all sets of packages in Rb are trusted; when installing
under Rb, profiles in Ra are not trusted by default and this
has to be formulated explicitly in the calculus. In general, it
is not possible within this system to install packages from any
repository. If the import of a package within the installation
profile is obtained by accessing a repository upwards in the
dominance relation, then one is required to trust packages. This
way also unintentional transitivity is restricted: a package is
trustable iff it can be made explicitly part of one’s installation
profile.

IV. TRUSTED INSTALLATIONS

When packages are available from different repositories than
the one for the current profile, their installation requires an
import operation that makes the package part of the installation
profile, preserving its well-formedness.

Axiom nd_import: forall f,
NDProof (‘Pa::nil) (nd_read f) ->
typable (‘Rb) f ->
typable_profile Ra (P.add f (‘Pa)).

This operation represents a security threat. When working with
reliable repositories, one should be able to prove that opera-
tions under import are equivalent to those where all packages
are included in the current installation profile. In a natural
deduction calculus, import corresponds to an instance of a
cut rule and the required good behaviour corresponds to prov-
ing a cut-elimination theorem: any derivation step containing
a cut-rule can be eliminated without loss of information. In
SecureNDC, we provide a general Cut-Elimination theorem
that depends on nd_import. The theorem says that any
package installation making use of either packages below in
the dominance relation or explicitly trusted will be equivalent
to an operation where all the packages required by the cur-
rent installation profile are safely included in the installation
profile.

Theorem 1 (Cut-Elimination Theorem). Any SecureNDC
derivation can be transformed into another one with the same
final NDProof without nd import iff

1) either the repository typing the installation profile is
dominating the dependency relation for any package
required by the installation operation;

2) or trusted nd_import is explicitly granted by the
current installation profile on the upward domination
relation for each package f involved in the installation
operation.

Proof. For point 1), one needs to show that import is possible
downwards in the dominance relation among repositories;
when performing under repository Ra, a request to add a
protocol from repository Rb preserves well-formedness of Pa;

Inductive NDProof: list P.t -> P.E.t -> Prop :=
| nd_atom_mess: forall b,

well_formed (‘Pa) -> typable (‘Rb) b ->
NDProof (‘Pa::‘Pb::nil) b

| nd_and_intro: forall f1 f2,
NDProof (‘Pa::nil) f1 -> typable Ra f1 ->
NDProof (‘Pb::nil) f2 -> typable (‘Rb) f2 ->
NDProof (‘Pa::‘Pb::nil) (nd_and f1 f2)

| nd_and_elim_l: forall f1 f2,
NDProof (‘Pa::‘Pb::nil) (nd_and f1 f2) ->
typable Ra f1 -> typable (‘Rb) f2 ->
NDProof (‘Pa::‘Pb::nil) f1

| nd_and_elim_r: forall f1 f2,
NDProof (‘Pa::‘Pb::nil) (nd_and f1 f2) ->
typable Ra f1 -> typable (‘Rb) f2 ->
NDProof (‘Pa::‘Pb::nil) f2

| nd_or_intro_l: forall f1 f2,
NDProof (‘Pa::‘Pb::nil) f1 ->
typable Ra f1 -> typable (‘Rb) f2 ->
NDProof (‘Pa::‘Pb::nil) (nd_or f1 f2)

| nd_or_intro_r: forall f1 f2,
NDProof (‘Pa::‘Pb::nil) f2 ->
typable Ra f1 -> typable (‘Rb) f2 ->
NDProof (‘Pa::‘Pb::nil) (nd_or f1 f2)

| nd_or_elim: forall f1 f2 f,
NDProof (‘Pa::‘Pb::nil) (nd_or f1 f2) ->
typable Ra f1 -> typable (‘Rb) f2 ->
NDProof (P.singleton f1::nil) f ->
NDProof (P.singleton f2::nil) f ->
typable Ra f -> NDProof (‘Pa::‘Pb::nil) f

