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Chapter 1 - (Cylopentadienone)iron complexes in the context of 

homogeneous iron catalysis for hydrogen transfer reactions 

1.1 Revival of research interest in homogeneous iron catalysis and the most important applications to 

transformations involving hydrogen transfer 

Homogeneous catalysis is considered as a key technology to achieve sustainable, convenient, efficient, and 

selective chemical transformations. About 80% of all fine chemical and pharmaceutical products on industrial 

scale are made by catalytic processes. In particular, metal complexes are playing an important role in the 

synthesis of fine chemicals and a number of pre-catalysts are commercially available for chemists. A careful 

choice of the metal and design of surrounding ligands can effectively shape reactivity and selectivity of the 

active catalyst. During the last decades, complexes of noble metal such as platinum, palladium, rhodium, 

iridium and ruthenium have occupied a central place in homogeneous catalysis and have been used to prepare 

highly efficient catalysts for a large amount of applications. However, due to the high cost and potential toxicity, 

more environmentally friendly and cheaper alternatives are desirable for industrial applications. 

 

Figure 1.1. Average prices of noble and base metals 1 year. Price: €/g for noble metals (blue), €/kg for base 

metals (red). 

To this end, replacing noble metals with more abundant and cheaper first row transition metals, such as Mn, 

Fe, Co, and Cu would be a possible solution. A price comparison between first-row transition metals and 

precious metals shows that the former are at least 1000 times cheaper (Figure 1.1).[1] Among them, iron is the 

least expensive, as it is the fourth most abundant element and the second most abundant metal in the Earth 

crust (4.7 wt %). Owing to its rich redox chemistry and its scarce toxicity, iron is a very good candidate to be 
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exploited in homogeneous catalytic processes. 

Use of iron in catalysis started more than 100 years ago, and the Fenton oxidation is commonly referred to as 

the first milestone example of iron catalysis: in 1894 Henry John Horstman Fenton reported that a solution of 

ferrous iron (representatively FeSO4) in hydrogen peroxide – later called Fenton’s reagent – can promote the 

oxidation of contaminants or waste waters.[2] A second milestone in iron catalysis was reached in 1911, when 

German chemists Fritz Haber and Carl Bosch patented a very important nitrogen fixation method for the 

preparation of ammonia from hydrogen and nitrogen.[3] The so-called Haber-Bosch process involves the use 

of a heterogeneous iron catalyst at high temperature and pressure (500 °C, 200 bar). In 1926,[4] another 

important application of iron catalysis was reported, which is the Fischer-Tropsch process developed by 

chemists Franz Fischer and Hans Tropsch. This process involves a series of reactions which allow to obtain 

liquid hydrocarbons through the conversion of a mixture of carbon monoxide and hydrogen. This process, 

carried out at medium to high temperature (150-300 °C) under several tens bar of pressure, has been 

hystorically relevant for the production synthetic fuel in a petroleum-poor but coal-rich country such as 

Germany. 

 

Figure 1.2. Number of iron catalysis-related publications over the last 40 years. 

Another milestone in iron catalysis is homogeneous Reppe chemistry. In 1953, Fe(CO)5 was firstly reported 

by Reppe and Vetter as homogeneous catalyst for the hydroformylation of olefins and for the preparation of 

alcohols and aldehydes from CO and H2O.[5] From then on, homogeneous iron catalysis has entered chemical 

researcher's sight. However, in the following decades, the research on homogeneous iron catalysts was sluggish, 

as only few examples were explored. For instance, the first iron-catalyzed cross-coupling reaction was reported 

by Kochi and co-workers in 1971,[6] iron-catalyzed epoxidation reactions were reported by Groves and co-
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workers in 1979,[7] and iron-catalyzed ethylene polymerization was reported by Brookhart and Small in 1998.[8]. 

Despite these and other examples, at the end of 20th century homogeneous iron catalysis could be still 

considered an underdeveloped research field. The explosion of research activity to develop efficient iron 

catalysts has happened in early 21st century (Figure 1.2, data is from SCOPUS® searching “iron catalysis”). In 

2004 several reviews and highlight articles were published with a focus on the field of iron catalysis.[9] The 

latter were later followed by numerous articles, accounts, reviews and books, an increasing part of which had 

a focus on homogeneous iron catalysis. 

 

1.1.1 General difficulties in the replacement of noble metals with iron 

In organometallic chemistry and homogeneous catalysis, two-electron processes play a very important role. 

For instance, oxidative addition and reductive elimination represent the key steps of the bond-activating and 

product-forming process in many important catalytic cycles.[10] These transformations have been commonly 

promoted by the late second- and third-row transition metal complexes using strong field-ligands (e.g. 

cyclopentadienyl, phosphine, N-heterocyclic carbene, etc.). On the other hand, the control of redox chemistry 

to achieve such transformations with Earth-abundant metals is cumbersome, as these complexes tend to engage 

preferentially in single electron transfer processes.[11]  

Within these metals, the redox chemistry of iron is governed by a single-electron transfer between its most 

common oxidation states FeII (d6) and FeIII (d5): to mimic the reactivity patterns typical of noble metals, iron 

should be diverted from one-electron reaction patters and induced to engage in two electron patterns by use of 

suitable ligands (see Chapter 1.1.2). 

 

Figure 1.3. MO diagrams for octahedral crystal field: distribution of the six valence electrons in 

high-spin and low-spin FeII-complexes. 
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The use of iron as catalyst is also hampered by the difficult characterization of iron complexes. Since the latter 

are paramagnetic in most cases (Figure 1.3),[ 12 ] structural characterizations are often limited to mass 

spectrometry and X-ray diffraction analysis, rather than NMR spectroscopy.  

 

1.1.2 Strategies for enabling two-electron pathways with iron 

The catalytic properties of iron complexes are determined by interactions between ligands and metal. Usually, 

tri- and tetradentate ligands containing phosphorous and/or nitrogen donors (e.g., porphyrins or polydentate 

phosphines) are used in order to obtain reasonably stable iron complexes. Besides enhancing complex stability, 

another function of these ligands is to enable two-electron pathways with iron complexes. To this end, four 

main strategies have been proposed: 

1) Metal−ligand cooperativity (Scheme 1.1 A), in which redox non-innocent ligands undergoing reversible 

electron transfer were used to form iron complexes and directly participate in redox chemistry during the 

catalytic transformation.[13]  

The concept of innocent ligand was introduced by Jørgensen and co-workers[14] to define ligands which do 

not play any role in catalytic cycles. On the contrary, redox non-innocent ligands can affect the electronic 

density of the complex and reserve electrons during the catalytic cycles through resonance or inductive 

features. Besides enabling two-electron processes, these ligands can also initiate and control radical 

processes. Fensterbank and co-workers reported an example of electronic metal−ligand cooperativity, 

which consisted in the activation of the benzene’s C-H bond to the pyridine(diimine) iron dibromide 

complex, (iPrPDI)FeBr2 (iPrPDI = 2,6-(2,6-iPr2-C6H3N=CMe)2C5H3N; Scheme 1.1 A).[ 15 ] Combined 

results of IR, NMR and DFT studies provided evidence of a two-electron activation of unactivated arenes 

with iron(II) dibromide complex in the presence of a base (KHMDS) to a [LFeIIBr]+/HMDS- ion pair with 

a one-electron transfer from HMDS- to the ligand. 

2) Chemical metal-ligand cooperativity, which relies on a supporting ligand that participates directly in the 

reversible bond-making and -breaking events during the catalytic cycles.[16] One example belonging to this 

category is the dehydrogenation enabled by an iron complex chelating a bis(phosphino)amine pincer ligand, 

(iPrPNP)FeH(CO) (iPrPNP = bis(2-(iPr2-phosphanyl)ethyl)amine, Scheme 1.1 B).[16a] Here, ligand and 

metal work together for catalytic cycles, with hydrogen atoms binding to both the ligand’s nitrogen atom 

and the metal centre. 
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3) Metal−metal cooperativity, in which a net two-electron process stems from the ability of two different 

metal complexes to undergo a one-electron redox process.[17] An illustrative example of this strategy is 

shown in Scheme 1.1 C.[17b]  

4) Use of strong-field ligands, a strategy proposed by Chirik and Arevalo to facilitate the oxidative addition 

step, that has been exploited in some examples of catalytic C-H functionalizations (Scheme 1.1 D).[18] 

 

Scheme 1.1. Strategies for enabling two-electron pathways with iron 
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1.1.3 Main applications of homogeneous iron catalysis 

After entering the 21st century, numerous research groups in the world have started working on the 

development of effective catalytic systems based on iron. In particular, iron catalysis has been applied to a 

wide range of transformations,[9,13e,19] such as: 

1) Substitution reactions, including nucleophilic substitution at sp3-carbon centers, electrophilic aromatic 

substitution, cross-coupling reactions to form C-C and C-heteroatom bonds. [9a,b,e,19a,i,20] 

2) Addition reactions, such as carbometalation, hydroalkylation, carboxylation, ring opening and ring 

expansion reactions, polymerizations, C-heteroatom bond forming additions, addition to carbonyl 

groups.[19f,i,20g,21] 

3) Reductions, including hydrogenation of alkenes and alkynes, hydrosilylation, hydrogenation and reductive 

amination of carbonyl compounds.[9a,b,e,19f,22] 

4) Oxidations of C(sp3)-H bonds, C(sp2)-H bonds, olefins (e.g., Wacker-type reactions), ketones (Baeyer-

Villiger), alcohols (Oppenheimer).[9a,23] 

5) Cycloadditions and Alder-ene-type reactions, in particular [2 + 1], [2 + 2], [2 + 2 + 1], [3 + 2], [2 + 2 + 

2], [4 + 2] and [5 + 2] cycloaddition.[19h,24] 

6) Isomerizations and rearrangements, including allyl alcohol-carbonyl isomerization, olefin isomerization, 

cycloisomerization, intramolecular ring expansion.[25] 

 

1.1.4 Use of iron catalysts in reactions involving hydrogen transfer 

Among the general classes of reaction mentioned above, those involving hydrogen transfer are briefly 

mentioned in this Section, as they are more relevant to the topic of my work of thesis. In this thesis the reactions 

involving hydrogen transfer (RIHT) are defined as the ones in which a H2 molecule is added to or abstracted 

from the substrate (see Scheme 1.2). 

RIHT may either occur as a single transformation (thus giving rise to a net reduction or oxidation of the 

substrate, Scheme 1.2 A and B), or occur twice in the same catalytic cycle (thus generating a redox-neutral 

‘hydrogen borrowing’ or ‘hydrogen autotransfer’ process, Scheme 1.2 C). Typical single RIHTs are the 

hydrogenation of multiple bonds, in which molecular H2 is directly transferred to the substrate, and transfer 
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hydrogenation, in which H2 is transferred from a donor (e.g., an alcohol or HCOOH, shown as ‘R-H2’ in 

Scheme 1.2 A), just as their reverse processes (see Scheme 1.2 B). The most common ‘hydrogen-borrowing 

reactions’ are the amination of alcohols and the α-alkylation of ketones (see Scheme 1.2 C). 

Scheme 1.2. General representation of catalytic reactions involving hydrogen transfer (RIHT): reduction (A), 

oxidations (B), and redox-neutral ‘hydrogen borrowing’ processes (C). 

Examples of successful Fe-catalyzed hydrogenation and transfer hydrogenation have been reported by several 

research groups, and a number of reviews on these reactions have been published.[9a,b,e,19f,22]  

Reduction of C=O and C=C double bonds had been dominated for many years by catalysts based on noble 

metals such as ruthenium, rhodium and iridium, and for a long time, applications of iron catalysis lagged 

behind precious metal catalysts in this field. The first ground-breaking use of iron catalysts in hydrogenation 

of carbonyl compounds was reported in 1980s by Markó and co-workers, who used Fe(CO)5 as pre-catalyst to 

hydrogenate a series of ketones and aldehydes.[26]  

In 2004, Chirik and co-workers reported the sole example of iron catalyst for the hydrogenation of isolated 

C=C bonds (Scheme 1.3).[27] 

 

Scheme 1.3. Hydrogenations of alkenes catalyzed by iron complexes 
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Scheme 1.4. Enantioselective hydrogenation of ketones catalyzed by P,N,N,P-pincer complexes and macrocyclic 

complexes. 

A few years after the original report, the same authors demonstrated that the peculiar catalytic activity of 

complex 1 is due to the ‘redox non-innocent’ nature (see Section 1.1.2) of its bis(imino) pyridine ligand. Indeed, 

under hydrogenation conditions the ligand undergoes reduction to the corresponding radical dianion, whereas 

the iron center remains in the +2 oxidation state.[28] 

In the same year, Gao and co-workers reported an in situ-formed iron catalytic system for the Asymmetric 

Transfer Hydrogenation (ATH) of ketones (Scheme 1.4 A), obtaining good conversions and e.e. values in the 

16-98% range.[ 29 ] Further work of Gao and co-workers in this field led to the development of highly 

enantioselective catalysts for ketone ATH and Asymmetric Hydrogenation (AH) based on the use of chiral 
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macrocyclic ligands.[29,30] In 2014, Mezzetti and co-workers reported a bis(isonitrile) iron(II) complex bearing 

a chiral N2P2 macrocyclic ligand for the ATH of ketones: twelve ketones were reduced with excellent yields 

(up to 98%) and high enantioselectivity (up to 91% e.e., Scheme 1.4 B).[31] 

 

Scheme 1.5. Asymmetric Transfer Hydrogenation (ATH) catalyzed by the P,N,N,P-pincer complexes developed by 

Morris and co-workers.  

To obtain highly efficient catalytic systems, Morris and co-workers developed a new P,N,N,P-pincer iron 

catalyst for ATH of ketones.[32] Although excellent conversions were obtained in some cases, only moderate 

enantioselectivity was generally observed (e.e. values in the 18-76% range, see Scheme 1.5A). Notably, 

catalytic TOFs up to 907 h-1 were reported, which are competitive with those obtained with ruthenium catalysts. 

Using related iron P,N,N,P-pincer complexes, the same group obtained better e.e. values and TOFs in the ATH 

of ketones performed in the presence of iPrOH.[33] They synthesized a series of second-generation complexes 

possessing five membered chelate cycles, which are analogous to complexes 5 (see Scheme 1.5 B).[34]  Theses 

second generation catalysts gave an impressive TOF, up to 30,000 h-1, in the ATH of ketones with high 
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enantiomeric excesses. Particularly, high conversions (up to 91%) and excellent enantioselectivity (95-99% 

e.e.) were obtained with complex 6d.[34c]  

 

Scheme 1.6. Hydrogenation of ketones catalyzed by P,N,P-pincer complexes. 

In 2011, Milstein and co-workers reported a very efficient catalytic system for the hydrogenation of ketones, 

based on the P,N,P-pincer iron complex 8.[16b-c,e,35] The high activity observed allowed a catalyst loading as 

low as 0.05 mol% (Scheme 1.6). Mechanistic investigations carried out by the authors revealed that this high 

activity is due to the non-innocent behavior of the P,N,P-ligand (chemical metal-ligand cooperation, see 

Section 1.1.2), which is dearomatized by the base additive and then undergoes consecutive 

aromatization/dearomatization steps during the catalytic cycle, with concomitant H2 splitting and transfer to 

the substrate. 

 

1.2 (Cyclopentadienone)iron complexes (CICs) – Discovery, preparation and properties 

In 1953, (cyclopentadienone)iron complexes (CICs) were firstly described by Reppe and Vetter as stable 

organometallic intermediates.[5] Subsequently, several similar complexes were isolated by other groups.[36] The 

structure of these organometallic complexes was elucidated for the first time by Schrauazer in 1959.[37] It was 

found that these complexes are formed by combination of cyclopentadienone with iron carbonyl complexes 
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[such as Fe(CO)5 and Fe2(CO)9] exploiting the π orbitals of the diene. Thanks to the advances in spectroscopic 

techniques, the structure of these complexes was then fully elucidated by IR and NMR. Moreover, after a 

single-crystal X-ray study on CICs, Hoffmann and Weiss found that Fe(CO)3 – in the complex – can stabilize 

cyclopentadienone through four π-electrons of the conjugated diene system similarly to (butadiene)iron 

tricarbonyl.[ 38 ] Subsequently, different research groups devoted many efforts to the synthesis of 

(cyclopentadienone)iron complexes (see Scheme 1.7).[39] 

 

Scheme 1.7. CICs synthesized before the discovery of the catalytic applications of this kind of complexes.  

In earliest reports, the synthesis of CICs was carried out by a [2+2+1] cycloaddition reaction between alkynes 

and iron carbonyl complexes [such as Fe(CO)5 or Fe2(CO)9]. Monocyclic CICs can be synthesized by 

intermolecular alkyne cyclization, whereas bicyclic CICs could be prepared by intramolecular cyclization of a 

suitable diyne. Owing to the entropic gain associated to the intramolecular process, the intramolecular 

cyclization is often carried out in good yields, thus being the preferential strategy for the synthesis of these 

complexes. Various CICs could be synthesized easily by varying the alkyne substrate (Scheme 1.7).[37,39,40] 

Notably, tuning the electronic and steric features of these complexes is largely possible through the 

modification of the substituents on the alkynes. In addition, different functional groups have been introduced 
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to CICs, including electron-withdrawing and donating groups, bulky substituents, etc. 

Another main strategy for the synthesis of CICs is the complexation of the pre-formed cyclopentadienone 

ligand with an iron carbonyl precursor (such as Fe(CO)5 and Fe2(CO)9, Scheme 1.8 A). This strategy requires 

previous synthesis of the cyclopentadienone ligand. This reaction is not trivial and it is mainly performed by 

the condensation of appropriately designed benzil derivatives with 1,3-disubstituted propanones (Scheme 1.8 

A). Unfortunately, this reaction requires the presence of at least one aromatic substituent on the 1,3-

disubstituted propanone, which represents a remarkable scope limitation. Similarly to the other strategy 

mentioned above, the reactivity of these complexes could be tuned by introducing different substituents on the 

cyclopentadienone ring. 

A third synthetic strategy consists in exchanging one or more CO ligands of CICs with other ligands (such as 

CH3CN, PhCN and chiral P-ligands). Due to the stability of the Fe-CO bond, the ligand exchange only occurs 

when CO is removed by treatment Me3NO or ultraviolet light (see Scheme 1.8 B). 

 

Scheme 1.8. Synthetic strategies of CICs  

 

Scheme 1.9. Reactive properties of CICs 

CICs may be viewed as intermediates for the synthesis of cyclopentadienones, for which demetalation is 

required. In 1999, studying suitable conditions to remove the Fe(CO)3 group, Knölker and co-workers 

discovered another important aspect of the reactivity of CICs.[41] The (hydroxycyclopentadienyl)iron hydride 
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complex (HCIC) 10aa was synthesized from 9aa and isolated by a procedure involving a Hieber base reaction 

using NaOH and a subsequent treatment with H3PO4 (Scheme 1.9). However, the application of HCICs in 

catalytic reactions was reported only eight years later, even though all the knowledge was set for these 

transformations. 

 

1.3 First catalytic applications of (hydroxycyclopentadienyl)iron complexes (HCICs) in C=O double 

bond hydrogenation and in Oppenauer-type oxidation of alcohols 

Metal-catalyzed redox processes involving hydrogen transfer (such as hydrogenations, ‘hydrogen-borrowing’ 

reactions and reductive aminations) have stimulated the researchers’ interest because of their intrinsic atom 

economy. Chemists carried out many investigations in this field, and a large number of catalysts have been 

discovered, some of which have been industrially applied.[42] For a long time, simple modulation of the 

electronic and steric properties of the ligands has been the way to develop new catalysts. In this kind of 

approach, the ligand is mostly considered a simple ‘spectator’ which does not participate directly in the 

catalytic process. More recently, however, the concept of non-innocent ligand (see Section 1.1.2) has emerged 

as an effective strategy to shape reactivity and catalytic activity of metal complexes.[13d,43]  

A representative application of this concept is the Shvo’s complex 12 (Scheme 1.10), which was discovered 

by Shvo and co-workers in 1985 and was found to be an efficient pre-catalyst for reduction of C=C and C=X 

double bonds.[44] Complex 12 can be dissociated to two complementary active catalysts13a and 13b, which 

represent a reduction and an oxidation catalyst, respectively (see Scheme 1.10).  

 

Scheme 1.10. Shvo’s ruthenium complexes 

Shvo-type complexes were applied to various reactions and particularly in hydrogenation and oxidation 

transformations (see Scheme 1.11), and these applications were summarized by Williams in an excellent 

review in 2010.[45]  
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Scheme 1.11. Applications of Shvo’s ruthenium complexes 

CICs 9aa and HCICs 10aa bear strong analogy to the species generated by dissociation of the dimeric Shvo’s 

complex (13a and 13b), whose catalytic activity had been reported in the late 1980s.[44] Despite this, even after 

the successful preparation of HCICs reported by Knölker in 1999, the catalytic activity of this class of 

complexes remained undiscovered until 2007, when the application of complex 10aa in hydrogenation of 

ketones was firstly reported. Taking advantage on their strong expertise on the use of Shvo-type catalysts, 

Casey and Guan moved their attention to the structurally very close complex 10aa. As expected, complex 10aa 

showed good catalytic activity and chemoselectivity in the hydrogenation of C=X double bonds (X = O or N, 

fifteen different carbonyl compounds and one imine, see Scheme 1.12).[ 46 ] These hydrogenations were 

performed at r.t. under low hydrogen pressure (3 atm).  

 

Scheme 1.12. Hydrogenation of C=X double bonds catalyzed by complex 10aa reported by Casey and Guan. 

In the catalytic cycle (Scheme 1.13), complex 10aa reduces polar double bonds to form the coordinatively 

unsaturated CIC act-9aa, which is then re-converted into 10aa by reaction with H2 or iPrOH. An outer-sphere 

mechanism was proposed for this reaction: in the general catalytic cycle, reversible hydrogen transfer occurs 

via a concerted, pericyclic TS in which a hydride is transferred to the carbonyl carbon and a proton passes 
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from the ligand’s OH to the substrate. Iron swings between oxidation states 0 (in complex act-9aa) and +2 (in 

complex 10aa), and this two-electron pathway is enforced by the non-innocent ligand which, in turn, fluctuates 

between the cyclopentadienone and the hydroxycyclopentadienyl form. 

 

Scheme 1.13. Proposed hydrogenation mechanism in hydrogenation catalyzed by catalyst 10aa. 

 

Scheme 1.14. Oppenauer-type oxidations catalyzed by catalyst 10 and proposed hydrogenation mechanism 

Based on the reversibility of the reduction pathway, Guan and co-workers extended the use of catalyst 10aa to 

the Oppenauer-type oxidation of alcohols in 2010.[47] Several alcohols were oxidized in the presence of acetone, 

and good to excellent isolated yields were obtained (see Scheme 1.14). Dehydrogenation of two diols to 

corresponding lactones was also described in the same contribution. In addition, a mechanism involving the 

formation of intermediate alcohol complexes was proposed (see Scheme 1.14). HCIC 10aa hydrogenates 

acetone and forms the coordinatively unsaturated intermediate complex act-9aa. The oxidation product is 

formed by dehydrogenation of the intermediate formed by complex act-9aa with alcohol substrates, along with 
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regeneration of catalyst 10aa. 

 

1.4 Applications of CICs in reactions involving hydrogen transfer 

Following the work by Casey and Guan on the catalytic activity of HCICs in the hydrogenation of ketones, 

this class of iron complexes gained increasing interest among researchers. However, an evident setback of 

HCICs was their high sensitivity to air, which makes a glovebox indispensable to their handling. Contrary to 

HCICs, CICs are very stable complexes which can be handled under air and even purified by flash column 

chromatography. Hence, CICs can be seen as a stable pre-catalytic form of HCICs, provided that efficient 

activation strategies are identified. CICs possess several unique features which distinguish them from most 

other homogeneous iron catalysts.[48] Indeed, these catalysts: a) can be easily synthesized from simple starting 

materials; b) do not require expensive P-ligands; c) are stable to air and moisture, to such extent that a number 

of organic reactions may be performed cyclopentadienone moiety of the complexes; d) can be purified by 

standard chromatography techniques. 

In situ activation of CICs may be performed in two main ways, shown in Scheme 1.15: 

1) By conversion into the corresponding HCICs by Hieber base reaction,[49] i.e. by treating them with an 

aqueous base analogously to the procedure originally used by Knölker and co-workers to synthesize 

complex 10aa.[41] This activation protocol was firstly reported by Beller and co-workers.[50] 

2) By de-coordination of one CO ligand, leading to the corresponding activated CICs act-9, bearing a vacant 

coordination site. This may be achieved either by shining UV light,[51] as originally reported by Knölker 

and co-workers,[52] or by operating an oxidative de-coordination with Me3NO,[53] so that a CO2 molecule 

is released. 

The ability to reversibly transfer H2 to polar double bonds is the basis of most catalytic applications of CICs. 

Different suitable pathways can be followed, as shown in Scheme 1.15. According to Path I, complexes act-

CICs (act-9) can be directly dehydrogenate alcohols and form HCICs (10aa), then the substrates would be 

reduced by catalyst HCICs (transfer hydrogenation catalyzed by CICs).[53d,54] 

This leads to the reduction of C=O or C=N bond of the substrate (transfer hydrogenation) when the reaction is 

carried out in the presence of an excess of alcohol or other reductant (e.g., iPrOH or HCOOH). Instead, in the 

presence of an excess of ketone (typically acetone), the reverse path is followed, consisting in the Oppenauer-
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type oxidation of an alcohol substrate.[54b-e,55] 

Additionally, redox-neutral (“hydrogen borrowing”) reactions of alcohol substrates are also possible (Scheme 

1.15, Path II), in which an alcohol is oxidized and reacts with another compound (e.g., amine or ketone) to 

form an adduct (e.g., imine/iminium, α,β-unsaturated ketone) that is then reduced by the HCICs (10) formed 

in the oxidation stage.[56] 

Alternatively, complexes act-CICs (act-9)can directly split H2 and form the HCICs (10), which then reduce 

the substrate (hydrogenation, Scheme 1.15, Path III).[50,51,53a-c,e,57]  

In Path I-III, catalysts alternatively pass from the activated CIC to the HCIC form, thus shuttling the H2 

molecule between substrate(s) and product(s). Hydrogen transfer occurs through a pericyclic transition state 

involving both the iron atom and the “non-innocent” ligand.[46b,47 ,58]  

 

Scheme 1.15. Activation and main catalytic pathways of iron complexes (CICs) in RIHT. 

Besides RIHTs, CICs have been also used recently to promote reactions not involving hydrogen transfer, such 

as the formation of C–N and C–O bonds by intramolecular hydroamination and hydroalkoxylation of allenes.[59] 
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1.4.1 Use in reduction of C=O double bonds 

After the seminal report by Casey and Guan, who used HCICs to promote C=O bond hydrogenation,[46] further 

advances consisted in the expansion of this reactivity to in situ-activated CICs, as these complexes are more 

robust and easy-to-handle. In 2012, Beller and co-workers employed the Knölker’s CIC 9aa in the catalytic 

reduction of aldehydes using H2 as reducing agent formed under water-gas shift conditions in the presence of 

a base (Scheme 1.16).[57o] Eighteen aromatic aldehydes and six aliphatic aldehydes could be reduced in good 

to excellent yields (up to 99%). Under these reaction conditions, α,β-unsaturated aldehydes could be also 

reduced in good yields (72-99% range), although the allylic alcohol products were obtained in mixture with 

the corresponding saturated alcohols deriving from C=C reduction. Significantly, this reaction could be readily 

scaled up, thus proving potentially useful for industrial applications. 

  

Scheme 1.16. Hydrogenation of aldehydes catalyzed by catalyst 9aa  

 

Scheme 1.17. Catalytic hydrogenation of carbonyl compounds catalyzed by CIC 9aa under base activation conditions. 

In 2013, the Beller’s group reported the synthesis of nine CICs and their use in the hydrogenation of aldehydes, 

ketones, and α,β-unsaturated aldehydes.[50] CIC activation was performed by adding a base additive to the 

reaction mixture, K2CO3 being the most effective. The Knölker’s complex 9aa gave the best results and, in 

most cases, the C=O reduction products were obtained in excellent yields with low catalyst loading (0.1-1 
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mol%, Scheme 1.17). It is worth noting that the chemoselective hydrogenation of α,β-unsaturated aldehydes 

was effectively performed. 

In 2013, Renaud and co-workers reported that two CICs bearing ionic fragments could promote the 

hydrogenation of C=O bonds under mild conditions in water. The alcohol products were obtained with good 

to excellent yields in the 71-97% range (Scheme 1.18).[53b] The authors found that the reaction rates can be 

improved if using water as solvent, and higher yields were observed in shorter reaction times using the ionic 

bifunctional iron complexes as catalyst.  

  

Scheme 1.18. Hydrogenation of carbonyl compounds catalyzed by ionic bifunctional CICs. 

In 2012, Funk and co-workers reported the synthesis of CICs bearing a nitrile ligand instead of one CO. The 

lability of the nitrile ligand allows for catalyst activation by simple thermal dissociation, with no additives 

required. These new complexes were screened in the transfer hydrogenation of carbonyl compounds. Initial 

screening work was performed in transfer hydrogenation of acetophenone, and all complexes showed good 

catalytic activity. Complex 9ab was chosen for further study and gave good to excellent yields (35-98%) in 

the transfer hydrogenation of aldehydes and ketones (Scheme 1.19).[54e] One imine was also reduced in good 

yield (67%) in the presence of complex 9ab. However, complex 9ab was found unreactive in the hydrogenation 

of acetophenone. 

 

Scheme 1.19. Nitrile-ligated CICs catalyzed transfer hydrogenation of carbonyl compounds and imine 

More recently, Funk and co-workers synthesized four new CICs bearing different cyclopentadienone ligands 

and explored their activity in the transfer hydrogenation of carbonyl compounds. Catalyst activation was 

performed using Me3NO. Complex 9ca gave the highest conversions under the reaction conditions, and was 

found more active than Knölker complex 9aa with most substrates. Various alcohols were obtained through 

transfer hydrogenation in good to excellent conversions (up to 99%, Scheme 1.20).[54d]  
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Scheme 1.20. CICs catalyzed transfer hydrogenation of carbonyl compounds 

Also our group carried out investigations in this field, and the catalytic scope of CICs was expanded to the 

hydrogenation of activated esters. After optimizing the catalytic conditions, complex 9aa was chosen for 

further studies, and 20 different esters were screened. Nearly all trifluoroacetate substrates gave full 

conversions, except those bearing electron-withdrawing substituents. On the contrary, all non-trifluoroacetate 

substrates could not be converted under the reaction conditions (Scheme 1.21).[57c] 

 

Scheme 1.21. Hydrogenation of activated esters catalyzed by CICs.  

Recently, our group reported a CIC, [bis(hexamethylene)cyclopentadienone]iron tricarbonyl (9d), which was 

found to be more active than the Knölker complex 9aa in the catalytic hydrogenation of C=O double bonds, 

and gave excellent conversions in most cases (Scheme 1.22). Complex 9d also gave a higher conversion than 

9aa in the transfer hydrogenation of acetophenone. Kinetic studies showed that the improved activity of 9d is 

due to its higher stability compared to complex 9aa (Figure 1.4).[57b]  

 

Scheme 1.22. Hydrogenation of C=O bonds catalyzed by complex 9d.  
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Figure 1.4. Kinetics of acetophenone hydrogenation promoted by 9aa () and 9d () activated with Me3NO. Reaction 

conditions: acetophenone/pre-catalyst/Me3NO=100:1:2; solvent: 5:2 iPrOH/H2O; C0, Sub. = 0.501 mol L-1; PH2 =30 bar; 

T = 70 °C; Ccat. =5 mM 

Other investigations involving chiral CICs for the enantioselective reduction of carbonyl compounds will be 

discussed in Section 1.6.  

The reduction of bicarbonates and carbon dioxide is an extremely direct and efficient pathway for the synthesis 

of formic acid and methanol, both of which are important C1 building blocks. However, direct reduction of 

bicarbonates and carbon dioxide to formates or methanol still poses same challenges. Hence, increasing efforts 

are being devoted to develop an efficient catalytic system for these transformations. While effective noble 

metal-based catalysts are known, replacement with base metals – and iron in particular – is a goal that is being 

pursued by several research groups, such as those of Beller, Milstein, and Gonsalvi. These groups used 

different iron catalysts to hydrogenate carbon dioxide and /or bicarbonates to formates with turnover numbers 

(TONs) of up to 727,[60] 7546,[61] 320,[16b] and 1229,[62] respectively. However, some drawbacks are still present, 

such as use of phosphorus ligands – expensive and often sensitive to air. Therefore, developing new catalyst 

systems is greatly desired. In addition to the hydrogenation of carbonyl compounds, CICs could also be used 

for catalyzing the hydrogenation of bicarbonates and carbon dioxide to the corresponding formates. The first 

example in this sense was reported by Zhou and co-workers in 2015.[63] The authors applied the Knölker 

complex 9aa to hydrogenate sodium bicarbonate and CO2 to sodium formate with a good TONs (up to 450 

and 307, respectively, see Scheme 1.23). 
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Scheme 1.23. Hydrogenation of sodium bicarbonate and CO2 using iron complex 9aa.  

Recently, Renaud and co-workers reported that CIC 9ac was effective for hydrogenation of sodium 

bicarbonate.[53e] The reactions were performed at 100 °C under 50 bar of H2 with an excellent TON up to 1246 

(Scheme 1.24). Notably, the reduction could furnish better results without Me3NO as activator. 

 

Scheme 1.24. Hydrogenation of sodium bicarbonate using iron complex 9ac. 

 

Scheme 1.25. MOF-assisted hydrogenation of CO2 using iron complex 9ac. 

In a recent follow-up (2019), the same group disclosed a MOF-assisted iron catalyst system for the 

hydrogenation of CO2.[64] The above mentioned iron complex 9ac was applied in the hydrogenation of CO2 to 

formate in the presence of a catalytic amount of the chromium dicarboxylate MOF MIL-53(Cr). A very high 

turnover number – up to 3006 – was obtained in CO2 hydrogenation (Scheme 1.25). In addition to CO2, this 

catalyst system was also applied to hydrogenation of sodium bicarbonate and carbonate. However, in the latter 

case only a slight increase of TON was obtained with assistance of MIL-53(Cr) [1525 vs 1246 (without MOF)].  

Moreover, investigation on controlling hydrogenation of CO2 to CO was carried out by Beller and co-workers, 

and the first use of CICs as selective catalysts in this field was reported by them in 2016.[65] Effective 

hydrogenation of CO2 to CO was catalyzed by CICs through photoreduction of CO2, in which Ir complex and 

triethyl orthoacetate (TEOA) play the role of photosensitizer and electron/proton donor, respectively. 

Complexes 9aa gave excellent activity (TON up to 596, TOF up to 22.2 min-1) in this photoredox reaction 
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(Scheme 1.26). A mechanism of the photochemical CO2 reduction mediated by iron complex 9aa was also 

proposed (Scheme 1.27). 

 

Scheme 1.26. Photochemical reduction of CO2 to CO. 

 

Scheme 1.27. Plausible mechanism for the photochemical reduction of carbon dioxide catalyzed by CICs. 

 

Scheme 1.28. Plausible reaction pathway for the electrocatalytic reduction of CO2 mediated by complex 9aa. 

The same research group also extended the use of CICs to the electrochemical conversion of CO2 to CO. 

Carbon monoxide was selectively synthesized by using CICs as catalyst with a faradaic efficiency of 96%.[66] 
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Through the studies of cyclic voltammetry, computational results and in situ experiments, a pathway of this 

reaction was identified (see Scheme 1.28). Cooperation between the metal center and ligand play a key role in 

this catalytic system. In this electroreduction pathway, no Fe–H intermediate (complex 10, see Scheme 1.27) 

is formed, whereas its formation was identified in the photoreduction pathway of controlling hydrogenation of 

CO2 to CO. 

 

Scheme 1.29. Proposed two coexisting pathways for the electroreduction of CO2 using Catalyst 9aa 

Further mechanistic studies were carried out, and two coexisting pathways including the terminal proton source 

for the electroreduction catalyzed by CICs were identified by using a combination of FTIR 

spectroelectrochemistry, CV, SEC, DFT calculations, and non-electrochemical control experiments. The 

proposed mechanistic pathways was shown in Scheme 1.29.[67] 

 

1.4.2 Use in reduction of C=N double bonds  

Following the first successful applications of CICs in C=O reductions (see previous Section), the next obvious 

step was to extend the scope of these pre-catalyst to the reduction of C=N double bonds. In 2012, Renaud and 

co-workers reported the first example of reductive amination of aliphatic aldehydes with aliphatic amines. 

These transformations were catalyzed by the well-known Knölker’s complex 9aa under low pressure of 
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hydrogen (5 bar).[53c] A broad scope of aliphatic aldehydes, ketones and amines were screened, giving good to 

excellent yields in the 38-95% range (Scheme 1.30).  

 

Scheme 1.30. Reductive amination of aliphatic aldehydes with aliphatic amines catalyzed by 9aa. 

In another contribution, to study the influence of the substituents on the ring of the cyclopentadienone ligand, 

Renaud and co-workers also synthesized a series of CICs including complexes 9aa, 9ba-bb and 9be (Scheme 

1.31).[54a] Exchanging one CO ligand with acetonitrile, these iron complexes were transformed into the 

corresponding acetonitrile iron-dicarbonyl derivatives (Scheme 1.31). After a complex screening in a model 

reaction, compounds 9aa and 9be were chosen to explore the scope of the reductive amination, in which yields 

in the 29-89% range were obtained (Scheme 1.31). Both experimental and computational studies showed that 

the substituents close to C=O group might be useful for preventing the formation of dimers of iron complexes 

and maintaining their activity, whereas the substituents away from C=O group might stabilize the 16-electron 

iron intermediate and avoid decomposition.  

 

Scheme 1.31. Reductive amination of carbonyl compounds catalyzed by CIC 9aa and 9be. 

Renaud’s group also applied complex 9bc bearing ionic fragments, already mentioned in Section 1.4.1, to the 

hydrogenation of imines.[53b] Good to excellent yields (in the 61-98% range) were obtained (Scheme 1.32 A). 

Moreover, the same group applied the well-defined (cyclopentadienone)iron complex 9bc (already mentioned 

in Section 1.4.1), bearing a more electron-rich cyclopentadienone ligand, in reductive amination of aldehydes 

and ketones by the same group.[53e] This complex demonstrates better catalytic activity than Knölker’s complex 

9aa under the same reaction conditions (Scheme 1.32 B). 
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Scheme 1.32. A: Hydrogenation of imines catalyzed by 9bc; B: reductive amination of ketones catalyzed by 9ac 

A CIC was used for the first time as catalyst for transfer hydrogenation of imines by Zhao and co-workers in 

2016.[54f] They used a catalyst system consisting of complex 9ad with Fe(acac)3 as additive to reduce imines 

by transfer hydrogenation, obtaining yields in the 53-99% range (Scheme 1.33). 

 

Scheme 1.33. Transfer hydrogenation of preformed imines promoted by 9ad. 

 

1.4.3 Use in reduction of C=C double bonds 

Iron pentacarbonyl has been the first iron complex to be used as catalyst in the reduction of alkenes, with the 

reports of Fankel and co-workers on the hydrogenation of methyl linoleate and methyl linolenate.[68] The 

monoene derivatives were obtained as main products along with a small quantity of fully reduced methyl 

stearate, and mechanistic investigations were also carried out.  

Although iron catalyzed hydrogenation of C=C double bonds had already been reported by different groups,[69] 

application of CICs in this transformations where unknown until 2018, when Renaud and co-workers showed 

that a chemo- and diastereoselective reduction of α,β-unsaturated ketones to the corresponding saturated 

ketones can be performed under mild reaction conditions using the PPh3-substituted CIC 9ae as catalyst.[57f] A 

broad range of aromatic and aliphatic unsaturated ketones were reduced in high yields (see Scheme 1.34). A 

mechanism was also proposed for this transformation, supported by experimental and computational data. It 
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was found that the base used to activate added has a crucial effect on the reaction chemoselectivity, which is 

also affected by the type of cation (see Scheme 1.34). 

 

Scheme 1.34. Reduction of C=C double bonds promoted by 9ae and plausible mechanism. 

 

1.5 Use of CIC in hydrogen borrowing reactions 

Realizing atom-economic transformations that lead to valuable compounds starting from readily available and 

inexpensive substrates is a main goal of modern synthetic chemistry.[70] The so-called ‘hydrogen borrowing’ 

(HB) or ‘hydrogen autotransfer’ reactions are a representative example of this concept, as they may be 

considered an environmentally benign class of transformations, generating water is the only by-product. In HB 

reactions, the catalyst is able to abstract one or more H2 molecule(s) from the substrate, generating an 

intermediate which then evolves through a reaction sequence ending with a reduction in which the hydrogen 

‘borrowed’ is returned, thus forming the product without net change of the oxidation state.[71] Given the 

important role played by amines in natural products, pharmaceuticals, agrochemicals and fine chemicals,[71c,72] 
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the amination of alcohols probably represents the most well-known and developed type of HB transformation 

(Scheme 1.35). Therefore, different catalytic systems have been developed, and the precious metal-based 

catalyst were widely applied in these transformations.[71] On the contrary, the development of efficient catalytic 

systems relying on non-noble metals – especially iron – is still quite limited.[73] 

 

Scheme 1.35. General mechanism of the HB amination of alcohols. 

In 2014 Feringa and Barta reported a direct HB alkylation of amines with alcohols catalyzed by the Knölker 

complex 9aa activated in situ with Me3NO.[56d] The direct alkylation of amines (anilines and benzylic amines) 

with alcohols and diols was efficiently achieved in yields ranging from 30 to 95% (see Scheme 1.36). The 

most evident weakness of this methodology is the scope limitation to primary alcohol substrates.  

 

Scheme 1.36. HB alkylation of amines promoted by 9aa. 

Later on, the same group devoted efforts to the formation of high-added-value benzylamines via HB amination 

of benzylic alcohols.[56c] Using CIC 9aa / Me3NO as catalyst, several secondary and tertiary benzylamines 

were synthesized with yields in the 42-91% range (Scheme 1.37). The versatility of this methodology in 

different synthetic pathways was also demonstrated, such as the synthesis of asymmetric tertiary amines, the 
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sequential functionalization of diols and the synthesis of N-benzyl piperidines. In addition, pharmaceutically 

relevant compounds have been prepared directly from 2,5-furan-dimethanol using this methodology. However, 

also in this case, the reaction scope remained substantially limited to primary alcohols.  

 

Scheme 1.37. HB amination of benzyl alcohols promoted by 9aa. 

Finally, Barta and Feringa also developed a catalytic system for the direct N-alkylation of unprotected amino 

acids with alcohols.[56b] Mono-N-alkyl amino acid surfactants were obtained in moderate to good yields by N-

alkylation of amino acids with long-chain alcohols using iron complex 9ab as catalyst. Although the number 

of screened examples was limited, this work demonstrated the potential of the methodology for preparation of 

bio-based products (Scheme 1.38). 

 

Scheme 1.38. HB N-alkylation of α-aminoacids promoted by complex 19ab. 

 

Scheme 1.39. HB amination of amines promoted by CIC 9cb and CICs synthesized by Wills’ group. 
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Wills and co-workers reported that the easily synthesized iron complex 9cb has good to excellent catalytic 

activity in the formation of C-N bonds through HB amination of anilines with primary alcohols (Scheme 1.39 

A).[56g] In the follow-up study, the same group synthesized a series of CICs and applied them to catalyze HB 

amination of anilines and amines (Scheme 1.39 B).[56f] The authors found that the efficiency of the reactions is 

influenced by the electronic variation of substituents on either side of carbonyl group of cyclopentadienone 

ligand. The Knölker catalyst 9aa showed better reactivity when the alcohols contain unsaturated bonds, and it 

afforded the corresponding unsaturated amines in good yields using anilines as starting materials. Notably, the 

application scope also included a few secondary alcohols, viz. cyclopentanol, cyclohexanol, cycloheptanol and 

β-tetralol, whereas non-cyclic secondary alcohols were found unreactive. 

To expand the catalytic scope of CICs to the HB amination of secondary alcohols, Zhao and co-workers 

reported a catalyst system consisting of a CIC or HCIC assisted by a Lewis acid.[56i] Complex 9ad and the 

Knölker’s HCIC 10aa were chosen as catalysts for this transformations, which also required the presence of a 

Lewis acid co-catalyst (40 mol% AgF). HCIC 10aa showed better catalytic activity than complex 9ad in these 

transformations, promoting the amination of secondary alcohols in moderate to excellent yields (26-97%, 

Scheme 1.40). It is likely that CICs would prove inactive under these conditions, since the Me3N byproduct 

generated by the standard catalyst activation with Me3NO would result incompatible with the presence of a 

Lewis acid in the reaction medium. This work represents the first systematic study on the HB amination of 

secondary alcohols using an iron catalyst. However, some weakness remained: indeed, the HCIC catalyst is 

sensitive to air and moisture and use of a relatively large amount of semi-precious metal co-catalyst (AgF) is 

necessary. 

