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Abstract 
Ogni giorno siamo esposti a una miscela di più sostanze chimiche attraverso l'assunzione di cibo, 
l'inalazione e il contatto cutaneo. Il rischio per la salute che può derivare da ciò, dipende da come si 
combinano gli effetti delle diverse sostanze chimiche nella miscela e dalla presenza di sinergismo o 
antagonismo tra loro. Il numero di diverse combinazioni di sostanze chimiche nelle miscele è infinito 
e manca un'efficace strategia di prova per queste. Inoltre, vi è una pressione sociale per ridurre la 
sperimentazione sugli animali, che è la pratica corrente nei test di sicurezza delle sostanze chimiche. 
In questo contesto, la biochimica computazionale e, più in generale, la bioinformatica soddisfano tutti 
i requisiti e forniscono le basi per ulteriori studi in vitro o in vivo. 
Scopo di questa tesi di dottorato è lo sviluppo di un flusso di lavoro in silico in grado di stabilire le 
priorità e discriminare le sostanze chimiche che agiscono come sostanze attive a livello endocrino 
(EAS), che interferiscono con il percorso dell'acido retinoico durante lo sviluppo dell'embrione e/o 
possono causare tossicità epatica. L'approccio basato sul ligando e quello basato sulla struttura sono 
stati integrati con la biologia del sistema al fine di descrivere il percorso degli esiti avversi partendo 
dall'osservazione dell'evento molecolare iniziale. In questo quadro, i risultati di (Q)SAR e di docking 
molecolare sono stati uniti in un punteggio di consenso maggioritario per classificare le sostanze 
chimiche e sono state utilizzate le simulazioni di dinamica molecolare a bassa frequenza per studiare 
la loro attività intrinseca, rispetto a uno specifico recettore nucleare. Inoltre, un approccio 
computazionale basato sia sulla teoria dello stato di transizione sia sulla teoria della densità funzionale 
è stato usato per discriminare un sottoinsieme di sostanze chimiche tra inibitori e substrati di 
particolari enzimi coinvolti nella via dell'acido retinoico, calcolando inoltre le loro energie libere di 
legame. Questa informazione è stata anche presa in considerazione sia nei modelli farmacocinetici 
(PD) che nei modelli farmacocinetici a base fisiologica (PBPK). 
Questo flusso di lavoro condotto in silico, oltre ad essere più veloce, presenta vantaggi economici ed 
etici, riducendo sia i costi di ricerca che il numero di animali coinvolti, in accordo con le 3R della 
ricerca. 
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Abstract 
Daily, we are exposed to a mixture of multiple chemicals via food intake, inhalation and dermal 
contact. The risk for health that may result from this depends on how the effects of different chemicals 
in the mixture combine, and whether there is any synergism or antagonism between them. The 
number of different combinations of chemicals in mixtures is infinite and an efficient test strategy for 
mixtures is lacking. Furthermore, there is social pressure to reduce animal testing, which is the current 
practice in safety testing of chemicals. In this context, computational biochemistry and, more in 
general, bioinformatics meets all the requirements, and provides the foundation for further in vitro or 
in vivo studies. 
Aim of this PhD thesis is the development of an in silico workflow able to prioritize and discriminate 
chemicals that act as endocrine active substances (EAS), interfere with the retinoic acid pathway 
during embryo development and/or may cause liver toxicity. From the observation of the molecular 
initiating event to the description of the adverse outcome pathway, both ligand- and structure-based 
approaches were integrated with systems biology. Within this framework, (Q)SAR and molecular 
docking results were mixed into a majority consensus score to rank chemicals and low-mode 
molecular dynamic simulations were used to study their intrinsic activity, with respect to a specific 
nuclear receptor. Moreover, a computational approach based on both the transition state and the 
density functional theories was used to try discriminating a subset of chemicals as inhibitors or 
substrates of particular enzymes involved in the retinoic acid pathway, computing also their binding 
free energy values. This information was also included both in the pharmaco-dynamics (PD) and in 
the physiological based pharmaco-kinetics (PBPK) models. 
This in silico pipeline, besides being faster, has economic and ethical advantages, reducing both the 
research costs and the number of involved animals, in agreement with the “3R” principles (Reduction, 
Refinement and Replacement). 
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Preface 
 
Daily, we are exposed to a mixture of multiple chemicals via food intake, inhalation and dermal 
contact. The risk to health that may result from this depends on how the effects of different chemicals 
in the mixture combine, and whether there is any synergism or antagonism between them. The 
number of different combinations of chemicals in mixtures is infinite and an efficient test strategy for 
mixtures is lacking. Furthermore, there is a societal need to reduce animal testing, which is the current 
practice in safety testing of chemicals. 
In this context, computational biochemistry and, more in general, bioinformatics meets all these 
needs, being the bases for further in vitro or in vivo studies. This approach has been largely applied 
in a multitude of research project, such as EuroMix and an Italian Multiple Sclerosis Foundation 
(FISM)-granted project, which I participated to, during my PhD. In particular, EuroMix, an H2020 
project, delivered a mixture test strategy using novel techniques useful to refine the assessment of the 
future risk of the relevant mixtures for all the stakeholders such as the European Food Safety 
Authority (EFSA) or other EU regulatory authorities.  
On the other hand, the FISM financed a project entitled “Deciphering and modelling remyelinating 
mechanisms induced by clinically-used azole antifungals with exploitable repurposing properties” 
that was purposely aimed at studying azole antifungals, already approved for clinical uses, to better 
understand the demyelinating component of MS and to counteract its pathological evolution. At the 
same time, the use of different cellular models of maturation, (re)myelination and tissue organization 
allowed us to quantitate the contribution of natural hormones and specific proteins to multiple 
sclerosis evolution and the molecular strategies exploitable for its treatment.  
Again, in the field of risk assessment, bioinformatics approaches were applied to big data 
management and analysis, as for an EFSA procurement in which I worked as work-package leader, 
studying proteins with associated toxic effects. In this project, we integrated, through an in silico 
pipeline some bioinformatics tools to allow the risk assessment of the use of potentially toxic proteins 
in biotechnological products for food use. 
Among the twelve papers published during my PhD as first or co-author, two of them are explicitly 
linked to my PhD project, explaining and applying the in silico pipeline discussed in the present PhD 
thesis. 
 
The computational approach developed in this PhD thesis is aimed to prioritize and discriminate 
chemicals that act as endocrine active substances, interfere with the retinoic acid pathway both during 
embryo development and (re)myelinating processes and/or may cause liver toxicity, applying this 
pipeline directly in both the EuroMix and FISM projects. Both the computational approach and the 
results developed in my PhD are also reported in five different scientific report already submitted to 
the EU and FISM.  
 
This in silico pipeline, in addition to being faster, has economic and ethical advantages, reducing both 
the research costs and the number of involved animals, in agreement to the 3R (Reduction, 
Refinement and Replacement). 
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Chapter 1 – Endocrine active substances 
 
Endocrine active substances are defined as exogenous substances or mixtures that alters function(s) 
of the endocrine system and consequently causes adverse health effects in an intact organism, or its 
progeny, or (sub)populations. 
The hormone action is related to the hormone capability to activate its nuclear receptor, that depends 
upon several factors, such as how much hormone is synthesized and released by the endocrine gland, 
how it is transported through the circulation, how much reaches the target organ, and how strongly 
the hormone binds its nuclear receptor and for how long it can activate its receptor. 
The physico-chemical properties and 3D shape of each hormone are well-defined and unique, and 
each hormone has a corresponding receptor (or a set of receptors) that has (have) a complementary 
binding site to its hormone in a mechanism similar to lock-and-key system. The response of a given 
tissue or organ to a hormone is determined by the presence of receptors on target cells and receptor 
activation by hormone binding. Hormone shows an agonistic activity for its receptor, which implies 
an activation mediated by a closure of specific α-helix (α-helix 12), that is the starting point for 
biochemical pathways. These properties are fundamental to normal hormonal signalling, EASs can 
interfere with any of these steps. 
In fact, EASs often interfere with endocrine systems by blocking the binding or mimicking the 
activity of the natural hormone on its receptor. In the first case, affinity and concentration values of 
EASs are in equilibrium and EASs act as competitive ligands of hormone receptor (or antagonist) 
because it does not allow the hormone::receptor complex formation and it does not activate the 
nuclear receptor and its related biochemical pathway. In the second case, an EAS can bind the 
receptor, inappropriately activating it and triggering processes normally activated only by the natural 
hormone. 
The best-known example is the endocrine perturbation of hormones with estrogenic activity. In both 
males and females, ERs are present in many cells in the brain, in bone, in vascular tissues, and in 
reproductive tissues. While the estrogen role is better characterized in female reproduction, they also 
exert important activities for male reproduction, and are also involved in neurobiological functions, 
bone development and maintenance, cardiovascular functions, and many other functions. Natural 
estrogens exert these actions, after being released from the gonad (ovary-female or testis-male), by 
binding to ERs in the target tissues. Estrogen receptors are not the only receptors that are affected in 
this manner by EASs, although they are the best studied. EAS interfere with androgen (AR) and 
progesterone (PR) receptors, involving gender- and hormone-dependent clinical outcomes. 
In addition, a single EAS may have the ability to affect multiple hormonal signalling pathways. Thus, 
it is quite likely that one type of EAS can disrupt two, three, or more endocrine functions, with 
widespread consequences on the biological processes that are controlled by those vulnerable 
endocrine glands. Some of the phenotypic endpoints that can be affected include abnormal anogenital 
distance, cryptorchidism, nipple retention and/or osteoporosis. 
Chapter I will discuss the pipeline of the procedures for prioritization and validation of chemicals as 
putative ligands and their application to the EuroMix chemical inventory, extending the study field 
from ERα to all the four sexual hormone receptors (ERα, ERβ, AR, PR). In particular, this chapter 
will be divided in two part in which we developed the complete in silico pipeline to study EAS on 
Erα using a specific training set and carried out an in silico prioritization of the EuroMix chemical 
inventory of thousand chemicals via molecular docking approach, as reported in Figure 1. 
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Figure 1: Endocrine active substances in silico pipeline. Yellow polygon represents ligand-based 
approach, while the violet polygons represent structure-based approaches. Endpoints are represented 
as white rectangle. 
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Part I – VEGA training set 
 
 
These results have already been published in Cotterill, Palazzolo et al. (2018), that we published in 
the EuroMix framework. 
 

Introduction 

Exposure to endocrine disrupting chemicals (EDCs) has been linked to an increase in reproductive 
problems, hormone-dependent cancers, diabetes and obesity (Diamanti-Kandarakis et al., 2009; 
Piparo and Worth, 2010; Schug et al., 2011, Vuorinen et al., 2013). There are diverse and complex 
mechanisms of endocrine disruption, including direct activation or inactivation of key endocrine 
target receptors such as estrogen, androgen, progesterone and several corticosteroid receptors, as well 
as disruption of hormone synthesis and inhibition or activation of hormone metabolizing enzymes 
such as hydroxysteroid dehydrogenases. 
The majority of research on EDCs has been based on interactions of compounds with nuclear 
hormone receptors (NR), especially estrogen receptors (ER𝛼 and ER𝛽) and the androgen receptor 
(AR). Potential EDCs are often identified by in vitro and in vivo screening tests (Borgert et al., 2011), 
however this approach can be time-consuming and expensive. In silico screening is far quicker and 
has lower cost implications and so can be a valuable tool for prioritising potential EDCs for further 
biological evaluation. Additionally, in silico screening can be applied to substances that are not 
synthesized (yet) or which would have physico-chemical properties that make in vitro testing difficult 
and/or unreliable. 
There is a range of in silico methods available to predict potential EDCs including (Q)SAR 
((Quantitative) Structure Activity Relationships), Read across, molecular docking, pharmacophore 
modelling and virtual screening (Diaza et al., 2012; Porta et al., 2016). Although most methods will 
classify compounds as either binders or non-binders of a particular receptor, methods such as 
molecular docking and some methods in the Endocrine Disruptor Knowledge Base (EDKB) (Ding et 
al., 2010) can provide a quantitative estimate of the binding strength (Galli et al., 2014; Trisciuzzi et 
al., 2017). On the other hand, molecular dynamics simulation allows to evaluate the intrinsic activity 
of a chemical bound to a nuclear receptor. There are pros and cons to the different approaches. 
(Q)SARs are quick and easy to run but individual models have a limited chemical space i.e. the types 
of compounds which fall within the applicability domain of the models. Molecular docking is 
applicable to almost all compounds and is quantitative, however the more accurate methods required 
for toxicology, rather than the preliminary low accuracy pharmacology approach for large numbers 
of compounds, are more computationally intensive and time consuming (Trisciuzzi et al., 2005). 
Recently a lot of effort is being put into the estimation of EDCs, for example the estimation of ER 
activity in a large-scale modelling project called CERAPP (Collaborative Estrogen Receptor Activity 
Prediction Project) (Mansouri et al., 2016). In this extensive project 48 QSAR models to predict ER 
activity, developed using a common training set of 1,677 compounds, were combined and evaluated 
using a validation set of 7522 compounds. There is also a large literature on using docking against 
ERα applied to toxicology in order to reduce animal tests. For example, Trisciuzzi et al. (2005) 
present a study on estrogen receptors by deriving ad hoc docking-based classification models to 
discern potential estrogenic from non-estrogenic activity. On the other hand, many authors used 
molecular docking simulations to evaluate both affinity and molecular recognition mechanism of 
chemical::ERα complexes in order to develop drugs (Maruthanila et al., 2018), test xenobiotics effect 
(Conroy-Ben et al., 2018; Pang et al., 2018; Ye and Shaw, 2019) or study the molecular recognition 
mechanism of endogenous ligands at an atomistic level (Li et al., 2019). 
 
Estrogen Receptor binding is one of the endpoints being considered in the EU-funded project 
EuroMix (https://www.euromixproject.eu/), in which in silico predictions are being used as input in 
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the risk calculation of combined exposure to multiple chemicals, when experimental data are not 
available. Exposure can occur to a diverse range of compounds that may be present in mixtures in 
food and feed. These compounds include plant protection products, biocides, environmental 
pollutants, mycotoxins, alkaloids, non-intentionally added substances (NIAS), food contact and food 
additives. In the component-based approach to mixture toxicity assessment proposed by the EuroMix 
project, QSAR predictions are used as (lower tier) information to determine which substances are 
likely to contribute to similar toxicological effects, and therefore should be assessed together in 
Cumulative Assessment Groups (CAG). This CAG approach to mixture toxicity assessment is 
explained in the draft guidance on mixture toxicity risk assessment from the European Food and 
Safety Authority (EFSA, 2019) and information on this approach can be found at the EFSA website 
(http://www.efsa.europa.eu/en/topics/topic/chemical-mixtures). Also required in the proposed 
project risk assessment process are the relative potency factors of the compounds in the cumulative 
assessment group. As no single (Q)SAR method is likely to be capable of providing reliable 
predictions for such a wide range of compounds, an approach using a weight of evidence of estimates 
from a suite of in silico models was proposed. We identified a broad selection of (Q)SAR models 
which were fundamentally different to each other, i.e. built using different chemicals, types of data 
and using different approaches and algorithms, in order to enable a diverse range of compounds to be 
estimated with more confidence. 
In the initial phase of the EuroMix project a simple Majority Consensus approach for the 
interpretation of multiple QSAR results was used. To test the validity of this approach a test set of 
compounds with experimental Relative Binding Affinity (RBA) data was evaluated and the 
predictivity of both the individual models and the Majority Consensus prediction was assessed. 
Experimental values from reporter gene (RA) assays (i.e. agonist-specific activation assays) were 
also examined to investigate whether false negatives were likely to be antagonists. In addition to the 
application of the (Q)SAR models, molecular docking was carried out and the binding energies of 
the test set compounds to the ERα receptor were determined; we also investigated whether the 
Majority Consensus of QSAR models correctly predicted the strongest binding compounds. As well 
as using Molecular docking data to provide an assessment of the strength of binding, we investigated 
using different binding energies as a cut off to determine whether a compound is a binder or non-
binder and also how QSAR model and molecular docking results can be best combined according to 
a particular requirement, for example to minimise false negatives, or to obtain the highest accuracy. 
A few test compounds were also evaluated using low-mode molecular dynamics simulations to 
determine their intrinsic activity and to investigate whether some of the negatives from the QSAR 
Majority Consensus were actually ERα antagonists. 
 
 
Results – Ligand based approach 

Predictivity of individual (Q)SAR models and the Majority Consensus  
The predictivity of the individual (Q)SAR models was variable, as expected; some models had high 
sensitivity and others had high specificity. The Majority Consensus gave very good results with an 
accuracy of 0.8 and a reasonably balanced sensitivity and specificity and a high NPV value (Table 
1). The VEGA-RBA model gave slightly better results (higher Accuracy, Specificity and MCC, the 
same Sensitivity and a similar NPV value) than the Majority Consensus model. Although it could be 
argued that the VEGA-RBA model alone could thus be used instead of the Majority Consensus 
model, the consensus of a number of different models is likely to be suitable for a wider range of 
compounds, i.e. will have a broader applicability domain, and if a compound is out of the domain of 
the VEGA-RBA model, it may be predicted by other models.  
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(Q)SAR Model Sensitivity Specificity Accuracy MCC NPV 
COSMOS Nuclear Receptor model 0.85 0.40 0.55 0.25 0.83 
DEREK Nexus 0.33 0.98 0.75 0.44 0.73 
OCHEM estrogen receptor α agonists 
a  

0.88 0.51 0.66 0.40 0.86 

OECD QSAR Toolbox DART 
scheme (ER binding) 

0.29 0.83 0.64 0.14 0.68 

OECD QSAR Toolbox ER binding 
OR rtER alert 

0.75 0.64 0.68 0.37 0.82 

VEGA – RBA 0.77 0.88 0.84 0.64 0.88 
VEGA – CERAPP a  0.73 0.68 0.70 0.40 0.82 
Majority Consensus  0.77 0.82 0.80 0.58 0.87 

Table 1: Cooper statistics and NPV values for individual (Q)SAR models and Majority Consensus 
predicting experimental Relative Binding Affinity. 
 
Of the 52 compounds in the VEGA test set (please, see Material and Methods chapter for VEGA test 
set details) with active experimental RBA values, there were 12 compounds that were predicted to be 
non-binders by the majority QSAR Consensus. These compounds covered a range of chemical 
classes, including phthalates, benzaldehydes, organophosphate, organochlorine, dicarboximide, 
organosulfur and polycyclic aromatic hydrocarbons. These compounds were investigated further and 
Reporter Gene assay (RA) results values were obtained (Roncaglioni et al., 2008), the transcriptional 
activity values of which are positive for agonists only. From the RA data it was found that 10 of these 
12 compounds were not able to activate the ER, which indicates that they may be antagonists. The 
remaining two compounds, which were not structurally similar to each other (2-hydroxy fluorene and 
2,2-bis(4-aminophenyl)hexafluoropropane), are not indicated to be antagonists and so are potential 
false negatives. 
 
Majority Consensus (Q)SAR prediction of the strongest binding compounds 
Experimental values and Majority Consensus (Q)SAR predictions for all compounds with binding 
energies below -6.5 kcal/mol (50 compounds in total) were examined. Results show that, out of these 
50 strongest binding compounds, which also had positive relative binding activity (RBA) 
experimental values, only 5 compounds were predicted by the Majority Consensus QSAR to be 
negative. In addition to the RBA experimental values, the data for the same compounds for the 
relative activity (RA) test (agonist only) were also considered. The RA experimental results for these 
5 compounds were all negative. As the RA test is agonist-specific and RBA is general (could be 
agonists or antagonists) this result indicates that these 5 compounds are in fact ER antagonists. This 
suggests that the majority consensus QSAR approach has not missed any of the highest binding ER 
agonists in the validation set. 
 

Results – Structure based approach 

Molecular docking  
From molecular docking to ERα, both the molecular poses and the free binding energies of the VEGA 
validation set were obtained. These energies ranged from -8.9 to 9.6 kcal/mol, with the ten strongest 
binders shown in Table 3. Eight of these ten compounds were classified as active from the RBA 
experimental values. Moreover, a free binding energy of -8.1 kcal/mol was calculated for 17β-
estradiol, the endogenous hormone for ERα. Based on this value, it was possible to classify within 
the database how many compounds have a lower value of binding free energy (ΔG). As a result, only 
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7 compounds have a ΔG lower than -8.1 kcal/mol, of which 5 are classified as active, while 2 are 
classified as inactive, on the basis of VEGA RBA data.  

 
CAS number Chemical name Binding energy 

[kcal/mol] 
RBA Experimental 
value  

17606-31-4 Bensultap -8.9 Active  
1816-85-9 11-Hydroxytestosterone -8.5 Inactive  
566-76-7 16-Hydroxyestrone -8.3 Active  
2772-45-4 2,4-Bis(dimethylbenzyl)phenol -8.3 Active  
67747-09-5 Prochloraz -8.2 Inactive  
71030-11-0 beta-Zearalenol -8.2 Active  
571-20-0 5alpha-Androstane-3,17-diol -8.2 Active  
104-43-8 4-Dodecylphenol -8.0 Active  
1476-34-2 6-Keto estrone -8.0 Active  
5447-02-9 3,4-Bis(benzyloxy)benzaldehyde -7.7 Active  

Table 2: Binding Energies for ten strongest binding compounds and experimental values 
 

Cut-off values of binding energies used to class as binders or non-binders. 
In order to investigate the binding free energy value to be used as a cut-off, regardless of the 
endogenous substrate value, an R-script was written to compute the sensitivity, the specificity and 
the accuracy of the docking procedure by changing cut-off value. Table 3 shows the values of the 
Cooper statistics, calculated for four different cut-offs. Based on accuracy, the optimal cut-off value 
is -6.5 kcal/mol, which corresponds to a 10*E-06 M for dissociation constant (Ki). Using this cut-off 
value, although the accuracy of prediction was close to 0.7, the Cooper statistics were not as good as 
for the QSAR Majority Consensus. All these data were obtained relating the binding free energy 
results with the RBA. 
 
Cut-off 
(kcal/mol) 

Sensitivity Specificity Accuracy MCC NPV 

-5.5 0.87 0.38 0.55 0.25 0.82 
-6 0.75 0.58 0.64 0.32 0.81 
-6.5 0.54 0.77 0.69 0.31 0.76 
-7 0.31 0.83 0.65 0.16 0.69 

Table 3: Cooper statistics and NPV value for Molecular docking binding energy cut-off values to 
assign whether compounds are binders or non-binders. 
 
The NPV values ranged from 0.69 to 0.82 using the cut-off values of -7 to -5.5 kcal/mol (Table 3) 
and so a value of -5.5 kcal/mol would minimize the false negative prediction. Considering also this 
term for molecular docking, a good compromise between accuracy and NPV would be a cut-off value 
of -6 kcal/mol, for which there is also a good sensitivity (0.75). For these reasons, in section 3.4 we 
also consider the cut-off of -6 kcal/mol for the majority consensus between (Q)SAR and molecular 
docking. 
 
Majority consensus between methodologies 
In order to highlight the weight of each model and to provide different scenarios for interpreting the 
results, a majority consensus between methodologies was evaluated. As a first step, the same weight 
as a single (Q)SAR model was associated to molecular docking. Using -6 kcal/mol as docking cut-
off, two different scenarios were obtained considering a chemical “positive” if it was classified as 
“positive” in three or half of the models, respectively (Table 5). In the first case, we obtained a high 
sensitivity value of 0.87, maximizing the true positive rate, although the accuracy was reduced 
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compared to the majority consensus of QSAR models. In the second case there were more balanced 
Cooper statistics. 
Using the same approach but with a -6.5 kcal/mol as binding free energy cut-off value, again where 
three or models were positive, we obtained a high sensitivity value of 0.83, minimizing the number 
of false negatives. Again, there were more balanced Cooper parameters when we considered a 
chemical “positive” if at least half of the models were positive. 
Changing perspective and using the logical operator “OR”, we considered a chemical “positive” if it 
was positive in least half of the (Q)SAR models OR positive for molecular docking (binding free 
energy below the cut-off). Using -6 kcal/mol as docking cut-off, an extremely high sensitivity value 
of 0.94 was obtained, but with a low specificity. Slightly more balanced Cooper statistics were 
obtained using the -6.5 kcal/mol as docking cut-off with the sensitivity still high (0.87).  With these 
analyses we have shown that, depending on the requirement e.g. highest accuracy, or highest 
sensitivity to decrease the chances of false negatives, it is possible to combine the (Q)SAR and 
molecular docking results, providing a rational combined strategy to maximize terms of toxicological 
interest. 

