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Early Postnatal Ethanol Exposure in Mice Induces Sex-Dependent

Memory Impairment and Reduction of Hippocampal NMDA-R2B
Expression in Adulthood

Alessandro Ieraci *y and Daniel G. Herrera �

Department of Psychiatry, Weill Medical College of Cornell University, New York, NY 10065, USA

Abstract—Drinking alcohol during pregnancy is particularly detrimental for the developing brain and may cause a
broad spectrum of cognitive and behavioral impairments, collectively known as fetal alcohol spectrum disorders
(FASDs). While behavioral abnormalities and brain damage have been widely investigated in animal models of
FASD, the sex differences in the vulnerability to perinatal ethanol exposure have received less consideration.
Here we investigated the long-term behavioral and molecular effects of acute ethanol-binge like exposure during
the early postnatal period (equivalent to the third trimester of human pregnancy) in adult male and female mice.
CD1 mice received a single ethanol exposure on P7 and were analyzed starting from P60. We found that ethanol-
exposed mice showed increased activity in the open field test and in the plus-maze test, regardless of the sex.
Interestingly, only ethanol-exposed adult male mice exhibited memory impairment in the water maze and fear-
conditioning tests. Remarkably, hippocampal levels of NMDA-R2B were reduced only in ethanol-exposed male,
while total BDNF levels were increased in both male and female ethanol-exposed mice. Our data suggest a dif-
ferent susceptibility of early postnatal ethanol exposure in male and female CD1 mice. � 2019 IBRO. Published by

Elsevier Ltd. All rights reserved.
Key words: fetal alcohol syndrome, ethanol, brain-derived neurotrophic factor, hippocampus, NMDA, Mice, rodents, memory

impairments, hyperactivity, sex difference.
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INTRODUCTION

Consuming alcohol during gestation is particularly

damaging for the developing brain and may cause

fetal alcohol spectrum disorder (FASD) or fetal alcohol

syndrome (FAS) depending on the gravity. FASD is

an umbrella term describing the multiple effects that

can occurs in individuals who are exposed to alcohol

during the prenatal period. These effects may include

physical, mental, behavioral, and/or learning

impairments with potential lifespan consequences. FAS

refers to the most severe form of the FASD spectrum,

which is diagnosed by the contemporary presence of

three features: facial malformations, growth restriction

and brain abnormalities (Sokol et al., 2003). FASD is

the leading preventable cause of mental retardation in
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western countries, affecting around 2–5% of the popula-

tion (Glass et al., 2014). However, despite the effort to

inform on the deleterious effects of drinking alcohol dur-

ing pregnancy, it was estimated that globally around

10% of women consume alcohol regularly during preg-

nancy (May et al., 2009; Fontaine et al., 2016;

Popova et al., 2017). The prevalence of binge drinking

(four or more drinks on a single occasion) during preg-

nancy, which is particularly detrimental to the develop-

ing brain, has been estimated to range from 2 to 3%

(Bonthius and West, 1990; Popova et al., 2017). Similar

to human, animal models of FASD show several behav-

ioral alterations following perinatal ethanol exposure,

including hyperactivity, learning and memory deficits,

anxiety (Chokroborty-Hoque et al., 2014; Fontaine

et al., 2016; Marquardt and Brigman, 2016; Rojas-

Mayorquı́n et al., 2016), and therefore are an useful tool

to investigate the biological mechanisms underlying

these behavioral impairments. Whereas the behavioral

and neurocognitive effects of alcohol exposure during

brain development have been considerably investigated

(Mattson et al., 2011), the sex differences in vulnerabil-

ity to perinatal alcohol exposure have received less

attention.
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The developing hippocampus is particularly sensitive

to the deleterious effects of ethanol during the third

trimester and binge-drinking drastically modifies the

hippocampal volume, structure and function in both

mice and humans (Willoughby et al., 2008; Parnell

et al., 2009). Several studies in animal models have

shown that postnatal ethanol exposure, which corre-

sponds to the third trimester of human pregnancy

(Bayer et al., 1993), enhances apoptosis and neuronal

cells loss (Ikonomidou et al., 2000; Ieraci and Herrera,

2006, 2018; Olney, 2014; Joshi et al., 2019); reduces

adult hippocampal neurogenesis, decreases dendritic

spines density and impairs synaptic plasticity (Ieraci

and Herrera, 2007; Gil-Mohapel et al., 2010; De

Giorgio and Granato, 2015; Fontaine et al., 2016).

