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ABSTRACT

Despite the widespread di�usion of nonlinear methods for heart rate variability (HRV) analysis, the presence and the extent to which nonlinear
dynamics contribute to short-termHRVare still controversial. Thiswork aims at testing the hypothesis that di�erent types of nonlinearity can be
observed inHRVdepending on themethod adopted and on the physiopathological state. Two entropy-basedmeasures of time series complexity
(normalized complexity index, NCI) and regularity (information storage, IS), and a measure quantifying deviations from linear correlations
in a time series (Gaussian linear contrast, GLC), are applied to short HRV recordings obtained in young (Y) and old (O) healthy subjects and
in myocardial infarction (MI) patients monitored in the resting supine position and in the upright position reached through head-up tilt. The
method of surrogate data is employed to detect the presence and quantify the contribution of nonlinear dynamics to HRV. We �nd that the
three measures di�er both in their variations across groups and conditions and in the percentage and strength of nonlinear HRV dynamics.
NCI and IS displayed opposite variations, suggesting more complex dynamics in O and MI compared to Y and less complex dynamics during
tilt. The strength of nonlinear dynamics is reduced by tilt using all measures in Y, while only GLC detects a signi�cant strengthening of such
dynamics in MI. A large percentage of detected nonlinear dynamics is revealed only by the IS measure in the Y group at rest, with a decrease
in O and MI and during T, while NCI and GLC detect lower percentages in all groups and conditions. While these results suggest that distinct
dynamic structures may lie beneath short-term HRV in di�erent physiological states and pathological conditions, the strong dependence on
the measure adopted and on their implementation suggests that physiological interpretations should be provided with caution.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5115506

Historically, the study of heart rate variability (HRV) has both
received clinical attention, e.g., as a tool for risk strati�cation after
myocardial infarction, and has attracted the interest of physicists
who saw it as a particularly lucid example of chaos in physiol-
ogy. Later on, after it was realized that a thorough evaluation
of the chaotic nature of cardiac dynamics is precluded by di�-
culties inherent in the noisy nature of biological signals and in
the restricted length of the data typically available, the �eld of
HRV analysis underwent a shift in paradigm from chaos to com-
plexity (intended as unpredictability) and detection of nonlinear
dynamics in short-term HRV (up to a few minutes of recordings)
analyzed in di�erent pathophysiological states. The latter issue

remains elusive, due to the di�culty of reliably assessing non-
linearity over short time series, to the proliferation of diverse
nonlinear analysis methods, each with its own strengths and lim-
itations, and to the changing nature of nonlinear HRV dynamics
across states and conditions. The present study contributes to set-
tling this issue, implementing di�erent state-of-the-art nonlinear
dynamic measures and comparing them in regard to the detec-
tion of the presence and the contribution of nonlinear dynamics
to short-termHRV. The comparison is performed considering the
progression across healthy and pathological states (i.e., aging and
myocardial infarction) and investigating the e�ects on the cardiac
dynamics of a speci�c physiological stressor (i.e., head-up tilt).
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I. INTRODUCTION

Human heart rate variability (HRV), commonly assessed
measuring the spontaneous beat-to-beat changes in the duration
of the RR interval of the electrocardiogram (ECG), is the result of
the activity of di�erent physiological control systems, which oper-
ate across multiple time scales to let the body functions adapt to
environmental, physical, and psychological challenges.1,7 RR interval
�uctuations have been classically represented as a linear superposi-
tion of rhythms,2 leading to remarkable time- and frequency-domain
descriptions of the factors contributing to the neuroautonomic mod-
ulation of the heart rhythm in healthy conditions, as well as of
the alteration of these factors related to a variety of pathological
states.4,8,18,22,39,42 Nevertheless, since the cardiac control is typically
accomplished through the interaction among multiple complex reg-
ulatory mechanisms, including self-sustained oscillators as well as
control loops,31 the linear description of the RR interval variability
may be severely limited and disregard signi�cant dynamical features.

As a consequence, a variety of nonlinear approaches to time
series analysis have been devised to characterize RR interval �uctua-
tions and extract additional physiological and clinical information
from HRV.60,64 A class of these approaches, focused on long-term
analyses spanning scales up to several hours, ismainly based on using
methods able to assess scaling properties, long-range correlations,
and multifractality of the RR time series.5,24,30,46 These nonlinear
methods were often employed with the aim of identifying signatures
typical of chaotic dynamics in long-term HRV recordings, leading
to an animated discussion of this topic.19 Besides the presence or
absence of chaos,14,21,28 there is a substantial consensus about the fact
that long-term RR interval time series are nonlinear and multifrac-
tal and that the scaling behavior of HRV is altered with aging or
during physical exercise and under pathological conditions such as
myocardial infarction.6,20,23,25,29

On the other hand, it is also widely accepted that the assess-
ment of HRV over temporal scales ranging from seconds to a few
minutes allows the indirect investigation of the mechanisms under-
lying the short-term cardiovascular control,13,41 and this assessment
might require nonlinear methods better suited for the evaluation
of complex aspects of HRV dynamics. In fact, a number of non-
linear measures have been developed to this end, e.g., based on
nonlinear prediction,53,57 entropy or mutual information,50,66 time
irreversibility,54,62 or phase coupling.3,12 These and other studies have
provided ample evidence that changes in nonlinear descriptors of
short-term HRV such as complexity or regularity indexes, either
induced by the modi�cation of the experimental conditions or deter-
mined by spontaneous transitions among physiological states, can be
reliably detected and associated with alterations of the autonomic
control. Notwithstanding this, the presence and impact of nonlin-
ear dynamics in short-term HRV is still a controversial issue. Some
studies suggested that nonlinear components of HRV are of limited
importance in resting conditions and are evoked by the presence of
a dominant respiratory sinus arrhythmia53,57 or in association with
respiratory inputs to the cardiovascular system.17,26Conversely, other
studies assessing temporal asymmetries suggested that nonlinearities
are relevant at rest andmay be present even in conditions of small res-
piratory sinus arrhythmia.54 The contribution of the two branches of
the autonomic nervous system to nonlinear HRV dynamics remains

elusive and is likely linked to the time scales of their functioning.52

Moreover, nonlinear dynamics might be sustained by the interaction
between sympathetic and parasympathetic activities.3