 
Methods Sensitivity Specificity Accuracy MCC 
Majority Consensus using 7 QSAR models 0.77 0.82 0.80 0.58 
Molecular docking cut off -6 0.75 0.58 0.64 0.32 
Molecular docking cut off -6.5 0.54 0.77 0.69 0.31 
Consensus including docking (-6 cut off) as 
one of the models (positive if half or more 
models positive 

0.77 0.79 0.78 0.55 

Consensus including docking (-6 cut off) as 
one of the models (positive if 3 or more 
positive) 

0.87 0.63 0.71 0.47 

Consensus including docking (-6.5 cut off) as 
one of the models (positive if half or more 
models positive) 

0.75 0.81 0.79 0.55 

Consensus including docking (-6.5 cut off) as 
one of models (positive if 3 or more positive) 

0.83 0.66 0.72 0.46 

Consensus half or more QSAR models OR 
docking positive (-6 cut off) 

0.94 0.49 0.65 0.44 

Consensus half or more QSAR models OR 
docking positive (-6.5 cut off) 

0.87 0.63 0.71 0.47 
 

Table 4: Cooper statistics combining the (Q)SAR model and molecular docking results under 
different scenarios. 
 
Low-Mode Molecular dynamics simulations to determine intrinsic activity of ERα binders  
To evaluate the procedure of LM-MD for identifying the intrinsic activity of some strongly binding 
compounds, i.e. whether agonists or antagonists, ten compounds were selected. Five likely agonists 
selected from the test set were the strongest binding compounds with positive RBA and RA 
experimental data and five possible antagonists selected were the negative compounds from the 
Majority Consensus QSAR, which had positive RBA data but negative results in the RA assay. In 
addition to these compounds, a full-agonist (17-beta-estradiol), an antagonist (4-hydroxytamoxifen) 
and the apo-form of ERα were tested, in order to have a solid background to work on considerations 
related to intrinsic activity. 
As a first step, the ab initio flexible alignment with MOE Conformational Search program was 
verified, on the basis of the molecular structures of reference compounds (17β-estradiol and 4-
hydroxytamoxifen). Subsequently, three reference conformations were computed (Figure 2) and 
verified, starting from the lowest energetic conformation of 17β-estradiol, 4-hydroxytamoxifen and 



 16 

apo- form, respectively. Closed conformation of full-agonist corresponds to starting 3UUD 
conformation, while both partially open and completely open conformations, respectively for apo- 
and antagonist, have similar shape with respect to AR open conformation reported in Galli et al., 
(2014). 
 

 
 
Figure 2. Superimposition of lower energetic configuration for agonist (green), antagonist (orange) 
and apo- form of ERα (light violet). 
 
Through an R script, the RMSD of the first 100 conformations was evaluated for each generated 
complex, using as reference the 3UUD crystallographic structure in closed conformation. For the five 
selected putative agonists (Figure 3, left), we found that 2 compounds (V2 and V3) have low RMSD 
values, so they can be classified as full agonists, another 2 compounds (V4 and V5) have low RMSD 
values for approximately 70% of the generated poses, so they can be classified as partial agonists, 
while the last one (v6) has a RMSD value similar as the reference antagonist, so it could be classified 
as an antagonist. On the other hand, for the five selected putative antagonists (Figure 3, right), 4 
compounds (V9, V10, V11 and V12) have RMSD values very high or comparable with the antagonist 
reference value, while 1 compound (V8) showed for approx. 50% of generated conformations a low 
RMSD value, comparable with the agonist value. In this case, we can assess that 4 compounds are 
antagonists, while the fifth is a weak partial agonist. 
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Figure 3. RMSD values for both putative ERα agonists (left) and putative ERα antagonists (right). 
Lines represent the reference conformations for agonists (red), antagonists (blue) and apo-ERα (dark 
green).  
 
17-β Estradiol, the reference full agonist, has a median RMSD value of 0.67 Å, as does compound 
V2, whereas compounds V3-V5 have a median value of around 0.71 Å. Compound V6 has a median 
value of 7 Å, an order of magnitude higher than the reference agonist. On the other hand, 14-
hydroxytamoxifen, the reference antagonist, has a median value of about 8 Å, while the compounds 
V8-V12 have a median value ranging from 7 Å to 18 Å. Apo-ERα has a median value of 13 Å. 
Compound V8, defined as very weak partial agonist, therefore presents a higher interquartile range, 
because of the dispersion of the generated configurations, which are in part those of an agonist, in 
part those of an antagonist. A box plot of the RMSD of the generated complexes is shown in Figure 
4. 

 
Figure 4. Box plot of the RMSD of the generated complexes. Reference agonist (V1) and putative 
agonists (V2-V6) are coloured in orange, while reference antagonist (V7) and putative antagonists 
(V8-V12) are coloured in blue. Apo-ERα (V13) is coloured in green. 
 
 

Discussion/Conclusions  

The approach of using the results from a suite of in silico models which account for different ER 
binding related endpoints, are built from different compounds and using different methodologies, has 
the advantage of increasing the chemical space covered and thus the probability that any active 
compounds from diverse classes of chemicals such as those considered in the EuroMix project will 
be correctly identified. Weight of evidence from different (Q)SAR models has been successfully used 
for a number of toxicological endpoints. For example, Price and Chaudhry (2014) showed that this 
approach using different in silico models can provide a rapid and reliable means of rapid screening 
for mutagenicity and carcinogenicity for compounds that may migrate from food packaging. Hewitt 
et al. (2010) and Marzo et al. (2016) integrated in silico models to enhance predictivity for 
developmental toxicity. Benfenati et al. (2015) integrated QSAR and Read-across results for the 
assessment of bioconcentration factors of chemicals. Again, Benfenati et al (2019) showed that there 
are several ways to integrate results of multiple in silico methods, recognising that integration of the 
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results from different (Q)SARs and other in silico tools can improve the overall confidence in the 
predicted estimates. 
In attempting to identify substitute compounds for known phthalate, bisphenol and parabens EDCs, 
Porta et al. (2016) applied a battery of different models, along with EC priority lists and other rule 
sets derived from authority’s opinions. Similar to Porta et al. (2016), we selected models which are 
fundamentally different from one another, i.e. they were developed using different chemicals, using 
experimental results from a range of different assays and thus different ER binding endpoints, and 
using different methodologies (e.g. QSAR models generated using molecular descriptors by a range 
of algorithms, SARs using molecular fragments etc.), in order to enable a diverse range of compounds 
to be estimated with more confidence. The (Q)SAR models used in the EuroMix project were 
however also selected on the basis of being readily available and implemented into software 
programs, easy to use and with the benefit of being able to run in batch mode and thus of being able 
to screen large numbers of compounds. 
The results showed that individual (Q)SAR model predictivity varied, as expected, with accuracies 
ranging from 0.55 to 0.84. Some models such as the COSMOS Nuclear Receptor and OCHEM 
models showed high sensitivity, whilst others such as DEREK Nexus and the OECD Toolbox DART 
scheme alert showed very high specificity. The Majority Consensus prediction shows a high accuracy 
(0.8) as well as well-balanced sensitivity and specificity. 
To further investigate the false negative predictions from the QSAR Majority Consensus, 
experimental values from reporter gene (RA) assays (an agonist-specific assay) were obtained for 
these compounds. The vast majority of these compounds had negative RA values, which indicates 
that these compounds may be ER receptor antagonists. As the (Q)SAR models covered a range of 
ER-compound interactions, including relative binding to, and activation of the ER, then although the 
Majority consensus used in the study predicts well ER interaction in general, it is perhaps not 
surprising that it appears to be less predictive for antagonists, as no specific ER-antagonist QSAR 
models were used in the study.  
Molecular docking was also used to provide quantitative information on the strength of binding to 
the ERα receptor, thus allowing to derive first-tier estrogenic potencies in the EuroMix project. Using 
a range of cut-off values of binding energies to predict whether a compound is a binder or non-binder, 
Cooper statistics showed that a threshold of -6.5 kcal/mol produced the highest accuracy. Using the 
molecular docking energies with the threshold value for predicting ER binding vs. non binding had a 
lower accuracy than the QSAR Majority Consensus approach, but it provided invaluable 
(quantitative) information on the strength of receptor binding. Finally we demonstrated that using 
Molecular docking cut-off values to assign ER binding can be combined with (Q)SAR results either 
as an additional in silico model in an overall consensus, or to assign a compound as an ER-binder if 
either the (Q)SAR Majority consensus was positive OR the Molecular docking classified it as a 
binder, for example if it is desired to optimise the sensitivity of the model (at the cost of overall 
accuracy) to reduce the chances of false negative predictions. 
 
Further investigations on the 50 highest binding affinity compounds showed that the QSAR Majority 
Consensus correctly predicted these compounds to be binders in 90% of the cases. Of all compounds 
with positive RBA experimental values, only 5 were predicted as non-binders by the QSARs. 
Furthermore, the experimental values from RA assays for these 5 compounds were all negative, 
indicating that the negatives from the consensus of QSARs may be ER antagonists. Low Mode 
Molecular dynamics simulation was used to determine intrinsic activity of these negative compounds, 
together with 5 likely agonists, and the results were mostly consistent with expectation. Four of the 
five proposed agonists were confirmed as such (16-Hydroxyestrone, Zearalenol, Androstane17-diol 
and 4-Dodecylphenol) and four of the five proposed antagonists were confirmed as such (3,4-
Bis(benzyloxy)benzaldehyde, Chlorpyriphos, 2-(4-Chlorophenyl)-1,1-diphenylethanol and 
Captafol). 
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QSAR models are available which can provide quantitative estimation of ER binding (e.g. those 
developed in the CERAPP project (Mansouri et al., 2016)), which could also be used to provide 
strength of binding estimates, in addition to, or instead of, the Molecular docking results. Similarly, 
QSAR models have been developed to predict ER agonists or ER antagonists, rather than binding in 
general (e.g. Mansouri et al., 2016), which could be used in place of the Molecular Dynamics 
simulations to identify if a compound is an agonist or antagonist. 
 
Overall the results show that the Majority Consensus of the (Q)SAR models is a good method to 
predict whether a compound is an ER-receptor binder or non-binder. It predicts ER binding well for 
the majority of the highest binding compounds and the majority of the relatively few false negatives 
may be antagonists. This method has the benefit of being quick to provide results, being simple to 
use and is based on readily available (Q)SAR models. Compounds predicted positive by QSARs 
could then be screened by molecular docking to assess whether they are weak or strong binders. We 
also showed different scenarios of combining (Q)SAR results with Molecular docking classification 
of ER binding based on cut-off values of binding energies, providing a rational combined strategy to 
maximize terms of toxicological interest, for example to minimise false negatives. As complementary 
approach, low-mode MD can be applied to distinguish between agonists and antagonists, improving 
both the (Q)SAR- and molecular docking-related information. A logical improvement over a simple 
Majority Consensus approach of interpreting multiple (Q)SAR predictions would be to consider the 
individual predictive performance (sensitivity, specificity) of the (Q)SAR models and apply Bayesian 
statistical theory. Examples of application of this approach are e.g. in Rorije et al. (2012) and Buist 
et al. (2012). In this case the predictive results from the Majority Consensus approach are such that 
not much improvement was expected and hence Bayesian statistics were not applied. 
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Part II – EuroMix chemical inventory 
 
 
Results – Structure-based approach 

The crystallographic structures of 4 endogenous hormone receptors are excellent 3D structures on 
which perform both molecular docking and low mode simulations. No outliers are found on the 
Ramachandran Plot analysis for the 4 structures, which are correctly superimposed with calculated 
RMSD values on the alpha carbons of the entire sequence, LBD included, ranging [0.97, 1.60] Å. 
Figure 5 shows the superimposed structures (left) of NR for sexual hormones and their respective 
RMSD values (right), from which it can be observed that the LBD of estrogen receptors (#5 and #7 
on legend) are those with the lowest RMSD. 

 
 

Figure 5. (left) Superposition of AR, PR, ERs LBDs and their respective co-crystallized ligand. (right) 
RMSD values of superimposed 3D protein structures.  
 
The α-spheres-defined binding site coincides with that defined by co-crystallized hormones, which 
is closed by some α-helices, including the 12th, and two β-sheets. As an example, Figure 6 shows the 
molecular surface of the ERα binding site whose secondary structure has been annotated using the 
specific MOE Module. 
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Figure 6 ERα LBD crystal structure on which binding pocket molecular surfaces was calculated and 
showed. 
 
Table 5 reports the number of chemicals with estimated binding free energy lower than the cut-off 
value, either from SSA statistic on VEGA dataset or from biochemical evaluation of endogenous 
hormone binding.  
 
Nuclear receptor Cut-off  

-6.5 kcal/mol 
Cut-off  
ΔG of endogenous hormone 

PR 323 20 
AR 194 2 
ERα 352 28 
ERβ 309 57 

 
Table 5. Number of prioritized chemicals with two different cut-off values (toxicological and 
biochemical) for each NR selected for EAS. 
 
Considering the first cut-off value, it was found that 30%-35% of the CI compounds bind the estrogen 
and progesterone NRs with binding free energy values lower than -6.5 kcal/mol, whereas only 20% 
bind the androgen receptor. Some of these compounds bind transversally all the four NRs; this is the 
case of compounds #631 and #642 (which are found to be top scoring for both progesterone and 
androgens). On the other hand, some compounds are selective for estrogen (e.g. compound #669), for 
progestogens (e.g. compound #503) or for androgens (e.g. #519). 
Considering the cut-off values given by the free binding energies of sex hormones on their respective 
receptors (Table 11), very different scenarios were obtained. For AR, there are only two compounds 
with ΔG lower than testosterone binding free energy, whereas between 2% and 5% of the compounds 
have a ΔG lower than that of progesterone for binding PR and of 17β-estradiol for binding ERα and 
ERβ, respectively. 
From a biochemical point of view, these compounds can bind their nuclear receptors at the same 
concentration as the reference sexual hormones, occupying their binding site. On the basis of the the 
dissociation constant (Ki) evaluated for the top scoring compound on each receptor (Table 6), 
concentrations of about 10 nM of the prioritized compounds are sufficient to occupy half of the 
nuclear receptors and, thus, possibly cause adverse effects. 
 
 PR AR ERα ERβ 
Endogenous 
hormone 

-8.1 -9.2 -8.1 -7.7 

Top scoring -10.1 -9.6 -10.1 -9.9 
Ki – Top 
scoring 

3.7e-08 8.6e-08 3.7e-08 5.2e-08 

Table 6. Binding free energies of endogenous hormones and top scoring compounds for each NR. 
Dissociation constant of top scoring compounds are also reported.  
 
Figures 7-10 show the docking poses of endogenous hormones in their cognate receptors as well as 
the framework of their interactions with key amino acids. 



 22 

 
 
Figure 7. Docking pose of PR:: progesterone (left) and key amino-acids involved in binding (right).  
 

 
 
Figure 8. Docking pose of AR:: dihydrotestosterone (left) and key amino-acids involved in binding 
(right). 
 

 
 
Figure 9. Docking pose of ERα:: 17β-estradiol (left) and key amino-acids involved in binding (right). 
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Figure 10. Docking pose of ERβ:: 17β-estradiol (left) and key amino-acids involved in binding 
(right). 
 
Discussion/Conclusions  

From our results, AR is the least sensitive receptor to the compounds present in the CI, whereas ERβ 
is the most sensitive. In fact, for AR, considering as cut-off the ΔG between the endogenous hormone 
and the tested chemical, we found that only 2 chemicals have binding free energies lower than 
dihydrotestosterone. This is partially due to the fact that he binding free energy of endogenous 
hormones is -9.2 kcal/mol, the lower with respect to the other hormones, but also to the high 
selectivity of the AR binding pocket. On the other hand, ERβ seems to be the most sensitive to the 
interferences due to the CI because the binding free energy of its reference hormone is -7.7 kcal/mol. 
Considering a cut-off value of -6.5 kcal/mol, PR, ERα and ERβ binds approx. the same number of 
chemicals, suggesting that these receptors are more exposed to EAS effects.  
All the prioritized chemicals were further studied both in vitro and in vivo by EuroMix partners, and 
the results of these studies are published in EuroMix Deliverables on EuroMix web page 
(https://www.euromixproject.eu/). 
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Chapter 2 – Reproductive toxicity 
 
Retinoic Acid (RA) is a small diffusible lipophilic molecule derived from vitamin A (retinol), an 
essential vitamin derived from food of animal origin and carotenes. RA is involved in many 
embryonic and adult physiological processes and functions, such as: differentiation and development 
of fetal and adult tissues (Rhinn and Dolle, 2012), stem cell differentiation and apoptosis (Noy, 2010), 
support of reproductive functions (Chung, Wang, and Wolgemuth, 2009), immune response (Ross, 
2013), regulation of energy homeostasis (Villarroya, Giralt, and Iglesias, 1999; Herman and Kahn, 
2006) and brain functions (Ransom et al., 2014). RA is removed by microsomal enzymes belonging 
to the Cytochrome P450 (Cyp450) family, which represent an additional level of control of RA 
availability through tissue-specific oxidative metabolism. Three members of this enzyme class are 
believed to be the major responsible for RA degradation: CYP26A1, CYP26B1 and CYP26C1, all of 
which oxidize, with the help of cytochrome P450 reductase (POR), RA into more polar metabolites, 
namely: 4-hydroxy- and 4-oxo-retinoic Acid (Chithalen et al., 2002).  
All of the three CYP26 isoforms show complex tissue- and time-specific patterns of expression and 
genetic ablations of either CYP26A1, CYP26B1, CYP26C1 or their redox partner POR (Ribes et al., 
2006) lead to defects consistent with an increase in RA signalling. 

- CYP26A1 is the first to be expressed (E6.0) in extraembryonic and embryonic endoderm, and 
at E7.5 is expressed in the head mesenchyme and neuroectoderm, where it is essential for 
neural antero-posterior patterning (Uehara et al., 2007; White et al., 2007). CYP26A1-/- mice 
display truncation of the posterior body region, abnormal hindbrain patterning and 
transformation of cervical vertebrae (Abu-Abed et al., 2001). 

- CYP26B1 is found within E9.5–E12.5 in the limb buds, where it is required for proper 
proximal-distal outgrowth (Yashiro et al., 2004); accordingly, CYP26B1-/- mutants exhibit 
severe limb mal- formations and facial abnormalities (Maclean, Dollé, and Petkovich, 2009). 

- CYP26C1 is expressed in the head mesenchyme at E7.5, otic vescicles, branchial arches and, 
after gastrulation, appears within the hindbrain (Reijntjes, Gale, and Maden, 2004). 
CYP26C1-/- loss-of- function embryos are viable, although compound inactivation of any 
other CYP26 results in early embryonic patterning defects: ablation of CYP26A1 and 
CYP26C1 is lethal within stages E9.5–E10.5 and double-knockout mice show abnormalities 
in forebrain, midbrain, branchial arches (which are reduced), hindbrain (expanded) and lack 
of cranial neural crest (Uehara et al., 2007). 

RA’s metabolites have the potential of being biologically active and induce, on certain targets, 
responses similar to those of RA (Reijntjes et al., 2005). However, it is likely that these degradation 
products are removed and/or form inactive conjugates fast enough not to reach significant 
concentrations in vivo, since both expression data and functional studies indicate that the role of 
CYP26-mediated RA metabolism is essentially to prevent inappropriate signalling (Pennimpede et 
al., 2010).  
The aim of this chapter is to investigate effects of chemicals able to interfere with the retinoic acid 
pathways, and to provide information about three different approaches, applied to toxicology: 
structures-based approach, dynamic (PD) modelling and physiologically based pharmaco-kinetic 
(PBPK) modelling.  
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Figure 11: In silico pipeline for reprotox. Yellow polygons represent the ligand-based approaches, 
the violet polygons represent structure-based approaches (including PD and PBPK), while red 
polygon represent the in vitro experiments. Endpoints are represented as white rectangle. 
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Part I – Azoles as training set 
 
 
Introduction 

Azoles are synthetic antifungal compounds, derived from triazole or imidazole, that are used for 
control of fungal pathogens both in humans and in plants thanks to their broad spectrum of antifungal 
activity and their relatively long persistence. Certain azoles are teratogenic causing the craniofacial 
malformations (Menegola et al., 2006; Marotta & Tiboni, 2010) possibly because they inhibit CYP26 
isoenzymes (CYP26A1, CYP26B1 and CYP26C1) that catabolize retinoic acid (RA) during early 
embryonic development (Marotta & Tiboni, 2010; Ray et al., 1997). CYP26 isoforms belong to the 
Cytochrome P450 super-family and are expressed in discrete regions (rombomers) of 
rhombencephalon during embryo development. They are involved in the RA-mediated signalling 
modulation, which is essential in cells to promote the expression of specific genes, expressed during 
the development of branchial arches (Niederreither et al., 2000). In fact, RA concentration is 
dynamically governed by local tissue-specific synthesis and degradation reactions. In particular, RA 
is synthesized in a two-step reaction from retinol, catalysed by retinol dehydrogenases (RDHs) and 
retinaldehyde dehydrogenases (RALDHs), and it is metabolized by CYP26 enzymes (Sandell et al., 
2012). Disruption of this biochemical pathway can induce specific malformations due to the selective 
inhibition of specific CYP26 isoforms. Azoles can act either as competitive inhibitors or as CYP26 
substrates, binding in both cases to the same active site, in the proximity of the Cyp heme group. 
Under steady state conditions, binding of azoles to CYP26s reduces the number of free enzymes for 
RA catabolism, increasing the substrate concentrations and altering RA dynamics and secondary 
pathway. 
Literature reports that the azole ring is oriented toward the heme and, with the exception of 
tebuconazole that creates specific interactions with heme through the amine group (Mercadante et 
al., 2014). The oxidized metabolite of tebuconazole has been observed by Marcadante et al 
(Mercadante et al., 2014) and metabolite structures of other azole are reported in literature, in which 
azole ring is not involved in metabolism, while Fluconazole is the only non-metabolized azole 
(Humphrey et al., 1985). 
However, it is necessary to distinguish between competitive inhibitors and substrates, because the 
enzymatic kinetics are different. Enzymatic kinetics depends both on binding capability and on 
xenobiotic concentration, which changes with time. If a xenobiotic acts as substrate, it is catabolized 
by enzymes increasing its elimination rate, while if a xenobiotic acts as a competitive inhibitor, it is 
only eliminated by other routes (e.g. excretion). 
 
 

Results – Ligand-based approach 

Semi-quanto mechanics 
Three sites of metabolism (SOMs) were computed using SMARTCyp for each compound. 
Figure 12 shows retinoic acid SOMs. The second predicted SOM is depicted in blue, which 
corresponds to carbon 4 that is the observed RA site of metabolism.  
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Figure 12. Retinoic acid predicted SOM. Red, blue and green points represent the first, the second 
and the third SOM. 
 

On the other hand, the best SOM of each azole, except tebuconazole, corresponds with the heme 
nearest atom, computed through molecular docking simulation. Figure 13 shows the results for 

fluconazole (left) and tebuconazole (right): in the first case, the first and the third SOM correspond 
to the closest atom to the heme group; in the second case the SOM reported in literature results to 

be ranked as eighth predicted SOM. These two azoles will be taken as case studies, in order to 
compute transition state energy of the first predicted SOM and to verify that both values will be 

unfavourable for reactions, setting two true negative energetic cut-offs. 

