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Abstract. The variety of Brouwerian semilattices is amalgamable and locally finite,

hence by well-known results [19], it has a model completion (whose models are the existen-

tially closed structures). In this paper, we supply a finite and rather simple axiomatization

of the model completion.

§1. Introduction. In algebraic logic some attention has been paid to the
class of existentially closed structures in varieties coming from the algebraiza-
tion of common propositional logics. In fact, there are relevant cases where such
classes are elementary: this includes, besides the easy case of Boolean algebras,
also Heyting algebras [10, 11], diagonalizable algebras [17, 11] and some univer-
sal classes related to temporal logics [9],[8]. However, very little is known about
the related axiomatizations, with the remarkable exception of the case of the
amalgamable varieties of Heyting algebras recently investigated in [6] and [5],
and of the simpler cases of posets and semilattices studied in [1]. In this pa-
per, we use a methodology similar to [6] (relying on classifications of minimal
extensions) in order to investigate the case of Brouwerian semilattices, i.e. the
algebraic structures corresponding to the implication-conjunction fragment of
intuitionistic logic. We obtain the finite axiomatization reported below, which is
similar in spirit to the axiomatizations from [6] (in the sense that we also have
kinds of ‘density’ and ‘splitting’ conditions). The main technical problem we
must face for this result (making axioms formulation slightly more complex and
proofs much more involved) is the lack of joins in the language of Brouwerian
semilattices.

1.1. Statement of the main result. The first researcher to consider
Brouwerian semilattices as algebraic objects in their own right was W. C. Ne-
mitz in [15]. A Brouwerian semilattice is a poset (P,≤) having a greatest element
(which we denote with 1), inf’s of pairs (the inf of {a, b} is called ‘meet’ of a
and b and denoted with a ∧ b) and relative pseudo-complements (the relative
pseudo-complement of a and b is denoted with a → b). a → b is also called the
implication of a and b. We recall that a → b is characterized by the following
property: for every c ∈ P we have

c ≤ a→ b iff c ∧ a ≤ b.

Brouwerian semilattices can also be defined in an alternative way as algebras
over the signature 1,∧,→, subject to the following equations

a ∧ a = a a ∧ (a→ b) = a ∧ b
a ∧ b = b ∧ a b ∧ (a→ b) = b

a ∧ (b ∧ c) = (a ∧ b) ∧ c a→ (b ∧ c) = (a→ b) ∧ (a→ c)
a ∧ 1 = a a→ a = 1

In case this equational axiomatization is adopted, the partial order ≤ is recovered
via the definition a ≤ b iff a ∧ b = a.
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By a result due to Diego and McKay [7, 14], Brouwerian semilattices are
locally finite (meaning that all finitely generated Brouwerian semilattices are
finite); since they are also amalgamable, it follows [19, 13] that the theory of
Brouwerian semilattices has a model completion. We prove that such a model
completion is given by the above set of axioms for the theory of Brouwerian semi-
lattices together with the three additional axioms (Density1, Density2, Splitting)
below.

We use the shorthand a � b to mean that a ≤ b and b → a = a. Note that
a� a iff a = 1.

[Density 1] For every c there exists an element b different from 1 such that b� c.

[Density 2] For every c, a1, a2, d such that a1, a2 6= 1, a1 � c, a2 � c and
d→ a1 = a1, d→ a2 = a2 there exists an element b different from 1 such that:

a1 � b

a2 � b

b� c

d→ b = b

[Splitting] For every a, b1, b2 such that 1 6= a� b1 ∧ b2 there exist elements a1

and a2 different from 1 such that:

b1 ≥ a1, b2 ≥ a2

a2 → a = a1

a1 → a = a2

a2 → b1 = b2 → b1

a1 → b2 = b1 → b2

As an evidence of the interest of the above axiomatization, we mention some
easy consequences that can be drawn from it: in an existentially closed Brouwe-
rian semilattice (i) there is no bottom element; (ii) there are no joins of pairwise
incomparable elements; (iii) there are no meet-irreducible elements.

The paper is structured as follows: Section 2 gives the basic notions and
definitions. In particular, it describes the finite duality and characterizes the ex-
istentially closed structures by means of embeddings of finite extensions of finite
sub-structures. In Section 3 we investigate the minimal finite extensions and use
them to give an intermediate characterization of the existentially closed struc-
tures. Section 4 focuses on the axiomatization, it is split into two subsections:
the first about the Splitting axiom and the second about the Density axioms.1

§2. Preliminary Background.

1The paper contains full proofs. However, in few cases, when proofs are just routine exe-
cises or when the statement to be proved is known from the literature, we preferred to omit

straightforward details in order to facilitate reading. In any case, such omitted details are

available too in the online arXiv version at the link http://arxiv.org/abs/1702.08352

http://arxiv.org/abs/1702.08352
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Remark 2.1. The following is a list of identities holding in any Brouwerian
semilattice that might be used without explicit mention.

a→ 1 = 1 1→ a = a

a ∧ (a→ b) = a ∧ b b ∧ (a→ b) = b

(a→ b) ∧ ((a→ b)→ b) = b ((a→ b)→ b)→ b = a→ b

a→ (b1 ∧ · · · ∧ bn) = (a→ b1) ∧ · · · ∧ (a→ bn)

(a1 ∧ · · · ∧ an)→ b = a1 → (· · · → (an → b))

In particular

a→ (b→ c) = b→ (a→ c)

Furthermore, in any Brouwerian semilattice:

a ≤ b iff a→ b = 1

if b ≤ c then a→ b ≤ a→ c and c→ a ≤ b→ a

Proposition 2.2. Any finite Brouwerian semilattice is a Heyting algebra.

Proof. It is sufficient to show that any finite Brouwerian semilattice is a
distributive lattice. Any finite semilattice is complete, so it is a lattice. Further-
more, the map a∧ (−) preserves suprema because it has a right adjoint given by
a→ (−). Thus the distributive laws hold. a

Definition 2.3. Let A,B be Brouwerian semilattices. A map f : A → B is
a Brouwerian semilattice homomorphism if it preserves 1, the meet and relative
pseudo-complement of any two elements of A.

Notice that such a morphism f is an order preserving map because, for any
a, b elements of a Brouwerian semilattice, we have a ≤ b iff a ∧ b = a.

Remark 2.4. Every finite Brouwerian semilattice is a Heyting algebra but it
is not true that every Brouwerian semilattice morphism among finite Brouwerian
semilattices is a Heyting algebra morphism.