Moreover, perinatal ethanol exposure alters the levels

of many molecules that play an important role in synap-

tic activity, mood, learning, and memory such as neu-

rotrophins, glutamate receptors, and astroglial proteins

(Guerri et al., 2001; Parks et al., 2008; Samudio-Ruiz

et al., 2010; Goodfellow et al., 2016; Boschen and

Klintsova, 2017). Notably, the majority of these results

were observed in male rodents, and only a few studies

have examined sex differences in either FASD humans

or rodent models.

An emerging body of research suggests that alcohol

exposure during pregnancy differentially affects male

and female children. For example, it has been described

as a higher incidence of FASD in young boys than in

girls, although these sex differences were not manifest

later in life (Thanh et al., 2014). FASD males were signif-

icantly more likely to be diagnosed with attention-deficit/

hyperactivity disorder than FASD females (Herman

et al., 2008). In contrast, the association between low

levels of alcohol intake during pregnancy and mental dis-

orders was more evident in girls than boys (Sayal et al.,

2007). Although relatively few studies have explored sex

differences in FASD animal models, some significant

sex modifications have been reported. Prenatal ethanol

administration reduced the survival of new hippocampal

cells in male but not in female rats (Sliwowska et al.,

2010; Uban et al., 2010). Hypothalamic–pituitary–adrenal

(HPA) axis hyperactivity was described mainly in prenatal

ethanol-exposed females but not in males, although the

results were depended on the type and the time of the

stressors (Weinberg et al., 2008; Fontaine et al., 2016).

Ethanol exposure during brain development impaired

memory duration but not memory encoding in male rats

while having opposite effects in female rats (Kelly et al.,

2009). Long-term potentiation was reduced only in

ethanol-exposed male rats but not in females (Sickmann

et al., 2014). However, other studies were not able to

replicate such sex differences (Subbanna et al., 2018;

Joshi et al., 2019). Moreover, the molecular mechanisms

underlying these sex differences are not yet well

understood.

Here we investigated whether early postnatal acute

ethanol exposure, which mimics a binge-like alcohol

consumption during the third trimester of pregnancy,

differentially promotes behavioral and molecular

changes in adult male and female mice.
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EXPERIMENTAL PROCEDURES

Animals

Pregnant CD1 female mice were purchased from Charles

River Laboratories. Postnatal seven-day-old (P7) CD1

mice were injected subcutaneously with 20% ethanol in

saline solution delivering 5 g/kg body weight. This

protocol of ethanol administration allow to reach a blood

alcohol concentration above the toxic threshold of 200–

400 mg/dL for several hours (Ieraci and Herrera, 2006,

2018). An equal volume of saline was injected as controls.

Mice were weaned at P21 and then separated by sex and

maintained in a temperature- and humidity-controlled

room with a 12 h light/dark cycle. A total of 107 mice were

used for all the studies (64 mice for the behavioral tests;

43 for the body weight measurements and 24 of these

for the molecular analysis). All animal procedures were

approved by the Institutional Animal Care and Use Com-

mittees of Weill Cornell Medical College and were per-

formed according to the National Institutes of Health

Guide for the Care and Use of Laboratory Animals.

Behavioral analysis

Behavioral tests were conducted on 9–10 weeks-old mice

and the total time necessary to run all the tests was

around 6 weeks. Male and female mice were tested on

separate days. Behavioral tests were conducted in a

blind manner. To minimize possible interference across

the different tests, mice were tested from the least

stressful to the most stressful test with an interval of

one week from one test to the other (Fig. 1A). Mice

were tested in the following order: elevated plus-maze,

open field, water maze and fear conditioning test

(Fig. 1A).