 
 
Figure 13. Fluconazole (left) and Tebuconazole (right) predicted SOM. Red, blue and green points 
represent the first, the second and the third SOM, respectively. 
 
Transition state theory 
The transition state of RA was obtained starting from hand-designed reagents and products. From 
this configuration, it is possible to observe the loss of hydrogen by the RA and to calculate the energy 
value through a single point in DFT. From this value (which corresponds to the reaction potential 
barrier) and from those computed from the products and reagents (which compose the initial and final 
states) it has been possible to calculate energy differences and to assess whether the transition is 
allowed. The course of the reaction from substrates to products is outlined in Figure 14.  
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Figure 14. Reactants (left), transition state (centre) and products (right) of RA. Transition state is a 
computational result, while reactants and products were manually built. 
 

Results – Structure-based approach 

Molecular docking  
For azoles, RA and thanol, each docking pose was carefully evaluated for the three different 
isoenzymes of rat CYP26, selecting the correct placements that match the geometric constraints 
reported in Li et al (Li et al., 2011). Globally, the binding free energy value for RA bound to the three 
different isoforms was used as discriminant to detect which compounds bind with lower energy. At 
the same time, the value of solvation (MMGBSA) was considered in order to cluster these compounds 
and to depict homogeneous subsets as for binding capability. 
 

 
 
Figure 15. Clustering of chemicals for each rat CYP26 isoenzyme on the basis of both binding free 
energies and of solvation values. 
 
Figure 15 shows the clustering of the chemicals, on the basis of solvation and binding free energy 
values. Retinoic acid is highlighted in red and is taken as reference. In the first analysis, all 
compounds on the bottom-left (with respect to RA point) are compounds that can potentially have 
more evident toxic effects on foetus development if compared to the top-right compounds. 
Ethanol, characterized by binding free energies of about -4/-5 kcal/mol, has a very small molecular 
surface and the possibility for this compound to act cooperatively is currently being considered. 
Figure 16 shows the docking pose for RA, while Figure 17 depicts the docking pose of a single 
ethanol molecule, on whose basis the second calculation is being performed. 
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Figure 16. Retinoic acid docking poses on CYP26A1, CYP26B1 and CYP26C1, respectively to the 
left, centre and right. C4 of RA is placed near the heme (yellow) in each isoform as reported in 
literature (Li et al. 2012). 
 

 
 
Figure 17. Ethanol docking poses on CYP26A1, CYP26B1 and CYP26C1, respectively to the left, 
centre and right. It is placed in contact with the heme (yellow) in each isoform. 
 
All azoles show the azole ring in contact with the heme as preferential placing, except to the 
tebuconazole, which shows the methyl group in contact with the heme, according to Marcadante et 
al (Figure 18).  
 

      
 
Figure 18. Left: Fluconazole docking pose on CYP26A1. The fluconazole (violet) azole ring is in 
contact with the heme (in yellow) of the CYP26A1. Right: tebuconazole docking pose on CYP26A1. 
The tebuconazole (violet) methyl group is in contact with the heme (in yellow) of the CYP26A1. 
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Discussion/Conclusions  

Considering all the azole docking poses, all the Cyp::azole complexes are not compliant with the 
geometry restraints suggested by Li et al. (2011): 

• the distance between the selected atom and the ferryl oxygen is outside the optimal range 
which is from 1.65 to 2.60 Å for sp3 atoms and from 1.60 to 2.08 Å for sp2 atoms; 

• the distance of the basic nitrogen to the ferryl oxygen is less than 4.8 Å; 
• the distance of any polar atom to the ferryl oxygen is less than 3.2 Å; 
• more than 2 heavy atoms from the ligands are either further than 14.5 Å or closer than 1.6 Å 

from the heme iron; 
• The pose has at least 1 distorted cyclohexane ring. 

In this context, we decided to consider all the tested azoles as inhibitors and not as substrates, 
disregarding the TST calculation for each azole. 
Globally, all the selected azoles seem to be good binders of Cyp26 isoforms, and ketoconazole, 
itraconazole and posaconazole are the most interesting chemicals that may interfere with the retinoic 
acid pathway. These results agree with toxicological literature and other EuroMix observations 
(Battistoni et al., 2018), in which azole-inducted cranio-facial malformations were studied. 
 
All the in silico results about azoles were shared with the EuroMix partners to better understanding 
their effect on both in vitro and ex vivo systems. 
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Part II – EuroMix chemical inventory 
 
 
Results – Structure-based approach 

The BLAST template search, using as queries the three CYP26 isoforms for human (hCYP26), rat 
(rCYP26) and zebrafish (zCYP26), identified the crystallographic structure of the Retinoic Acid-
bound Cyanobacterial Cyp120a1 (PDB ID: 2VE3) as the best scoring template in the PDB database. 
Sequence identities and sequence similarities are reported in Figure 19. 

 

 
 

Figure 19. Sequence identity matrix among CYP26s and Cyp120a1.  
 
Analysing CYP26 models on the basis of the isoforms global alignment with the template, paying 
particular attention to the binding site, it was possible to identify some amino acids involved in 
binding to RA, and in particular Arg95 and Trp117, that are conserved across the three isoforms in 
each species. In particular, Arg95 binds with specific H-bonds to RA COOH-group, whereas Trp117 
interacts with RA C18, displacing the ring to a position incorrect for metabolism (Figure 20). This 
problem of RA ring orientation can already be identified in the co-crystallized RA of the template 
used for homology modelling and will be considered in the analysis of docking poses. 
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Figure 20. (left) Superimposition of hCYP26s binding sites. Some pivotal amino-acids are 
highlighted as bold side chains, as for RA and heme. (right) Superimposition of hCYP26s secondary 
structures. Colour code: yellow - hCYP26A1, orange – hCYP26B1, blue – hCYP26C1. heme is 
depicted in grey for the three isoforms. 
 
On the other hand, in the Ramachandran plot of the nine models, only one outlier was found for 
hCYP26A1 and hCYP26B1, and two outliers for hCYP26C1; two outliers were found for each 
rCYP26 isoenzyme; two outliers were found for zCYP26 and three outliers for zCYP26B1 and 
zCYP26C1. All outliers are located in amino acids in the loops that do not insist on the binding site. 
Therefore, it can be stated that the obtained models of the CYP26s have good quality and can be used 
for docking calculations. 
In order to investigate the effect of the CI in the development toxicology field, we tested all the CI 
compounds on CYP26 isoenzymes of human, rat and zebrafish. For these three species, we found 
that, using as cut-off the binding free energy value of -6.5 kcal/mol, approx. 50% of chemicals bind 
all isoenzymes. In this scenario, we used a cut-off not calibrated for the application on CYP26s, but 
derived from NR (toxicological cut-off) in order to build a common assessment based on a consensus 
strategy. 
On the other hand, using as cut-off the RA binding free energy values (biochemical cut-off), we 
obtain that only approx. 20% of chemical are prioritized for each CYP26 isoenzyme. Table 7 reports 
the number of chemicals for each investigated CYP26.  
 
 CYP26 isoenzyme Cut-off 

-6.5 kcal/mol 
Cut-off  
GG of RA 

Human CYP26A1 631 230 
CYP26B1 590 176 
CYP26C1 551 183 

Rat CYP26A1 642 226 
CYP26B1 604 205 
CYP26C1 641 188 

Zebrafish CYP26A1 658 212 
CYP26B1 629 191 
CYP26C1 613 192 
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Table 7. Number of prioritized chemicals with two different cut-off values (toxicological and 
biochemical) for each CYP26 isoenzyme. 
 
Moreover, considering only the chemicals that bind the three CYP26 isoenzymes for each species, 
the percentage is reduced to an approx. 40%, using as cut-off -6.5 kcal/mol, and to 10%, using as cut-
off, the RA binding free energy as reported in Table 8. 
 
 Cut-off: -6.5 kcal/mol Cut-off: ΔG of RA 
Human 471 125 
Rat 494 133 
Zebrafish 515 113 

Table 8. Number of prioritized chemicals with bind free energy lower than the two different cut-off 
values (toxicological and biochemical) for each specie. 
 
Finally, among the chemicals that bind the three CYP26 isoenzymes of the three species, only 75 
chemicals are common binders for all the CYP26 considered. 
 

Discussion/Conclusions  

According to our results, 75 chemicals, common binders for all the three CYP26 isoenzymes for 
human, rat and zebrafish simultaneously, were selected. Top scoring azoles of the training set of the 
previous part were also found in this selection. All the prioritized chemicals were further studied both 
in vitro and in vivo by EuroMix partners, and the results of these studies are published in EuroMix 
Deliverables on EuroMix web page (https://www.euromixproject.eu/). 
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Part III – Pharmaco-dynamics 
 
 
Introduction 

Retinoic acid feedback is a mechanism through which RA is able to control its own levels by eliciting 
up-regulation of CYP26A1 gene – which harbours two synergistic RAREs within its promoter 
(Loudig et al., 2000) – in a negative autoregulatory feedback. Several experiments demonstrated this 
control mechanism conserved across different model species (e.g. mouse, zebrafish and chick), to 
occur both in vitro and in vivo (Abu-Abed et al., 1998; Reijntjes et al., 2005; Dobbs-McAuliffe, Zhao, 
and Linney, 2004; White et al., 2007), showing an increase in CYP26A1 levels upon treatment with 
an excess of RA. 
Moreover, up-regulation of CYP26A1 does not involve only tissues already expressing CYP26A1, 
but also tissues where it is not normally present (Pennimpede et al., 2010). Therefore, under normal 
developmental circumstances, it is likely that this feedback control mechanism provides embryos a 
defense against an excess of maternal retinoids, which may arise physiologically – e.g. of dietary 
origin. 
Interestingly, Rydeen et al. (2015) demonstrated that RA self-induced feedback might cause, 
paradoxically, a depletion of RA. In fact, after exposure to teratogenic doses of RA, an excessive 
feedback might cause a hyper-stimulation of CYP26A1 expression, and a consequent extremely rapid 
degradation of RA, resulting in an unbuffered RA loss., As stated by the authors, this might explain 
why some retinoids-related abnormalities arise both in VAD and CYP26A1-/- embryos. i.e. the 
phenotype of embryos that experience an excess of RA sometimes resembles the phenotype of RA-
deprived embryos. 
As reported in Di Renzo et al, dose-related teratogenic effects were detected in rat embryos exposed 
to the different chemicals, e.g. azoles. The specific target for all tested azoles was the branchial 
apparatus in newborn rats, which was also affected by RA exposure.  
The entire ordinary differential equation system is described in Chapter 4, while in the following 
sections some components of the system will be treated in order to explain their dynamics calibration. 
In fact, the calibration of the PD model is a dynamic process that provides us step by step information 
for each of the chemicals parameters, useful to predict mixtures. 
All the data are extracted from Battistoni et al. (2019) and reported in Chapter 4. In vitro/ex vivo 
experimental information can be found in the same source. All the experiments were conducted in 
presence of 17 mM ethanol, which is demonstrated to be a no effect dose for rat embryo craniofacial 
malformations. ODE system is re-formalized ex novo, in order to improve some mathematical- and 
biochemical-related issues, inserting the affinity for each chemical. 
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Results – Model calibration (Single chemical) 

Retinoic acid – logit calibration  

 
Figure 21: Retinoic acid concentration-response curve. 
 
With the aim to extrapolate the logit parameters, a first run of the PD model was performed setting 
all the azoles concentration to zero. With this strategy, only retinoic acid is active in the system and 
data were fitted to extrapolate q0 and q1 logit parameter. In fact, these two parameters manage the 
logit, formalized as follows: 
 

 
 
The ODE system, in this chase, can be simplified as follows:  
 

 
 
As first result, we obtained that q0 and q1 shall be set to 41.75 and 4.74, respectively. Both the Monte 
Carlo Markow Chains converged, strengthening our extrapolation. 
With this setting, the logit model, in association with the PD model, is quite good in data 
representation. In Figure 21 all the in vitro data lay on the RA curve (black), while the 95% confidence 
region (grey) fits with data uncertainty. In this perspective, the logit function and the PD model, with 
“zero” settings, are descriptive of the in vitro/ex vivo data, representative of the malformation 
percentage at increasing RA concentration. Moreover, the value of RAbase was set to 26 nM, because 
RA exposure is endogenous here and RA baseline value needs to be subtracted in the logit function, 
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as reported in Battistoni et al. (2019). On the other hand, the sample size of the biological data 
implicates the high uncertainty in the data themselves, increasing the variability of the model, 
especially for the mixture prediction. 
 
 
 
Single azoles fitting step 
Three different azoles were considered during the growing step of the PD model: flusilazole (FL), 
triadimefon (TR) and cyproconzole (CY).  
In order to extrapolate the kinetic constant of each azole, the azole-dependent term in the ODE system 
was switched-on, as follows: 
 

 
 
where “X” term was replaced with the azole concentration for each specific azole in the Hill term. 
 

 

 
 
 

Figure 22: Cyproconazole (top- left), Flusilazole (top-right) and Triadimefon (bottom) concentration-
response curve 
 
The cyproconazole concentration-response curve (Figure 22), representative of the concentration and 
malformations probability relationship, well fit the ex vivo malformation data. On the other hand, the 
curves for FL and TR over-estimate the No Observed effect level (NOEL) and under-estimate the 
100% effect dose. Both curves well fit the Low observed effect level (LOEL) since LOEL data 
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belongs to the black curves. In spite of this behaviour, FL and TR curves and data agree if also 
confidence intervals are considered.  
All the MCMC simulations converged during the fitting steps, obtaining posterior predictions that 
are summarized in Table 9. 
 
Parameter Value [1/s] 
Km_CY 0.0245 
Km_FL 0.0019 
Km_TR 0.0155 

Table 9: Posterior prediction of azole-specific parameters. 
 
The inhibition constants (Ki) of the three azoles were computed from the binding free energies in Part 
I of the present Chapter, using the following equation: 
 

 
 
where R is the gas constant and T is the temperature set at 20 °C. 
 
Globally, the ODE system description is quite good with respect to malformation data. Probability 
malformation curve of each azole is included into the data variability, that is high due to the low 
number of biological embryos tested for each concentration of each azole. 
 
 

Results – Model predictions (Mixtures)  

 
Figure 23: Flusilazole (top-left), Triadimefon (top-right) and Cyproconazole (bottom) concentration-
response curve. 
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Computing by model predictions the effects of mixtures, we obtained the curves reported in Figure 
23. Three different binary mixtures of azoles were tested in Battistoni et al (2019) and used in the 
present model:  

- flusilazole at different concentration with triadimefon at 12.5 μM; 
-  triadimefon at different concentration with flusilazole at 3.125 μM; 
- cyproconazole at different concentration with triadimefon at 7.8 μM. 

Data (in red) were superposed to the predicted curves in order to check the reliability of the model. 
All the parameters extrapolated from the previous step were fixed in the ODE system and in the logit 
function. 
As shown in Figures 23, model prediction curves, with their respective confidence intervals, are 
comparable with experimental data and their uncertainty. In detail, Figure 23 presents the same 
behaviour of the model for single azole, during the training step, with the model that overestimate the 
data at low flusilazole concentration and that underestimate the data at 100% effects. The data in 
Figure 23 (bottom) are always underestimated by the model prediction, while in Figure 23 (top-right) 
we obtained a peculiar behaviour of the data themselves. In fact, the second experimental point 
(triadimefon at 6.25 μM and flusilazole at 3.125 μM) reaches 100% malformation effect, while the 
third point (triadimefon at 12.5 μM and flusilazole at 3.125 μM) reaches only 92% of total observed 
malformations. In this case, the model is unable to reproduce the experimental behaviour, but it is 
able to reproduce the other data points with a good approximation.  
In order to evaluate the effect of 17 mM ethanol on the PD model, we also run the same ODE system, 
setting to zero the ethanol concentration. As shown in Figure 24, in which the direct comparison 
between curves are reported (green, ethanol = 0 mM; blue, ethanol = 17 mM), ethanol effect could 
be preponderant near NOEL and at 100% azole effect dose, acting on ADH equation. 
In particular, for all the three tested azoles, 17 mM ethanol effects at low azole concentration seem 
to affect the model by increasing the ADH transcription and consequently the retinol conversion to 
retinoic acid eventually leading to an overestimation of NOEL. In order to investigate these effects, 
we believe that it is necessary to perform some in vitro experiment using ethanol as testing chemical. 
With this aim, the weight of ADH equation and also the effect of mixtures of ethanol and azoles can 
be modelled and the biochemical pathway clarified. 
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Figure 24: Cyproconazole (top-left), Triadimefon (top-right) and Flusilazole (bottom) concentration-
response scurve. 
 

Discussion/Conclusions 

As in Battistoni et al, we developed a set of differential equations to describe the occurrences of 
cranio-facial malformations in rat embryos, considering not only the RA/azoles kinetic but also 
inserting biochemical information about affinity for CYP26. 
According to data, our model confirms that RA is a very important morphogen, and its perturbation 
in developmental stage of embryos can increase the probability that foetal malformations occur. This 
model is also in agreement with Goldbeter et al., despite the greater degree of complexity of our 
equations. 
Logit function is quite good to represent data, while the biochemical interaction among chemicals in 
the RA equation, described by Hill terms, is a likely approximation of cooperative interactions of 
chemicals which have common CYP26-mediated pathways. 
Our model has two limitations: the first is that it is not applicable to describe the whole RA 
concentrations asa function of time in the whole embryo hindbrain, the second is that more data could 
strengthen the model, especially correcting some incongruence in mixtures. 
In fact, with respect to spatial representation of RA concentration with time, different rombomers 
express different CYP26 isoenzymes at different developmental stages. In our model, we 
approximated all isoenzymes to CYP26A1, which is the only one induced by RA concentration, and 
we assumed embryo as a point in space.  
Our model predicts the azoles dose-addition effect, and, after a training, can be applied also to other 
chemical mixtures which have the same AOP. Since the retinoic acid pathway is conserved among 
different vertebrate species, our model can be easily extended to other species, using the structure-
based approach to compute the binding energies of the chemicals to species-specific CYP26 enzymes.  
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Globally, pharmaco-dynamics is a powerful tool to model this kind of systems, from biochemical 
pathways involving enzyme kinetics to adverse effects. Furthermore, biological interactions modelled 
through this model may be interpreted qualitatively to explore the critical nodes that regulate certain 
physiological or pathological phenomena, or they may be trained on experimental dataset to output 
quantitative results, usually with an order of magnitude accuracy. In either scenario, if correctly built, 
pharmaco-dynamic models overcome experimental cost, time and physical limitations by allowing a 
full exploration and manipulation of the system parameters and variables.  
In the present Part, we have successfully integrated structural bioinformatics and systems biology 
simulations to deliver a working model describing RA dynamics during hindbrain development.  
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Part V – Physiologically based pharmaco-kinetics model 
 
 
Introduction 

Zhu et al. (2007) studied the stereoselective degradation kinetics of a well-defined racemic mixture 
of tebuconazole in rabbits. They presented concentration data in plasma, brain, adipose tissue, heart, 
kidney, liver, lung, muscle and spleen. Andreu-Sánchez et al. (2011) studied acute toxicity and 
bioconcentration of tebuconazole in zebra fish and published concentration data both in basin water 
and in total zebra fish body. 
These last authors presented a classical pharmacokinetic model for tebuconazole total body burden 
in zebra fish, taken up through the gills from basin water, which is not really scalable to humans. 
There seems to be no model for tebuconazole in mammals. There is a physiologically based 
pharmacokinetic (PBPK-) model for triadimefon and its metabolite triadimenol in rats and humans 
(Crowell et al. (2011)). However, the data for triadimefon and triadimenol are from rats only and the 
kinetics shown by the data in plasma, liver, kidney, brain and fat and modelled kinetics do not really 
match. Also, it is not clear at all how to scale a model for triadimefon and triadimenol to tebuconazole. 
It was decided to develop a PBPK-model for tebuconazole in the rabbit, based on the experimental 
findings of Zhu et al. (2007).  
 
 
Results  

 

 
Figure 25: Amount of tebuconazole in brain expressed in μg/ml. Green lines represent the predicted 
concentrations in brain, while red line represents the plasma concentration, used as graphic scale. 
Points are the measured concentration (Zhu et al. 2007). 
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Figure 26: Amount of tebuconazole in adipose tissues expressed in μg/ml. Green lines represent the 
predicted concentrations in adipose tissues, while red line represents the plasma concentration, used 
as graphic scale. Points are the measured concentration (Zhu et al. 2007). 
 
 

 
Figure 27: Amount of tebuconazole in heart expressed in μg/ml. Green lines represent the predicted 
concentrations in heart, while red line represents the plasma concentration, used as graphic scale. 
Points are the measured concentration (Zhu et al. 2007). 
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Figure 28: Amount of tebuconazole in kidney expressed in μg/ml. Green lines represent the predicted 
concentrations in kidney, while red line represents the plasma concentration, used as graphic scale. 
Points are the measured concentration (Zhu et al. 2007). 
 
 
 

 
Figure 29: Amount of tebuconazole in liver expressed in μg/ml. Green lines represent the predicted 
concentrations in liver, while red line represents the plasma concentration, used as graphic scale. 
Points are the measured concentration (Zhu et al. 2007). 
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Figure 30: Amount of tebuconazole in lung expressed in μg/ml. Green lines represent the predicted 
concentrations in lung, while red line represents the plasma concentration, used as graphic scale. 
Points are the measured concentration (Zhu et al. 2007). 
 
 

 
Figure 31: Amount of tebuconazole in muscles expressed in μg/ml. Green lines represent the 
predicted concentrations in muscles, while red line represents the plasma concentration, used as 
graphic scale. Points are the measured concentration (Zhu et al. 2007). 
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Figure 32: Amount of tebuconazole in spleen expressed in μg/ml. Green lines represent the predicted 
concentrations in spleen, while red line represents the plasma concentration, used as graphic scale. 
Points are the measured concentration (Zhu et al. 2007). 
 
 
A full compartment fit was carried out using all the digitalized data simultaneously, in order to 
estimate the partition coefficient for each tissue and the liver clearance (Table 10)., The 
concentrations predicted through this approach (green lines) are also plotted versus the concentrations 
measured for tebuconazole in each of the tissues (violet points), using the plasma concentrations (red 
line and light blue points) as reference. (Figures 25-32). 
 
Tissues Partition coefficient 
Fat: 12 
Brain: 4.6 
Heart: 4.3 
Kidney: 4.1 
Liver: 6.8 
Lung: 0.2 
Spleen: 5.0 
Muscle: 9.0 
Remaining tissues: 11 

Table 10: Partition coefficients for selected tissues 
 
The liver clearance value is 0.07 L/min. The percentage of regional blood flows with respect to the 
cardiac output (Table 11) was extrapolated from data on rats in Table 23 of Brown et al. (1997), 
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Tissues Percentage 
Adipose tissue 7.0% 
Brain 2.0% 
Heart 5.1% 
Kidney 14.1% 
Liver 2.1%  
Spleen* 0.6% 
Lung* 15.3% 
Muscle 27.8% 

Table 11: Percentage of the cardiac output for selected tissues 
 
All the fitted curves seem to anticipate by approx. 1 hour the maximum concentration measured in 
vivo; for adipose tissue the fitted curved underestimates the accumulation effect. This outcome could 
be due to uncertainties in the value of the fitted parameters i.e. distribution kinetics, and 
Plasma::Tissues partition coefficient, or could be connected with the competition between (R)-
tebuconazole and (S)-tebuconazole in physiological systems. This competition is not covered by our 
model, which considers the enantiomers as a single compound; however, from our molecular docking 
simulation it is clear that the two forms of tebuconazole have different binding energies on 
cytochromes and other enzymes. On the other hand, the modelled kinetics in plasma complies with 
experimental data. 
The trends seen in the curves modelled for all the tissues reflect the in vivo data: a maximum is 
attained in the first hour followed by a slow decrease to a minimum, near zero, for all the tissues, 
except adipose tissue and kidney. Lung and brain reach a steady state in 250 minutes, while the other 
curves keep decreasing. 
As a first application of the PBPK model on white Japanese male rabbits, we simulated the acute oral 
exposure to 1 mg tebuconazole per kg of body weight (Figure 33) in comparison with intra-venous 
bolus dosing of the same amount of the drug (Figure 34); in both figures the circulating concentration 
of tebuconazole is plotted with a blue line, the concentration in liver with a red line 
 

 
Figure 33: Plasma (blue line) and liver (red line) concentrations of tebuconazole after a acute oral 
exposure to 1 mg per kg of body weight. 
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Figure 34: Plasma (blue line) and liver (red line) concentrations of tebuconazole after an intravenous 
injection of 1 mg per kg of body weight.  
 