 

Scheme 1.40. HB amination of secondary alcohols promoted by Knölker catalyst 10aa. 

In 2018, Renaud and co-workers used their pre-catalyst 9ac to catalyze alkylation of amines to N-ethyl and 

N-methylamines.[74] A broad range of aromatic and aliphatic amines were converted in high yields (up to 99%) 

to mono- or dialkylamines using methanol and ethanol as alkylating agent (Scheme 1.41). Activation of the 

pre-catalyst in this case was performed by adding a base (CsOH) in the reaction environment. Experimental 
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and computational studies (DFT) were carried out in order to investigate mechanistic details and the role of 

the base in this reaction. 

 

Scheme 1.41. N‑Ethylation and N‑methylation of amines promoted by CIC 9ac. 

The HB strategy has been used for reductive ethylation of imines by Gandon, Bour and co-workers.[56e] Five 

CICs were synthesized and investigated in imine ethylations with ethanol. The acetonitrile-substituted complex 

9bj gave the best results in the first screening and thus was chosen for further study. Various imines were 

efficiently converted to N-ethtylamines in moderate to good yields (21-88%, Scheme 1.42). This methodology 

demonstrated good chemoselectivity and allowed to perform the synthesis of unsymmetrical ethylated tertiary 

amines. 

 

Scheme 1.42. N‑Ethylation of imines promoted by complex 9bj. 

Hofmann and Hultzsch reported a controlled CIC-catalyzed formation of imines and amines starting from 

arylamines with benzyl alcohols.[75] HB N-alkylation of arylamines with benzylic alcohols could be easily 

achieved using complex 9ab as catalyst in a sealed vessel under inert atmosphere. On the other hand, these 

alkylations can also be switched in favor of the dehydrogenative condensation process performing the reaction 

in an open system filled with air. Using this methodology, different amines were obtained in fair to excellent 

yields (24-99%), whereas imine formation was slightly less broad in scope (from no product to (90% yield, 

see Scheme 1.43). 
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Scheme 1.43. Controlling formation of imines and amines catalyzed by 9ab. 

In 2015, Darcel and co-workers published the first report on the α-alkylation of ketones with primary alcohols 

promoted by CICs under HB conditions.[76] Following a careful reaction condition optimization (2 mol% pre-

catalyst 9aa, 2 mol% PPh3, 10 mol% CsCO3 at 140 °C in toluene), the authors synthesized different α-alkylated 

ketones in good isolated yields (36-72%, Scheme 1.44). 

 

Scheme 1.44. α-Alkylation of ketones with primary alcohols promoted by 9aa. 

Renaud and co-workers also applied their CIC 9ac, bearing an electron-rich cyclopentadienone ligand, under 

base activation conditions (Cs2CO3), to the alkylation of ketones via the HB strategy under mild reaction 

conditions.[77] Both the α-alkylation of aliphatic and aromatic ketones with primary alcohols could be catalyzed 

by 9ac, 40-99% yields without need of additives such as PPh3 (Scheme 1.45). 

 

Scheme 1.45. α-Alkylation of ketones with primary alcohols promoted by 9ac. 

Later on, in 2018, the same group expanded the scope of CICs to the alkylation of indoles.[78] Complexes 9ac 

and 9ae were chosen to promote the alkylation of indoles with different benzylic and aliphatic alcohols. Various 

indoles were synthesized by this alkylation procedure through the HB strategy in good to excellent yields (43-

98%, Scheme 1.46). 
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Scheme 1.46. α-Alkylation of indoles with alcohols promoted by 9ac or 9ae. 

Morrill and co-workers reported a general and efficient methylation using CICs (complexes 9aa and 9ac) as 

pre-catalyst, and methanol as methylating agent through the HB approach.[56a] A diverse array of ketones, 

indoles, oxindoles, amines, and sulfonamides were screened by this process, mono- or dimethylation products 

were obtained in good to excellent isolated yields (50-99%, Scheme 1.47). 

 

Scheme 1.47. Methylation of ketones, indoles, oxindoles, amines, and sulfonamides promoted by 9aa or 9ac. 

In addition, the authors investigated the C-alkylation of oxindoles with alcohols using pre-catalyst 9ac through 

a HB approach.[79] Different benzylic, primary and secondary aliphatic alcohols were employed as alkylation 

reagents. The corresponding alkylated oxindoles were obtained with yields in the 50-92% range (see Scheme 

1.48). 

 

Scheme 1.48. C-alkylation of Oxindoles with alcohols promoted by 9ac. 

CICs could be used for the synthesis of pyrrole via HB strategy, which was reported by Sundararaju and co-
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workers in 2017.[80] Various substituted pyrroles were synthesized employing complex 9aa as pre-catalyst 

under optimized conditions with yields in the 22-90% range (see Scheme 1.49). In particular, symmetrical bis-

pyrroles were prepared for the first time using CICs as catalysts. From the mechanistic point of view, the group 

proposed a HB pathway followed by oxidation/intermolecular condensation/reduction/second 

oxidation/intramolecular dehydrative condensation, to provide the desired pyrrole (Scheme 1.49). 

 

Scheme 1.49. Synthesis of pyrroles promoted by 9aa via HB strategy. 

 

1.6 Chiral CICs and their applications in enantioselective catalysis 

Although relatively numerous catalytic applications of CICs in RIHTs have been developed, use of CICs in 

enantioselective catalysis is still limited. With the aim to expand the catalytic scope of CICs to the 

enantioselective catalysis, two main methods have been followed: 1) using chiral CICs; 2) employing a dual 

catalysis approach in which common achiral CICs are combined with a chiral co-catalyst.  
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1.6.1 Chiral CICs for enantioselective catalysis 

The use of CICs for enantioselective catalysis has been very limited so far, and only a few chiral CICs have 

been reported. The commonly accepted mechanism for the CIC/HCIC-mediated hydrogen transfer involves a 

pericyclic TS (Figure 1.5 A) with the substrate approaching from the direction of the cyclopentadienone’s 

carbonyl group: as a consequence, it is difficult to achieve an effective transfer of the stereochemical 

information from the stereogenic unit(s) of the complex – usually quite remote from the cyclopentadienone’s 

C=O. As for the ligand design, in order to develop effective chiral complexes three main strategies have been 

followed (Figure 1.5 B): I) chiral ligands have been employed to replace one of the CO ligands; II) chiral 

cyclopentadienones have been employed, bearing stereogenic units at the 2,5- or 3,4-positions of the ring; III) 

chiral complexes bearing a stereogenic plane have been synthesized employing achiral cyclopentadienone 

ligands possessing different substituents at the 2,5-positions of the ring. 

 

Figure 1.5. Possible derivatization sites of CICs which allow to introduce stereochemical information. 

Following Approach I (Figure 1.5 B), in 2011 Berkessel and co-workers reported the first example of 

enantioselective catalysis using a CIC as pre-catalyst.[51] Chiral phosphoramidite ligands were employed to 

replace one of the CO ligands under a mild reaction conditions – either UV irradiation or Me3NO (Scheme 

1.50) – obtaining the stable complexes 9bk. 

 

Scheme 1.50. Synthesis of chiral CICs through introducing a chiral ligand under photolytic conditions. 

The catalytic activity and enantioselectivity of these iron phosphoramidite complexes were tested in the AH 

of acetophenone. Under the reaction conditions, UV irradiation was employed to generate the active catalysts 
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by de-coordination of another CO ligand, and up to 90% yields were obtained. However, these complexes 

showed only moderate enantioselectivity (up to of 31% e.e. using pre-catalyst 9bk with R = H). To explain the 

low observed stereocontrol in ketone AH, an NMR study on catalyst activation was performed, which 

demonstrated that the formation of two diastereoisomeric hydrides, 9bl and 9bm, occurs with 1:0.69 ratio, 

together with traces of the achiral catalyst 9bn (Scheme 1.51). The low diastereoselectivity in the formation 

of the active complex explains the poor observed enantioselectivity of CICs 9bk in ketone AH. 

 

Scheme 1.51. Formation of chiral hydride species 9bl and 9bm and the achiral hydride 9bn. 

Following Approach II, Wills and co-workers synthesized a series of chiral CICs starting from chiral bis-

propargyl ethers and other diynes.[53d,5454b] These chiral complexes featuring a chiral cyclopentadienone ligand 

were tested in the ATH of acetophenone with formic acid and triethylamine as hydrogen donors. Poor 

enantiselectivity was obtained, the highest e.e. being 25% (Scheme 1.52). 

 

Scheme 1.52. Selection of Wills’ chiral CICs and their application in ATH and AH of acetophenone. 

Approach II was followed also by our research group: in 2015, the synthesis of a new library of chiral CICs 

(Scheme 1.53) and its use in the AH of ketones was reported.[57d,e] These chiral CICs, featuring a backbone 

derived from (R)-BINOL, were screened in AH of ketones. Complex 9ea showed the best level of 

enantioselectivity and was chosen for further studies. Using this pre-catalyst, several ketones were converted 

to the corresponding alcohols with fair to excellent conversions (22-100%) and 13-77% e.e. (Scheme 1.53). 
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Even though these e.e. values were clearly inferior to those obtained with precious metal catalysts in ketone 

AH, they are the highest ever reported for a chiral CIC pre-catalyst (up to 77% e.e.). 

 

Scheme 1.53. AH of ketones promoted by chiral pre-catalyst 9ea. 

The replacement of one CO ligand of complex 9ea with PhCN led to complex 9eb (Scheme 1.54 A), which 

was tested in the ATH and AH of imines giving fair to excellent yields (in a range of 33-99%) and poor to 

moderate e.e. values (7-47% range). Complex 9eb was also used in reductive amination of ketones with 2-

phenylethylamine, but only moderate yields and enantioselectivities were obtained (Scheme 1.54 B) 

 

Scheme 1.54. ATH and AH of ketimines and asymmetric reductive amination of ketones promoted by the chiral pre-

catalyst 9eb. 

 

1.6.2 Dual catalysis approach combining CICs with chiral Brønsted acid for enantioselective 

transformation 

In 2011 Beller and co-workers reported a completely different approach to perform enantioselective reductions 

with CICs/HCICs. This group reported a dual catalytic procedure for the AH of ketimines employing a 
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combination of the achiral Knölker’s HCIC 10aa with a chiral phosphoric acid, (S)-TRIP.[50] A variety of 

ketimines were reduced to amines with high isolated yields (up to 93%) and excellent e.e. in most cases (up to 

98%, Scheme 1.55 B). According to the proposed mechanism (Scheme 1.55 A),[81] the Brønsted acid acts as a 

chiral template, forming hydrogen bonds simultaneously with the catalyst and with the substrate. The same 

catalytic system was also applied to the AH of quinoxalines and benzoxazines to tetrahydroquinoxalines and 

dihydro-2H-benzoxazines (Scheme 1.55 C), which was performed with good isolated yields and excellent 

enantioselectivity (up to 97% e.e.).[57i] The same catalytic system was also employed in an asymmetric 

reductive amination (ARA) of ketones with aniline, and high isolated yields (60-80%) and e.e. values (69-94%) 

were obtained (Scheme 1.55 D).[57h] Despite its high efficiency, this methodology has the limitation of 

employing the isolated HCIC complex 10aa, which is highly sensitive to air and light and must be handled in 

the glovebox. 

 

Scheme 1.55. A: proposed “chiral template” transition state with complex 10aa and chiral acid (S)-TRIP; B: AH of 

imines; C: AH of quinoxalines and benzoxazines; D: ARA of ketones with aniline. 

In 2013 Quintard and co-workers reported a different type of dual catalytic approach, consisting in a cascade 

process for the enantioselective functionalization of allylic alcohols.[82] Combining iron-promoted HB catalysis 

and iminium activation, the transformation of allylic alcohols into chiral saturated alcohols was achieved under 

mild conditions with excellent enantioselectivities (up to 95:5 er, see Scheme 1.56 A). The proposed 
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mechanism for the iron/amine-catalyzed cascade process was supported by preliminary mechanistic 

experiments, which provided a better understanding of this dual catalytic system (Scheme 1.56 B).  

 

Scheme 1.56. A: Enantioselective functionalization of allylic alcohols promoted by an iron/amine-catalyzed cascade 

process; B: proposed mechanism. 

Further development of this strategy gave rise to an unprecedented cascade reaction, combining dual 

iron/amine-catalyzed enantioselective functionalization of allylic alcohols and acyl transfer, for the synthesis 

of functionalized chiral esters and alcohols from simple achiral diketones and allylic alcohols.[83] A series of 

chiral esters were prepared in high yields (up to 96%) and enantioselectivities (up to 96:4 er) employing this 

cascade reaction (Scheme 1.57). Several natural product fragments or odorant molecules were rapidly 

synthesized, thus demonstrating the remarkable efficiency of this approach.  

 

Scheme 1.57. Synthesis of functionalized chiral esters through a dual catalysis approach. 

In 2017, Benaglia and co-workers reported an iron-catalyzed diastereoselective hydrogenation of chiral imines, 
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in which CICs 9aa, 9ac and 9br were used as pre-catalyst to hydrogenate enantiopure imines.[57g] Different 

chiral amines, including valuable biologically active products, were obtained in good yields (up to 96%) and 

excellent diastereomeric ratio (up to 98:2 dr, see Scheme 1.58). This method was employed to synthesize 

advanced intermediates of highly valuable APIs with good yields (up to 70%) and high diastereoisomeric ratio 

(up to 98:2 dr).  

 

Scheme 1.58. Diastereoselective hydrogenation of chiral imines catalyzed by CICs. 

In 2016 Renaud and co-workers reported a “cofactor approach” to enantioselective reductions, consisting in 

the incorporation of biotinylated achiral CICs into Streptavidin. The biotinylated CICs were successfully 

synthesized and embedded in Streptavidin to provide the corresponding streptavidin conjugates, which were 

applied in AH of imines and ketones with poor yields and enantioselectivity except for one example (100% 

yield and 9% e.e. were obtained in AH of trifluoroacetophenone).[84] Despite its limited success, this approach 

represents a conceptually innovative strategy to exploit CICs in enantioselective transformations. 

 

1.7 Use of CICs in Oppenauer-type alcohol oxidation 

In 2010, Funk and co-workers expanded for the first time the application of CICs to the Oppenauer-type 

oxidation of alcohols.[55] Four air-stable CICs were synthesized and tested in Oppenauer-type oxidation of 

alcohols. After optimizing the reaction conditions, the Knölker’s complex 9aa was chosen as the best pre-

catalyst to extend the scope of alcohols. A variety of secondary benzylic and allylic alcohols were oxidized in 

high isolated yields (up to 94%) using complex 9aa as pre-catalyst (Scheme 1.59 A). The most active complex 

9ac (already mentioned in Section 1.4.2) was also used as catalyst to oxidize secondary benzylic and allylic 

alcohols, and excellent isolated yields (up to 99%) were obtained in most cases (Scheme 1.59 B).[54e] 

Later on, Funk and co-workers reported another example of Oppenauer-type oxidation of alcohols promoted 

by CICs.[54d] They synthesized four CICs, and assessed their catalytic activity in Oppenauer-type oxidation of 

alcohols. Complex 9ca was found to be a more active pre-catalyst compared to Knölker complex 9aa. Different 
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alcohols were screened, and six of the corresponding products were obtained in good to excellent conversion 

(71-99%, see Scheme 1.59 C).  

 

Scheme 1.59. Applications of CICs in Oppenauer-type oxidation of alcohols by Funk’s group. 

In 2011, Wills and co-workers reported the synthesis of a series of CICs using an intramolecular cyclization 

strategy, and their application in the Oppenauer-type oxidation of alcohols to aldehydes and ketones. Within 

the oxidation of alcohols, the screening was performed using acetone as a hydrogen acceptor and the Knölker’s 

complex 9aa was found to be the most active: several different alcohols were oxidized to ketones and 

aldehydes with up to 100% conversion (see Scheme 1.60).[54c] 

 

Scheme 1.60. Oppenauer-type oxidation of alcohols reported by Wills’ group. 

 

1.8 Other applications of CICs 

All the above-outlined applications of CICs/HCICs consist in RIHTs in which the H2 molecule is either 

permanently or transiently transferred to / abstracted from the substrate. No applications of CICs to different 

types of reactivity were reported until the end of 2017, when the application scope of CICs was expanded to 
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cycloisomerization of allenols by Rueping and co-workers (Scheme 1.61 A).[59c] CICs were found to promote 

the intramolecular nucleophilic cyclization of a number of β-allenols to deoxygenated pyranose glycals in good 

yields (up to 90%). This transformation represents an efficient method for the formation of deoxygenated 

pyranose glycals starting from available allenic alcohols. 

Next, the same authors applied this catalytic system to cycloisomerization of α-allenic amines and alcohols. 

Various valuable unsaturated 5-membered heterocycles, including 2,3-dihydropyrrole and 2,3-dihydrofuran, 

were synthesized with yields in the 57-95% range (Scheme 1.61 B).[59b]  

 

Scheme 1.61. Cycloisomerization of β-allenols promoted by complex 9cb. 

 

Scheme 1.62. Cycloisomerization of α-allenic amines and alcohols promoted by complex 9aa. 

A very similar catalytic methodology for the formation of 2,3-dihydrofurans was simultaneously reported by 

Bäckvall and co-corkers.[59a] Substituted 2,3-dihydrofurans were easily synthesized by using iron complex 9aa 

as pre-catalyst through intramolecular nucleophilic cyclization of α-allenols (Scheme 1.62 A) with high yields 

(up to 95%). These reactions showed a good diasteroselectivity (up to 98:2 dr). In 2019, the diastereoselective 

synthesis of N-protected 2,3-dihydropyrroles through cycloisomerization of α-allenic sulfonamides catalyzed 
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by CICs was reported by the same group.[ 85 ] Employing this protocol, a variety of substituted 2,3-

dihydropyrroles could be synthesized in good to excellent yields. Excellent diastereoselectivities were obtained 

when 1,2-disubstituted allenamide is used, which afforded N-protected 2,3-dihydropyrroles with > 98:2 

diastereomeric ratios (Scheme 1.62 B).  

 

1.9 Conclusions on the State-of-the-Art catalytic applications of (cyclopentadienone)iron complexes 

CICs have recently gained widespread interest as cheap metal-based pre-catalysts for RIHTs due to their unique 

features of reactivity (i.e. iron atom ‘forced’ to undertake a two-electron catalytic cycle) and robustness (i.e. 

stability to air, moisture and column chromatography). In this chapter, more than 20 different CICs have been 

described, which can be classified by their specific reactivity and stereoselectivity (Figure 1.6). Most of these 

pre-catalysts have been reported in the last decade, which highlights the increasingly growing interest in 

homogeneous iron catalysis with CICs. 

Despite the attractive features mentioned above, CICs still suffer from several important limitations: 

1. Moderate catalytic activity: many of the RIHTs promoted by CICs display moderate reaction rates 

and need to be carried out well above the r.t. to achieve substrate conversions in acceptable yields. 

This limits the CIC application scope, as bulky substrates (e.g., secondary alcohol in HB amination, 

ketimines in hydrogenation) are sluggish or do not react at all. 

2. Limited stability of the catalytically active forms act-9 and 10: once activated, CICs might undergo 

deactivation due to the decomposition of the catalytically active forms, which are known to be very 

sensitive species. Such deactivation pathway would lead to a decrease of the overall observed catalytic 

activity. 

3. Lack of effective chiral complexes for enantioselective catalysis: as discussed in Section 1.6.1, very 

limited success has been met so far in the development of effective chiral CICs for enantioselective 

catalysis. 

Therefore, the aim of my PhD thesis has been to overcome these general limitations exploiting the peculiar 

features of CIC 9d (Figure 1.6), previously developed by our research group, and also developing new chiral 

and achiral CICs.  
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Figure 1.6. Selection of the most important CICs for hydrogen transfer reactions. 
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Chapter 2 - Applications of a highly active CIC to C=N bond 

reduction reactions 

2.1 Introduction 

The reduction of C-N multiple bonds is an important transformation which provides access to amines, a 

common class of compounds used for the synthesis of bioactive compounds, dyes, fibers and materials.[1] On 

lab scale, imines, iminium ions, nitriles, nitro groups, amides and azides are commonly reduced using 

stoichiometric reagents such as aluminum and boron hydrides (e. g., LiAlH4, NaBH4, NaBH3CN,), metal salts 

(e.g., SnCl2) and phosphorus compounds (e.g., PPh3). Under suitable conditions – called reductive amination 

conditions – imines and iminium ions may be also generated from carbonyl compounds in the same vessel 

where the reduction step is performed. Unfortunately, use of boron-, aluminum- or phosphorus-containing 

reductants is poorly atom economic, as these reactions lead to the formation of co-products in stoichiometric 

amounts, with associated costs of disposal. 

From the industrial point of view, catalytic hydrogenation (CH)[2] and catalytic transfer hydrogenation (CTH)[3] 

are much more attractive processes, because either they do not lead to co-product formations (in the case of 

CH) or they only result in the formation of simple materials (e.g. acetone or CO2 in the case of CTH) that can 

be readily separated from the desired product. The use of noble metal catalysts has allowed to develop effective 

protocols for the CH of imines,[ 4 ] nitriles,[ 5 ] amides,[ 6 ] azides,[ 7 ] nitro groups,[ 8 ] and for the CTH of 

imines/iminium ions.[9] As discussed in the previous chapter, economic and environmental considerations have 

stimulated the development of catalytic methodologies relaying on base metals.[10] Among them, iron is 

particularly attractive due to its low cost and scarce toxicity.[11] Homogeneous iron catalysts have been used in 

the CH of imines/iminium ions,[12] nitriles,[13] amides,[14] nitro groups[12j] and, in a few instances, in the CTH 

of imines.[15],[16] The already discussed dual catalytic system reported by Beller in 2011 (see Section 1.6.2) 

involved the combination of HCIC 10aa with a chiral Brønsted acid, which allowed to perform the AH of 

ketimines with high enantioselectivity. As mentioned in Section 1.4.2, the first use of a CIC as the sole catalyst 

for the reduction of C=N bonds was reported in 2012 by Renaud and co-workers,[12a,b,d] with the development 

of a CH-based protocol for the reductive amination of carbonyl compounds. However, the latter methodology 

had a large margin for improvement in terms of catalytic activity and application scope (it covers mostly 

aldehydes and only a few ketones). Later on, Zhao and co-workers reported that complexes 10aa and 9ad can 

promote the CH of isolated ketimines only in the presence of a Lewis acid co-catalyst [Fe(acac)3].[15e] 
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Remarkably, before my work of thesis no example of CIC-promoted imine CTH was known, although this 

kind of complexes had been reported to promote the alcohol amination,[17] mechanistically related to CTH.[18] 

We reasoned that more efficient CIC-promoted C=N reduction protocols could be developed using a pre-

catalyst more active than the Knölker’s complex (9aa) originally employed by Renaud and co-workers.[12a,b,d] 

From the point of view of ligand design, in order to enhance the catalytic reactivity of CICs two main strategies 

were followed. The first approach was the replacement of one CO ligand with a different ligand, which has 

been mentioned in Section 1.6.1. Several ligands, such as nitriles,[12b,19] pyridines,[20] NHCs,[21] phosphines,[1f] 

and chiral phosphoramidites[22 ] have been already used (Figure 2.1 A). The second strategy consists in 

modifying the cyclopentadienone ligand by variation of the substituents at the 2,5 or 3,4 positions (Scheme 

2.1 B). [12b,c,17d,22a-b,23] 

 

Figure 2.1. Main strategies to obtain structurally modified (cyclopentadienone)iron complexes. 

As mentioned in Section 1.4.1, according to the second strategy, CIC 9d was previously reported by our 

research group to have higher catalytic activity than the Knölker’s complex 9aa in the hydrogenation of 

ketones.[24] Thus, I set to verify whether the high catalytic activity of 9d could be exploited to expand the scope 

of C=N reductions. 

 

2.2 Preparation of CIC 9d 

CICs can be synthesized following two main synthetic strategies: i) complexation of the cyclopentadienone 

ligand with iron carbonyl complexes [e.g., Fe(CO)5 and Fe2(CO)9]; ii) cyclative carbonylation/complexation 
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of diynes or alkynes with an iron carbonyl complex. The latter route, used by our group to synthesize complex 

9d, was reported first and it is the most common synthetic strategy.[24] For this transformation, large excesses 

of iron carbonyl complexes [e.g., Fe(CO)5] are required, but this is acceptable, due to their low cost. In this 

approach, the synthesis of properly functionalized diyne or alkyne precursors is an important step. Starting 

from two molecular alkynes, functionalized CICs could be in principle synthesized via an intermolecular 

cyclative carbonylation/complexation. However, the limitation of this strategy is that only alkynes bearing 

substituents such as silyl groups or electron-withdrawing substituents (e.g., -Cl, -CF3 and -OtBu)[25] can lead 

to acceptable amount of desired CIC, whereas low yields (< 15%) are commonly obtained with alkynes with 

other types of substituents (e.g. phenylacetylene or diphenylacetylene).[26] Our research group performed the 

synthesis of complex 9d in acceptable yields, owing to the peculiar reactivity of cyclooctyne (17). 

 

Scheme 2.1. Synthesis of [bis(hexamethylene)cyclopentadienone]iron complex 9d from cyclooctene 15 

The synthesis of cyclooctyne 17, the smallest cyclic alkyne ever isolated so far, was reported by Brandsma and 

Verkruijsse in 1978.[27] This hydrocarbon is not commercially available, and its instability – due to ring 

strain – leads to the compound degradation within few days, even at -19 °C. However, compound 17 can be 

easily synthesized in good yields from relatively cheap cis-cyclooctene (15). Starting from the latter, 1-

bromocyclooctene 16 could be easily synthesized with high yield (up to 80%) in two steps: bromination with 

Br2 and elimination of HBr from the corresponding 1,2-dibromociclooctane upon the addition of tBuOK. 

Finally, a second elimination reaction was performed in the presence of a strong base (e.g., LDA) to afford the 

desired alkyne 17. Iron complex 9d was firstly obtained in 1971: the reaction of compound 17 with Fe(CO)5 

led to the isolation of several products.[28] Among them, a substantial amounts of tris(hexamethylene) benzene 

18 was formed, whereas only a little quantity of the iron complex 9d was isolated (14% yield). Optimization 

of cyclative carbonylation conditions performed by our group allowed to remarkably optimize the yield of 9d: 

when the reaction was carried out in toluene at 90 °C using Fe(CO)5, the desired complex 9d was obtained in 

56% yield, but compound 18 was still the main product at lower or higher temperatures 
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Scheme 2.2. Proposed mechanism for the formation of complex 9d 

The proposed mechanism for the formation of 9d (Scheme 2.2)[24] consists of a stepwise Fe-mediated [2+2+1] 

cycloaddition which is initiated by the sequential replacement of two carbonyl ligands by the two alkyne 

molecules, followed by formation of the tricarbonyl[bis-η2-alkyne] iron complex 19. At this stage, Fe(0) 

promotes the coupling of the two bound alkynes to form the intermediate complex 20. Insertion of carbonyl 

into the iron-carbon bond followed by a subsequent rearrangement of the complex 21 affords CIC 9d. The 

release of the ring strain present in the cyclooctyne ring probably favors the intermolecular cyclative 

carbonylation/complexation process. To demonstrate this hypothesis, cyclododecyne 22 (which has lower ring 

strain than cyclooctyne 17)[29] was reacted with Fe(CO)5 under the same reaction conditions employed in the 

synthesis of 9f. As expected, the related Fe-complex 9f was formed in very low yields (only 5%). 

 

Scheme 2.3. Synthesis of [bis(decamethylene)cyclopentadienone]iron complex 9f. 

 

Figure 2.2. X-ray structure of CIC 9d. 

CIC 9d was fully characterized, and suitable crystals for XRD analysis were grown.[24] The X-ray structure 

reveals the usual piano-stool geometry with a significant deviation from planarity of the cyclopentadienone 
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ring (Figure 2.2). 

 

2.3 Imine transfer hydrogenation 

Encouraged by the remarkable catalytic activity of complex 9d in hydrogenation of ketones and aldehydes,[24] 

which is more active than Knölker complex 9aa, we extended the use of this catalyst to the reduction of imines 

to amines. In an initial experiment, the classical ‘Knölker complex’ 9aa and complex 9d were tested in the 

CTH of N-(1-phenylethylidene)-p-anisidine S1 under same reaction conditions (Scheme 2.4). 

 

Scheme 2.4. Preliminary tests of pre-catalysts 9aa and 9d in the CTH of a ketimine. 

According to previous reports and experience, CICs 9aa and 9d were activated by de-complexation of one CO 

ligand with Me3NO.[12a-d,17a,d,18b,23b,c,24,30] We found that catalyst activation is crucial for reaction reproducibility. 

Optimization of this step led to the definition of the following optimized conditions: to a solution of the pre-

catalyst in iPrOH (CCIC ≥ 0.1 M) Me3NO was added, and the resulting mixture was reacted for 20-30 min at 

r.t., followed by substrate addition. The catalyst formed in situ from 9d efficiently promoted the reaction (97% 

yield, Scheme 2.4), whereas the one derived from 9aa was nearly inactive (2% yield). This difference in terms 

of catalytic activity is more remarkable than the one observed in ketone CH and CTH.[24] Moreover, these 

results are in agreement Zhao’s report that pre-catalyst 9ad, whose activated form is the same as the one 

generated from 9aa, can promote ketimine CTH only in the presence of a substantial amount of a Lewis acid 

co-catalyst.[15e] 
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Different hydrogen donors were also screened to further optimize the applicability of 9d in the reduction of 

ketimine S1 (Table 2.1). 

Table 2.1. Reduction of ketimine S1 promoted by pre-catalysts 9d[a] 

 

# Hydrogen donor Cat. loading (mol%) Conc. (mol L-1) Solvent Conv. (%) 

1 H2 (20 atm) 10 0.5 Toluene 98 

2 H2 (20 atm) 10 0.5 MeOH >99 

3 H2 (20 atm) 5 0.5 Toluene 22 

4 H2 (20 atm) 5 0.5 MeOH 60 

5 FA /TEA 5 0.5 5:2 FA/TEA  38 

6 iPrOH 5 0.5 iPrOH 70 

[a] Conversion was determined by 1H-NMR of the crude reaction mixture, FA: Formic Acid, TEA: Triethylamine 

Excellent conversions were obtained with a catalyst loading of 10% in both MeOH and toluene (Table 2.1, 

entries 1-2). However, decreasing the catalyst loading led to lower conversions to amine P1 in both solvents 

(Table 2.1, entries 3-4). Using the FA /TEA mixture (5:2 v/v) as hydrogen donor and solvent, the TH of S1 took 

place with a moderate conversion with 5 mol% catalyst loading (Table 2.1, entry 5). By replacing FA/TEA 

mixture with isopropanol, the conversion increased up to 70% (Table 2.1, entry 6). Encouraged by the 

promising results obtained with pre-catalyst 9d, we set to optimize the reaction conditions using two different 

model substrates: ketimine S1 and aldimine S2. Various parameters (e.g., catalyst loading, concentration and 

temperature) were varied as shown in Table 2.2. 

Since only the reduced product and/or staring material signals were observed in the crude reaction mixtures, 

conversions were determined by 1H NMR analysis. The initial substrate concentration (C0,sub.) remarkably 

influenced the conversion in the reduction of S1, 0.25 M representing the optimal value (Table 2.2, entry 2 vs. 

entries 1 and 3). Conversion remained excellent when the catalyst loading was reduced to 2 mol% (Table 2.2, 

entries 4 and 5). At 1 mol% and at 0.5 mol% the reaction became sluggish (Table 2.2, entry 6 and 8). However, 

increasing temperature to 100 °C could restore a high conversion even with 1 mol% catalyst loading (Table 

2.2, entry 7). When the loading was further lowered to 0.5 mol%, very low conversion was obtained, and only 

a slight improvement was observed increasing the temperature to 100 °C (Table 2.2, entry 9). When the catalyst 
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loading was further lowered to 0.1 mol%, no conversion was observed (Table 2.2, entry 10). As expected, the 

more active aldimine S2 was reduced with higher conversions under the same reaction conditions (Table 2.2, 

entry 11-20 vs. 1-10, respectively). With three different C0,sub. values, full conversion was observed with 5 mol% 

catalyst loading (Table 2.2, entry 11-13). The optimal C0,sub. value (0.25 M) was confirmed by running 

experiments at 2 mol% catalyst loading (Table 2.2, entries 14 vs. 15). Although further lowering the catalyst 

loading down to 1 mol% and 0.5 mol% led to slower reactions, full conversion could still be obtained operating 

at 100 °C (Table 2.2, entries 17 and 19 vs. 16 and 18) and the rate decrease was less evident than in the case 

of S1 (Table 2.2, entries 16 and 18 vs. 6 and 8). At 0.1 mol% catalyst loading, only a modest conversion (17%) 

was obtained (Table 2.2, entry 20). 

Table 2.2. Imine CTH promoted by pre-catalyst 9d: optimization of the reaction conditions.[a] 

 

# Sub. Cat. loading (mol%) C0,sub (mol L-1) Conv.[b] (%) 

1 S1 5 0.4 72 

2 S1 5 0.25 97 

3 S1 5 0.13 89 

4 S1 2 0.4 71 

5 S1 2 0.25 >99 

6 S1 1 0.25 8 

7 S1 1 0.25 88[c] 

8 S1 0.5 0.25 4 

9 S1 0.5 0.25 16[c] 

10 S1 0.1 0.25 0[c] 

11 S2 5 0.4 >99 

12 S2 5 0.25 >99 

13 S2 5 0.13 >99 

14 S2 2 0.4 90 

15 S2 2 0.25 >99 

16 S2 1 0.25 74 

17 S2 1 0.25 >99[c] 

18 S2 0.5 0.25 28 

19 S2 0.5 0.25 >99[c] 

20 S2 0.1 0.25 17[c] 

[a] Reaction conditions: 9d/Me3NO = 1:2, T = 70 °C, 18 h, solvent: iPrOH.  

[b] Conversion was determined by 1H-NMR of the crude reaction mixture.  

[c] Reaction run at 100 °C. 
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Following this optimization work, C0,sub. = 0.25 M in iPrOH, 2 mol% catalyst 9d loading, and T = 100 °C were 

selected as optimal conditions for extending the substrate scope. The screening (Table 2.3) was carried out on 

a lab-scale (0.5 mmol) and the isolated yield of every product was determined with the exception of product 

P11 (NMR yield). Delightfully, excellent yields (83% to quantitative) were obtained with all substrates except 

ketimines S23, S24 and aldimines S4, S10-13 (Table 2.3, entries 4, 10-13, 23 and 24), which gave moderate 

yields.  

Table 2.3. CTH-based reduction of imines promoted by pre-catalyst 9d.[a] 

 

# Substrate Product 

Yield 

(%)[b] 

# Substrate Product 

Yield 

(%)[b] 

1 

  

99 14 

  

99 

2 

  

99 15 

  

99 

3 

  

99 16 

  

99 

4 

  

46 17 

  

95 

5 

  

99 18 

  

98 
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6 

  

99 19 

  

99 

7 

  

99 20 

  

99 

8 

  

99 21 

  

83 

9 

  

99 22 

  

99 

10 

  

66 23 

  

57 

11 

  

36[c] 24 

  

68 

12 

  

66 25 

  

99 

13 

  

67 26 

  

99 

[a] Reaction conditions: substrate/9d/Me3NO = 100:1:2 (Entry 2 to 13), Substrate/9d/Me3NO = 100:2:4 (Entry 1 and 

14-26), C0,sub. = 0.25 M (0.5 mmol), T = 100 °C, 18 h, solvent: iPrOH, PMP = p-methoxyphenyl. 

[b] Isolated yields. 

[c] NMR yield. 

All the aniline-derived aldimines were reduced in nearly quantitative yields except for the 4-nitro-substituted 

aldimine S4 (Table 2.3, entry 4). Remarkably, aldimines S4 and S5 were reduced chemoselectively to amines 

while their -NO2 and -CN – potentially amenable to be reduced – remained unaffected. Despite the heteroatom 

present in aldimines S6 and S7 which could possibly poison the Fe center, nearly quantitative yields were 

obtained (Table 2.3, entries 6 and 7), The benzylamine-derived aldimines were reduced in lower yields than 

those obtained from the aniline-derived aldimines (Table 2.3, entry 10-12 vs. entry 2, 6 and 7). The sterically 
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encumbered aldimine S13 gave a similar yield to benzylamine-derived aldimines (Table 2.3, entry 13 vs. entry 

10 and 12). A number of ketimine substrates were tested (Table 2.3, entry 1 and entry 14-26) and found to react 

with very high yields. Exceptions to this trend were the α-tetralone-derived ketimine S23 and ketimine S24 

bearing a bromine substituent, which were partially reduced (57% and 68% yield, respectively; see Table 2.3, 

entries 23 and 24). 

Kinetic studies on the CTH of ketimine S1 (Figure 2.3) promoted by complex 9d were carried out to get 

additional information on its catalytic properties in the reduction of C=N double bonds. The reaction was 

performed in iPrOH at 100 °C in the presence of 5 mol% 9d and 10 mol% Me3NO, and the conversion was 

determined by GC analysis of samples taken at regular intervals (every 15 min in the first 3 h, and later every 

30 min). As shown in Figure 2.3, a pseudo-first order dependence on starting substrate concentration was 

observed, the half-life of S1 was found to be 98.9 min, corresponding to an average TOF of 6.07 h-1 at 50% 

conversion. As low conversion (2%) was obtained with complex 9aa in imine CTH, the kinetics of imine S1 

could not be taken as a term of comparison. 

 

Figure 2.3. Kinetics of the CTH of S1 promoted by complex 9d: • Conversion to of P1 (GC); • Percent of unreacted S1. 

Conditions: S1/1b/Me3NO =100:5:10; solvent: iPrOH; C0,S1 = 0.25 M (0.5 mmol); T = 100 °C; Ccat. = 12.5 

mM.  

 

2.4 Reductive amination of carbonyl compounds 

Encouraged by the remarkable results obtained in imine CTH, we focused our attention on the more 
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challenging reductive amination of carbonyl compounds, involving imine formation and CTH in one pot. In 

principle, this methodology extends the substrate scope to those imines that cannot be easily isolated due to 

their poor stability. The first CIC-catalyzed version of this transformation was reported in 2012 by Renaud and 

co-workers using CH in the imine reduction stage.[12a,b,d] As mentioned above (see Section 1.4.2), the 

methodology reported by Renaud had remarkable margins for improvement, as the substrate scope was rather 

narrow and covered mostly aldehydes and only a few ketones. 

Based on the results obtained in imine CTH, we set to develop a CTH-based protocol for the reductive 

amination of carbonyl compounds, and aldehydes were selected for the first investigations. We found that – 

similarly to the protocol developed by Renaud[12a-d] – imine formation and reduction had to be performed 

sequentially and not simultaneously, arguably because the C=N bond is reduced with rate similar or higher 

than the C=O bond. The imine formation step was found crucial to obtain a clean reaction. Indeed, whenever 

imines were formed with yields lower than 90%, the CTH gave complex mixtures. Therefore, the formation 

of a model aldimine from benzaldehyde and 4-methoxyaniline was monitored by 1H-NMR and we detected 

formation of aldimine S27 (Table 2.4) with full conversions in a 1-hour reaction, run in toluene and in the 

presence of 3 Å molecular sieves (MS). 

Table 2.4. In situ formation of imine S27 monitored by 1H-NMR.[a] 

 

# Anisidine (eq.) Time (h) T (°C) Solvent Additive [amount] Conv. (%)[a] 

1 1 1 r.t. CD3OD  0 

2 1 18 r.t. CD3OD  0 

3 1 1 r.t. CD3OD NH4PF6 96 

4 1 1 100 d8-Toluene 4 Å MS[a] [200 mg] 91 

5 1.5 1 100 d8-Toluene 3 Å MS[a] [200 mg] >99 

6 1 1 50 CD3OD 3 Å MS[a] [200 mg] 87 

[a] Reactions run on a 0.5 mmol scale (benzaldehyde). 

[b] Under vacuum overnight activated molecular sieves (MS) and kept under argon. 

Later on, we carried out the first tests of aldehyde reductive amination (see Table 2.5). The catalyst loading 

was increased to 5 mol%, given the more challenging nature of reductive amination. Substrates benzaldehyde 
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and anisidine were dissolved in several different solvents for in situ imine formation, then a solution of catalyst 

act-9d – generated in situ treating 9d with Me3NO in iPrOH – was added. As expected, the best yield was 

obtained when imine formation was performed in toluene, which is in accordance with the results of the NMR 

studies shown in Table 2.4. When the imine formation was performed in iPrOH or MeOH, lower yields were 

obtained (70% and 60%, respectively). 

Table 2.5. Optimization of the CTH-based reductive amination of benzaldehyde promoted by pre-catalyst 9d.[a] 

 

# Solvent Yield (%)[b] 

1 iPrOH 70 

2 MeOH 60 

3 Toluene >99 

[a] Reaction conditions: benzaldehyde/anisidine/9d/Me3NO = 100:150:5:5. Imine formation: toluene, 100 °C, 3 Å MS 

(400 mg), 1 h. Catalyst activation: solvent, Me3NO, r.t., 20 min. CTH: 3:1 iPrOH/solvent, C0,sub. in CTH = 0.25 M 

(0.5 mmol), T = 100 °C, 18 h; benzaldehyde was freshly distilled before use. 

[b] Isolated yield. 

Once the reaction conditions were optimized, the aldehyde scope of the new methodology was investigated. 

Different aldehydes were tested in combination with p-anisidine or phenethylamine, and the results obtained 

are shown in Table 2.6. Firstly, a series of different aldehydes were screened in combination with p-anisidine 

and phenethylamine, giving the results shown in Table 2.6. Aromatic (Table 2.6, entries 1, 4) and 

heteroaromatic aldehydes (entries 2, 3) were converted into the corresponding N-PMP amines in excellent 

yields, with the exception of the sterically hindered salicylaldehyde, which formed product P29 in only 44% 

yield (entry 5). Cinnamaldehyde and cyclohexanecarboxaldehyde were converted into products P30 and P31 

in good yields (Table 2.6, entries 6 and 7), whereas isobutyraldehyde showed poor reactivity (entry 8). Notably, 

also the in situ formed N-alkyl imines proved reactive and formed the corresponding products P34-P36 in fair 

to good yield (Table 2.6, entries 10-12). 

Next, we investigated also the reductive amination of ketones, which is particularly challenging due to the 

difficulty to achieve quantitative imine formation in a reasonable time. NMR studies of in situ formation of 

ketimines were carried out on a model reaction between acetophenone and p-anisidine to form imine S1. The 

results of these studies (Table 2.7) demonstrate that, besides the molecular sieves, an acid catalyst is also 
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needed to warrant high-yielding formation of imine S1: the best conversion to ketimine S1 was obtained using 

TFA (10 mol%) in the presence of smashed 3 Å MS (Table 2.7, entry 15). 

Table 2.6. Substrate scope evaluation in reductive amination of aldehydes promoted by pre-catalyst 9d.[a] 

 

 

 Product Yield (%)[b]  Product Yield (%)[b] 

1 

 

>99 7 

 

74 

2 

 

98 8 

 

17[c] 

3 

 

93 9 

 

0 

4 

 

99 10 

 

38 

5 

 

44 11 

 

67 

6 

 

75 12 

 

90 

[a] Reaction conditions: aldehyde /amine/9d/Me3NO = 100:150:5:5. Imine formation: toluene, 100 °C, 3 Å MS (400 

mg), 1 h. Catalyst activation: iPrOH, Me3NO, r.t., 20 min. CTH: 3:1 iPrOH/toluene, C0,substrate in CTH = 0.25 M 

(0.5 mmol), T = 100 °C, 18 h; all the aldehydes were freshly distilled over PPh3, before use. 

[b] Isolated yields.  

[c] Yield determined by 1H NMR. 