Elevated plus maze. The maze consisted of two open

arms (30 � 5 cm), two closed arms (30 � 5 cm with 15 cm

high black wall), which were elevated to 60 cm above

from the floor. The test is based on the conflict between

the aversion to open spaces and the natural exploratory

behavior of rodents. Time and number of entries in the

open arms correlate with the anxiety-like phenotype,

while total entries into all the arms is related with

hyperactivity. A single animal was positioned in the

center facing an open arm and then allowed to explore

the apparatus for 5 min. All the tests were videotaped

and total entries into all arms, total entries into the open

arms, and total time spent in the open arms were scored.

Open field. For analysis of spontaneous motor

activity, single animals were placed in the center of a

50 � 50 cm square apparatus for 5 min. The floor was

separated into nine equal squares. Each session was

videotaped. Time taken to leave the center, time spent

in the center, number of entries in the center, horizontal

lines crossed, and rearing activities were measured.

Water maze. Mice were tested in a pool of 100 cm of

diameter. Milk powder was added to the water and the

temperature was maintained at 20–22 �C. A 10 cm

diameter Plexiglass platform was hidden 1 cm below the
Dependent Memory Impairment and Reduction of Hippocampal NMDA-R2B Expression in Adulthood.
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Fig. 1. Post-natal ethanol exposure reduces total body weight

increase in female mice. (A) Experimental time-table. (B) Mice were

weighted at P7, before ethanol exposure (5 mg/kg), and at P60,

before the sacrifices. Data are presented as mean ± SEM; (n= 9–

12 mice per group). Two-way ANOVA followed by Newman–Keuls

multiple comparisons analysis. ***P< 0.001; ****P< 0.0001. EPM:

Elevated Plus Maze; OFT: Open Field Test; MWM: Morris Water

Maze; FCT: Fear Conditioning Test; W: weeks; SAC: sacrifice; M:

Male; F: Female; Sal: Saline; EtOH; Ethanol.
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water surface. Visual cues were positioned on the wall of

the room. Each mouse was subjected to four trials per day

with an inter-trial interval of about 60 min for seven

consecutive days. In each trial, a single mouse was

placed into the water, in a different quadrant, facing the

wall of the pool. Mice were allowed to search for the

platform for a maximum time of 60 s. If mice failed to

find the platform, they were gently conducted there.

Mice were allowed to stay on the platform for 15 s

before being returned to their cage. On day 8 a probe

trial, in which the platform was removed from the pool,

was performed. Mice were placed in the opposite

quadrant to the previous location of the platform and

were allowed to swim for 60 s. The total time spent

searching for the platform in every single quadrant was

manually scored and expressed as a percentage of the

total time (60 s). The visible platform task was

performed 24 h after the completion of the probe trial.

All the visual cues were removed, and the platform

positioned randomly in one of the quadrants. Two

different trials were performed for each mouse.
242

243

244
Fear conditioning. Mice were individually positioned

into the conditioning chamber (Coulbourn Instrument,
Please cite this article in press as: Ieraci A, Herrera DG. Early Postnatal Ethanol Exposure in Mice Induces Sex-De
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Allentown, PA). After 120 s of habituation, mice received

three tone-shock pairs (tone: 70 db, 2.9 kHz 20 s; foot

shock: 0.7 mA, 1 s) with an intertrial interval of 60 s.

Sixty seconds after the last shock, animals were

returned to their home cage. Twenty-four hours later,

mice were positioned in the same chambers (contextual

conditioning) and the total freezing time (cessation of all

movement other than respiration) was measured for

5 min. Twenty-four hours after the contextual

conditioning test, mice were placed in a different

chamber. After 120 s of habituation, three tone (70 db,

2.9 kHz 20 s) were delivered at 1-min intervals (cued

conditioning). The basal level of freezing in the mice

was scored for 120 s in the new chamber before the

presentation of the tone (pre-tone), to exclude the

possibility that differences in freezing were due to

altered activity.
Western blot

Isolated hippocampi were homogenized in ice-cold RIPA

buffer (0.15 mM NaCl, 0.05 mM Tris HCl, pH 7.2, 1%

Triton X-100, 1% sodium deoxycholate, and 0.1% SDS)

with Protease Inhibitor Cocktail (Sigma, St. Louis, MO,

USA), briefly sonicated and centrifuged at 14,000g for

20 min. DC Protein Assay Kit (Bio-Rad, Hercules, CA,

USA) was used to measure protein concentration.