Definition 2.5. Let L be a Brouwerian semilattice.
We say that m ∈ L is meet-irreducible iff for every n ≥ 0 and b1, . . . , bn ∈ L, we
have that

m = b1 ∧ . . . ∧ bn implies m = bi for some i = 1, . . . , n.

Notice that by taking n = 0 we obtain that meet-irreducibles are different from
1.

Proposition 2.6. Let L be a Brouwerian semilattice and m ∈ L. Then the
following conditions are equivalent:

1. m is meet-irreducible;
2. m 6= 1 and for any b1, b2 ∈ L we have that m = b1 ∧ b2 implies m = b1 or

m = b2;
3. For every n ≥ 0 and b1, . . . , bn ∈ L we have that

b1 ∧ . . . ∧ bn ≤ m implies bi ≤ m for some i = 1, . . . , n;
4. m 6= 1 and for any b1, b2 ∈ L we have that b1 ∧ b2 ≤ m implies b1 ≤ m or

b2 ≤ m;
5. m 6= 1 and for any a ∈ L we have that a→ m = 1 or a→ m = m.

Proof. The implications 1 ⇔ 2, 3 ⇔ 4 and 3 ⇒ 1 are straightforward. For
the remaining ones see Lemma 2.1 in [12]. Note that 3 implies m 6= 1 by taking
n = 0. a
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Remark 2.7. In a finite Brouwerian semilattice, m is meet-irreducible iff it
has a unique successor, i.e. a minimal element among the elements strictly
greater than m. In that case, we denote the successor by m+ and it is equal to∧

m<a a.

Definition 2.8. Let L be a Brouwerian semilattice and a ∈ L.
A meet-irreducible component of a is a minimal element among the meet-
irreducibles of L that are greater than or equal to a.

Remark 2.9. Let L be a finite Brouwerian semilattice. For any a ∈ L we
have

a =
∧
{meet-irreducible components of a}.

Hence, for any a, b ∈ L, condition 5 of Proposition 2.6 implies that

a→ b =
∧
{m | m is a meet-irreducible component of b such that a � m}.

Recall that a � b means a ≤ b and b → a = a. Thus, in any finite Brouwerian
semilattice, a� b if and only if a ≤ b and there is no meet-irreducible component
of a that is greater than or equal to b. Finally, if m is meet-irreducible then
m� m+.

This last remark implies the following lemma.

Lemma 2.10. A finite Brouwerian semilattice is generated as a meet-semilattice
with 1 by its meet-irreducible elements. Moreover, its Brouwerian semilattice
structure is completely determined by the poset of its meet-irreducible elements.

This correspondence between finite Brouwerian semilattices and the posets of
their meet-irreducible elements gives rise to a duality first presented by Köhler
in [12].

2.1. Finite duality.

Definition 2.11. Let (P,≤) be a poset. For any a ∈ P we define ↑a = {p ∈
P | a ≤ p} and for any A ⊆ P we define ↑A =

⋃
a∈A ↑a. A subset U ⊆ P such

that U = ↑U is called an upset, i.e. an upward closed subset, of P . The upsets
↑a and ↑A are called the upsets generated by a and A. An upset is principal if
it is generated by an element of P , i.e. it is of the form ↑a for some a ∈ P . The
set consisting of the upsets of P is denoted by U(P ). The analogous notations
↓a and ↓A are used for downsets.

Remark 2.12. U(P ) ordered by reverse inclusion has naturally a structure of
Brouwerian semilattice. Meets coincide with the union of subsets and the top
element with the empty subset. It turns out that the implication of the upsets A
and B, i.e. A→ B, is given by ↑(B \A). Suppose now that P is finite. Clearly
U(P ) is finite as well. If A,B are two upsets of P then A is generated by the
set of its minimal elements and A → B is the upset generated by the minimal
elements of B that are not in A. The meet-irreducibles of U(P ) are exactly the
principal upsets. Therefore, the meet-irreducible components of an upset A are
the principal upsets generated by the minimal elements of A. Notice that this
is not always the case when P is infinite. When P is finite, A,B ∈ U(P ) satisfy
A� B if and only if B ⊆ A and B does not contain any minimal element of A.

The following theorem states the finite duality due to Köhler.

Theorem 2.13. There is a dual equivalence between the category BSfin of
finite Brouwerian semilattices and the category P whose objects are finite posets
and whose morphisms are partial mappings α : P → Q satisfying:

(i) ∀p, q ∈ dom α if p < q then α(p) < α(q);
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(ii) ∀p ∈ dom α and ∀q ∈ Q if q < α(p) then ∃r ∈ dom α such that r <
p and α(r) = q.

Proof. The proof can be found in [12]. We just recall how the equivalence
works. To a finite poset P it is associated the Brouwerian semilattice U(P )
of upsets of P ordered by reverse inclusion. On the other hand, to a finite
Brouwerian semilattice L it is associated its sub-poset M(L) given by its meet-
irreducible elements. The isomorphism P ∼=M(U(P )) is given by the mapping
p 7→ ↑p. The map U 7→

∧
U gives an isomorphism U(M(L)) ∼= L whose inverse

is a 7→ {m ∈M(L) | a ≤ m}.
To a P-morphism among finite posets it is associated the Brouwerian semilattice
homomorphism that maps an upset to the upset generated by its preimage. More
explicitly, to a P-morphism f : P → Q is associated the morphism that maps
an upset U of Q to ↑f−1(U) = {p ∈ P | ∃p′ ≤ p (p′ ∈ domf & f(p′) ∈ U)}.
On the other hand, to a Brouwerian semilattice homomorphism h : L → L′,
it is associated the P-morphism f : M(L′) → M(L) whose domain is given
by the a ∈ M(L′) that are meet-irreducible components in L′ of h(b) for some
b ∈M(L) and it is defined by f(a) = b. a

The following proposition is easily checked:

Proposition 2.14. Let P,Q be finite posets and f : P → Q a P-morphism.
Let α : U(Q) → U(P ) be the associated Brouwerian semilattice homomorphism.
Then

(i) α is injective if and only if f is surjective.
(ii) α is surjective if and only if dom f = P and f is injective.

Duality results involving all Brouwerian semilattices can be found in the recent
paper [2] due to G. Bezhanishvili and R. Jansana. Other dualities are described
in [18] and [3].

2.2. Amalgamation property and local finiteness. The variety of Brouw-
erian semilattices enjoys two properties that will be used extensively throughout
the paper: it has the amalgamation property and it is locally finite.

Theorem 2.15. The theory of Brouwerian semilattices has the amalgamation
property.