 
As expected, concentration in plasma is constantly higher after administration by intravenous than by 
oral route; in both cases the circulating concentration decreases after its peak with the same pendency. 
On the other hand, in liver, after oral intake drug concertation reaches higher values than after 
intravenous injection, and shows a slower elimination kinetics.  
Considering the same oral doses of 1 mg tebuconazole per kg of body weight, we simulated a scenario 
in which tebuconazole is given to Japanese white rabbits every 2 hours, in order to evaluate the 
capability of the equations to predict the kinetics of the physiological model. We simulated the events 
during 8 hours span and report here the curves for brain (Figure 33) and liver (Figure 34).  
In both tissues, the first peak is associated with the lowest maximum, while the remaining are (very) 
slowly increasing. No steady state is reached within 8 hours, whereas it is reached after approx. 12 
hours when running a 24 hours simulation (data not shown). 
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Figure 35: Tebuconazole kinetics in brain (rabbit). 
 

 
Figure 36: Tebuconazole kinetics in liver (rabbit). 
 
On the basis of these results, we decided to extrapolate human parameters, building a human model 
and simulating the same kinetics at same doses. Calibrating the human model, we found that the 
elimination rate of tebuconazole is slower than in Japanese rabbits, so we extended the simulation to 
4 days. Tebuconazole kinetics is plotted in Figure 35 for brain, in Figure 36 for liver and in Figure 
41 for adipose tissue. Also in humans we reproduced the same behaviour as in rabbits, with the first 
pick in each tissue or in plasma reaching a lower concentration than the others.  
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Figure 37: Tebuconazole kinetics in brain (human). 
 
 

 
Figure 38: Tebuconazole kinetics in liver (human).  
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Figure 39. Tebuconazole kinetics in adipose tissue (rabbit). 
 
 

Discussion/Conclusions 

Here we present the tebuconazole PBPK model on both rabbit and human, starting from Japanese 
white male rabbit. All the data, extracted from Zhu et al., are based on a single rabbit per point and, 
due to this fact, are subjected to a high uncertainty. On the other hand, we merged the (R)- and (S)- 
enantiomers of tebuconazole into a single chemical. With this choice, we simplified the system, 
avoiding to model the (R)- and (S)-tebuconazole interaction or competition but likely introduced a 
source of uncertainty in our model.  All of these limitations notwithstanding, the ODE system seems 
to reproduce the experimental data in rabbit, after a single intravenous injection of tebuconazole. Our 
extrapolation to the oral dose as well as our scenario for rabbit simulation need to be confirmed by in 
vivo experiments in order to refine the model to be eventually applied to humans. 
Our model can be extended to other azoles/chemicals following the same kinetics. In particular, it 
can be applied to the above studied azoles to devise, from the in vitro data, the appropriate 
concentrations to be tested in vivo to promote (re)myelination in an animal model of multiple 
sclerosis. Other studies shall be performed to calibrate the extrapolation of human parameters from 
animal figures, while considering clinical data of accidental chemical assumption. 
On the other hand, our model seems to be effective in describing the rabbit model; our extrapolation 
to humans, based on literature, can be assumed as a first step of a physiologically-based approach to 
study tebuconazole and its kinetics.  
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Part V – (Re)myelinating effect of azoles 
 
 
Part V, which is not directly connected with the main theme of the present PhD thesis, has been added 
with the aim to show how to repurpose the same in silico methodology developed for the toxicology 
on another field, having the same molecular initiating event. The Part V research was founded by 
FISM trough a project granted during my second year of PhD, in which I contributed as participant 
both in the in silico part and in statistical analysis of the in vitro experiments. Part I of this chapter 
was used as preliminary results in the purposed project. 
 
Introduction 

Recently, an unforeseen activity on promoting (re)myelination in either in vitro, ex vivo and in vivo 
models of multiple sclerosis (MS) has been proposed for two drugs approved for clinical use in skin 
infections and disorders. In particular, miconazole showed a direct effect as (re)myelinating agent 
with no effect on the immune system. 
Several other azoles are currently available for systemic use as antifungal agents, including triazoles 
(fluconazole, itraconazole, voriconazole, posaconazole, and isavuconazole) and an imidazole 
(ketoconazole). 
Due to their long-standing use in clinic, their pharmacokinetics, safety and antimycotic activity are 
well characterized. However, nothing is known about the mechanism underlying the effects of 
miconazole on Oligodendrocyte Precursor Cells (OPC) and the potential pro-myelinating activity of 
other members of the azole family. 
These observations provide the rationale for further investigation of the repurposing potential of these 
drugs, or structurally modified derivatives, for their ability to enhance remyelination in MS patients. 
Antifungal azoles are potent teratogenic agents and concentration-related (125-500 μM) teratogenic 
effects have been also observed after in vitro exposure of rodent embryos: the abnormalities were 
specifically at the level of the branchial arches (the embryonic precursors of the facial elements) 
(Tiboni, 1993; Menegola et al., 2001). Even if the adverse outcome pathway is not definitively 
demonstrated, it has been hypothesized that CYP26 inhibition could be at the basis of azole 
teratogenicity. Similarly to what described in patients treated for acute promyelocytic leukaemia 
(Vanier et al., 2003), the suggested mechanism accounting for teratogenicity is the enhancement of 
the endogenous levels of RA, mediated by the inhibition of specific embryonic CYP26 enzymes 
(Menegola, Broccia, Di Renzo, et al., 2006). This hypothesis, indicating that azole fungicides act 
through an indirect teratogenic mechanism mediated by an endogenous increase of RA content, is 
supported by: (1) the evidence that the observed abnormalities are quite similar to those evoked by 
RA exposure; (2) the abnormalities induced by the co-exposure to sub-teratogenic concentrations of 
fluconazole and RA, and (3) the evidence that the co-administration of a specific RA synthesis 
inhibitor (citral) reduces the effects of triazole-derivatives in in vitro developing embryos (Menegola 
et al., 2004; Di Renzo et al., 2007). A retinoic-like disruption of gene expression during branchial 
arch formation has also been demonstrated after exposure to some azole fungicides (Marotta & 
Tiboni, 2010; Di Renzo et al., 2011).  
Interestingly, vitamin A, RXR agonists and retinoids have been proposed for the use in regenerative 
therapy in the CNS, including demyelinating disorders, and tested in experimental autoimmune 
encephalomyelitis (EAE) murine models of MS (Huang et al., 2011; Diab et al., 2004). Indeed, 
retinoids can stimulate oligodendrocyte differentiation and remyelination in the injured CNS through 
the positive regulator of endogenous OPC maturation RXR-gamma. Moreover, the RA receptor 
RXR-gamma is expressed after focal demyelination and in active MS lesions, suggesting that RXR-
gamma is a physiological signal of injury in the acutely lesioned brain (Huang et al., 2011). 
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On this basis, we hypothesise that the mechanism underlying the enhanced myelination induced by 
miconazole may be linked to the inhibitory effect of azoles on the RA catabolic isoenzymes CYP26. 
The increase of cellular and tissue concentration of RA induced by azole antifungals thus represents 
a promising (re)myelinating strategy for antimycotic drugs to be repurposed for MS clinical 
indications. 
This research was founded by Fondazione Italiana Sclerosi Multipla - FISM and in vitro/ex vivo 
experiments has been conducted in collaboration with dr. Parravicini and prof. Menegola’s laboratory 
of Università degli Studi di Milano. This Part of the present Chapter follows the scientific report 
delivered to FISM in May 2018. 
 
 

Results and discussion – Structure-based approach 

Seven different azoles in clinical use for human pathologies (ketoconazole, isavuconazole 
voriconazole, posaconazole, fluconazole, itraconazole, miconazole) were selected with the aim of 
investigating their ability to induce the local increase of retinoic acid (RA) concentration, assumed to 
be responsible for the (re)myelinating effects observed in specific experimental models (Najm et al., 
2015). 
All the generated complexes (azole::CYP26s) were carefully inspected, to select only the ones with 
the azolic ring coordinating the CYP26 heme group, as reported in literature (Li et al., 2012). 
Itraconazole, isavuconazole, and posaconazole were selected, on the basis of the computed binding 
free energies, for further in vitro testing. 
Top-scoring poses from the docking procedure were refined by using the MOE ''QuickPrep'' 
procedure, aimed at relaxing the ligand within the CYP26 binding pocket and at refining the complex 
through a constrained forcefield EM. Then, the dissociation constant (Ki) was computed starting from 
affinity values (binding free energy, ΔG), according to the equation:  

 
ΔG= RT ln(Ki), 
 
 where R represents the gas constant and T the temperature (300 K). 
 
Azoles on 
human 
CYP26s 

Binding free 
energy 
[kcal/mol] 

Affinity 
[kcal/mol] 

Ki CYP26 
isoenzyme 

Itraconazole -11.8 -13.4 9.9 CYP26B1 
Posaconazole -11.1 -13.3 9.8 CYP26B1 
Ketoconazole -9.9 -12.3 9.1 CYP26B1 
Isavuconazole -9.3 -9.6 7.1 CYP26A1 
Retinoic Acid -8.3 -8.5 6.3 CYP26C1 
Miconazole -8.2 -8.7 6.4 CYP26A1 
Voriconazole -7.6 -13.4 9.9 CYP26B1 
Fluconazole -7.0 -7.6 5,6 CYP26A1 

Table 12. Binding free energy and affinity values of selected azoles on human CYP26 isoenzymes 
 
Azoles on rat 
CYP26s 

Binding free 
energy 
[kcal/mol] 

Affinity 
[kcal/mol] 

Ki CYP26 
isoenzyme 

Itraconazole -11.2 -12.1 8.9 CYP26A1 
Posaconazole -9.7 -10.8 7.9 CYP26A1 
Ketoconazole -9.4 -13.7 10.1 CYP26A1 
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Isavuconazole -8.5 -9.8 7.2 CYP26A1 
Retinoic Acid .8.3 -8.6 6.3 CYP26A1 
Miconazole -8.0 -8.6 6.3 CYP26A1 
Voriconazole -7.1 -8.4 6.2 CYP26C1 
Fluconazole -7.0 -7.1 5.2 CYP26C1 

Table13. Binding free energy and affinity values of selected azoles on rat CYP26 isoenzymes. 
 
In detail, as shown in Table 12 and Table 13, itraconazole and posaconazole were selected as the 
most promising compounds to be tested for their high affinity for the CYP26 family. Since they 
exhibited high affinity for both CYP26B1 and CYP26C1 isoenzymes, but not for CYP26A1, and no 
information is currently available on their differential expression in OPCs, isavuconazole, the top-
scoring compound for hCYP26A1, was included in our analysis too. Moreover, the effect of 
fluconazole, which has the lowest affinity for the CYP26 family, was also evaluated. 
Very interestingly, the affinity and Ki (pKi= 6.37) values obtained for miconazole are consistent with 
literature data (Najm et al., 2015). Globally, no differences in affinity for the investigated azoles was 
found between human and rat CYP26s, suggesting that rat OPC cultures are a suitable model for 
testing clinically used azoles. 
 
 

Results and discussion – In vitro approach 

OPC cultures 
Figure 40 shows an enlargement of a typical myelin basic protein positive (MBP)+ cell while Figures 
41 and 42 show typical fields for each azole treatment, in absence and in presence of citral. 
Count results are shown in Figure 47. Liner mixed effect type III analysis of variance with 
Satterthwaite's method resulted in p<0.001 validating comparisons with “treatment contrast” (i.e. 
control vs everyone). Itraconazole increases significantly the level of oligodendrocyte precursors cells 
(OPC) differentiation compared to control (vehicle) while posaconazole decreases it significantly. A 
borderline (p < 0.1) increases in OPC differentiation level is registered for citral while the 
combination of citral and posaconazole results in a borderline decrease.  
 

 
Figure 40. 40X magnification of one OPC expressing MBP (red) 
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Figure 41. expression of MBP (red) in OPC cells treated with the reported condition. Nuclei are 

stained in blue. 
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Figure 42. expression of MBP (red) in OPC cells treated with the reported condition. Nuclei are 
stained in blue 
 

 
Figure 43. FLUCO: fluconazole; ITRA: itraconazole; POSA: posaconazole; RA: retinoic acid. Ratio 
of MBP / HOECHST for all experimental groups with or without Citral. Errorbars represent the 
standard error of the mean (* means p < 0.05 while × means p < 0.1). 
 
DRG-OPC co-cultures 
To determine whether CYP26 inhibitors can affect the myelination process, we performed a series of 
experiments using the OPC/DRG co-culture system. To this purpose, OPCs co-cultured with DRG 
were exposed to the following mixtures: retinoic acid (50 nM), retinoic acid (50 nM) + Citral (150 
µM), Itraconazole (10 nM), Itraconazole + Citral, Fluconazole (30 nM), Fluconazole + Citral. After 
fixation, cells were immunostained for MBP to visualize myelinated axons and for Smi31 and Smi32 
to visualize neurofilaments, we then measured the intensity of the fluorescent signal arising from the 
co-localisation of markers for neurofilaments and MBP. 
Figure 44 shows representative samples of coverslips for each treatment as seen at confocal 
microscope (panels B-H) and myelination index results (in panel A). Liner mixed effect type III 
analysis of variance with Satterthwaite's method resulted in p < 0.001 validating comparisons with 
“treatment contrast” (i.e. control vs everyone). As in the case of OPC counts itraconazole shows the 
highest increase the level of myelination compared to control (p < 0.001). Also RA (p < 0.01), RA + 
citral (p < 0.001) and fluco (p < 0.01) show significant increases of myelination level. 
OPC-DRG data show how the co-administration of citral reduces the effect induced by the azoles. 
This is in contrast with the evidence on mono-culture of OPC, suggesting a mayor role of DRGs in 
the regulation of RA levels and, consequently, of OPCs differentiation. 
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Figure 44. MBP: green; NF: red. A: myelination index (** p < 0.01, ***p < 0.001). 
B-H representative samples of coverslips for each treatment as seen at confocal microscope. 
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Micromasses 
Micromass test involves exposing undifferentiated rat embryo midbrain cells to test compounds and 
observing the subsequent effect on cell differentiation. In comparison to the other in vitro tests, the 
micromass test falls between the single cell system and organ cultures. Undifferentiated 
mesencephalic cells, in fact, are disaggregated before culture but are then put in culture at high 
density. Within these high-density cell colonies, cells that are destined to differentiate move together 
and form distinct foci (three-dimensional aggregation of cell bodies) interconnected by bundles 
(aggregation of neuronal processes, differentiated foci) which can be distinguished from foci without 
bundles (undifferentiated foci) (Flint, 1983; Flint & Orton, 1984; Girling & Flint, 1984).  
Results confirmed 5HT inhibitory effects at 50-100 µM. Between the two test conazoles, fluconazole 
and itraconazole, the most promising molecule in our model was fluconazole. Fluconazole resulted, 
in fact, unable to affect foci formation and differentiation at any tested concentration and showed, 
similarly to miconazole, a positive action in foci formation. In order to test protective effects of 
fluconazole on 5HT effects, we co-exposed micromasses to mixtures of 5HT and fluconazole during 
the whole culture period (5HT 1-10-50 µM + fluconazole 50 µM). Results show that co-exposed 
groups were not different from the unexposed group (control, exposed to the DMSO solvent alone), 
suggesting a protective effect of fluconazole.  
A second set of experiments were devoted to the evaluation of a fluconazole-related reparative effect. 
Cultures were exposed during the first day to 5HT 1-10-50-100 µM alone and during the remaining 
culture days to fluconazole 5-25-50 µM alone. Results show that fluconazole exposure after 5HT 
one-day exposure allowed micromasses to develop not differently from the unexposed group (control, 
exposed to the DMSO solvent alone), suggesting a reparative effect of fluconazole.  
 

 
Figure 45. Micromasses at the end of the culture (7 days) treated with (A) vehicle, (B) 5HT at 50 μM 
and (C) 5HT at 50 μM with fluconazole at 50 μM. 
 
 

 
Figure 46. Micromasses immunostained control with specific antibodies; at the top (A, C, E, G, I) 
fluorescence image, at the bottom (B, D, F, H, L) respective microscopic differential contrast vision. 
A, B: NF 160; C, D: actin; E, F: Neu-N; G, H: CYP26A1; I, L: MBP. 
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Discussion/Conclusions 

In this Part, seven azoles were selected to study their possible ability to induce remyelination by 
increasing RA concentration through inhibition of CYP26, an enzyme deputed to the catabolism of 
RA, therefore favouring OPC maturation and cell differentiation. 
The results confirm that molecules interfering with the RA metabolic pathway indeed alter the 
myelination profile of differentiating OPCs when they are cultured alone or in the presence of 
neurons, providing the proof of concept of the remyelinating activity of CYP26 inhibitors and 
supporting the proposed mechanism of action i.e. that azoles may increase myelin levels in OPCs by 
inhibiting RA degradation operated by Cyp450 microsomal enzymes. 
However, these data also suggest a differential anabolic behaviour for RA in OPC and DRG-neurons 
and, as a consequence, a different sensitivity of the two models to the RA synthesis inhibitor citral. 
In addition, on the basis of these results, it can be hypothesized that citral itself can interfere with 
nuclear RA receptors pathway: further studies, however, are needed to elucidate whether this effect 
is direct or indirect. 
From these data, itraconazole emerges clearly as the putative candidate for repurposing as it is the 
only molecule giving clear indication of increase in differentiation of OPC and of remyelination in 
OPC-DRG experiments. 
Recent evidence from in vivo, in vitro and clinical studies has demonstrated also an anti-neoplastic 
effect of this conazole; it’s safe use in humans and its low cost make it a viable option for future 
studies. By avoiding the lengthy process and cost-implications associated with bringing a novel drug 
to market, the potential repurposing benefits of itraconazole, both in demyelinating disorders and 
cancer, make it an attractive prospect. 
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Chapter 3 – Liver steatosis 
 
Liver steatosis is a manifestation of liver toxicity. For instance, steatosis appears to be a prerequisite 
for the development of non-alcoholic fatty liver disease (NAFLD), a clinic-pathological condition 
encompassing a wide spectrum of liver damage, ranging from steatosis alone to steatohepatitis, 
advanced fibrosis and cirrhosis, and characterized by the accumulation of lipid droplets in the 
hepatocytes. 
Hepatic steatosis is triggered by NRs activation through modulation of genes responsible for lipid 
homeostasis which subsequently leads to increase of de novo fatty acids/triglycerides synthesis and 
fat influx from the peripheral tissues to liver (Mellor et al., 2015). The accumulation of lipid in the 
hepatocytes can cause cytoplasm displacement, nucleus distortion, mitochondrial toxicity and 
eventually necrosis and/or apoptosis. The progression of this condition leads to tissue inflammation 
(steatohepatitis) and fibrosis with the involvement of other hepatic structures like the Kupffer 
(inflammation) and the stellate (fibrosis) cells.  
Since NRs are involved also in this case, the molecular initiating event (MIE) is determined by an 
incorrect activation of NRs mediated by xenobiotic. This activation can affect simultaneously several 
NRs, since many xenobiotics have the ability to bind to two or more receptors. Figure 47 shows the 
LXR-mediated adverse outcome pathway (AOP), in which some NRs have common paths.  
 

 
 

Figure 47. LXR-mediated AOP as example of adverse pathway for livers toxicity and, in particular, 
for steatosis (Source: EuroMix deliverable D3.2). 
 
This MIE is common for all considered NRs, except for AHR that shows a 3D structure very different 
from the others. It is characterized by two different domains, PAS-A and PAS-B, that are involved in 
dimerization and molecular binding, respectively, without showing the same structural pattern in 
which the 12th α-helix of the others is determined (Mellor et al., 2015). 
Chapter III discuss the pipeline of the procedures for prioritization and validation of chemicals as 
putative ligands and their application to the EuroMix chemical inventory, extending the study field 
to a set of nuclear receptors involved in hepatic steatosis. In particular, this chapter will be divided in 
two part in which we tested the in silico prioritization using a training set and we then applied our 
pipeline to the EuroMix chemical inventory. We also focused our attention on AHR, performing some 
in vitro experiments. 
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Figure 48: Liver toxicity in silico pipeline. Violet polygons represent structure-based approaches, 
while red polygon represent the in vitro tests. Endpoints are represented as white rectangle. 
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Part I – COSMOS training set 
 
 

Results – Structure based approach 

The selected crystallographic structures of NRs involved in hepatic toxicity are good 3D structures 
on which to perform all molecular docking calculations. In fact, the outliers, up to two per receptor, 
highlighted by the Ramachandran Plot analysis are placed in loops outside the binding region. 
Moreover, NRs secondary structures are globally superimposable, with an average RMSD of about 
4 Å. This high RMSD value is due to the fact that some receptors (e.g. PPARs, RARs and RXRs) 
exhibit both a much longer loop than the others and differ in the set-up of the β-sheets. If considered 
by themselves, α-helices are associated with a lower average RMSD value. The NRs structures 
analysis shows that among all NRs, PXR has a slightly different structure with respect to an average 
ensemble structure, because it has five β-sheets (of which two before the last α-helix) and an extended 
loop. In Figure 49, the structures of PXR and RARα are superimposed in order to show structural 
differences in both β-sheets and loops. 12th α-helices of the two NRs are perfectly coincident.  

 
Figure 49. Superimposition of PXR and RARα secondary structures. 
 
Analysing the binding site in each NR, it appears that the site defined by α-spheres is in good 
agreement with that determined by the ligand co-crystallized with each receptor. In addition, when 
receptors are in closed conformation all binding sites are occluded by the 12th α-helix. 
As for AHR, a single outlier was found in Ramachandran plot; the affected amino acid, however, was 
part of a loop not involved in the binding site. The binding site found from the α-spheres analysis is 
in agreement with that identified by Bisson et al (Bisson et al., 2009); this site is smaller than the 
average of the other NRs. 
Figure 50 shows the secondary structure of AHR PAS-B domain model with the identified binding 
site surface: as can be seen, AHR PAS-B (LBD) is totally different from other NRs and therefore it 
was not possible to make a direct comparison of its secondary structure with the other NRs. 
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Figure 50. AHR PAS-B domain secondary structure and its binding pocket surface computed as 
molecular surface. 
 
Despite a sequence identity between the two sequences of only 25%, this AHR model is better than 
the one obtained by Bisson et al (Bisson et al., 2009); these authors built the model of the human 
protein starting from a model of mouse AHR and from the human HIF-2α PAS domain, using a two-
step homology modelling procedure. A reference ligand of AHR, dioxin, docked to their model with 
a high binding energy value, suggesting that the structure was biased, at least in its binding site. 
 