Table 2.7. NMR studies in situ formation of imine S1 starting from acetophenone.[a] 
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# Time (h) Acid [mol%] MS [amount, mg] Conv. (%)[b] 

1 1 - 3 Å [200] 37 

2 o.n. - 3 Å [200] 71 

3 1 NH4PF6 [2] 3 Å [200] 35 

4 o.n. NH4PF6 [2] 3 Å [200] 63 

5 1 NH4PF6 [5] 3 Å [200] 52 

6 1 NH4PF6 [10] 3 Å [200] 53 

7 1 NH4PF6 [10] 3 Å [400] 71 

8 1 NH4PF6 [10] 3 Å, smashed [400] 71 

9 1 NH4PF6 [5] 3 Å, smashed [400] 89 

10 2 NH4PF6 [5] 3 Å, smashed [400] 88 

11 1 PTSA [5] 3 Å, smashed [400] 86 

12 1 HCl, 1M in methanol [5] 3 Å, smashed [400] 80 

13 1 CH3COOH [5] 3 Å, smashed [400] 57 

14 1 HCl 4M in dioxane [5] 3 Å, smashed [400] 85 

15 2 TFA [10] 3 Å, smashed [400] 93 

16 2 TFA [5] 3 Å, smashed [400] 86 

17 1 TFA [5] 4 Å, smashed [400] 68 

18 1 NH4PF6 [5] 4 Å, smashed [400] 71 

19 1 TFA [5] 3 Å [500] 71 

20 1 NH4PF6 [5] 3 Å [500] 79 

[a] Acetophenone/p-anisidine = 1:1.5, solvent: d8-toluene, T = 100 °C, C0,substrate = 0.25 M (0.5 mmol). The employed 

molecular sieves were activated under vacuum and kept in an oven at 110 °C. 

[b] Determined by 1H-NMR. 

As in the case of aldehydes, we investigated ketone reductive amination by adding the solution of activated 

pre-catalyst 9d to the newly formed imine. However, only poor to moderate yields were obtained under these 
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conditions (Table 2.8, entries 1-3), even when the reaction time was extended to 48 h. A possible explanation 

of this outcome is that the sensitive active catalyst act-9d/10d undergoes a progressive decomposition in the 

presence of the acid used to promote imine formation. To address this issue, a slight excess of base (with 

respect to the catalyst) was added after imine formation had taken place to quench the catalytic amount (10 

mol%) of TFA. The base displayed the expected beneficial effect, and an excellent isolated yield (see Table 

2.8, entry 4) was obtained after adding 15 mol% of N,N-diisopropylethylamine (DIPEA), whereas solid K2CO3 

was less effective (Table 2.8, entry 5 vs. entry 4). 

Table 2.8. Optimization of the CTH-based reductive amination of acetophenone promoted by pre-catalyst 9d.[a] 

 

# TFA (mol%) Base Time (h) Conv. NMR (%) Isolated Yield (%) 

1 5  o/n 40 40 

2 10  o/n 10 10 

3 10  48 22 (60% imine left) 22 (60% imine left) 

4 10 DIPEA (15 mol%) o/n >99 98 

5 10 K2CO3 (15 mol%) o/n 89 70 

6 10 K2CO3 (aq) (15 mol%) o/n nd Nd 

[a] 1) Acetophenone/anisidine/TFA = 1:1.5:10; 3 Å M.S. 400 mg; 2) acetophenone/9d/Me3NO/Base = 100:5:5:15, 

C0,substrate = 0.25 M (0.5 mmol), 3:1 iPrOH:toluene, T = 100 °C, 22 h. 

With the optimized catalytic conditions in hand, extension of substrate scope was carried out. Different 

aromatic (Table 2.9, entries 1-3) and aliphatic ketones (Table 2.9, entries 4-7) were screened with p-anisidine, 

and moderate to excellent yields (ranging from 31% to 98%) were obtained. Delightfully, also the amines 

deriving from hindered cyclic ketones were obtained in acceptable yields (Table 2.9, entries 4 and 6). The side 

product SP was formed in these transformations because the excess p-anisidine used to promote the imine 

formation reacted with the acetone deriving from the oxidation of iPrOH, and the resulting imine underwent 

9d-mediated CTH. 

Table 2.9. Substrate scope evaluation in reductive amination of ketones promoted by pre-catalyst 9d.[a, b] 
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# Product Yield (%)[c] # Product Yield (%)[c] 

1 

 

98 5 

 

60 

2 

 

31 6 

 

41 

3 

 

68 7 

 

52 

4 

 

51    

[a] Reaction conditions: ketone/amine/9d/Me3NO = 100:150:5:5. Imine formation: toluene, 100 °C, 3 Å MS (400 

mg), TFA (10 mol%), 2 h. Catalyst activation: iPrOH, Me3NO, r.t., 20 min. CTH: 3:1 iPrOH / toluene, C0,substrate. 

in CTH = 0.25 M (0.5 mmol), DIPEA (15 mol%), T = 100 °C, 18 h. 

[b] Toluene and DIPEA were freshly distilled over sodium/benzophenone and CaH2, respectively. 

[c] Isolated yields. 

 

2.5 Conclusions 

The highly active CIC 9d, previously developed by our group,[24] has been tested as pre-catalyst in CTH of 

imines, with a low catalyst loading (in the 1-2 mol% range). Compared to the literature precedents of 

CIC/HCIC-promoted imine CTH and CH, the scope of imines has been remarkably expanded, covering also 

ketimine substrates without need of co-catalysts. The kinetics of ketimine S1 CTH (see Scheme Table 2.1) 

promoted by complex 9d have been studied, showing a pseudo-first order dependence on substrate 

concentration. Finally, a CTH-based reductive amination protocol relying on pre-catalyst 9d has been 

developed, which can be applied to both aldehyde and ketone substrates and allows to reduce imines that 

cannot be readily isolated.  

 

2.6 Experimental Section 

2.6.1. General remarks 

All reactions were carried out in flame-dried glassware with magnetic stirring under inert atmosphere (nitrogen 
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or argon), unless otherwise stated. Solvents for reactions were distilled over the following drying agents and 

transferred under nitrogen: CH2Cl2 (CaH2), MeOH (CaH2), THF (Na), dioxane (Na), toluene (Na), Et3N (CaH2); 

2-propanol, ethanol and acetone (over molecular sieves in bottles with crown cap) were purchased from Sigma 

Aldrich and stored under nitrogen. The reactions were monitored by analytical thin-layer chromatography 

(TLC) using silica gel 60 F254 pre-coated glass plates (0.25 mm thickness). Visualization was accomplished 

by irradiation with a UV lamp and/or staining with a potassium permanganate alkaline solution. Flash Column 

Chromatography was performed using silica gel (60 Å, particle size 40-64 μm) as stationary phase, following 

the procedure by Still and co-workers.[31] 

1H-NMR spectra were recorded on a spectrometer operating at 400.13 MHz. Proton chemical shifts are 

reported in ppm (δ) with the solvent reference relative to tetramethylsilane (TMS) employed as the internal 

standard (CDCl3, δ = 7.26 ppm; CD2Cl2 δ = 5.32 ppm; d6-acetone, δ = 2.05 ppm). The following abbreviations 

are used to describe spin multiplicity: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad 

signal, dd = doublet-doublet, ddd = doublet-doublet-doublet, td = triplet-doublet. 13C-NMR spectra were 

recorded on a 400 MHz spectrometer operating at 100.56 MHz, with complete proton decoupling. Carbon 

chemical shifts are reported in ppm (δ) relative to TMS with the respective solvent resonance as the internal 

standard (CDCl3 δ = 77.16 ppm; CD2Cl2 δ = 54.00 ppm; d6-acetone δ = 29.84 ppm, 206.26 ppm). The coupling 

constant values are given in Hz. Infrared spectra were recorded on a standard FT/IR spectrometer. High 

resolution mass spectra (HRMS) were performed on a Fourier Transform Ion Cyclotron Resonance (FT-ICR) 

Mass Spectrometer APEX II & Xmass software (Bruker Daltonics) – 4.7 T Magnet (Magnex) equipped with 

ESI source, available at CIGA (Centro Interdipartimentale Grandi Apparecchiature) c/o Università degli Studi 

di Milano. 

Materials: commercially available reagents were used as received. The ketones used in the substrate screening 

were purchased from commercial suppliers (TCI Chemicals, ACROS, Sigma Aldrich) and distilled over PPh3 

before use. The other commercially available reagents were used as received. 

 

2.6.2. Synthesis of Ligands and Complexes 

Pre-catalyst 9d was prepared by a procedure previously reported by our research group.[24] 

(E)-1-Bromocyclooct-1-ene (16): 
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A solution of bromine (0.25 mol, 1 eq.) in dichloromethane (12 mL) was added dropwise to a 

solution of cyclooctene (33.2 mL, 0.25 mol, 1 eq.) in dichloromethane (100 mL) at -40 °C until the 

yellow color persisted. The reaction mixture was quenched with 10% aq. Na2S2O3 solution (50 mL) and 

extracted with dichloromethane (2 × 100 mL). The combined organic layer was dried over MgSO4 and 

concentrated under reduced pressure to give trans-1,2-dibromocyclootane in quantitative yield, which was 

used in the following step without further purification. 

1H NMR (400 MHz, CDCl3): δ 4.59-4.57 (m, 2H, CHBr), 2.46-2.37 (m, 2H), 2.15-2.05 (m, 2H), 1.88-1.81 (m, 

2H), 1.70-1.56 (m, 4H), 1.54-1.46 (m, 2H). 13C NMR (100 MHz, CDCl3): 61.6, 33.3, 26.0, 25.5. 

A solution of Trans-1,2-dibromocyclootane (65.78 g, 244 mmol, 1 eq.) in THF (100 mL) was added to a 

suspension solution of tBuOK (41.07 g, 370 mmol, 1.52 eq.) in THF (40 mL) at 0 °C. After finishing the 

addition, the reaction mixture was quenched with a saturated aq. ammonium chloride solution (100 mL), and 

THF was evaporated off. The resulting crude was extracted with dichloromethane (2 × 100 mL). The conbined 

organic layer was dried over Na2SO4 and concentrated under reduced pressure. The residue was purified by 

distillation (b.p.: 73-80 °C / 10 mbar), and the product 1-bromocyclooctene was obtained as a colorless liquid. 

Yield: 36.8 g (80%). 

1H NMR (400 MHz, CDCl3): δ 6.03 (t, J = 8.5 Hz, 1H), 2.58-2.64 (m, 2H), 2.08-2.19 (m, 2H), 1.51-1.62 (m, 

8H). 13C NMR (100 MHz, CDCl3): 131.7, 35.2, 29.9, 28.6, 27.5, 26.4, 25.5. 

Cyclooctyne (17):[24] 

A lithium diisopropylamide (LDA) solution was prepared by adding dropwise n-butyllithium (1.58 

M hexane solution, 26.7 mL, 43 mmol, 1 eq.) to a solution of dry diisopropylamine (4.77 g, 47 mmol, 

1.1 eq.) in dry THF (20 mL) stirred at -78 °C. The resulting mixture was allowed to warm up to 0 °C and then 

cooled down to -25 °C. 1-Bromocyclooctene 16 (8.1 g, 43 mmol, 1 eq.) was added to the LDA solution at -

25 °C. The temperature of the reaction mixture was allowed to rise to 15 °C gradually over a period of 45 min 

and was kept at this level for another 90 min. It was then poured into a cold solution of 3 N HCl. The solution 

was extracted with hexane and the combined extracts were washed several times with water to remove the 

THF. The organic layer was dried over Na2SO4 and concentrated under reduced pressure. The residue was 

purifized by distillation to give cyclooctyne (b.p. 50-55 °C / 20 torr). Yield: 3.9 g (86%). 

1H NMR (400 MHz, CD2Cl2): δ 2.13 (m, 4H), 1.85 (m, 4H), 1.61 (m, 4H). 13C NMR (100 MHz, CD2Cl2): δ 

94.90, 35.13, 30.32, 21.90. IR (Nujol, selected band): ν = 2216 cm-1 (C≡C stretch). 
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[Bis(hexamethylene)cyclopentadienone] iron tricarbonyl (9d):[24]  

Fe(CO)5 (14.6 mL, 111 mmol, 5.3 eq.) was added to a solution of cyclooctyne 17 (2.7 mL, 

21 mmol, 1 eq.) in dry toluene (20 mL) under argon. The reaction mixture was heated to 

90 °C overnight in a sealed Schlenk tube. The resulting mixture was cooled down to r.t. and 

concentrated under reduced pressure. The residue was purified by flash chromatography (7:3 hexane/AcOEt) 

to afford the product as yellow crystals. Yield: 1.55 g (38%). M.p. = 156 °C; 1H NMR (400 MHz CDCl3): δ 

1.44-1.59 (m, 10H), 1.74-1.92 (m, 8H), 2.40-2.49 (m, 2H), 2.59-2.64 (m, 2H), 2.76-2.78 (m, 2H). 13C NMR 

(100 MHz CDCl3): δ 23.43, 23.70, 25.77, 26.24, 28.81, 31.29, 85.54, 102.42 171.42, 209.35; FT-IR: ν = 2924.1, 

2856.6, 2050.3, 1978.9, 1950.0, 1620.2, 1585.5, 1456.3, 1354.0, 1278.8, 1203.6, 1118.7, 1097.5, 1031.9, 987.5, 

817.8, 736.8, 648.1, 621.1 cm-1; HRMS (ESI+): m/z 385.1098 [M+H]+; m/z 407.0919 [M + Na]+ (calcd. for 

C21H24O4Fe: 385.1102; C20H24O4FeNa: 407.0922. 

 

2.6.3 Synthesis of pre-isolated imines 

2.6.3.1 General Procedure 

Aldehyde/ketone (4.5 mmol, 1.5 eq.) and amine (3 mmol, 1 eq.) were dissolved in anhydrous toluene (5 mL). 

The reaction mixture was added 3 Å molecular sieves (0.6 g) and heated to 110 °C, then stirred overnight and 

monitored by 1H-NMR. The resulting mixture was cooled down to r.t. and filtrated. The filtrate was 

concentrated under reduced pressure to afford the crude imine. The imine was purified by reduced pressure 

distillation (Kugelrohr). 

 

2.6.3.2 Characterization data 

Imine (name, chemical 

formula) 

1H NMR 

N-(4-Methoxy-phenyl)-(1-phenyl-ethylidene)-amine (S1):[40]  

 

1H NMR (400 MHz, CD2Cl2) δ 7.98-7.95 (m, 2H), 7.48-7.41 (m, 3H), 6.91 

(d, J = 8.8, 2H), 6.73 (d, J = 8.8, 2H), 3.80, (s, 3H), 2.23 (s, 3H). 
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(E)-N-Benzylidenebenzenamine (S2):[32] 

 

1H NMR (300 MHz, CD2Cl2) δ 8.47 (s, 1H), 7.90-7.90 (m, 2H), 7.51-7.47 

(m, 3H), 7.42-7.38 (m, 2H), 7.26-7.20 (m, 3H). 

N-(4-Methoxybenzylidene)-4-methoxyaniline (S3):[35]  

 

1H NMR (400 MHz, d6-acetone) δ 8.52 (s, 1H), 7.89 (d, J = 8.8 Hz, 2H), 7.24 

(d, J = 9.0 Hz, 2H), 7.04 (d, J = 8.8 Hz, 2H), 6.96 (d, J = 9.0 Hz, 2H), 3.88 (s, 

3H), 3.81 (s, 3H). 

(E)-N-(4-Methoxyphenyl)-1-(4-nitrophenyl)methanimine (S4):[33] 

 

1H NMR (400 MHz, CD2Cl2) δ 8.55 (s, 1H), 8.00 (d, J = 8.3 Hz, 2H), 7.76 

(d, J = 8.3 Hz, 2H), 7.29 (d, J = 8.9 Hz, 2H), 6.96 (d, J = 8.9 Hz, 2H), 3.83 

(s, 3H). 

(E)-4-(((4-Methoxyphenyl)imino)methyl)benzonitrile (S5):[34] 

 

1H NMR (400 MHz, CD2Cl2) δ 8.61 (s, 1H), 8.30 (d, J = 8.8 Hz, 2H), 8.07 

(d, J = 8.8 Hz, 2H), 7.32 (d, J = 8.9 Hz, 2H), 6.97 (d, J = 8.9 Hz, 2H), 3.84 

(s, 3H). 

N-(Furan-2-ylmethylene)-4-methoxyaniline (S6):[35]  

 

1H NMR (400 MHz, d6-acetone) δ 8.43 (s, 1H), 7.76 (dd, J = 1.7, 0.8 Hz, 1H), 

7.26 (d, J = 8.9 Hz, 2H), 7.03 (dd, J = 3.5, 0.8 Hz, 1H), 6.96 (d, J = 8.9 Hz, 

2H), 6.64 (dd, J = 3.5, 1.8 Hz, 1H),, 3.82 (s, 3H). 

(E)-N-(4-Methoxyphenyl)-1-(pyridin-2-yl)methanimine (S7):[35] 

 

1H NMR (400 MHz, d6-acetone) δ 8.70-7.68 (m, 1H), 8.61 (d, J = 0.7 Hz, 

1H), 8.20(dt, J = 7.9, 1.1 Hz, 1H), 7.93-7.88 (m, 1H), 7.47-7.34 (m, 1H), 7.38 

(d, J = 9.0 Hz, 2H), 7.01 (d, J  = 9.0 Hz, 2H), 3.84 (s, 3H). 

(p-Methoxybenzylidene)aniline (S8):[36] 

 

1H-NMR (400 MHz, d6-acetone) δ 8.50 (s, 1H), 7.92 (d, J = 8.8 Hz, 2H), 7.39 

(dd, J = 8.6, 7.0 Hz, 2H), 7.22-7.20 (m, 3H), 7.07 (d, J = 8.8 Hz, 2H), 3.89 
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(s, 3H). 

(E)-N-(4-Methylbenzylidene)benzenamine (S9):[32] 

 

1H NMR (400 MHz, d6-acetone) δ 8.54 (s, 1H), 7.86 (d, J = 8.1 Hz, 2H), 

7.42-7.38 (m, 2H), 7.33 (d, J = 7.9 Hz, 2H), 7.25-7.20 (m, 3H), 2.41 (s, 3H). 

(E)-N-Benzyl-1-phenylmethanimine (S10):[37] 

 

1H NMR (400 MHz, d6-acetone) δ 8.50 (s, 1H), 7.84-7.82 (m, 2H), 7.46-7.44 

(m, 3H), 7.38-7.31 (m, 4H), 7.27-7.23 (m, 1H), 4.81 (d, J = 1.4 Hz, 2H). 

N-Furfurylidenebenzylamine (S11):[38] 

 

1H NMR (400 MHz, d6-acetone) δ 8.30 (t, J = 1.5 Hz, 1H), 7.68 (d, J = 1.7 

Hz, 1H), 7.36-7.31 (m, 4H), 7.26-7.22 (m, 1H), 6.90 (dd, J = 3.4, 0.7 Hz, 

1H), 6.57 (dd, J = 3.4, 1.8 Hz, 1H), 4.75 (d, J = 1.4 Hz, 2H). 

(E)-N-Benzyl-1-(pyridin-2-yl)methanimine (S12):[39] 

 

1H NMR (400 MHz, d6-acetone) δ 8.65-8.63 (m, 1H), 8.49 (q, J = 0.9 Hz, 

1H), 8.07 (dt, J = 7.9, 1.1 Hz, 1H), 7.87-7.82 (m, 1H), 7.44-7.33 (m, 1H), 

7.29-7.24 (m, 1H), 4.88 (d, J = 0.7 Hz, 2H). 

(E)-N-Benzyl-1-phenylmethanimine (S13):[37] 

 

1H NMR (400 MHz, CDCl3) δ 8.46 (s, 1H), 7.88-7.86 (m, 2H), 7.50-7.19 (m, 

13H), 5.64 (s, 1H). 

(E)-(Phenyl)(1-phenylethylidene)amine (S14):[40] 

 

1H NMR (400 MHz, CD2Cl2) δ 7.99-7.97 (m, 2H), 7.48-7.43 (m, 3H), 7.38-

7.34 (m, 2H), 7.11-7.07 (m, 1H), 6.79-6.77 (m, 2H), 2.22 (s, 3H). 

N-(1-Phenylethylidene)benzenemethanamine (S15):[41] 

 

1HNMR (400 MHz, d6-acetone) δ 7.95 (dd, J = 6.7, 3.1 Hz, 2H), 7.48-7.46 

(m, 2H), 7.41-7.39 (m, 3H), 7.36-7.32 (m, 2H), 7.25-7.23 (m, 1H), 4.73 (s, 

2H), 2.37 (s, 3H). 
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(E)-1-(4-Methoxyphenyl)-N-phenylethan-1-imine (S16):[42] 

 

1H NMR (400 MHz, d6-acetone) δ 8.00 (d, J = 8.9 Hz, 2H), 7.34 (dd, J = 8.2, 

7.4 Hz, 2H), 7.07-7.03 (m, 1H), 6.01 (d, J = 8.9 Hz, 2H), 6.77 (dd, J = 8.4, 

1.2 Hz, 2H), 3.87 (s, 3H), 2.20 (s, 3H). 

(E)-1-(2-Methoxyphenyl)-N-phenylethan-1-imine (S17): 

 

Ratio: E/Z = 7:3 

E: 1H NMR (400 MHz, d6-acetone) δ 7.57 (dd, J = 7.6, 1.8 Hz, 1H), 7.37-

7.33 (m, 2H), 7.11-6.99 (m, 4H), 6.81-6.78 (m, 2H), 3.92 (s, 3H), 2.15 (s, 

3H); 

Z: 1H NMR (400 MHz, d6-acetone) δ 7.41 (ddd, J = 8.3, 7.4, 1.8 Hz, 2H), 

7.17 (ddd, J = 8.4, 7.4, 1.8 Hz, 1H), 6.91-6.87 (m, 2H), 6.81-6.74 (m, 2H), 

6.61-6.59 (m, 2H), 3.77 (s, 3H), 2.37 (s, 3H). 

(E)-N,1-Bis(4-methoxyphenyl)ethan-1-imine (S18):[43] 

 

1H NMR (400 MHz, CD2Cl2) δ 7.93 (d, J = 8.8 Hz, 2H), 6.95 (d, J = 8.8 Hz, 

2H), 6.90 (d, J = 8.7 Hz, 2H), 6.71 (d, J = 8.7 Hz, 2H), 3.86 (s, 3H), 3.80 (s, 

3H), 2.20 (s, 3H). 

N-(1-(4-Bromophenyl)ethylidene)-4-methoxyanil (S19):[44] 

 

1H NMR (400 MHz, CD2Cl2) δ 7.86 (d, J = 8.6 Hz, 2H), 7.58 (d, J = 8.6 Hz, 

2H), 6.91 (d, J = 8.8 Hz, 2H), 6.73 (d, J = 8.8 Hz, 2H), 3.80 (s, 3H), 2.22 (s, 

3H). 

(4-Methoxy-phenyl)-[1-naphthalen-2-yl-ethylidene]-amine (S20):43  

 

1H NMR (400 MHz, CD2Cl2) δ 8.35 (d, J = 1.7 Hz, 1H), 8.24 (dd, J = 8.7, 

1.8 Hz, 1H), 7.97-7.95 (m, 1H), 7.89 (dd, J = 7.66, 3.3 Hz, 2H), 7.58-7.52 

(m, 2H), 6.94 (d, J = 8.8 Hz, 2H), 6.79 (d, J = 8.8 Hz, 2H), 3.82 (s, 3H) 2.37 

(s, 3H). 

N-(4-Methoxyphenyl)-1,1-diphenylmethanimine (S21):[45] 
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1H NMR (400 MHz, d6-acetone) δ 7.73-7.70 (m, 2 H), 7.51-7.41 (m, 3 H), 

7.35-7.33 (m, 3 H), 7.17-7.15 (m, 2 H), 6.71 (d, J = 9.1 Hz, 2H), 6.65 (d, J = 

9.1 Hz, 2H), 3.69 (s, 3 H). 

[1-Phenylpropylidene]-(4-methoxyphenyl)-amine (S22):[43] 

 

E/Z = 88:12 

E: 1H NMR (400 MHz, d6-acetone) δ 7.99-7.97 (m, 2H), 7.48-7.45 (m, 3H), 

6.94 (d, J = 8.8 Hz, 2H), 6.72 (d, J = 9.1 Hz, 2H), 3.79 (s, 3H), 2.72 (q, J = 

7.6 Hz, 2H), 1.06 (t, J = 7.7 Hz, 3H); 

Z: 1H NMR (400 MHz, d6-acetone) δ 7.17-7.11 (m, 3H), 7.03-7.00 (m, 2H), 

6.66 (d, J = 9.1 Hz, 2H), 6.52 (d, J = 9.1 Hz, 2H), 3.67 (s, 3H), 2.75 (q, J = 

7.4 Hz, 2H), 1.17 (t, J = 7.4 Hz, 3H). 

[3,4-Dihydro-2H-naphthalenylidene]-(4-methoxyphenyl)amine (S23):[46] 

 

1H NMR (400 MHz, CD2Cl2) δ 8.27 (dd, J = 8.0, 1.5 Hz, 1 H), 7.36-7.33 (m, 

1 H), 7.29-7.25 (m, 1 H), 7.22-7.20 (m, 1 H), 6.90 (d, J = 8.9 Hz, 2 H), 6.73 

(d, J = 8.9 Hz, 2 H), 3.80 (s, 3 H), 2.90 (t, J = 6.1 Hz, 2 H), 2.56-2.53 (m, 2 

H), 1.91-1.88 (m, 2 H). 

(E)-1-(4-Bromophenyl)-N-phenylethan-1-imine (S24):[44]  

 

1H NMR (400 MHz, d6-acetone) δ 7.98 (d, J = 8.7 Hz, 2H), 7.66 (d, J =8.7 

Hz, 2H), 7.36 (dd, J = 8.3, 7.4 Hz, 2H), 7.11-7.07 (m, 1H), 6.80 (dd, J = 8.3, 

1.3 Hz, 2H), 2.24 (s, 3H). 

(E)-N-(4-Methoxyphenyl)octan-2-imine (S25):[47] 

 

1H NMR (400 MHz, d6-acetone) δ 6.86 (d, J = 8.9 Hz, 2H), 6.59 (d, J = 8.9 

Hz, 2H), 3.76 (s, 3H), 2.39-2.35 (m, 2H), 1.78 (s, 3H), 1.68-1.64 (m, 2H), 

1.40-1.31 (m, 6H), 0.92-0.88 (m, 3H). 

 

(E)-N-(4-Methoxyphenyl)-4-methylpentan-2-imine (S26): 
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Ratio: E/Z = 8:2 

E: 1H NMR (400 MHz, d6-acetone) δ 6.86 (d, J = 8.8 Hz, 2H), 6.60 (d, J = 

8.8 Hz, 2H), 3.76 (s, 3H), 2.26-2.24 (m, 2H), 2.19-2.11 (m, 1H), 1.77 (s, 3H), 

0.98 (d, J = 6.5 Hz, 6H); 

Z: 1H NMR (400 MHz, d6-acetone) δ 6.86 (d, J = 8.9 Hz, 2H), 6.54 (d, J = 

8.9 Hz, 2H), 3.76 (s, 3H), 2.26-2.24 (m, 2H), 2.19-2.11 (m, 1H), 2.79 (s, 3H), 

0.80 (d, J = 6.5 Hz, 6H). 

 

 

2.6.4 Determination of the transfer hydrogenation Kinetics of imine S1 

Abbreviations used: Rsub.,t = fraction of unreacted substrate S1 (Rsub.,0 = 1); Ccat. = catalyst concentration; C0,S1 

= initial substrate concentration. 

Experimental parameters: T = 373.15 K; C0,S1 = 0.25 M; Ccat. = 12.5 mM; solvent: iPrOH. 

General procedure. Pre-catalyst 9d (9.6 mg, 0.025 mmol, 0.05 eq.) and Me3NO (3.8 mg, 0.05 mmol, 0.1 eq.) 

were weighted in a glass vessel and then, after purging with argon for 2 min, iPrOH (2 mL) was added followed 

by imine S1 (112.6 mg, 0.5 mmol, 1 eq.). The vessel was sealed and put in an oil bath heated at 100 °C. 

Aliquots of the reaction mixture for GC analysis were taken every 15 min for the first 3 h of reaction and then 

every 30 min. 

Note: time = 0 was marked when the reaction vessel was put in the oil bath. Pseudo-first order rate constants 

kapp and corresponding half-lives t1/2 were determined from the slope of a linear least squares fit to the graph 

of ln(Rsub.,t) = -kt. Second order constants k were calculated dividing kapp by Ccat. (assumed to be constant). 
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Figure 2.4. Kinetics of the CTH of S1 promoted by complex 9d: • Conversion to of P1 (GC); • Percent of unreacted S1. 

Conditions: S1/9d/Me3NO = 100:5:10; solvent: iPrOH; C0,S1 = 0.25 M (0.5 mmol); T = 100 °C; Ccat. = 12.5 mM. 

 

Figure 2.5. Least squares fit of ln(Rsub.,t) vs t and calculated kinetic parameters. 

 

2.6.5 Catalytic Tests – Transfer Hydrogenation of Imines – General Procedure 

2.6.5.1 General Procedure for the CTH of pre-formed aldimines 

Pre-catalyst 9d (1.9 mg, 0.005 mmol, 0.01 eq.) and Me3NO (0.8 mg, 0.010 mmol, 0.02 eq.) were dissolved in 

dry iPrOH (0.05 mL) under argon and the resulting solution, which gradually turned from yellow to dark red, 

was stirred for 20 minutes at r.t. The imine substrate (0.5 mmol, 1 eq.) was added, followed by dry iPrOH (1.95 

mL). The reaction vessel was sealed and stirred in a pre-heated oil bath at 100 °C for 18 h. The volatiles were 

removed and the crude was purified by flash column chromatography (hexane/AcOEt). 
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2.6.5.2 General Procedure for the CTH of pre-formed ketimines 

Pre-catalyst 9d (3.8 mg, 0.010 mmol, 0.02 eq.) and Me3NO (1.6 mg, 0.020 mmol, 0.04 eq.) were dissolved in 

dry iPrOH (0.1 mL) and the resulting solution, which gradually turned from yellow to dark red, was stirred for 

20 minutes at r.t. The imine substrate (0.5 mmol, 1 eq.) was added, followed by dry iPrOH (1.9 mL). The 

reaction vessel was sealed and stirred in a pre-heated oil bath at 100 °C for 18 h. The volatiles were removed 

and the crude was purified by flash column chromatography (hexane/AcOEt). 

 

2.6.5.3 General Procedure for the reductive amination of aldehydes 

The aldehyde (0.5 mmol, 1 eq.) was added to a solution of amine (0.75 mmol, 1.5 eq.) in dry toluene (0.5 mL). 

The reaction mixture was added 3 Å MS (400 mg) and stirred at 100 °C for 1 h. Meanwhile, in another Schlenk 

tube, pre-catalyst 9d (9.6 mg, 0.025 mmol, 0.05 eq.) and Me3NO (1.9 mg, 0.025 mmol, 0.05 eq.) were dissolved 

in dry iPrOH (0.25 mL) and stirred at r.t. for 20 min. The activated catalyst solution was added into the vessel 

containing the imine, followed by dry iPrOH (1.2 mL). The reaction vessel was sealed and stirred in a pre-

heated oil bath at 100 °C for 18 h. The volatiles were removed and the crude was purified by flash column 

chromatography (hexane/AcOEt). 

 

2.6.5.4 General Procedure for the reductive amination of ketones 

The ketone (0.5 mmol, 1 eq.) was added to a solution of amine (0.75 mmol, 1.5 eq.) in in dry toluene (final 

total volume: 0.5 mL). The resulting mixture were added 3 Å MS (400 mg) and TFA (4 μL, 0.05 mmol, 0.1 

eq., dispensed as a stock solution in toluene) and stirred at 100 °C for 2 h. Meanwhile, in another vessel, pre-

catalyst 9d (9.6 mg, 0.025 mmol, 0.05 eq.) and Me3NO (1.9 mg, 0.025 mmol, 0.05 eq.) were dissolved in dry 

iPrOH (0.25 mL) and stirred at r.t. for 20 min. After adding the freshly distilled DIPEA (13 μL, 0.075 mmol, 

0.15 eq.), the activated catalyst solution was dispensed into the vessel containing the imine, followed by dry 

iPrOH (1.2 mL). The reaction vessel was sealed and stirred at 100 °C for 18 h. The volatiles were removed 

and the crude was purified by flash column chromatography (hexane/AcOEt). 
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2.6.5.5 Characterization data of amines products 

NMR conversions were calculated from the signal integrals (all the substrates and reduction products are 

known compounds, and our spectra are superimposable to those reported in the literature).  

Amines (name, chemical 

formula) 

1H NMR 

4-Methoxy-N-(1-phenylethyl)aniline (P1): [48] 

 

1H NMR (400 MHz, CD2Cl2) δ 7.37-7.29 (m, 4H), 7.23-7.19 (m, 1H), 6.65 (d, 

J = 8.9 Hz, 2H), 6.45 (d, J = 8.9 Hz, 2H), 4.42 (q, J = 6.7 Hz, 1H), 3.88 (bs, 

1H), 3.66 (s, 3H), 1.47 (d, J = 6.7 Hz, 3H). 

N-Benzylaniline (P2):[49] 

 

1H NMR (400 MHz, CD2Cl2) δ 7.39-7.32 (m, 4H), 7.28-7.26 (m, 1H), 7.16-

7.11 (m, 2H), 6.69-6.61 (m, 3H), 4.33 (s, 2H), 4.17 (s, 1H). 

4-Methoxy-N-(4-methoxybenzyl)aniline (P3):[35]  

 

1H NMR (400 MHz, d6-acetone) δ 7.30 (d, J = 8.8 Hz, 2H), 6.87 (d, J = 8.8 Hz, 

2H), 6.70 (d, J = 9.0 Hz, 2H), 6.60 (d, J = 9.0 Hz,, 2H), 4.93 (s, 1H), 4.21 (d, 

J = 4.6 Hz, 2H), 3.77 (s, 3H), 3.66 (s, 3H). 

4-Methoxy-N-(4-nitrobenzyl)aniline (P4):[50] 

 

1H NMR (400 MHz, CDCl3) δ 8.20 (d, J = 8.6 Hz, 2H), 7.56 (d, J = 8.6 Hz, 

2H), 6.79 (d, J = 8.9 Hz, 2H), 6.57 (d, J = 8.9 Hz, 2H), 4.45 (s, 2H), 3.76 (s, 

3H). 

4-(((4-Methoxyphenyl)amino)methyl)benzonitrile (P5):[51] 

 

1H NMR (400 MHz, CD2Cl2) δ 7.63 (d, J = 8.3 Hz, 2H), 7.45 (d, J = 8.3 Hz, 

2H), 6.73 (d, J = 8.9 Hz, 2H), 6.54 (d, J = 8.9 Hz, 2H), 4.38 (s, 2H), 3.70 (s, 

3H). 
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N-(Furan-2-ylmethyl)-4-methoxyaniline (P6):[35]  

 

1H NMR (400 MHz, d6-acetone) δ 7.44 (dd, J = 1.9, 0.9 Hz, 1H), 6.73 (d, J = 

9.0 Hz, 2H), 6.66 (d, J = 9.0 Hz, 2H), 6.33 (dd, J = 3.2, 1.9 Hz, 1H), 6.24 (dd, 

J = 3.2, 0.9 Hz, 1H), 4.88 (s, 1H), 4.26 (d, J = 5.7 Hz, 2H), 3.68 (s, 3H). 

4-Methoxy-N-(pyridin-2-ylmethyl)aniline (P7):[35]  

 

1H NMR (400 MHz, d6-acetone) δ 8.53 (ddd, J = 4.3, 1.9, 1.1 Hz,1H), 7.70 (td, 

J = 7.9, 1.9 Hz, 1H), 7.41 (dt, J = 7.9, 1.1 Hz, 1H), 7.23-7.19 (m, 1H), 6.72 (d, 

J = 9.0 Hz, 2H), 6.62 (d, J = 9.0 Hz, 2H), 5.28 (s, 1H), 4.38 (s, 2H), 3.67 (s, 

3H). 

N-(4-Methoxybenzyl)aniline (P8):[49]  

 

1H NMR (400 MHz, d6-acetone) δ 7.31 (d, J = 8.3 Hz, 2H), 7.08-7.04 (m, 2H), 

6.87 (d, J = 8.6 Hz, 2H), 6.64 (d, J = 8.3 Hz, 2H), 6.56 (t, J = 7.3 Hz, 1H), 5.29 

(s, 1H), 4.26 (d, J = 5.6 Hz, 2H), 3.77 (s, 3H). 

N-(4-Methylbenzyl)aniline (P9): [52] 

 

1H NMR (400 MHz, d6-acetone) δ 7.27 (d, J = 7.8 Hz, 2H), 7.12 (d, J = 7.8 Hz, 

2H), 7.06 (dd, J = 8.6, 7.2 Hz, 2H), 6.64 (dd, J = 8.6, 1.1 Hz, 2H), 6.58-6.54 

(m, 1H), 5.34 (s, 1H), 4.29 (d, J = 5.7 Hz, 2H), 2.29 (s, 3H). 

Dibenzylamine (P10):[53] 

 

1H NMR (400 MHz, CDCl3) δ 7.37-7.27 (m, 10H), 3.85 (s, 4H). 

N-Benzyl-1-(furan-2-yl)methanamine (P11):[54] 

 

1H NMR (400 MHz, d6-acetone) δ 7.45 (dd, J = 1.9, 0.9 Hz, 1H), 7.28-7.20 (m, 

5H), 6.35 (dd, J = 3.2, 1.9 Hz, 1H), 6.23 (dd, J = 3.2, 0.9 Hz, 1H), 3.77 (s, 2H), 

3.73 (s, 2H). 

N-Benzyl-1-(pyridin-2-yl)methanamine (P12): [55] 

 

1H NMR (400 MHz, d6-acetone) δ 8.54-8.52 (m, 1H), 7.74 (td, J = 7.6, 1.8 Hz, 

1H), 7.49-7.19 (m, 7H), 3.88 (s, 2H), 3.83 (s, 2H). 
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N-Benzyl-1,1-diphenylmethanamine (P13):[56] 

 

1H NMR (400 MHz, CDCl3) δ 7.45-7.42 (m, 4H), 7.34-7.20 (m, 11H), 4.87 (s, 

1H), 3.76 (s, 2H). 

N-(1-Phenylethyl)aniline (P14):[49]  

 

1H NMR (400 MHz, CD2Cl2) δ 7.40-7.32 (m, 4H), 7.26-7.22 (m, 1H), 7.09-

7.05 (m, 2H), 6.64-6.60 (m, 1H), 6.53-6.51 (m, 2H), 4.52-4.50 (m, 1H), 4.15 

(s, 1H), 1.51 (d, J = 6.8 Hz, 3H). 

N-Benzyl-1-phenylethan-1-amine (P15):[57] 

 

1H NMR (400 MHz, CDCl3) δ 7.38-7.22 (m, 10H), 3.82 (q, J = 6.6 Hz, 1H), 

2.17 (s, 2H), 1.38 (d, J = 6.6 Hz, 3H). 

N-(1-(4-Methoxyphenyl)ethyl)aniline (P16):[58] 

 

1H NMR (400 MHz, d6-acetone) δ 7.32 (d, J = 8.5 Hz, 2H), 7.00-6.96 (m, 2H), 

6.85 (d, J = 8.5 Hz, 2H), 6.54 (d, J = 8.0 Hz, 2H), 6.49 (t, J = 7.4 Hz, 1H), 5.27 

(s, 1H), 4.48 (p, J = 6.6 Hz, 1H), 3.75 (s, 3H), 1.45 (d, J = 6.8 Hz, 3H). 

N-(1-(2-Methoxyphenyl)ethyl)aniline (P17): 

 

1H NMR (400 MHz, d6-acetone) δ 7.35 (dd, J = 7.7, 1.8 Hz, 1H), 7.16 (td, J = 

7.8, 1.8 Hz, 1H), 6.97 (dd, J = 8.6, 7.3 Hz, 3H), 6.83 (td, J = 7.5, 1.1 Hz, 1H), 

6.51-6.46 (m, 3H), 5.30 (s, 1H), 4.87 (p, J = 6.7 Hz, 1H), 3.92 (s, 3H), 1.42 (d, 

J = 6.7 Hz, 3H) 

4-Methoxy-N-(1-(4-methoxyphenyl)ethyl)aniline (P18):[59] 

 

1H NMR (400 MHz, CD2Cl2) δ 7.28 (d, J = 8.1 Hz, 2H), 6.87 (d, J = 8.1 Hz, 

2H), 6.68 (d, J = 8.3 Hz, 2H), 6.48 (d, J = 8.3 Hz, 2H), 4.39 (q, J = 6.7 Hz, 

1H), 3.78 (s, 3H), 3.68 (s, 3H), 1.46 (d, J = 6.7 Hz, 3H). 

N-(1-(4-Bromophenyl)ethyl)-4-methoxyaniline (P19):[59]  
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1H NMR (400 MHz, CD2Cl2) δ 7.45 (d, J = 8.3 Hz, 2H), 7.27 (d, J = 8.3 Hz, 

2H), 6.67 (d, J = 9.0 Hz, 2H), 6.44 (d, J = 9.0 Hz, 2H), 4.39 (q, J = 6.7 Hz, 

1H), 3.87 (s, 1H), 3.67 (s, 3H), 1.46 (d, J = 6.7 Hz, 3H). 

4-Methoxy-N-(1-(naphthalen-2-yl)ethyl)aniline (P20):[60] 

 

1H NMR (400 MHz, CD2Cl2) δ 7.85-7.81 (m, 4H), 7.52 (dd, J = 8.5, 1.7 Hz, 

1H), 7.49-7.42 (m, 2H), 6.66 (d, J = 8.9 Hz, 2H), 6.52 (d, J = 8.9 Hz, 2H), 4.59 

(q, J = 6.7 Hz, 1H), 3.99 (s, 1H), 3.65 (s, 3H), 1.57 (d, J = 6.7 Hz, 3H). 

N-Benzhydryl-4-methoxyaniline (P21):[61] 

 

1H NMR (400 MHz, CD2Cl2) δ 7.40-7.31 (m, 8H), 7.27-7.23 (m, 2H), 6.68 (d, 

J = 8.9 Hz, 2H), 6.51 (d, J = 8.9 Hz, 2H), 5.44 (s, 1H), 4.15 (s, 1H), 3.67 (s, 

3H). 

4-Methoxy-N-(1-phenylpropyl)aniline (P22):[62] 

 

1H NMR (400 MHz, CDCl3) δ 7.35-7.28 (m, 4H), 7.24-7.20 (m, 1H), 6.68 (d, 

J = 8.9 Hz, 2H), 6.47 (d, J = 8.9 Hz, 2H), 4.15 (t, J = 6.7 Hz, 1H), 3.69 (s, 3H), 

1.86-1.76 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H). 

N-(4-Methoxyphenyl)-1,2,3,4-tetrahydronaphthalen-1-amine (P23):[63] 

 

1H NMR (400 MHz, CD2Cl2) δ 7.44-7.41 (m, 1H), 7.22-7.14 (m, 3H), 6.82 (d, 

J = 8.9 Hz, 2H), 6.68 (d, J = 8.9 Hz, 2H), 4.54 (t, J = 5.1 Hz, 1H), 3.74 (s, 3H), 

3.65 (s, 1H), 2.84-2.72 (m, 2H), 2.01-1.75 (m, 4H). 

N-(1-(4-Bromophenyl)ethyl)aniline (P24):[64] 

 

1H NMR (400 MHz, d6-acetone) δ 7.48 (d, J = 8.5 Hz, 2H), 7.40 (d, J = 8.5 Hz, 

2H), 7.01 (7.48 (dd, J = 8.7, 7.2 Hz, 2H),), 6.56-6.51 (m, 3H), 5.42 (s, 1H), 

4.58-4.51 (m, 1H), 1.49(s, J = 6.8 Hz, 3H). 

4-Methoxy-N-(octan-2-yl)aniline (P25):[65] 
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1H NMR (400 MHz, d6-acetone) δ 6.71 (d, J = 9.0 Hz, 2H), 6.56 (d, J = 9.0 Hz, 

2H), 4.12 (s, 1H), 3.67 (s, 3H), 3.38 (q, J = 6.0 Hz, 1H), 1.57-1.28 (m, 10H), 

1.12 (d, J = 6.3 Hz, 3H), 0.89-0.86 (m, 3H). 

N-(4-Methylpentan-2-yl)aniline (P26):[66] 

 

1H NMR (400 MHz, d6-acetone) δ6.71 (d, J = 9.0 Hz, 2H), 6.57 (d, J = 9.0 Hz, 

2H), 3.67 (s, 3H), 3.51-3.43 (m, 1H), 1.79 (dt, J = 13.5, 6.7 Hz, 1H), 1.47 (dt, 

J = 13.5, 7.1 Hz, 1H), 1.25-1.18 (m, 2H), 1.10 (d, J = 6.2 Hz, 3H), 0.91 (dd, J 

= 12.1, 6.6 Hz, 7H). 