Proteins were loaded in SDS-PAGE gel and blotted to a

PVDF membrane (Immobilon P, Millipore, Bedford, MA,

USA). After 1 h of saturation with 5% nonfat milk in

TBS-T membranes were incubated overnight at 4 �C
with the following primary antibodies: NMDA-R2A

(1:1000; Millipore), NMDA-R2B (1:1000; Millipore),

GFAP (1:1000; Sigma), alpha-tubulin antibody

(1:40,000; Sigma). Membranes were washed several

times with TBS-T to remove the excess of primary

antibodies and then incubated with secondary

antibodies. Peroxidase immunoreactivity bands were

revealed by chemiluminescence method (Pierce,

Rockford, IL, USA), acquired with a scanner and

analyzed by the NIH Image software (Scion, Frederick,

MD, USA).
BDNF ELISA

Hippocampal BDNF protein levels were measured using

an anti-BDNF sandwich enzyme-linked immunosorbent

assay (ELISA) method (BDNF Emax Immunoassay

System, Promega, Madison, WI) with recombinant

BDNF as a standard (ranging from 7.8 to 500 pg/mL),

following the manufacturer’s instructions. BDNF levels

were adjusted based on the protein concentration

(Tornese et al., 2019).
Data analysis

Statistical analyses were performed with GraphPad Prism

6 (GraphPad Software, La Jolla, CA, USA). Data are

presented as the mean ± standard error of the mean

(SEM). Normal distributions and equal variances were

verified respectively by the Kolmogorov–Smirnov’s test

and Bartlett’s test. A two-way analysis of variance
pendent Memory Impairment and Reduction of Hippocampal NMDA-R2B Expression in Adulthood. Neu-
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(ANOVA) followed a Newman–Keuls post hoc correction

was used for multiple comparisons statistical analysis.

RESULTS

Post-natal ethanol exposure decreased total body
weight in adult female mice

Mice were weighted on P7 and P60 (before the sacrifice).

A repeated two-way ANOVA revealed a significant effect

for the time (F(1,39) = 8717; P< 0.0001), groups

(F(3,39) = 43.13; P< 0.0001) and an interaction of the

two (F(3,39) = 48.32; P< 0.0001). All the groups

showed a significant increase in weight between P7 and

P60 (P< 0.0001), with females being smaller than

males at P60 (P< 0.0001). Interestingly, a post-hoc

analysis revealed a significant reduction in total body

weight at P60 only in ethanol-exposed females

compared to control females (P< 0.001), but not in

males (p> 0.05) (Fig. 1B).

Post-natal ethanol exposure induced hyperactivity
and reduced anxiety-like phenotype in adult mice

Activity in the elevated plus-maze was significantly

different in ethanol-exposed group and female group

compared to control and male groups respectively.

Ethanol-treated mice showed an increase in the total

number of entries (treatment effect: F(1,60) = 9.620;

P= 0.0029); in the percentage of entries in the open

arms (treatment effect: F(1,60) = 7.848; P< 0.007) and

in the percentage of time spent in the open arms

(treatment effect: F(1,60) = 7.327; P= 0.009). Female

mice showed a higher number of percentage of entries

in the open arms (gender effect: F(1,60) = 4.928;

P= 0.0302) and in the percentage of time spend in the

open arm (gender effect: F(1,60) = 6.169; P= 0.016)

(Fig. 2).

Ethanol-treated mice showed an increase in the

number of lines crossed (horizontal activity). A two-way

ANOVA showed a main effect on treatment

(F(1,60) = 11.6; P= 0.0012) but not in the gender or in

the interaction of the two. We also found that females

have a tendency to spend less time in the center

(gender effect F(1,60) = 3.74; P= 0.058). No significant

differences were found in the number of rearing and in

the number of entries in the center (Fig. 3). Altogether

these results suggest that postnatal ethanol exposure

increased hyperactivity and decreased anxiety-like

behavior in both male and female mice.

Post-natal ethanol exposure induced memory
impairment only in adult male mice

To determine whether early postnatal subcutaneous

alcohol administration could impair spatial learning and

memory, adult mice were tested in the Morris water

maze using the hidden platform version of this task.