| nd_impl_intro: forall f1 f2,
NDProof (‘Pa::P.singleton f1::nil) f2 ->
typable (‘Rb) f1 -> typable (‘Rb) f2 ->
NDProof (‘Pa::nil) (nd_impl f1 f2)

| nd_impl_elim: forall f1 f2,
NDProof (‘Pa::nil) (nd_impl f1 f2) ->
typable (‘Rb) f1 -> typable (‘Rb) f2 ->
NDProof (‘Pa::nil) f1 ->
NDProof (‘Pa::P.singleton f1::nil) f2

| nd_read_intro: forall f,
well_formed (‘Pa) -> typable (‘Rb) f ->
NDProof (‘Pa::nil) (nd_read f)

| nd_trust_intro: forall f,
typable (‘Rb) f ->
NDProof (‘Pa::nil) (nd_read f) ->
well_formed (P.add f (‘Pa)) ->
NDProof (‘Pa::nil) (nd_trust f)

| nd_write_intro: forall f,
NDProof (‘Pa::nil) (nd_read f) ->
NDProof (‘Pa::nil) (nd_trust f) ->
typable (‘Rb) f ->
NDProof (‘Pa::nil) (nd_write f).

Fig. 2. SECURENDC



then any derivation with the downward import (NDDCProof)
is equivalent to one without import (NDProof):

Lemma nd_import_write_down:
(forall f, In f (‘Pb) ->
NDProof (‘Pa::nil) (nd_write f)) ->
typable_profile Ra (P.union (‘Pa) (‘Pb)).

Inductive NDDCProof: list P.t -> P.E.t -> Prop :=
| dc_normal_proof: forall D f,

NDProof Ra Rb Pa Pb D f ->
NDDCProof D f

| down_cut: forall f x,
typable (‘Rb) f -> typable (‘Rb) x ->
NDDCProof (‘Pa::nil) f ->
NDDCProof (P.add f (‘Pb)::nil) x ->
NDDCProof (‘Pa::‘Pb::nil) x.

Theorem down_cut_elimination: forall P f,
NDDCProof P f -> NDProof Ra Rb Pa Pb P f.

Point 2) reflects the case when the download and install
operations require trusting upward in the dominance relation
between repositories. This corresponds to two formulations of
the upward import. In the first case, it means one needs to show
that under Pb, any import of a package from Pa preserves
wellformedness; in the second case, it requires showing that
under Pb, any import of a profile Pa similarly preserves
wellformedness. In both cases, one wants to prove that any
derivation with the upward import (NDUCProof) is equivalent
to on without (NDProof).

Inductive NDUCProof: list P.t ->
P.E.t -> Prop :=

| uc_normal_proof:
forall P f, NDProof Ra Rb Pa Pb P f ->
NDUCProof P f

| up1_cut: forall f x,
typable Ra f -> typable (‘Rb) x ->
P.In f (‘Pa) -> NDUCProof (‘Pa::nil) f ->
NDUCProof (‘Pb::singleton f::nil) x ->
NDUCProof (‘Pa::‘Pb::nil) x

| up2_cut: forall f x,
typable (‘Rb) f -> typable Ra x ->
P.In f (‘Pb) -> NDUCProof (‘Pb::nil) f ->
NDUCProof (‘Pa::singleton f::nil) x ->
NDUCProof (‘Pb::‘Pa::nil) x.

Theorem up_cut_elimination: forall P f,
NDUCProof P f -> NDProof Ra Rb Pa Pb P f.

Cut-elimination allows to prove normalization of any read-
write operation to one where trust-attributes are guaranteed.
Under explicitly trusted repositories, an install operation is as
safe as one that requires no imports of packages from other
repositories.