Methodologically, it has been suggested that multiple
nonlinear components, operating at di�erent scales and possibly
interacting with each other, may concur to the generation of short-
term HRV.3,27,52 Since these di�erent components of HRV nonlinear
dynamics may be captured in a di�erent way by di�erent metrics,
the aim of the present study is to test the hypothesis that distinct
types of nonlinear dynamics underlie HRV during di�erent phys-
iopathological states. To this end, we apply three nonlinear dynamic
measures to the RR interval time series measured in young and
old healthy subjects, as well as in postacute myocardial infarction
(AMI) patients, monitored at rest and during sympathetic activa-
tion induced by postural change. Themeasures were selected, among
those allowing the assessment of nonlinear dynamics in short-term
HRV (∼300 points), to investigate such dynamics from di�erent per-
spectives, exploiting di�erent concepts and implementing di�erent
estimators. In particular, two of the measures quantify the common
concepts of complexity and regularity previously de�ned in time
series analysis with the indexes of sample entropy58 and information
storage,38 implementing them through re�ned estimation techniques
devised recently.51,66 The third measure is de�ned building upon sev-
eral previous works9,11,34–37 to quantify the deviation from linearity
of the correlation structure of the observed time series according to
a recently proposed Gaussian Linear Contrast method (GLC).10 The
application of these approaches in conjunction with the method of
surrogate data59,61 allows us to quantify the extent to which nonlin-
ear dynamics impact on short-term HRV in di�erent conditions of
autonomic nervous system imbalance, also investigating the e�ects
of age and pathology. The database used in the study is made pub-
licly available to favor reproducibility and encourage the comparison
with di�erent nonlinear dynamic measures.

II. NONLINEAR DYNAMIC MEASURES

This section describes the methods used in the present work to
quantify nonlinear dynamics in the temporal statistical structure of a
system evolving in time. Our starting point is an experimental time
series {sn}, n = 1, 2, . . . ,N, which is considered as a realization of a
stochastic process S describing the evolution over time of an observed
dynamical system S . The process S is considered stationary so that
the randomvariables obtained sampling the process at the timen (i.e.,
Sn, n = 1, 2, . . . ,N) are identically distributed with marginal prob-
ability density function f (·) and cumulative density function F(·).
Moreover, without loss of generality, we assume that each Sn has zero
mean and unit standard deviation.

To assess nonlinear dynamics in the stochastic process S, we
look at its temporal correlation structure: while for purely linear
dynamics the dependence between sn and sn−` is linear for any lag
`, in the case of nonlinear dynamics such dependence cannot be
studied only in terms of linear correlations. In the �rst two meth-
ods considered, nonlinear correlations are investigated within an
information-theoretic framework, separating the present state of the
system Sn from its past states S−

n = [S1, . . . , Sn−2, Sn−1] and quanti-
fying their information content in terms of entropy measures.66 In
fact, when the system transits from past states to a new state, new

Chaos 29, 123114 (2019); doi: 10.1063/1.5115506 29, 123114-2

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

information is produced in addition to the information that is already
carried by the past states. The rate of generation of new information is
inversely related to the strength of nonlinear correlations in the pro-
cess, while the information shared between the present and the past
variables is directly related to such correlations.66 On this basis, the
measures of conditional entropy (Sec. II A) and information storage
(Sec. II B) assess nonlinear correlations quantifying, respectively, the
new information contained in Sn but not in S−

n and the amount of
information carried by Sn that can be explained by S−

n .
The third method takes its roots on the observation that a

purely linear stochastic process is considered to have only linear
correlations. However, the most feasible models for generation of
pure linear processes give a Gaussian marginal distribution as out-
put so that linear processes with marginal Gaussian distributions are
usually considered as reference for linearity. This can lead to false
positive cases by nonlinearity methods when applied to linear pro-
cesses with non-Gaussian marginal distribution. In the GLC (see
Sec. II C), we test nonlinearity based only on the nature of corre-
lations, which truly re�ect the dynamics and discard those e�ects
induced by non-Gaussian marginal distributions.

A. Complexity index based on local sample entropy

The information-theoretic assessment of nonlinear correlations
in a dynamic process is based on applying the concepts of entropy and
conditional entropy to the random variables representing the present
and past states of the process. Given two generic continuous (pos-
sibly vector) random variables X and Y , the entropy of X and the
conditional entropy of X given Y are de�ned as

H(X) = −E[log f (x)] = −

∫

DX

f (x) log f (x)dx, (1)

H(X|Y) = −E[log f (x|y)] = H(X,Y)− H(Y), (2)

whereDX is the domain ofX, f (x) and f (x|y) are the probability den-
sity of X and the conditional probability of X given Y , and E[·] is the
expectation operator; the term H(X,Y) in (2) is the joint entropy of
X and Y , obtained generalizing (1) to the joint probability density
f (x, y) = f (x|y)f (y). Particularizing these de�nitions to the variables
Sn and S−

n describing the present and the past states of the process S,
the conditional entropy becomes

H(Sn|S
−
n ) = H(S−

n , Sn)− H(S−
n ). (3)

The conditional entropy quanti�es the amount of information con-
tained in the present of the process that cannot be explained by
its past history: if the process is fully random, the system produces
information at the maximum rate, yielding maximum conditional
entropy; if, on the contrary, the process is fully predictable, the sys-
tem does not produce new information and the conditional entropy
is zero.

In the present work, practical computation of the condi-
tional entropy is performed adopting kernel estimates of the
probability density functions.66 In particular, we make use of
the well known sample entropy index,58 improved through the
implementation of a local version of the estimator.51 The Sample
Entropy (SampEn) estimates H(Sn|S

−
n ) in (3), �rst truncating S−

n to
Smn = [Sn−1, Sn−2, . . . , Sn−m] and then approximating H(Smn , Sn) and

H(Smn ) as the negative logarithm of the average joint probability
of �nding a pattern in the neighborhood of the reference pattern
with a tolerance r in the (m + 1)-dimensional and m-dimensional
embedding space, namely,

SampEn(m, r, n) = − ln
〈

p(Smn , Sn)
〉

+ ln
〈

p(Smn )
〉

, (4)

where p(Smn , Sn) is the probability that the pattern Smn ⊕ Sn assumes
the value smn ⊕ sn and p(S

m
n ) is the probability that the pattern S

m
n takes

the value smn and 〈·〉 performs the average over time (i.e., over all val-
ues smn ⊕ sn). SampEn is a robust estimator of irregularity given that
the log-of-zero situation is extremely unlikely because the logarithm
is applied to the average of a quantity that has 0 as the lowest bound.
However, as a consequence of computing an average over time, Sam-
pEn has the disadvantage to be a global marker of irregularity that
might not represent reliably the local behavior in the neighborhood
of a speci�c pattern and blur nonlinear features.51 A local version
of SampEn (LSampEn) was proposed in Ref. 51 by directly approx-
imating H(Sn|S

m
n ) instead of its constituents [i.e., H(Smn , Sn) and

H(Smn )] as

LSampEn(m, r, n) = − ln
〈

p(Sn|S
m
n )