Repeated measurements with ANOVA for the latency to

find the hidden platform across the training days

indicated a significant effect for the groups

(F(3,60) = 6.824; P= 0.0005) and days (F(1,6) = 83.44;

P< 0.0001), without a significant interaction effect of
Please cite this article in press as: Ieraci A, Herrera DG. Early Postnatal Ethanol Exposure in Mice Induces Sex-
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the two (Fig. 4A). All groups learned where the platform

was located, but the ethanol-treated mice took a longer

time to find the hidden platform than control mice. In
Dependent Memory Impairment and Reduction of Hippocampal NMDA-R2B Expression in Adulthood.
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particular female mice took a significantly longer time on

days 2, 3 and 4 (Fig. 4A), while ethanol-exposed male

mice took a longer time to reach the platform on day 4

(Fig. 4A). Animals were then tested in the probe trial,

the proper criterion to attest the memory acquisition of

the water maze test. A two way-ANOVA analysis

revealed a main quadrant effect (F(3,240) = 144;

p< 0.0001) and an interaction between groups and

quadrants (F(9,240) = 1.972; p= 0.043) (Fig. 4B). The

following Newman–Keuls multiple comparison analysis

showed a significant difference only for ethanol-exposed

male compared to control, but not for female, for the

time spent in the target quadrant (p< 0.05). These

differences were not due to a possible impairment in

motor or visual functioning as there were no significant

differences in the latency time to reach a visible platform

among the different groups (Fig. 4C).

Given our results from the water maze test, we

questioned whether we could detect a similar

impairment in another hippocampal-dependent memory

task, such as the fear-conditioning test. In this test, mice

learn to associate a context (experimental chamber) or

a cue (tone) with a foot shock. Context fear conditioning

is hippocampus-dependent, while cued fear conditioning

is hippocampus-independent. Twenty-four hours after
Please cite this article in press as: Ieraci A, Herrera DG. Early Postnatal Ethanol Exposure in Mice Induces Sex-Dependent Memory Impairment and Reduct
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training, ethanol-treated mice

froze less than control mice in

response to spatial context

(treatment effect F(1,60) = 14.74;

P= 0.0003). Moreover, there was

also a significant interaction effect

for treatment and gender

(F(1,60) = 4.155; P= 0.0459)

(Fig. 5A). Interestingly, the further

post-hoc analysis revealed a

significant difference only in

ethanol-exposed male mice

compared to control (p< 0.001),

but not in female (p> 0.05). In

contrast, there were no

differences in hippocampal-

independent memory. All mice

spent similar freezing time in a

novel context both before and

during the presentation of the

cued (tone), 48 hours after the

training (Tone: F(3,120) = 77.29;

P< 0.0001; Groups:

F(1,120) = 0.27; P= 0.6;

Interaction F(1,60) = 0.64;

P= 0.59) (Fig. 5B).
Adult hippocampal BDNF levels
are augmented in postnatally
ethanol-exposed mice

To investigate the possible

molecular mechanism(s)

underlying the memory

impairment specifically revealed in

male exposed to ethanol

postnatally, we assessed the

levels of various proteins
implicated in neuronal plasticity, learning and memory.

We measured hippocampal BDNF protein levels by

using a BDNF ELISA kit. A two-way ANOVA analysis

revealed a significant effect of treatment

(F(1,20) = 11.04; p= 0.0034) and only a trend of gender

(F(1,20) = 4.29; p= 0.0515), but not an interaction of the

two (F(1,20) = 0.33; p= 0.856). The levels of BDNF

were overall higher in ethanol-exposed mice compared

to control mice, both in male (p< 0.05) and in female

(p< 0.05) (Fig. 6A).
Adult hippocampal NMDA-R2B levels are decreased
only in postnatally ethanol-exposed male mice

Next, we assessed the hippocampal protein levels of

NMDA-R2A and NMDA-R2B by western blot analysis.