The amalgamation property for Brouwerian semilattices is the algebraic coun-
terpart of a syntactic property of the implication-conjunction fragment of intu-
itionistic propositional logic: the interpolation property. The proof that such a
fragment satisfies this property can be found in [16].
Alternatively, it can be shown in a semantic way, using the finite duality,
that the theory of Brouwerian semilattices enjoys the amalgamation property.
This proof can be found in the online arXiv version of this paper at the link
http://arxiv.org/abs/1702.08352.

Theorem 2.16. The variety of Brouwerian semilattices is locally finite.

Proof. We just sketch the proof first presented in [14]. A Brouwerian semilat-
tice L is subdirectly irreducible iff L\{1} has a greatest element, or equivalently
L has a single co-atom, i.e. a maximal element distinct from 1.
Let L be subdirectly irreducible and u be the greatest element of L \ {1}. Then
L \ {u} is a Brouwerian sub-semilattice of L. This implies that any generating
set of L must contain u.
Moreover, if L is generated by n elements, then L \ {u} can be generated by
n− 1 elements. It follows that the cardinality of subdirectly irreducible Brouwe-
rian semilattices generated by n elements is bounded by #Fn−1 + 1 where Fm is
the free Brouwerian semilattice on m generators. Since #F0 = 1, by induction
we obtain that Fm is finite for any m because it is a subdirect product of a

http://arxiv.org/abs/1702.08352
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Figure 1. The property characterizing the existentially closed
Brouwerian semilattices

finite family of subdirectly irreducible Brouwerian semilattices generated by m
elements. a

Computing the cardinality of Fm is a hard task. It is known that #F0 =
1,#F1 = 2,#F2 = 18 and #F3 = 623, 662, 965, 552, 330. The size of F4 is still
unknown. In [12] it is proved that the number of meet-irreducible elements of
F4 is 2, 494, 651, 862, 209, 437. This shows that although the cardinality of the
free Brouwerian semilattice on a finite number of generators is always finite, it
grows very rapidly.

2.3. Existentially closed Brouwerian semilattices. In this subsection
we want to characterize the existentially closed Brouwerian semilattices using
the finite extensions of their finite Brouwerian sub-semilattices.

Definition 2.17. Let T be a first order theory and A a model of T . A is said
to be existentially closed for T if for every model B of T such that A ⊆ B every
existential sentence in the language extended by names for elements of A which
holds in B also holds in A.

The following proposition is well-known from textbooks [4].

Proposition 2.18. Let T be a universal theory. If T has a model comple-
tion T ∗, then the class of models of T ∗ is the class of models of T which are
existentially closed for T .

Thanks to the local finiteness and the amalgamability, by an easy model-
theoretic reasoning we obtain the following characterization of the existentially
closed Brouwerian semilattices.

Theorem 2.19. Let L be a Brouwerian semilattice. L is existentially closed
iff for any finite Brouwerian sub-semilattice L0 ⊆ L and for any finite extension
C ⊇ L0 there exists an embedding C → L fixing L0 pointwise (see Figure 1).

§3. Minimal finite extensions. In this section we focus on the finite exten-
sions of Brouwerian semilattices. In particular, we are interested in the minimal
ones since any finite extension can be decomposed into a finite chain of minimal
extensions. We will study minimal finite extensions by describing the properties
of some elements which generate them. This investigation will lead us to another
characterization of the existentially closed Brouwerian semilattices.

Definition 3.1. Let A and B subsets of a poset P . We say that A ≤ B iff
there exist a ∈ A and b ∈ B such that a ≤ b.

Proposition 3.2. Surjective P-morphisms with domain P are determined, up
to isomorphism, by pairs (P0,F) where P0 is a subset of P and F is a partition
of P0 such that:

1. for all A,B ∈ F if A ≤ B and B ≤ A then A = B,
2. for all A,B ∈ F and a ∈ A if B ≤ A then there exists b ∈ B such that

b ≤ a,
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3. for all A ∈ F all the elements of A are two-by-two incomparable.

Proof. Given a surjective P-morphism f : P → Q, take the pair (dom f,F)
where F is the collection of the fibers of f . On the other hand, given a partition
F of a subset P0 of P satisfying the conditions 1, 2 and 3, we obtain a poset Q
by taking the quotient set of P0 given by F with the order as in Definition 3.1.
The projection onto the quotient π : P → Q with domain P0 is a surjective
P-morphism.
It is routine to check that a surjective P-morphism f : P → Q differs by an
isomorphism from the projection onto the quotient defined by the partition given
by the fibers of f . a

Definition 3.3. Let P,Q be finite posets and f : P → Q a surjective P-
morphism (or equivalently: let F satisfy conditions 1, 2 and 3 of Proposition 3.2).
We say that f (or F) is minimal if #P = #Q+ 1.

Remark 3.4. If F is minimal, then at most one element of F is not a singleton.

Theorem 3.5. Let f : P → Q be a surjective P-morphism between finite
posets. Let n = #P −#Q. Then there exist Q0, . . . , Qn with Q0 = P , Qn = Q
and fi : Qi−1 → Qi which are minimal surjective P-morphisms for i = 1, . . . , n
such that f = fn ◦ · · · ◦ f1.

Proof. Let R = dom f , we can decompose f = f ′′ ◦ f ′ where f ′′ : R→ Q is
just the restriction of f on its domain and f ′ : P → R is the partial morphism
with domain R that acts as the identity on R.
f ′′ is a total surjective P-morphism. We prove, by induction on #R−#Q, that
it can be decomposed into a finite chain of minimal surjective P-morphisms.
Suppose #R − #Q > 1 and let us consider the partition F of R given by the
fibers of f ′′. Let x ∈ P be maximal among the elements of R that are not in a
singleton of F and let G be the element of F containing x. Denote with Qn−1

the quotient of R defined by the refining of F in which G is substituted by {x}
and G\{x}. It is straightforward to check that our choice of x implies that the
projection onto the quotient π : R→ Qn−1 is a total surjective P-morphism and
the map fn : Qn−1 → Q induced by f ′′ is a minimal surjective P-morphism.
Therefore, we obtain the decomposition applying the induction hypothesis on π.
It remains to decompose f ′. To do this, just enumerate the elements of P \
R = {p1, . . . , pk} with k = n − (#R − #Q). Let f ′1 : R ∪ {p1} → R be the
partial morphism with domain R that acts as the identity on R. Then construct
f ′2 : R ∪ {p1, p2} → R ∪ {p1} in the same way and so on until pk. a

Definition 3.6. We say that a proper extension L0 ⊆ L of finite Brouwerian
semilattices is minimal if there is no intermediate proper extension L0 ( L1 ( L.