N-Benzyl-4-methoxyaniline (P27):[67] 

 

1H NMR (400 MHz, CDCl3) δ 7.53-7.20 (m, 6H), 6.90-6.77 (m, 2H), 6.74-6.63 

(m, 2H), 4.32 (s, 2H), 3.77 (s, 3H). 

MC390 

4-Methoxy-N-(4-methylbenzyl)aniline (P28):[68] 

 

1H NMR (400 MHz, CDCl3) δ 7.29 (d, J = 7.7 Hz, 2H), 7.18 (d, J = 7.9 Hz, 

2H), 6.81 (d, J = 8.9 Hz, 2H), 6.67 (d, J = 8.9 Hz, 2H), 4.27 (s, 2H), 3.77 (s, 

3H), 2.37 (s, 3H). 

2-(((4-Methoxyphenyl)amino)methyl)phenol (P29):[69] 

 

1H NMR (400 MHz, CDCl3) δ 7.21 (td, J = 7.8, 1.6 Hz, 1H), 7.09 (d, J = 7.3 

Hz, 1H), 6.93 (d, J = 8.1 Hz, 1H), 6.86-6.78 (m, 5H), 4.37 (s, 2H), 3.76 (s, 3H). 

N-Cinnamyl-4-methoxyaniline (P30):[70] 

 

1H NMR (400 MHz, CDCl3) δ 7.38-7.36 (m, 2H), 7.33-7.29 (m, 2H), 7.25-7.21 

(m, 1H), 6.80 (d, J = 9.0 Hz, 2H), 6.38 (d, J = 9.0 Hz, 2H), 6.62 (dt, J = 15.9, 

1.6 Hz, 1H), 6.37 (dt, J = 15.9, 5.9 Hz, 1H), 3.90 (dd, J = 5.9, 1.6 Hz, 2H), 3.76 

(s, 3H). 

N-(Cyclohexylmethyl)-4-methoxyaniline (P31):[67]  
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1H NMR (400 MHz, CDCl3) δ 6.78 (d, J = 8.9 Hz, 2H), 6.68-6.65 (m, 2H), 

3.75 (s, 3H), 2.92 (d, J = 6.6 Hz, 2H), 1.84-1.80 (m, 2H), 1.75-1.68 (m, 3H), 

1.27-1.15 (m, 4H), 0.98 (qd, J = 12.0, 3.4 Hz, 2H). 

N-Isobutyl-4-methoxyaniline (P32):[71] 

 

1H NMR (400 MHz, CDCl3) δ 6.81 (d, J = 8.9 Hz, 2H), 6.70 (d, J = 8.9 Hz, 

2H), 3.77 (s, 3H), 2.93 (d, J = 6.8 Hz, 2H), 1.91 (dq, J = 13.5, 6.7 Hz, 1H), 

1.01 (d, J = 6.7 Hz, 6H). 

N-Benzyl-2-phenylethan-1-amine (P34):[72] 

 

1H NMR (400 MHz, CDCl3) δ 7.33-7.18 (m, 10H), 3.81 (s, 2H), 2.93-2.90 (m, 

2H), 2.86-2.82 (m, 2H). 

N-(Furan-2-ylmethyl)-2-phenylethan-1-amine (P35):[73] 

 

1H NMR (400 MHz, CDCl3) δ 7.33 (dd, J = 1.9, 0.8 Hz, 1H), 7.31-7.27 (m, 

2H), 7.22-7.18 (m, 3H), 6.30 (dd, J = 3.1, 1.9 Hz, 1H), 6.16 (d, J = 3.1 Hz, 

1H), 3.81 (s, 2H), 2.93-2.89 (m, 2H), 2.85-2.81 (m, 2H). 

N-(4-Methylbenzyl)-2-phenylethan-1-amine (P36):[74] 

 

1H NMR (400 MHz, CDCl3) δ 7.30-7.11 (m, 9H), 3.77 (s, 2H), 2.93-2.89 (m, 

2H), 2.85-2.83 (m, 2H), 2.32 (s, 3H), 1.80 (s, 1H). 

N-Cyclohexyl-4-methoxyaniline (P37):[68]  

 

1H NMR (400 MHz, CDCl3) δ 6.77 (d, J = 8.9 Hz, 2H), 6.58 (d, J = 8.9 Hz, 

2H), 3.74 (s, 3H), 3.20-3.13 (m, 1H), 2.07-2.03 (m, 2H), 1.79-1.73 (m, 2H), 

1.68-1.62 (m, 1H), 1.36-1.08 (m, 5H). 

4-Methoxy-N-(4-phenylbutan-2-yl)aniline (P38):[75] 

 

1H NMR (400 MHz, CDCl3) δ 7.29-7.26 (m, 2H), 7.20-7.16 (m, 3H), 6.76 (d, 

J = 8.9 Hz, 2H), 6.56 (d, J = 7.8 Hz, 2H), 3.75 (s, 3H), 3.40 (q, J = 6.4 Hz, 1H), 

2.74-2.70 (m, 2H), 1.91-1.87 (m, 1H), 1.78-1.72 (m, 1H), 1.21 (d, J = 6.2 Hz, 

3H). 
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Chapter 3 - Applications of a highly active CIC to alcohol 

amination reactions 

Alcohol amination is an attractive and atom-economic reaction which provides access to amines– a valuable 

class of fine chemicals [1] – generating water as the sole byproduct. This transformation cannot occur via the 

SN2 mechanism due to the poor leaving group ability of the OH– ion. Although the transformation can be 

promoted by acid catalysis, very harsh reaction conditions are required.[ 2 ] Alcohol amination could be 

effectively performed by catalytic processes involving the ‘hydrogen-borrowing’ (HB) mechanism (also 

known as ‘hydrogen autotransfer’), in which two H2 transfer elementary steps occur without any net change 

in the oxidation state of the system. The HB amination proceeds through an alcohol dehydrogenation/imine 

formation/imine hydrogenation sequence (Scheme 3.1), without any net consumption or release of hydrogen. 

Upon alcohol dehydrogenation, the catalytic complex MLn is temporarily converted into the species MLn-H2, 

which then reduces the imine or iminium ion intermediate formed by condensation of carbonyl compound with 

the amine substrate. 

 

Scheme 3.1. General mechanism of HB amination of alcohols. 

The first examples of HB alcohol amination were reported in the early 1980s using catalysts based on precious 

metals such as rhodium, ruthenium and iridium,[3] and the latter two became the focus of the most recent 

studies.[4] Use of cheaper metal catalysts such as copper,[5] cobalt[6] and iron[7] complexes in the HB aminations 

remained quite limited until recent years, when homogeneous base metal catalysis started being increasingly 

studied.[3a] In this context, Feringa, Barta et al. reported the application of a well-defined homogeneous iron 

catalysis for the HB amination of alcohols for the first time: the ‘Knölker complex’ 9aa (already mentioned in 

Section 1.5), which is a highly stable and easy-to-handle pre-catalyst,[8] was shown to promote the amination 
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of several primary alcohols and diols. Further investigation on the use of CICs for HB alcohol amination were 

carried out by different groups, as already discussed in Section 1.5. However, in these reactions, the substrate 

scope was limited to primary alcohols. As mentioned in Section 1.5, in 2015 Zhao and coworkers reported that 

the isolated HCIC 10aa catalyzes the amination of different secondary alcohols with moderate to good yields 

(26-97%) in the presence of a co-catalysts (AgF, 40 mol%). Nevertheless, serious limitations still remained in 

this methodology. For example, the reaction requires a relatively high catalyst loading of the isolated HCIC 

10aa, which is sensitive to air and moisture and requires handling under glovebox. Moreover, large amounts 

of AgF (40 mol%) co-catalyst are necessary, thus overriding the advantages of using a cheap metal catalyst. 

 

3.1 ‘Hydrogen-Borrowing’ amination of secondary alcohols 

Building on our group’s expertise in the fields of CICs, an investigation on the use of (cyclopentadienone)iron 

complexes for the HB amination of secondary alcohols was undertaken. To this purpose, the highly active CIC 

9d was employed, which had shown remarkable catalytic activity in the CTH of imines and in the reductive 

amination of ketones involving a hydrogen transfer process (already discussed in Chapter 2). As the HB 

amination of alcohols shares the same elementary steps as these reactions, we surmised that pre-catalyst 9d 

could be an effective catalyst and perhaps allow to expand the application scope to secondary alcohol substrates.  

Table 3.1. Comparison between pre-catalysts 9aa and 9d in the HB amination of 1-octanol with p-anisidine.[a] 

 

# Pre-cat. Solvent 23a / 24a ratio Yield (%)[a] 

1[b] 9aa CPME 2 70 

2[c] 9aa toluene 1.5 82 

3[c] 9d toluene 1.5 > 95 

[a] Isolated yield after column chromatography. 

[b] Reaction conditions as described in the literature.[8] 

[c] Reaction conditions: 23a/pre-cat./Me3NO = 100:5:10. Catalyst activation: toluene, Me3NO, r.t., 15 min, 

C0,cat. = 0.1 M; HB amination: toluene, C0,sub. = 0.25 M (0.5 mmol), T = 130 °C, 24 h. 

CPME = cyclopentyl methyl ether 

First, we compared the activity of CICs 9d and 9aa in the HB amination of a primary alcohol (1-octanol) with 

p-anisidine (Table 3.1). Complex 9aa – activated in situ with Me3NO – was tested in the conditions described 
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by Feringa, Barta et al.[8] (Table 3.1, entry 1) and gave essentially the same yield reported by them (70% vs. 

69%). Consistent with our expectations, under its optimized conditions (toluene instead of CPME as solvent) 

pre-catalyst 9d showed higher activity than 9aa, leading to the amination product P39 in quantitative yield 

(Table 3.1, entry 3). CIC 9aa was also tested under the same conditions used with pre-catalyst 9d (Table 3.1, 

entry 2), giving an 82% yield. This result encouraged us to investigate whether complex 9d could efficiently 

catalyze also the amination of secondary alcohols. 

Table 3.2. HB amination of 1-phenylethanol with p-anisidine promoted by pre-catalyst 9d - Optimization.[a] 

 

# Solvent Alcohol/ amine MS [amount, mg] 
Additives 

[mol%] 
Conv. (%)[b] 

1 toluene 1.5:1 - - 17 

2 toluene 1.5:1 3 Å [400] - 48 

3 toluene 3:1 3 Å [400] - 42 

4 toluene 4:1 3 Å [400] - 76 

5 toluene 6:1 3 Å [400] - 46 

6 toluene 10:1 3 Å [400] - 0 

7 toluene 1:1 3 Å [400] - 58 

8 toluene 1:1.5 3 Å [400] - 35 

9 toluene 1:4 3 Å [400] - 34 

10 toluene 4:1 3 Å [400] TFA [1] 53 

11 toluene 4:1 3 Å [400] AcOH [1] 64 

12 CPME 4:1 3 Å [400] - 24 

13 dioxane 4:1 3 Å [400] - 22 

14 DMF 4:1 3 Å [400] - 0 

15 DME 4:1 3 Å [400] - 19 

16 DCE 4:1 3 Å [400] - 5 

17[c] toluene 4:1 3 Å [400] - 89 

[a] Reaction conditions: 23a/9d/Me3NO = 100:5:10. Catalyst activation: solvent, Me3NO, r.t., 15 min, C0,cat. = 0.1 M; 

HB amination: solvent, C0,sub. = 0.25 M (0.5 mmol), T = 130 °C, 24 h. 

[b] Determined by 1H NMR analysis of the reaction crude. 

[c] Reaction run at 150 °C. 

Thus, we tested pre-catalyst 9d in the HB amination of p-anisidine with 1-phenylethanol under the same 

conditions used with 1-octanol, and we observed a poor conversion to the desired product P1 (Table 3.2, entry 

1). However, we found that the conversion was positively affected by the presence of 3 Å molecular sieves in 
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the reaction environment (Table 3.2, entry 2 vs. entry 1), which is likely to accelerate the imine formation step. 

We also found that the conversion is remarkably influenced by the reaction stoichiometry (Table 3.2, entries 

3-9), 4:1 alcohol/amine ratio giving the best result (Table 3.2, entry 4). Moreover, the conversion was slightly 

reduced in the presence of TFA or AcOH (Table 3.2, entries 10 and 11 vs. entry 4), which were added to 

accelerate the imine formation step. Next, we screened several different aprotic solvents (Table 2, entries 12-

16), but they generally resulted conversions lower than those obtained in toluene. Increasing the reaction 

temperature from 130 to 150 °C (Table 3.2, entry 17 vs. entry 4) led to improved conversion (89% vs. 76%). 

With the optimized conditions in hands, a series of secondary alcohols were screened in the reaction with p-

anisidine (23a), giving the results shown in Table 3.3. Delightfully, excellent yields (84-99% range) were 

obtained with a number of alcohol substrates, thus demonstrating that our 9d-based catalytic methodology is 

suitable for HB secondary alcohol amination. 

From the analysis of the data shown in Table 3.3, the following general trends emerged:  

1) For each type of substrate, the yield was roughly decreased with the increasing steric bulk surrounding the 

hydroxy group, i.e. along the series 24b → 24c → 24l → 24n for benzylic alcohols (Table 3.3, entries 1-2, 12 

and 14), 24e → 24g → 24d → 24h → 24f for aliphatic alcohols (Table 3.3, entries 3-7), and 24i → 24j → 24k 

for allylic alcohols (Table 3.3, entries 9-11). 

2) The yields of the reactions resulting incomplete after 24 h could be improved by extending the reaction time 

to 72 h (Table 3, entries 2, 5 and 7-14). Hence, it is evident that pre-catalyst 9d underwent negligible or no 

decomposition, maintaining its catalytic activity for a long time. This is in agreement with other evidences 

previously reported by our group for the 9d-catalyzed hydrogenation of ketones (see Section 1.4.1), that 9d is 

more stable than ‘Knölker complex’ 9aa, possibly due to the presence of bulky cyclooctane rings fused to the 

cyclopentadienone, capable of stabilizing the catalyst for longer time. In agreement with our interpretation, 

when the HB amination of cyclohexanol 24h was carried out using pre-catalyst 9aa under the same conditions 

used for 9d, product P37 was obtained in a much lower yield (Table 3.3, entry 8 vs. entry 7).  

The HB amination of 24g with 23a was repeated on gram-scale with excellent yield (99%) under the same 

conditions (Table 3.3, entry 6). Surprisingly, the desired amine did not form in the amination of alcohol 24m 

under optimized conditions. Instead, this reaction gave product P47 (Table 3.3, entry 13), which derives from 

the conjugate addition of p-anisidine to an ynone intermediate, formed by alcohol dehydrogenation and alkyne 

deprotection (Scheme 3.2). The heterocyclic alcohol 24o, possessing a tertiary amino group, was screened and 
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the corresponding secondary amine P48 was obtained with a good yield (Table 3.3, entry 15). Other 

functionalized alcohols – α-hydroxyesters (e.g., methyl lactate, methyl mandelate, ethyl malate) – were also 

screened, but no formation of amination products was observed. 

 

Scheme 3.2. Formation of product P47 promoted by pre-catalyst 9d. 

Table 3.3. Alcohol scope evaluation in HB amination with p-anisidine promoted by pre-catalyst 9d.[a] 

 

 Alcohol Product 
Yield (%)[b] 

t = 24 h t = 72 h 

1 

  

87 95 

2 

  

14 64 

3 

  

95 96 

4 

  

99 99 

5 

  

19 53 

6 

  

99 (99)[c] 99 

7 

  

89 95 

8[e] 

  

32 63 
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9 

  

10 31 

10 

  

6 28 

11 

  

40 

(1:1)[d] 

49 

(1:1)[d] 

12 

  

16 27 

13 

 
 

6 29 

14 

  

10 30 

15 

  

84 82 

[a] Reaction conditions: alcohol/23a/9d/Me3NO = 400:100:5:10. Catalyst activation: toluene, Me3NO, r.t., 15 

min, C0,cat. = 0.1 M; HB amination: toluene, C0,sub. = 0.25 M (0.5 mmol), T = 150 °C. 

[b] Isolated yield after column chromatography. 

[c] Yield of gram-scale experiment. 

[d] Ratio P37:P46. 

[e] Pre-catalyst 9d was replaced by 9aa 

Interestingly, the HB amination of allylic alcohols was accompanied by partial (Table 3.3, entry 11) or full 

(Table 3.3, entries 9 and 10) reduction of the C=C bond. This outcome can be explained by the presence of 

excess alcohol, acting as terminal reductant. The activated catalyst act-9d dehydrogenates the allylic alcohol 

to α,β-unsaturated ketone 25, then three possible pathways may be conceived (Scheme 3.3): Path 1 consists in 

a C=N reduction followed by C=C bond isomerization, enamine/imine tautomerization and another C=N 

reduction, whereas two consecutive conjugate reductions take place both Path 2 and 3. 
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Scheme 3.3. Possible pathways for the amination of allylic alcohols with concomitant C=C bond reduction. 

 

Scheme 3.4. A: Synthesis of intermediate 26; B: reduction of 26 promoted by 9d. 

To investigate the mechanism of allylic alcohol amination accompanied with C=C double bonds reduction, a 

control experiment was carried out. Intermediate 26 was synthesized according to published procedures[9] 

(Scheme 3.4 A) and then subjected to the same experimental conditions that led to the formation of product 

P43 from 3-buten-2-ol (Scheme 3.4 B). As no formation of P43 was observed, Path 1 could be ruled out, 

whereas both Path 2 and Path 3 are viable and probably operating. 
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Table 3.4. Screening of amine nucleophiles in the HB amination of 1-phenylethanol promoted by pre-catalyst 9d.[a] 

 

# Amine Product 
Yield [%][b] 

t = 24 h t = 72 h 

1 

 
 

85 > 95 

2 

 
 

51 71 

3 

  

45 75 

4 

  

15 54 

5 

 
 

22 78 

6 

 
 

20 43 

[a] Reaction conditions: 24b/amine/9d/Me3NO = 400:100:5:10. Catalyst activation: toluene, Me3NO, r.t., 15 

min, C0,cat. = 0.1 M; HB amination: toluene, C0,sub. = 0.25 M (0.5 mmol), T = 150 °C. 

[b] Isolated yield after column chromatography. 

Later on, the HB amination of 1-phenylethanol 24b with different amine nucleophiles was performed under 

the optimized conditions (Table 3.4). The general trend observed in the alcohol screening (Table 3.3) – i.e., 

that increasing the steric bulk of the substrates leads to a drop of the yields – was observed also in the case of 

amines (Table 3.4): benzylamine (23e) gave higher yields (Table 3.4, entry 5 vs. entry 6) than N-methyl 

benzylamine (23f), and p-anisidine (23a) showed higher reactivity than 23b, giving excellent yields (Table 3.4, 

entry 1 vs. entry 2). Although also in the amine screening, yields were improved by extending the reaction 

time (72 vs. 24 h), aliphatic (23c,d) and benzylic amines (23e,f) were found less reactive than anilines (23a,b), 

giving quite moderate yields. 
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Encouraged by the high activity displayed by pre-catalyst 9d, we tested it in the reaction of primary amines 

with diols to afford saturated N-heterocycles. p-Anisidine (23a) reacted with primary diols (30a-c) to generate 

the corresponding five-, six- and seven-membered rings P53-P55 in fair to good yields (Table 3.5, entries 1-

3). In several cases (Table 3.5, entries 1-3), the yields were slightly higher after 24 h, rather than with 72 h, 

suggesting that the reaction products might undergo a partial decomposition under the reaction conditions. 

The cyclization occurred also with the secondary diol 30d forming 1-(4-methoxyphenyl)-2,5-

dimethylpyrrolidine P56[10] as a mixture of cis and trans isomers (Table 3.5, entry 4), and in this case an 

extended reaction time positively affected the yield. 

Table 3.5. HB amination of p-anisidine with diols promoted by pre-catalyst 9d.[a] 

 

# Diol Product 
Yield [%][b] 

t = 24 h t = 72 h 

1 30a 

 

55 44 

2 30b 

 

66 63 

3 30c 

 

40 25 

4[c] 30d 

 

25 (57:43 cis/trans)[c] 71 (58:42 cis/trans) 

[a] Reaction conditions: 30/23a/9d/Me3NO = 400:100:5:10. Catalyst activation: toluene, Me3NO, r.t., 15 min, 

C0,cat. = 0.1 M; HB amination: toluene, C0,sub. = 0.25 M (0.5 mmol), T = 150 °C. 

[b] Isolated yield after column chromatography. 

[c] Cis/trans ratio determined by 1H NMR of the reaction crude.[10]  

Further cyclization tests were carried out combining diols 30a-d with benzylic amines 23e, 23g and 23h under 

the optimized catalytic conditions (Table 3.6). The reaction of benzylamine 23e with primary diols 30a-c 

afforded the N-heterocycles P57-59 in moderate yields (Table 3.6, entries 1-3). Consistent with the report by 
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Feringa, Barta et al.,[8,11] the meta-substituted benzylamines bearing electron-withdrawing groups (23g and 

23h) were found slightly more reactive than 23e in reactions forming six- and seven membered rings P62-63 

and P66-67 (Table 3.6, entry 6, 10 vs. 2; entries 7, 11 vs. 3). However, amines 23e, 23g and 23h gave similar 

yields in the formation of pyrrolidines P57, P61 and P65 from 1,4-butanediol 30a (Table 3.6, entries 1, 5 and 

9). Remarkably, the corresponding reactions with 2,5-hexanediol 30d to form 2,5-dimethylpyrrolidines P60, 

P64 and P68 (as cis/trans diastereoisomer mixtures) gave higher yields (Table 3.6, entries 4 vs. 1, 8 vs. 5 and 

12 vs. 9), thus further confirming the efficacy of pre-catalyst 9d in the HB amination of secondary alcohols. 

To the best of our knowledge, the latter reactions and the corresponding reaction of p-anisidine 23a (Table 3.5, 

entry 4) represent the first examples of secondary diol cyclization promoted by a (cyclopentadienone)iron 

complex. 

Table 3.6. HB amination of benzylic amines with diols promoted by pre-catalyst 9d.[a] 

 

# Amine Diol Product 
Yield [%][b] 

t = 24 h t = 72 h 

1 23e 30a 

 

29 45 

2 23e 30b 

 

18 28 

3 23e 30c 

 

11 16 

4 23e 30d 

 

66 (79:21 cis/trans) 43 (79:21 cis/trans) 

5 23g 30a 

 

30 27 



Applications of a highly active CIC to alcohol amination reactions 

97 

 

6 23g 30b 

 

40 54 

7 23g 30c 

 

51 61 

8 23g 30d 

 

55 

(76:24 cis/trans) 

60 

(79:21 cis/trans) 

9 23h 30a 

 

8 29 

10 23h 30b 

 

42 18 

11 23h 30c 

 

64 68 

12 23h 30d 

 

72 

(73:27 cis/trans) 

66 

(76:24 cis/trans) 

[a] Reaction conditions: 30/amine/9d/Me3NO = 400:100:5:10. Catalyst activation: toluene, Me3NO, r.t., 15 min, C0,cat. 

= 0.1 M; HB amination: toluene, C0,sub. = 0.25 M (0.5 mmol), T = 150 °C. 

[b] Isolated yield after column chromatography. 

[c] Cis/trans ratio determined by 1H NMR of the reaction crude.[10]  

 

3.2 Conclusions on the 9d-catalyzed HB amination of alcohols 

CIC 9d was successfully applied to the HB amination of alcohols, which allowed to remarkably expand the 

substrate scope to secondary alcohols without the need of semi-precious metal co-catalysts such as AgF. 

Thanks to the highly active CIC 9d, a series of secondary alcohols were reacted with different amines (e.g., 

anilines, benzylamines and cyclic amines) giving moderate to excellent yields (28-99%). Pre-catalyst 9d was 

also able to promote the reaction of diols with primary amines to form five-, six- and seven-membered N-
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heterocycles in a fair to good yields. Notably, a secondary diol (2,5-hexanediol 30d) was employed for the first 

time in the cyclization of diols to afford the corresponding 2,5-dimethylpyrrolidine products in good yields. 

These results certainly represent a step forward in the direction of replacing precious metals with cheap metals 

in an attractive atom-economic such as the HB amination of alcohols.  

3.3 Experimental Section 

3.3.1 General remarks 

All reactions were carried out in flame-dried glassware with magnetic stirring under inert atmosphere (nitrogen 

or argon), unless otherwise stated. Solvents for reactions were distilled over the following drying agents and 

transferred under nitrogen: MeOH (CaH2), toluene (Na/benzophenone). Dry ethanol (over molecular sieves in 

bottles with crown cap) were purchased from Sigma Aldrich and stored under nitrogen. The reactions were 

monitored by analytical thin-layer chromatography (TLC) using silica gel 60 F254 pre-coated glass plates 

(0.25 mm thickness). Visualization was accomplished by irradiation with a UV lamp and/or staining with a 

potassium permanganate alkaline solution or with a ninhydrin solution. Flash Column Chromatography was 

performed using silica gel (60 Å, particle size 40-64 μm) as stationary phase, following the procedure by Still 

and co-workers.[12]  

1H NMR spectra were recorded on a spectrometer operating at 400.13 MHz. Proton chemical shifts are reported 

in ppm (δ) with the solvent reference relative to tetramethylsilane (TMS) employed as the internal standard 

(CDCl3, δ = 7.26 ppm; CD2Cl2 δ = 5.32 ppm). The following abbreviations are used to describe spin 

multiplicity: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, bs = broad signal, dd = doublet-

doublet, td = triplet-doublet. 13C NMR spectra were recorded either on a 400 MHz spectrometer operating at 

100 MHz or on a 600 MHz spectrometer operating at 150 MHz, with complete proton decoupling. Carbon 

chemical shifts are reported in ppm (δ) relative to TMS with the respective solvent resonance as the internal 

standard (CDCl3 δ = 77.16 ppm; CD2Cl2 δ = 54.00 ppm). The coupling constant values are given in hertz (Hz). 

19F NMR spectra were recorded on a 300 MHz spectrometer operating at 282 MHz, with complete proton 

decoupling. Fluorine chemical shifts are reported in ppm (δ) relative to external CFCl3 at 0 ppm (positive 

values downfield).Infrared spectra were recorded on a standard FT/IR spectrophotometer. High resolution 

mass spectra (HRMS) were performed on a ESI QTof SYNAPT G2 Si mass spectrometer (Waters), available 

at the UNITECH-COSPECT laboratories (Università degli Studi di Milano). 
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Materials: alcohols and amines used in the substrate screening were purchased from commercial suppliers 

(TCI Chemicals, ACROS, Sigma Aldrich). The liquid amines were distilled before use, whereas the other 

reagents were used as received. Pre-catalyst 9d was prepared as previously described in Chapter 2, Section 2.1. 

3 Å MS were dried under high vacuum at 200 °C and then stored in an oven at 110 °C. 

 

3.3.2 Control experiment for elucidating the mechanism of allylic alcohol amination with concomitant 

C=C reduction 

3.3.2.1 Synthesis of the putative intermediate 26 

2,2,2-Trifluoro-N-(4-methoxyphenyl)acetimidoyl chloride (27)[9c] 

A mixture of triphenylphosphine (8.57 g, 132.0 mmol, 3 eq.), trifluoroacetic acid (1.24 

g, 10.9 mmol, 1 eq.), Et3N (1.82 mL, 13.1 mmol, 1.2 eq.) and carbon tetrachloride (10 

mL) was magnetically stirred while cooled with an ice bath. After 10 min, 4-methoxyaniline (1.61 g, 13.1 

mmol, 1.2 eq.) dissolved in carbon tetrachloride (10 mL) was added slowly (exothermic reaction). The ice bath 

was removed and the reaction mixture was stirred at reflux for 4 h. Upon cooling to r.t., the reaction mixture 

was washed with hexane (3 × 100 mL). Solvent was removed using a rotary evaporator to give an orange oil. 

Distillation gave 2.27 g of 2,2,2-trifluoro-N-(4-methoxyphenyl)acetimidoyl chloride S1 as a light yellow liquid: 

b.p. 75-77 °C/0.3 mmHg (9.02 mmol, 69%). 

1H NMR (400 MHz, CDCl3) δ 7.31 (d, J = 9.0 Hz, 2H), 6.96 (d, J = 9.0 Hz, 2H), 3.85 (s, 3H). 

But-2-en-1-yl 2,2,2-trifluoro-N-(4-methoxyphenyl)acetimidate (28)[9a] 

Sodium hydride (144 mg, 6 mmol, 1.2 eq.) was slurred in THF (8 mL) and cooled to 0 °C. 

2-Buten-1-ol (433 mg, 6 mmol, 1.2 eq.) was added dropwise and the reaction was stirred 

at 0 °C for 30 min. The cooling bath was removed and the reaction was stirred for an 

additional 1.5 h at r.t. A solution of N-(4-methoxybenzyl)trifluoroacetimidoyl chloride 27 (1.26 g, 5 mmol, 1 

eq.) and THF (8 mL) was added in one portion to the alkoxide solution. The reaction was maintained at r.t. for 

18 h before concentrating. The residue was redissolved in hexanes, filtered through celite, and concentrated. 

The resulting residue was purified by flash chromatography (99:1 to 95:5 hexane/AcOEt) gave 601 mg of 28 

as a pale-yellow oil (2.2 mmol, 44%). 

1H NMR (400 MHz, CDCl3): δ 6.84 (d, J = 8.9, 2H), 6.76 (d, J = 8.9, 2H), 5.89-5.85 (m, 1H), 5.72-5.68 (m, 
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1H), 4.68 (s, br, 2H), 3.79 (s, 3H), 1.77 (d, J = 6.3 Hz, 3H). 

N-(But-3-en-2-yl)-2,2,2-trifluoro-N-(4-methoxyphenyl)acetamide (29)[9a,b] 

Bis(acetonitrile)-dichloropalladium(II) (69 mg, 0.183 mmol, 0.1 eq.) was dissolved in 3 mL of dry 

DCM at r.t., under Ar atmosphere. A solution of 28 (500 mg, 1.83 mmol, 1 eq.) in 3 mL of dry 

DCM was added one portion. The resulting mixture was stirred for 18 h at r.t. and filtered through 

a celite plug. The solvent was removed and the product was purified by flash chromatography 

(95:5 hexane/AcOEt) gave 320 mg of 29 as a pale-yellow oil (1.17 mmol, 64%). 1H NMR (400 MHz, CDCl3) 

δ 7.08-7.04 (m, 2H), 6.89-6.86 (m, 2H), 5.79-5.71 (m, 1H), 5.28-5.24 (m, 1H), 5.20-5.15 (m, 2H), 3.83 (s, 3H), 

1.19 (d, J = 6.9 Hz, 3H). 

N-(4-Methoxyphenyl)-3-amino-1-butene (26)[9a]  

Potassium carbonate (380 mg, 2.75 mmol, 2.5 eq.) was added at r.t. to the solution of amide 29 (300 

mg, 1.10 mmol, 1 eq.) in 5:1 MeOH/H2O. The resulting solution was heated to reflux and stirred for 

3 h. Upon cooling to r.t., the reaction mixture was washed with DCM (10 mL) and water (10 mL) 

and the phases were separated. The aqueous phase was extracted with DCM (3 × 20 mL) and the 

combined organic phases were washed with brine (20 mL), dried with Na2SO4 and concentrated. The crude 

was purified by flash chromatography (9:1 hexane/AcOEt) giving 191 mg of 26 (1.08 mmol, 98%). 1H NMR 

(400 MHz, CDCl3) δ 6.76 (d, J = 8.9, 2H), 6.58 (d, J = 8.9, 2H), 5.87-5.78 (m, 1H), 5.20 (dt, J = 17.2, 1.4 Hz, 

1H), 5.07 (dt, J = 10.4, 1.4 Hz, 1H), 3.94-3.87 (m, 1H), 3.74 (s, 3H), 1.29 (d, J = 6.6 Hz, 3H). 

 

3.3.2.2 Control experiment 

Toluene (0.25 mL) was added to a mixture of pre-catalyst 9d (9.6 mg, 0.025 mmol, 0.05 eq.) and Me3NO (3.8 

mg, 0.050 mmol, 0.1 eq.) under argon in a Schlenk vessel fitted with a Teflon screw cap. The resulting solution, 

which gradually turned from yellow to dark red, was stirred for 20 minutes at r.t. Compound 26 (0.5 mmol, 1 

eq.) was added, followed by 3 Å M.S. (beads, 400 mg), alcohol (1.5 mmol, 3 eq.) and additional toluene (1.75 

mL). The reaction vessel was sealed and stirred in a pre-heated oil bath at 150 °C for the 24 h. After cooling 

down, the mixture was filtered through celite (rinsing several times with AcOEt), and then the solvent was 

removed at rotavapor. NMR analysis revealed the exclusive presence of unreacted compound 26 in the reaction 

crude. 
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3.3.3 Catalytic Tests – ‘hydrogen-borrowing’ amination of secondary alcohols – General Procedure 

3.3.3.1 General Procedure for the HB amination of alcohols 

Pre-catalyst 9d (9.6 mg, 0.025 mmol, 0.05 eq.) and Me3NO (3.8 mg, 0.050 mmol, 0.1 eq.) were weighted in a 

Schlenk vessel fitted with a Teflon screw cap. The mixture was added dry toluene (0.25 mL) under argon and stirred 

for 20 minutes at r.t. The resulting solution gradually turned from yellow to dark red in this process. The amine 

substrate (0.5 mmol, 1 eq.), 3 Å M.S. (beads, 400 mg), alcohol (2.0 mmol, 4.0 eq.) and additional toluene (1.75 mL) 

were added successively. The reaction vessel was sealed and stirred in a pre-heated oil bath at 150 °C for the 24 h 

or 72 h. After cooling down to r.t., the resulting mixture was filtered through celite (rinsing several times with 

AcOEt), and then the solvent was removed under reduced pressure. The product was purified by flash 

chromatography (eluent: hexane/AcOEt mixtures, with 0.5-1% Et3N additive in some cases) 

 

3.3.3.2 Characterization data of amines products 

The analytical data are in accordance with those reported in literature (see references in each case) 

Amine (name, chemical 

formula) 
Data 

4-N-Octylamino-1-methoxybenzene (P39):[8] 

 

1H NMR (400 MHz, CDCl3): δ6.78 (d, J = 8.9 Hz, 2H), 6.58 (d, J = 8.9 Hz, 

2H), 3.75 (s, 3H), 3.06 (t, J = 7.1 Hz, 2H), 1.62-1.55 (m, 2H), 1.41-1.25 (m, 

10H), 0.88 (t, J = 6.7 Hz, 3H). 

FCC eluent: hexane/AcOEt from 99:1 to 95:5 (+ 0.5% TEA). 

4-Methoxy-N-(1-phenylethyl)aniline (P1):[13]  

 

1H NMR (400 MHz, CDCl3): δ = 7.42–7.34 (m, 4 H), 7.29–7.25 (m, 1 H), 

6.74 (d, J = 8.9 Hz, 2 H), 6.52 (d, J = 8.9 Hz, 2 H), 4.46 (q, J = 6.7 Hz, 1 H), 

3.73 (s, 3 H), 1.54 (d, J = 6.7 Hz, 3 H). 

FCC eluent: hexane/AcOEt 99: 1 
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4-Methoxy-N-(1-(naphthalen-2-yl)ethyl)aniline (P20):[14]  

 

1H NMR (400 MHz, CDCl3): δ = 7.83–7.79 (m, 4 H), 7.52 (dd, J = 8.5, 1.7 

Hz, 1 H), 7.48–7.41 (m, 2 H), 6.68 (d, J = 9.0 Hz, 2 H), 6.55 (d, J = 9.0 Hz, 

2 H), 4.58 (q, J = 6.7 Hz, 1 H), 3.68 (s, 3 H), 1.60 (d, J = 6.7 Hz, 3 H). 

FCC eluent: hexane/AcOEt 95: 1 

4-(Isopropilamino)anisole (P40):[8]  

 

1H NMR (400 MHz, CDCl3): δ 6.78 (d, J = 8.8 Hz, 2H), 6.60 (d, J = 8.8 Hz, 

2H), 3.75 (s, 3H), 3.59-3.50 (m, 1H), 1.19 (d, J = 6.3 Hz, 6H). 

FCC eluent: hexane/AcOEt 95:5. 

4-Methoxy-N-(octan-2-yl)aniline (P25):[15] 

 

1H NMR (400 MHz, CDCl3) δ 6.77 (d, J = 8.9 Hz, 2H), 6.62-6.59 (m, 2H), 

3.75 (s, 3H), 3.36-3.33 (m, 1H), 1.43-1.27 (m, 10H), 1.16 (d, J = 6.3 Hz, 3H), 

0.88 (t, J = 6.9 Hz, 3H). 

FCC eluent: hexane/AcOEt 99: 1 

4-Methoxy-N-(3-pentyl)aniline (P41):[16] 

 

1H NMR (400 MHz, CDCl3): δ 6.77 (d, J = 8.9 Hz, 2H), 6.55 (d, J = 8.9 Hz, 

2H), 3.74 (s, 3H), 3.14 (pent, J = 5.9 Hz, 1H), 1.62-1.42 (m, 4H), 0.93 (t, J = 

7.4 Hz, 6H). 

FCC eluent: hexane/AcOEt 99:1. 

N-Cyclopentyl-4-methoxyaniline (P42):[17] 

 

1H NMR (400 MHz, CDCl3): δ 6.77 (d, J = 8.9 Hz, 2H), 6.58 (d, J = 8.9 Hz, 

2H), 3.74 (s, 3H), 3.73-3.71 (m, 1H), 2.05-1.96 (m, 2H), 1.74-1.69 (m, 2H), 

1.63-1.58 (m, 2H), 1.49-1.41 (m, 2H). 

FCC eluent: hexane/AcOEt 70:30. 

N-Cyclohexyl-4-methoxyaniline (P37):[8]  
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1H NMR (400 MHz, CDCl3) δ 6.76 (d, J = 8.9 Hz, 2H), 6.57 (d, J = 8.9 Hz, 

2H), 3.74 (s, 3H), 3.20-3.12 (m, 1H), 2.06-2.02 (m, 2H), 1.78-1.72 (m, 2H), 

1.67-1.63 (m, 1H), 1.40-1.10 (m, 5H). 

FCC eluent: hexane/AcOEt 99: 1 

N-(sec-Butyl)-4-methoxyaniline (P43)[17] 

 

1H NMR (400 MHz, CDCl3): δ 6.77 (d, J = 8.9 Hz, 2H), 6.55 (d, J = 8.9 Hz, 

2H), 3.74 (s, 3H), 3.33-3.29 (m, 1H), 1.61-1.57 (m, 1H), 1.49-1.38 (m, 1H), 

1.15 (d, J = 6.3 Hz, 3H), 0.94 (t, J = 7.4 Hz, 3H). 

FCC eluent: hexane/AcOEt 95:5. 

4-Methoxy-N-(pentan-2-yl)aniline (P44):[17]  

 

1H NMR (400 MHz, CDCl3): δ 6.77 (d, J = 8.9 Hz, 2H), 6.59 (d, J = 8.9 Hz, 

2H), 3.75 (s, 3H), 3.41-3.34 (m, 1H), 1.60-1.52 (m, 1H), 1.45-1.36 (m, 3H), 

1.15 (d, J = 6.3 Hz, 3H), 0.92 (t, J = 7.1 Hz, 3H). 

FCC eluent: hexane/AcOEt 95:5. 

N-(Cyclohex-2-en-1-yl)-4-methoxyaniline (P45):[18] 

 

1H NMR (400 MHz, CDCl3): δ 6.78 (d, J = 8.9 Hz, 2H), 6.61 (d, J = 8.8 Hz, 

2H), 5.86–5.74 (m, 2 H), 3.91 (br s, 1 H), 3.75 (s, 3 H), 2.06–2.00 (m, 2 H), 

1.94–1.87 (m, 1 H), 1.77–1.55 (m, 3 H). 

FCC eluent: hexane/AcOEt 98:2. 

N-(1,3-Diphenylprop-2-yn-1-yl)-4-methoxyaniline (P46):[19] 

 

1H NMR (400 MHz, CDCl3): δ 7.67-7.65 (m, 2H), 7.43-7.38 (m, 4H), 7.36-

7.27 (m, 4H), 6.82-6.75 (m, 4H), 5.41 (s, 1H), 3.88 (bs, 1H), 3.76 (s, 3H). 

FCC eluent: hexane/AcOEt 98:2. 

4-Methoxy-N-(1-phenylprop-2-yn-1-yl)aniline (P47):[20] 
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1H NMR (400 MHz, CDCl3): δ 12.19 (d, J = 12.4 Hz, 1 H), 7.93 (d, J = 6.5 

Hz, 2 H), 7.51–7.42 (m, 4 H), 6.06 (d, J = 8.9 Hz, 2 H), 6.90 (d, J = 8.9 Hz, 

2 H), 5.98 (d, J = 7.7 Hz, 1 H), 3.81 (s, 3 H). 

FCC eluent: hexane/AcOEt 98:2. 

N-Benzhydryl-4-methoxyaniline (P21):[21] 

 

1H NMR (400 MHz, CD2Cl2) δ 7.39–7.30 (m, 8 H), 7.27–7.22 (m, 2 H), 6.68 

(d, J = 8.9 Hz, 2 H), 6.50 (d, J = 8.9 Hz, 2 H), 5.44 (s, 1 H), 4.12 (br s, 1 H), 

3.67 (s, 3 H). 

FCC eluent: hexane/AcOEt 98:2. 

N-(4-Methoxyphenyl)-1-methylpiperidin-4-amine (P48)[22] 

 

1H NMR (400 MHz, CDCl3): δ = 6.77 (d, J = 8.9 Hz, 2H), 6.58 (d, J = 8.9 

Hz, 2H), 3.74 (s, 3H), 3.24-3.17 (m, 1H), 2.85-2.82 (m, 2H),2.31 (s, 3H), 

2.17-2.03 (m, 4H), 1.53-1.44 (m, 2H). 

FCC eluent: DCM/MeOH 9:1 + 0.5% Et3N 

2,4-Dimethoxy-N-(1-phenylethyl)aniline (P49):[23] 

 

1H NMR (400 MHz, CDCl3): δ 7.37-7.29 (m, 4H), 7.23-7.19 (m, 1H), 6.44 

(t, J = 1.4 Hz, 1H), 6.24-6.23 (m, 2H), 4.40 (q, J = 6.7 Hz, 1H), 4.29 (bs, 

1H), 3.86 (s, 3H), 3.69 (s, 3H), 1.53 (d, J = 6.7 Hz, 3H). 

FCC eluent: hexane/AcOEt from 99:1 to 90:10. 

1-(1-Phenylethyl)pyrrolidine (P50):[24] 

 

1H NMR (400 MHz, CDCl3): δ 7.37-7.23 (m, 5H), 3.21 (q, J = 6.6 Hz, 1H), 

2.61-2.55 (m, 2H), 2.43-2.35 (m, 2H), 1.82-1.75 (m, 4H), 1.43 (d, J = 6.6 Hz, 

3H). 

FCC eluent: hexane/AcOEt from 95:5 to 70:30. 

4-(1-Phenylethyl)morpholine (P51):[25] 
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1H NMR (400 MHz, CDCl3) δ 7.34-7.33 (m, 4 H), 7.29–7.23 (m, 1 H), 3.71 

(t, J = 4.7 Hz, 4 H), 3.32 (q, J = 6.7 Hz, 1 H), 2.56–2.47 (m, 2 H), 2.42–2.32 

(m, 2 H), 1.38 (d, J = 6.7 Hz, 3 H). 

FCC eluent: hexane/AcOEt 80:20 (+ 0.5% TEA). 

N-Benzyl-1-phenylethylamine (P15):[26] 

 

1H NMR (400 MHz, CDCl3): δ 7.36–7.24 (m, 10 H), 3.82 (q, J = 6.8 Hz, 1 

H), 3.67 (d, J = 13.1 Hz, 1 H), 3.60 (d, J = 13.1 Hz, 1 H), 1.37 (d, J = 6.6 Hz, 

3 H) 

FCC eluent: hexane/AcOEt 95:5. 

N-Benzyl-N-methyl-1-phenylethylamine (P52):[27] 

 

1H NMR (400 MHz, CDCl3): δ 7.42-7.23 (m, 10H), 3.64 (q, J = 6.8 Hz, 1H), 

3.58 (d, J = 13.3 Hz, 1H), 3.31 (d, J = 13.3 Hz, 1H), 2.14 (s, 3H), 1.43 (d, J 

= 6.7 Hz, 3H). 