〉

, (5)

where p(Sn|S
m
n ) is the conditional probability that the current state Sn

assumed the value sn given that the past state Smn is smn . The average
operator makes the estimator robust against the log-of-zero situation
and the estimation of p(Sn|S

m
n ) renders LSampEn a local estimator

of irregularity given that the quantity being averaged referred specif-
ically to the reference pattern Smn . To limit the consequence that, when
solely Smn is found in the neighborhood of Smn , p(Sn|S

m
n ) is unreliably

high,49 we applied the correction proposed by Porta et al.;51 namely,
in this unfortunate case, p(Sn|S

m
n ) is set to (N − m + 1)−1 corre-

sponding to the maximum uncertainty computable over the series.
The resulting estimator, applied to the time series reduced to unit
variance, is denoted as Normalized Complexity Index (NCI).51

B. Regularity index based on information storage

Information measures can be exploited also for evaluating
in a direct way the strength of nonlinear correlations in the
dynamical structure of a stochastic process so that to assess its
degree of regularity. To this end, a relevant entropy measure is the
so-called information storage, which quanti�es the amount of infor-
mation shared between the present and the past observations of
the considered process. The information storage of the process S is
de�ned as

I(Sn; S
−
n ) = H(Sn)+ H(S−

n )− H(S−
n , Sn), (6)

where I(·; ·) denotes mutual information. The information storage
re�ects the degree to which information is preserved in a time-
evolving system.65 As such, it measures how much of the uncertainty
about the present can be resolved by knowing the past: if the process
is fully random, the past gives no knowledge about the present, so that
the information storage is zero; if, on the contrary, the process is fully
predictable, the present can be fully predicted from the past, which
results inmaximum information storage. Note that information stor-
age and conditional entropy of a dynamic process are inversely related
to each other and depend on the entropy of the present state of the
process through the equation I(Sn; S

−
n )+ H(Sn|S

−
n ) = H(Sn).
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In practical analysis, the information storage can be estimated
from a time series of �nite length following the same principles of
conditional entropy estimation. These include the use of a �nite
number of samples in the past to approximate the history of the
observed process (i.e., S−

n is truncated to Smn = [Sn−1, Sn−2, . . . , Sn−m])
and the adoption of nonparametric estimators of the probability
density functions involved in the computation of I(Sn; S

m
n ). How-

ever, since computation of the measure de�ned in (6) requires to
estimate three entropy terms involving variables of di�erent dimen-
sions and since the bias of entropy estimates depends strongly on the
dimension, implementation of standard histograms or kernel-based
methods typically results in inaccurate estimates of the informa-
tion storage.15,66 Here, while the kernel-based estimation of infor-
mation storage is implemented for comparative purposes in the
supplementary material, to overcome this limitation, we resort to
nearest-neighbor entropy estimation32 and implement a strategy
for bias compensation speci�c of mutual information estimates.33

The nearest-neighbor entropy estimate of a generic d-dimensional
random variable X can be obtained from a set of realizations
{x1, x2, . . . , xN} of the variable as32

H(X) = ψ(N)− ψ(k)+ d〈ln εn〉, (7)

where ψ is the digamma function, εn is twice the distance between
the outcome xn and its kth nearest neighbor computed according
to the maximum norm (i.e., taking the maximum distance of the
scalar components), and 〈·〉 stands for average over N outcomes.
Then, the information storage could be computed applying (7) to the
three terms in (6). However, doing so would result in di�erent dis-
tance lengths when approximating the probability density in di�erent
dimensions, and this would introduce di�erent estimation biases that
cannot be compensated by taking the entropy di�erences. To keep the
same distance length in all explored spaces, we perform a neighbor
search only in the highest-dimensional space (the one spanned by
the realizations of Smn , Sn) and then project the distances found in this
space to the lower-dimensional spaces (those spanned by the realiza-
tions of Smn and Sn), keeping these distances as the range within which
neighbors are counted. Speci�cally, the knn estimate of H(Smn , Sn)
is computed through a neighbor search, i.e., �xing the number of
neighbors k and computing the distance to the kth neighbor, as

H(Sn, S
m
n ) = ψ(N)− ψ(k)+ (m + 1)〈ln εn〉, (8)

where εn is twice the distance from (Sn, S
m
n ) to its kth nearest neigh-

bor and then, given the distances εn, the entropies in the lower-
dimensional spaces are estimated through a range search, i.e., �xing
the distance εn and counting for the neighbors falling within this
distance, as

H(Smn ) = ψ(N)− ψ(NSmn )+ m〈ln εn〉, (9)

H(Sn) = ψ(N)− ψ(NSn)+ 〈ln εn〉, (10)

whereNSn andNSmn are the number of points whose distance from Sn
and Smn , respectively, is smaller than εn/2. Finally, our estimate of the
information storage is obtained subtracting Eq. (8) from the sum of
Eqs. (9) and (10),55

IS = ψ(N)+ ψ(k)− 〈ψ(NSmn )〉 − 〈ψ(NSn)〉. (11)

C. Nonlinearity index based on Gaussian

linear contrast

As we stated above, GLC assesses nonlinearities related only
to the nature of the correlations and not to the non-Gaussianity
of the data. Let us consider an experimental time series {sn}
(n = 1, 2, . . . ,N), with non-Gaussian marginal distribution. The
observed autocorrelation function of {sn} is given by

Cobs(`) = 〈snsn+`〉. (12)

Using Cobs(`), GLC tries to determine if {sn} is originated from a
Gaussian time series {zG,n} (n = 1, 2, . . . ,N) with only linear corre-
lations, which have been transformed to have the observed marginal
distribution using an invertible transformation of the experimental
time series. If this is the case, then GLC assumes that {sn} is linear
and is nonlinear otherwise.