The following proposition is an immediate consequence of Proposition 3.2 and
Theorem 3.5.

Proposition 3.7. An extension L0 ⊆ L of finite Brouwerian semilattices is
minimal if and only if the surjective P-morphism that is dual to the inclusion is
minimal.

It follows immediately from Definition 3.3 that there are two different kinds
of minimal surjective P-morphisms between finite posets: of addition type and
of decomposition type.

Definition 3.8. We call a minimal surjective P-morphism of addition type
when there is exactly one element outside its domain. In this case, the restric-
tion of such a map on its domain is an isomorphism of posets. Indeed, any
bijective P-morphism is an isomorphism of posets. Not every morphism of this
type is dual to a Heyting algebra homomorphism.
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∅
∅

Figure 2. Simplest examples of minimal extensions and their
duals; on the left are shown two minimal surjective P-
morphisms and on the right the corresponding minimal exten-
sions of Brouwerian semilattices. The domain is denoted by a
rectangle and the partition into fibers is represented by the en-
circled sets of points. The white points represents the elements
outside the images of the inclusions. Notice that the inclusion
on the top right is not a Heyting algebra homomorphism.

We call a minimal surjective P-morphism of decomposition type when it is total,
i.e. there are no elements outside its domain. In this case there is exactly a
single fiber which is not a singleton and it contains exactly two elements. All
the minimal surjective P-morphisms of decomposition type are dual to Heyting
algebra embeddings.
We call a finite minimal extension of Brouwerian semilattices either of addi-
tion type or of decomposition type if the corresponding minimal surjective P-
morphism is respectively of addition type or of decomposition type.
Figures 2 and 3 show some examples of minimal surjective P-morphisms and the
relative extensions of Brouwerian semilattices.

Remark 3.9. A finite minimal extension of Brouwerian semilattices of ad-
dition type preserves the meet-irreducibility of all the meet-irreducibles in the
domain. Indeed, since the corresponding P-morphism is an isomorphism when
restricted on its domain, we have that the upset generated by the preimage of a
principal upset is still principal.
A finite minimal extension of Brouwerian semilattices of decomposition type pre-
serves the meet-irreducibility of all the meet-irreducibles in the domain except
one which becomes the meet of the two new meet-irreducible elements in the
codomain. Indeed, the corresponding P-morphism is total and all its fibers are
singletons except one. Hence, the preimage of any principal upset is principal
except for one whose preimage is an upset generated by two elements.

It turns out that we can characterize the finite minimal extensions of Brouw-
erian semilattices by means of their generators.

Definition 3.10. Let L0 be a finite Brouwerian semilattice and L an exten-
sion of L0. We call an element x ∈ L primitive over L0 if the following conditions
are satisfied:

1. x /∈ L0

and for any a meet-irreducible of L0:

2. x→ a ∈ L0,
3. a→ x = x or a→ x = 1.

Lemma 3.11. Let L0 be a finite Brouwerian semilattice, L a (not necessarily
finite) extension of L0 and x ∈ L primitive over L0. Then the two following
properties hold for all a ∈ L0:

(i) x→ a ∈ L0,
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Figure 3. More complex examples of minimal extensions and
their duals.

(ii) a→ x = x or a→ x = 1.

Proof. Let a ∈ L0 and a1, . . . , an be its meet-irreducible components in L0.
Since L0 is finite, we have a = a1 ∧ · · · ∧ an. To prove (i) observe that

x→ a = (x→ a1) ∧ · · · ∧ (x→ an)

which is an element of L0 because it is meet of elements of L0 as a consequence
of 2 of Definition 3.10.
Furthermore, to prove (ii) notice that

a→ x = (a1 ∧ · · · ∧ an)→ x = a1 → (· · · → (an → x))

and that 3 of Definition 3.10 implies that there are two possibilities: ai → x = x
for any i = 1, . . . , n or ai → x = 1 for some i. In the former case, we have a→
x = x. In the latter, suppose that i is the greatest index such that ai → x = 1
then

a→ x = a1 → (· · · → (ai → x)) = a1 → (· · · → 1) = 1.

a
In the rest of the paper, given a Brouwerian sub-semilattice L0 of L and

x1, . . . , xn ∈ L, we denote by L0〈x1, . . . , xn〉 the Brouwerian sub-semilattice of
L generated by x1, . . . , xn over L0, i.e. the one generated by L0 ∪ {x1, . . . , xn}.
Note that, if L0 is finite, then L0〈x1, . . . , xn〉 is finite by local finiteness.

Theorem 3.12. Let L0 be a finite Brouwerian semilattice and L an extension
of L0. If x ∈ L is primitive over L0, then the Brouwerian sub-semilattice L0〈x〉
of L generated by x over L0 is a finite minimal extension of L0 of addition type.

Proof. As an easy consequence of Lemma 3.11, {a, a ∧ x | a ∈ L0}, i.e. the
meet-subsemilattice of L generated by L0 and x, coincides with L0〈x〉. We want
to show that the meet-irreducibles of L0〈x〉 are exactly the meet-irreducibles of
L0 together with x. This implies that L0〈x〉 is a minimal extension of L0 of
addition type. In the following, a is always assumed to be an element of L0.
- x is meet-irreducible in L0〈x〉:

Suppose that b ∧ c ≤ x with b, c ∈ L0〈x〉 and b, c � x. Then b and c must
be elements of L0 because they cannot be of the form a ∧ x. It follows from
Lemma 3.11 (ii) and b, c � x that b → x = c → x = x. Hence 1 = (b ∧ c) →
x = b→ (c→ x) = b→ x = x, contradicting x /∈ L0.

- The meet-irreducibles of L0 are still meet-irreducible in L0〈x〉:
It is sufficient to show that for any meet-irreducible m in L0: if a∧x ≤ m, then
a ≤ m or x ≤ m. Note that m = (x → m) ∧ ((x → m) → m) by Remark 2.1
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and x → m, (x → m) → m ∈ L0 by Definition 3.10. Thus m being meet-
irreducible in L0 implies that either m = x → m or m = (x → m) → m. In
the former case, a → m = a → (x → m) = (a ∧ x) → m = 1, so a ≤ m. In
the latter case, x → m = ((x → m) → m) → m = m → m = 1 which implies
x ≤ m.