FCC eluent: hexane/AcOEt 95: 5. 

1-(4-Methoxyphenyl)pyrrolidine (P53):[28] 

 

1H NMR (400 MHz, CDCl3): δ 6.87 (d, J = 9.0 Hz, 2H) , 6.56 (d, J = 9.0 Hz, 

2H), 3.78 (s, 3H), 3.27-3.24 (m, 4H), 2.03-1.99 (m, 4H). 

FCC eluent: hexane/AcOEt from 98: 2 to 95: 5. 

1-(4-Methoxyphenyl)piperidine (P54):[28]  

 

1H NMR (400 MHz, CDCl3): δ 6.92 (d, J = 9.1 Hz, 2H), 6.83 (d, J = 9.1 Hz, 

2H), 3.77 (s, 3HJ), 3.04-3.01 (m, 4H), 1.75-1.69 (m, 4H), 1.57-1.51 (m, 2H). 

FCC eluent: hexane/AcOEt from 97: 3 to 97: 3. 

1-(4-Methoxyphenyl)azepane (P55):[28]  

 

1H NMR (400 MHz, CDCl3): δ 6.82 (d, J = 9.1 Hz, 2H), 6.63 (d, J = 9.1 Hz, 

2H), 3.75 (s, 3H), 3.42-3.39 (m, 4H), 1.80-1.74 (m, 4H), 1.55-1.52 (m, 4H). 

FCC eluent: hexane/AcOEt from 98:2 to 92:8. 
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1-(4-Methoxyphenyl)-2,5-dimethylpyrrolidine (P56) (mixture of diastereomers):[10]  

 

1H NMR (400 MHz, CDCl3): δ 6.85-6.82 (m, 2 H), 6.62 (d, J = 9.0 Hz, 2 H, 

cis-isomer), 6.55 (d, J = 9.0 Hz, 2 H, trans-isomer), 3.96-3.93 (m, 2 H, trans-

isomer), 3.76 (s, 3 H), 3.66-3.62 (m, 2 H, cis-isomer), 2.24-2.20 (m, 2 H, 

trans-isomer), 2.07-1.99 (m, 2 H, cis-isomer), 1.71-1.69 (m, 2 H, cis-isomer), 

1.63-1.60 (m, 2 H, trans-isomer), 1.25 (d, J = 6.1 Hz, 6 H, cis-isomer) 1.07 

(d, J = 6.1 Hz, 6 H, trans isomer). 

FCC eluent: hexane/AcOEt from 99:1 to 90:10. 

N-Benzylpyrrolidine (P57):[4p] 

 

1H NMR (400 MHz, CDCl3): δ 7.39-7.26 (m, 5H), 3.70 (s, 2H), 2.63-2.60 

(m, 4H), 1.85-1.82 (s, 4H). 

FCC eluent: hexane/AcOEt from 75:25 (+ 0.1% TEA). 

N-Benzylpiperidine (P58):[4p]  

 

1H NMR (400 MHz, CDCl3): δ 7.36-7.25 (m, 5H), 3.52 (d, J = 1.8 Hz, 2H), 

2.44-2.40 (m, 4H), 1.64-1.58 (m, 4H), 1.47-1.41 (m, 2H). 

FCC eluent: hexane/AcOEt from 75:25 (+ 0.1% TEA). 

N-Benzylazepane (P59):[4p]  

 

1H NMR (400 MHz, CDCl3): δ 7.36-7.23 (m, 5H), 3.64 (s, 2H), 2.62 (t, J = 

5.0 Hz, 4H), 1.66-1.60 (m, 8H). 

FCC eluent: hexane/AcOEt from 75:25 (+ 0.1% TEA). 
 

1-Benzyl-2,5-dimethylpyrrolidine (P60, mixture of diastereomers):[10]  

 

1H NMR (400 MHz, CDCl3): δ 7.38-7.25 (m, 4 H), 7.24-7.20 (m, 1 H), 3.83 

(d, J = 13.8 Hz, 1 H, trans-isomer), 3.74 (s, 2 H, cis-isomer), 3.52 (d, J = 

13.8 Hz, 1 H, trans-isomer), 3.04-3.00 (m, 2 H, trans-isomer), 2.61-2.53 (m, 

2 H, cis-isomer), 2.05-1.97 (m, 2 H, trans-isomer), 1.81-1.74 (m, 2 H, cis-

isomer), 1.40-1.34 (m, 2 H, cis- and trans-isomer), 1.05 (d, J = 6.0 Hz, 6 H, 
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cis-isomer), 0.97 (d, J = 6.0 Hz, 6 H, trans-isomer). 

FCC eluent: DCM/MeOH from 98: 2 to 92: 8. 

1-(3-Fluorobenzyl)pyrrolidine (P61):[8]  

 

1H NMR (400 MHz, CD2Cl2): δ 7.27 (td, J = 7.9, 6.0 Hz, 1H), 7.12-7.06 (m, 

2H), 6.96-6.91 (m, 1H), 3.60 (s, 2H), 2.50-2.47 (m, 4H), 1.78-1.75 (m, 4H). 

FCC eluent: DCM/MeOH from 99: 1 to 98: 2(+ 0.5% TEA). 

1-(3-Fluorobenzyl)piperidine (P62):[8]  

 

1H NMR (400 MHz, CD2Cl2): δ 7.26 (td, J = 8.0, 6.1 Hz, 1H), 7.10-7.05 (m, 

2H), 6.95-6.90 (m, 1H), 3.43 (s, 2H), 2.37-2.32 (m, 4H), 1.58-1.53 (m, 4H), 

1.46-1.41 (m,2H). 

FCC eluent: DCM/MeOH from 98: 2 to 97: 3 (+ 0.1% TEA). 

1-(3-Fluorobenzyl)azepane (P63):[8]  

 

1H NMR (400 MHz, CDCl3): δ 7.25 (dt, J = 7.7, 6.1 Hz, 1H), 7.12-7.09 (m, 

2H), 6.95-6.89 (m, 1H), 3.64 (s, 2H), 2.62 (t, J = 5.0 Hz, 4H), 1.66-1.63 (m, 

8H). 

FCC eluent: hexane/AcOEt from 90:10 (+ 0.1% TEA). 

1-(3-Fluorobenzyl)-2,5-dimethylpyrrolidine (P64, mixture of diastereomers)  

 

1H NMR (400 MHz, CD2Cl2): 7.27-7.23 (m, 1 H), 7.15-7.10 (m, 2 H), 6.94-

6.88 (m, 1 H), 3.82 (d, J = 14.4 Hz, 1 H, trans-isomer), 3.69 (s, 2 H, cis-

isomer), 3.58 (d, J = 14.4 Hz, 1 H, trans-isomer), 3.08-3.02 (m, 2 H, trans-

isomer), 2.65-2.58 (m, 2 H, cis-isomer), 2.06-1.98 (m, 2 H, trans-isomer), 

1.87-1.76 (m, 2 H, cis-isomer), 1.46-1.32 (m, 2 H), 1.00 (d, J = 6.1 Hz, 6 H, 

cis-isomer), 0.97 (d, J = 6.3 Hz, 6 H, trans-isomer); 13C NMR (100MHz, 

CD2Cl2): δ163.6 (d, JC,F = 242.4 Hz, trans isomer), 163.4 (d, JC,F = 242.5 Hz, 

cis isomer), 144.8 (d, JC,F = 9.2 Hz), 130.0 (d, JC,F = 9 Hz, trans isomer), 

129.8 (d, JC,F = 8.3 Hz, cis isomer), 124.8 (d, JC,F = 2.6 Hz, cis isomer), 124.5 

(d, JC,F = 2.6 Hz, trans isomer), 116.0 (d, J = 21.1 Hz, cis isomer), 115.6 (d, 
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J = 21.2 Hz, trans isomer), 113.7 (d, JC,F = 21.1 Hz, trans isomer), 113.7 (d, 

J = 21.1 Hz, cis isomer), 61.6 (cis isomer), 56.4 (cis isomer), 55.6 (trans 

isomer), 51.6 (trans isomer), 32.1 (cis isomer), 31.6 (trans-isomer), 21.4 (cis 

isomer), 17.5 (trans isomer); 19F NMR (282 MHz, CD2Cl2): δ = -115.15; IR 

(neat) 2962.13, 2927.41, 2870.52, 2802.06, 1616.06, 1590.99, 1485.88, 

1450.21,1373.07, 1350.89, 1328.71, 1254.47, 1203.36, 1130.08, 1073.19, 

992.20, 944.95, 926.63, 871.67, 783.92, 745.35, 686.53 cm−1 

HRMS (ESI+): m/z 208.1501 [M+H]+ (calcd. for C13H19FN: 208.1502). 

FCC eluent: DCM/MeOH 97: 3. 

1-(3-(Trifluoromethyl)benzyl)pyrrolidine (P65):[29] 

 

1H NMR (400 MHz, CDCl3): δ 7.60-7.59 (m, 1H), 7.54-7.49 (m, 2H), 7.42 

(t, J = 7.7 Hz, 1H ), 3.67 (s, 2H), 2.54-2.51 (m, 4H), 1.82-1.79 (m, 4H). 

FCC eluent: hexane/AcOEt from 7:3 to 3: 2 (+ 0.1% TEA). 

1-(3-(Trifluoromethyl)benzyl)piperidine (P66):[29]  

 

1H NMR (400 MHz, CDCl3): δ 7.58 (s, 1H), 7.50 (t, J = 8.3 Hz, 2H), 7.41 (t, 

J = 7.7 Hz, 1H), 3.51 (s, 2H), 2.37 (t, J = 5.2 Hz, 4H), 1.61-1.55 (m, 4H), 

1.47-1.42 (m, 2H). 

FCC eluent: hexane/AcOEt from 7: 3. 

1-(3-(Trifluoromethyl)benzyl)azepane (P67):[8]  

 

1H NMR (400 MHz, CDCl3): δ 7.63 (s, 1H), 7.55 (d, J = 7.6 Hz, 1H), 7.50-

7.48 (m, 1H), 7.41 (t, J = 7.7 Hz, 1H), 3.69 (s, 2H), 2.63 (t, J = 4.8 Hz, 4H), 

1.66-1.63 (m, 8H). 

FCC eluent: hexane/AcOEt from 90:10 (+ 0.1% TEA). 

2,5-Dimethyl-1-(3-(trifluoromethyl)benzyl)pyrrolidine (P68, mixture of diastereomers)  

 

1H NMR (400 MHz, CDCl3): δ 7.64 (s, 1H, trans-isomer), 7.59 (s, 1 H, cis-

isomer), 7.56 (d, J = 7.6 Hz, 1 H, trans-isomer), 7.52 (d, J = 7.8 Hz, 1 H, cis-

isomer), 7.47 (d, J = 8.0 Hz, 1 H), 7.39 (t, J = 7.6 Hz, 1 H), 3.85 (d, J = 14.4 



Applications of a highly active CIC to alcohol amination reactions 

109 

 

Hz, 1 H, trans-isomer), 3.75 (s, 2 H, cis-isomer), 3.60 (d, J = 14.4 Hz, 1 H, 

trans-isomer), 3.04–3.00 (m, 2 H, trans-isomer), 2.61–2.56 (m, 2 H, cis-

isomer), 2.04–1.98 (m, 2 H, trans-isomer), 1.85–1.79 (m, 2 H, cis-isomer), 

1.43–1.35 (m, 2 H), 1.00 (d, J = 6.0 Hz, 6 H, cis-isomer), 0.96 (d, J = 6.4 Hz, 

6 H, trans-isomer). 13C NMR (100MHz, CDCl3): δ 142.2 (trans isomer), 

141.9 (cis isomer), 132.2 (q, JC,F = 2.6 Hz, cis isomer), 131.8 (q, JC,F = 2.5 

Hz, trans isomer), 130.5 (q, JC,F = 31.7 Hz, trans isomer), 130.4 (q, JC,F = 

31.7 Hz, cis isomer), 128.5 (trans isomer), 128.4 (cis isomer), 125.5 (q, JC,F 

= 7.6 Hz, cis isomer), 125.1 (q, JC,F = 7.5 Hz, trans isomer), 124.5 (d, JC,F = 

270.5 Hz, trans isomer), 124.5 (d, JC,F = 270.4 Hz, cis isomer), 123.5 (q, JC,F 

= 7.7 Hz), 60.9 (cis isomer), 55.9 (cis isomer), 55.1 (trans isomer), 51.4 

(trans isomer), 31.5 (cis isomer), 31.1 (trans isomer), 21.0 (cis isomer), 17.3 

(trans isomer); 19F NMR (282 MHz, CDCl3): δ = -62.46; IR (neat) 2964.05, 

2928.38, 2871.49, 2803.03, 2611.14, 1676.80, 1615.09, 1597.73, 1491.67, 

1451.17, 1374.03, 1329.68, 1256.40, 1199.51, 1163.83, 1126.22, 1091.51, 

1073.19, 948.81, 920.84, 889.99, 799.35, 750.17, 702.93, 660.50 cm−1; 

HRMS (ESI+): m/z 258.1472 [M+H]+ (calcd. for C14H19F3N: 258.1470). 

FCC eluent: hexane/AcOEt from 85: 15 to 4: 1 (+0.1% TEA). 
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Chapter 4 - Chiral complexes for enantioselective applications 

As discussed in Chapter 1, CICs have recently become the object of a blossoming interest among researchers 

active in the field of hydrogen transfer reactions. Nevertheless, applications of these complexes in 

enantioselective catalysis are still very limited, with the exception of the dual catalysis approach reported by 

Beller et al. in 2011, in which a chiral Brønsted acid co-catalyst was combined with an achiral HCIC 10aa.[1] 

In order to expand the catalytic application of CICs to enantioselective catalysis, the development of chiral 

complexes is an ineludible challenge, which has been tackled – so far with limited success – following two 

alternative strategies (see Section 1.6.1): 1) replacing one of the CO groups with a chiral ligand (Figure 4.1 

A);[2] 2) using a chiral cyclopentadienone ligand (Figure 4.1 B).[3] Although several chiral CICs have been 

developed, only poor to moderate enantioselectivity was obtained in the reduction of ketones and ketimines 

(Figure 4.1 A and B). A possible explanation of these modest results is that, in these chiral complexes, the 

stereogenic group(s) sit far away from the substrate in the pericyclic reduction TS (see Figure 4.2). 

 

Figure. 4.1. Main strategies for synthesis of chiral CICs. AH = asymmetric hydrogenation; ATH = asymmetric transfer 

hydrogenation. 

A third possible strategy is the synthesis of chiral iron complexes possessing a stereogenic plane by employing 

achiral cyclopentadienones bearing different substituents on the two sides of the C=O group. This strategy has 

been already applied by Hayashi and co-workers to the synthesis of chiral Shvo-type ruthenium complexes in 
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2016 (Figure 4.1 C).[4] We envisaged that chiral complexes featuring substituents of different sizes at the 2,5-

positions of the cyclopentadienone ring could ensure a more efficient transfer of the stereochemical 

information. Moreover, during my PhD work I also contributed to the development of a new class of chiral 

CICs, in which the Fe-complex is incorporated into a macrocycle. 

 

Figure. 4.2. TS of the reactions involving transfer of hydrogen promoted by CICs. 

 

4.1 Chiral CICs featuring a stereogenic plane 

As a starting point, the preparation of a small library of racemic complexes and the evaluation of their catalytic 

activity in ketone and imine hydrogenation was performed. This initial screening aimed at selecting one or two 

complexes to be subjected to enantiomer separation by semipreparative chiral HPLC (in collaboration with the 

group of Prof. Pierini and Prof. Gasparrini at the Sapienza University of Rome) and then tested in asymmetric 

hydrogenation. 

 

4.1.1 Synthesis of chiral CICs with stereogenic plane in racemic form and test of their catalytic activity 

Considering the pericyclic Transition State (TS) typical of the reductions promoted by CICs, we expected that 

best enantioselectivity should be displayed by those chiral complexes whose substituents at C2 and C5 (see 

Figure 4.2) are largely different in terms of steric and/or stereoelectronic properties. Indeed, comparing with 

3,4 position, the substituents at 2,5 position are relatively close to the approaching substrate. 

Starting from the new chiral CIC (±)-9cc, bearing the same cyclopentadienone ligand as one of the Ru-

complexes reported by Hayashi,[4] we prepared a series of chiral iron complexes in racemic form. The 

commercially available benzil reacted with 1-phenyl-2-butanone (31) through condensation followed by 

dehydration to afford cyclopentadienone 32 with good yield as described in the literature.[4,5] Then, CIC (±)-

9cc was synthesized by complexation of 32 with Fe2(CO)9,[4] as shown in Scheme 4.1. 
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Scheme 4.1. Synthesis of the racemic CIC (±)-9cc. 

 

Scheme 4.2. A: Synthesis of the unsymmetricac diynes 33-39. B: Synthesis of the racemic CICs (±)-9ak-9ao 

Subsequently, the commercially available 1,7-octadiyne was employed as a common precursor to synthesize 

five racemic CICs bearing different substituents at 2,5 positions (Scheme 4.2). The mono-TMS-functionalized 

diyne 33 was easily synthesized from 1,7-octadiyne upon deprotonation with LiHMDS followed by reaction 

with trimethylsilyl chloride (TMSCl).[6] The other C-terminus of compound 33 was functionalized in two 
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different ways: i) with a methyl group, forming the unsymmetrical diyne 35 by nucleophilic reaction; ii) with 

a phenyl group, synthesizing the unsymmetrical diyne 34[7] through Sonogashira coupling reaction. The former 

was either de-silylated with K2CO3 to provide diyne 36[8] or used directly for the synthesis of CIC 9al. The 

terminal alkyne group of diyne 36 was either functionalized with a triethylsilyl (TES) or a triisopropylsilyl 

(TIPS), synthesizing diynes 37, 38 respectively.[6] Additionally, the unsymmetrical diyne 39 was prepared by 

functionalizing diyne 36 in the presence of a Grignard regent (EtMgCl).[9] After finishing the synthesis of 

diynes 34-35 and 37-39, all compounds were treated with Fe2(CO)9 in toluene at 110 °C, and the racemic CICs 

(±)-9ak-9ao were obtained with yields in the 13-60% range.[10] 

Table 4.1. Test of the activity of the racemic complexes (±)-9cc and (±)-9ak-9ao in C=O and C=N hydrogenation.[a] 

 

# Pre-cat. Loading (mol%) Conv. S69 [%][b] Conv. S1 [%][b] 

1 (±)-9cc 2 > 99 > 99 

2 (±)-9ak 2 > 99 89 

3 (±)-9al 2 > 99 69 

4 (±)-9am 2 > 99 4 

5 (±)-9an 2 73 8 

6 (±)-9ao 2 0 12 

7 (±)-9cc 5 > 99 > 99 

8 (±)-9ak 5 > 99 > 99 

9 (±)-9al 5 > 99 82 

10 (±)-9am 5 > 99 92 

11 (±)-9an 5 76 62 

12 (±)-9ao 5 35 18 

[a] Reaction conditions: Pre-cat./Me3NO = 1:2, T = 80 °C, PH2 = 50 bar, 22 h. C0,sub. = 0.5 M. 

[b] Determined by 1H NMR. 

The activity of complexes (±)-9ak-9ao and (±)-9cc, activated in situ with Me3NO, was tested in the 

hydrogenation of acetophenone (S69) and (E)-N-(4-methoxyphenyl)-1-phenylethan-1-imine (S1) (Table 4.1). 
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Excellent conversions of S69 and S1 at both 5 mol% and 2 mol% catalyst loading were obtained with pre-

catalysts (±)-9cc and (±)-9ak (Table 4.1, entries 1-2 and 7-8). A general trend – conversions roughly decrease 

with the increasing size of the “large” substituent RL (Table 4.1, entries 3-6 and 9-12) – was clearly found: pre-

catalysts (±)-9al (RL = TMS) and (±)-9am (RL = TES) gave full conversion of S69 and acceptable conversions 

of S1 (entries 9-10), whereas the activity of (±)-9an (RL = TIPS) and (±)-9ao (RL = CPh3), possessing bulkier 

“large” groups, decreased dramatically (Table 4.1entries 5-6 and 11-12). 

Finally, complex (±)-9am was selected for the enentioselectivity screening, due to its optimal equilibrium 

between the large size of the RL substituent and the catalytic activity, and the (±)-9am racemate was submitted 

for enantiomer separation. Moreover, the two enantiomers of complex (±)-9cc were also separated, not only 

due its superior activity within the catalyst series, but also to establish a comparison with the corresponding 

ruthenium complex developed by Hayashi and co-workers.[4]  

 

4.1.2 Resolution of complexes (±)-9cc and (±)-9am by semipreparative enantioselective HPLC and 

determination of the absolute configuration of the enantiomerically pure complexes 

The enantiomer separation of complexes (±)-9cc and (±)-9am was performed by enantioselective HPLC in the 

group of Prof. Pierini and Prof. Gasparrini at Sapienza University of Rome. In the former case, the enantiomers 

were resolved on the (R,R)-DACH-DNB chiral stationary phase (CSP) under normal phase conditions (mobile 

phase: n-hexane/DCM 80:20 + 2% MeOH v/v), using both UV and ECD detection (k’1 = 2.36; α = 1.27; T = 

25 °C, see Figure 4.3 A).  

 

Figure. 4.3. Analytical separation of racemic mixtures (±)-9cc (A) and (±)-9am (B) by enantioselective HPLC. A) column: 

(R,R)-DACH-DNB 5 µm (250 mm × 4.6 mm L. × I.D.); eluent: n-hexane/DCM 80:20 + 2% MeOH v/v; flow rate 1.0 

(S)-9cc (R)-9cc (S)-9am (R)-9am 
 

A B 
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mL/min at 25 °C. B) column: Chiralpak IC 5 µm (250 mm × 4.6 mm L.× I.D.); eluent: n-hexane/IPA 95:5 v/v; flow rate 

1.0 mL/min at 25 °C. 

Once the optimal settings for purification were identified, the separation was scaled-up to semipreparative 

conditions. The replicate separations (2 mg of sample injected in each run) were carried out on a 1.0 cm internal 

diameter (R,R)-DACH-DNB column. The two enantiomers were obtained in an overall recovery of 80%. The 

e.e. values of the first and second eluted enantiomer were determined by analytical HPLC with UV and ECD 

detection at 300 nm, which were 99% and 98%, respectively. 

The enantiomer separation of racemic complexes (±)-9am was carried out on a different Chiralpak IC CSP 

column (mobile phase: n-hexane/IPA 95:5 v/v), and an α value of 1.37 was achieved (k’1 = 2.84, Figure 4.3 B). 

Each enantiomer (70 mg, process yield = 79%) obtained in the semipreparative scale-up stage has a high 

enantiomeric excess value (up to 99%), as measured by analytical HPLC with UV and CD detection at 270 

nm. 

With the enantiopure 9cc and 9am complexes in hands, the assignment of the absolute configuration (AC) of 

the separated enantiomers was carried out.[11] The X-ray diffraction (XRD) analysis may be considered as the 

first-choice method for AC assignment if configurationally known reference compounds which can be 

correlated to the chiral analyte is scarce or absent.[12] Suitable crystals of the first-eluted enantiomer of complex 

9cc for XRD were obtained by vapor diffusion of pentane into a DCM solution of the complex, followed by 

cooling (-18 °C). Diffractometric analysis of a single crystal – performed by Dr. Valentina Colombo, Università 

degli Studi di Milano – showed that the absolute configuration of this enantiomer is S (Figure 4.4), which was 

assigned according to the extended CIP rules.[13]  

 

Figure 4.4. X-Ray crystal structure of the first-eluted enantiomer (S) of complex 9cc. Color codes: Fe, orange; O, red; C, 

gray; H, white. Selected bond distances: Fe-C1B, 1.802(2); Fe-C1A, 1.804(2); Fe-C1C, 1.804(2); Fe-C4, 2.0721(16); Fe-

C3, 2.0830(16); Fe-C5, 2.1222(18); Fe-C2, 2.1389(17). 

As any attempts to obtain suitable crystals of complex 9am failed, the AC of the enantiomerically pure 9am 
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were assigned by a spectroscopic/computational procedure.[ 14 ] For each enantiomer, electronic circular 

dichroism (ECD) and optical rotation dispersion (ORD) spectra were registered, and the R enantiomer was 

assigned by similarity with simulated spectra, obtained by DFT calculations. The superimposed spectra are 

shown in Figure 4.5.  

Comparing the ECD and ORD spectra of the first-eluted enantiomer with the calculated, R absolute 

configuration was assigned to the first-eluted enantiomer of 9am, and S configuration to the second eluted. 

 

Figure 4.5. ECD and ORD experimental spectra of the resolved enantiomers of 9am superimposed to the eq.alent ones 

simulated through DFT calculations for the R enantiomer. 

 

4.1.3 Asymmetric hydrogenation of C=O and C=N polar bonds with chiral iron complexes 

Both enantiomerically pure complexes (S)-9cc and (R)-9am were tested in the AH of ketones. Several ketones 

were reduced to the corresponding alcohols with excellent yields in the presence of pre-catalyst (R)-9am (Table 

4.2). The complex (S)-9cc showed lower activity than (R)-9am, affording excellent yields in only three cases 

(Table 4.2, entries 1-2 and 5). Unfortunately, both pre-catalysts gave low enantioselectivity with substrates 

S69, S71-73 (Table 4.2, entries 1, 3-5), and only moderate e.e. values were obtained with 2,2,2-trifluoro-1-

phenylethan-1-one S70 (Table 4.2, entries 2). Notably, in most cases (S)-9cc and (R)-9am showed opposite 

stereochemical preference, in line with their opposite configurations. 

 

Table 4.2. AH of ketones promoted by the chiral pre-catalysts (S)-9cc and (R)-9am.[a] 
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# Substrate 
Pre-catalyst (S)-9cc Pre-catalyst (R)-9am 

Conv. (%)[b] e.e. (%)[b] Conv. (%)[b] e.e. (%)[b] 

1[c] 

 

> 99 (99) 3, R > 99 (99) 9, R 

2[c] 

 

> 99 (98) 45, R > 99 (98) 41, S 

3[c] 

 

36 (33) 9, S > 99 (99) 9,  R 

4[c] 

 

73 (72) 13, S > 99 (99) 18, R 

5[d] 

 

> 99 (85) 14, S > 99 (99) 18, S 

[a] Reaction conditions: Substrate/Me3NO/Pre-cat. = 100:10:5, T = 80 °C, PH2 = 50 bar, 22 h. C0,sub. = 0.5 M. 

[b] Determined by GC analysis with a chiral capillary column; isolated yield shown in parenthesis. 

[c] Absolute configuration of the product assigned by comparing the order of elution with literature data (see 

the experimental section). 

[d] Absolute configuration of the product assigned by comparing the sign of optical rotation with literature 

data (see the experimental section). 

Table 4.3. AH of ketimines promoted by the chiral pre-catalysts (S)-9cc and (R)-9am.[a] 

 

# Substrate 

Pre-catalyst (S)-9cc Pre-catalyst (R)-9am 

Conv. (%)[b] e.e. (%)[c] Conv. (%)[b] e.e. (%)[c] 

1[d] 

 

> 99 (98) 40, R 96 (96) 39, S 
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2[e] 

 

97 (91) 29, R 91 (78) 6, S 

3[e] 

 

> 99 (76) 54, R 65 (41) 40, S 

4[e] 

 

76 (57) 18, S 73 (48) 6, R 

[a] Reaction conditions: Substrate/Me3NO/Pre-cat. = 100:10:5, T = 80 °C, PH2 = 50 bar, 22 h. C0,sub. = 0.5 M. 

[b] Determined by 1H NMR; isolated yield shown in parenthesis. 

[c] Determined by enantioselective HPLC. 

[d] Absolute configuration of the product assigned by comparing the sign of optical rotation with literature data 

(see the experimental section). 

[e] Absolute configuration assigned by comparing the order of elution with literature data (see the experimental 

section). 

The chiral iron complexes (S)-9cc and (R)-9am were also tested in the AH of several N-PMP ketimines 

prepared in Chapter 2. As shown in Table 4.3, with the exception of few moderate yields (entry 3 with (R)-

9am and entry 4), high conversions were obtained in all cases (>90%).  

As for the enantioselectivity, moderate e.e. values were achieved with the acetophenone- and the 

propiophenone-derived imines S1 and S22 (Table 3, entries 1 and 3), (S)-9cc being slightly more 

enantioselective than (R)-9am. Imines S20 and S25 were hydrogenated with a low level of stereoselectivity, 

slightly higher with (S)-9cc than with (R)-9am (Table 3, entries 2 and 4). With all ketimines, the two pre-

catalysts showed opposite stereochemical preferences. 

 

4.2 Chiral macrocyclic CICs 

New strategy for the synthesis of chiral CICs was designed to obtain effective chiral CICs for enantioselective 

catalysis, consisting in the incorporation of the (cyclopentadienone)iron tricarbonyl group into a chiral cavity, 

as shown in Figure 4.6.  

Two main advantages were expected from this approach: i) the stability of CICs would be enhanced by 

incorporation into a macrocycle; ii) the enantioselectivity should be granted by chiral residue(s), such as 

aminoacid or chiral diamines, which would be close to the substrate in the pericyclic TS of reductions (Figure 
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4.2). 

 

Figure 4.6. Chiral macrocyclic complexes incorporating the (cyclopentadienone)iron group into a chiral cavity. 

 

Scheme 4.3. Synthetic plan of chiral macrocyclic complexes. 

Thus, we elaborated the synthetic plan shown in Scheme 4.3. The activated ester containing the framework of 

CICs or the easily synthesized CICs with two carboxyl groups could react with chiral diamines containing 

aminoacid or chiral diamine residues connacted by phenylenediamine or phthalate residue.  

 

4.2.1 Synthesis of chiral macrocyclic iron complexes 

4.2.1.1 Synthesis of CICs featuring two carboxyl groups or ester groups 

Starting from commercially available 4-iodobenzoic acid, the ester 40 was formed in high yield (94%) by 

esterification of 4-iodobenzoyl chloride, formed by chlorination in the presence of thionyl chloride following 

a known literature procedure (Scheme 4.4).[7] Compound 40 was then reacted with 1,7-octadiyne under 

Sonogashira coupling conditions (CuI and Pd(PPh3)2Cl2 as catalyst),[15] to form diyne 41 in good yield (75%). 

Complex 9ap was then obtained in good yields by carbonylative cyclization of diyne 41 in the presence of 

Fe2(CO)9 in good yield (Scheme 4.4).[10] The CIC featuring two free carboxy groups was obtained upon 
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deprotection of both t-butyl groups with TFA. The activated ester 9ar was finally obtained in excellent yields 

(98%) by esterification of 9aq with pentafluorophenol.[16] 

 

Scheme 4.4. Synthesis of CICs featuring two carboxyl groups or ester groups. 

 

4.2.1.2 Synthesis of chiral diamines 

N-Boc-L-phenylalanine was reacted, respectively, with o-phenylenediamine or m-phenylenediamine in the 

presence of EDC and DMAP, giving the corresponding Boc-protected diamines 42a and 42b, respectively 

(Scheme 4.5). Diamines 43a and 43b were then obtained by deprotection with trifluoroacetic acid (TFA). 

 

Scheme 4.5. Synthesis of the chiral diamines 43a and 43b. 

Meanwhile, the preparation of chiral diamines 43c and 43d from (1S,2S)-(+)-1,2-diaminocyclohexane was 

carried out. The monoprotected diamine 44 was obtained in good yields (73%) by reacting (1S,2S)-(+)-1,2-

diaminocyclohexane with Boc anhydride, following a known procedure.[17] As for the synthesis of the Boc-

protected diamine 42c, being aware that the coupling of the amine 44 with phthalic acid would have favored 
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the formation of an undesired imide by intramolecular amidation, we prepared diamine 43c by reacting 44 with 

phthalic anhydride, followed by coupling of the resulting phthalic acid monoamide with another equivalent of 

44 in the presence of EDC and DMAP (Scheme 4.6).[17,18] Terephthalic acid was directly employed for the 

synthesis of the Boc-protected diamine 42d, as no intramolecular amidation of the mono-amide intermediate 

can occur in this case. With this procedure, compound 42d was obtained in good yield (82%). Upon Boc 

deprotection with a known procedure, diamine 43c was easily obtained in excellent yield. However, due to its 

poor solubility in conventional extraction solvents such as DCM and AcOEt, diamine 43d proved difficult to 

be extracted and could only be obtained as TFA salt in quantitative yield. 

 

Scheme 4.6. Synthesis of chiral diamines 43c and 43d. 

 

4.2.1.3 Synthesis of chiral macrocyclic iron complexes 

We planned the synthesis of chiral macrocyclic iron complexes by double-coupling of a diamine with a diacid 

through formation of two amide bonds. The latter type of reaction has been widely investigated and 

successfully achieved, especially for the preparation of peptide and peptidomimetic compounds of 

biochemical/pharmaceutical interest.[19] As a first option, we chose to react the activated ester 9ar with diamine 

43a in the presence of N,N-diisopropylethylamine (DIPEA), as shown in Scheme 4.7. Unfortunately, even 

extending the reaction time and varying the temperature, the synthesis of complex 9ga always proved 
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unsuccessful. For this reason, we swithched to a one-pot method in which the dicarboxylic acid component is 

activated in situ as acyl ester by using HATU and HOAt, and then reacted with the selected diamine.[20]  

  

Scheme 4.7. Synthesis of chiral macrocyclic iron complexes 9ga with activated ester 9ar. 

Starting from the diamine 43a and the diacid 9aq, we prepared the chiral macrocyclic complex 9ga using 

HATU and HOAt as coupling reagents, obtaining the product in 51% yield (Scheme 4.8 A). The reaction was 

performed under high dilution conditions (C0,sub. = 5 mM), to prevent the possible formation of oligomers. 

However, when the diamine 43b was reacted with iron complex 9aq under the same conditions we could not 

obtain the desired product 9gb (Scheme 4.8 B), and we addressed this outcome to the poor solubility of diamine 

43b.  

 

Scheme 4.8. Synthesis of chiral macrocyclic iron complexes 9ga. 

Next, we used the same high dilution conditions to synthesize chiral complexes 9gc and 9gd, which were 

uneventfully obtained, although in lower yields compared to 9ga (Scheme 4.9). Due to the low solubility of 

diamine 43d in organic solvents, we used its TFA salt for the synthesis of complex 9gd in the presence of an 
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excess of DIPEA (2 eq.), obtaining the product in a moderate yield (35%). 

 

Scheme 4.9. Synthesis of chiral macrocyclic iron complexes 9gc and 9gd. 

 

4.2.2 Asymmetric hydrogenation of C=O double bonds with chiral macrocyclic iron complexes 

The first chiral macrocyclic CICs 9ga and 9gc-9gd were tested in the AH of acetophenone, and the results 

obtained are shown in Table 4.4. 

Complex 9ga showed poor catalytic reactivity in the model reaction, giving a very low conversion (Table 4.4, 

entry 1). We addressed such poor reactivity to the small size of macrocycle 9ga, seemingly too small to 

accommodate the reaction substrate. Consistent with this hypothesis, a positive correlation between 

macrocycle size and the experimental catalytic activity emerged: indeed, the conversion remarkably grew 

switching from 23-membered 9ga (Table 4.4, entry 1) to 25-membered 9gc (entry 2) and then to 27-membered 

9gd (entry 3), which allowed to obtain the product with quantitative conversion. Unfortunately, only poor e.e. 

values were obtained with these first representatives. Even so, chiral complex 9gd showed slightly higher 

enantioselectivity than the chiral iron complexes with a steriogenic plane (Section 4.1). The highly modular 

structure of this class of chiral macrocyclic CICs will allow to quickly prepare a number of representatives, 

which will be screened in the enantioselective reduction of C=O and C=N bonds. 
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Table 4.4. AH of acetophenone promoted by chiral pre-catalysts 9ga, 9gc and 9gd.[a] 

 

# Catalyst Solvents Conversion (%)[b] e.e. (%)[c] 

1 9ga DCM/iPrOH (1:7) 8 0 

2 9gc iPrOH/H2O (5:2) 17 5, R 

3 9gd iPrOH/H2O (5:2) 99 11, R 

[a] Reaction conditions: Substrate/Me3NO/Pre-cat. = 100:10:5, T = 80 °C, PH2 = 50 bar, 22 h. C0,sub. = 1 

M. 

[b] Determined by GC analysis with a chiral capillary column. 

[c] Absolute configuration of the product assigned by comparing the order of elution with literature data 

(see the experimental section). 

 

4.3 Conclusions on chiral iron complexes 

In the attempt to achieve highly enantioselective CIC-catalyzed C=O and C=N reductions, we synthesized in 

racemic form six chiral CICs ((±)-9cc and (±)-9ak-(±)-9ao) possessing a stereogenic plane and carried out 

catalytic tests to evaluate their activity. The largest possible difference – in terms of sterics and 

stereoelectronics – between the substituents at positions 2 and 5 of the cyclopentadienone ring was taken as 

requisite to achieve high enantioselectivity. However, the catalytic activity of the racemic complexes decreased 

with the increasing size of the ‘large’ substituent, thus limiting the possibility to exploit the different size of 

the 2,5-substituents. Complexes (±)-9cc and (±)-9am represented the best compromise between catalytic 

activity and substituents size, and thus were selected for enantiomer separation by chiral HPLC. According to 

XRD analysis, S configuration was assigned to first-eluted enantiomer of complex 9cc, while the configuration 

of complex 9am [first-eluted enantiomer = (R)-product] was assigned by comparing the ORD and ECD spectra 

of the separated enantiomers to computationally simulated spectra. The enantiomerically pure complex (S)-

9cc showed similar enantioselectivities to those reported by Hayashi and co-workers using ruthenium analog, 

giving low to moterate e.e. values. 

Furthermore, the development of a new class of chiral complexes was started, in which the CIC is incorporated 
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into a chiral macrocycle with modular structure: the first three chiral macrocyclic CICs (9ga, 9gc and 9gd) 

were synthesized by combining chiral diamines (43a and 43c-d) with CIC 9aq possessing two carboxyl groups 

for enantioselective reduction. Catalytic tests carried out with these chiral macrocyclic complexes revealed 

that catalytic activity is strongly affected by the size of macrocycle, which should be larger than 25 members. 

Further preparation and screening of macrocyclic complexes is currently underway in our group. 

In general, these results confirm that developing an effective chiral CICs for enantioselctive applications is 

still a challenging goal, although the results described in this Chapter will provide useful indication for future 

work.  

 

4.4 Experimental Section 

4.4.1 General remarks 

All reactions were carried out in flame-dried glassware with magnetic stirring under inert atmosphere (nitrogen 

or argon), unless otherwise stated. Solvents for reactions were distilled over the following drying agents and 

transferred under nitrogen: THF (Na), toluene (Na). Dry N,N-dimethylformamide (DMF, over molecular sieves 

in bottles with crown cap) was purchased from Sigma Aldrich and stored under nitrogen. All reagents were 

used without purification. Imines were prepared in Chapter 2. Reactions were monitored by analytical thin-

layer chromatography (TLC) using silica gel 60 F254 pre-coated glass plates (0.25 mm thickness). 

Visualization was accomplished by irradiation with a UV lamp and/or staining with a potassium permanganate 

alkaline solution or with a ninhydrin solution. Flash Column Chromatography (FCC) was performed using 

silica gel (60 Å, particle size 40-64 μm) as stationary phase, following the procedure by Still and co-workers.[21] 

Optical rotations were measured with a Jasco-P-2000 digital polarimeter at 20 or 22 °C, and concentrations (c) 

are given in g/100 mL.  

1H-NMR spectra were recorded on a spectrometer operating at 400.13 MHz. Proton chemical shifts are 

reported in ppm (δ) with the solvent reference relative to tetramethylsilane (TMS) employed as the internal 

standard (CDCl3, δ = 7.26 ppm; CD2Cl2 δ = 5.32 ppm; d6-DMSO δ = 2.50 ppm; CD3OD δ = 3.34 ppm). The 

following abbreviations are used to describe spin multiplicity: s = singlet, d = doublet, dd = doublet-doublet, 

ddd = doublet-doublet- doublet, t = triplet, td = triplet-doublet, q = quartet, pen = pentad, m = multiplet. 13C-

NMR spectra were recorded on a 400 MHz spectrometer operating at 100.56 MHz, with complete proton 

decoupling. Carbon chemical shifts are reported in ppm (δ) relative to TMS with the respective solvent 
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resonance as the internal standard (CDCl3 δ = 77.16 ppm; CD2Cl2 δ = 54.00 ppm; d6-DMSO δ = 40.45 ppm; 

CD3OD δ = 49.86 ppm). The coupling constant values are given in Hz. Infrared spectra were recorded on a 

standard FT/IR spectrometer. Melting points were recorded with a standard melting-point apparatus. High 

resolution mass spectra (HRMS) were performed on a ESI QTof SYNAPT G2 Si mass spectrometer (Waters), 

equipped with ESI source, available at the UNITECH-COSPECT laboratories (Università degli Studi di 

Milano). Elemental analyses were performed on a Perkin Elmer Series II CHNS/O Analyzer 2000. X-ray 

intensity data were collected with a Bruker AXS APEXII CCD area detector by using graphite monochromated 

Mo-Kα radiation. 

 

4.4.2 Synthesis of chiral iron complexes with stereogenic plane 

4.4.2.1 Preparation of 2-methyl-3,4,5-triphenylcyclopenta-2,4-dien-1-one (32) 

1-phenylbutan-2-one (31)[5a] 

To an ice-cooled solution of phenylacetyl chloride (2 mL, 12.8 mmol) and CuI (185 mg, 1 

mmol) in anhydrous THF (40 mL) was added dropwise a solution of EtMgBr (1 M in THF. 

12.8 mL, 12.8 mmol). The mixture was stirred for 1 h at 0 °C. After completion of the reaction (TLC), the 

reaction was quenched by addition of saturated aqueous NH4Cl. The mixture was extracted with diethyl ether 

(3 × 100 mL). The combined organic layers was washed with brine (2 × 100 mL) and water (2 × 100 mL), 

dried over MgSO4, filtered, and concentrated under reduced pressure. The crude compound was purified by 

flash chromatography (silica gel, 4: 96 AcOEt/hexane). Yield: 1.05 g (56%). Spectroscopic data are in 

agreement with those reported in the literature.[5a] 1H-NMR (400 MHz, CDCl3): δ 7.35-7.30 (m, 2H), 7.28-7.24 

(m, 1H), 7.22-7.20 (m, 2H), 3.69 (s, 2H), 2.47 (q, J = 7.3 Hz, 2H), 1.03 (t, J = 7.3 Hz, 3H). 

2-methyl-3,4,5-triphenylcyclopenta-2,4-dien-1-one (32)[4] 

A solution of 1-phenyl-2-butanone 31 (359 mg, 2.422 mmol) and benzil (509 mg, 2.422 

mmol) in dry DMF (7 mL) was heated at 80 °C and stirred for 1 hour, then a 0.1 M solution 

of tBuOK in DMF (4.8 mL, 0.484 mmol) was added dropwise. The resulting mixture was 

stirred overnight at 80 °C. The solvent was evaporated and water was added, and the 

mixture was extracted with AcOEt (3 × 40 mL). The combined organic extract was dried over Na2SO4, filtered 

and concentrated. The unpurified residue was dissolved in Ac2O (10 mL), and a few drops of concentrated 
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H2SO4 were added (a deep purple color instantaneously developed). The mixture was stirred at r.t. for 1 h. 

Water (100 mL) was added to dilute the reaction and a purple solid precipitated, which was collected by 

filtration. The crude product was then recrystallized from a DCM/hexane mixture. Yield: 541.9 mg (89%). 

Spectroscopic data are in agreement with those reported in the literature.[4] 1H-NMR (400 MHz, CD2Cl2): δ 

7.29-7.14 (m, 11H), 7.01-6.98 (m, 2H), 6.94-6.91 (m, 2H), 1.89(s, 3H); 13C-NMR (100 MHz, CD2Cl2): δ 

202.35, 155.34, 153.91, 134.10, 133.82, 131.94, 130.46, 129.77, 129.45, 128.98, 128.76, 128.49, 128.44, 

128.34, 127.77, 126.16, 124.45, 9.01; FT-IR: ν = 2920.7, 1703.8, 1491.7, 1440.6, 1349.0, 1300.8, 1071.3, 

1005.7, 903.5, 800.3, 782.0, 765.6, 709.7, 396.1 cm-1; elemental analysis (%): C 88.64, H 6.03, (calcd. for 

C24H18O: C 89.41, H 5.63). 