The analysis of the molecular docking results on the 16 different NRs involved in hepatotoxicity 
shows fewer specific results than the previous ones. This may be due to the fact that COSMOS 
training set does not include NRs as specific targets.  
SSA statistic was applied to docking results, and two different energy cut-off values for different NRs 
were obtained. Tables 14, 15 and 16 report the specificity, sensitivity and accuracy values for different 
binding free energies (-5.5 kcal/mol, -5 kcal/mol and -4.5 kcal/mol) for all NRs, except AHR that 
will be individually discussed. 
 

Table 14: Cooper’ statistic using the binding free energy of -5.5 kcal/mol as cut-off. 
 
 
 

Nuclear receptor      Sensitivity Specificity Accuracy 
CAR 0.62 0.57 0.60 
FXR 0.58 0.62 0.60 
LXRα 0.55 0.61 0.57 
LXRβ 0.59 0.61 0.60 
PPARα 0.55 0.67 0.61 
PPARδ 0.55 0.63 0.58 
PPARγ 0.57 0.61 0.59 
PXR 0.59 0.66 0.62 
RARα 0.55 0.61 0.57 
RARβ 0.60 0.60 0.60 
RARγ 0.61 0.55 0.58 
GR 0.51 0.69 0.59 
RXRα 0.59 0.63 0.61 
RXRβ 0.70 0.45 0.59 
RXRγ 0.58 0.61 0.59 
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Table 15: Cooper’ statistic using the binding free energy of -5 kcal/mol as cut-off. 
 

Table 16: Cooper’ statistic using the binding free energy of -4.5 kcal/mol as cut-off. 
 
Cooper’ statistic values, that are considered best for each receptor, are highlighted in red in the 
previous tables. Figure 51 shows ROC curves for all selected NRs. It is very difficult to discriminate 
uniquely on the basis of SSA statistics which ΔG cut-off values can be the best to use in prioritization.  

Nuclear receptor      Sensitivity Specificity Accuracy 
CAR 0.78 0.45 0.63 
FXR 0.70 0.51 0.62 
LXRα 0.66 0.53 0.60 
LXRβ 0.74 0.46 0.61 
PPARα 0.66 0.55 0.61 
PPARδ 0.69 0.51 0.61 
PPARγ 0.74 0.46 0.62 
PXR 0.69 0.54 0.62 
RARα 0.74 0.44 0.61 
RARβ 0.74 0.43 0.61 
RARγ 0.78 0.41 0.62 
GR 0.65 0.55 0.61 
RXRα 0.72 0.48 0.61 
RXRβ 0.88 0.28 0.61 
RXRγ 0.72 0.44 0.60 

Nuclear receptor      Sensitivity Specificity Accuracy 
CAR 0.88 0.25 0.60 
FXR 0.83 0.36 0.62 
LXRα 0.85 0.39 0.65 
LXRβ 0.89 0.26 0.61 
PPARα 0.83 0.38 0.63 
PPARδ 0.84 0.36 0.63 
PPARγ 0.90 0.26 0.61 
PXR 0.83 0.38 0.63 
RARα 0.88 0.19 0.57 
RARβ 0.89 0.18 0.57 
RARγ 0.91 0.20 0.59 
GR 0.81 0.40 0.63 
RXRα 0.90 0.24 0.61 
RXRβ 0.98 0.06 0.57 
RXRcγ 0.90 0.22 0.60 
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Figure 51. ROC curves for al NRs involved in steatosis. Points are representative of different binding 
free energy cut-offs. 
 
In order to consider the overall MIE effect for each receptor, it was decided to use as the unique cut-
off for hepatotoxicity the binding free energy value of -5 kcal/mol, that corresponds approx. to 100* 
E-06 for the dissociation constant (Kd). 
For AHR, the following SSA statistic values were obtained using a cut-off of -5 kcal/mol: accuracy 
0.46; sensitivity 0.39; specificity 0.56. These values are lower than for other NRs, because AHR has 
a much smaller binding site and therefore can bind only small ligands. AHR is more selective for 
these small ligands than other NRs involved in hepatotoxicity. This is evident in the database, in 
particular for very negative values of ΔG, in which the small aromatic ligands have a superimposed 
aromatic ring in their binding poses while bigger ligands have not-acceptable poses (or are not 
docked). Moreover, among the 16 top scoring compounds with ΔG less than -5 kcal/mol, only 5 are 
classified as hepatotoxic, while the other 11 are non-hepatotoxic.  
Figure 52 shows the top scoring compound, with ΔG equal to -9.6 kcal/mol (left), and a compound 
that has a ΔG of 177 kcal/mol, equivalents to "not docked". 
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Figure 52. Top (left) and worst (right) scoring docking poses on AHR. Small ligands can be included 
in the small pocket with good binding free energies, while the very large ligands, even if they had 
bound, they would have had unacceptable poses for the AHR LBD due to its dimensions that are 
comparable with the length of AHR PAS-B. 
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Part II – Chemical Inventory 
 
 

Results – Structure-based approach 

 
Analysing CI docking results on each NR selected for hepatotoxicity, it was found that approx. 90% 
of the compounds bind each receptor, when taking -5 kcal/mol as the cut-off value. Table 17 shows 
the number of prioritized compounds for each receptor, also considering a -6.5 kcal/mol cut-off, as 
for EAS, to operate a quantitative comparison; using the latter free binding energy value, the 
compounds selectivity decreases, shifting from about 90% to 40%-50%, except for AHR and RXRβ. 
 
Nuclear receptor       Cut-off: -5 kcal/mol Cut-off: -6.5 kcal/mol 
AHR 337 53 
CAR 928 599 
FXR 909 501 
LXRα 888 446 
LXRβ 906 453 
PPARα 927 513 
PPARδ 889 425 
PPARγ 905 389 
PXR 923 433 
RARα 904 393 
RARβ 862 351 
RARγ 927 473 
GR 918 457 
RXRα 909 414 
RXRβ 952 709 
RXRγ 911 430 

Table 17. Number of prioritized chemicals for each NR, using two different cut-offs. CI is composed 
by 1193 different compounds. 
 
The choice of this first cut-off value for this NRs was operated following the SSA statistics analysis 
of the molecular docking results, obtained from a non-specific training set for the selected NRs. 
Therefore, it is very likely that this has led to a systematic error, overestimating the real cut-off value 
and prioritizing compounds that should not have been. On the other hand, a structural analysis of 
selected NRs shows that they have a much larger binding pocket than the nuclear receptors for sex 
hormones. This detail could justify the pronounced difference observed in the number of compounds 
that can bind to the NRs. Moreover, it could be necessary to compute different cut-off values either 
for each nuclear receptor, or for each toxicological outcome (e.g. hepatotoxic, steatosis, cholestasis, 
etc). AOPs of these toxicological outcomes involve different NRs in different biochemical pathways, 
increasing the system complexity. All the prioritized chemicals were further studied both in vitro and 
in vivo by EuroMix partners, and the results of these studies are published in EuroMix Deliverables 
on EuroMix web page (https://www.euromixproject.eu/). 
 
In addition, there is an important difference between AHR and all other NRs prioritization results., 
With a cut-off of -5 kcal/mol, AHR binds about 35% of the compounds, but with a cut-off of -6.5 
kcal/mol, it binds only 5% of them. This fact can be explained by the structural considerations already 
made on the AHR binding site, and its ability to bind only small ligands.  
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For this reason, in collaboration with the German Federal Institute for Risk Assessment, German 
Centre for the Protection of Laboratory Animals (Bf3R) within the EuroMix Project, we further 
investigated the Propiconazole::AHR complex. In a first step molecular docking simulations were 
performed to assess in silico whether propiconazole (Pi) can bind the ligand binding domain of human 
AHR. A negative ΔG value of -3.8 kcal/mol was predicted (Figure 53.A), suggesting that an 
association between the AHR and Pi is favourable from an energetic point of view. TCDD, a reference 
ligand for AHR, showed a ΔG value of -5.0 kcal/mol (Figure 53.B). This can still be regarded as a 
critical value, indicating that the human AHR ligand binding domain interacts rather weakly with its 
reference ligand. The superposition of TCDD and Pi in the AHR ligand binding site showed a partial 
overlap of the aromatic rings of these two chemicals (Figure 53.C). The predicted ΔG value is 
suggestive but not sufficiently negative to firmly support the binding of Pi to AHR, just on the basis 
on our in silico data. 
 

 
Figure 53: In silico molecular docking analyses of Pi to the AHR ligand binding domain are shown 
as graphic representations of the top-scoring complexes between Pi and AHR (A), the reference AHR 
ligand TCDD and AHR (B), and a superposition of Pi and TCDD (C). 
 

Results – AHR in vitro assay  

 
These results have already been published in Knebel et al. (2018) in the EuroMix framework.  
 
Microarray gene expression data indicate AHR activation by Pi in human cells 
In the course of an in vitro study aimed at investigating the global transcriptomic responses of human 
liver cells to the fungicidal active substance Pi, we discovered that Cyp1A1 and Cyp1A2, the most 
classic target genes of the nuclear receptor AHR, were among the top upregulated genes in HepaRG 
hepatocarcinoma cells. Microarray analysis was verified by conventional real-time RT-PCR of 
Cyp1A1 and Cyp1A2. The literature-based bioinformatic IPA (Ingenuity Pathway Analysis) was 
used to unravel possible further hints for AHR activation by Pi. These analyses revealed that other 
genes which have been previously linked to AHR activation were also altered by Pi (Figure 54).  
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Figure 54: Bioinformatic data mining and in silico modeling indicate a possible interaction of 
propiconazole (Pi) with the AHR. a Bioinformatic analysis of microarray gene expression data with 
IPA indicates AHR activation by propiconazole (Pi) in HepaRG cells. The global transcriptomic 
responses of HepaRG cells to 10 μM Pi were analysed with the help of the microarray Agilent 
Expression Profiling Service. Ingenuity Pathway Analysis (IPA) of the data indicates that classic 
target genes of the nuclear receptor AHR were up- (red) or downregulated (green). Duplicates gene 
identifiers marked with an asterisk (*) indicate that multiple identifiers in the dataset file map to a 
single gene in the Global Molecular Network. Colours of the connections represent the predicted 
relationships [activation (orange), inhibition (blue), findings consistent with state of downstream 
molecule (yellow), and effects not predicted (grey)]. 
 
For most of these genes the direction of regulation was in line with previously published data on 
AHR-dependent activation or inhibition (Figure 54). As the results from bioinformatic data mining 
indicated a possible involvement of AHR in Pi-induced effects in human liver cells, further 
experiments were performed for verification. 
 
Pi effects on AHR-dependent transcription, target mRNA, protein amount, and enzyme activity 
In a following step we therefore analysed whether Pi would activate AHR-dependent transcription 
using a luciferase reporter system driven by either a 1.2 kbp fragment of the human Cyp1A1 
promoter, a similar Cyp1A1 promoter-derived luciferase reporter lacking the four functional AHR 
binding sites (“-CDEF”), or an artificial promoter construct consisting of three AHR-responsive DRE 
sequences (“3xDRE”). As shown in figure 56, Pi dose-dependently induced luciferase reporter 
activities from the Cyp1A1 promoter and 3xDRE constructs in HepG2 human hepatoma cells with 
statistical significance, whereas no induction was visible with the AHR binding site-deficient mutant 
(-CDEF) reporter (Figure 55). When compared to the positive control, the aromatic hydrocarbon and 
known AHR inducer Benzo[b]fluoranthene (BbF), it became obvious that Pi showed an onset of 
reporter gene activation only at substantially higher concentrations than needed for BbF to produce a 
response. Thus, Pi constitutes a substantially weaker AHR activator than BbF. Analyses of Pi-induced 
effects at higher concentrations than 40 µM, in order to add information to the right side of the dose-
response-curve, were hampered by cytotoxic effects occurring at these concentrations. To exclude 
that the observed AHR activation was caused by impurities potentially present in technical grade Pi, 
the experiments were repeated with analytical grade Pi and the results were reproduced. 
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Figure 55: Propiconazole (Pi) induces AHR-dependent transcription in▸ HepG2 cells. a Dose-
dependent induction of a luciferase reporter system driven by a 1.2-kbp fragment of the human 
CYP1A1 promoter. By contrast, no induction is measurable with a similar reporter lacking the four 
functional AHR binding sites (“-CDEF”). c Pi also leads to a dose-dependent induction of the 
artificial promoter construct consisting of three AHR-responsive DRE sequences (“3xDRE”). 
Induction by the model AHR ligand BbF is shown for comparison. Fold induction above solvent 
control (0.2% DMSO) was calculated. Mean±SD (n=3 independent experiments, each in three 
replicates) is depicted. Statistical significance (p<0.05) against the solvent control is indicated by 
asterisks 
 
Dose-dependent induction of AHR activity was subsequently confirmed by real-time RT-PCR 
analyses of the model AHR target genes Cyp1A1 and Cyp1A2 in HepaRG cells (Figures 56A and 
58B). These results well resembled the findings at the reporter gene level. Expression of the AHR 
mRNA itself was not altered (data not shown). In addition, abundance of Cyp1A1 was quantified at 
the protein level using a mass spectrometry-based approach. Results of these analyses showed Pi-
dependent induction of Cyp1A1 protein (Figure 56C), consistent with the findings presented above. 
To further substantiate our findings, we studied Cyp1A1-dependent catalytic activities using the 
classic EROD (ethoxyresorufin-O-deethylase) assay for Cyp1A1 activity. Figure 56 demonstrates 
that Pi was able to significantly induce Cyp1A1-dependent enzymatic substrate conversion in human 
HepaRG cells in a dose-dependent manner. 
Similar effects were observed in rat liver: Cyp1a1 and Cyp1a2 gene expression was significantly 
increased at the top dose level in Pi-treated rats (Figure 57A and 57B). Additionally, Cyp1a1 and 
Cyp1a2 enzyme activities were significantly increased in a dose-dependent manner (Figure 57C and 
59D). 
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Figure 56: Propiconazole (Pi) is an agonist of human AHR. Induction of CYP1A1 (a) and CYP1A2 
(b) mRNA levels in HepaRG human hepatoma cells and CYP1A1 (c) in HepG2 human hepatoma 
cells by Pi, as measured by quantitative real-time RT-PCR. d Pi-dependent induction of CYP1A1 
protein level was observed by using a mass spectrometry-based approach. e Induction of CYP1A1 
enzyme activity by Pi, as measured by the EROD assay. Fold induction above solvent control (0.2% 
DMSO) was calculated. Mean±SD (n≥3) is depicted. Statistical significance (p<0.05) against the 
solvent control is indicated by asterisks. No statistical significance was calculated for the data in panel 
d, due to the fact that these values were not derived from entirely independent experiments 
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Figure 57: Propiconazole (Pi) induces AHR target genes and resulting enzyme activities in rat livers 
obtained from a 28-day feeding study at dose levels of up to 2400 ppm. Pi leads to an induction of 
Cyp1a1 (a) and Cyp1a2 (b) mRNA levels in rat livers as well as to an induction of the enzyme 
activities of Cyp1a1 (c) and Cyp1a2 (d). Figures show fold induction relative to the respective 
controls. Mean ± SD (nbiological = 5) is depicted. Statistical significance (p<0.05) against the control 
animals is indicated by asterisks 

 
Effects of Pi in AHR KO, PXR KO and CAR KO HepaRG cells  
Three HepaRG cell lines deficient of either AHR, PXR or CAR were treated with Pi and Cyp1A1 
and Cyp1A2 gene expression was analysed to investigate if Pi-induced gene expression was mediated 
by either of the three receptors. Involvement of CAR and PXR in Pi-dependent gene regulation has 
been reported previously. As shown in Figure 58, Cyp1A1 and Cyp1A2 upregulation was completely 
blocked in AHR KO cells. Comparable results were seen when using HepG2 cells treated with a 
pharmacological inhibitor of the AHR and a Cyp1A1 promoter-driven reporter. In contrast, Cyp1A1 
and Cyp1A2 gene expression was upregulated in a concentration-dependent manner in both PXR KO 
cells as well as CAR KO cells, similar to wildtype cells. These results indicate that knocking out PXR 
and CAR has no remarkable influence on the upregulation of these genes by Pi, whereas the presence 
of the AHR is crucial.  
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Figure 58: Upregulation of AHR target genes was blocked in AHR KO cells. No induction of 
CYP1A1 (a) and CYP1A2 (b) gene expression was measured in AHR KO cells after treatment with 
the positive control 3-methylcholanthrene (3-MC) or Pi. c Additionally no transactivation of CYP1A1 
promoter was measured with 10 μM of the AHR inhibitor CH223191. In contrast, investigation of 
CYP1A1 and CYP1A2 in PXR KO (d, e) and CAR KO (f, g) cells showed concentration-dependent 
upregulation, indicating that the latter two nuclear receptors are not involved in Cyp1a1/2 induction 
by propiconazole. Fold induction above solvent control (0.2% DMSO) was calculated. Mean±SD 
(n≥3) is depicted. Statistical significance (p<0.05) against the solvent control (a, b, d–g) or the 
treatment with the antagonist (c) is indicated by asterisks. 
 
Combination effects of Pi and the model AHR ligand BbF 
According to a previous publication linking Pi and rodent AHR, Pi alone activates the rodent AHR 
but might inhibit the response to model AHR ligands (Ghisari et al., 2015). We therefore exposed 
human hepatic cells in vitro to mixtures of Pi and BbF, a model AHR activator routinely used in our 
laboratory. Figure 59 demonstrates that no inhibition of BbF-mediated induction of AHR-dependent 
3xDRE reporter activity was observed when applied in combination with Pi. Instead, data were 
consistent with the assumption of concentration addition. When analysing mRNA induction of 
Cyp1A1 and Cyp1A2 in response to Pi and BbF mixtures, concentration addition was observed. The 
analysis of enzyme activity of Cyp1A1 in the EROD-Assay showed similar results. 
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Figure 59: Propiconazole (Pi) and the more potent model ligand benzo[b] fluoranthene (BbF) have 
concentration additive effects on human AHR. a) Pi and BbF both lead to a dose-dependent induction 
of the artificial 3xDRE promoter construct. Mixtures of both compounds suggest con- centration 
additive combination effects on AHR activation. Further- more, induction of b) CYP1A1 and c) 
CYP1A2 mRNA levels in human HepaRG cells by Pi and BbF shows concentration additivity. d) 
The results from the EROD assay, which shows the induction of CYP1A1 enzyme activity by Pi and 
BbF, are also in line with concentration additivity. e) The results of the AHR-dependent 3xDRE 
reporter gene assays with a fixed BbF concentration show that Pi enhances the effect of BbF dose-
dependently. This indicates additive behaviour of the combination. Fold induction above solvent 
control (0.2% DMSO) was calculated. Mean±SD (n=3 independent experiments, each in three 
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replicates) is depicted. Statistical significance (p<0.05) against the solvent control or the BbF 
treatment without Pi (e) is indicated by asterisks 
 
 

Discussion/Conclusions 

Among all the nuclear receptor studied, AHR is the most interesting one, due to both its tiny binding 
pocket and its fold. Globally, all the other tested nuclear receptors are very sensible to the tested 
chemicals binding, due to their unselective binding pockets. For these reasons, only 10 prioritized 
chemicals for each NR where further studied both in vitro and in vivo by EuroMix partners. Results 
are not reported in the present thesis, where we focused our attention on AHR. 
In fact, data presented in this Part clearly demonstrate that Pi is an activator of the human AHR, as 
consistently shown by analyses at the reporter gene, mRNA expression, protein abundance, and 
enzyme activity levels in HepG2, HepaRG, or HepaRG variants bearing knockouts of individual 
nuclear receptors. Furthermore, investigation of gene expression and enzyme activity in rat livers 
showed induction in vivo of the AHR targets Cyp1a1 and Cyp1a2.  
So far, only few previous publications have established indirect links between Pi and AHR. (Sun et 
al., 2005) administered Pi to rats and observed an induction of Cyp1a2 gene expression and the 
resulting enzyme activity without analyzing receptor binding and transactivation. (Li et al., 2013) 
measured induced hepatic EROD activity in juvenile rainbow trout exposed to Pi versus a control 
group. They suggest that Pi had toxic effects in the fish through binding to the aryl hydrocarbon 
receptor (AHR) without analysing receptor binding or transactivation. In human intestinal cells, an 
increase of Cyp1A1 activity after treatment with imazalil and other conazoles like Pi has been 
reported (Sergent et al., 2009). However, imazalil was shown not to bind AHR while Pi was not 
investigated. (Ghisari et al., 2015) have screened various compounds for activation of rodent AHR 
using a murine cell line stably transfected with an AHR-responsive reporter construct; they reported 
a concentration of 10 µM Pi as the lowest dose to exert an effect. Given the differences in incubation 
conditions and reporter system used, these results appear well in line with our present findings, 
indicating that Pi is a weak agonist of human as well as rodent AHR. Altogether, the present data on 
AHR activation by Pi go far beyond what has been published previously by Ghisari et al. (2015) who 
followed a screening approach in a rodent cell system rather than systematically characterizing the 
properties of an individual compound in human hepatic cells, as was the focus of our study.  
While the AHR has initially been believed to become activated rather specifically by polycyclic 
aromatic compounds, such as (halogenated) polycyclic aromatic hydrocarbons, dioxins, and certain 
polyhalogenated biphenyls, more recent data have revealed that numerous other compounds not 
exactly fitting into this class of molecules are capable of activating the receptor. For example, certain 
experimentally used ATP-competitive kinase inhibitors such as U0126 and SB216763 (Andrieux et 
al., 2004; Braeuning and Buchmann, 2009), phytochemicals such as isoflavones (Van der Heiden et 
al., 2009) and also endogenous metabolites such as kynurenine (Opitz et al., 2011) are activators of 
the AHR, which, however, in most cases do not share the potency or the long biological half-life of 
the model activator TCDD. The present observations thus fit well into this picture of a somewhat 
promiscuous receptor. Since species-specific differences with regard to the agonistic properties of 
foreign compounds at different nuclear receptors have been noted, it is important to show activation 
of the human receptor to draw a conclusion as to the relevance for humans. A very prominent example 
of species-species differences is the receptor CAR, where CITCO is considered a specific agonist of 
human CAR, whereas TCPOBOP activates the receptor in mice but not in humans (Tzameli et al., 
2000). However, such observations are not limited to CAR: the best-studied AHR activators, e.g. 
TCDD or polycyclic aromatic hydrocarbons, generally activate both, the AHR of humans and rodents. 
They do so, however, with sometimes remarkable quantitative differences: for example, binding of 
TCDD to the human AHR has been reported to occur with approximately 10-fold lower affinity than 
for the most common AHR variants expressed in the mouse (Ema et al., 1994). Similar differences 
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have been observed for other AHR ligands and also for species other than only humans and rodents, 
as for example documented in detail in (Denison et al., 2011; Flaveny et al., 2009). Species 
differences have also been described with respect to AHR antagonists, for example SR1, which acts 
as an antagonist of human but not of rat AHR (Boitano et al., 2010). These observations underline 
the importance of conducting studies with human cells in order to assess possible toxicological 
consequences of nuclear receptor activation by foreign compounds in humans. It has to be noted that 
comparative analyses of the response of the AHRs from different species are not routinely performed, 
as can be concluded from the lack of such data in many publications identifying novel AHR agonists.  
In the paper by Ghisari et al. (2015) it is mentioned that Pi attenuated the AHR-inducing effects of 
the model AHR activator TCDD in the murine cell system used there. As, however, no exact values 
are given, one cannot judge the strength and/or significance of this observation. Due to the fact that 
toxicological effects of mixtures have become an increasingly important topic during the past years, 
we investigated how Pi and the model AHR ligand BbF jointly influence AHR activity in human 
cells. Our results do not support the abovementioned finding by Ghisari et al. (2015) according to 
which one would expect AHR activation by a model ligand to be diminished by Pi. Instead, our 
findings are in line with a model of concentration addition. The validity of this model for AHR 
activators constitute the basis of current assessment of classic AHR activators: for these substances, 
additivity is assumed and concentrations of individual substances, multiplied by their equivalence 
factor (a measure for their potency relative to TCDD) can be added in order to predict a mixture 
effect. Our present data suggest that this type of additivity is also valid for mixtures of Pi with other 
AHR activators. 
Pi belongs to a large family of frequently used fungicidal active substances, the triazole fungicides. 
These compounds are closely related with respect to their molecular structure. The finding that Pi is 
an AHR activator thus triggers the question whether this holds also true for other members of this 
chemical class. We have investigated two related substances, namely cyproconazole and 
tebuconazole. We could not observe any AHR activation after treatment with cyproconazole or 
tebuconazole when tested with the sensitive endpoint of luciferase reporter analysis up to the highest 
possible non-cytotoxic concentrations (own unpublished data). Instead, cyproconazole acts as an 
activator of human and rodent PXR and also rodent but not human CAR (Marx-Stoelting et al., 2017), 
whereas tebuconazole also activates PXR but is an antagonist of CAR (Knebel et al., 2018). Together 
these observations demonstrate that, despite evident similarities at the level of chemical structure, the 
molecular targets of these substances differ considerably. This might have implications for risk 
assessment, where adverse effects in the liver following activation of certain nuclear receptors by 
xenobiotics is not considered relevant for humans, as in case of the peroxisome proliferator-activated 
receptor (PPAR) alpha (Corton et al., 2014), or is subject of a controversial scientific debate, as in 
case of CAR activation (Braeuning et al., 2014; Braeuning et al., 2016; Braeuning et al., 2015; 
Elcombe et al., 2014; Yamada et al., 2014). By contrast, the most potent and specific xenobiotic 
inducer of the AHR, TCDD, has been classified as carcinogenic to humans by the International 
Agency for the Research on Cancer (IARC) and others (Baan et al., 2009). Different triazole 
fungicides appear to activate different sets of nuclear receptors and show variable potencies at the 
individual receptors. Adverse liver effects in experimental animals exposed to such substances might 
be contributed to by a single receptor or by a combination of multiple receptors simultaneously 
activated by a certain compound. Based on classic histopathology, it appears almost impossible to 
deduce a specific molecular mechanism from observations at the tissue level. Many adverse outcome 
pathways (AOP) describing adversity as a sequence of molecular events triggering an adverse 
outcome at the organ level contain multiple molecular initiating events which later converge at the 
cellular level (www.aopwiki.org). For example, the AOP for liver steatosis comprises almost all 
important nuclear xeno-sensing receptors, such as AHR, CAR, PXR, and PPAR. Proof of activation 
of a certain receptor by a chemical does not always allow drawing conclusions on the prevailing 
molecular mechanisms, since a compound, e.g. a triazole, might be able to simultaneously act on a 
whole set of receptors. Thus, when judging on the human relevance of experimental data, not only 
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possible species differences with respect to ligand-receptor interaction should be considered, but it 
should also be regarded as important to keep in mind that mechanistic toxicological argumentation 
for or against human relevance of a certain adverse effect should involve the different possible modes 
of action which are driven by individual nuclear receptors but lead to a similar adverse outcome. 
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Chapter 4 – Material and Methods 
 