- There are no other meet-irreducibles in L0〈x〉:
Clearly, neither elements that are not meet-irreducible in L0 nor elements of
the form a ∧ x distinct from a and x can be meet-irreducible in L0〈x〉.

a

Definition 3.13. Let L0 be a finite Brouwerian semilattice and L a (not
necessarily finite) extension of L0. We call a pair (x1, x2) of elements of L
primitive over L0 if the following conditions are satisfied:

1. x1, x2 /∈ L0 and x1 6= x2

and there exists m meet-irreducible element of L0 such that:

2. x1 → m = x2 and x2 → m = x1,
3. for any meet-irreducible element a of L0 such that m < a we have xi →
a ∈ L0 for i = 1, 2.

Remark 3.14. m in Definition 3.13 is univocally determined by (x1, x2) be-
cause m = x1 ∧ x2.
Indeed, by condition 2 of Definition 3.13, we have m ≤ x1, m ≤ x2 and also
(x1 ∧ x2)→ m = x1 → (x2 → m) = x1 → x1 = 1 which implies x1 ∧ x2 ≤ m.

Lemma 3.15. Let L0 be a finite Brouwerian semilattice, L an extension of L0

and (x1, x2) ∈ L2 primitive over L0. Then the two following properties hold for
all a ∈ L0:

(i) xi → a ∈ L0 or xi → a = b ∧ xj with b ∈ L0 for {i, j} = {1, 2};
(ii) a→ xi = xi or a→ xi = 1 for i = 1, 2.

Proof. Let m = x1 ∧ x2. We first prove that if a 6= m is meet-irreducible
in L0, then xi → a ∈ L0 for i = 1, 2. By condition 3 of Definition 3.13 we can
assume m � a. Condition 2 of Definition 3.13 implies that m ≤ xj → m = xi
where j 6= i. Thus a ≤ xi → a ≤ m → a = a by the meet-irreducibility of a.
Therefore xi → a = a ∈ L0. Let now a be any element of L0 and a1, . . . , an be
its meet-irreducible components in L0, then

xi → a = (xi → a1) ∧ · · · ∧ (xi → an).

By what we showed at the beginning of the proof, if ak 6= m then xi → ak ∈ L0

for any k. Thus, if m is not a meet-irreducible component of a, we have xi →
a ∈ L0. Otherwise, if e.g. an = m, then xi → an = xi → m = xj with j 6= i.
Thus xi → a = b ∧ xj for some b ∈ L0. This proves (i).
We now prove (ii). If a ≤ m, then a ≤ xi which is equivalent to a → xi = 1.
Otherwise, since m is meet-irreducible in L0, a→ m = m. Thus, if i 6= j

a→ xi = a→ (xj → m) = xj → (a→ m) = xj → m = xi.

a

Theorem 3.16. Let L0 be a finite Brouwerian semilattice and L an exten-
sion of L0. If (x1, x2) is primitive over L0 then the Brouwerian sub-semilattice
L0〈x1, x2〉 of L is a finite minimal extension of L0 of decomposition type.

Proof. By Lemma 3.15 and the fact that x1 ∧ x2 = m ∈ L0, the meet-
subsemilattice of L generated by L0 and {x1, x2}, i.e. {a, a ∧ x1, a ∧ x2 | a ∈
L0}, coincides with L0〈x1, x2〉. We want to show that the meet-irreducibles of
L0〈x1, x2〉 are exactly x1, x2 and the meet-irreducibles of L0 different from m.
This implies that L0〈x1, x2〉 is a minimal extension of L0 of decomposition type.
In the following, a is always assumed to be an element of L0.
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- x1, x2 are meet-irreducible in L0〈x1, x2〉:
Suppose x1 = b ∧ c with b, c ∈ L0〈x1, x2〉 and x1 6= b, c. Then b and c
must be either elements of L0 or of the form a ∧ x2. Since x1 /∈ L0, one
of b and c is of the form a ∧ x2, so x1 ≤ x2. Hence, by Definition 3.13,
1 = x1 → x2 = x1 → (x1 → m) = x1 → m = x2 which contradicts x2 /∈ L0.
The meet-irreducibility of x1 is proved analogously.

- m is not meet-irreducible in L0〈x1, x2〉:
m = x1 ∧ x2 and x1, x2 6= m because x1, x2 /∈ L0.

- All the meet-irreducibles of L0〈x1, x2〉 are either x1, x2 or meet-irreducible in
L0:
Clearly neither elements of L0 that are not meet-irreducible in L0 nor elements
of the form a ∧ x1 or a ∧ x2 distinct from a, x1, x2 can be meet-irreducible in
L0〈x1, x2〉.

- All the meet-irreducibles of L0 except m are still meet-irreducible in L0〈x1, x2〉:
Let b ∈ L0 be meet-irreducible in L0 but not in L0〈x1, x2〉. Let y1, . . . , yr
be the meet-irreducible components of b in L0〈x1, x2〉. The yi’s are in L0 ∪
{x1, x2}. Since b is meet-irreducible in L0 and not in L0〈x1, x2〉, at least one of
the yi’s is not in L0. We can suppose y1 = x1, so b ≤ x1. One among y2, . . . , yr
has to be equal to x2 because otherwise y2∧· · ·∧yr ∈ L0, which implies, since
the yi’s are the meet-irreducible components of b, that x1 = (y2∧· · ·∧yr)→ b
contradicting x1 /∈ L0. Hence b ≤ m. If b < m then m → b = b because b is
meet-irreducible in L0. But in this case y2 ∧ · · · ∧ yr = x1 → b ≤ m → b =
b ≤ x1 = y1 and this is not possible because the yi’s are the meet-irreducible
components of b. Therefore b = m.

a
Theorem 3.17. Let L0 be a finite Brouwerian semilattice and L a finite min-

imal extension of L0, then L is generated over L0 either by a primitive element
or by a primitive pair over L0.

Proof. Let f : P → Q be the surjective minimal P-morphism dual to the
inclusion of L0 into L. Recall that P and Q are the posetsM(L) andM(L0) of
the meet-irreducibles of L and L0, respectively. Consider two cases:
- f is of addition type.

Then dom f 6= P , there exists only one element p ∈ P \ dom f and the
restriction of f on its domain is an isomorphism of posets. It turns out that p
is a primitive element over L0.

- f is of decomposition type.
Then dom f = P and only two elements p1, p2 have the same image by f
(recall that p1, p2 are incomparable). It turns out that (p1, p2) is a primitive
pair over L0.