The theoretical background of the GLC method is the follow-
ing. Let us consider a pair of correlated Gaussian variables xG and
yG, both ofN (0, 1) type so that their corresponding probability den-
sity and cumulative distribution are the standardGaussian ϕ(xG) and
8(xG). We assume that xG and yG are only linearly correlated, with a
correlation value CG, i.e.,

CG = 〈xGyG〉. (13)

This is equivalent to a�rm that the joint distribution of xG and yG
is the bivariate Gaussian distribution ϕ2(xG, yG,CG). Then, we trans-
form xG and yG to the variables x and y, which follow the marginal
distribution of the experimental time series. This can be done with
the usual method,

x = F−1[8(xG)], y = F−1[8(yG)], (14)

with F−1(·) being the inverse cumulative distribution of the exper-
imental time series. Since F−1 is �xed by {si}, the linear correlation
C between x and y, i.e., C = 〈xy〉 depends solely on the CG value.
Indeed, since x and y depend formally on xG and yG [Eq. (14)]
with joint distribution ϕ2(xG, yG,CG), C can be calculated as (see
Refs. 9–11 and 34–37)

C(CG) ≡ 〈xy〉 =

∫ ∞

−∞

∫ ∞

−∞

F−1(8(xG)) F
−1(8(yG))ϕ2

× (xG, yG,CG) dyG dxG. (15)

Solving numerically the previous integral for a dense set of CG

values in the interval (−1, 1), we characterize the C(CG) function,
which contains the information on how the Gaussian correlations
are transformedwhen the distribution of the variables is transformed
from Gaussian to the experimental distribution.

These results can be extrapolated straightforwardly to time
series. Let us consider a Gaussian time series {zG,n}, with autocorrela-
tion function CG(`) given by CG(`) ≡ 〈zG,nzG,n+`〉. Note that zG,n and
zG,n+` are equivalent to xG and yG in Eq. (13). Then, let us transform
{zG,n} into a time series {zn} with the same marginal distribution of
the experimental time series using Eq. (14) for each zG,n value. The
autocorrelation function C(`) of {zn} can be then calculated using
Eq. (15) simply by replacing xG, yG, and CG by zG,n, zG,n+` and CG(`),
respectively. In other words, once the C(CG) function is known by
using Eq. (15) (which only requires the marginal distribution of the
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experimental time series), then C(`) = C(CG(`)). This last equality
holds if the non-Gaussian time series {zn} really comes via the trans-
formation (14) from the Gaussian and linearly correlated series {zG,n}
since this is the condition used in Eq. (15) to determine C(CG). This
property is the key point in the GLC method.

With this theoretical background, the steps to apply the GLC
method on an experimental time series {sn} are the following:

(i) Determine the observed autocorrelation function Cobs(`) of the
experimental time series {sn}.

(ii) Transform {sn} to have Gaussian distribution using the inverse
of the transformation in Eq. (14) and calculate its autocorrela-
tion function CG′(`). Note that if {sn} has been obtained from
a Gaussian time series using the transformation (14), simply
by inverting the transformation the hypothetical original Gaus-
sian time series is recovered, as long as the transformation from
Gaussian to {sn} is invertible. The knowledge of Cobs(`) and
CG′(`) for each ` allows obtaining the function Cobs(CG′).

(iii) Obtain the real C(CG) function using Eq. (15) by giving to CG

a great number of values in the interval (−1, 1). In practice,
and especially for short experimental time series, the numeri-
cal solution of the integral might be a harsh task: due to �nite
size e�ects, it can be di�cult to correctly estimate F−1. Then,
to calculate C(CG), we adopt a di�erent strategy: we use autore-
gressive time series of order 1 (AR1) with the same size as {sn}.
An AR1 process is de�ned as zG,n = ϕzG,n−1 + ηn, where {ηn} is
a Gaussian N (0, 1) white noise and ϕ ∈ (−1, 1) is a constant.
AR1 processes are Gaussian with purely linear correlations,
with generic autocorrelation CG(`) = ϕ`, so that changing the
ϕ value, we can obtain any value of Gaussian correlation in
the interval (−1, 1). Thus, when generating a large set of AR1
time series for di�erent ϕ values and calculate the autocorrela-
tion function of all of them, we would obtain a huge amount
of data points densely populating the (−1, 1) Gaussian correla-
tion interval. Nevertheless, in order to save computation time, in
practice, after preliminary analysis of Cobs(CG′), we restrict the
ϕ values to those that will generate Gaussian correlation values
in our region of interest. Then, we transform all AR1 time series
using Eq. (14) to have the marginal distribution of {sn} and also
calculate the autocorrelation function C(`) for all series. Note
that each C(`) value is the image of a Gaussian autocorrelation
value. Finally, we bin the Gaussian correlation interval (−1, 1)
into 0.01 length bins and put in each one the images of all the
Gaussian correlation values contained in the bin. The average
of all the images in the respective bin gives the C value corre-
sponding to the Gaussian correlation at the center of the bin
so that �nally, we have a numeric determination of the C(CG)

function.
(iv) If the experimental time series {sn} is really obtained by trans-

forming a Gaussian time series, then the Gaussian series is
the one determined in step (ii), with autocorrelation function
CG′(`), and the observed autocorrelation is given by Cobs(`) =

Cobs(CG′(`)). However, the expected correlations in {sn} if the
Gaussian series is purely linear, Clin(`), should be given by
the C(CG) function determined in step (iii) evaluated at the
CG′(`) values, i.e., Clin(`) = C(CG′(`)). The series {sn} is lin-
ear when Cobs(`) = Clin(`) and is not linear otherwise. In this

way, to quantify the nonlinearity of {sn}, we can de�ne the GLC
nonlinearity index as

GLC ≡

`m
∑

`=1

|Cobs(`)− Clin(`)|. (16)

Actually, this GLC value measures the deviation of the observed
dependence from that of a Gaussian process. Note that if the Gaus-
sian process is transformed to a di�erent marginal distribution (the
one of the observed time series) using an invertible transformation,
the dependence of the values is not modi�ed since the transforma-
tion preserves the ordering of the values in the time series. In this
case, GLC will be very close to zero, and then large GLC values will
indicate nonlinearity. However, if the observed time series comes
from a noninvertible transformation of a Gaussian process, GLC will
be larger than zero despite the linear underlying dynamics so that
this situation could be considered as a false positive. Nevertheless,
for noninvertible transformations, the dependence of the time series
will be di�erent from that of a Gaussian process, since the trans-
formation will change the ordering of the values. In this sense, we
could say that the observed time series presents a higher complex-
ity than a Gaussian process and will be re�ected also in the GLC
value.

In summary, GLCmeasures any deviation from the dependence
in a Gaussian process, the paradigm of the simplest correlated pro-
cess. According to this, GLC could be considered as a complexity
measure, although strictly speaking, GLCmeasures nonlinearity only
when the signal is originated with an invertible transformation. This
approach is similar to that used in the copula theory43 when the
dependence is studied avoiding the e�ects of the particular marginal
distribution.