This Chapter is organized as follows: general materials and methods, e.g. chemical inventory, 
homology modelling procedures and molecular docking, are flagged as “general” and convey 
transversal information. Specific methods, on the other hand, are flagged with their respective 
Chapter and Part for greater clarity.  
In Chapter 2, Part II and Part V sections, please refer to original manuscript for in vitro/in vivo 
procedures. 
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Chemical Inventory – General 
 
 
EUROMIX chemical inventory 
The EUROMIX chemical inventory (CI) is a broad list of chemical substances that was developed in 
the frame of the EuroMix (European Test and Risk Assessment Strategies for Mixtures), an 
Horizon2020 project in which University of Milan is involved. The selection of the compounds 
included in the CI was based on the principle that CI should include substances from several chemical 
categories. Therefore, in this extensive list of chemicals approximately one thousand substances have 
been included representing different chemical categories i.e. pesticides (plant protection products and 
biocides), environmental pollutants (e.g. dioxins, PAHs, PCBs, PBDE, PFAS, PBBs), food 
contaminants (e.g. mycotoxins), food contaminants materials (FCM) and bioactive alkaloids (e.g. 
pyrrolizidine alkaloids), metals, pharmaceuticals and miscellaneous chemicals. This list was used as 
a starting point for the prioritization task via in silico procedures in order to discriminate among 
chemicals which should be further investigated with in vitro or in vivo studies.  
For each chemical, information was provided regarding its identity, i.e. the substance chemical 
common name (or structural name in case of environmental pollutants), the chemical category (for 
plant protection products only), the chemical class, the product type (for Non-intentionally added 
substances (NIAS) and FCM migrants only) and the CAS number. Table 18 reports the number of 
chemical substances for each chemical category.  
 

Chemical Category No. of Chemical Substances 
Pesticides Plant Protection a.i. 501 

Biocidal a.i. 34 
Non-pesticides NIAS & FCM migrants 66 

Mycotoxins 20 
Alkaloids 40 
Environmental pollutants 308 

Other chemicals 224 
Table 18: Summary of EuroMix chemical inventory. 
 
The selection of the compounds included in CI was performed by EuroMix research group and it was 
based on the principle that CI should be as broad as possible including substances with a well-known 
toxicological profile, representative of different chemical categories that could be of relevance for 
dietary exposure. In this respect, the compounds included in each category of the CI were selected 
considering three main parameters:  
i) chemical variability, in order to ensure that a wide range of chemicals has been considered 

and, 
ii) food safety relevance (e.g under discussion at EFSA), and/or 
iii) toxicological data availability, since for each of the substances in the CI specific 

toxicological parameters have to be collected for the development of a hazard-based database.  
CI structures were provided in 2D .sdf format and then, 3D structures were generated through the 
minimization procedure contained in the MOE Builder module. Structures were manually verified in 
order to check if the minimization step had solved the most complex structures. Amber10::ETH was 
used as a force field for all procedures. 
 
Chemical Inventory for developmental toxicology 
Twenty-eight different triazoles were selected with the aim of creating the CI for this area of study 
on developmental toxicology, basing on literature (Menegola et al. 2001; Menegola et al. 2016; Di 
Renzo et al. 2011). The azoles 3D structures were selected starting from a search in PubChem and 
subsequently verified and optimized through an energy minimization procedure carried out with the 
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MOE Builder module. The stereochemistry of these structures was then analysed and, when 
necessary, the stereoisomers were generated. 
In addition, the binding free energy of retinoic acid was considered as a positive reference value, and 
both ethanol and valproic acid were also included in CI for developmental toxicology. In particular, 
ethanol was included in the database because of its relevance for the PhD project, since there are 
clinical reports that describe synergic effects between ethanol and azoles taken for therapeutic reasons 
by women, unaware of being pregnant, causing developmental foetal defects. Valproic acid, on the 
other hand, was included in the CI as a reference compound for teratogenic effects (Di Renzo et al. 
2010). Amber10::ETH was used as force field for all procedures. The database composition is listed 
in Table 19. 
 

Table 19: Summary of the tested chemicals for developmental toxicology (Chapter 2, Part I). *This 
number comprises also enantiomers of azoles 
 
 
Chemical Inventory for (re)myelination 
Seven different azoles, approved for clinical use in skin infections and disorders (ketoconazole, 
isavuconazole voriconazole, posaconazole, fluconazole, itraconazole, miconazole) were selected 
with the aim of investigating their ability to induce the local increase of retinoic acid (RA) 
concentration, assumed to be responsible for the (re)myelinating effects observed in specific 
experimental models (Najm et al., 2015). The 3D structures of the selected antifungal azoles were 
obtained from the PubChem compound repository and subsequently verified and optimized through 
an energy minimization procedure carried out with the MOE Builder module. The stereochemistry of 
these structures was then analysed and, when necessary, the stereoisomers were generated. At the end 
of this procedure, 39 structures of azoles were considered for molecular docking. 
The database composition is listed in Table 20. 
 

Table 20: Summary of the tested chemicals for (re)myelination (Chapter 2, Part V). *These numbers 
comprise also enantiomers of azoles. 
 
3D protein structures - General 
 
Human nuclear receptors 
The human LBD crystallographic structures of selected nuclear receptors were downloaded from the 
RCSB Protein Data Bank (http://www.rcsb.org), except for AHR whose 3D structure has not been 
experimentally solved yet. Each crystallographic structure was selected with a co-crystalized agonist 
ligand, in order to choose only the templates with the 12th α-helix in closed conformation. In fact, as 
suggested by Ng et al (Ng et al., 2014) for ERα, choosing a crystal structure in closed conformation 
permits to preliminarily discriminate between agonist and antagonist. Some antagonists have a bigger 
molecular size than agonists and this implies that they will have atom clashes in docking calculation, 
with unacceptable values of binding free energy.  
Moreover, among all the solved structures of each receptor, the one with both the best resolution and 
the lowest number of crystallographic non-solved amino acids was selected. 3D structures were then 

Chemical Category No. of Chemical Substances 
Azoles Triazoles 28* 
Non-azole Substrate 1 

Ethanol 1 
Other 1 

Chemical Category No. of Chemical Substances 
Azoles Diazoles 6* 

Triazoles 33* 
Non-azole Substrate 1 
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verified and structurally prepared using MOE Structure Preparation Module, in order to correct 
crystallography-related errors and/or to fill up any unresolved residues. These crystallographic 
structures were then energy minimized down to a Root Mean Square (RMS) gradient of 0.05 
kcal/mol/Å2 using the Molecular Operating Environment (MOE) software. Amber10:EHT with the 
reaction field solvation model was set as force field for the structures preparation step. PDB ID of 
selected templates are reported in Table 21. 
 

NR PDB ID Resolution [Å] References 
AR 2AM9 1.6 10.1110/ps.051905906 
PR 1ZUC 2.0 10.1074/jbc.M504144200 
ERα 3UUD 1.6 10.1073/pnas.1203574109 
ERβ 3OLS 2.2 10.1002/cbic.201000532 
CAR 1XV9.B 2.7  10.1016/j.molcel.2004.11.042 
FXR 3RUT 3.0 10.1016/j.bmcl.2011.08.034 
GR 1P93 2.7 10.1074/jbc.M212711200 
LXRα 3IPU 2.4 10.1016/j.jmb.2010.04.005 
LXRβ 1PQ6 2.4 10.1074/jbc.M304842200 
PPARα 4BCR 2.5 10.1016/j.jmb.2013.05.010 
PPARδ 3SP9 2.3 10.1074/jbc.M111.266023 
PPARγ 3NOA 1.9 To be published 
PXR 1M13 2.2 To be published 
RARα 3KMR 1.8 10.1038/nsmb.1855 
RARβ 4JYG 2.4 10.1371/journal.pone.0123195 
RARγ 1FCX 1.5 10.1006/jmbi.2000.4032 
RXRα 1XV9.A 2.7 10.1016/j.molcel.2004.11.042 
RXRβ 1UHL 2.9 10.1093/emboj/cdg456 
RXRγ 2GL8 2.4 To be published 

Table 21. PDB code, resolution and references for each NR 
 
To obtain the AHR LBD model, crystal structure of human hypoxia-inducible factor α (HIF-2α) 
(PDB ID:1P97 (Wu et al. 2013)) in apo- form was set as template. The alignment produced by the 
Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/) software was manually checked using the 
MOE Alignment module. Comparative model building was carried out with the MOE Homology 
Model program with default settings. Ten independent models were built and refined, then the highest 
scoring intermediate model - according to the electrostatic solvation energy calculated using a 
Generalized Born/Volume Integral (GB/VI) methodology (Labute, 2008) - was submitted to a further 
round of energy minimization. 
 
CYP26 isoenzymes 
Since no structures are yet available at an atomistic resolution for CYP26, a model of each CYP26 
isoenzyme (CYP26A1, CYP26B1 and CYP26C1) was built by comparative modelling for each 
species (human, rat, zebrafish). 
The search for suitable templates was performed through the BLAST server 
(https://blast.ncbi.nlm.nih.gov/Blast.cgi), using as queries the primary structures of the three rat 
CYP26 isoforms: CYP26A1 [UniProt: G3V861], CYP26B1 [G3V7X8] and CYP26C1 [D4AAL3]. 
The crystallographic structure of the retinoic acid-bound cyanobacterial Cyp120a1 cytochrome (PDB 
ID: 2VE3) was identified as the most suitable template for all three isoforms in the PDB database 
(https://www.rcsb.org/pdb/home/home.do), with a sequence identity of approx. 30% for all the 
queries. Since the identity between CYP26 primary structures and the identified template was not 
high enough to ensure the generation of an accurate model, in order to achieve a thorough comparative 
modelling procedure, we developed an in-house substitution matrix from the alignment of 1,752 
Cyp450 sequences. Only the annotated entries of the cytochrome P450 (Cyp450) family of the 
UniProt database (http://www.uniprot.org/) were selected and aligned by BLAST. In detail, we first 
considered the whole multiple-sequence alignment as a unique block and calculated the score 
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associated to each substitution as a measure of its evolutionary likelihood, in the same way as for the 
BLOSUM scoring matrices (Henikoff & Henikoff 1992). 
The generated Cyp450-custom substitution matrix was then used to align the query CYP26 sequences 
to the selected template with a Python implementation of the Needleman-Wunsch pairwise alignment 
algorithm (Needleman & Wunsch, 1970), a gap opening penalty of -11 and an extension penalty of -
2 per residue. Comparative modelling procedure was carried out by MOE with its default settings. 
Briefly, ten independent models were built and refined for each CYP26s and then the top-scoring 
intermediate models - according to the electrostatic solvation energy calculated using a Generalized 
Born/Volume Integral (GB/VI) methodology - were selected for each isoenzyme, refined and 
carefully inspected. Also the heme group, present in all the CYP450 isoenzymes and RA were 
considered in the CYP26 model generation. 
The Amber10::ETH force field was used for all computational procedures. 
For all the three generated models, the final quality was carefully checked, in order to make sure that 
the geometry (backbone bond lengths, angles and dihedrals), the sidechain rotamer quality and 
packing, the non-bonded contact quality, and the stereo-chemical quality of the generated structure 
were acceptable. In fact, from the analysis of the Ramachandran plot, only one outlier was found for 
CYP26A1 and CYP26B1, while two outliers were found for CYP26C1. However, they were located 
in loops distant from the binding site. 
The same procedure was also applied to human CYP26 isoenzymes: CYP26A1 [O43174], CYP26B1 
[Q9NR63] and CYP26C1 [Q6V0L0]; and to zebrafish CYP26 isoenzymes: CYP26A1 [P79739], 
CYP26B1 [Q6EIG3] and CYP26C1 [A1L1M2]. Also for human and zebrafish CYP26s, the 
crystallographic structure of the retinoic acid-bound cyanobacterial Cyp120a1 (PDB ID: 2VE3) was 
identified as the most suitable template, on the basis of sequence similarity. All the comparative 
modelling procedures were computed as previously described. 
 
Identification of binding sites 
The binding site of each receptor/enzyme was identified through the MOE Site Finder program, 
which uses a geometric approach to calculate putative binding sites in a protein, starting from its 
three-dimensional structure. This method is based on alpha spheres, which are a generalization of 
convex hulls. The prediction of the binding sites, performed by the MOE Site Finder module, 
confirmed the binding sites defined by the co-crystallized ligands in the holo-forms of the investigated 
proteins, except for AHR, which is in its apo- form. For this protein, a set of alpha spheres was 
selected according to Bisson et al (Bisson et al. 2009), that define the binding site for AHR PAS-B 
domain. 
 
In silico molecular docking - General 
 
In silico molecular docking was carried out with the MOE Dock tool. The same procedure was applied 
for each NR and CYP26 isoenzyme. ‘Triangle Matcher’ was selected as placement methodology, in 
which the poses are generated by superposing triplets of ligand atoms on triplets of receptor site 
points, which are alpha spheres centres representing locations of tight packing. 
Three hundred complexes were generated for each tested ligand, removing the duplicate poses if the 
same set of ligand-receptor atom pairs is involved in both hydrogen bond and hydrophobic 
interactions. Then, putative poses were scored according to the following London dG scoring 
empirical function, to estimate the binding free energy of the ligand from a given pose: 
 

 

 
where c represents the average gain/loss of rotational and translational entropy; Eflex is the energy 
expected for the loss of ligand flexibility; fHB is a binary value measuring geometric imperfections due 
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to hydrogen bonds; cHB is the energy owned by an ideal hydrogen bond; fM is a binary value measuring 
geometric imperfections due to metal ligation; cM is the energy owned by an ideal metal ligation; Di is 
the desolvation energy of atom i. The difference in desolvation energies is calculated according to 
the following equation: 
 

 

 
where A and B are the protein and/or ligand volumes; Ri is the solvation radius of atom i; Ci is the 
desolvation coefficient of atom i and both triple integrals are approximated using Generalized Born 
integral formulas. 
A refinement step was applied to all the kept poses, basing on molecular mechanics in which all 
receptor atoms were held fixed during this step and the solvation effects were calculated using the 
reaction field functional form for the electrostatic energy term. Then, the GBVI/WSA dG scoring 
function with the Generalized Born solvation model (GBVI) (Wojciechowski & Lesyng, 2004) was 
used to evaluate the final energy (docking score) of ligand::protein complexes. In detail, the force 
field-based scoring function GBVI/WSA dG, which estimates the free energy of binding of the ligand 
from a given pose, is formalized by the following equation: 
 

 
 

where c represents the average gain/loss of rotational and translational entropy and both α and β are 
force field-dependent constants; Ecoul describes the coulombic electrostatic term; Esol is the solvation 
electrostatic term; Evdw quantifies the van del Waals contribution to binding; SAweighted is the surface area 
weighted by exposure. At the end of refinement step, 50 final poses for each ligand::protein were 
kept. All ligands of the molecular database were tested according to the above procedure using 
Amber10:EHT as force field in all the computational procedures. Moreover, entries of the 
developmental toxicology were also submitted to a further refinement step, using MOE QuickPrep 
module in order to compute solvation contribute for a deepest analysis. With this procedure, ligand 
and residues within 4.5 Å were left free to move during minimization step, computing both affinity 
and solvation values. 
The dissociation constant (Ki) was computed starting from empirical binding free energy values, 
according to the following equation:  
 

 
 
where R represents the gas constant and T the temperature. Ki was computed starting from the binding 
free energy values at a fixed temperature (300 K).  
 
Chapter 1 – Part I 
 
All the in silico calculations were carried out both in UMIL and FERA laboratories by Dr. Luca 
Palazzolo, Dr. Jane Cotteril and co-author of the already published paper (Cotteril and Palazzolo et 
al., 2019) and here reported to clarify the materials and methods. This research was funded by 
European Commission, in the EuroMix Horizon2020 Project. 
 
(Q)SAR models  
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Details of the models used are shown below and a summary of the type of ER activity estimated by 
the models is shown in Table 1. The input for the models was an .sdf file of the test set compounds. 
 
COSMOS Nuclear Receptor model  
The COSMOS project (www.cosmostox.eu) Nuclear Receptor model implemented into KNIME 
workflows are available in the COSMOS KNIME WebPortal. Although primarily developed to 
identify potential binding to NRs important in hepatosteatosis, ER receptors are included in the 
model, which was developed using structural and physico-chemical features of NR ligands using data 
from ChEMBL and the Protein Data Bank (PDB).  A total of 1489 ER agonists were identified and 
used in the workflow. Further details of the methodology of the workflow are available (Mellor et 
al., 2016). 
 
DEREK Nexus Endocrine alerts 
DEREK Nexus is a rule-based expert system where Structural Alerts for a particular endpoint identify 
important structural fragments within molecules that are associated with a specific toxicological 
effect (http://www.lhasalimited.org/products/derek-nexus.htm). If a compound contains a structural 
alert then the likelihood that the compound will cause toxicity is provided (based on the species and 
other rules such as bioavailability). If no Structural Alert is fired then DEREK returns “Nothing to 
Report”. This does not necessarily mean a negative result, just that that the compound contains none 
of the structural fragments built into the rule-based system. Derek Nexus 5.01 contains 9 alerts for 
Oestrogen receptor modulation and 2 alerts for estrogenicity. Presence of these alerts is for our 
purposes interpreted as a substance being an ER binder, and absence of any of the alerts is interpreted 
as being a non-binder. 
 
OCHEM estrogen receptor alpha agonists qualitative model 
QSAR modelling efforts in the Tox21 Data Challenge 2014 (“TOX 21,” 2014) resulted in a number 
of models for ER receptor binding, which were implemented in the online chemical modelling 
environment (OCHEM, http://ochem.eu). These include two ER-𝛼 agonist models using two different 
cell lines and a third model developed using log RBA data (Abdelaziz et al., 2016). For the purposes 
of this study only one model was used (Consensus Estrogen receptor 𝛼 agonists qualitative), as the 
other Estrogen receptor agonist and RBA model estimates for the test set used in this study were 
found to be highly correlated. Other OCHEM models for ER agonists were available, but again as 
these are similar to the VEGA CERAPP model (2.1.7) they were not included in the study model 
selection.  
 
OECD QSAR Toolbox DART scheme 
DART (Developmental And Reproductive Toxicity) is a decision tree developed on the basis of the 
combination of known modes of action (MoA) and associated structural features, as well as an 
empirical association of structural fragments within molecules of reproductive or developmental toxic 
chemicals when MoA information was lacking. The decision tree is based on a detailed review of 716 
chemicals (664 positive, 16 negative, 36 with insufficient data) that have DART end-point data and 
are grouped into defined receptor binding and chemical domains. When tested against a group of 
chemicals not included in the training set, the decision tree is shown to identify a high percentage of 
chemicals with known DART effects (Wu et al., 2013). The DART scheme is incorporated into the 
OECD (Q)SAR Toolbox (http://www.oecd.org/chemicalsafety/risk-
assessment/theoecdqsartoolbox.htm). For the purposes of this study a positive score was assigned if 
a DART alert was present and the alert specifically mentioned ER binding. 
 
OECD QSAR Toolbox ER profilers 
There are two profilers related to ER binding freely available in the OECD (Q)SAR Application 
Toolbox software.  
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a) ER binding alert 
The incorporated Toolbox ER binding profiling scheme is based on structural and parametric rules 
extracted from literature sources and supported by experimental data (Hamblen et al., 2003, Saliner 
et al., 2003, Schultz et al., 2002). The ER-binding profiler classifies chemicals as non-binders or 
weak, moderate, strong or very strong binders depending on molecular weight (MW) and structural 
characteristics of the chemicals. The performance of this profiler was evaluated by Mombelli (2012) 
using large human and rat binding datasets and the majority of compounds were correctly predicted. 
For the purposes of the present study chemicals were classed as positive if they had any alert for ER-
binding (weak, moderate, strong or very strong). 
b) rtER alert 
The rtER Expert System v1, USEPA Estrogen Receptor Expert System (ERES) Profiler is an effects-
based automated system used to predict estrogen receptor binding affinity, based on rainbow trout 
ER (rtER) (Hornung et al., 2014; Schmieder et al., 2014). It was specially designed to prioritise 
pesticides (inert and antimicrobial) that do not include any steroidal structures and thus are not 
capable of higher affinity ER interactions. The ERES is a logic rule-based decision tree that encodes 
the experts’ mechanistic understanding with respect to both the chemical and biological aspects of 
the well-defined endpoint, or the ER bioassay domain. 
 
VEGA Estrogen RBA model (IRFMN) – v.1.0.1 
This classification QSAR model for binding to human estrogen receptor alpha (hER-𝛼) was 
developed using experimental values for relative binding affinity (RBA), with 17𝛽-estradiol as 
reference (Roncaglioni et al., 2008). This model is incorporated into the VEGA in silico platform, 
which is freely available online at http://www.vega-qsar.eu/ (the version used for this study was 
1.1.3). 
 