It is easy to check that p and (p1, p2) are primitive over L0 using that, by finite
duality, any meet-irreducible in a Brouwerian semilattice corresponds to the
upset generated by itself in the dual poset. a

Definition 3.18. Let L0 be a finite Brouwerian semilattice.
We call a pair (h,M) a signature of addition type in L0 if h ∈ L0 and M is a set
of two-by-two incomparable meet-irreducible elements of L0 such that m < h for
all m ∈M . We allow M to be empty.
We call a triple (h1, h2,m) a signature of decomposition type in L0 if h1, h2 ∈ L0,
m is a meet-irreducible element of L0 such that h1 ∧ h2 = m+. Recall that m+

is the unique successor of m in L0. To keep the notation simple, we consider the
signatures (h1, h2,m) and (h2, h1,m) to be equal.

Theorem 3.19. Let L0 be a finite Brouwerian semilattice. Then

1. to give a signature of addition type in L0 is equivalent to give a minimal
extension of addition type of L0, up to isomorphism over L0;



12

2. to give a signature of decomposition type in L0 is equivalent to give a min-
imal extension of decomposition type of L0, up to isomorphism over L0.

Proof. In the following, L is a minimal extension of L0.
- To any minimal extension of addition type it is associated a signature of ad-

dition type.
Let L0 ⊆ L be of addition type. Let x be the unique element ofM(L)\M(L0).
Thus x is primitive over L0. Define h := x+ ∈ L and M to be the set of
maximal elements in {m ∈ M(L0) | m < x}. We showed in the proof of
Theorem 3.12 that L is generated as a meet-semilattice by L0 and x. So any
element above x is in L0. In particular h = x+ ∈ L0. Therefore (h,M) is a
signature of addition type.

- Any signature of addition type is the signature associated to a unique, up to
isomorphism over L0, minimal finite extension of addition type of L0.
Let (h,M) be a signature of addition type of L0. Then h corresponds to
an upset U of M(L0) and M is an antichain in M(L0) such that U ⊆ ↑m
for any m ∈ M . Define P = M(L0) t {x} and define an order on P by
extending the one on M(L0). Let q < x iff q ∈ ↓M and x < q iff q ∈ U
for any q ∈ M(L0). Take dom f = M(L0) ⊂ P and f as the identity on its
domain. It is easy to prove that f : P → M(L0) is a minimal surjective P-
morphism of addition type. If f ′ : P ′ →M(L0) is another minimal surjective
P-morphism of addition type whose dual induces the same signature on L0

then it is straightforward to define an isomorphism of posets ϕ : P1 → P2 such
that f2 ◦ ϕ = f1.

- To any minimal extension of decomposition type it is associated a signature of
decomposition type.
Let L0 ⊆ L be of decomposition type. Let {x1, x2} = M(L) \M(L0). Thus
(x1, x2) is primitive over L0. Define h1 := x+

1 ∈ L and h2 := x+
2 ∈ L. We

showed in the proof of Theorem 3.16 that L is generated as a meet-semilattice
by L0 and x1, x2. So any element above x1 or x2 is in L0. In particular
h1 = x+

1 , h2 = x+
2 ∈ L0. Let m = x1 ∧ x2 which is in M(L0) by Remark 3.14.

It remains to prove that m+ = h1 ∧ h2. Suppose m < a for some a ∈ L0.
Let a1, . . . , an be the meet-irreducible components of a in L. For each i,
x1 ∧ x2 < ai, thus ai is either above x1 or above x2. Note that ai 6= x1,
otherwise a → m ≥ x1 → m = x2 > m, contradicting the meet-irreducibility
of m and m < a. Hence ai ∈ L0 and h1 = x+

1 ≤ ai or h2 = x+
2 ≤ ai. Therefore

h1 ∧ h2 ≤ a. So m+ = h1 ∧ h2 and (h1, h2,m) is a signature of decomposition
type.

- Any signature of decomposition type is the signature associated to a unique,
up to isomorphism over L0, minimal finite extension of decomposition type of
L0.
Let (h1, h2,m) be a signature of decomposition type of L0. Then h1, h2 cor-
respond to upsets U1, U2 of M(L0) such that U1 ∪ U2 = ↑m \ {m}. Let
P = M(L0) \ {m} t {x1, x2} where x1 6= x2. Define an order on P by ex-
tending the one on M(L0) \ {m}. Set xi < q iff q ∈ Ui and q < xi iff q < m
for any q ∈ M(L0) for i = 1, 2. Take dom f = P and f such that it maps
x1, x2 into m and acts as the identity onM(L0)\{m}. It is easy to prove that
f : P →M(L0) is a minimal surjective P-morphism of decomposition type. If
f ′ : P ′ →M(L0) is another minimal surjective P-morphism of decomposition
type whose dual induces the same signature on L0 then it is straightforward
to define an isomorphism of posets ϕ : P1 → P2 such that f2 ◦ ϕ = f1.

a
Therefore signatures inside a finite Brouwerian semilattice L0 are like ‘foot-

prints’ left by the minimal finite extensions of L0: any minimal finite extension
of L0 leaves a ‘footprint’ inside L0 given by the corresponding signature. On
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the other hand, given a signature inside L0 we can reconstruct a unique (up to
isomorphism over L0) minimal extension of L0 corresponding to that signature.
By Theorems 3.12, 3.16 and 3.17, minimal finite extension of a finite Brouwe-
rian semilattice L0 are exactly the ones generated over L0 either by a primitive
element or by a primitive pair. Thus, to any primitive element or pair we can
associate a unique signature in L0. This is what we did in the proof of Theo-
rem 3.19.

Definition 3.20. Let L0 be a finite Brouwerian semilattice and L an exten-
sion of L0.
We say that x ∈ L, a primitive element over L0, induces a signature (h,M) of
addition type in L0 if

• h = x+ in L0〈x〉;
• M is the set of maximal elements of {m ∈M(L0) | m < x}.

We say that (x1, x2) ∈ L2, a primitive pair over L0, induces a signature
(h1, h2,m) of decomposition type in L0 if

• h1 = x+
1 and h2 = x+

2 in L0〈x1, x2〉;
• m = x1 ∧ x2.

Corollary 3.21. Let L0 be a finite Brouwerian semilattice and L an exten-
sion of L0.
A primitive element x ∈ L induces a signature (h,M) iff the extension L0 ⊆
L0〈x〉 corresponds to that signature.
A primitive pair (x1, x2) ∈ L2 induces a signature (h1, h2,m) iff the extension
L0 ⊆ L0〈x1, x2〉 corresponds to that signature.