III. DETECTION AND QUANTIFICATION OF

NONLINEARITY

A. Detection of nonlinear dynamics

For each individual analyzed HRV time series, we �rst assess
the presence of nonlinear dynamics exploiting the method of sur-
rogate data.61 This approach is based on (i) a null hypothesis to be
rejected; (ii) a surrogate data set constructed in accordance with the
null hypothesis; (iii) a discriminating statistic that has to be calculated
on original and surrogate series; and (iv) a statistical test allowing to
reject or con�rm the null hypothesis.

The null hypothesis set in our case is that the investigated time
series is a realization of a Gaussian stochastic process (fully described
by linear temporal autocorrelations), eventually measured through a
static and possibly nonlinear transformation distorting the Gaussian
distribution.

The surrogate time series were generated in order to preserve
the linear autocorrelation structure as well as the marginal distri-
bution of the original time series. This was achieved through the
iteratively re�ned amplitude adjusted Fourier Transform (IAAFT)
method.59 The method is an improvement of the Fourier Transform
(FT) method,61 which generates surrogate time series by computing
the FT of the original series, substituting the Fourier phases with ran-
dom numbers uniformly distributed between 0 and 2π , and �nally
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performing the inverse FT. Since the FT method distorts the ampli-
tude distribution of the original process when such a distribution is
not Gaussian, the IAAFT method is followed implementing an iter-
ative procedure that alternatively constrains the surrogate series to
have the same power spectrum (by replacing the squared Fourier
amplitudes of the candidate surrogate series with those of the orig-
inal series) and to have the same amplitude distribution (by a rank
ordering procedure) of the original series.

As discriminating statistic, we employ each of the three nonlin-
ear indexes presented in Sec. II, i.e., the normalized complexity index
(NCI) based on local sample entropy, the regularity index based on
information storage (IS), and the nonlinear index based on Gaussian
Linear Contrast (GLC).

As a statistical test, we perform a nonparametric test based on
percentiles. The test compares the selected nonlinear index, here
denoted generically asNI, when calculated on the original time series
(NIo) and when calculated on ns surrogate time series (ns = 100 in
this work) generated under the null hypothesis. Speci�cally, NIo was
compared with a threshold for signi�cance NIα extracted from the
empirical distribution of NI over the surrogates setting a prescribed
con�dence level α (α = 0.05 in this work). In the case of the NCI
indexmeasuring the complexity of a time series, the index is expected
to decrease in the presence of nonlinear dynamics compared to lin-
ear time series; therefore, NIα was set at the 100 · α-percentile of
the distribution of NI over the surrogates, and the null hypothesis
was rejected if NIo < NIα . In the case of the IS and GLC indexes
measuring the regularity of a time series or the amount of nonlin-
ear correlations, the indexes are expected to increase in the presence
of nonlinear dynamics compared to linear time series; therefore,
NIα was set at the 100 · (1 − α)-percentile of the distribution of NI
over the surrogates and the null hypothesis was rejected if NIo >
NIα . In either case, rejection of the null hypothesis allows deter-
mining, individually for each subject, if the original value of the
considered measure stands outside the 95% con�dence interval of
the surrogate distribution, thus detecting the presence of nonlinear
dynamics.

B. Quantification of nonlinear dynamics

Surrogate time serieswere also exploited to quantify the “extent”
of nonlinearity in each investigated HRV recoding, intended as the
extent to which the original value of ameasure deviates from its aver-
age value obtained from linear time series sharing the autocorrelation
and amplitude distribution of the original series. This was performed
comparing the index NIo computed on the original, possibly nonlin-
ear time series, with the median NIm of its values computed on the
set of surrogate time series. The di�erence with the median, de�ned
as 1NI = NIm − NIo in the case of the complexity index (i.e., when
NI = NCI), and de�ned as1NI = NIo − NIm in the case of the two
other indexes (i.e., when NI = IS or when NI = GLC), was taken as
a measure of the amount of nonlinearity in the observed time series.
Moreover, an alternative measure accounting for the spread of the
distribution of the nonlinearity measure was de�ned by normalizing
the di�erence with themedian to the standard deviation of the distri-
bution of the measure over the surrogates [i.e., computing the ratio
1NI/SD(NI)]. Results for this standardized di�erence are reported
in the supplementary material.

IV. PATIENTS, EXPERIMENTAL PROTOCOL, AND

DATA ANALYSIS

The time series analyzed in this study belong to an historical
database collected to analyze the e�ects of aging and myocardial
infarction on cardiovascular interactions.45 The database consists of
heart rate variability measured in a group of 35 postacute myocardial
infarction (AMI, 4 female, 58.5 ± 10.2 years old) patients exam-
ined about 10 days after AMI and in two control groups formed
by 12 old healthy subjects (Old, 9 female, 63.1 ± 8.3 years) and
by 19 young healthy subjects (Young, 9 female, 25.0 ± 2.6 years).
The Old subjects were matched in age with the post-AMI patients,
and both groups were signi�cantly older than the young subjects
(two sample t-test on age distributions: p = 0.17 Old vs AMI; p <
0.000 01 Old vs Young, AMI vs Young). Eight out of 35 post-AMI
patients were initially under a beta-blocker therapy, but they dis-
continued the treatment two half-lives before the recording session.
Control subjects were normotensive and free from any known dis-
ease based on anamnesis and physical examination at the time of the
study.

After a period of 15min for subject stabilization, the elec-
trocardiogram (Siemens Mingograph, hardware bandpass �lter
0.3–1000Hz, lead II ECG) was recorded for 10min in the supine
rest position, followed by 10min of passive head-up tilt at 60◦. All
ECG signals were digitized with a 12 bit resolution and 1-KHz sam-
pling rate. After detecting the QRS complex on the ECG and locat-
ing the R apex through template matching, heart period variability
was measured on a beat-to-beat basis calculating the sequence of
the time intervals occurring between pairs of consecutive R peaks
(RR intervals). The series were then cleaned up from artifacts, win-
dowed toN = 300 points for each condition (rest, tilt) and detrended
by a high-pass �lter to ful�ll stationarity criteria.44,66Normalized time
series were eventually obtained by subtracting the mean values and
dividing by the standard deviation.