VEGA Estrogen Receptor-mediated effect (IRFMN/CERAPP) - v.1.0.0 
This Structural alert rules-based model was built using Sarpy software using a large dataset of high- 
quality ER signalling data (1529 chemicals screened across 18 high-throughput screening assays 
integrated into a single score), from the ToxCast program (Judson et al., 2014). The model was 
developed within the framework of the Collaborative Estrogen Receptor Activity Prediction Project 
(CERAPP), Mansouri et al., 2016.  
 

(Q)SAR Model ER-related endpoints considered  Access to models 
COSMOS Nuclear Receptor model ER-agonists  Freely available 
DEREK Nexus Various endpoints related to ER activity License fee  
OCHEM estrogen receptor alpha agonists ER- 𝛼 agonists Freely available 
OECD QSAR Toolbox DART scheme 
(ER binding) 

Various endpoints related to ER binding Freely available 

OECD QSAR Toolbox alerts (ER binding 
alert) 

Various endpoints related to ER binding  Freely available 

OECD QSAR Toolbox alerts (rtER alert) Various endpoints related to ER binding,  Freely available 
VEGA – RBA Relative Binding Affinity, hER- 𝛼 Freely available 
VEGA - CERAPP Various endpoints related to ER signalling Freely available 

Table 22. ER activity estimated by the (Q)SAR models 
 
Applicability Domain 
The (Q)SAR models considered in this study are in general applicable only for small organic 
molecules; inorganic compounds, organo-metallic and polymeric structures are outside of the domain 
of the models. The QSAR models available in the VEGA platform have a built-in tool to measure the 
reliability of the prediction through the applicability domain index, based on similarity to molecules 
in the training set, accuracy of prediction of similar molecules, concordance for similar molecules, 
errors of prediction among similar molecules, model’s descriptor range check and atom centered 
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fragments similarity checks. For the purposes of this study, estimates of low reliability were not 
considered in the majority consensus. For the other models considered in the study based on Structural 
Alerts, training sets are often not readily available and the domain thus difficult to define. Although 
the lack of an alert thus does not necessarily mean a negative estimation, the presence of these alerts 
is for our purposes interpreted as a substance being an ER binder, and absence of any of the alerts is 
interpreted as being a non-binder. Some compounds, for example Organophosphorus compounds, are 
not covered by the version of the DART scheme used in the study and so are outside the applicability 
domain of this model. 
 
Majority Consensus  
The model outputs were collated and a score of 1 assigned to positively predicted compounds and a 
score of 0 assigned to negatively predicted compounds. Where no estimate was obtained from a 
model, if it was outside the applicability domain of the model, or the compound was in the training 
set of the model and so its estimate excluded from the analysis, N/A was assigned. The total score of 
each compound (i.e. the number of models with a positive prediction) was divided by the total number 
of models producing an estimate. Where this was greater than or equal to 0.5 a positive estimate was 
assigned and where less than 0.5 a negative estimate was assigned.  
 
Selection of the validation set 
As the various models to predict ER-binding cover a range of activities, for example some of the 
(Q)SAR models and the standard molecular docking procedure do not distinguish between agonists 
and antagonists, a validation set which isn’t specific for agonists or antagonists was required. The 
validation set selected contained Relative Binding Affinity (RBA) data for the ERα receptor and is 
the external validation set used to test the VEGA RBA model (Roncaglioni et al., 2008). It is a diverse 
dataset of compounds, including natural and synthetic steroids, drugs and chemical contaminants 
such as pesticides, PCBs and phthalates, originally obtained from the Japanese METI database (METI 
2002). The validation set was selected on the basis of it containing RBA data for a heterogeneous 
group of compounds, its previous use as a validation set (Roncaglioni et al., 2008), data for all of the 
compounds also being available from reporter gene assay and it containing not too large a number of 
compounds to enable molecular docking to be also carried out for all of the compounds within the 
time constraints of the project. The validation set was downloaded as a text file from VEGA version 
1.1.3 (from the dataset of 806 compounds, the 150 compounds labelled with TEST status were 
selected) and then converted to an .sdf file for input to the various models. Details of how the chemical 
structures were originally obtained and modified for use in QSAR modelling are available in 
Roncaglioni et al. (2008). Two compounds containing tin were removed for this study as these 
metallo-organic compounds are not predicted in several models, leaving 148 compounds of which 52 
were active and 96 were inactive for ERα receptor binding.  
Evaluation of predictive performance where the validation set compounds were actually used to build 
the suite of (Q)SAR models and therefore would lead to overestimation of the accuracy of the models 
is to be avoided. Therefore, where the training sets for models are known, any compounds in the 
validation set which were used to build models were removed. For the VEGA CERAPP model, 50 of 
the 148 compounds were used to build the model, so these were removed leaving 98 validation 
compounds (38 active, 60 inactive) for this model. For the OCHEM ER agonist model 68 of the 148 
compounds were used to build the model, so these were removed leaving 82 validation compounds 
(35 active, 47 inactive) for this model. The training sets for the other models considered in the study 
were not available. 
Reporter gene (RA) assay experimental data for the validation set were also obtained (Roncaglioni et 
al., 2008) in order to use alongside RBA results with a view to identify if compounds may be 
antagonists. 
 
Cooper statistics 
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In order to compare the individual (Q)SAR models, the molecular docking prioritization (Trisciuzzi 
et al., 2017) and majority consensus predictions, the standard Cooper statistics (Cooper et al., 1979) 
and Matthews correlation coefficient (Matthews, 1975) were used to assess the quality of the 
predictions. Sensitivity is defined as the percentage of correctly classified positive predictions among 
the total number of positive instances. Specificity is the percentage of correct negative predictions 
compared to the total number of negatives. Accuracy is defined as the total number both positive and 
negatives correctly predicted among the total number of compounds. MCC (Matthews correlation 
coefficient) is a weighted value that overcomes any imbalance in the data classes which might lead 
to over-optimistic values of accuracy. The so-called Negative Predictive Value (NPV) was also 
computed for the (Q)SAR and molecular docking results to evaluate the goodness of the classification 
and, in particular, to represent the probability that a chemical predicted as a non-binder (under-
threshold) is actually a non-binder (Trisciuzzi et al., 2005, 2017). 
 
Methods for molecular docking (details) 
Among all the solved structures of estrogen receptor alpha LBD in complex with estradiol, the one 
with both good resolution and the lowest number of crystallographic non-solved amino acids was 
retrieved from the RCSB Protein Data Bank [PDB entry: 3UUD.A] (Delfosse et al., 2012). 3D 
structures were then verified and structurally prepared using MOE Structure Preparation Module, in 
order to correct crystallography-related errors, adding hydrogens and/or to fill up any unresolved 
residues. The 3D structure was then submitted to an energy minimization step with the Amber10:EHT 
force field and the reaction field solvation model. Refinement was carried out down to a Root Mean 
Square (RMS) gradient of 0.05 kcal/mol/A ̊2. 
For each chemical, stereochemistry was carefully checked according to those reported in PubChem, 
the dominant protomer/tautomer and protonation state was computed at physiological pH for each 
chemical. Twenty thousand rotamers were also generated for each chemical. 
In silico molecular docking was carried out with the MOE Dock Program. ‘Triangle Matcher’ was 
selected as placement methodology, in which the substance poses are generated by superposing 
triplets of ligand atoms on triplets of receptor site points, which are alpha spheres centres representing 
locations of tight packing. 
Thirty complexes were generated for each tested ligand, removing the duplicate poses if the same set 
of ligand-receptor atom pairs is involved in both hydrogen bond and hydrophobic interactions. Then, 
putative poses were scored according to the London dG scoring empirical function, to estimate the 
binding free energy of the ligand from a given pose.  
A refinement step was then applied to all the kept poses, basing on molecular mechanics in which all 
receptor atoms were held fixed during this step and the solvation effects were calculated using the 
reaction field functional form for the electrostatic energy term. Then, the GBVI/WSA dG scoring 
function with the Generalized Born solvation model (GBVI) (Wojciechowski and Lesyng, 2004) was 
used to evaluate the final energy (docking score) of ligand::protein complexes.  
To verify the robustness of the molecular docking approach on ERα, the binding pose of the 3UUD 
co-crystallized estradiol was computed, obtaining a perfect overlapping (RMSD lower than 0.3 Å) 
(Galli et al., 2014). Moreover, with the aim of detecting the best cut-off energy values for a 
toxicological evaluation, i.e. whether a compound could be classed as an ER-binder or ER-non-
binder, Cooper statistics were applied. To better visualize the docking behaviour, the Receiver 
Operating Characteristic (ROC) curves were used to graphically compare docking performances, for 
a range of different cut-off values.  
 
Low-Mode Molecular Dynamics simulations (LM-MD) 
To study the flexibility of α-helix 12 of NR LBD due to ligand activity, LM-MD simulation is a very 
efficient way to reproduce the low-mode vibrations with respect to classical molecular dynamics for 
minima troughs on the potential energy surface. To run these computations, MOE Conformational 
Search program was used, estimating the low-frequency modes through an efficient implicit method, 
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based on the attenuation of high-range velocities as described in detail in Labute et al., 2010. The 
human ERα LBD bound to  
i) a well-known full-agonist (17β-estradiol),  
ii) a well-known antagonist (4-hydroxytamoxifen), 
iii) selected chemicals and  
iv) in its apo- form were simulated after the MOE QuickPrep preparation.  
 
(i)  ERα ::17β-estradiol complex was obtained from the above mentioned structure preparation 
procedure; (iv) the apo- form, the protein moiety of a molecular complex, was obtained from the same 
PDB, by removing the endogenous hormone in silico; (ii) the complex with antagonist was obtained 
superimposing RCSB PDB 3ERT (Shiau et al., 1998) and RCSB PDB 3UUD crystal structures and 
then importing the coordinates of co-crystalized antagonist 4-hydroxytamoxifen from 3ERT to 3UUD 
in apo- form. 
Complexes with selected chemicals were obtained with the following procedure: ERα::Ligand 
complexes resulting from docking procedures were superimposed to 3UUD bound to both full-
agonist (i) and antagonist (ii); proteins were removed and two Flex-Alignments for putative 
agonist/antagonist were performed keeping hold of the endogenous hormone or antagonist, 
respectively; complexes with selected ligands were rebuilt using the coordinates of the apo-3UUD 
3D structure. 
Both helix 12 (set as a rigid body) and the loop joining helix 12 to the preceding helix were left free 
to move during the low-mode molecular dynamics, whereas the residues more than 4.5 Å away were 
fixed (not free to move but used for the energy calculations); the other residues were defined as inert 
(fixed and not used for energy calculations). The simulation was carried out with default parameters, 
except for strain energy cut-off, which was set at 200 kcal/mol. Hundred conformations were 
generated and analysed. The Amber10:EHT force field was used for all the computational procedures. 
In order to classify the tested chemicals as agonist, partial agonist or antagonist, the Root Mean 
Square Deviation (RMSD) values of helix 12 alpha carbons was computed between 3UUD crystal 
structure and simulated complex. 
 
Chapter 2 – Part I, ligand-based approach 
 
To study the electronic transitions between the heme of CYP26s and the site of metabolism (SOM) 
of selected compounds, the following steps were followed: 

i) for each compound belonging to the azoles database, three SOMs were predicted using 
SMARTCyp (Rydberg et al., 2010), a .svl MOE module, that rate atoms basing on specific 
chemical-physical and geometric descriptors for CYP P450; 

ii) basing on docking score, selected on the basis of binding free energy and on some 
geometric constraints between SOM and the Fe atom of heme (Li et al., 2012), structures 
for Transition State Theory (TST) were built; 

iii) from these structures, reaction energies were computed applying single point energy 
calculation via DFT (Rydberg et al., 2014; Rydberg et al., 2009; Rajakumar & Arunan, 
2003). 

Both HEME and selected pose of each ligand were imported into Schrodinger 
(https://www.schrodinger.com/maestro). HEME was then replaced by a carboxyl as recommended 
by Li et al (Li et al., 2012), in order to speed up the DFT and TST calculations.  
Starting from these modified structures, the reaction products for each compound was drawn, while 
transition states were drawn by positioning the carboxyl group closest to the SOM. 6-31G** was used 
as basis set for all the computational procedures (Rydberg et al., 2014; Rajakumar & Arunan, 2003). 
Chapter 2 – Part III, PD ODE system 
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RA and single azoles 
All the in vitro tests were carried out in UMIL laboratories by Prof. Elena Menegola research group 
and published in Battistoni et al. Here we report the extracted data, while for experimental procedures, 
please, see Materials and Methods in Battistoni et al. In the following tables, n is the total number of 
tested embryos, while r represents the number of malformed embryos. In Tables 23, 24, 25, 26 are 
reported concentrations of single azoles/RA, while in Tables 27, 28, 29 are reported concentrations 
of azoles in mixtures. 
 

RA concentrations (nM) n r 
0 22 0 
25 23 2 
50 16 11 
125 19 19 

Table 23: Retinoic acid concentrations and malformed embryos 
 

Cyproconazole concentrations (nM)  n r 
0.0 9 0 
7.8 14 4 
15.0 9 8 
31.5 7 7 
250.0 3 3 

Table 24: Cyproconazole concentrations and malformed embryos 
 

Triadimefon concentrations (nM) n r 
0.00 22 0 
6.25 8 0 
12.50 11 3 
25.00 8 8 
50.00 7 7 

Table 25: Triadimefon concentrations and malformed embryos 
 

Flusilazole concentrations (nM) n r 
0.0000 18 0 
1.5625 10 0 
3.1250 11 5 
6.2500 9 9 
9.3750 5 5 

Table 26: Flusilazole concentrations and malformed embryos 
 
Mixtures 

Triadimefon concentration (nM)  n r 
0.00 11 5 
6.25 10 10 
12.50 12 11 
25.00 8 8 
50.00 7 7 

Table 27: Triadimefon and flusilazole (3.125 nM) concentrations and malformed embryos  
 

Flusilazole concentration (nM)  n r 
0.000 11 3 
1.560 7 4 
3.125 12 11 
6.250 6 6 
9.375 6 6 
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Table 28: Flusilazole and triadimefon (12.5 nM) concentrations and malformed embryos 
 

Cyproconazole concentration (nM)  n r 
0.0 12 5 
7.8 11 9 
15.0 3 3 

Table 29: Cyproconazole and triadimefon (7.8 nM) concentrations and malformed embryos 
 
ODE System 
To capture the RA kinetics, we formalized the following set of differential equations. In the equations, 
the five variables of the system, ADH, RA, CYP26_mRNA, CYP26 and FGF represent intracellular 
concentrations. Only CYP26A1 was considered because of its inducted expression is the only one 
expression that is well characterized. The embryo was considered as a point in space, representative 
of the half of the normalized embryo hindbrain length. This effect is active only in RA equation, in 
the ADH term, and in FGF equation that are the only two variables that in embryo create a spatial 
gradient. 
 
The ADH equation consists in three term, a synthesis of ADH protein, a degradation that depends on 
ADH concentration and a transcription term, mediated by ethanol (17 mM). The latter is positive and 
increases the ADH concentration. 
The FGF equation is composed by only two terms and, in our simulation, it is no affected by system 
perturbations inducted by azoles. This equation contains a synthesis and a degradation term, the latter 
depending on FGF concentration. 
The CYP26 mRNA term, on the other hand, is composed, by three terms: synthesis, degradation and 
an induction term, in which both RA and FGF concentrations mediate the effects, through a 
cooperative Hill expression. 
The equation of CYP26 is very similar to FGF, but the synthesis term depends on CYP26 mRNA 
equation.  
RA equation is pivotal in our ODE system, and in the following lines it will be discussed term by 
term in more detail. The equation has the first term that represents the production rate by ADH, 
depending on Retinol concentration, that is fixed in time, and the second term that represents the 
physiological rate of RA elimination. The third term implemented in this ODE system describes the 
interactions between RA and azoles, depending on CYP. In this term, we consider all the azoles 
contribution to CYP26 inhibition, weighted by RA. All the respective in silico Ki were considered in 
the Hill terms. 
 
From a biological point of view, the following scenario is described: Ethanol increases ADH 
concentration, ADH increases with time RA concentration that, as primary feedback, increases Cyp 
mRNA. Cyp mRNA progressively increases CYP26 concentration that, as secondary feedback, 
decreases RA concentration.  
 
dt (ADH) = k_syn_ADH - k_deg_ADH * ADH + k_trs_ADH_by_ETH * ETH;  
 
  dt (RA) = k_trs_RA_by_ADH * ADH * ( RO / ( k_i_RO + RO))*0.5 - k_deg_RA * RA - CYP26 *  
            ( 
            km_RA  * RA -  
            km_FLUCO * ((FLUCO/(ki_FLUCO + FLUCO))    / ( RA / (ki_RA + RA)) ) * FLUCO - 
            km_FON * ((FON/(ki_FON + FON))            / ( RA / (ki_RA + RA)) ) * FON - 
            km_CYPRO * ((CYPRO/(ki_CYPRO + CYPRO))    / ( RA / (ki_RA + RA)) ) * CYPRO - 
            km_FLUSI * ((FLUSI/(ki_FLUSI + FLUSI))    / ( RA / (ki_RA + RA)) ) * FLUSI - 
            km_ETH  * ( (ETH/(ki_ETH + ETH))          / ( RA / (ki_RA + RA)) )  * ETH 
            ); 
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  dt (CYP26_mRNA) = k_trs_CYP26_base +  
                    vmax_trs_CYP26_by_RA * 
                    (pow(RA, 2) / (pow(k_act_CYP26_by_RA, 2) + pow(RA, 2))) *  
                   ((pow(FGF, 2) / (pow(k_inh_CYP26_by_FGF, 2) + pow(FGF, 2)))) -  
                    k_deg_CYP26_mRNA * CYP26_mRNA; 
 
  dt (CYP26) = k_trd_CYP26 * CYP26_mRNA - k_deg_CYP26 * CYP26; 
 
  dt (FGF) = k_syn_FGF * 0.5 - k_deg_FGF * FGF; 

 
As output of the ODE system, here reported from MCSim software imput, we extracted the RA 
concentration at 48 h, in order to simulate embryo conditions and then, basing on this information, 
we computed the malformations probability using the logit function. 
 
To simulate the equilibrium concentration of RA, CYP26 mRNA, CYP26, ADH and FGF, at different 
times, the ODE system was solved by numerical integration. With this approach we studied the stable 
concentrations of variables. In the first run, all the concentrations were set to 0.1 nM as suggested in 
Goldbeter et al. and in Battistoni et al. ODE parameters were also extracted from literature, as for the 
RA baseline and the total amount of ADH, that is compliant with our equilibrated RA gradient 
concentration. The CYP26 inhibition constants by azoles were extracted from Chapter 2, Part II. The 
values of ODE constants are reported in the following tables. 
 

Constant Value Info 
km_RA 0.01667 1/(nM * min) 
k_deg_RA 0   
k_trs_CYP26_base 0.00608333 0.365 nM/min 
vmax_trs_CYP26_by_RA 0.118333 7.1 nM/min 
k_act_CYP26_by_RA 7.083839 nM 
k_deg_CYP26_mRNA  0.01667 1 min^-1 
k_trd_CYP26 0.01667 1 min^-1 
k_deg_CYP26 0.00466667 0.28 min^-1 
k_syn_FGF 0.083333 min^-1 
k_deg_FGF 0.016667 1 min^-1 
ADH 7.1 nM 
k_inh_CYP26_by_FGF 1 

 

RO 150 nM Horton and Maden 1995 ‚ÄúRO is 5 fold excess  
k_syn_ADH 0.01666667 equal to k_syn_RA 
k_deg_ADH 0.00234742  Fitted in "setting_ADH" 
k_i_RO 49 nM Chase et al. 2009 
k_trs_RA_by_ADH 3.61022 fitted parameter with MatLab for RA = 26 nM 
k_i_ETH_ADH 36 mM Chase et al. 2009 
baseline_RA 26.327 RA baseline (nM)  

Table 30: ODE parameters 
 

Variable Value Unit 
RA 26 nM* 
CYP26_mRNA  4 nM 
CYP26 14.28 nM 
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FGF 2.45 nM 
ADH 7.1 nM* 

Table 29: ODE initial variables 
 
Q0, Q1, kinh_FLUSI, kinh_FON, and kinh_CYPRO free parameters were calibrated using a fitting 
strategy on data. Q0 and Q1 were fitted on RA, while azoles-specific constants were fitted on 
flusilazole, triadimefon and cyproconazole data, respectively. For each parameter, the fitting strategy 
is based on the Bayesian calibration, as suggested in Battistoni et al., assuming a binomial distribution 
with probability P, managed by the logit function. The priors were set to uninformative uniform 
distributions. Given the prior and the data, Markov-chain Monte Carlo (MCMC) simulations were 
performed. For each parameter, two MCMC chains were run in parallel for 10,000 iterations. The last 
5,000 samples from each chain were kept for inference and predictive simulations. Convergence of 
the chains was assessed using Gelman and Rubin Rhat criterion. Convergence was achieved in all 
cases. 
 
All model simulations and MCMC calibrations were performed with GNU MCSim version 6.0.1 
(www.gnu.org/software/mcsim) through an R script (cran.r-project.org) and managed with Knitr 
extension in order to produce plots and to resume the simulation steps.  
Calibration of initial conditions of variables were explored both via MATLAB and basing on 
literature. 
 
Chapter 2 – Part IV, PBPK ODE system 
 
Data for two tebuconazole enantiomers [R (-)- and S (+)-tebuconazole] in plasma, liver, brain, heart, 
kidney, fat, lung, muscle and spleen of male Japanese white rabbits were digitized form Zhu et al 
(2007). As first step, the two enantiomers were considered as the same chemical and data were 
aggregated. 
The Open Systems Phrmacology Suite – PK-Sim (http://www.systems-biology.com/products/pk-
sim.html) was used to build the ten compartment PBPK model (Scheme 1), using physiological rabbit 
data (e.g. tissue volume, regional blood flows) provided by the software for a Japanese white rabbit 
weighing 2.25 kg. Cardiac output was allometrically scaled to body weight using the following 
equation:  
 

0.25 ´ W (kg)0.74 L/min (Brown et al. 1997).  
 

Relative blood weight was assumed to be 7.5% of body weight and plasma weight to be 50% of blood 
weight. Plasma:tissue tebuconazole partition coefficients and the liver clearance rate of tebuconazole 
were fitted to the data available. Tebuconazole chemical properties were calculated via MOE 
Molecular Descriptors suite. Administration route was set as 30 mg/kg body weight (bd wt) by 
intravenous (iv) injection, as reported in Zhu et al. (2007) 
The time rate of the amount of tebuconazole (Ax) changes in a tissue x is given by the difference 
between the amount of the entering tebuconazole in the tissue through arterial blood and the amount 
leaving the tissue through venous blood. The following differential equation describe the rate of 
change for brain, heart, kidney, spleen, muscle, fat and rest of body:  
 

 

 
where Qx is the tissue x regional blood flow, Cx is the tebuconazole concentration in tissue x, Px is the 
tebuconazole tissue x:plasma partition coefficient and Cp,art is the tebuconazole concentration in arterial 

,( / )x
x p art x x

dA Q C C P
dt

= -
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plasma. For lung the time rate of the amount of tebuconazole changes is described by the difference 
between the amount entering through venous blood and the amount leaving to the arterial blood pool: 
 

 

 
For the liver, two terms indicating liver clearance were added to the standard differential equation, as 
reported in the following equation 
 

; 

 
while for the venous plasma changes, concentration is given by the difference between the amount 
entering the venous pool through venous blood from both the tissues x and liver, and the amount 
leaving the pool to lung: 
 

 

 
For arterial plasma the time rate of change of the amount of tebuconazole is given by the difference 
between the amount entering from the lung and the amount leaving to venous pool: 
 

 

where Qc is the cardiac output that is allometrically scaled to rabbit body weight as in Andersen et al. 
(2016). Data about the blood flow in rabbit were imported from rat (Brown et al. (1997), Table 23).  
Plasma:tissue tebuconazole partition coefficients and the liver clearance rate of tebuconazole were 
fitted to the data available.  
To extrapolate the tebuconazole model from rabbit to human the same compartment and the same 
equation were maintained, scaling the coefficients according to Brown et al.  
Parameters from Bosgra et al. were extrapolated to describe the organ volumes and regional blood 
flows. Tissue::plasma partition coefficient was determined from the rabbit data and scaled taking into 
account the human organ volumes. Liver clearance was allometrically scaled proportional to the ratio 
of human to rat body weights to the power 0.75 as in West et al., scaling the 0.052 L/min of the rabbit 
to the 44 L/h for a man of 73 kg. 
The standard male body composition was extrapolated by Bosgra et al., assuming a man weighing 
73 kg and a cardiac output of 390 L/h was assumed. 
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Figure 60: Proposed PBPK-model for tebuconazole in humans.  
 