Proof. Follows immediately from Theorem 3.19 and its proof. a
Proposition 3.22. Let L0 be a finite Brouwerian semilattice and L an exten-

sion of L0.
A primitive element x ∈ L over L0 induces a signature of addition type (h,M)
in L0 if and only if for any a meet-irreducible of L0 we have that

x < a iff h ≤ a and a < x iff a ≤ m for some m ∈M.

A primitive pair (x1, x2) ∈ L2 over L0 induces a signature of decomposition type
(h1, h2,m) in L0 if m = x1 ∧ x2 and for any a meet-irreducible of L0 we have
that

xi < a iff hi ≤ a for i = 1, 2.

Proof. This follows from Corollary 3.21 by Lemma 2.10 and the fact that
M(L0〈x〉) =M(L0) ∪ {x} and M(L0〈x1, x2〉) = (M(L0) \ {m}) ∪ {x1, x2}. a

We have thus finally obtained an intermediate characterization of existentially
closed Brouwerian semilattices:

Theorem 3.23. A Brouwerian semilattice L is existentially closed iff for any
finite Brouwerian sub-semilattice L0 ⊆ L we have:

1. Any signature of addition type in L0 is induced by a primitive element x ∈ L
over L0.

2. Any signature of decomposition type in L0 is induced by a primitive pair
(x1, x2) ∈ L2 over L0.

Proof. By the characterization of the existentially closed Brouwerian semi-
lattices given in Theorem 2.19 we have that a Brouwerian semilattice L is exis-
tentially closed iff for any finite Brouwerian sub-semilattice L0 and for any finite
extension L′0 of L0 we have that L′0 embeds into L fixing L0 pointwise. Since
any finite extension of L0 can be decomposed into a chain of minimal extensions,
we can restrict to the case in which L′0 is a minimal finite extension of L0. Then
the claim follows from Theorem 3.19 and Corollary 3.21. a
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Thanks to Theorem 3.23 and Proposition 3.22 we already get an axiomatiza-
tion for the class of the existentially closed Brouwerian semilattices, indeed the
quantification over the finite Brouwerian sub-semilattice L0 can be expressed ele-
mentarily using an infinite number of axioms. But this axiomatization is clearly
unsatisfactory: other than being infinite, it is not conceptually clear.

§4. Axioms. In this section we prove the main theorem of this paper:

Theorem 4.1. A Brouwerian semilattice is existentially closed if and only if
it satisfies the Splitting, Density 1 and Density 2 axioms.

The result will follow from Theorems 4.3, 4.14, 4.15, 4.16 and 4.19 by using
the characterization of existentially closed Brouwerian semilattices described in
Theorem 3.23. Subsection 4.1 focuses on the Splitting axiom and subsection 4.2
on the Density axioms.

To show the validity of the axioms in any existentially closed Brouwerian
semilattice, we will use the following lemma which is the analogue of Lemma 2.3
in [6]. Its proof is straightforward.

Lemma 4.2. Let θ(x) and φ(x, y) be quantifier-free formulas in the language
of Brouwerian semilattices. Assume that for every finite Brouwerian semilattice
L0 and every tuple a of elements of L0 such that L0 � θ(a), there exists an ex-
tension L1 of L0 which satisfies ∃yφ(a, y).
Then every existentially closed Brouwerian semilattice satisfies the following sen-
tence:

∀x(θ(x) −→ ∃yφ(x, y)).

4.1. Splitting axiom. [Splitting Axiom] For every a, b1, b2 such that 1 6=
a� b1 ∧ b2 there exist elements a1 and a2 different from 1 such that:

b1 ≥ a1, b2 ≥ a2

a2 → a = a1

a1 → a = a2

a2 → b1 = b2 → b1

a1 → b2 = b1 → b2

Theorem 4.3. Any existentially closed Brouwerian semilattice satisfies the
Splitting Axiom.

Proof. It is sufficient to show, by Lemma 4.2, that for any finite Brouwerian
semilattice L0 and a, b1, b2 ∈ L0 such that 1 6= a � b1 ∧ b2 there exists a finite
extension L0 ⊆ L with a1, a2 ∈ L different from 1 such that:

a2 → a = a1 ≤ b1
a1 → a = a2 ≤ b2
a2 → b1 = b2 → b1

a1 → b2 = b1 → b2

The following construction is analogous to the one presented in the proof of
Lemma 4.2 in [6]. Let Q =M(L0) and A,B1, B2 be its upsets corresponding to
a, b1, b2.
We now build a surjective P-morphism π : P → Q. For i = 1, 2 and any x ∈ Q
such that x /∈ Bi, let ξx,i be a new symbol. Moreover, for any x ∈ Q such that
x ∈ B1 ∩B2 let ξx,0 be a new symbol.
Let P be the set of all these symbols, we define an order on P setting:

ξx,j ≤ ξy,i ⇔ x ≤ y and {i, j} 6= {1, 2}
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Intuitively P is made of a copy of B1 ∪ B2 and two copies of Q\(B1 ∪ B2), one
of the two copies is placed underneath B1 and the other underneath B2.
We define π : P → Q by setting dom π = P and π(ξx,i) = x.
Let a1, . . . , ar be the minimal elements of A, for any i we have ai /∈ B1 ∪ B2

because by hypothesis A � B1 ∪ B2. Therefore π−1(↑ai) = ↑ξai,1 ∪ ↑ξai,2 for
i = 1, . . . , r.
We take:

A1 =

r⋃
i=1

↑ξai,1 and A2 =

r⋃
i=1

↑ξai,2

We obtain A1 → π−1(A) = ↑(π−1(A)\A1) = A2 and A2 → π−1(A) = ↑(π−1(A)\
A2) = A1, they are both nonempty because r ≥ 1 and A is nonempty.
Furthermore, for any x ∈ B1 ∪ B2 we have that ai ≤ x for some i. Therefore if
x ∈ B1\B2 then ξai,1 ≤ ξx,1. If x ∈ B2\B1 then ξai,2 ≤ ξx,2. If x ∈ B1∩B2 then
ξai,1 ≤ ξx,0 and ξai,2 ≤ ξx,0. This implies that π−1(B1) ⊆ A1 and π−1(B2) ⊆ A2.
We now show that A1 ∩A2 = π−1(B1) ∩ π−1(B2).
If ξ ∈ π−1(B1) ∩ π−1(B2) then π(ξ) ∈ B1 ∩ B2, therefore ξ = ξx,0 and ai ≤ x
for some i. It implies that ξai,1 ≤ ξx,0, thus ξx,0 ∈ A1 and ξai,2 ≤ ξx,0, therefore
ξx,0 ∈ A2 and ξ ∈ A1 ∩A2.
On the other hand, if ξ ∈ A1 ∩ A2 then there exist i, j such that ξai,1 ≤ ξ and
ξaj ,2 ≤ ξ. By definition of the order on P it has to be ξ = ξx,0 with x ∈ B1∩B2,

therefore ξ ∈ π−1(B1) ∩ π−1(B2).
Since π−1(B1) ⊆ A1 and π−1(B2) ⊆ A2, we have:

π−1(B1) ∩ π−1(B2) ⊆ π−1(B1) ∩A2 ⊆ A1 ∩A2 = π−1(B1) ∩ π−1(B2).