V. MINIMAL TRUST

In this section we make use of the library defined above to
offer a solution for the Minimally Trusted Install Problem.
Minimizing the transitive applications of trusted packages

typed by repositories means to increase significantly the
control over resources and the security of the system during
installation operations. Resolving the problem of accepting
a minimal amount of transitively trusted packages is now
formulated in terms of the number of import applications,
equivalent to determining the (minimal) number of steps
required to obtain a normalized SecureNDC derivation, i.e.
one that satisfies the Cut-Elimination Theorem. To this aim,
we are interested in calculating recursively the number of trust
operations involved by each derivation. To compute the num-
ber of such instances, we present in Figure 3 an algorithm that
calculates recursively for each construction a value extracted
from the number of applications of the import operation that
require a nd_trust_intro rule.

For any profile Pa assumed well-formed by H1, and any
atomic package b assumed in profile Pb by H2 and accessible
from Pa, the function returns a null trust value. For profiles
Pa and Pb and respective operations H1 and H2 for packages
f1 and f2, each having a trust function value n and m,
TrMinInst calculates total values according to the various
connectives: and_intro sums values n,m; by and_elim,
any operation using as an assumption an operation with trust
value x in an and-elimination rule, will have also value x;
or_intro_l and or_intro_r take the value x used in
construction by disjunction; or_elim sums the maximum
value n respectively m of two operations with the value
x of a further package operation that can be obtained by
either of the two; impl_intro takes the trust value of the
antecedent in the package operation inducing the consequent;
impl_elim considers the trust value n of the operation to
obtain the implication, the trust value m of the operation to
obtain the consequent and takes the minimum of those in
the final operation importing the antecedent in the profile;
for read_intro, it just considers the value of the reading
profile, adding nothing; for trust_intro, it adds one
to the value of the currently using profile (thus effectively
increasingly the overall value); for write_intro, it adds
the value of trusting the installed package to the overall
value of the profile under which installation is performed.
The application of a trust rule matches a derivation in which
a cut is executed when normalizing. Accordingly, the value
of the TrustMin function will give the number of required
imports, increasing when these are executed upwards. Given
the proven normalization by Theorem 1, we can therefore offer
a translation of Definition 2 from Section I in the context of
SecureNDC as follows:

Definition 5 (Minimally Trusted Installation Problem). Given
profile Pa typed in repository Ra and package fb in profile Pb,
obtain (NDUCProof(Pa :: Pb :: nil) nd write fb) such that
the number of instances of nd import on Pb to be eliminated
to obtain a corresponding NDProof is minimal.

By the Theorem up_cut_elimination we know that
such a reduction is possible in general, hence the calculus
SecureNDC guarantees that by nd_import operations,
trusted installations are possible. By the function TrMinInst



Axiom TMI_atom_mess: forall Pa Pb b H1 H2,
TrMinInst (nd_atom_mess Pa Pb b H1 H2) = 0.

Axiom TMI_and_intro: forall Pa Pb f1 f2
H1 H2 T11 T12 T21 T22 n m,
TrMinInst H1 = n -> TrMinInst H2 = m ->
TrMinInst (nd_and_intro Pa Pb f1 f2
H1 T11 T12 H2 T21 T22) = n + m.

Axiom TMI_and_elim_l: forall Pa Pb f1 f2 H
T11 T12 T21 T22 x, TrMinInst H = x ->
TrMinInst (nd_and_elim_l Pa Pb f1 f2
H T11 T12 T21 T22) = x.

Axiom TMI_and_elim_r: forall Pa Pb f1 f2 H
T11 T12 T21 T22 x, TrMinInst H = x ->
TrMinInst (nd_and_elim_r Pa Pb
f1 f2 H T11 T12 T21 T22) = x.

Axiom TMI_or_intro_l: forall Pa Pb f1 f2 H
T11 T12 T21 T22 x, TrMinInst H = x ->
TrMinInst (nd_or_intro_l Pa Pb
f1 f2 H T11 T12 T21 T22) = x.