For each subject and condition, analysis of nonlinearity was
performed using the three methods described in Sec. II and per-
forming the tests described in Sec. III. NCI and IS indexes were
computed using standard values for the free parameters of entropy
estimators applied to short time series,48,58 namely, using m = 2 val-
ues to approximate the past history of the process, setting a tolerance
r = 0.2σ to de�ne similarity in sample entropy analysis (where σ
is the standard deviation of the series equal to 1 after normaliza-
tion) and employing k = 10 neighbors in the distance-based entropy
estimations. Distances between patterns were obtained using the
Eucilidean norm in the kernel estimator used to compute NCI51

and the maximum norm in the nearest-neighbor estimator used in
IS.66 Moreover, to investigate the dependence on the type of entropy
estimator andon the embedding dimension, the ISmeasurewas com-
puted also using the kernel estimator and varying the dimension in
the rangem = (2, 3, 4). In the computation of the GLC index, taking
into account the short size of the time series (N = 300) and to align
with the other measures, we choose `max = m = 2 to limit spurious
results induced by the fact that the autocorrelation function tends to
reach quickly the noise level.

For each assigned index (NCI, IS, GLC), the statistical signi�-
cance of its changes across groups (Young,Old, AMI) and conditions
(rest, tilt) was assessed by the two-way ANOVA, introducing the
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gender of the subjects as a categorical confounder variable in the
test design. The assumption of Gaussianity was checked using the
Jarque-Bera normality test, suggestingGaussianity in the largemajor-
ity of the distributions tested (15 out of 18 tests). Post hoc tests were
performed using the two sample t-test with unequal variances to
detect pairwise di�erences between groups (limited to the compar-
isons Young vs Old and Old vs AMI, with Bonferroni correction for
this double comparison) and using the paired Student t-test to detect
pairwise di�erences between the two conditions (rest vs tilt). We
computed also the percentage of subjects belonging to each group for
which the null hypothesis of linearGaussian dynamicswas rejected in
the two conditions; then, statistically signi�cant variations between
two groups in a given condition were assessed using the chi-square
test for proportions, while signi�cant variations between conditions
for a given group were assessed using the McNemar test for paired
proportions.

V. RESULTS

Figure 1 reports an illustrative example of the application of
the three considered nonlinear dynamicmeasures to individual HRV
time series measured from one Young subject, one Old subject, and
one AMI patient in the two analyzed experimental conditions (rest,
tilt). In each panel and for each of the two conditions, the indi-
vidual value of the considered measure is plotted with a symbol,
and the distribution of values obtained from the same measure over
100 surrogate time series is represented with an error bar (median
and 5th − −95th percentiles); signi�cant nonlinear dynamics are
detected when the original value lies outside the surrogate distri-
bution, while the extent of the deviation can be inferred compar-
ing the original value and the surrogate median. Considering the
two entropy measures, opposite response to the change in condi-
tion is observed consistently for the three cases, with lower values
of NCI and higher values of IS measured during tilt compared to
rest. On the contrary, moving from rest to tilt, the nonlinear dynamic
measure based on GLC decreases slightly for the Young subject (cir-
cles), decreased more consistently for the Old subject (squares), and
increases for the AMI patient (triangles). Moreover, the comparison
between the original value of a measure and its distribution on the
surrogate time series reveals the di�erent ability to detect nonlin-
ear dynamics of the di�erent measures. In particular, in both the
experimental conditions, nonlinear dynamics are detected only by
the information storage in the Young subject [Fig. 1(a)] and only by
the Gaussian linear contrast method in the AMI patient [Fig. 1(c)],
while all measures detect the presence of nonlinear dynamics in the
Old subject [Fig. 1(b), NCI and IS in both conditions, and GLC only
at rest].

Most of the trends observed for the representative subjects
described above are re�ected at the population level, as reported in
Fig. 2, showing the distributions across subjects and conditions of the
three nonlinear dynamicmeasures. The indexes based on conditional
entropy and mutual information display opposite trends in response
to the change of posture: the transition from rest to tilt is associ-
ated with a statistically signi�cant decrease of the complexity index
[NCI, Fig. 2(a)] in both Young (p < 0.0005) and AMI (p = 0.025)
and a statistically signi�cant increase of the information storage [IS,
Fig. 2(b); p < 0.0005] in both Young (p < 0.0005) and AMI

(p < 0.0005), while no signi�cant changes are detected for bothmea-
sures in the Old group. Moreover, during tilt, NCI is signi�cantly
higher [Fig. 2(a); p < 0.0001], and IS is signi�cantly lower [Fig. 2(b);
p < 0.0001], in Old compared to Young. As to the GLC measure, it
changes with the experimental condition in di�erent ways for the
di�erent groups [Fig. 2(c)]: moving from rest to tilt, the measure
decreases signi�cantly in the Young subjects (p = 0.041), does not
change signi�cantly in the Old subjects and increases signi�cantly in
the AMI patients (p = 0.023).

Figure 3 depicts the results of the analysis performed consider-
ing the deviation of each nonlinear dynamicmeasure from itsmedian
level assessed on linear Gaussian surrogates. We �nd that all three
measures decrease signi�cantly, in Young healthy subjects, with the
transition from rest to tilt (1NCI : p = 0.025;1IS : p = 0.024;1IS :
p = 0.01), while no signi�cant changes are observed forOld subjects
and AMI patients [Figs. 3(a) and 3(b)]. It should be remarked that
the assessment of the statistical signi�cance reported for these cases
may be in�uenced by deviations from normality, as the Jarque-Bera
test did not reject the null hypothesis of joint Gaussianity for the rest
and tilt distributions of the 1IS and 1GLC indexes evaluated in the
Young subjects.

Figure 4 reports the relevance of nonlinear dynamics in each
group and experimental condition, measured as the percentage of
subjects for which the value of the considered nonlinear dynamic
measure computed for the original RR series is deemed (with 5% sig-
ni�cance) as not drawn from the distribution of the index derived
from the surrogate RR series. The conditional entropy measure is
associated with nonlinear dynamics in less than half of the subjects
in each group, as the NCI index is found below the 5th percentile of
its surrogate distribution in ∼35% of Young subjects, ∼45% of Old
subjects, and ∼25% of AMI patients [with no substantial di�erences
between conditions, Fig. 4(a)]. The mutual information measure
detects a considerably higher percentage of nonlinear dynamics, as
the IS index is found above the 95th percentile of its surrogate distri-
bution in more than half of the subjects in all groups and conditions
[Fig. 3(b)]. In the Young group, the IS index is larger than the sig-
ni�cance threshold in 95% of the subjects at rest and in ∼70% of
the subjects during tilt; in the Old and AMI groups, the index is
signi�cantly lower during both conditions [Fig. 4(b)]. The di�er-
ent detection rate of nonlinear dynamics exhibited by the NCI and
IS measures is further investigated in the supplementary material,
implementing a kernel-based estimation of IS. The Gaussian linear
contrast approach detects nonlinear dynamics in ≈30% − 60% of
subjects in all groups and conditions [Fig. 4(c)]. Moving from rest to
tilt, the number of subjects with nonlinear dynamics detected by the
GLCmeasure decreases in Young, while it increases in Old and AMI.