 

4.4.2.2 Preparation of complex (±)-9cc 

In a Schlenk tube fitted with a Teflon-topped screw cap, Fe2(CO)9 (1.1284 g, 

3.102 mmol, 2 eq.) was added to a stirred solution of cyclopentadienone 32 

(500 mg, 1.551 mmol, 1 eq.) in toluene (10 mL) under N2. The reaction mixture 

was heated to 110°C and stirred for 16 hours. The reaction mixture was cooled down to r.t. and filtered through 

celite (rinsing with AcOEt). After removal of the solvent under reduced pressure, the residue was purified by 

flash column chromatograph (9:1 hexane/AcOEt) to afford the product as a light yellow solid. Yield: 628 mg 

(88%). M.p. = 199.1 °C; 1H-NMR (400 MHz, CD2Cl2) δ 7.52-7.49 (m, 2H), 7.41-7.33 (m, 5H), 7.28-7.23 (m, 

4H), 7.16-7.15 (m, 4H), 1.94(s, 3H); 13C-NMR (100 MHz, CD2Cl2) δ 209.52, 171.68, 132.28, 132.02, 131.93, 

130.96, 130.66, 130.49, 129.39, 129.18, 128.79, 128.55, 128.49, 128.44, 128.33, 105.35, 104.93, 83.63, 80.60, 

10.81; IR (film): ν = 3058.6, 2922.6, 2855.1, 2062.5, 1991.1, 1641.1, 1577.5, 1499.4, 1445.4, 1390.4, 1171.5, 

1073.2, 1029.8, 1003.8, 927.6, 853.3, 769.5, 757.9, 853.3, 76935, 757.9, 736.7, 698.1, 666.3, 645.1, 613.3 cm-

1; HRMS (ESI+): m/z 463.0631 [M+H]+ (calcd. for C32H27FeO4: 463.0633). 

 

4.4.2.3 Preparation of the diyne intermediates 33-39 

Trimethyl(octa-1,7-diyn-1-yl)silane (33)[6] 

A solution of LiHMDS was prepared by dropwise addition of n-BuLi (1.6 M in 

hexanes, 94.2 mL, 150.7 mmol, 1 eq.) to a stirred solution of hexamethyldisilazane 
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(31.42 mL, 150.7 mmol, 1 eq.) in THF (78 mL) at -78 °C. Once the addition was complete, the mixture was 

allowed to reach 0 °C and stirred for 30 min before use. The LiHMDS solution was cooled to -78 °C before 

and then added to a solution of 1,7-octadiyne (20 mL, 150.7 mmol, 1 eq.) in THF (210 mL) kept at -78 °C. 

After stirring the resulting mixture for 0.5 hours at -78 °C, chlorotrimethylsilane (19.1 mL, 150.7 mmol, 1 eq.) 

was added dropwise. The mixture was stirred for 10 min at -78 °C and then it was allowed to reach r.t. After 

stirring for 2 h, the reaction was quenched with water (400 mL). The mixture was extracted with hexane (3 × 

400 mL) and the combined organic extracts were then washed with 1 M aq. HCl (400 mL), water (400 mL) 

and brine (400 mL), before being dried over Na2SO4 and concentrated. Distillation of the crude product 

(Vigreux column, b.p. = 50-55 °C at 1 mbar) gave the title compound as a colorless oil. Yield: 14.23 g (53%). 

Spectroscopic data are in agreement with those reported in the literature.[6] 1H NMR (400 MHz, CDCl3): δ 

2.20-2.17 (m, 4H), 1.90 (t, J = 2.68 Hz, 1H), 1.61-1.57 (m, 4H), 0.10 (s, 9H); 13C NMR (100 MHz, CDCl3): δ 

106.92, 84.80, 84.07, 68.62, 27.61, 27.57, 19.44, 18.02, 0.23; FT-IR: ν = 3308.3, 2950.6, 2865.7, 2360.4, 

2175.3, 2118.42, 1457.9, 1431.9, 1326.8, 1249.7, 1046.2, 992.2, 936.3, 902.5, 842.7, 759.8, 699.1, 638.3 cm-

1; elemental analysis (%): C 70.44, H 9.90, (calcd. for C11H18Si: C 74.08, H 10.17). 

Trimethyl(8-phenylocta-1,7-diyn-1-yl)silane (34) 

A solution of iodobenzene (2.288 g, 11.21 mmol, 1 eq.) and diyne 33 (2 g, 11.21 

mmol, 1 eq.) in THF (30 mL) and NEt3 (30 mL) was added 

dichlorobis(triphenylphosphine) palladium (323 mg, 0.46 mmol, 0.041 eq.) and 

CuI (87.6 mg, 0.46 mmol, 0.041 eq.) under N2. The reaction mixture was heated to 60 °C and stirred for 16 

hours under inert atmosphere. The mixture was diluted with DCM and then washed with sat. aq. NH4Cl and 

water. After removing the solvent under reduced pressure, the resulting crude product was purified by column 

chromatography (99.5:0.5 hexane/AcOEt) to afford the pure product as a light yellow oil. Yield: 1.94 g (68%). 

Spectroscopic data are in agreement with those reported in the literature.[22] 1H-NMR (400 MHz, CD2Cl2): δ 

7.40-7.38 (m, 2H), 7.30-7.28 (m, 3H), 2.46 (t, J = 6.68 Hz, 2H), 2.29 (t, J = 6.76 Hz, 2H), 1.72-1.68 (m, 4H), 

0.14 (s, 9H); 13C-NMR (100 MHz, CD2Cl2): δ 132.02, 128.81, 128.12, 124.62, 107.63, 90.50, 85.04, 81.20, 

28.41, 28.41, 19.92, 19.45, 0.45; FT-IR: ν = 3584.1, 2946.7, 2862.8, 2173.4, 1598.7, 1489.7, 1442.5, 1327.8, 

1248.7, 1046.2, 912.2, 841.8, 756.0, 691.4 cm-1; elemental analysis (%): C 80.79, H 8.61, (calcd. for C17H22Si: 

C 80.25, H 8.72). 

Trimethyl(nona-1,7-diyn-1-yl)silane (35)[6] 



Chapter 4  

132 

 

A solution of n-BuLi (2.5 M in hexanes, 26.4 mL, 66.05 mmol, 1.5 eq.) was 

added dropwise to a solution of compound 33 (7.8532 g, 44.03 mmol, 1.0 eq.) 

in THF (206 mL) at -78 °C. After stirring for 1 h, iodomethane (5.48 mL, 88.06 mmol) was slowly introduced, 

the mixture was allowed to warm to ambient temperature while stirring was continued for 2 h. The reaction 

was cooled at 0 °C, quenched with water and then extracted with hexane (3 × 200 mL). The combined organic 

extracts were washed with water and brine, dried over Na2SO4, and concentrated. The crude product was 

purified by distillation (b.p. = 119-125 °C at 20 mbar) to give the title compound as a colorless oil. Yield: 7.53 

g (89%). Spectroscopic data are in agreement with those reported in the literature.[6] 1H-NMR (400 MHz, 

CD2Cl2): δ 2.22 (t, J = 6.92 Hz, 2H), 2.14-2.12 (m, 2H), 1.75 (t, J = 2.60 Hz, 1H), 1.61-1.55 (m, 4H), 0.13 (s, 

9H); 13C NMR (100 MHz, CD2Cl2): δ 107.81, 84.98, 79.25, 76.14, 28.88, 28.50, 20.02, 18.89, 3.78, 0.55; FT-

IR: ν = 2947.7, 2920.6, 2861.8, 2174.4, 1431.9, 1328.7, 1249.7, 1046.2, 932.4, 841.8, 759.8, 698.1, 639.3, cm-

1; elemental analysis (%): C 73.13, H 10.18, (calcd. for C12H20Si: C 74.92, H 10.48). 

Nona-1,7-diyne (36) 

K2CO3 (7.03 g, 50.87 mmol, 1.1 eq.) was added to a solution of compound 35 (8.8956 

g, 46.24 mmol, 1.0 eq.) in 1:1 THF/MeOH (142 mL) at r.t. The mixture was stirred 

overnight at r.t., then water was added and the aqueous phase was extracted with hexane (3 × 200 mL). The 

combined organic phases were washed with sat. aq. NaCl and dried over Na2SO4, then the solvent was 

removed.. The crude product was purified by distillation (b.p. = 119-125 °C at 20 mbar) to give the title 

compound as a colorless oil. Yield: 5.4 g (97%). Spectroscopic data are in agreement with those reported in 

the literature.[23] 1H NMR (400 MHz, CDCl3): δ 2.22-2.19 (m, 2H), 2.17-2.14 (m, 2H), 1.94 (t, J = 2.68 Hz, 

3H), 1.1.77 (t, J = 2.56 Hz, 1H), 1.63-1.59 (m, 4H); 13C NMR (100 MHz, CDCl3): δ 84.19, 78.67, 75.73, 68.43, 

28.03, 27.60, 18.25, 17.99, 3.38; FT-IR: ν = 3584.1, 3295.8, 2944.8, 2920.7, 2861.82359.5, 2117.5, 1629.6, 

1432.9, 1330.6, 1033.7, 630.6 cm-1; elemental analysis (%): C 83.61, H 9.48, (calcd. for C9H12: C 89.94, H 

10.06). 

Triethyl(nona-1,7-diyn-1-yl)silane (37) 

n-BuLi (1.6 M in hexanes, 2.29 mL, 3.66 mmol, 1 eq.) was added dropwise to a 

stirred solution of diyne 36 (400 mg, 3.33 mmol) in THF (22 mL) at -78 °C. After 

stirring for 1 hour at -78 °C, Chlorotriethylsilane (601.9 mg, 3.9936 mmol) was 

added and the mixture was stirred at -78 °C for 1 h before being allowed to warm to r.t. overnight. The reaction 
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was quenched using saturated sat. aq. NH4Cl (25 mL) and extracted with Et2O (3 × 25 mL). The combined 

organic extracts were dried over MgSO4 and the solvent was removed in vacuo. The residue was purified by 

flash column chromatograph (98:2 hexane/AcOEt) to afford the pure product as a light yellow oil. Yield: 733 

mg (94%). 1H-NMR (400 MHz, CDCl3): δ 2.25 (t, J = 6.80 Hz, 2H), 2.15-2.12 (m, 2H), 1.76 (t, J = 2.56 Hz, 

3H), 1.61-1.57 (m, 4H), 0.97 (t, J = 7.96 Hz, 9H), 0.59 (q, J = 15.80, 7.84 Hz, 6H); 13C-NMR (100 MHz, 

CDCl3): δ 108.38, 81.80, 78.92, 75.77, 28.18, 27.99, 19.57, 18.37, 7.58, 4.69, 3.55; IR (film): ν = 3585.0, 

2953.5, 2916.8, 2874.4, 2733.6, 2172.4, 1655.6, 1458.9, 1414.5, 1377.9, 1326.8, 1260.3, 1236.2, 1096.3, 

1017.3, 973.9, 930.5, 842.7, 806.1, 736.7, 726.1 cm-1; MS (ESI +) m/z 257.51 [M + Na]+ (calcd. for C15H26SiNa: 

257.17); elemental analysis (%): C 75.60, H 11.01, (calcd. for C15H26Si: C 76.84, H 11.18). 

Triisopropyl(nona-1,7-diyn-1-yl)silane (38) 

n-BuLi (1.6 M in hexanes, 2.29 mL, 3.661 mmol) was added dropwise to a 

stirred solution of diyne 36 (400 mg, 3.328 mmol) in THF (22 mL) at -78 °C. 

After stirring for 1 hour at -78 °C, Triisopropylsilyl chloride (770 mg, 3.9936 

mmol) was added and the mixture was stirred at -78 °C for 1 h before being allowed to warm to r.t. overnight. 

The reaction was quenched using saturated sat. aq. NH4Cl (25 mL) and extracted with Et2O (3 × 25 mL). The 

combined organic extracts were dried over MgSO4 and the solvent was removed in vacuo. The residue was 

purified by flash column chromatograph (98:2 hexane/AcOEt) to afford the pure product as a light yellow oil. 

Yield: 1.167 g (95%). 1H-NMR (400MHz, CDCl3): δ 2.28-2.24 (m, 2H), 2.15-2.13 (m, 2H), 1.76 (t, J = 2.60 

Hz 3H), 1.62-1.60 (m, 4H), 1.07-1.02 (m, 21H); 13C-NMR (100 MHz, CDCl3): δ 108.89, 80.41, 78.92, 75.75, 

28.13, 28.06, 19.53, 18.75, 18.34, 11.45, 3.55; IR (film): ν = 3584.1, 2942.8, 2892.7, 2865.7, 2724.0, 2171.5, 

1639.2, 1462.7, 1383.7, 1366.3, 1326.8, 1242.9, 1071.3, 1016.3, 995.1, 919.9, 883.2, 702.0, 676.9, 660.5, 

621.0 cm-1; elemental analysis (%): C 71.21, H 11.05, (calcd. for C18H32Si: C 78.18, H 11.66).  

Deca-2,8-diyne-1,1,1-triyltribenzene (39) 

In a Schlenk tube at 0 °C, a solution of ethylmagnesium bromide (2 M in THF, 

4.1 mL, 8.33 mmol, 1.0 eq.) was added dropwise to a stirred solution of 

compound 36 (1g, 8.33 mmol, 1.0 eq.) and THF (11 mL). The resulting mixture 

was heated to reflux and stirred for 1 h. After cooling down to r.t., trityl chloride (2.322 g, 8.33 mmol, 1.0 eq.) 

was added. The resulting mixture was heated to reflux and stirred overnight. After cooling down to r.t., the 

reaction was quenched with sat. aq. NH4Cl (15 mL), and the obtained aqueous phase was extracted with AcOEt 



Chapter 4  

134 

 

(3 × 30 mL). The organic layer was washed with water (25 mL) and brine (25 mL), dried over Na2SO4 and 

concentrated in vacuo. The crude product was purified by column chromatography on silica gel (9:1 

hexane/AcOEt) to give the product as a white solid. Yield: 1.61 g (53%). M.p. = 85.2 °C; 1H-NMR (400MHz, 

CD2Cl2): δ 7.31-7.25 (m, 15H), 2.41 (t, J = 6.72 Hz, 2H), 2.20-2.15 (m, 2H), 1.77 (t, J = 2.56 Hz, 3H), 1.72-

1.63 (m, 4H); 13C-NMR (100MHz, CD2Cl2): δ 146.48, 129.65, 128.44, 127.21, 86.73, 86.17,  79.25, 76.07, 

56.17, 28.94, 28.59, 19.10, 18.78, 3.73; IR (film): ν = 3584.1, 3083.6, 3058.6, 3021.9, 2939.0, 2859.0, 1951.6, 

1595.8, 1489.7, 1445.4, 1328.7, 1182.2, 1077.1, 1032.7, 1001.8, 891.0, 746.3, 689.1, 638.3, 618.1 cm-1; MS 

(ESI +) m/z 363.52 [M + H]+ (calcd. for C28H26: 363.52); elemental analysis (%): C 92.77, H 7.22, (calcd. for 

C28H26: C 92.77, H 7.23). 

 

4.4.2.4 General procedure for the synthesis of complexes (±)-9ak-9ao 

In a Schlenk tube fitted with a Teflon-topped screw cap, distilled toluene (6 mL) was added to a mixture of the 

diyne (0.853 mmol, 1.0 eq.) and Fe2(CO)9 (621 mg, 1.706 mmol, 2.0 eq.) under N2. The mixture was heated 

to 110 °C and stirred overnight. After cooling down to r.t., the resulting mixture was concentrated under 

reduced pressure. The products were purified by column chromatography (4:1 hexane/AcOEt) to afford the 

pure iron complexes. 

CIC (±)-9ak 

Prepared from diyne 34 according to the General procedure. Yield: 216 

mg (60%). M.p. = 117.8 °C; 1H-NMR (400 MHz, CD2Cl2): δ 7.65-7.62 (m, 

2H), 7.38-7.31 (m, 3H), 2.71-2.68 (m, 2H), 2.65-2.55 (m, 2H), 1.91-1.84 

(m, 4H), 0.32 (s, 9H); 13C-NMR (100 MHz, CD2Cl2): δ 209.86, 175.84, 132.51, 130.19, 128.76, 128.20, 107.37, 

106.12, 85.16, 68.79, 60.05, 24.87, 24.85, 22.88, 22.82, 0.01; IR (film): ν = 2949.6, 2852.2, 2057.7, 1998.9, 

1632.5, 1501.3, 1442.5, 1403.0, 1247.7, 1181.2, 1152.3, 1017.3, 892.0, 838.9, 757.9, 695.2, 617.1 cm-1; HRMS 

(ESI+): m/z 423.0708 [M+H]+ (calcd. for C32H27FeO4: 423.0715). 

CIC (±)-9al 

Prepared from diyne 35 according to the General procedure. Yield: 61.4 

mg (25%). M.p. = 74.4 °C; 1H-NMR (400 MHz, CD2Cl2): δ 2.57-2.43 (m, 

4H), 1.84-1.81 (m, 4H), 1.68 (s, 3H), 0.26 (s, 9H); 13C-NMR (100 MHz, 
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CD2Cl2): δ 210.10, 176.89, 107.04, 81.98, 68.47, 24.81, 23.07, 22.59, 22.43, 8.87, 0.04; IR (film): ν = 2950.6, 

2056.7, 1996.0, 1635.3, 1447.3, 1247.7, 1087.7, 845.6, 761.7, 698.1, 654.7, 618.1 cm-1; HRMS (ESI+): m/z 

361.0552 [M+H]+ (calcd. for C32H27FeO4: 361.0559). 

CIC (±)-9am 

Prepared from diyne 37 according to the General procedure. Yield: 90.7 mg 

(25%). M.p. = 58.5 °C; 1H-NMR (400 MHz, CD2Cl2): δ 2.52-2.47 (m, 4H), 

1.84-1.79 (m, 4H), 1.64 (s, 3H), 1.01 (t, J = 7.84 Hz, 9H), 0.88-0.81 (m, 6H); 

13C-NMR (100 MHz, CD2Cl2): δ 210.10, 176.82, 107.28, 107.17, 82.08, 67.19, 25.36, 23.15, 22.54, 22.43, 

8.91, 7.91, 4.36; IR (film): ν = 2951.5, 2874.4, 2056.7, 1996.0, 1979.6, 1636.3, 1446.4, 1293.0, 1240.0, 1143.6, 

1004.7, 784.9, 732.8, 699.1, 617.1 cm-1; HRMS (ESI+): m/z 403.1018 [M+H]+ (calcd. for C32H27FeO4: 

403.1028). 

CIC (±)-9an 

Prepared from diyne 38 according to the General procedure. Yield: 49.3 

mg (13%). M.p. = 86.4 °C; 1H-NMR (400 MHz, CD2Cl2): δ 2.60-2.52 (m, 

4H), 1.88-1.78 (m, 4H), 1.64 (s, 3H), 1.49-1.41 (m, 3H), 1.16 (t, J = 7.88 

Hz, 18H); 13C-NMR (100 MHz, CD2Cl2): δ 210.12, 176.55, 107.96, 106.46, 81.60, 69.92, 26.28, 23.43, 22.42, 

22.40, 19.85, 19.82, 18.99, 13.10, 8.96; IR (film): ν = 2945.7, 2865.7, 2057.7, 1997.9, 1980.5, 1632.5, 1446.4, 

1385.6, 1365.4, 1289.2, 1254.5, 1139.7, 1070.3, 1021.1, 881.3, 729.0, 687.5, 665.3, 618.1 cm-1; HRMS (ESI+): 

HRMS (ESI+): m/z 445.1493 [M+H]+ (calcd. for C32H27FeO4: 445.1498). 

CIC (±)-9ao 

Prepared from diyne 39 according to the General procedure. Yield: 149.3 

mg (33%). M.p. = 90.8 °C; 1H-NMR (400 MHz, CD2Cl2): δ 7.25-7.16 (m, 

15H), 2.60-2.51 (m, 2H), 1.81-1.70 (m, 2H), 1.63 (s, 3H), 1.56-1.46 (m, 2H), 

1.30-1.19 (m, 2H); 13C-NMR (100 MHz, CD2Cl2): δ 210.39, 174.29, 146.61, 131.80, 127.83, 127.10, 104.03, 

101.74, 95.58, 78.84, 60.61, 24.21, 23.75, 22.67, 21.86, 8.94; IR (film): ν = 3057.6, 2932.2, 2054.8, 1994.0, 

1647.9, 1491.7, 1445.4, 1034.6, 854.3, 755.0, 736.7, 699.1, 613.3 cm-1; HRMS (ESI+): m/z 531.1254 [M+H]+ 

(calcd. for C32H27FeO4: 531.1259). 
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4.4.2.5 Resolution of complexes 9cc and 9am by chiral semipreparative HPLC and ECD spectra 

registration (performed by the group of Prof. Pierini and Prof. Gasparrini, Sapienza University of Rome) 

The analytical liquid chromatography was performed on an HPLC equipped with a Rheodyne model 7725i 20 

μL loop injector, a PU-1580-CO2 and PU-980 Jasco HPLC pumps, a UV detector Jasco-975, and a circular 

dichroism detector Jasco 995-CD. Chromatographic data were collected and processed using Borwin software 

(Jasco Europe, Italy). The semipreparative liquid chromatography was performed on a Waters chromatograph 

(WatersAssociates) equipped with a 200 µL loop injector, a UV SpectroMonitor 4100 spectrophotometer, and 

a refractive index detector. Racemic complex (±)-9cc were resolved by semipreparative HPLC, using a (R,R)-

DACH-DNB column (250 mm × 10 mm L. × I.D.), a mixture of n-hexane/DCM 80:20 + 2% MeOH v/v was 

employed as eluent (flow rate 4.0 mL/min and Tcol. = 25 °C). The sample of (±)-9cc was dissolved in the mobile 

phase (c = 20 mg/mL); each injection was 100 µL (process yield 80%). The enantiomeric excess, the UV, and 

ECD at 300 nm were determined by analytical HPLC with use of a Regis (R,R)-DACH-DNB column (250 mm 

× 4.6 mm L. × I.D.) under the same conditions employed for semipreparative HPLC, excepting the flow rate 

(1.0 mL/min). Concerning the racemic (±)-9am, the enantiomers were resolved by using a Chiralpak IC 

column (250 mm × 10 mm L. × I.D.) in semipreparative HPLC conditions, mobile phase consisted in a mixture 

of n-hexane/IPA 95:5 v/v (flow rate 5.0 mL/min and Tcol. = 25 °C). The racemic (±)-9am was dissolved in the 

mobile phase (c = 60 mg/mL); each injection was 100 µL (process yield 79%). The enantiomeric excess, the 

UV, and ECD at 270 nm were determined by analytical HPLC with use of a Chiralpak IC column (250 mm × 

4.6 mm L. × I.D.) with a flow rate of 1.0 mL/min. The ECD spectra of chromatographically resolved (R)-9am 

and (S)-9am were recorded with the circular dichroism detector Jasco J710 CD spectrometer, using 2.1 × 10-5 

M solutions in CHCl3.  

Complex (S)-9cc 

[α]D
22 = -20.82 (c = 0.061 in CHCl3). 

Complex (R)-9am 

[α]D
20 = -16.22 (c = 0.018 in CHCl3). 
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4.4.2.6 Peak purity checks of 9cc and 9am enantiomers collected after semipreparative enantioselective 

HPLC 

The peak purity of the pooled fractions, containing enantiomers of 9cc and 9am complexes, after 

semipreparative enantioselective HPLC was checked. (S)-9cc (e.e. 99%), (R)- 9cc (e.e. 98%) were checked by 

using analytical enantioselective HPLC column (R,R)-DACH-DNB [5 µm (250 mm × 4.6 mm L. × I.D.)]; the 

eluent was n-hexane/DCM 80:20 + 2% MeOH v/v; flow rate 1.0 mL/min at 25 °C. (R)-9am (e.e. 99.7%) and 

(S)-9am (e.e. 99.6%) were checked on an analytical column Chiralpak IC [5 µm (250 mm × 4.6 mm L. × I.D.)]; 

eluent: n-hexane/IPA 95:5 v/v; flow rate 1.0 mL/min at 25 °C. 

 

Figure 4.7. Enantiomeric excess evaluation of fraction collected after semipreparative enantioselective HPLC. 

 

4.4.2.7 Single crystal XRD analysis of compound (S)-9cc (performed by Dr. Valentina Colombo, 

Università degli Studi di Milano) 

The chiral CIC 9cc, possessing a stereogenic plane, exists in the two enantiomeric forms (R)-9cc and (S)-9cc. 

To unambiguously assign the absolute configuration of this iron complex, single-crystal X-ray diffraction 

analysis was performed on one of the enantiomers of 9cc (the first fraction obtained by semipreparative 

enantioselective HPLC). The absolute configuration, assigned according to the extended CIP rules,[13] was 

found to be S. The correctness of this absolute configuration is secured by the presence of an iron anomalous 

scattering in the tile compound: the Flack parameter refined to 0.003(3).[24] 

X-ray quality sample obtained by vapor diffusion of pentane in DCM followed by cooling at -18 °C was 
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selected at the optical microscope, resulting in pale-yellow prisms with dimensions of about 0.15 × 0.10 × 0.10 

mm (Figure 4.8 A). A crystal of (S)-9cc was mounted on a Bruker AXS APEXII CCD area-detector 

diffractometer, at r.t., for the unit cell determination and data collection. Graphite-monochromatized MoKα (λ 

= 0.71073 Å) radiation was used with the generator working at 50 kV and 30 mA. Orientation matrixes were 

initially obtained from least-squares refinement on ca. 300 reflections measured in three different ω regions, 

in the range 0° < θ < 23°; cell parameters were optimized on the position, determined after integration, of ca. 

7000 reflections. The intensity data were retrieved in the full sphere, within the θ limits reported in the crystal 

data section, from 1080 frames collected with a sample−detector distance fixed at 5.0 cm (50 s frame−1; ω scan 

method, Δω = 0.5°). An empirical absorption correction was applied (SADABS).[25] Crystal structure was 

solved by direct methods using SHELXT2017 and refined with SHELXL-2017/1[26] within the Wingx suite of 

programs.[27] The compound crystallizes in the chiral space group P212121 with one molecule in general 

position. No significant HB donors are present, thus no significant intermolecular interactions are observed in 

the crystal packing. Hydrogen atoms were riding on their carbon atoms. Anisotropic temperature factors were 

assigned to all non-hydrogen atoms. Refinement parameters are listed in the cif files. 

CCDC number 1885148 contains the full supplementary crystallographic data for this work. The latter can be 

obtained free of charge from the Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 

Crystal data for compound (S)-9cc: C27H18FeO4, fw = 462.26 g mol-1, orthorhombic P212121 (No. 19), a = 

9.1937(5), b = 12.5845(6) and c = 19.2348(10) Å; V = 2225.4(2) Å3; Z = 4; Mo-Kα λ = 0.71073 Å; T (K) 

293(2); ρcalc =  1.38 g cm-3, μ(Mo-Kα) = 0.708 mm-1; θ range 1.934-31.685 °; Limiting indices -13≤ h ≤13, -

18≤ k ≤18, -28≤ l ≤27; data (unique), 6992 (6191); restraints, 0; parameters, 289; Goodness-of-Fit on F2, 1.015; 

R1 and wR2 (I>2σ(I)), 0.0279 and 0.0676; R1 and wR2 (all data), 0.0349 and 0.071; Flack parameter, 0.003(3); 

Largest Diff. Peak and Hole (e Å–3), 0.261 and -0.212. 

An ORTEP[28] view of the molecules with the full numbering scheme is given in Figure 4.8 B. Selected 

distances of bond lengths (Å) and angles (°) are given in Table 4.4, while atomic coordinates and displacement 

parameters are listed in the corresponding cif file. 

 

http://www.ccdc.cam.ac.uk/data_request/cif
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Figure 4.8. A: Diffraction quality pale-yellow crystal used for this analysis. B: ORTEP view of the Iron complex, 

(S)-9cc. Ellipsoids are drown at 50% probability. Color code: O, red; C, blue; Fe, orange. H atoms are omitted for 

clarity. 

As highlighted in Figure 4.9, a top-view of the iron complex shows that the position of the metal with respect 

to the center of the cyclopetadienone ring is, as expected, slightly shifted in the direction of the basis of the 

penta-atomic ring, as a consequence of its η4 coordination to the two C=C double bonds of the 

cyclopentadienone ligand. 

 

Figure 4.9. Top view of the iron complex (S)-9cc. Ellipsoids are drown at 50% probability. Color code: O, red; C, blue; 

Fe, orange. H atoms are omitted for clarity. 

Table 4.5. Selected bond distances (Å) and angles (°) for (S)-9cc. 

Atom Names Distance (Å)  Atoms Names Angle (°) Atoms Names Angle (°) 

Fe-C1B   1.802(2)    C1B-Fe-C1A     97.17(10) C8-C7-C12 118.46(18) 

Fe-C1A   1.804(2)    C1B-Fe-C1C     96.88(9)  C8-C7-C4 117.48(17) 

Fe-C1C   1.804(2)    C1A-Fe-C1C     95.83(9)  C12-C7-C4 124.05(16) 

Fe-C4    2.0721(16)  C1B-Fe-C4     139.50(8)  C5-C4-C3 107.71(15) 

Fe-C3    2.0830(16)  C1A-Fe-C4     121.04(8)  C5-C4-C7 124.50(15) 

Fe-C5    2.1222(18)  C1C-Fe-C4     92.37(8)   C3-C4-C7 126.80(14) 

Fe-C2    2.1389(17)  C1B-Fe-C3     135.00(8)  C5-C4-Fe  71.92(10) 
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Fe-C1    2.4132(19)  C1A-Fe-C3     92.08(7)   C3-C4-Fe  70.11(9)  

C13-C18  1.390(2)    C1C-Fe-C3     125.92(8)  C7-C4-Fe 132.29(12) 

C13-C14  1.397(2)    C4 -Fe-C3     40.59(7)   C17-C18-C13 120.98(18) 

C13-C3   1.481(2)    C1B-Fe-C5     99.89(9)   C20-C19-C24 117.69(19) 

O1-C1    1.227(2)    C1A-Fe-C5     158.86(8)  C20-C19-C2 123.39(16) 

O1A-C1A  1.131(2)     C1C-Fe-C5     94.42(8)   C24-C19-C2 118.91(19) 

O1C-C1C  1.125(3)     C4 -Fe-C5     39.93(6)   O1-C1-C5 126.33(18) 

C3-C2    1.438(2)     C3-Fe-C5     66.99(7)    O1-C1-C2 129.73(19) 

C3-C4    1.441(2)     C1B-Fe-C2     95.20(8)   C5-C1-C2 103.62(14) 

O1B-C1B  1.134(2)     C1A-Fe-C2     99.85(8)   O1-C1-Fe 137.05(17) 

C14-C15  1.389(2)     C1C-Fe-C2     158.83(8)  C5-C1-Fe  60.60(9)  

C7-C8    1.388(3)     C4-Fe-C2     67.35(7)    C2-C1-Fe  61.15(9)  

C7-C12   1.389(3)     C3-Fe-C2     39.81(6)    C16-C15-C14 121.03(18) 

C7-C4    1.486(2)     C5-Fe-C2     66.33(7)    C4-C5-C1 108.91(15) 

C4-C5    1.433(2)     C1B-Fe-C1     80.60(9)   C4-C5-C6 126.81(17) 

C18-C17  1.382(3)     C1A-Fe-C1     135.93(8)  C1-C5-C6 122.24(16) 

C19-C20  1.382(3)     C1C-Fe-C1     128.23(8)  C4-C5-Fe  68.15(9)  

C19-C24  1.394(3)     C4-Fe-C1     63.10(7)    C1-C5-Fe  82.18(11) 

C19-C2   1.483(3)     C3-Fe-C1     62.99(6)    C6-C5-Fe 128.98(15) 

C1-C5    1.473(3)     C5-Fe-C1     37.22(7)    O1C-C1C-Fe 177.17(19) 

C1-C2    1.492(2)     C2-Fe-C1     37.67(6)    C3-C2-C19 126.56(15) 

C15-C16  1.370(3)     C18-C13-C14  118.63(16)  C3-C2-C1 107.63(15) 

C5-C6    1.495(3)     C18-C13-C3   118.56(15)  C19-C2 C1 124.30(15) 

C20-C21  1.386(3)     C14-C13-C3   122.75(15)  C3-C2-Fe  68.00(9)  

C11-C10  1.361(4)     C2-C3-C4     108.40(14)  C19-C2-Fe 127.52(13) 

C11-C12  1.394(3)     C2-C3-C13    126.04(15)  C1-C2-Fe  81.18(11) 

C17-C16  1.386(3)     C4-C3-C13    124.64(14)  C19-C20-C21 121.7(2)   

C21-C22  1.376(4)     C2-C3-Fe      72.19(10)  O1A-C1A-Fe 177.88(19) 

C8-C9    1.382(3)     C4-C3-Fe      69.30(9)   C10-C11-C12 120.4(2)   

C10-C9   1.376(4)     C13-C3-Fe    132.86(11)  C7-C12-C11 120.4(2)   

C24-C23  1.390(4)     C15-C14-C13  119.77(17)  C18-C17-C16 119.93(19) 

 

4.4.2.8 Simulation of ORD and CD spectra for the (R) enantiomer of 9am (performed by Prof. Pierini, 

Sapienza University of Rome). 

The chiroptical properties of the enantiomers of 9am were estimated by molecular modelling calculations 

performed in two steps. In the first step the structure of the (R)-9am enantiomer was optimized at the B3LYP/6-

31G* level of theory using the computer program SPARTAN 10v1.1.0 (Wavefunction Inc., 18401 Von 

Karman Avenue, Suite 370, Irvine, CA 92612, USA). In the second step, by resorting to the Amsterdam 

Density Functional (ADF) package v. 2007.01, the optimized structure of (R)-9am was subjected to assessment 
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of chiroptical properties, represented by the Optical Rotatory Dispersion (ORD) and the Electronic Circular 

Dichroism (ECD) spectra. Optical Rotation values [α]n at four different wavelengths n, in the range 320-589 

nm, were assessed using the BLYP method, employing the QZ4P large core basis set, as implemented in ADF. 

Always starting from the same optimized (R)-9am geometry, and again resorting to the ADF program, further 

calculations were also performed in order to simulate the relevant ECD spectrum. To this end, the set options 

were: single point calculation at the BLYP level of theory, employing the QZ4P large core basis set; 40 singlet 

and triplet excitations; diagonalization method: Davidson; velocity representation; scaling factor 1.00; peak 

width 31.0. It was found that, from comparison with the relevant experimental ECD and ORD spectra, the 

first-eluted enantiomer of 9am under the CSP/mobile phase conditions explored in the study had the R 

configuration. As a consequence, S configuration was assigned to the second-eluted enantiomer. 

 

4.4.3 General Procedure for the AH of ketones and ketimines 

Under argon atmosphere, the pre-catalyst (0.01 mmol, 0.05 eq.) was dispensed as DCM solution into oven-

dried glass tubes fitted in an aluminum block inside a Schlenk tube. After removing DCM under vacuum, a 

0.2 M solution of Me3NO in iPrOH (0.1 mL, 0.02 mmol, 0.1 eq.) was dispensed. The resulting mixture was 

stirred at r.t. for 20 min, during which a deep orange color gradually developed. iPrOH (0.3 mL) and the 

substrate (0.2 mmol, 1 eq.) were added in each vial. Each vial was capped with a Teflon septum pierced by a 

needle, the block was transferred into the autoclave, and stirring was started. After purging four times with 

hydrogen, the reaction was pressurized at 50 bar and heating was started (80 °C). The reactions were stirred 

for 22 h under hydrogen pressure at 80 °C. After cooling down to r.t., the mixtures were filtered through a 

short part of celite and then analyzed for conversion and e.e. determination. When needed, product purification 

was carried out by flash column chromatography (hexane/AcOEt eluent mixtures). 

 

4.4.3.1 Analysis of ketone AH products 

The reaction mixtures were analyzed either by GC with a chiral column or by 1H NMR/enantioselective HPLC 

to measure conversion and enantiomeric excess. Absolute configurations were determined by comparing the 

elution order with previous data obtained with the same column, unless otherwise stated. 

1-Phenylethanol (P69) 
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Conversion and e.e. were determined by chiral GC.[3c,d] 

Capillary column: MEGA-DEX DAC Beta, diacetyl-tert-butylsilyl-β-cyclodextrin, 0.25 μm; diameter = 0.25 

mm; length = 25 m; carrier: hydrogen; inlet pressure: 1 bar; oven temperature: 95 °C for 20 min: tsub. = 4.76 

min; tR = 10.36 min; tS = 12.39 min. 

2,2,2-Trifluoro-1-phenylethan-1-ol (P70)[4]  

Conversion was determined by 1H NMR, the product was purified by flash chromatography (hexane/ethyl 

acetate = 9/1) and then analyzed by enantioselective HPLC.[4] 

HPLC conditions of e.e. determination: column: Chiralcel OD-H, 0.8 mL/min, 95:5 hexane/iPrOH, λ = 210 

nm, tS = 12.7 min, tR = 21.5 min. 

GC conditions for determining conversion and e.e. were also established. Capillary column: MEGA-DEX 

DAC Beta, diacetyl-tert-butylsilyl-β-cyclodextrin, 0.25 μm; diameter = 0.25 mm; length = 25 m; carrier: 

hydrogen; inlet pressure: 1 bar; oven temperature: 100 °C for 20 min: tsub. = 1.38 min; tS = 8.97 min, tR = 10.23 

min; 

1-Phenylpropan-1-ol (P71) 

Conversion and e.e. were determined by chiral GC.[3c,d] 

Capillary column: MEGA-DEX DAC Beta, diacetyl-tert-butylsilyl-β-cyclodextrin, 0.25 μm; diameter = 0.25 

mm; length = 25 m; carrier: hydrogen; inlet pressure: 1 bar; oven temperature: 120 °C for 15 min: tsub. = 2.91 

min; tR = 3.45 min; tS = 3.58 min. 

1-(Naphthalen-2-yl)ethan-1-one (P72) 

Conversion and e.e. were determined by chiral GC.[3c.d]  

Capillary column: MEGA-DEX DAC Beta, diacetyl-tert-butylsilyl-β-cyclodextrin, 0.25 μm; diameter = 0.25 

mm; length = 25 m; carrier: hydrogen; inlet pressure: 1 bar; oven temperature: 150 °C for 20 min: tsub. = 9.23 

min; tR = 14.89 min; tS = 16.07 min. 

3,4-Dihydronaphthalen-2(1H)-one (P73) 

Conversion and e.e. were determined by chiral GC. Capillary column: MEGA-DEX DAC Beta, diacetyl-tert-

butylsilyl-β-cyclodextrin, 0.25 μm; diameter = 0.25 mm; length = 25 m; carrier: hydrogen; inlet pressure: 1 

bar; oven temperature: 110 °C for 40 min: tR = 18.74 min; tS = 19.43 min; tsub. = 26.03 min. Absolute 
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configurations were assigned by comparing the sign of optical rotation with literature data ([α]D
23 = -51.4, c 

0.70 in CHCl3, 82% e.e., S).[29] 

 

4.4.3.2 Analysis of ketimine AH products 

Conversions were determined by 1H NMR analysis of the crude reaction mixtures. After purification by flash 

chromatography (hexane/ethyl acetate/triethylamine, 89.6/10/0.4), the enantiomeric excesses were determined 

by HPLC analysis with a chiral column. 

4-Methoxy-N-(1-phenylethyl)aniline (P1) 

Column: Chiralpak AD-H, 0.8 mL/min, 97:3 hexane/iPrOH, λ = 210 nm, tR = 11.79 min, tS = 13.40 min. 

Absolute configuration was determined by comparison of the sign of optical rotation with literature data ([α]D
15 

= +8.5, c 0.9 in CHCl3, 98% e.e., R).[30] 

4-Methoxy-N-(1-(naphthalen-2-yl)ethyl)aniline (P20) 

Column: Chiralcel OD-H, 0.5 mL/min, 9:1 hexane/iPrOH, λ = 210 nm, tR = 15.70 min, tS = 17.73 min. Absolute 

configuration was determined by comparing the elution order with previous data obtained with the same 

column.[30a] 

4-Methoxy-N-(1-phenylpropyl)aniline (P22) 

Column: Chiralcel OD-H, 0.8 mL/min, 98:2 hexane/iPrOH, λ = 210 nm, tR = 10.66 min, tS = 11.90 min. 

Absolute configuration was determined by comparing the elution order with previous data obtained with the 

same column.[30a] 

4-Methoxy-N-(octan-2-yl)aniline (P25) 

Column: Phenomenex Cellulose 3 (5 μm), 0.5 mL/min, 100:1 hexane/iPrOH, λ = 210 nm, tR = 14.93 min, tS = 

15.57 min. Absolute configuration was determined by comparing the elution order with previous data obtained 

with the same column.[30a] 

4.4.4 Synthesis of chiral macrocyclic complexes 

4.4.4.1 Synthesis of CICs 9aq and 9ar 

tert-Butyl 4-iodobenzoate (40)[7] 
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 Three drops of DMF were added to a suspension of 4-iodobenzoic acid (4.8616 g, 19.6 

mmol, 1 eq.) in thionyl chloride (35.6 mL). The mixture was heated to reflux and stirred 

for 1 hour, during which time it became a clean pale green solution. After completion of 

the reaction, the excess of thionyl chloride was removed under reduced pressure. The residual yellowish solid 

was dissolved in dry THF (48 mL) and cooled down to 0 °C. To this solution was added slowly, over the period 

of 1 hour and under constant stirring, a solution of potassium tert-butylate (4.84 g, 43.12 mmol, 2.2 eq.) in dry 

THF (72 mL). During the addition the temperature was not allowed to exceed 5 °C. The suspension was stirred 

for 1 hour at 0 °C and carefully quenched with water (5 mL). The resulting solution was concentrated under 

reduced pressure, and additional water (100 mL) was added. The mixture was extracted with diethyl ether (3 

× 100 mL). Combined organic phase was washed with 5% NaOH solution (100 mL) and with brine (2 × 100 

mL), then dried over MgSO4 and evaporated to give the pure product as a light yellow oil. Yield: 5.6 g (94%). 

1H-NMR (400 MHz, CDCl3): δ 7.77 (d, J = 8.6 Hz, 2H), 7.69 (d, J = 8.6 Hz, 2H), 1.58 (s, 9H). 

Di-tert-butyl 4,4'-(octa-1,7-diyne-1,8-diyl)dibenzoate (41) 

In Schlenk tube fitted with a Teflon cap, dichlorobis(triphenylphosphine) 

palladium (4.1 %, 207.3 mg, 0.2954 mmol) and CuI (4.1 %, 56.3 mg, 0.2954 mmol) 

were added to a solution of compound 40 (4.38 g, 14.41 mmol, 2 eq.) and 1,7-

octadiyne (765 mg, 7.2 mmol, 1.0 eq.) in dry 1:1 THF/TEA (154 mL) at r.t. under N2. The reactor was sealed 

and the stirred mixture heated to 60 °C under 16 hours. The resulting mixture was concentrated under reduced 

pressure. The residue was disolved in DCM (100 mL) and washed with sat. aq. NH4Cl (50 mL) and brine (2 × 

50 mL). The organic phase was dried over MgSO4 and evaporated to give the crude product. The residue was 

purified by flash column chromatograph (98:2 hexane/AcOEt) to afford the pure product as a pale yellow solid. 

Yield: 2.48 g (75%). M.p. = 114.8 °C; 1H-NMR (400 MHz, CDCl3): δ 7.89 (d, J = 8.4 Hz, 4H), 7.42 (d, J = 

8.4 Hz, 4H), 2.52-2.49 (m, 4H), 1.80 (pen, J = 3.5 Hz, 4H), 1.59(s, 18H); IR (film): ν = 3650.6, 3403.7, 2977.6, 

2932.2, 2864.7, 2229.3, 1934.3, 1711.5, 1605.5, 1550.1, 1506.1, 1478.2, 1457.0, 1428.0, 1403.9, 1392.4, 

1368.3, 1305.5, 1294.0, 1280.5, 1256.4, 1163.8, 1116.6, 1096.3, 1017.3, 858.2, 848.5 cm-1; ESI-MS (+): m/z 

481.54 [M+Na]+ (calcd. for C30H34NaO4: 481.24). 