We found a significant reduction of NMDA-R2B levels

specifically in the HPC of ethanol-exposed male mice

compared to male control (p< 0.05), but not in female

(p> 0.05) (treatment: F(1,20) = 2.719; p= 0.115;

gender F(1,20) = 0.126; p= 0.726; interaction

F(1,20) = 4.153; p= 0.0463) (Fig. 6C). There were no

significant differences in the NMDA-R2A protein levels

(treatment: F(1,20) = 0.052; p= 0.82; gender
ion of Hippocampal NMDA-R2B Expression in Adulthood. Neu-
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F(1,20) = 0.023; p= 0.88; interaction F(1,20) = 2.54;

p= 0.124) (Fig. 6B).
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Adult hippocampal GFAP levels
are unchanged in postnatally
ethanol-exposed mice

Finally, we measured hippocampal

GFAP protein levels by western

blot. Two-way ANOVA did not

reveal any differences in the

hippocampal levels of GFAP

among all the groups (treatment:

F(1,20) = 0.0009; p= 0.976;

gender F(1,20) = 0.045; p= 0.833;

interaction F(1,20) = 0.27;

p= 0.609) (Fig. 6D).
DISCUSSION

The goal of this work was to

investigate potential sex

differences in behavioral

alterations and hippocampal

molecular changes in mice

following a single binge-like

ethanol exposure during the third

trimester-equivalent (P7). We

found that only ethanol-exposed

adult male mice showed

significant hippocampal memory

impairments measured in the

water maze and fear-conditioning

tests. Interestingly, these deficits

were paralleled by a reduction of

hippocampal NMDA-R2B levels in

ethanol-exposed males but not in

females. On the contrary,

hyperactivity and hippocampal

BDNF levels were increased in

adult mice exposed postnatally to

ethanol, regardless of the sex.

A coherent finding both in

individuals with FASD and

preclinical animal models of FAS

is a deficit in spatial learning and

memory (Valenzuela et al., 2012;

Patten et al., 2014; Marquardt and

Brigman, 2016). However, few

studies have investigated sex dif-

ference in memory performance in

adult animals exposed to ethanol

perinatally (Goodlett and

Peterson, 1995; Johnson and

Goodlett, 2002; Wagner et al.,

2014; Goodfellow et al., 2016;

Subbanna et al., 2018; Xu et al.,

2018; Joshi et al., 2019). Here we

report that a single exposure to

ethanol in the early postnatal per-

iod induced a long-lasting

hippocampal-dependent spatial
446
memory deficit in adult male mice but not in female mice.

Consistent with this study it has been previously reported
uction of Hippocampal NMDA-R2B Expression in Adulthood.
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that even 3-days of ethanol exposure (P7-9) induced spa-

tial learning deficits in both juvenile and adult male but not

in female rats (Goodlett and Peterson, 1995; Johnson and

Goodlett, 2002) while longer postnatal Ethanol exposure

(over 5–6 days) promoted memory impairments both in

male and female rats (Goodfellow et al., 2016; Xu et al.,

2018). In contrast to our results, Wagner et al. found that

one or three days of postnatal alcohol exposure resulted

in significant spatial learning impairments in the water

maze in both male and female adult mice (Wagner

et al., 2014). These contrasting results may be due to

some experimental differences in ethanol administration,

the strain of mice and behavioral analysis between our

studies and the previous one. For example, in the Wagner

et al. study, mice were given a shorter period on the plat-

form after finding the submerged platform (10 s compared

to 15 s in this study) and a shorter inter-trial interval (3 min

compared to 60 min in this study). Moreover, the pool

used in Wagner et al was larger (125 cm vs 100 cm),

yielding a more searchable surface area, which may

increase the sensitivity of the task (Wagner et al.,

2014). Altogether, these results suggest that after epi-

sodes of binge-like ethanol exposure during the third tri-

mester, males are more susceptible to long-lasting

memory impairments in less challenging tasks than

females. However, future studies will be necessary to

clarify whether multiple ethanol injections or the oral

administration of ethanol to the mother during pregnancy

and the postnatal period, a more physiological model of

FASD, are able to produce similar effects in both sexes,

or if males are similarly more sensitive than females in

conditions of greater ethanol exposure.