VI. DISCUSSION

The purpose of this study was to perform a comparative investi-
gation of the aptitude of three recently proposed nonlinear dynamic
measures [i.e., Normalized Complexity Index (NCI) recently de�ned
as a re�nement of the well known sample entropy measure,51 Infor-
mation Storage (IS) implemented through nearest-neighbor esti-
mation with bias compensation,15 and Gaussian Linear Contrast
(GLC)10] to quantify the presence and the extent of nonlinear
dynamics in short-term recordings of HRV obtained under di�erent
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FIG. 1. Computation of nonlinear dynamic measures on heart period time series measured for a representative young subject [(a), blue], old subject [(b), red], and post-AMI
patient [(c), green]. For each subject, the time series of the RR interval measured in the two experimental conditions are reported on the left (above: rest; below: tilt), and the
values of the nonlinear dynamic measures obtained with the three considered methods (NCI: Normalized Complexity Index; IS: Information Storage; GLC: Gaussian Linear
Contrast) are reported on the right (markers: original values; error bars: 5th, 50th, and 95th percentiles of the distribution over 100 surrogates).
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FIG. 2. Distribution of the three nonlinear dynamics measures [(a), normalized
complexity index; (b) information storage; and (c) Gaussian linear contrast] over
the HRV time series of Young subjects (blue circles), Old subjects (red squares),
and post-AMI patients (green triangles) in the rest and tilt conditions, depicted
as individual values (markers) and 5th, 50th, and 95th percentiles of the distribu-
tions across subjects (error bars). Symbols denote statistically significant changes
between conditions (#, rest vs tilt) or groups (Y ,Old vs Young); see text for details.
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FIG. 3. Distribution of the difference with the median over surrogates of the three
nonlinear dynamics measures [(a), normalized complexity index; (b) information
storage; (c) Gaussian linear contrast) over the HRV time series of Young subjects
(blue circles), Old subjects (red squares), and post-AMI patients (green triangles)
in the rest and tilt conditions, depicted as individual values (markers) and 5th, 50th,
and 95th percentiles of the distributions across subjects (error bars). The symbol
# denotes statistically significant changes between conditions (rest vs tilt); see
text for details.
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FIG. 4. Percentage of significant nonlinear dynamics obtained counting the sub-
jects for which each nonlinear dynamic measure was significantly different for the
original heart period than for the surrogate time series. Results are shown for
each of the three proposed methods [(a), normalized complexity index; b, infor-
mation storage; c, Gaussian linear contrast) applied to Young subjects (blue),
Old subjects (red), and post-AMI patients (green) in the rest and tilt conditions.
The symbol Y denotes statistically significant changes between groups (Young
vs Old); see text for details.

physiopathological states. In a time series observed as a realization
of a stochastic process, nonlinear dynamics are typically described as
nonlinear correlations between time-lagged variables taken from the
process.61 In our analysis, these correlations are detected directly in
terms of mutual information between the present and the past sam-
ples of the process by the IS index, inversely in terms of conditional
entropy of the present sample given in the past by the NCI index, or
in terms of deviation of the estimated correlation from the value that
would be expected in the case of linear correlations by theGLC index.
Our results document that di�erences in the detection and quanti�-
cation of nonlinearity emerge among the three measures, suggesting
that a given nonlinear dynamicmeasuremay bemore or less sensitive
to the detection of speci�c types of nonlinear dynamics depend-
ing on the properties of the measure and on the estimator adopted.
Therefore, while some of the results are robust and suggest that dis-
tinct nonlinear dynamic structures may underlie the generation of
HRV depending on the physiopathological condition under analysis,
physiological interpretations should be provided with cautiousness.

A �rst result is the opposite variation exhibited by the indexes
of conditional entropy and information storage when moving from
rest to tilt or while comparing two groups [Figs. 2(a) and 2(b)]. This
result, which is found consistently to also vary some analysis parame-
ters such as the type of entropy estimator and the embedding dimen-
sion (see the supplementary material), can be explained considering
that NCI and IS are related to each other as they re�ect, respec-
tively, the unpredictability and the predictability of the dynamics.66

The lower NCI and higher IS measured in response to tilt indicate
higher predictability of HRV, likely associated to the activation of the
sympathetic nervous system induced by the postural challenge.16,56

Such an activation seems less important in the old and post-AMI
groups compared with the young subjects, as documented by the
smaller variation of the indexes (though still statistically signi�cant
in AMI) and by the higher NCI/lower IS seen during tilt in Old
and AMI compared to Young. Con�rming previous studies,39,45 these
results suggest that aging and myocardial infarction are associated
with higher sympathetic tone and reduced capability to cope with the
postural challenge with further sympathetic activation.

On the other hand, the trends displayed by the GLC measure
[Fig. 2(c)] are in agreement with those of the conditional entropy in
the young subjects (both GLC and NCI decrease with tilt) and with
those of the information storage in the AMI patients (both GLC and
IS increase with tilt). The di�erent behavior of the GLC index can be
explained by considering that this index re�ects the extent to which
the correlations of the time series deviate from those expected in the
linear Gaussian case,10 and thus, it is not dependent on the extent
of linear correlations within the observed time series. As such, GLC
should be interpreted as a direct measure of nonlinearity rather than
as a regularity index. This is con�rmed by the consistent changes
between conditions displayed by the absolute values of GLC and by
the di�erence between the index and the median value of its sur-
rogate counterparts [Fig. 2(c) vs Fig. 3(c)]. On the contrary, IS is
a regularity measure, which accounts for both linear and nonlin-
ear correlations, and its increase with tilt is mainly driven by the
enhancement of linear HRV correlations. In fact, when the e�ects
of linear correlations are removed by subtracting the median on the
surrogates, the behavior of IS becomes more similar to that of GLC
[Figs. 3(b) and 3(c)]. This similar behavior is observed consistently
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for all three measures when nonlinear HRV dynamics were assessed
computing the deviation of each measure from the median level of
its surrogate distribution [Figs. 3(a)–3(c)]. The di�erence with the
surrogate median reveals indeed that, in the young healthy subjects,
the transition from rest to tilt is associated with a decreased degree
of nonlinearity, and this result is in agreement with the observation
that nonlinear dynamics are reduced in the presence of an increased
sympathetic activity.53,57Another peculiar result is the increased con-
tribution of nonlinear dynamics to HRV measured during tilt in
the post-AMI patients [Fig. 2(c)]. This �nding is novel and unex-
pected and may reveal that a distinct type of nonlinearity takes place
when the orthostatic stress is delivered in the presence of higher
sympathetic tone.