CIC 9ap 
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In a Schlenk tube fitted with a Teflon-topped screw cap, distilled toluene (44 mL) was 

added to a mixture of the diyne 41 (2 g, 4.36 mmol, 1.0 eq.) and Fe2(CO)9 (3.17 g, 8.72 

mmol, 2.0 eq.) under N2. The mixture was heated to 110 °C and stirred overnight. After 

cooling down to r.t., the products were purified by column chromatography (5:1 

hexane/AcOEt) to afford the pure iron complexes. Yield: 1.83 g (67%). M.p. = 90.8 °C; 

1H-NMR (400 MHz, CD2Cl2): δ 8.00 (d, J = 8.5 Hz, 4H), 7.80 (d, J = 8.5 Hz, 4H), 2.82-2.72 (m, 4H), 1.95 

(pen, J = 3.2 Hz, 4H), 1.59 (s, 18H); 13C-NMR (100 MHz, CD2Cl2): δ 209.2, 169.8, 165.6, 136.7, 129.9, 129.8, 

101.6, 81.5, 80.7, 28.5, 24.3, 22.7; IR (film): ν = 2925.5, 2854.1, 2062.5, 2006.6, 1711.5, 1642.1, 1607.4, 

1456.0, 1392.4, 1368.3, 1295.0, 1257.4, 1167.7, 1111.8, 108.23, 848.5, 797.7, 773.3, 720.3, 700.0, 657.6, 

635.4, 618.1cm-1; ESI-MS (+): m/z 649.32 [M+Na]+ (calcd. for C34H34FeNaO8: 649.15). 

CIC 9aq 

To a solution of 9ap (1.8 mg, 2.87 mmol, 1.0 eq.) in dry DCM (19 mL) was added 2, 2, 

2-trifluoroacetic acid (8.54 mL) at 0 °C under N2. The reaction mixture was stirred at r.t. 

for 3h. Thin layer chromatography showed that starting material was consumed 

completely. The suspension was diluted with dicloromethane and filtered, and the 

collected yellow solid was washed with DCM and dried under reduced pressure to give product. Yield: 1.48 g 

(100%). M.p.: 207 °C; 1H-NMR (400 MHz, d6-DMSO): δ 7.99 (d, J = 8.5 Hz, 4H), 7.83 (d, J = 8.5 Hz, 4H), 

2.84 (dt, J = 16.7, 5.2 Hz, 2H), 2.68-2.61 (m, 2H), 1.94-1.83 (m, 4H); 13C-NMR (100 MHz, d6-DMSO): δ 

208.8, 168.4, 166.9, 136.4, 129.9, 129.6, 129.2, 101.2, 79.5, 23.0, 21.5; IR (film): ν = 3612.02, 3582.13, 

2934.16, 2076.96, 2007.53, 1719.23, 1666.2, 1610.27, 1535.06, 1404.89, 1245.79, 665.32 cm-1; ESI-MS (+): 

m/z 537.68 [M+Na]+ (calcd. for C26H18FeNaO8: 537.02). 

CIC 9ar 

To a solution of 9aq (400 mg, 0.78 mmol, 1.0 eq.) and pentafluorophenol (315 mg, 

1.71 mmol, 2.2 eq.) in DMF (4 mL) at 0 °C were added EDC (447.3 mg, 2.33 mmol, 

3.0 eq.) and DMAP (38 mg, 0.31 mmol, 0.4 eq.) under N2. The reaction mixture was 

stirred at r.t. for 16 h followed by addition of saturated solution of NH4Cl (15 mL). 

The mixture was extracted with DCM (3 × 20 mL), and the combined organic extracts 

were washed with brine, dried over MgSO4, filtered, and concentrated under reduced 

pressure. The crude products were purified by column chromatography (DCM) to afford the pure iron 
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complexes as a yellow solid. Yield: 645 mg (98%). M.p. = 218.2°C; 1H-NMR (400 MHz, CD2Cl2): δ 8.24 (d, 

J = 8.6 Hz, 4H), 8.00 (d, J = 8.6 Hz, 4H), 2.90-2.79 (m, 4H), 2.0 (pen, J = 3.3 Hz, 4H); 13C-NMR (100 MHz, 

CD2Cl2): δ 208.8, 169.7, 162.8, 139.5, 131.2, 130.5, 126.7, 101.8, 80.0, 24.5, 22.7; IR (film): ν = 3249.5, 

1947.7, 2069.3, 2014.3, 1759.7, 1643.1, 1607.4, 1520.6, 1472.4, 1450.2, 1402.0, 1321.0, 1251.6, 1187.0, 

1146.5, 1049.1, 1014.4, 996.1, 978.7, 898.7, 858.2, 791.6, 764.6, 739.6, 718.3, 692.3, 678.8 cm-1; ESI-MS (+): 

m/z 868.95 [M+Na]+ (calcd. for C38H16F10FeNaO8: 868.99). 

 

4.4.4.2 Synthesis of diamines 43a-d 

4.4.4.2.1 General produce for the synthesis of Boc-protected diamines 42a-d 

To a stirred solution of Boc-protected amino acid or amine (2 mmol, 2.0 eq.) and phenylenediamine or 

terephthalic acid (1 mmol, 1.0 eq.), respectively, in DCM was added EDC (3 mmol, 3.0 eq.) and DMAP (0.4 

mmol, 0.4 eq.) at 0 °C. The mixture was stirred at r.t. for 4 h followed by addition of saturated solution of 

NH4Cl. The reaction mixture was extracted with DCM, and the combined organic phases were washed with 

brine, dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by 

column chromatography (7:3 hexane/AcOEt or 95:5 DCM/MeOH) to afford the pure product. 

Di-tert-butyl ((2S,2'S)-(1,2-phenylenebis(azanediyl))bis(1-oxo-3-phenylpropane-1,2-diyl))dicarbamate 

(42a) 

Prepared from Boc-L-phenylalanine according to the General procedure. 

White solid; Yield: 578.2 mg (96%). M.p. = 112.5 °C; 1H-NMR (400 MHz, 

CD2Cl2): δ 8.23 (s, 2H), 7.37-7.18 (m, 14H), 5.22 (bs, 2H), 4.45-4.40 (m, 2 H), 

3.26 (dd, J = 14.0, 6.0 Hz, 2H), 3.06-3.01 (m, 2H), 1.4 (s, 18H); 13C-NMR (100 

MHz, CD2Cl2): δ 171.0, 155.7, 137.0, 130.5, 129.5, 128.5, 126.9, 126.3, 125.3, 80.1, 56.4, 38.2; IR (film): ν = 

3736.4, 3650.6, 3310.2, 3027.7, 2975.6, 2931.3, 2842.6, 2363.3, 1671.0, 1599.7, 1509.0, 1451.2, 1390.4, 

1365.4, 1248.7, 1161.9, 1050.1, 1031.7, 1019.2, 918.9, 852.4, 752.1, 699.1 cm-1; ESI-MS (+): m/z 625.41 

[M+Na]+ (calcd. for C34H42N4NaO6: 625.30). 

Di-tert-butyl ((2S,2'S)-(1,3-phenylenebis(azanediyl))bis(1-oxo-3-phenylpropane-1,2-diyl))dicarbamate 

(42b) 
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Prepared from Boc-L-phenylalanine according to the General 

procedure. White solid; Yield: 710.7 mg (59%). M.p.= 123.8 °C; 1H-

NMR (400 MHz, CD2Cl2): δ 8.99 (s, 2H), 7.69 (d, J = 2.1 Hz, 1H), 

7.29-7.16(m, 10H), 6.96 (m, 3H), 5.62 (d, J = 8.2 Hz, 2H), 4.78-4.74 (m, 2 H), 3.20 (dd, J = 14.0, 5.6 Hz, 2H), 

3.00-2.94 (m, 2H), 1.43 (s, 18H); 13C-NMR (100 MHz, CD2Cl2): δ 170.8, 157.0, 138.9, 137.5, 129.8, 129.1, 

127.3, 115.5, 111.8, 81.0, 57.1, 39.0, 28.7; IR (film): ν = 3686.3, 3673.7, 3667.0, 3646.7, 3626.5, 3616.8, 

3606.2, 2976.6, 2945.7, 2832.9, 2516.7, 2220.6, 2038.4, 1694.2, 1681.6, 1614.1, 1565.0, 1556.3, 1538.9, 

1504.2, 1494.6, 1486.9, 1454.1, 1428.0, 1392.4, 1367.3, 1288.2, 1252.5, 1167.7, 1113.7, 1081.9, 1031.7, 918.0, 

857.2, 783.0, 741.5, 699.0 cm-1; ESI-MS (+): m/z 625.70 [M+Na]+ (calcd. for C34H42N4NaO6: 625.30). 

tert-Butyl ((1S,2S)-2-aminocyclohexyl)carbamate (44)[17] 

(1S,2S)-Cyclohexane-1,2-diamine (1 g, 8.76 mmol, 3.0 eq.) was dissolved in CH2Cl2 (32.7 mL) 

followed by dropwise addition of a solution of (Boc)2O (637.1 mg, 2.92 mmol, 1.0 eq.) in 15 

mL of DCM at r.t. After addition the reaction was stirred for 7 h at r.t. The reaction mixture was 

washed with H2O (3 × 18 mL), the organic phase was dried over MgSO4, and concentrated under reduced 

pressure. The residue was purified by column to give light yellow solid. Yield: 710.7 mg (59%). 1H-NMR (400 

MHz, CD2Cl2): δ 4.5 (s, 1H), 3.12 (d, J = 10.9 Hz, 1H), 2.31 (td, J = 10.3, 4.0 Hz, 1H), 2.01-1.93 (m, 2H), 

1.69 (dt, J = 12.1, 2.7 Hz, 2H), 1.44 (s, 9H), 1.32-1.06 (m, 4H); 13C-NMR (100 MHz, CD2Cl2): δ 156.2, 79.2, 

57.7, 55.7, 35.3, 32.9, 28.5, 25.3, 25.1. 

Di-tert-butyl ((1S,1'S,2S,2'S)-(phthaloylbis(azanediyl))bis(cyclohexane-2,1-diyl))dicarbamate (42c) 

The compound 44 (150 mg, 0.70 mmol, 1.0 eq.) was added to a stirring solution of phthalic 

anhydride (103.7 mg, 0.70 mmol, 1.0 eq.) in CHCl3 (7.5 mL); a white precipitate was form. 

The mixture was heated to reflux and stirred for 3 h, then it was cooled down to r.t. and 

concentrated under reduced pressure. The crude product was used directly for next step. 

To a stirred solution of conpound 44 (150 mg, 0.70 mmol, 1.0 eq.) and the crude product 

(0.47 mmol) in DCM (6 mL) was added EDC (201.3 mg, 1.05 mmol, 1.5 eq.) and DMAP (17.1 mg, 0.14 mmol, 

0.2 eq.) at 0 °C. The resulting mixture was stirred at r.t. for 5 h. The mixture was concentrated under reduced 

pressure and purified by column chromatography (97:3 DCM/MeOH) to afford the pure product as a white 

solid. Yield: 254.2 mg (65%). M.p. = 210.7 °C; 1H-NMR (400 MHz, CD2Cl2): δ 7.51-7.30 (m, 4H), 7.01 (s, 

2H), 4.98 (s, 2H), 3.76-3.68 (m, 2H), 3.40 (d, J = 10.2 Hz, 2H), 2.13-2.03 (m, 4H), 1.77-1.73 (m, 4H), 1.39 (s, 
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18H), 1.35-1.23 (m, 8H); 13C-NMR (100 MHz, CD2Cl2): δ 169.4, 157.0, 135.9, 130.4, 128.6, 79.7, 33.3, 32.8, 

28.7, 25.5, 25.3; IR (film): ν = 3353.6, 2977.6, 2932.2, 2858.0, 1688.4, 1645.0, 1595.8, 1520.6, 1452.1, 1391.4, 

1365.4, 1321.0, 1301.7, 1254.5, 1237.1, 1172.5, 1052.9, 1013.4, 956.5, 870.7, 783.0, 737.6, 694.2, 640.3 cm-

1; ESI-MS (+): m/z 581.59 [M+Na]+ (calcd. for C30H46N4NaO6: 581.33). 

Di-tert-butyl ((1S,1'S,2S,2'S)-(terephthaloylbis(azanediyl))bis(cyclohexane-2,1-diyl))dicarbamate (42d) 

Prepared from conpound 44 according to the General procedure. White solid; 

Yield: 320.7 mg (82%). 1H-NMR (400 MHz, 4:1 CD2Cl2/CD3OD ): δ 7.83 (s, 

4H), 7.78 (d, J = 8.0 Hz, 2H), 5.66 (d, J = 8.9 Hz, 2H), 3.69 (q, J = 9.8, 8.9 Hz, 

2H), 3.42 (d, J = 8.9 Hz, 2H), 2.09 (q, J = 5.3, 4.4 Hz, 2H), 1.95 (d, J = 8.6 Hz, 2H), 1.77-1.73 (m, 4H), 1.33-

1.28 (m, 8H) 1.28 (s, 18H); 13C-NMR (100 MHz, 4:1 CD2Cl2/CD3OD): δ 167.9, 158.0, 137.6, 127.8, 80.1, 

56.3, 54.1, 33.0, 32.7, 28.6, 25.7, 25.2;  IR (film): ν = 3583.1, 3349.8, 3304.4, 2921.6, 2856.1, 2487.7, 1684.5, 

1632.5, 1544.7, 1525.4, 1502.3, 1421.3, 1365.4, 1323.9, 1288.2, 1240.0, 1173.5, 1082.8, 1017.3, 854.3, 656.6 

cm-1; ESI-MS (+): m/z 582.68 [M+Na]+ (calcd. for C30H46N4NaO6: 581.33). 

4.4.4.2.2 General produce for the synthesis of diamines 43a-d 

Boc-protected diamines (1 mmol, 1.0 eq.) was added to a stirred solution of CF3COOH (4.2 mL) in 

dichloromethane (8.5 mL) at r.t. The mixture was stired at r.t. for 30 min, diluted with dichloromethane (10 

mL), basified with aq 0.5 N NaOH. The organic layer was separated, dried over anhydrous MgSO4 and 

evaporated to give the desired diamine. 

(2S,2'S)-N,N'-(1,2-Phenylene)bis(2-amino-3-phenylpropanamide) (43a) 

Prepared from Boc-protected diamine 43a according to the General procedure. 

White solid; Yield: 313.9 mg (94%). M.p. = 109.7 °C; 1H-NMR (400 MHz, 

CD2Cl2 ): δ 9.45 (s, 2H), 7.63 (dd, J = 6.0, 3.5 Hz, 2H), 7.35-7.20 (m, 12H), 

3.71 (dd, J = 9.2, 4.2 Hz, 2H), 3.30 (dd, J = 13.8, 4.2 Hz, 2H), 2.78 (dd, J = 13.8, 9.2 Hz, 2H),; 13C-NMR (100 

MHz, CD2Cl2): δ 173.6, 138.5, 130.7, 129.9, 129.2, 127.3, 126.2, 124.9, 57.5, 41.4; IR (film): ν = 3383.5, 

3296.7, 3059.5, 3026.7, 2924.5, 2852.2, 1673.0, 1597.7, 1518.7, 1496.5, 1454.1, 1303.6, 1265.1, 1180.2, 

1103.1, 1074.2, 1030.8, 918.9, 845.6, 754.0, 701.0cm-1; ESI-MS (+): m/z 403.11 [M+H]+ (calcd. for 

C24H27N4O2: 403.21). 

(2S,2'S)-N,N'-(1,3-Phenylene)bis(2-amino-3-phenylpropanamide) (43b) 
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Prepared from Boc-protected diamine 42b according to the General 

procedure. White solid; Yield: 467.5 mg (100%). M.p. = 80.8 °C; 1H-NMR 

(400 MHz, CD2Cl2): δ 7.76 (t, J = 2.0 Hz, 1H), 7.30-7.18 (m, 13H), 3.68 

(t, J = 6.9 Hz, 2H), 3.08 (dd, J = 13.3, 6.5 Hz, 2H), 2.89 (dd, J = 13.3, 7.2 Hz, 2H),; 13C-NMR (100 MHz, 

CD2Cl2): δ 175.1, 139.7, 138.7, 130.4, 129.6, 127.8, 127.8, 117.3, 113.5, 58.3, 42.6; IR (film): ν = 3297.7, 

3059.5, 3027.7, 2925.5, 2851.2, 1680.7, 1607.4, 1530.2, 1493.6, 1453.1, 1422.2, 1303.6, 1264.1, 1208.2, 

1164.8, 1094.4, 1029.8, 878.4, 786.8, 737.6, 701.0, 643.1 cm-1; ESI-MS (+): m/z 425.27 [M+Na]+ (calcd. for 

C24H26N4NaO2: 425.20). 

N1,N2-Bis((1S,2S)-2-aminocyclohexyl)phthalamide (43c) 

Prepared from Boc-protected diamine 42c according to the General procedure. White solid; 

Yield: 467.5 mg (100%). M.p. = 213.2 °C; 1H-NMR (400 MHz, CD2Cl2): δ 7.53 (dd, J = 5.7, 

3.4 Hz, 2H), 7.45 (dd, J = 5.7, 3.4 Hz, 2H), 6.68 (s, 2H), 3.58 (ddd, J = 13.1, 10.7, 6.6 Hz, 

2H), 2.44 (td, J = 10.3, 4.0 Hz, 2H), 2.02 (dt, J = 9.4, 2.9 Hz, 2H), 1.92-1.87 (m, 2H), 1.76-

1.71 (m, 4H), 1.37-1.17 (m, 8H); 13C-NMR (100 MHz, 9:1 CD2Cl2/CD3OD): δ 170.5, 136.5, 

130.4, 127.9, 56.8, 34.7, 32.6, 25.7, 25.5; IR (film): ν = 3414.4, 2932.2, 2858.0, 2362.4, 1635.3, 1592.9, 1545.6, 

1449.2, 1387.5, 1333.5, 1165.8, 1114.7 cm-1; ESI-MS (+): m/z 359.26 [M+H]+ (calcd. for C20H31N4O2: 359.24). 

N1,N4-Bis((1S,2S)-2-aminocyclohexyl)terephthalamide (TFA salts, 43d) 

Prepared from Boc-protected diamine 42d according to the General procedure 

without treatment. Yield: 296.5 mg (100%). M.p. = 259.5 °C; 1H-NMR (400 

MHz, CD3OD): δ 9.55 (s, 4H), 5.61 (td, J = 11.2, 4.3 Hz, 2H), 4.72 (td, J = 

11.2, 4.3 Hz, 2H), 3.73-3.69 (m, 2H), 3.62-3.56 (m, 2H), 3.45-3.41 (m, 4H), 

3.18-2.94 (m, 8H); 13C-NMR (100 MHz, CD3OD): δ 169.8, 138.1, 128.8, 55.8, 53.0, 32.5, 31.2, 25.6. 25.0; IR 

(film): ν = 3310.2, 2932.2, 1677.8, 1630.5, 1535.1, 1331.6, 1206.3, 648.9 cm-1; ESI-MS (+): m/z 359.32 

[M+Na]+ (calcd. for C20H31N4O2: 359.24). 

 

4.4.4.3 General produce for the synthesis of iron complexes 9ga, 9gc and 9gd 

To a solution of CIC 9aq (0.2 mmol, 1.0 eq.) in dry DMF (20 mL), HATU (0.48 mmol, 2.4 eq.), HOAt (0.48 

mmol, 2.4 eq.) and DIPEA (2.4 mmol, 12 eq.) was added at 0 °C under N2. After 15 min, a solution of chiral 
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diamine (0.24 mmol, 1.2 eq.) in DMF (20 mL) was added dropwise and the resulting mixture was stirred 

overnight at r.t. The mixture was concentrated under reduced pressure. The residue was dissolved in DCM. 

The resulting solution was washed with a 1 M aqueous solution of KHSO4 and a sat. solution of NaHCO3, 

dried over Na2SO4 and concentrated. The products were purified by column chromatography (95:5 

DCM/MeOH) to afford the pure product. 

CIC 9ga 

Prepared from CIC 9aq and chiral diamine according to the General procedure. 

Yield: 43.6 mg (51%).  

1H-NMR (400 MHz, CD2Cl2): δ 8.72-8.53 (m, 2H), 7.59-7.04 (m, 22H), 5.01-

4.87 (m, 2H), 3.44-3.26 (m, 4H), 2.52-2.30 (m, 4H), 1.80-1.75 (m, 4H); ESI-MS 

(+): m/z 903.16 [M+Na]+ (calcd. for C50H40FeN4NaO8: 903.21). 

 

CIC 9gc 

Prepared from CIC 9aq and chiral diamine according to the General procedure. 

Yield: 5.7 mg (11%). 

1H-NMR (400 MHz, CD2Cl2): δ 8.13-7.19 (m, 12H), 3.78-3.74 (m, 2H), 3.08-2.39 

(m, 2H), 2.22-0.84 (m, 24H); ESI-MS (+): m/z 860.17 [M+Na]+ (calcd. for 

C46H44FeN4NaO8: 859.24). 

CIC 9gd 

Prepared from CIC 9aq and chiral diamine according to the General procedure. 

Yield: 41.2 mg (35%).  

1H-NMR (400 MHz, CD2Cl2): δ 7.73-7.64 (m, 12H), 3.94-3.93 (m, 4H), 3.44-3.40 

(m, 4H), 2.70-2.60 (m, 4H), 2.10 (s, 4H), 1.81 (s, 8H), 1.40-1.15 (m, 8H); ESI-

MS (+): m/z 859.42 [M+Na]+ (calcd. for C46H44FeN4NaO8: 859.24). 
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4.4.5 Catalytic tests with chiral macrocyclic iron complexes 9ga, 9gc, and 9gd 

Under argon atmosphere, the pre-catalyst (0.005 mmol) was dispensed into oven-dried glass tubes fitted in an 

aluminum block inside a Schlenk tube. The solvent iPrOH (0.071 mL) was added in each tube. A 0.345 M 

solution of Me3NO in water (0.0.029 mL, 0.01 mmol) was dispensed. The resulting mixture was stirred at r.t. 

for 20 min, during which a deep orange color gradually developed. The substrate (0.1 mmol) were added in 

each vial. Each vial was capped with a Teflon septum pierced by a needle, the block was transferred into the 

autoclave, and stirring was started. After purging four times with hydrogen, the reaction was pressurized at 50 

bar and heating was started (80 °C). The reactions were stirred for 22 h under hydrogen pressure at 80 °C. 

After cooling down to r.t., the mixtures were filtered through a short part of celite and then analyzed for 

conversion and e.e. determination. 

Analysis of acetophenone AH products 

The reaction mixtures were analyzed by GC with a chiral column to measure conversion and enantiomeric 

excess. Absolute configurations were determined by comparing the elution order with previous data obtained 

with the same column. 

1-Phenylethanol (P69) 

Conversion and e.e. were determined by chiral GC.[3c,d] 

Capillary column: MEGA-DEX DAC Beta, diacetyl-tert-butylsilyl-β-cyclodextrin, 0.25 μm; diameter = 0.25 

mm; length = 25 m; carrier: hydrogen; inlet pressure: 1 bar; oven temperature: 95 °C for 20 min: tsub. = 4.76 

min; tR = 10.36 min; tS = 12.39 min. 
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Chapter 5 - MOF-supported CICs 

As discussed in the previous chapters, even though CICs possess interesting catalytic properties,[1] their 

activated forms suffer from stability issues, as they are believed to undergo deactivation through dimerization 

pathways (Scheme 5.1).[2]  

 

Scheme 5.1. Commonly accepted pathway for the deactivation of CICs and HCICs.[2] 

To overcome this limitation, a possible approach is the introduction of steric bulk into the CICs structure to 

prevent the dimerization. In particular, pre-catalyst 9d – featuring bulky cyclooctane rings fused to the 

cyclopentadienone ring – represents a successful example in this sense (see Chapter 2). An alternative strategy 

is represented by complex heterogenization, which may lead to the following general advantages: i) increased 

stability of the active complex, due to site isolation; ii) substrate selectivity based on shape and size of the 

catalyst’s pores; iii) general intrinsic advantages of heterogeneous catalysts, i.e. easy manipulation, separation 

from the reaction product and re-use. 

This chapter describes the efforts I made towards incorporating CICs into metal-organic frameworks (MOFs), 

in collaboration with the research group of Dr. Marco Ranocchiari (Paul Scherrer Institute, Villigen, 

Switzerland), specialized in the synthesis and characterization of these fascinating materials. MOFs are porous 

crystalline solids formed by multi-functionalized organic molecules and inorganic units (metal or metal 

clusters) with a regular – and in some cases predictable – geometry.[3] These porous coordination polymers 

have a strong potential in catalytic transformations due to their unique features,[4] such as presence of multiple 

active sites, tunable porosity, and possibility to adjust structure and environment of the active site, whereas 

their applications are still quite limited. MOFs for catalytic applications may be obtained in different ways: 1) 

by direct synthesis, employing either inorganic nodes [5] or linkers[6] possessing catalytic activity. An example 
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of this approach is the replacement of the terephthalate linkers of MOF-5 (Figure 5.1 A) with the corresponding 

amino-functionalized linkers (Figure 5.1 B).[6e] 2) Encapsulating catalysts into the MOF cavities, whose size 

may be modulated by varying the size of linkers and inorganic units (Figure 5.1 C).[7] 3) By post-synthetic 

modification of an existing MOF, in which catalytically active sites may be introduced by metal exchange, 

linker exchange or by grafting a catalytic complex to functional groups present on the linkers.[8] 

   

 Figure 5.1. A: MOF-5; B: IRMOF-3 containing amino groups (blue); C: MOF-5 cage (green/black) with encapsulated 

catalyst (orange). 

 

5.1 Preparation of MOF-supported CICs 

Our original plan to prepare MOF-supported CIC-pre-catalysts consisted in a direct synthesis performed 

combining suitable CIC- and cyclopentadienone-linkers in the presence of a suitable metal. Based on our 

expertise in the field of CICs and their catalytic applications,[ 9 ] the synthesis of new CICs and new 

cyclopentadienones to be used for the incorporation into MOFs were carried out.  

 

5.1.1 Synthesis of CICs and cyclopentadienones as linkers or active site 

We designed and synthesized a series of new carboxy-substituted CICs (9aq and 9cd-9cf in Figure 5.2) and 

cyclopentadienones (48a-d in Figure 5.2) as linkers for the direct preparation of new MOFs.  

As shown in Scheme 5.2, starting from suitable 1,3-diphenylacetone derivatives (45) and benzil derivatives 

(46), we synthesized cyclopentadienones 47a-c by condensation. Although the starting materials 45b and 46b 

are commercially available, the 1,3-diphenylacetone derivative 45a and the benzil derivative 46a were 

synthesized. According to literature reports,[10] compound 45a could be easily prepared from p-toluic acid 

through esterification, bromination and then reaction with Fe(CO)5 and NaOH under phase-transfer conditions 

B C A 
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(Scheme 5.3 A). Following again known procedures,[11] we also synthesized compound 46a in four steps from 

methyl 4-formylbenzoate (Scheme 5.3 B).  

 

Figure 5.2. Carboxy-substituted CICs (A) and cyclopentadienones (B). 

 

Scheme 5.2. Synthesis of CICs 9cd-9cf and cyclopentadienones 48a-c. 

The synthesis of cyclopentedienone 47a was initially carried out adopting literature conditions (KOH in 

EtOH),[12] which led to the final product in only in low yield (18%). For this reason, different reaction 

conditions were screened on a model reaction (Table 5.1), to identify a general protocol for the condensation 

of diphenylacetones (45) with benzil derivatives (46).  
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Scheme 5.3. Synthesis of compound 45a and 46a. 

Table 5.1. Optimization for the reaction conditions for the synthesis of cyclopentadienones.[a] 

 

# Solvent t-BuOK (eq) T (°C) Yield (%)[b] 

1 THF 0.1 40 0 

2 THF 0.1 70 40 

3 Dioxane 0.1 100 44 

4 DMF 0.05 80 18 

5 DMF 0.1 80 57 

6 DMF 0.2 80 70 

7 DMF 0.3 80 56 

8 DMF 0.5 80 41 

[a] Reaction conditions: 45a/46b = 1:1, 20 h. C0,sub. = 0.122 M (0.122 mmol).  

[b] Isolated yield. 

To improve the yields, we decided to use a non-nucleophilic base (t-BuOK) and a polar aprotic solvents. No 

product was obtained at low temperature (40 °C) in THF (Table 5.1, entry 1), but the yield could be improved 

by increasing the temperature to 70 °C (Table 5.1, entry 2). However, a further increase of temperature (to 

100 °C, reaction performed in dioxane) produced only a slight improvement in terms of yield (Table 5.1, entry 

3 vs. entry 2). Higher yields were obtained running the reaction in DMF at 80 °C (Table 5.1, entry 5 vs. entry 
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2). Test reactions with different amounts of base were performed in DMF at 80 °C (Table 5.1, entries 4-8), and 

the best yield (70%) was obtained using 0.2 equivalents of tBuOK (Table 5.1, entry 6). With the optimized 

conditions (1 eq. of 45, 1 eq. of 46, 0.2 eq. of t-BuOK, DMF, 80 °C, 20 h) in hand, we synthesized compounds 

47b and 47c in good yields (see Schem 5.2). Next, linkers 48a-c were obtained in quantive yields by 

deprotection in the presence of TFA.  

As shown in Scheme 5.2, iron complexes 9cd′-9cf′ were successfully prepared by complexation of 

cyclopentedienones with Fe2(CO)9, then linkers 9cd-9cf were then obtained by treatment of the corresponding 

t-butyl-protected complexes with TFA in DCM. 

Under the above-mentioned conditions, use of 1,2-cyclohexanedione and compound 45a to synthesize the 

corresponding cyclopentadienone 47d failed. Therefore, a different synthetic strategy was designed for the 

synthesis of cyclopentadienone 47d (Scheme 5.4), which was prepared by demetalation of complex 9ap 

(prepared as described in Chapter 4, Section 4.3.1.1) in good yield under the conditions described by Knölker 

et al.[13] Finally, compounds 47d was fully deprotected in the presence of TFA, affording diacid 48d. 

 

Scheme 5.4. Synthesis of cyclopentadienone 48d. 

 

Scheme 5.5. Synthesis of CIC (±)-9at. 
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In order to explore different approaches for the preparation of MOF-supported CICs, we prepared the iron 

complex (±)-9at, bearing a single carboxy group (Scheme 5.5). It should be noted that complex (±)-9at is 

chiral, possessing a stereogenic plane. As at this stage achieving enantioselectivity was not a priority, we did 

not separate the two enantiomeric forms and we used the complex as a racemate. In particular, this design 

would allow the MOF grafting with the complex by formation of an amide bond between the carboxylate of 

(±)-9at and suitable amino groups on the MOF’s structure. Starting from diyne 33 (already prepared in Chapter 

4, Section 4.1.1.1), compound 55 was synthesized by Sonogashira reaction in excellent yield. Subsequently, 

iron complex (±)-9as was prepared by carbonylative cyclization in the presence of Fe2(CO)9 in toluene at 

110 °C in 64% yield. Finally, the desired CIC (±)-9at was obtained by deprotection with TFA in DCM.  

With the aim to find suitable conditions for the grafting reaction with the MOF’s aromatic amino groups, a 

preliminary optimization was carried out on the model reaction of complex (±)-9at with aniline. The carboxylic 

acid was initially converted in the corresponding acyl chloride by reaction with SOCl2, and then reacted with 

aniline in the presence of base and DMAP, affording amide (±)-9au. Optimization of reaction conditions was 

carried out on this model reaction, as shown in Table 5.2: several reaction parameters were varied but, 

unfortunately, the yield could not be brought above 64%.  

Table 5.2. Optimization for the reaction conditions for the synthesis of (±)-9au. 

 

# Solvent DMAP (mol %) T (°C) TEA (eq.) Yield (%)[a] 

1 DCM 5 r.t. 1.5 64 

2 DCM 0 r.t. 1.5 29 

3 THF 5 60 1.5 33 

4 DCM 5 r.t. 3 43 

[a] isolated yield 

To enhance the yield of amide bond formation, three different activated esters ((±)-9av, (±)-9aw and (±)-9ax) 

were prepared (according to published procedures,[14] Scheme 5.6), which may be used for direct amide bond 

formation in the absence of coupling reagents. Complex (±)-9at was reacted with pentafluorophenol, N-

hydroxysuccinimide and N-hydroxyphthalimide, respectively, in the presence of DCC or EDC, to give the 

corresponding esters in moderate to good yields. The activated esters (±)-9av and (±)-9aw, which were 

obtained in good yields, were chosen for optimization of amide bond formation. 
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The activated esters were screened as shown in Table 5.3: condensation of complex (±)-9av with aniline in the 

presence of triethylamine gave better yield in the absence of DMAP (Table 5.3 entry 1 vs. entry 2). In addition, 

the yield decreased when the temperature was lowered from 100 °C to 50 °C (Table 5.3 entry 4 vs. entry 3). 

The yield could not be improved when the reaction was carried out in dioxane rather than in DMF (Table 5.3 

entry 5). While the activated ester (±)-9aw led to the amide bond with similar efficacy to (±)-9av (Table 5.3 

entry 6 vs. entries 1 and 4-5), the better reaction yields for the preparation of the latter starting from acid (±)-

9at prompted us to use the pentafluorophenol ester (±)-9av for the MOF grafting. 

 

Scheme 5.6. Synthesis of activated esters. 

Table 5.3. Optimization for the reaction conditions for the synthesis of (±)-9au. 

 

# Substrate Aniline (eq.) Base (eq.) Solvent Tem. (°C) Time (h) Yield (%)[a] 

1 (±)-9av 1.2 TEA (1.5 ) DMF 100 16 73 

2 (±)-9av 1.2 TEA(1.5), DMAP (0.05) DMF 100 16 62 

3 (±)-9av 0.83 DIPEA (1.7) DMF 50 20 55 

4 (±)-9av 0.83 DIPEA (1.7) DMF 100 20 77 

5 (±)-9av 1.8 DMAP (1.2) Dioxane 100 48 70 

6 (±)-9aw 4 - AcOEt 70 20 73 

[a] isolated yield 

 

5.1.2 Synthesis of MOF-supported CICs 

MOF synthesis, post-synthetic modification and characterization were carried out by the group of Dr. Marco 
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Ranocchiari at the Paul Scherrer Institute (Villigen, Switzerland). The direct synthesis of functionalized MOFs 

using mixtures of a CIC linker (9aq) and a cyclopentadienone linker (48d) was initially attempted but gave no 

results, as no stable MOF could be obtained. It was then decided to attempt to incorporate the iron complexes 

9aq and 9cd-9cf within an existing, known MOF structure. As they possess fairly similar geometry to 9aq, 

several copper MOFs built from benzene-1,3,5-tribenzoate (btb) linkers – i.e. HKUST-1,[ 15 ] MOF-14 

(Cu3btb2)[16] and DUT-34[17] – were deemed suitable for post-synthetic insertion of complex 9aq by linker 

exchange. Several synthetic methods to include 9aq within MOF-14 and DUT-34 structures were tried. After 

several attempts to synthesize defective copper MOFs, IR spectroscopic analysis quickly showed that the linker 

had been never included in the structure under any of the experimental conditions adopted (concentration, 

solvent and additive).  

For this reason, it was decided to adopt a different approach, consisting in the synthesis of MOFs with new 

topologies using the free linkers 48a-d, followed by introduction of the iron complexes 9aq and 9cd-9cf. The 

bidentate linkers 48a and 48c-d were tested in the synthesis of Zr MOFs, which are known for their high 

thermal and chemical stability.[18] No fully crystalline materials could be produced with 48a and 48d, whereas 

the linker 48c led to a partially crystalline MOF, whose structure had a BET surface area of around 170 m2/ g, 

not very high but a very good starting point to start including the Fe complex for preliminary catalytic and 

characterization tests. The tetradentate linker 48b also showed promising results in the synthesis of 

corresponding MOF. Although the structure is mostly amorphous and does not show long range order, the 

surface area of 90 m2/g was found encouraging for further tests. Thus, incorporation of the CIC catalytic moiety 

in these two MOFs was attempted both by post-sytnthetic ligand exchange with CICs 9ce and 9cf and by 

reaction with Fe2(CO)9, in the attempt to convert some of cyclopentadienone linkers 48a and 48d into the 

corresponding CIC linkers. Unfortunately, even these attempts did not lead to incorporation of the Fe(CO)3 

group into the MOF, as measured by IR spectroscopy.  

It was then decided to quit the idea to produce MOFs containing CIC linkers and to graft, instead, a CIC 

complex to a known MOF possessing a suitable functional group. To this end, the MOF Al-MIL-101-NH2 – 

firstly reported by Gascon et al.[19] and largely available in Villigen – was chosen, which possesses free 

aromatic amino groups suitable for grafting carboxy-functionalized CIC complexes by formation of amide 

bonds. The grafting reaction was performed using the activated ester (±)-9av under the optimized conditions 

devised on a model reaction with aniline (see Section 5.1.1), in the presence of DIPEA in DMF. The MOF-

supported CIC GP57-001-060 was successfully obtained and characterized by NMR, IR, BET surface area 
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and powder XRD (most important paramenters are shown in Scheme 5.7). The new MOF showed a very good 

surface area (900 m2)/g), althrough the iron loading was fairly low (0.2326 μmol/mg). 

 

Scheme 5.7. Synthesis of the MOF-supported CIC GP57-001-060. 

 

5.2 Hydrogenation of C=O double bonds with MOF-supported CICs 

I performed a series of preliminary tests of the MOF-supported CIC GP57-001-060 in the hydrogenation of 

acetophenone, and the results obtained are shown in Table 5.4. Several parameters such as solvent, temperature 

for activation, reaction time and concentration of starting substrates and activator, were screened. Poor 

conversion were obtained in iPrOH/H2O due to the poor stability of our MOF in water (Table 5.4 entries 1-3), 

which was later confirmed by experiments run in Villigen. Poor conversion was obtained in the solvent 

mixtures 3:1 toluene/DCM and 3:1 toluene/DCE (Table 5.4 entries 4-5). No benefit could be achieved by 

performing the activation stage at 60 °C (Table 5.4 entry 4 vs. entry 5 and entry 2 vs. entry 3). Slightly increased 

conversions were achieved when DCM was used for the catalyst activation stage and then removed under 

vacuum and replaced by toluene (Table 5.4 entries 6-8). Increasing the substrate concentration also positively 

affected the conversion (Table 5.4 entry 8 vs. entry 7). Poor conversion was obtained when pure toluene was 

employed as solvent (Table 5.4 entry 14), although use of iPrOH for catalyst activation allowed to slightly 

increase the conversion in toluene (Table 5.4 entry 15). The conversion was improved using pure iPrOH as 

solvent, and was found to be affected by the concentration of Me3NO during the activation stage (optimum: 

Cact. = 0.16 M, see Table 5.4 entries 9-10). Slightly improved conversions were obtained by increasing catalyst 
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loading to 5 mol% (Table 5.4 entry 12 vs. entry 10) or extending reaction time to 72 h (Table 5.4 entry 14). 

Table 5.4. Preliminary test and optimization of the obtained MOF-supported CICs in hydrogenation of acetophenone.[a] 

 

# Solvent 
Catalyst 

(mol %) 
Activation conditions C0, sub

 
(M) 

Conversion 

(%)[b] 

1 iPrOH/H2O (5:2) 5 20 min, r.t. (Cact. = 0.1 M) 1 7 

2 iPrOH/ H2O (5:2) 2 20 min, r.t. (Cact. = 0.04 M) 1 3 

3 iPrOH/ H2O (5:2) 2 1 h, 60 °C (Cact. = 0.04 M) 1 1 

4 Toluene/DCM (3:1) 2 20 min, r.t. in DCM (Cact. = 0.08 M) 0.5 9 

5 Toluene/DCE (3:1) 2 1 h, 60 °C in DCE (Cact. = 0.08 M) 0.5 4 

6 Toluene 5 
20 min, r.t. in DCM (Cact. = 0.08 M), 

then vac. down and add toluene 
0.5 18 

7 Toluene 2 
20 min, r.t. in DCM (Cact. = 0.08 M), 

then vac. down and add toluene 
0.5 12 

8 Toluene 2 
20 min, r.t. in DCM (Cact. = 0.08 M), 

then vac. down and add toluene 
1 15 

9 iPrOH 2 20 min, r.t. (Cact. = 0.08 M) 1 24 

10[d] iPrOH 2 20 min, r.t. (Cact. = 0.16 M) 1 28 

11[e] iPrOH 2 20 min, r.t. (Cact. = 0.24 M) 1 20 

12[d] iPrOH 5 20 min, r.t. (Cact. = 0.16 M) 1 35 

13[c,d] iPrOH 2 20 min, r.t. (Cact. = 0.16 M) 1 31 

14[d] Toluene 5 20 min, r.t. (Cact. = 0.16 M) 1 6 

15[d] Toluene 2 20 min, r.t. in iPrOH (Cact. = 0.16 M) 1 13 

[a] Reaction conditions: acetophenone (0.1 mmol), Me3NO/Pre-cat. = 2:1, T = 80 °C, PH2 = 50 bar, 22 h. 

[b] Determined by GC analysis. 

[c] Reaction time is 72 h. 

[d] Me3NO/Pre-cat. = 4:1. 

[e] Me3NO/Pre-cat. = 6:1 

Under the best conditions for ketone hydrogenation, we also carried out a preliminary test in aldehyde 

hydrogenation promoted by MOF GP57-001-060 (results were shown in Table 5.5). Delightfully, our 

functionalized MOFs was found very efficient in the hydrogenation of benzaldehyde, giving an excellent 

conversion (Table 5.5 entry 1). To exclude aldehyde dismutation mechanisms, two control experiments were 

run on the reactions in the absence of catalyst and of both catalyst and Me3NO (Table 5.5 entries 2-3). As no 

conversion was obtained in the latter experiments, we concluded the new MOF GP57-001-060 is efficient in 

aldehyde hydrogenation, excluding the occurrence of dismutation pathhways. Tests on catalyst recyclability 

are in progress in Milan, whereas the possibility to employ MOF GP57-001-060 in flow conditions will be 
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studied in Villigen. 

 

Table 5.5. Preliminary test of the functionalized MOF in hydrogenation of benzaldehyde and control experiments.[a] 

 

# Loading (mol%) Me3NO (mol%) Conversion (%)[b] 

1 2 8 99 

2 - 8 1 

3 - - 1 

[a] Reaction conditions: acetophenone (0.1 mmol)/Me3NO/Pre-cat. = 100:8:2, T = 80 °C, PH2 = 50 bar, 22 h 

[b] Determined by GC analysis.  

 

5.3 Conclusions on MOF-supported CICs 

To directly synthesize MOF-supported CICs, four carboxy-substituted CICs and four carboxy-substituted 

cyclopentadieones were synthesized in good yields in Milan and shipped to the Paul Scherrer Institute (Villigen, 

Switzerland), where MOF synthesis and characterization was carried out in the group of Dr. Marco Ranocchiari. 

As the synthesis of MOFs bearing carboxy-functionalized CICs as linkers proved unsuccessful, it was decided 

to graft the activated ester (±)-9av (synthesized in Milan) onto the known MOF Al-MIL-101-NH2, possessing 

primary amino groups. A first MOF-supported CIC, GP57-001-060, was obtained and characterized by NMR, 

IR, BET surface area and powder XRD. The MOF-supported CIC was tested in Milan in the hydrogenation of 

ketones and aldehydes, giving excellent conversion with the latter substrates. Studies on the recyclability of 

compound GP57-001-060 and the development of imporoved second-generation pre-catalysts are currently 

underway. 

 

5.4 Experimental Section 

This section contains details of the experiments which were carried out by myself in Milan, namely the 

synthesis of CIC and cyclopentadienone linkers and the catalytic tests of the MOF-supported CIC GP57-001-

060 in ketone and aldehyde hydrogenation. No details on the MOF synthesis and characterization carried out 

in Villigen are provided. 
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5.4.1 General remarks 

All reactions were carried out in flame-dried glassware with magnetic stirring under inert atmosphere (nitrogen 

or argon), unless otherwise stated. Solvents for reactions were distilled over the following drying agents and 

transferred under nitrogen: THF (Na), toluene (Na). Dry N,N-dimethylformamide (DMF, over molecular sieves 

in bottles with crown cap) was purchased from Sigma Aldrich and stored under nitrogen. All reagents were 

used without purification. Imines were prepared in Chapter 2. Reactions were monitored by analytical thin-

layer chromatography (TLC) using silica gel 60 F254 pre-coated glass plates (0.25 mm thickness). 