NMDA are ionotropic glutamatergic receptors

important during brain development, synaptic plasticity

and learning and memory processes. It is well known
Please cite this article in press as: Ieraci A, Herrera DG. Early Postnatal Ethanol Exposure in Mice Induces Sex-De
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that ethanol is an NMDA antagonist and previous

studies have reported that ethanol exposure during

pregnancy altered the NMDA subunits expression in the

adult brain. In particular NR2B, a dynamic NMDA

subunit which is expressed early during brain

development and plays an important role in adult brain

function is very sensitive to alcohol exposure. Indeed, it

has been previously reported that prenatal ethanol

exposure reduced the NR2B expression in both juvenile

and adult hippocampus (Zhang et al., 2005; Toso et al.,

2006; Incerti et al., 2010). Our result, showing that post-

natal ethanol administration down-regulated the NR2B

expression in the adult male hippocampus, confirms and

extends these previous findings, suggesting that even a

single binge-like ethanol episode in the postnatal mice

brain development, equivalent to the third trimester in

human, is sufficient to significantly reduce the NR2B

expression, at least, in the adult male hippocampus.

Moreover, this decrease of NR2B may partially explain

the memory impairments observed only in ethanol-

exposed male mice. Indeed, it has been shown that trans-

genic mice overexpressing NR2B by different strategies

show improved learning and memory and enhanced long

term potentiation, suggesting an important role for NR2B-

containing NMDARs in the adult brain (Tang et al., 1999;

von Engelhardt et al., 2008).

BDNF is a neurotrophin which plays a key role in brain

development, neuroplasticity, synaptic function, behavior,

learning and memory (Ieraci et al., 2016; Mitre et al.,

2016; Boschen and Klintsova, 2017; Mallei et al., 2018;

von Bohlen und Halbach and von Bohlen und Halbach,

2018). Although several studies have extensively investi-

gated the consequences of ethanol exposure on BDNF

levels in the adult brain and the possible contribution of

BDNF to FASD pathophysiology has been hypothesized,
pendent Memory Impairment and Reduction of Hippocampal NMDA-R2B Expression in Adulthood. Neu-

https://doi.org/10.1016/j.neuroscience.2019.11.045


517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

Fig. 6. Effect of postnatal ethanol exposure on hippocampal levels of BDNF, NR2A, NR2B and GFAP.

Total hippocampal BDNF protein levels measured by ELISA (A). Representative western blot pictures of

NR2A (B); NR2B (C) and GFAP (D) proteins from adult hippocampus and relative densitometric

quantification (B–D). (E) Representative western blot images for R2A, R2B and GFAP proteins. Data are

presented as mean ± SEM; (n= 6 per group). Two-way ANOVA followed by Newman–Keuls multiple

comparisons analysis. ***P< 0.001; ****P< 0.0001. Sal: Saline; EtOH; Ethanol.

8 A. Ieraci, D. G. Herrera /Neuroscience xxx (2020) xxx–xxx

NSC 19404 No. of Pages 11

3 January 2020
the long-term effects of perinatal ethanol exposure on

BDNF levels in the adult brain have been relatively less

explored (Davis, 2008; Boschen and Klintsova, 2017).

To the best of our knowledge, the present study is the first

to investigate the effects of post-natal binge-like ethanol

exposure on hippocampal BDNF protein levels in adult

CD1 mice. Previously, most of the studies addressing
Please cite this article in press as: Ieraci A, Herrera DG. Early Postnatal Ethanol Exposure in Mice Induces Sex-Dependent Memory Impairment and Reduct
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the variation of BDNF expres-

sion following EtOH exposure

were conducted in rats (Light

et al., 2001; Balaszczuk et al.,

2013; Boschen et al., 2017) with

BDNF levels being analyzed

shortly after EtOH exposure,

between 2 and 24 h (Light

et al., 2001; Balaszczuk et al.,

2013). Interestingly, it has been

reported that six consecutive

days of EtOH treatment (postna-

tal days 4–9) did not cause long-

lasting alterations in hippocam-

pal BDNF mRNA levels in the

Long-Evans rat (Boschen et al.,

2017). This suggests that the

long-lasting BDNF alteration

induced by postnatal EtOH

administration may be different

in mice and rats, or alternatively

that postnatal EtOH exposure

affects the BDNF protein levels,

but not the mRNA levels. In con-

trast with previous results show-

ing no effect of ethanol exposure

during pregnancy on BDNF

levels in adult hippocampus of

C57BL/6J mice (Caldwell et al.,

2008; Boehme et al., 2011), we

found that a single ethanol expo-

sure in the early postnatal period

promotes an increase of BDNF

protein levels in the hippocam-

pus of both male and female

mice.