 
Chapter 2 – Part V, In vitro tests 
 
All the in vitro experiments were carried out in UMIL laboratories by Dr. Chiara Parravicini in the 
FISM grant framework and here reported to clarify the in vitro procedures. 
 
OPC cultures  
 
OPCs were obtained from the cortex of P2 CD1 Sprague Dawley rats; after isolation, brain tissues 
were stored for 4 hours in MACS® Tissue Storage Solution before starting the digestion and 
dissociation protocol, following the manufacturer instructions to obtain a single-cell suspension 
(Miltenyi Biotec). 
After enzymatic dissociation cells were counted and forwarded to the next purification step. Cells 
expressing A2B5 were isolated from single-cell suspension using the magnetic labelling of OPCs 
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specifically expressing A2B5 antigen via magnetic microbeads conjugated to monoclonal anti-A2B5 
antibody. 
After counting, purified cells were plated onto poly-D,L-ornithine-coated multi-wells (final 
concentration 50 µg/ml) to a density of 15,000 cells/well, and cultured in a proliferation medium. 
After 2-3 days, this medium was substituted with a differentiation medium lacking growth factors 
and in absence of the thyroid hormone T3. The next day, to analyse the effect of azoles in myelination, 
OPCs were exposed to selected azoles and RA with the following concentration, together with the 
control (exposed only to vehicle): 
• RA (50 nM) 
• RA (50 nM) + citral (150 µM), 
• citral (150 µM) 
• posaconazole (10 nM), 
• posaconazole (10 nM), + citral (150 µM) 
• itraconazole (10 nM) 
• itraconazole (10 nM) + citral (150 µM) 
• fluconazole (30 nM)  
• fluconazole (30 nM) + citral (150 µM) 
RA and citral concentration were set according to literature data (Menegola et al, 2016) while azole 
concentrations were established according to the pKi obtained from docking results as 30 nM for 
fluconazole, 10 nM for itraconazole and posaconazole, 50 nM for RA and 150 µM for citral. 
After 48 hours, cells were fixed and stained with a standard immunocytochemical approach. 
 
DRG-OPC co-cultures 
DRG-OPC co-cultures were prepared according to the following protocol.  
DRG from E14.5 mouse embryos were plucked off from spinal cord, put in culture (1 DRG/coverslip) 
in Neurobasal supplemented with B27 in the presence of 100 ng/ml NGF and cycled with 10 μM 
fluorodeoxyuridine to eliminate all non-neuronal cells. After 20 days, when neurites were well 
extended radially from DRG explants, 35,000 OPCs were added to each DRG in culture and kept in 
MEM supplemented with 4 g/L glucose, 10% FBS and 2 mM L-glutamine. Myelination was induced 
the following day by the addition of recombinant chimeric 1 μg/ml TrkA-Fc to the culture medium.  
OPC/DRG co-cultures were exposed to the same mixtures as in the above OPC cultures protocol, 
with the exception of those containing posaconalzole which was deemed uneffective after OPC 
cultures results. The protocol is 12 day long: the treatments were carried out every 48/72 hours for 
five times, then after 48 hours cells were fixed and stained with a standard immunocytochemical 
approach. 
 
Immunocytochemistry studies 
To perform immunocytochemical studies, the cells were fixed according to the following procedure: 
the culture medium was aspirated and, to each well, paraformaldehyde plus 4% sucrose was added 
(500 μL for well). After incubation for 20 minutes at room temperature, the fixative was aspirated 
and three washes, 10 minutes each, were performed with PBS 1X (Phosphate Buffered Saline 0.1 M, 
EuroClone). Finally, up to the time of immunohistochemical analysis, the coverslips were stored in 
PBS sodium azide (500 μL per well) and the plates, sealed with parafilm, were stored at 4 ° C. 
 
OPC protocol 
The coverslips with the fixed cells were taken and transferred for staining to another appropriately 
labelled plate. After two quick washes in low salts (10 mM phosphate buffer and 150 mM NaCl) 
followed by two rapid washes in high salts (20 mM phosphate buffer and 50 0mM NaCl) to promote 
hydration of the fixed cells and to remove any impurities or debris, the coverslips were transferred to 
a wet room. Each coverslip was pre-treated with 45 μL of Goat Serum Diluition Buffer (GSDB; 450 
mM NaCl, 20 mM sodium phosphate buffer, pH 7.4, 15% goat serum, 0.3% Triton X-100, Life 
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Technologies) for 15 minutes at room temperature in a humid chamber, in order to saturate the non-
specific binding sites. 
The primary antibodies, rabbit-anti-GPR17 (marker of differentiation) and rat-anti-MBP were diluted 
1:50 and 1: 200 respectively in GSDB 1X and incubated (each slide on a 45 μL droplet) for 2 hours 
and 30 minutes in a humid chamber at room temperature or overnight (16 h) at 4 ° C. At the end of 
the incubation, the coverslips were subjected to 3 washes in high salts for a total of 30 minutes. The 
samples were then incubated with the secondary goat anti-rat/-rabbit antibodies conjugated to the 
fluorophores Alexa Flour 488 (green) and Alexa Flour 555 (red) (Life Technologies), diluted in 1:600 
in GSDB 1X, for one hour in a humid chamber at room temperature.  
Subsequently, two washes in high salts of 5 minutes were performed, then the nuclei were stained by 
incubating the cells with HOECSTH 33258 (Life Technologies), diluted 1:10,000 in high salts, for 
20 minutes in the dark under a chemical hood. Finally, three washes in low salts for a total of 15 
minutes and a final wash in 5 mM phosphate buffer aimed at removing any nonspecific signal 
determined by the link between the secondary antibody and various cellular proteins. At the end, the 
coverslips were mounted with the Dako Fluorescent Mounting Medium agent (Dako Glostrup, 
Germany) on object slides previously defatted with 70% ethanol and appropriately labelled. 
 
DRG-OPC protocol 
To prevent cross-link interaction of the primary antibodies used (rat and mouse) DRG-OPC were 
treated with a different protocol. The coverslips with the fixed cells were taken and transferred for 
staining to another appropriately labelled plate. After two quick washes in low salts followed by two 
rapid washes in high salts to promote hydration of the fixed cells and to remove any impurities or 
debris, the coverslips were transferred to a wet room. Each coverslip was pre-treated with 45 μL of 
Goat Serum Dilution Buffer for 15 minutes at room temperature in a humid chamber, in order to 
saturate the non-specific binding sites. 
The first primary antibody rat-anti-MBP was diluted 1:600 in GSDB 1X and incubated (each slide 
on a 45 μL droplet) for 2 hours and 30 minutes in a humid chamber at room temperature or O/N (16 
h) at 4 ° C. At the end of the incubation, the coverslips were subjected to 3 washes in high salts for a 
total of 30 minutes. The samples were then incubated with the secondary goat anti-rat antibodies 
conjugated to the fluorophores Alexa Flour 555 (red), diluted in 1:600 in GSDB 1X for one hour in 
a humid chamber at room temperature. 
Three washes were carried out in high salts followed by three washes in low salts for a total of 30 
minutes. Then, two rapid washes in high salts were performed followed by pre-treatment with 45 μL 
of GSDB for 15 minutes at room temperature in a humid chamber. 
The second primary antibody is a mixture of mouse-anti-smi31 and mouse-anti-smi32, diluted 1:500 
in GSDB 1X and incubated for 2 hours and 30 minutes in a humid chamber at room temperature or 
O/N (16 h) at 4 ° C. At the end of the incubation, the coverslips were subjected to 3 washes in high 
salts for a total of 30 minutes. The samples were then incubated with the secondary goat-anti-mouse 
antibodies conjugated to the fluorophores Alexa Flour 488 (green), diluted in 1:600 in GSDB 1X for 
one hour in a humid chamber at room temperature. 
Subsequently, two washes in high salts of 5 minutes were performed, then the nuclei were stained by 
incubating the cells with HOECSTH 33258 (Life Technologies), diluted 1: 10,000 in high salts, for 
20 minutes in the dark under a chemical hood. Finally, three washes in low salts for a total of 15 
minutes and a final wash in 5 mM phosphate buffer aimed at removing any nonspecific signal 
determined by the link between the secondary antibody and various cellular proteins. At the end, the 
coverslips were mounted with the Dako Fluorescent Mounting Medium agent (Dako Glostrup, 
Germany) on object slides previously defatted with 70% ethanol and appropriately labelled. 
 
Data analysis of OPC 
To obtain a quantitative interpretation of the biological phenomena observed in the OPCs fixed and 
subjected to immunocytochemistry, a semiautomatic cell count protocol was developed using the 
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ImageJ program, a graphic processing program developed by Wayne Rasband at the Research 
Services Branch of the National Institute of Mental Health in Bethesda, Maryland, USA. The 
procedure is divided in three phases: acquisition of the cell fields to be counted, processing of the 
acquired images and the actual count. 
Images were acquired using an AXIOVERT 200 M optical microscope (Zeiss, Milan), equipped with 
a UV lamp and an AXIOCAM HRM Zeiss camera. The initial processing was performed with the 
Axiovision 4.4 software on the computer connected to the microscope, respectively in the 
fluorescence channel of the fluorescein isothiocyanate (FITC), of the rhodamine (RHODAMINE) 
and of the 4 ', 6-diamidino-2-phenylindole (DAPI). Fields were acquired at a 20X magnification using 
the area framed by the microscope camera, along the horizontal diameter of the slide as a reference. 
For each slide all the diameter fields have been acquired. 
The level of myelination is evaluated by counting the numbers of cells that express MBP (myelin 
basic protein) related to the number of nuclei as marked by HOECST. To enforce count consistency 
a stack of images was generated from the sequence of the acquired images; then balance of individual 
channels as well as contrast and brightness of the image were applied on the stack as a whole. The 
data obtained from the count were then tabulated and analysed. 
Experimental data were fitted to a linear mixed effect model using the “lmer” function of the R library 
“lmerTest”, using restricted maximum likelihood as convergence criterion type III analysis of 
variance with Satterthwaite's correction.  
The formula used was: 
MBP/HOECST ~ treatment + (1|experiment) 
in which MBP/HOECST is the response variable while treatment the explanatory variable i.e. the 
“fixed effect”. Since the experiment was repeated 3 times the variable exp was also considered as 
“random effect” to account for pseudoreplication. Initially it was considered also coverslip as source 
of pseudoreplication but it was later removed from the model since its contribution proved to be 
nonsignificant. 
 
Data analysis of DRG-OPC 
DRG-OPC coverslips were analysed under a confocal microscope (LSM510 META, Zeiss). The 
quantification of myelin segments was performed by the following protocol: 6 random fields of 4-5 
coverslips for each experimental condition were acquired with the ZEISS LSM Image Browser. Stack 
images of MBP and smi31/smi32 positive cells were taken at 40X magnification; images in the stacks 
were merged at each level and pixels overlapping in the red and green fields above a predefined 
threshold intensity value were highlighted in white. The amount of myelin per axon (myelination 
index), was calculated as the ratio between the white pixels area and the green pixels area.  
As above, to account for pseudo-replication, a linear mixed effect model (lmer procedure of lmerTest 
R library) was used for statistical analysis:  
 

Myelination index ∼ treatment + (1∣coverslip) + (1∣experiment) 
 

where the treatment was considered as fixed effect and coverslip and experiment as random effects. 
 
Chapter 3 – Part II, In vitro tests 
 
All the in vitro tests were carried out in Bf3R laboratories by the co-author of the already published 
paper and here are reported to clarify the in vitro procedures. 
 
Test substances 
Propiconazole (CAS # 60207-90-1; Batch # CGA64250B; purity 96.10%) was acquired in technical 
quality from Syngenta AG (Basel, Switzerland) and benzo[b]fluoranthene (CAS # 205-99-2; purity 
98.00%) from Sigma-Aldrich (Taufkirchen, Germany). For receptor transactivation assays, 
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propiconazole in analytical quality from LGC Standards (Wesel, Germany) (CAS # 60207-90-1; 
Batch # G144536; purity 99.00%) was used. For dilution of the test substances, DMSO 
(dimethylsulfoxide) was used, resulting in a final DMSO concentration of 0.2% in the treatment 
medium. For mixture experiments concentrations of the test substances were halved (10 µM A+B 
corresponds to 5 µM A + 5 µM B). 
 
Cultivation of cells 
The human hepatocellular carcinoma cells HepaRG were acquired from Biopredic International 
(Saint Grégoire, France) and cultured as previously described (Gripon et al., 2002). For a period of 
two weeks the HepaRG cells were incubated in the proliferation medium which consists of Williams 
E medium (Pan-Biotech GmbH, Aidenbach, Germany), 10% fetal calf serum (FCS; Pan-Biotech 
GmbH), 100 U/ml penicillin, 100 µg/mL streptomycin, 0.05% human insulin (PAA Laboratories 
GmbH, Pasching, Austria) and 50 µM hydrocortisone-hemisuccinate (Sigma-Aldrich). For 
differentiation, the cells were incubated for further two weeks in differentiation medium, which 
includes the proliferation medium and 1.7% DMSO. Differentiated cells were treated with test 
substances in phenol red-free Williams E medium (Pan-Biotech GmbH) including the same 
supplements as the differentiation medium, but only 2% FCS. 
The PXR, AHR, and CAR knockout HepaRG cells were purchased from Sigma-Aldrich. The 
cultivation was done according to the manufacturers’ protocol. In brief, cells were thawed in recovery 
medium (Sigma-Aldrich) and cultivated in recovery medium for two days. Afterwards, cells were 
cultured for a period of two weeks in maintenance medium (Sigma-Aldrich) then for  one day in pre-
induction-medium (Sigma-Aldrich) before being treated in serum-free-induction medium (Sigma-
Aldrich). 
The incubation of HepG2 cells (ECACC, Porton Down, UK) was performed in DMEM medium (Pan-
Biotech GmbH) which included 10% FCS. Cells were passaged when they had reached a confluence 
of about 80%,. Treatment with the test substances was performed in phenol red-free DMEM medium 
(Pan-Biotech GmbH) supplemented with 10% FCS (Pan-Biotech GmbH) for 24 hours. Incubation of 
both cell lines was done at 37°C and 5% CO2 in a humidified atmosphere in a Binder cell culture 
incubator. 
 
Testing of cell viability 
For analysis of cell viability, we used the colorimetric MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) reduction assay according to standard protocols (Braeuning et al., 
2012). The detergent Triton X-100 (0.01%) was used as positive control. 
 
Animal experiment 
The animal experiment was conducted as previously described (Schmidt et al., 2016). In brief, 5-6 
week old male Wistar rats were treated with propiconazole via rodent standard diet for 28 days at a 
dose level of 2.4 ppm, 240 ppm or 2400 ppm yielding 181 mg/kg bw/d. Animals were deeply 
anaesthetized with Sevofluran (Abbot, Germany), finally sacrificed by 95% CO2 / 5% O2 and livers 
were isolated.  Directly after isolation, livers were partially frozen on dry ice for subsequent molecular 
analysis. Additionally, standard pathology and histopathology were performed according to standard 
principles of the Society for Toxicopathology (STP 2010) as previously reported (Schmidt et al 
2016). 
 
Reporter gene assays 
The dual luciferase reporter gene assays were performed using HepG2 cells in 96-well plates. For 
transient transfection of the cells, TransIT-LT1 (Mirus Bio LLC, Madison; WI, USA) was used. For 
each assay, the cells were transfected with two plasmids (see Table 1). A detailed description of the 
generation and the features of the luciferase reporter constructs used in this study is available 
elsewhere (Schreiber et al., 2006; Schulthess et al., 2015). In brief, a pT81Luc-based firefly luciferase 
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reporter driven by a 1.2 kbp fragment of the wildtype human CYP1A1 promoter including four 
functional AHR binding sites was used. In addition, a mutant version of the promoter lacking these 
AHR-responsive sites (-CDEF) came into operation. Third, a pT81Luc-based artificial promoter 
construct consisting of three AHR binding sites (3xDRE) was used. For all three assays, cells were 
co-transfected with a second plasmid, which constitutively expresses Renilla luciferase and served as 
internal control. After transfection, treatment and lysis of the cells (100 mM potassium phosphate 
with 0.2% (v/v) Triton X-100, pH 7.8), luminescence was measured using a plate reader (Infinite 
M200PRO, Tecan, Männedorf, Switzerland) according to the Dual Luciferase Assay protocol 
provided by the supplier (Promega, Madison, WI, USA). 
 

Luciferase assay Plasmid Time of incubation Positive control 

hCYP1A1-
promoter 

pT81Luc-hCYP1A1 48 h 10 µM BbF 
pcDNA3-RLuc 

hCYP1A1 
(-CDEF)-
promoter 

pT81Luc-hCYP1A1-CDEF 48 h 10 µM BbF 
pcDNA3-RLuc 

3xDRE pT81Luc-3xDRE 24 h 10 µM BbF 
pcDNA3-RLuc 

Table 32: Plasmids used for dual luciferase reporter gene assays in HepG2 cells. 
 
Gene expression analysis 
HepaRG cells and HepaRG knockout cells were treated for 24 hours in 6 well plates with the test 
substances. RNA from cells as well as from rat liver tissues frozen in nitrogen was isolated using 
peqGOLD TriFast (peqlab, Erlangen, Germany) or TRIzol reagent (Invitrogen, Carlsbad, CA, USA) 
according to the manufacturers’ protocol. Quality and quantity of the isolated RNA were controlled 
with a Nanodrop spectrophotometer (NanoDrop 2000, Thermo Fisher Scientific, Waltham, MA, 
USA). If necessary, RNA was further purified using a RNA purification kit (Qiagen, Hilden, 
Germany). The human microarray Agilent Expression Profiling Service (incl. 8x60K Array) was 
performed by ATLAS Biolabs GmbH. The results were further analyzed using the bioinformatic 
analysis and search tool IPA (Ingenuity Pathway Analysis) from QIAGEN. Therefore, the IPA “Tox 
Analysis” tool was used. All analyses were performed with the standard settings, where no filtering 
was applied and direct as well as indirect relationships were considered (date of the search: 
2017/11/10). Real-time RT-PCR was performed as described previously (Heise et al., 2015). In brief, 
reverse transcription of 1 µg of RNA (HepaRG cells) or 2 µg RNA (rat livers) was conducted using 
the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Darmstadt, Germany). 
Quantitative real-time PCR was performed of 40 ng cDNA on an ABI 7900HT instrument (Applied 
Biosystems) using Maxima SYBR Green/ROX qPCR Mastermix (Thermo Fisher Scientific) and 
primers (0.25 µM, synthesized at Eurofins Genomics, see Table 2).  
  
 

gene name forward primer reverse primer 
hGAPDH CCACTCCTCCACCTTTGAC ACCCTGTTGCTGTAGCCA 
hACTB ACCGAGCGCGGCTACAG CTTAATGTCACGCACGATTTCC 
hCYP1A1 TGTCAGTGGCCAACGTCATT AGGGTTAGGCAGGTAGCGAA 
hCYP1A2 TGCAAGACAAGCTGGTGTCTA 

 
TCTCATGCGCTCACAGAACT 
 

rGapdh CCGTGGGGCAGCCCAGAAC GCCCCAGCATCAAAGGTGGAGGA 
rActb AGGGAAATCGTGCGTGAC CGCTCATTGCCGATAGTG 
rCyp1a1 TTCACCATCCCCCACAGCACCATA CAGGCCGGAACTCGTTTGGATCAC 
rCyp1a2 CGGTGATTGGCAGAGATCGG GTCCCTCGTTGTGCTGTGG 

Table 33: Sequences of primers used for RT-PCR analysis. 
 
Cyp protein quantification 
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HepaRG cells were treated with the test substance Pi for 24 hours in 6-well plates. After two washing 
steps with ice-cold PBS-buffer, the cells were incubated for 1 hour at 4 °C with lysis buffer under 
shaking (Zahn et al., 2017). Afterwards, each sample was prepared and measured as described 
previously (Marx-Stoelting et al., 2017; Wegler et al., 2017). In brief, a proteolysis was performed 
and multi-specific antibodies recognizing short C-terminal sequences of proteotypic peptide 
fragments were mixed with isotopically labeled peptides. With the help of an automated 
immunoprecipitation procedure endogenous peptides and standards for the proteins were enriched 
(Weiß et al., 2015). Peptide-antibody-complexes were precipitated with magnetic protein G 
microspheres using a magnetic particle processor. Elution was achieved with 1% formic acid and 
peptides were subsequently desalted by a PepMap100 µ-precolumn (0.3 mm I.D. x 5 mm, Thermo 
Fisher Scientific, Waltham, MA, USA) and separated by an Acclaim Rapid Separation LC (RSLC) 
Column (75 µm I.D. x 150 mm; Thermo Fisher Scientific, Waltham, MA, USA) on a UltiMate 3000 
RSLCnano LC system (Thermo Fisher Scientific, Waltham, MA, USA). After that, peptides were 
quantified with a Q Exactive™ Plus (Thermo Fisher Scientific, Waltham, MA, USA) using targeted 
Single-Ion-Monitoring (tSIM). Ion chromatograms were processed with Skyline 3.7.0.11317 
(MacCoss Lab. Department of Genome Sciences, UW, USA). Concentrations were calculated by the 
peak area ratios of isotopically labeled and endogenous peptides on parent ion level. The analyte-
dependent lower limits of quantification (LLOQ) were determined with a dilution series of standard 
peptides (0.1-0.4 fmol/µg). 
 
Cyp activity assay 
HepaRG cells were treated for 24 hours in 96-well plates with the test substances. 10 µM of the 
substrate 7-ethoxyresorufin was added to each well and incubated for 30 minutes at 37°C. Liver 
microsomes were isolated in a 250 mM sucrose buffer (Merck, Darmstadt, Germany) by differential 
centrifugation at a final speed of 100,000g for 1 h. Afterwards, the O-dealkylation of the substrates 
7-ethoxyresorufin (EROD) and 7-methoxyresorufin (MROD) were measured to detect the enzyme 
activity of CYP1A1 and CYP1A2 using resorufin as a standard (reagents obtained from Sigma-
Aldrich, Basel, Switzerland). The assay was performed at 37 °C in a KH2PO4/K2HPO4 buffer at pH 7.4. 
Fluorescence measurements (535 nm/590 nm) were conducted on a Tecan Plate Reader (Tecan, 
Infinite M200Pro). 
 
Statistical analysis 
The statistical analysis was performed using SigmaPlot for Windows software (Version 13.0, Systat 
Software Inc. 2008). The Shapiro-Wilks and Brown-Forsythe tests were used to analyze the data for 
normal distribution and for homogeneity of variances. These results demonstrated that non-
parametric testing is the adequate testing method for the present data sets. Therefore the Mann-
Whitney rank sum test was executed to compare the solvent control to respective treatment groups. 
Error bars depict the standard deviation and asterisks (*) define statistical significance if p ≤ 0.05. 
For the combination experiments, a statistical dose-response modeling was performed.  
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