Visualization was accomplished by irradiation with a UV lamp and/or staining with a potassium permanganate 

alkaline solution or with a ninhydrin solution. Flash Column Chromatography (FCC) was performed using 

silica gel (60 Å, particle size 40-64 μm) as stationary phase, following the procedure by Still and co-workers.[20]  

1H-NMR spectra were recorded on a spectrometer operating at 400.13 MHz. Proton chemical shifts are 

reported in ppm (δ) with the solvent reference relative to tetramethylsilane (TMS) employed as the internal 

standard (CDCl3, δ = 7.26 ppm; CD2Cl2 δ = 5.32 ppm; d6-DMSO δ = 2.50 ppm; CD3OD δ = 3.34 ppm). The 

following abbreviations are used to describe spin multiplicity: s = singlet, d = doublet, dd = doublet- doublet, 

t = triplet, q = quartet, m = multiplet. 13C-NMR spectra were recorded on a 400 MHz spectrometer operating 

at 100.56 MHz, with complete proton decoupling. Carbon chemical shifts are reported in ppm (δ) relative to 

TMS with the respective solvent resonance as the internal standard (CDCl3 δ = 77.16 ppm; CD2Cl2 δ = 54.00 

ppm; d6-DMSO δ = 40.45 ppm; CD3OD δ = 49.86 ppm). The coupling constant values are given in Hz. Infrared 

spectra were recorded on a standard FT/IR spectrometer. Melting points were recorded with a standard melting-

point apparatus. 

 

5.4.2 Synthesis of CICs as linkers or active site 

5.4.2.1 Synthesis of 1,3-diphenylacetone derivative 45a  

tert-Butyl 4-methylbenzoate (49)[21] 

SOCl2 (74.7 mL, 1.03 mol, 25 eq.) was added to p-toluic acid (5.61 g, 41.2 mmol, 1 eq.) at 

r.t. Three drops of DMF were added and the suspension was heated to reflux and stirred for 

1 hour. After completion of the reaction, the excess of thionyl chloride was removed in vacuo. The residual 

yellowish solid was dissolved in dry THF (56 mL) and cooled down to 0 °C. A solution of potassium tert-
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butylate (10.17 g, 90.65 mmol, 2.2 eq.) in dry THF (84 mL) was added dropwise over the period of 1 hour. 

During the addition, the temperature must be kept under 5 °C. After addition of tBuOK, the suspension was 

warmed up to r.t. and stirred for 1 hour. The reaction mixture was carefully quenched with water (2 mL). The 

resulting solution was concentrated under reduced pressure and the residue was dissolved in diethyl ether (50 

mL) and diluted with water (50 mL). The aqueous phase was extracted with diethyl ether (2 × 50 mL). The 

combined organic phase was washed with 5% NaOH solution and brine, then dried over Na2SO4 and 

evaporated to give the product. Yield: 6.73 g (85%). 1H-NMR (400 MHz, CDCl3) δ 7.87 (d, J = 8.0 Hz, 2H), 

7.21 (d, J = 7.9 Hz, 2H), 2.40 (s, 3H), 1.59 (s, 9H). 

tert-Butyl 4-(bromomethyl)benzoate (50)[22] 

To a stirred solution of compound 49 (6.73 g, 35.0 mmol, 1 eq.) in tetrachloromethane 

(6.7 mL), NBS (6.23 g, 35.0 mmol, 1 eq.) and benzoyl peroxide (0.85 g, 3.5 mmol, 0.1 

eq.) were added. The mixture was heated under reflux for 5 h under light irradiation. After completion of the 

reaction (TLC), the reaction was cooled down to r.t. and concentrated under reduced pressure. The mixture 

was dissolved in AcOEt and extracted (3 ×100 mL). The combined organic layers was washed with water (2 

× 100 mL) and brine (2 × 100 mL), dried over MgSO4, filtered, and concentrated under reduced pressure. The 

crude compound was purified by flash chromatography (silica gel, 0.5: 99.5 AcOEt/hexane). Yield: 6.07 g 

(64%). 1H-NMR (400 MHz, CDCl3) δ 7.96 (d, J = 8.3 Hz, 2H), 7.43 (d, J = 8.3 Hz, 2H), 4.50 (s, 2H), 1.59 (s, 

9H). 

Di-tert-butyl 4,4'-(2-oxopropane-1,3-diyl)dibenzoate (45a) 

A mixture of compound 50 (6.07 g, 22.4 mmol, 1 eq.), Fe(CO)5 (4.39 

g, 22.4 mmol, 1 eq.), 40% aqueous NaOH (60 mL), and 

tetrabutylammonium bromide [Bu4NBr] (0.89 g, 2.69 mmol, 0.12 eq.) in 62.5 mL of benzene was stirred for 

3h at r.t. under N2. The resulting mixture was poured onto I2-benzene solution and stirred for 0.5h. The mixture 

was washed successively with aqueous Na2S2O3, 10% HCl, and water. The benzene solution was dried (Na2SO4) 

and evaporated, and the residue was purified by flash chromatography (silica gel, 5: 95 AcOEt/hexane). Yield: 

3.13 g (68%). 1H-NMR (400 MHz, CDCl3) δ 7.94 (d, J = 8.3 Hz, 4H), 7.19 (d, J = 8.3 Hz, 4H), 3.77 (s, 4H), 

1.59 (s, 18H). 
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5.4.2.2 Synthesis of benzil derivative 46a 

Dimethyl 4,4'-(1-hydroxy-2-oxoethane-1,2-diyl)dibenzoate (52)[11a] 

To a solution of methyl 4-formylbenzoate (51) (8.21 g, 50 mmol, 1 eq.) 

stirred in 99% ethanol (35 mL) and water (9 mL) sodioum cyanide (0.735 

g, 15 mmol, 0.3 eq.) was added at r.t. The resuilting mixture was stirred at 

30 °C for 15 min. After completion of the reaction (TLC), the crude mixture was concentrated under reduced 

pressure. The resulting mixture was extracted with AcOEt, and the combined organic solution was washed 

with water, dried over Na2SO4 and concentrated under reduced pressure. The product was recrystallized from 

ethanol to give pale yellow needles. Yield: 5.17g (63%). 1H-NMR (400 MHz, CDCl3) δ 8.05 (d, J = 8.5 Hz, 

2H), 7.99 (d, J = 8.4 Hz, 2H), 7.93 (d, J = 8.5 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 6.01 (d, J = 5.9 Hz, 1H), 4.52 

(d, J = 5.9 Hz, 1H), 3.92 (s, 3H), 3.88 (s, 3H). 

Dimethyl 4,4'-oxalyldibenzoate (53)[11a] 

 48% Aqueous hydrobromic acid (18 ml) was added slowly to a stirred 

solution of compound 52 (5.17g, 15.75 mmol, 1 eq.) in DMSO (72 mL). 

The solution was heated to 55 °C for 24 h followed by addition of water 

(48 mL). The mixture was extracted with AcOEt (3 × 100 mL), and combined organic phase was washed with 

water and dried over MgSO4 and concentrated under reduced pressure. Yield: 4.93 g (96%). 1H-NMR (400 

MHz, 1H-NMR (400 MHz, d6-DMSO) δ 8.17 (d, J = 8.5 Hz, 4H), 8.11 (d, J = 8.5 Hz, 4H), 3.91 (s, 6H). 

4,4'-Oxalyldibenzoic acid (54)[11a] 

A solution of compound 53 (3.91g, 12 mmol, 1 eq.) in acetic acid (290 mL) 

was added to a solution of 4:1 H2SO4/H2O (133 mL). The mixture was 

refluxed and stirred for 10 h. Water (200 mL) was added and the mixture 

solution was cooled on ice and then filtered on a Buchner funnel. The solid product on filter was washed with 

water, and dried at 70 °C in vacuo to give a pale yellow solid. Yield: 3.44 g (96%). 1H-NMR (400 MHz, d6-

DMSO) δ 13.52 (s, 2H), 8.15 (d, J = 8.5 Hz, 4H), 8.08 (d, J = 8.5 Hz, 4H). 

Di-tert-butyl 4,4'-oxalyldibenzoate (46a) 
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1,1-Di-tert-butoxy-N,N-dimethylmethanamine (9.35 g, 46 mmol, 4 eq.) 

was added to a solution of acid 54 (3.44 g, 11.5 mmol, 1 eq.) in refluxing 

benzene (115 mL, 0.50 M) over a period of 1 h. After refluxing for 30 min, 

the reaction mixture was cooled to r.t. diluted with water (100 mL). The resulting mixture was extracted with 

benzene (2 × 100 mL). The combined organic layers was washed with saturated sodium bicarbonate (2 × 100 

mL) and brine (2 × 100 mL), dried over Na2SO4, filtered and concentrated under reduced pressure. The crude 

product was purified by flash chromatography (silica gel, 2: 98 AcOEt/hexane). Yield: 3.96 g (84%). 1H-NMR 

(400 MHz, CDCl3) δ 8.11 (d, J = 8.6 Hz, 4H), 8.01 (d, J = 8.6 Hz, 4H), 1.61 (s, 18H). 

 

5.4.2.3 General procedure for the synthesis of cyclopentadienones 47a-c 

Diphenylacetone derivatives 45 (1 mmol, 1 eq.) and benzil derivatives 46 (1 mmol, 1 eq.) were added to a two-

necked round-bottom flask containing 6.2 mL of dry DMF and equipped with a stirring bar under N2. The 

solution was heated to 80 °C for 1 h, then a solution of t-BuOK (0.2 eq., 0.1 mol/mL) in dry DMF was added 

drop-wise to the warm solution. The mixture was stirred for 24 h at 80 °C. After removing the solvent under 

reduced pressure, the crude product was purified by flash chromatography (silica gel, 5: 95 AcOEt/hexane) to 

give the desired products. 

Di-tert-butyl 4,4'-(2-oxo-4,5-diphenylcyclopenta-3,5-diene-1,3-diyl)dibenzoate (47a) 

Prepared from diphenylacetone 45a and benzyl 46b according to the 

General procedure. Yield: 1.34 mg (70%). M.p. = 213 °C; 1H-NMR 

(400 MHz, CD2Cl2) δ 7.84 (d, J = 8.5 Hz, 4H), 7.29-7.26 (m, 6H), 

7.22-7.18 (m, 4H), 6.94-6.92 (m, 4H), 1.56 (s, 18H); 13C-NMR (100 

MHz, CD2Cl2) δ 199.7, 165.8, 156.7, 135.5, 133.2, 131.5, 130.4, 129.7, 129.5, 129.4, 128.7, 125.6, 81.4, 28.4; 

IR (film): ν = 3370.0, 2973.7, 2919.7, 1711.5, 1605.5, 1367.3, 1295.9, 1164.8, 1108.9, 1024.0 cm-1; ESI-MS 

(+): m/z 607.01 [M+Na]+ (calcd. for C39H36NaO5: 607.25). 

Tetra-tert-butyl 4,4',4'',4'''-(5-oxocyclopenta-1,3-diene-1,2,3,4-tetrayl)tetrabenzoate (47b) 

Prepared from diphenylacetone 45a and benzyl 46a according to the 

General procedure. Yield: 2.23 g (71%). M.p. = 241 °C; 1H-NMR (400 

MHz, CD2Cl2) δ 7.85 (d, J = 8.8 Hz, 4H), 7.80 (d, J = 8.7 Hz, 4H), 7.25 
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(d, J = 8.8 Hz, 4H), 6.99 (d, J = 8.7 Hz, 4H), 1.56 (s, 36H);  13C-NMR (100 MHz, CD2Cl2) δ 199.1, 165.7, 165.4, 

155.3, 137.1, 134.8, 133.0, 131.9, 130.4, 129.8, 129.6, 129.6, 126.5, 81.9, 81.5, 28.4, 28.4;  IR (film): ν = 3612.0, 

3582.1, 2976.59, 2934.2, 1713.4, 1606.4, 1368.3, 1295.0, 1253.5, 1165.8, 1116.6, 1017.3, 848.5, 665.3 cm-1; ESI-

MS (+): m/z 807.18 [M+Na]+ (calcd. for C49H52NaO9: 807.35). 

Di-tert-butyl 4,4'-(4-oxo-3,5-diphenylcyclopenta-2,5-diene-1,2-diyl)dibenzoate (47c) 

Prepared from diphenylacetone 45b and benzyl 46a according to the General 

procedure. Yield: 1.72 g (67%). M.p. = 219.3 °C; 1H-NMR (400 MHz, CD2Cl2) 

δ 7.80 (d, J = 8.4 Hz, 4H), 7.28-7.25 (m, 6H), 7.22-7.19 (m, 4H), 7.01 (d, J = 

8.4 Hz, 4H), 1.56 (s, 18H); 13C-NMR (100 MHz, CD2Cl2) δ 200.2, 165.5, 154.0, 

137.7, 132.7, 131.0, 130.7, 129.6, 128.7, 128.4, 126.9, 81.8, 28.4; IR (film): ν = 2975.6, 2360.4 2342.1, 1714.4, 

1457.0, 1394.3, 1368.3, 1295.0, 1164.8, 1117.6, 1017.3, 866.8, 806.1, 756.0, 723.2, 695.2, 658.2 cm-1; ESI-

MS (+): m/z 607.28 [M+Na]+ (calcd. for C39H36NaO5: 607.25).  

 

5.4.2.4 General procedure for the synthesis of CICs 9cd′-9cf′ 

In a dried Schlenk tube fitted with a Teflon-topped screw cap, the cyclopentadienone 47 (1 mmol, 1 eq.) and 

Fe2(CO)9 (2 mmol, 2 eq.) were introduced in freshly distilled toluene (11.5 mL) under N2. The reaction mixture 

was stirred at 110 °C for 20 hours. The resulting mixture was cooling down to r.t. and filtered through celite 

(rinsing with AcOEt). After removal of the solvent, the residue was purified by flash column chromatograph 

(9:1 hexane/ AcOEt) to afford the product as a light yellow solid. 

CIC 9cd′ 

Prepared from compound 47a according to the General procedure. Yield: 589.3 mg 

(90%). M.p. = 218 °C; 1H-NMR (400 MHz, CD2Cl2) δ 7.84 (d, J = 8.5 Hz, 4H), 7.64 

(d, J = 8.5 Hz, 4H), 7.30-7.17 (m, 10H), 1.56 (s, 18H); 13C-NMR (100 MHz, CD2Cl2) 

δ 208.8, 170.3, 165.6, 136.3, 132.3, 131.9, 130.5, 130.2, 129.5, 129.5, 128.8, 105.4, 

81.6, 28.4; IR (film): ν = 2922.6, 2842.6, 2299.7, 2070.2, 2023.0, 1709.6, 1653.7, 1053.6 cm-1; ESI-MS (+): 

m/z 725.15 [M+H]+ (calcd. for C42H37FeO8: 725.18). 

CIC 9ce′ 
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Prepared from compound 47b according to the General procedure. Yield: 

694.6 mg (82%). M.p. = 188.5 °C; 1H-NMR (400 MHz, CD2Cl2) δ 7.85 (d, J 

= 8.7 Hz, 4H), 7.79 (d, J = 8.5 Hz, 4H), 7.60 (d, J = 8.7 Hz, 4H), 7.22 (d, J = 

8.5 Hz, 4H), 1.56 (s, 18H), 1.54 (s, 18H); 13C-NMR (100 MHz, CD2Cl2) δ 

208.4, 170.2, 165.6, 165.1, 135.7, 134.3, 133.3, 132.2, 130.4, 129.8, 129.6, 

104.3, 82.1, 81.7, 81.5, 28.4, 28.4; IR (film): ν = 3608.2, 3582.1, 2977.6, 2934.2, 2071.2, 2020.1, 2002.7, 

1714.4, 2653.7, 1608.3, 1457.0, 1393.3, 1368.3, 1296.9, 1253.5, 1167.7, 1119.5, 1018.2848.5, 767.5, 665.3 

cm-1; ESI-MS (+): m/z 925.26 [M+H]+ (calcd. for C52H53FeO12: 925.29). 

CIC 9cf′ 

Prepared from compound 47c according to the General procedure. Yield: 555.3 mg 

(95%). M.p. = 155 °C; 1H-NMR (400 MHz, CD2Cl2) δ 7.77 (d, J = 8.4 Hz, 4H), 7.51 

(dd, J = 7.6, 2.0 Hz, 4H), 7.31-7.26 (m, 6H), 7.21 (d, J = 8.4 Hz, 4H), 1.54 (s, 18H); 

13C-NMR (100 MHz, CD2Cl2) δ 209.0, 170.6, 165.2, 134.8, 133.0, 132.3, 131.2, 

130.9, 129.6, 128.8, 128.7, 100.6, 83.3, 82.0, 28.4; IR (film): ν = 3582.1, 3074.0, 3058.6, 2978.5, 2933.2, 

2068.3, 2015.3, 2000.8, 1714.4, 1648.8, 1498.4, 1448.3, 1393.3, 1368.3, 1296.9, 1165.8, 1125.3, 1018.2, 835.0, 

762.7, 733.8, 695.2, 665.3, 614.2 cm-1; ESI-MS (+): m/z 747.25 [M+Na]+ (calcd. for C42H36FeNaO8: 747.17). 

5.4.2.5 General procedure for the synthesis of CICs 9cd-9cf 

2, 2, 2-Trifluoroacetic acid (90mmol, 90 eq.) was added to a solution of acid (1mmol, 1 eq.) in dry DCM (11.6 

mL) at 0 °C under N2. The reaction mixture was stirred at r.t. for 3h. After completion of the reaction 

(monitored by TLC), the suspension was diluted with dicloromethane and filtered. The collected yellow solid 

was washed with DCM and dried under reduced pressure to give product. 

CIC 9cd 

Prepared from CIC 9cd′ according to the General procedure. Yield: 498.0 mg (100%). 

M.p. = 286 °C; 1H-NMR (400 MHz, d6-DMSO) δ 7.82 (d, J = 8.5 Hz, 4H), 7.63 (d, J = 

8.5 Hz, 4H), 7.32-7.21 (m, 10H); 13C-NMR (100 MHz, d6-DMSO) δ 208.4, 169.4, 166.8, 

136.3, 131.7, 129.7, 129.7, 129.3, 128.8, 128.8, 128.1, 104.5, 79.7; IR (film): ν = 3582.1, 

3418.2, 2076.0, 2014.3, 1643.1, 1542.8, 1388.5, 665.3 cm-1; ESI-MS (+): m/z 613.13 [M+H]+ (calcd. for 

C34H21FeO8: 613.6). 
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CIC 9ce 

Prepared from CIC 9ce′ according to the General procedure. Yield: 526.1 mg 

(100%). M.p. = 218 °C; 1H-NMR (400 MHz, d6-DMSO) δ 7.84 (d, J = 8.2 Hz, 

4H), 7.77 (d, J = 8.1 Hz, 4H), 7.64 (d, J = 8.2 Hz, 4H), 7.48 (d, J = 8.1 Hz, 4H);  

13C-NMR (100 MHz, d6-DMSO) δ 208.0, 169.3, 166.8, 166.5, 135.8, 134.0, 132.0, 

131.0, 129.9, 129.6, 128.9, 128.9, 104.6, 79.4; IR (film): ν = 3582.1, 3416.3, 

2077.0, 2021.0, 1633.4, 1388.5, 1273.8, 665.3 cm-1; ESI-MS (+): m/z 722.95 [M+Na]+ (calcd. for 

C36H20FeNaO12: 723.02). 

CIC 9cf 

Prepared from CIC 9cf′ according to the General procedure. Yield: 455.2 mg (97%). 

M.p. = 155 °C; 1H-NMR (400 MHz, d6-DMSO) δ 7.77 (d, J = 8.4 Hz, 4H), 7.51 (dd, 

J = 7.6, 2.0 Hz, 4H), 7.31-7.26 (m, 6H), 7.21 (d, J = 8.4 Hz, 4H), 1.54 (s, 18H); 13C-

NMR (100 MHz, d6-DMSO) δ 209.0, 170.6, 165.2, 134.8, 133.0, 132.3, 131.2, 130.9, 

129.6, 128.8, 128.7, 100.6, 83.3, 82.0, 28.4; IR (film): ν = 3582.1, 3074.0, 3058.6, 2978.5, 2933.2, 2068.3, 

2015.3, 2000.8, 1714.4, 1648.8, 1498.4, 1448.3, 1393.3, 1368.3, 1296.9, 1165.8, 1125.3, 1018.2, 835.0, 762.7, 

733.8, 695.2, 665.3, 614.2 cm-1; ESI-MS (+): m/z 634.87 [M+Na]+ (calcd. for C34H20FeNaO8: 635.04). 

 

5.4.2.6 Synthesis of cyclopentadienone 48 

4,4'-(2-Oxo-4,5-Diphenylcyclopenta-3,5-diene-1,3-diyl)dibenzoic acid (48a) 

Prepared from compound 47a according to the General procedure 

(already mentioned in Section 5.4.2.5). Yield: 605 mg (100%). M.p. = 

327 °C; 1H-NMR (400 MHz, d6-DMSO) δ 12.95 (s, 2H), 7.83 (d, J = 8.3 

Hz, 4H), 7.32-7.22 (m, 10H), 6.97 (d, J = 8.3 Hz, 4H); 13C-NMR (100 

MHz, d6-DMSO) δ 198.5, 167.0, 156.1, 134.8, 132.2, 129.9, 129.6, 129.0, 128.9, 128.8, 128.2, 124.5; IR (film): 

ν = 3328.5, 2917.8, 2846.4, 1713.4, 1686.4, 1606.4, 1424.2, 1313.3, 1297.9, 1070.3, 866.8 cm-1; ESI-MS (+): 

m/z 967.96 [2M+Na]+ (calcd. for C62H40NaO10: 967.25). 

4,4',4'',4'''-(5-Oxocyclopenta-1,3-diene-1,2,3,4-tetrayl)tetrabenzoic acid (48b) 
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Prepared from compound 47b according to the General procedure 

(already mentioned in Section 5.4.2.5). Yield: 1.10 g (100%). M.p. = 

274.1 °C; 1H-NMR (400 MHz, d6-DMSO) δ 13.03 (s, 4H), 7.85 (d, J = 

8.4 Hz, 4H), 7.80 (d, J = 8.4 Hz, 4H), 7.29 (d, J = 8.4 Hz, 4H), 7.11 (d, J 

= 8.4 Hz, 4H);  13C-NMR (100 MHz, d6-DMSO) δ198.0, 166.9, 166.8, 154.8, 136.6, 134.4, 131.0, 130.0, 

129.9, 129.2, 129.1, 129.1, 125.3; IR (film): ν = 3608.2, 3582.1, 3413.4, 2838.7, 1694.2, 1606.4, 1408.8, 

1279.5, 1182.2, 1016.3, 665.3 cm-1; ESI-MS (–): m/z 559.38 [M-H]
―
 (calcd. for C33H19O9: 559.10). 

4,4'-(4-Oxo-3,5-Diphenylcyclopenta-2,5-diene-1,2-diyl)dibenzoic acid (48c) 

 

Prepared from compound 47c according to the General procedure (already 

mentioned in Section 5.4.2.5). Yield: 1.05 g (100%). M.p. = 334.2 °C 1H-NMR (400 

MHz, CD3OD) δ 7.84 (d, J = 8.4 Hz, 4H), 7.25-7.18 (m, 10H), 7.06 (d, J = 8.4 Hz, 

4H);  13C-NMR (100 MHz, CD3OD) δ 200.9, 169.1, 154.8, 139.1, 132.0, 131.6, 

131.3, 130.5, 130.5, 129.1, 129.0, 127.5; IR (film): ν = 3855.0, 3839.6, 3752.8, 3735.4, 3691.1, 3650.6, 3630.3, 

3568.6, 3402.8, 2366.2, 1654.6, 1490.7, 1404.9, 1268.0, 1110.8, 866.8, 751.1, 727.0, 396.2cm-1; ESI-MS (–): 

m/z 471.27 [M-H]
―

 (calcd. for C31H19O5: 471.12). 

Di-tert-butyl 4,4'-(2-oxo-4,5,6,7-tetrahydro-2H-indene-1,3-diyl)dibenzoate (47d)[13] 

 

Scheme 5.8. Demetalation of CIC 9ap 

A 1 M aqueous solution of NaOH (17.65 mL) was added to a 

solution of CIC 9ap (1.32 g, 2.11 mmol, 1 eq.) in THF (35.6 mL) at 

r.t., and the resulting mixture was stirred for 2.5 h under N2. 1-

Iodopentane (1.1 g, 5.06mmol, 2.4 eq.) was added and the solution turned from yellow to brown. The resulting 
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mixture was stirred at r.t. for an additional 15 min under N2, followed by addition of H3PO4 (664 μL, C ≥ 85%). 

Then the organic layer was separated, and the aqueous layer was extracted with dichloromethane (2 × 100 mL). 

The combined organic layers were dried over Na2SO4, filtered and concentrated under reduced pressure. The 

crude product was purified by chromatography to get the intermediate product A. The latter was dissolved in 

dichloromethane (100 mL) followed by addition of Na2S2O3 (1.3 g) and stirred slowly in the air for 10 h in the 

presence of daylight. The mixture was filtrated through a short path of celite and concentrated under reduced 

pressure. The residue was purified by flash column chromatograph (9:1 hexane/AcOEt) to afford the product 

as a purple solid. Yield: 636.1 mg (62%). M.p. = 219 °C; 1H-NMR (400 MHz, CD2Cl2) δ 7.99 (d, J = 8.5 Hz, 

4H), 7.52 (d, J = 8.5 Hz, 4H), 2.90-2.87 (m, 4H), 1.78-1.75 (m, 4H), 1.59 (s, 18H); 13C-NMR (100 MHz, 

CD2Cl2) δ 200.3, 165.9, 156.1, 136.0, 131.1, 129.6, 129.5, 122.7, 81.4, 28.5, 27.4, 23.1; IR (film): ν = 3608.2, 

3582.1, 2976.6, 2934.2, 2866.7, 1765.5, 1708.6, 1604.5, 1367.3, 1292.1, 1253.5, 1166.7, 1111.8, 1017.3, 848.5, 

665.3 cm-1; ESI-MS (+): m/z 509.14 [M+Na]+ (calcd. for C31H34NaO5: 509.23). 

4,4'-(2-Oxo-4,5,6,7-Tetrahydro-2H-indene-1,3-diyl)dibenzoic acid (48d) 

Prepared from 47d according to the General procedure (already 

mentioned in Section 5.4.2.5). Yield: 489.8 mg (100%). M.p. = 257 °C; 

1H-NMR (400 MHz, d6-DMSO) δ 12.95 (s, 2H), 7.98 (d, J = 8.5 Hz, 4H), 

7.58 (d, J = 8.5 Hz, 4H), 2.91-2.89 (m, 4H), 1.70 (pen,4H); 13C-NMR (100 MHz, d6-DMSO) δ 199.2, 167.1, 

156.3, 135.2, 129.1, 129.0, 129.0, 121.2, 26.2, 21.8; IR (film): ν = 3608.2, 3582.1, 1996, 1673.9, 1598.7, 

1403.0, 1274.7, 1187.0, 862.0, 750.2, 665.3 cm-1; ESI-MS (–): m/z 373.4 [M-H]
―
 (calcd. for C23H17O5: 373.11). 

 

5.4.2.7 Synthesis of CIC 9aw 

tert-Butyl 4-(8-(trimethylsilyl)octa-1,7-diyn-1-yl)benzoate (55) 

In a dried Schlenk tube fitted with a Teflon-topped screw cap, 

dichlorobis(triphenylphosphine) palladium (86 mg, 0.123 mmol, 

0.041 eq.) and CuI (23 mg, 0.123 mmol, 0.041 eq.) were added to a 

solution of compound 40 (0.91 g, 3 mmol, 1 eq.) and diyne 33 (0.54 g, 3 mmol, 1 eq.) in dry 1:1 THF/TEA 

(154 mL) at r.t. under N2. The reactor was sealed and the stirred mixture heated to 60 °C under 16 hours. The 

resulting mixture was concentrated under reduced pressure. The residue was dissolved in DCM (100 mL) and 

washed with sat. aq. NH4Cl (50 mL) and brine (2 × 50 mL). The organic phase was dried over Na2SO4 and 
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evaporated to give the crude product. The residue was purified by flash column chromatography (99:1 

hexane/AcOEt) to afford the pure product as a yellow oil. Yield: 0.96 g (90%). M.p. = 39.9 °C; 1H-NMR (400 

MHz, CDCl3) δ 7.89 (d, J = 8.5 Hz, 2H), 7.41 (d, J = 8.5 Hz, 2H), 2.47-2.44 (m, 2H), 2.30-2.27 (m, 2H), 1.74-

1.66 (m, 4H), 1.58 (s, 9H), 0.14 (s, 9H); 13C-NMR (400 MHz, CDCl3) δ 165.4, 131.4, 130.9, 129.3, 128.3, 

107.0, 93.0, 84.9, 81.2, 80.6, 28.3, 27.9, 27.8, 19.6, 19.2, 0.3; IR (film): ν = 2954.4, 2854.7, 2228.3, 2174.4, 

1713.4, 1606.4, 1478.2, 1457.0, 1428.0, 1403.9, 1392.4, 1368.3, 1305.6, 1293.0, 1279.5, 1249.7, 1163.8, 

1116.6, 1045.2, 1017.3, 843.7, 770.4, 759.8, 696.2, 640.3 cm-1; ESI-MS (+): m/z 377.13 [M+Na]+ (calcd. for 

C22H30NaO2Si: 377.19). 

CIC (±)-9as 

Prepared from diyne 55 according to the General procedure (already used for the 

synthesis of complex 9ap in Chapter 4, Section 4.4.4.1). Yield: 0.9 g (64%). M.p. = 

146.9 °C; 1H-NMR (400 MHz, CD2Cl2) δ 7.95 (d, J = 8.7 Hz, 2H), 7.75 (d, J = 8.7 Hz, 

2H), 2.74-2.71 (m, 2H), 2.64-2.56 (m, 2H), 1.93-1.82 (m, 4H), 1.58 (s, 9H), 0.33 (s, 9H); 

13C-NMR (400 MHz, CD2Cl2) δ 209.6, 175.7, 165.8, 137.3, 131.7, 129.7, 129.7, 107.9, 105.7, 83.2, 81.5, 69.2, 

28.5, 25.0, 24.9, 22.9, 22.8, 0.0; IR (film): ν = 3585.0, 2951.5, 2050.6, 2002.7, 1711.5, 1633.4, 1514.8, 1478.2, 

1445.4, 1393.3, 1368.3, 1293.0, 1248.7, 1166.7, 1116.6, 1015.3, 949.8, 896.7, 848.5, 779.1, 765.6, 735.7, 704.9, 

619.0 cm-1; ESI-MS (+): m/z 522.98 [M+H]+ (calcd. for C26H31FeO6Si: 523.12). 

CIC (±)-9at 

2, 2, 2-Trifluoroacetic acid (90 mmol, 90 eq.) was added to a solution of CIC (±)-9as (1 

mmol, 1 eq.) in dry DCM (11.6 mL) at 0 °C under N2. The reaction mixture was stirred at 

r.t. for 3h. After completion of the reaction (monitored by TLC), the resulting mixture was 

concentrated under reduced pressure. The residue was dissolved in DCM and diluted with 

n-hexane. The suspension was filtered. The collected yellow solid was washed with DCM/n-hexane (1:1, v/v) 

and dried under reduced pressure to give product. Yield: 0.8 g (100%). M.p. = 225.5 °C; 1H-NMR (400 MHz, 

CD2Cl2) δ 10.46 (s, 2H), 8.05 (d, J = 8.0 Hz, 2H), 7.61 (d, J = 8.0 Hz, 2H), 2.71-2.46 (m, 4H), 1.96-1.69 (m, 

4H), 0.37 (s, 9H); 13C-NMR (400 MHz, CD2Cl2) δ 208.2, 172.2, 171.0, 136.2, 131.2, 130.7, 129.9, 108.6, 

106.9, 86.4, 69.9, 24.3, 24.3, 22.7, 22.5, 0.0; IR (film): ν = 3439.4, 2953.5, 2530.2, 2069.3, 2005.6, 1780.9, 

1717.3, 1693.2, 1612.2, 1567.8, 1401.0, 1250.6, 1178.3, 1016.3, 896.7, 844.7, 780.1, 760.8, 736.7, 703.9, 

619.0 cm-1; ESI-MS (+): m/z 489.04 [M+Na]+ (calcd. for C22H22FeNaO6Si: 489.04). 
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5.4.3 Synthesis of activated esters featuring CICs 

Activated ester (±)-9av 

In a dried Schlenk tube fitted with a Teflon-topped screw cap, EDC (783.1 mg, 

4.085 mmol, 1.5 eq.) and DMAP (66.5 mg, 0.54466 mmol, 0.2 eq.) were added to 

a solution of complex (±)-9at (1.27 g, 2.7233 mmol, 1 eq.) and pentafluorophenol 

(551.4 mg, 2.9957 mmol, 1.1 eq.) in DCM (12.7 mL) at 0 °C under N2. The reaction 

mixture was stirred at r.t. for 3 h followed by addition of saturated aqueous NH4Cl. 

The resulting mixture was extracted with AcOEt, and the combined organic extracts were dried over Na2SO4, 

filtered, and concentrated under reduced pressure to afford the crude product. The crude product was purified 

by flash column chromatography (9:1 hexane/ AcOEt t) to afford the pure product as a yellow solid. Yield: 1.5 

g (87%). M.p. = 167.1 °C; 1H-NMR (400 MHz, CD2Cl2) δ 8.18 (d, J = 8.5 Hz, 2H), 7.94 (d, J = 8.5 Hz, 2H), 

2.84-2.69 (m, 2H), 2.65-2.57 (m, 2H), 1.93-1.84 (m, 4H), 0.35 (s, 9H); 13C-NMR (400 MHz, CD2Cl2) δ 209.4, 

175.6, 162.8, 140.4, 131.0, 130.2, 126.2, 108.3, 105.4, 81.9, 69.6, 25.1, 25.0, 22.9, 22.8, 0.0; IR (film): ν = 

3667.0, 3645.8, 3626.5, 3584.1, 3441.4, 2952.5, 2866.7, 2054.4, 2007.5, 1759.7, 1632.5, 1607.4, 1521.6, 

1472.4, 1447.3, 1398.1, 1321.0, 1304.6, 1250.6, 1187.9, 1145.5, 1049.1, 1012.5, 996.1, 978.7, 895.8, 843.7 

cm-1; ESI-MS (+): m/z 655.46 [M+Na]+ (calcd. for C28H21F5FeNaO6Si: 655.03). 

Activated ester (±)-9aw 

In a dried Schlenk tube fitted with a Teflon-topped screw cap, N-hydroxysuccinimide 

(19.7 mg, 0.1716 mmol) and EDC (32.9 mg, 0.1716 mmol) were added to a stirred 

solution of complex (±)-9at (0.10722 mmol) in CH2Cl2 (0.16 mL) under N2. After 3 

h, the reaction mixture was diluted with CH2Cl2 (4 mL). The organic layer was washed 

with saturated aqueous NaHCO3 (2 mL) and brine (2 × 2 mL), dried over Na2SO4, filtered and concentrated to 

afford the crude product. The crude product was purified by flash column chromatography (1:1 hexane/AcOEt) 

to afford the pure product as a yellow solid. Yield: 39.2 mg (65%). 1H-NMR (400 MHz, CD2Cl2) δ 8.11 (d, J 

= 8.6 Hz, 2H), 7.92 (d, J = 8.6 Hz, 2H), 2.88 (s, 4H), 2.77-2.74 (m, 2H), 2.65-2.61 (m, 2H), 1.93-1.83 (m, 4H), 

0.34 (s, 9H); 13C-NMR (400 MHz, CD2Cl2) δ 209.3, 175.5, 169.8, 162.2, 140.7, 130.7, 130.1, 124.3, 108.3, 

105.3, 81.6, 69.5, 26.3, 25.1, 25.0, 22.8, 22.7, 0.1. 

Activated ester (±)-9ax 
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In a dried Schlenk tube fitted with a Teflon-topped screw cap, N,N’-

dicyclohexylcarbodiimide (26.5 mg, 0.129 mmol, 1.20 eq.) and 4-

dimethylaminopyridine (1.3 mg, 0.011 mmol, 0.10 eq.) were added to a solution 

of complex (±)-9at (50 mg, 0.107 mmol, 1 eq.) in dry THF (1.5 mL) under N2. 

After stirring for one minute at r.t., N-hydroxyphthalimide (19.2 mg, 0.118 mmol, 

1.1 eq.) was added and the reaction mixture was stirred for 24 h at r.t. The precipitating dicyclohexyl urea was 

filtered off and the solution was concentrated under reduced pressure. The crude product was purified by flash 

column chromatography (1:1 hexane/ AcOEt) to afford the pure product as a yellow solid. Yield: 26.8 mg 

(41%). 1H-NMR (400 MHz, CD2Cl2) δ 8.16 (d, J = 8.2 Hz, 2H), 7.96-7.92 (m, 4H), 7.86-7.83 (m, 2H), 2.84-

2.72 (m, 2H), 2.69-2.58 (m, 2H), 1.93-1.86 (m, 4H), 0.35 (s, 9H); 13C-NMR (400 MHz, CD2Cl2) δ 209.3, 175.5, 

163.1, 162.6, 140.7, 135.5, 130.8, 130.2, 129.5, 124.5, 124.4, 108.3, 105.4, 81.7, 69.6, 25.1, 25.0, 22.9, 22.7, 

0.0. 

 

5.4.4 Synthesis of CICs (±)-9au 

General procedure A: DMF (3 drops) was added to a solution of acid (±)-9at (30 mg, 0.064 mmol, 1.1 eq.) 

in thionyl chloride (124 mg, 1.04 mmol, 18 eq.), and the reaction mixture was heated to refluxed for 4 h under 

N2. The excess thionyl chloride was removed under reduced pressure. The residual yellowish solid was 

dissolved in dichloromethane or THF (0.1 mL) and cooled to 0 °C. A solution of N,N-dimethyl-4-

aminopyridine (0.05 or 0 eq.), aniline (5.45 mg, 0.059 mmol, 1 eq.) and Et3N (1.5 or 3 eq.) in dichloromethane 

(0.12 mL) was added dropwise at 0 °C. The reaction mixture was stirred at r.t. or 60 °C for 12 h, and then 

quenched with water and extracted with CH2Cl2 (2 × 2 mL). The combined organic layer was dried over 

Na2SO4 and concentrated. The resulting residue was purified by flash column chromatography (4:1 hexane/ 

AcOEt) to afford the pure product as a yellow solid. 

General procedure B: To a solution of activated ester (±)-9av (50 mg, 0.0791 mmol, 1 eq.) in DMF or dioxane 

(0.8 mL) were added aniline (given amount) and base (given amount) at r.t. The reaction mixture was heated 

to 100 °C or 50 °C, and monitored by TLC. After reaction completion, the reaction mixture was concentrated 

under reduced pressure. The residue was purified by flash column chromatography (4:1 hexane/ AcOEt) to 

afford the pure product as a yellow solid. 

General procedure C: Aniline (26 mg, 0.2784 mmol, 4 eq.) was added to a solution of activated ester (±)-
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9aw (39.2 mg, 0.0696 mmol, 1 eq.) in AcOEt (0.7 mL). The reaction mixture was stirred at 70 °C for 20 h. 

After reaction completion, the solvent was removed under reduced pressure and the residue was purified by 

flash column chromatography (4:1 hexane/ AcOEt) to afford the pure product as a yellow solid. 

CIC (±)-9au 

M.p. = 119.7 °C; 1H-NMR (400 MHz, CD2Cl2) δ 7.98 (s, 1H), 7.85-7.80 (m, 4H), 7.67-

7.65 (m, 2H), 7.38 (dd, J = 8.5, 7.4 Hz, 2H), 7.18-7.14 (m, 1H), 2.74 (t, J = 5.8 Hz, 2H), 

2.69-2.57 (m, 2H), 1.91-1.85 (m, 4H), 0.34 (s, 9H); 13C-NMR (400 MHz, CD2Cl2) δ 

209.4, 175.7, 165.8, 139.4, 135.4, 134.7, 130.4, 129.3, 127.8, 124.6, 121.0, 107.9, 106.4, 

85.0, 69.1, 24.7, 24.6, 22.8, 22.7, 0.0; IR (film): ν = 3851.2, 3646.7, 3297.7, 3136.7, 3056.6, 2926.5, 2854.1, 

2347.9, 2053.5, 2002.7, 1746.2, 1671.0, 1599.7, 1539.9, 1512.9, 1499.4, 1440.6, 1409.7, 1322.0, 1249.7, 

1183.1, 1076.0, 1015.3, 891.0, 843.7, 756.9, 693.3 cm-1; ESI-MS (+): m/z 542.21 [M+H]+ (calcd. for 

C28H28FeNO5Si: 542.11). 

 

5.4.5 Hydrogenation of C=O double bonds with MOF-supported CICs 

Under argon atmosphere, the catalytic MOFs (8.6 mg, 0.002 mmol) was dispensed into oven-dried glass tubes 

fitted in an aluminum block inside a Schlenk tube. A solution of Me3NO (0.05 mL, 0.16 M or given 

concentration) in iPrOH (or other given solvent) was dispensed. The resulting mixture was stirred at r.t. for 20 

min (or at 60 °C for 1 h), during which a deep orange color gradually developed. The substrate (0.1 mmol) and 

other iPrOH (0.05 mL, or other given solvent) were added in each vial. Each vial was capped with a Teflon 

septum pierced by a needle, the block was transferred into the autoclave, and stirring was started. After purging 

four times with hydrogen, the reaction was pressurized at 50 bar and heating was started (80 °C). The reactions 

were stirred for 22 h under hydrogen pressure at 80 °C. After cooling down to r.t., the mixtures were filtered 

through a short part of celite and then analyzed for conversion determination. 

Analysis of acetophenone AH products 

The reaction mixtures were analyzed either by GC with a chiral column to measure conversion and 

enantiomeric excess. Absolute configurations were determined by comparing the elution order with previous 

data obtained with the same column. 

1-Phenylethanol (P69)[23] 
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Conversion and e.e. were determined by chiral GC.  

Capillary column: MEGA-DEX DAC Beta, diacetyl-tert-butylsilyl-β-cyclodextrin, 0.25 μm; diameter = 0.25 

mm; length = 25 m; carrier: hydrogen; inlet pressure: 1 bar; oven temperature: 95 °C for 20 min: tsub. = 4.76 

min; tR = 10.36 min; tS = 12.39 min. 

Benzenemethanol (P74) 

Capillary column: MEGA-DEX DAC Beta, diacetyl-tert-butylsilyl-β-cyclodextrin, 0.25 μm; diameter = 0.25 

mm; length = 25 m; carrier: hydrogen; inlet pressure: 1 bar; oven temperature: 95 °C for 20 min: tsub. = 3.64 

min; tP= 8.82 min. 
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Conclusions  

This work of thesis has been aimed at addressing some general limitations of (cyclopentadienone)iron 

complexes (CICs) when applied to promote reactions involving hydrogen transfer (RIHTs): #1 the rather low 

catalytic activity, which restricts the application scope of CICs; #2 the limited stability of the activated forms 

of these complexes, which is also an important reason of the modest observed activity; #3 the lack of effective 

chiral complexes for applications in enantioselective catalysis. 

The state of the art in homogenous iron-catalyzed RIHTs is introduced in Chapter 1, with a special focus on 

CICs and their applications. In my thesis work, the above-mentioned issues #1 and #2 have been tackled 

exploiting the peculiar catalytic properties of CIC 9d (previously developed by our group), which exhibits 

higher catalytic activity than most other derivatives of its class and thus was found able to promote reactions 

previously unreported using CICs in the absence of co-catalysts: the catalytic transfer hydrogenation of 

ketimines (Chapter 2), the reductive amination of ketones (Chapter 2) and the ‘hydrogen borrowing’ amination 

of secondary alcohols and diols (Chapter 3). CIC heterogenization into metal-organic frameworks (MOFs) was 

also investigated as a possible way to overcome issue #2, taking advantage of site isolation (which prevents 

complex dimerization) and of protection of the catalytic units located inside the MOF pores (Chapter 5). Issue 

#3 was faced developing two new classes of chiral CICs (Chapter 4): i) complexes possessing a stereogenic 

plane with two different substituents at the 2,5-positions of the cyclopentadienone system; ii) macrocyclic 

complexes with modular structure derived from readily available chiral compounds. 

I believe that the work carried out in this thesis has significantly expanded the application scope of CICs in 

RIHTs, and its results will provide useful directions for the development of more effective derivatives of this 

class of pre-catalysts. 
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ARA    Asymmetric reductive amination 

ATH    Asymmetric Transfer Hydrogenation 

AH     Asymmetric Hydrogenation  

BINOL  1,1′-Bi-2-naphthol 
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CD     Circular Dichroism 
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J     Coupling constant 

LDA Lithium diisopropylamide 

M     Molar [mol/L] 
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MOFs   Metal-organic frameworks 

MS     Molecular sieves 

n     Normal 
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PMP Para-methoxyphenyl- 

ppm     Parts per million 
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RIHT   Reactions involving hydrogen transfer 

r.t.     Room temperature 
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UV     Ultraviolet 

XRD X-ray Diffraction
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