Axiom TMI_or_intro_r: forall Pa Pb f1 f2 H
T11 T12 T21 T22 x, TrMinInst H = x ->
TrMinInst (nd_or_intro_r Pa Pb
f1 f2 H T11 T12 T21 T22) = x.

Axiom TMI_or_elim: forall Pa Pb f1 f2 f
H T11 T12 T21 T22 H1 H2 T x n m,
TrMinInst H = x -> TrMinInst H1 = n ->
TrMinInst H2 = m ->
TrMinInst (nd_or_elim Pa Pb f1 f2 f
H T11 T12 T21 T22 H1 H2 T) =
x + (max n m).

Axiom TMI_nd_impl_intro: forall Pa Pb f1 f2 H
T11 T12 T21 T22 x, TrMinInst H = x ->
TrMinInst (nd_impl_intro Pa Pb f1 f2
H T11 T12 T21 T22) = x.

Axiom TMI_impl_elim: forall Pa Pb f1 f2
H1 H2 T11 T12 T21 T22 n m,
TrMinInst H1 = n ->
TrMinInst H2 = m ->
TrMinInst (nd_impl_elim Pa Pb f1 f2
H1 T11 T12 T21 T22 H2) = min n m.

Axiom TMI_read_intro: forall Pa f H t,
TrMinInst (nd_read_intro Pa f H t) = 0.

Axiom TMI_trust_intro: forall Pa f H Hwf x,
TrMinInst H = x -> TrMinInst
(nd_trust_intro Pa f H Hwf) = x + 1.

Axiom TMI_write_intro: forall Pa f H1 H2 t n m,
TrMinInst H1 = n -> TrMinInst H2 = m ->
TrMinInst (nd_write_intro Pa f H1 H2 t) =
n + m.

Fig. 3. The Algorithm TrMinInst

we know how to compute the number of required imports.
Given multiple configurations of dependency satisfaction un-
der which a package fb could be installed, the user is now
in a position to score all possible valid installation profiles al-
lowing (NDUCProof (Pa::Pb::nil) nd_write fb)
according to the output of TrMinInst, i.e. in view of the
number of required trusted import relations to be eliminated.
Hence, the installation path requiring the minimal number of
such transitive trust operations is chosen, minimizing the risks
for security and stability.

VI. CONCLUSIONS

We have presented an implementation in the theorem prover
Coq of the typed natural deduction calculus SecureND. The
calculus and its implementation embed trust as an explicit
attribute of installation profiles. The presented Minimally
Trusted Install Problem has an input space in terms of trusted
packages. By the structure of our typed calculus, packages
reveal information about the originating repositories, hence
this second parameter can also be extracted. We focused
on cut-elimination and illustrated its meaning for trust-based
operations in software management systems. The problem
is resolved by an optimization algorithm which returns the
shortest path in terms of external packages to be transitively
trusted, a result obtained by computing the minimal number
of cut-rule applications. Future work shall proceed in several
directions. The current proposal is in need of evaluation. This
can be done by building a certified functional program in e.g.
Objective Caml, Haskell or Scheme extracting it from the Coq
implementation of SecureND, to execute any of the routines
allowed by this calculus and possibly test the feasibility
of the TrMinINst algorithm in a real-case scenario. A
different example to consider is offered by the case of root
certificates: a website often does not operate its own root
certificate authority; instead its operation related to the signing
of identity certificate can be affirmed and trusted by a different,
intermediate authority, whose operations are in turn affirmed
and trusted by the root Certificate Authority. Also in this case,
a cautious user would want to authorize the minimal number
of intermediate authorities and possibly have a guarantee that
the result is equivalent to adding directly a root certificate. We
also plan to focus on the trusted uninstall operation, where
removing a package is considered trusted if it is proven to
preserve consistency of the installation profile. An extension
of the calculus in this direction can be explored in terms of
an untrust function, followed by an optimization protocol to
minimize distrust propagation.
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