These results may suggest

that BDNF is more sensitive to

ethanol exposure during

postnatal period consistent with

the evidence that BDNF

expression is low in prenatal

brain developing and start to

increase in postnatal brain

(Maisonpierre et al., 1990). In

addition, we found higher levels

of hippocampal BDNF in female

compared to male CD1 mice. In

some way, this might suggest

that higher levels of BDNF are

protective in females. However,

it has been reported that chronic

stress in young-adult mice pro-

motes memory impairment only

in male but not in female
heterozygous BDNF+/� mice (Klug et al., 2012). More-

over, in the BDNF Val66Met, in which the activity-

dependent release of BDNF is reduced, prenatal alcohol

exposure promotes greater behavioral changes in male

compared to female (Bird et al., 2019). Altogether these

results suggest that female mice are protect from different
ion of Hippocampal NMDA-R2B Expression in Adulthood.
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adverse stimuli even when BDNF activity/levels are

reduced indicating that other protecting mechanisms are

probably involved (e.g. hormones).

Here we found that ethanol-exposed animals were

hyperactive in two different tests, OFT and EPM,

regardless of the sex, suggesting that post-natal ethanol

exposure promotes a generalized increase of locomotor

activity. In addition, in the EPM test, we found both an

augment of time spent and the percentage of entries in

the open arms in ethanol-exposed mice compared to

control mice. Although increased exploration in the open

arms is usually associated with decreased anxiety-like

behavior in rodents, this interpretation is complicated by

the fact that mice in the present study also

demonstrated locomotor hyperactivity, which may be

attributable to an increase in novelty-seeking behavior

and/or impulsivity, defined respectively as enhanced

exploration of new environments and a tendency to act

suddenly without foresight for the possible

consequences. These observations are in line with

previous data showing that hyperactivity, novelty-

seeking behavior and impulsivity are some of the

features observed in both animal models and FASD

patients (Herman et al., 2008; Juárez et al., 2013; Kim

et al., 2013; Atalar et al., 2016; Furtado and Roriz,

2016; Rojas-Mayorquı́n et al., 2016; Lange et al., 2018;

Wang et al., 2019). Interestingly, overexpression of BDNF

in the forebrain reduced the anxiety-like phenotype in

mice (Weidner et al., 2014) and higher levels of BDNF

have been found in the hippocampus of the hyperactive

serotonin-2C receptor knock-out mice (Hill et al., 2011).

High-novelty-seeking behavior in rodents has been asso-

ciated with higher BDNF level in the hippocampus and

cerebellum, compared with low-novelty-seeking animals

(Duclot and Kabbaj, 2013; Laricchiuta et al., 2018) and

infusion of BDNF in the cerebellum increased exploration

and novelty-seeking behavior in mice (Laricchiuta et al.,

2018). Moreover, a positive correlation between BDNF

serum level and impulsivity has been found in post-

traumatic stress disorders and major depressive disor-

ders (Park et al., 2014; Martinotti et al., 2015). Consistent

with this observation, we found that BDNF protein levels

were increased in the hippocampus of ethanol-exposed

mice, suggesting that BDNF might regulate some of these

behavioral impairments, although future studies will be

required to investigate the BDNF level in other brain

regions and its role in the behavioral alteration induced

by postnatal ethanol exposure.

In conclusion, the present study has shown that single

binge-like alcohol exposure during the brain growth spurt,

in the early postnatal period, induces behavior and

molecular changes differentially in male and female

mice. This highlights the risk of sporadic consumption of

alcohol during pregnancy or early in life, given that the

brain growth spurt period extends several years after

birth in humans. Moreover, future studies examining

perinatal drug and alcohol exposure should carefully

analyze both males and females to reveal important and

significant sex differences that might be useful for the

diagnosis and/or therapeutic interventions targeting

affected children.
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