In spite of the similar trends observed for the absolute values
and for the deviation from the surrogate median value of NCI and
IS [Figs. 3(a) and 3(b)], the two information measures exhibit di�er-
ent percentages of signi�cant nonlinearity in the various conditions
[Figs. 4(a) and 4(b)]. In agreement with previous studies assessing
complexity through prediction measures,53,57 the amount of nonlin-
ear dynamics detected by the complexity measure based on local
sample entropy was small in the young healthy subject at rest and
did not change signi�cantly with the sympathetic activation induced
by tilt or related to age and pathology [Fig. 4(a)]. On the contrary,
using a regularity measure based on information storage, nonlinear
dynamics were found consistently in the young subjects at rest, and
their incidence decreased signi�cantly with postural stress and in the
old and post-AMI groups [Fig. 4(b)]. This �nding may re�ect the
fact that the spontaneous cardiovascular regulation occurs through a
variety of nonlinear mechanisms (e.g., saturation of receptors, e�ects
of the respiratory centers at the brain stem level, interaction between
sympathetic and parasympathetic nervous systems, etc.) in resting
conditions,31 and the rise of a speci�c oscillatory component (i.e., the
low frequency one related to sympathetic activation) tends to sim-
plify the dynamics reducing nonlinear components. The reduction
of nonlinear dynamics with the tilt-induced sympathetic activation
is con�rmed (though to a lower extent) by the test using the GLC
measure [Fig. 4(c)]. The same test, however, indicates a tendency to
increase the rate of detection of nonlinear dynamics with tilt in the
old subjects and AMI patients. This could suggest that mechanisms
more complex than a pure sympathetic activation are triggered by the
orthostatic stress delivered in the elderly and pathological states.40

However, more methodological factors might be responsible
for the disparity of the conclusions drawn by the exploited mark-
ers. In a previous study,52 di�erent conclusions about HRV nonlinear
dynamics were drawn using di�erent nonlinearity measures (based
on nonlinear prediction and time irreversibility) in fetal HRV record-
ings as well as in adults during graded head-up tilt. In particular, the
di�erent responses to tilt documented by Porta et al.52 using non-
linear prediction and time irreversibility are comparable to those
observed here using the IS and GLC indexes. The di�erent rates of
detection of nonlinearity were explained by Porta et al.52 in terms of
the di�erent time scales spanned by the measures employed. How-
ever, this interpretation should not hold in our case since allmeasures
work in the same low dimensional embedding space (m = 2 in this
study). The choicem = 2, which corresponds to a reconstructed state
space de�ning vectors (Sn, Sn−1), re�ects a typical setting in short-
term HRV analysis.16,51,56,66 While this choice prevents the detection

of higher dimensional dynamics, which may occur in HRV, in short-
term analysis, it is recommended to keep reliability of the estimated
entropy measures in the presence of short data sequences.47Here, we
observed that the adopted entropy measures bring results that are
robust against changes of this parameter in the range m = (2, 3, 4)
(see the supplementary material).

A di�erence between the information approach and the Gaus-
sian linear contrast method is that NCI and IS are obtained aggre-
gating all time lags in the computation of the measure, while GLC
results from analyses performed individually for each lag and then
aggregated in the �nal measure. In addition, the performance of GLC
might be a�ected by the comparison with surrogates that might have
ampli�ed eventual residual departures from Gaussianity present in
the surrogate data due to �nite size e�ects.Moreover, the dependence
of the cell size on the parameters set for the analysis (i.e., respec-
tively, tolerance and number of nearest neighbors) might also have
played a role. In order to better elucidate the nature of the observed
di�erences and the capability of the various measures to detect dif-
ferent types of nonlinear dynamics, future studies should consider
extension of these measures where longer temporal scales can be
explored (e.g., analyzing longer stationary recordings and/or employ-
ing methods for dimensionality reduction16), and deviations of the
estimator speci�c parameters from their nominal typical value are
investigated (e.g., for the information measures, the parameter set-
ting the size of the cell used in themultidimensional space to estimate
probabilities15,58).

As for the di�erences observed between NCI and IS, our addi-
tional analysis comparing kernel and nearest-neighbor estimates of
the IS index (see the supplementary material) suggests that the type
of estimator can be crucial in the detection of nonlinear dynamics.
Indeed, when IS is computed via kernel estimates rather than via
nearest neighbors, the percentage of signi�cant nonlinear dynam-
ics decreases, becoming comparable to that detected by the NCI
index, which is also grounded on kernel-based entropy estimation.
This suggests that di�erent coarse graining approaches using, respec-
tively, equal vs di�erent cell size57 may result in a di�erent sensitivity
as regards the detection of nonlinear dynamics. In particular, the
nearest-neighbor estimator turns out to be a better estimator for the
information measures, as it shows higher sensitivity to the detec-
tion of nonlinear dynamics. Another methodological aspect that can
explain the di�erence is the fact that nearest-neighbor estimation is
accompanied by a distance-projection approach such that the cell size
actually varies only while estimating entropies in the highest dimen-
sion, while it is kept constant (while allowing the number of neigh-
bors to vary) in the lower dimensional spaces.33Thus, we suggest that
the bias of entropies computed in spaces of di�erent dimension plays
a role in the detection of nonlinear dynamics. This aspect should be
investigated inmoremethodological studies involving simulations of
linear and nonlinear dynamic systems.

Finally, we mention as possible limitations of the present study
some characteristics of the analyzed database.45 The three analyzed
groups are not homogeneous in the gender distribution (males are
prevalent inAMI, females are prevalent inOld, and the gender is bal-
anced in Young), and this may have an impact on the results as it is
known that gender has a substantial e�ect on heart rate variability.63,67

Moreover, residual e�ects of the treatment with betablockers may
be present in the AMI patients and have an e�ect on the dynamics
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analyzed. The results reported in this study should be con�rmed on
other databases with balanced gender distribution and the absence of
fully discontinued treatment after myocardial infarction.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional analysis, illus-
trating the dependence of the measure of information storage on
the embedding dimension and on the type of the estimator used to
compute entropies.
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