Therefore

A2 → π−1(B1) = (π−1(B1) ∩A2)→ π−1(B1)

= (π−1(B1) ∩ π−1(B2))→ π−1(B1) = π−1(B2)→ π−1(B1).

Analogously we can show

A1 → π−1(B2) = π−1(B1)→ π−1(B2).

Thus, by taking the embedding L0 ↪→ L dual to π and a1, a2 ∈ L corresponding
to A1, A2, we have obtained what we were looking for. a

Lemma 4.4. If L is a Brouwerian semilattice generated by a finite subset X
then any meet-irreducible element of L is a meet-irreducible component in L of
some element of X.

Proof. It follows by an easy induction that any term in the language of
Brouwerian semilattices is equivalent to a term of the form x1 ∧ · · · ∧ xn with
x1, . . . xn containing only the implication symbol and variables. Notice that, if
an element x1 ∧ · · · ∧ xn with x1, . . . xn ∈ L is meet-irreducible, then it coincides
with xi for some i = 1, . . . , n; thus any meet-irreducible element m of L is the
interpretation of a term t over the variables X containing only the implication
symbol. This implies that m is the meet of some meet-irreducible components of
the interpretation of the rightmost variable in t. Indeed, this can be proved by
induction on the complexity of the term as, by Remark 2.9, any meet-irreducible
component of a → b is a meet-irreducible component of b. Thus m is the meet
of the meet-irreducible components of some x ∈ X. Then, since it is meet-
irreducible, it is a meet-irreducible component of x. a

Remark 4.5. Lemma 4.4 is not true for Heyting algebras.
Indeed, consider the inclusion L0 ↪→ L1 of Heyting algebras described by Fig-
ure 4. L1 is generated by L0 and a but b = a∨ (a→ 0) is meet-irreducible in L1

and it is not a meet-irreducible component of any element of L0 or a.
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a

L0 L1

b

Figure 4. The inclusion L0 ↪→ L1

Lemma 4.6. Let L0 be a finite Brouwerian sub-semilattice of L and let L be
generated by L0 and a1, . . . , an ∈ L.
If a1, . . . , an are meet-irreducible components in L of elements of L0, then the
surjective P-morphism ϕ : M(L) → M(L0) dual to the inclusion L0 ↪→ L is
such that dom ϕ =M(L). In particular, the inclusion is also a Heyting algebra
morphism, i.e. it preserves joins and 0.

Proof. By Lemma 4.4, all the meet-irreducible elements of L are meet-
irreducible components in L of elements of L0. Indeed, by hypothesis, a1, . . . , an
are meet-irreducible components of elements of L0. Suppose there is x ∈
M(L) \ dom ϕ, then x cannot be a meet-irreducible component of any element
of L0. Indeed, x cannot be a minimal element of ↑ϕ−1(U) for any U upset of
M(L0). a

Lemma 4.7. Let L be a Brouwerian semilattice and L0 a finite Brouwerian
sub-semilattice of L, m be meet-irreducible in L0 and y1, y2 ∈ L be elements
different from 1 such that

y1 → m = y2

y2 → m = y1

Let L0〈y1, y2〉 be the Brouwerian sub-semilattice of L generated by L0 and
{y1, y2}. We have that:

1. m = y1 ∧ y2, y1 6= y2 and y1, y2 ∈ L \ L0,
2. any meet-irreducible a of L0 such that m � a is still meet-irreducible in

L0〈y1, y2〉,
3. y1, y2 are the meet-irreducible components of m in L0〈y1, y2〉.

Proof. We prove the three statements separately.

1. We have m = y1 ∧ y2, y1 6= y2 and y1, y2 ∈ L \ L0.
The identity y1 ∧ y2 = m holds because m ≤ y1 and m ≤ y2 and

(y1 ∧ y2)→ m = y1 → (y2 → g) = y1 → y1 = 1.

Furthermore y1, y2 /∈ L0. Indeed, suppose that y1 ∈ L0, then y2 = y1 →
m ∈ L0. Since m is meet-irreducible in L0 and m = y1 ∧ y2, we have that
m = y1 or m = y2. It follows respectively that y2 = 1 or y1 = 1, in both
cases we have a contradiction because y1, y2 6= 1. Similarly, we obtain that
y2 /∈ L0.
We also have that y1 6= y2. Indeed, suppose y1 = y2, then y1 → m = y1

implies that m = y1 = 1 and this is absurd.
2. Any meet-irreducible a of L0 such that m � a is still meet-irreducible in
L0〈y1, y2〉.
Let i : L0 ↪→ L0〈y1, y2〉 be the inclusion map and g : L0〈y1, y2〉 →
L0〈y1, y2〉/↑m be the projection onto the quotient of L0〈y1, y2〉 over the
filter ↑m. Then the homomorphism f = g◦i is surjective because L0〈y1, y2〉
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is generated over L0 by y1, y2 which are both in the filter ↑m. By Propo-
sition 2.14, surjective homomorphisms map meet-irreducibles to meet-
irreducibles or to 1. Thus, f(a) is meet-irreducible in L0〈y1, y2〉/↑m because
a /∈ ↑m by hypothesis. Note that, since m � a and a is meet-irreducible
in L0, we have m → a = a. To show that a is still meet-irreducible in
L0〈y1, y2〉, we prove that for any x ∈ L0〈y1, y2〉 either x → a = 1 or
x→ a = a. Since f(a) = g(a) is meet-irreducible, g(x→ a) = g(x)→ g(a)
is either 1 or g(a). Hence, either m∧ (x→ a) = m or m∧ (x→ a) = m∧a.
In the former case, m ≤ x → a and so x ≤ m → a = a. Thus x → a = 1.
In the latter, m ∧ (x → a) ≤ a, so x → a ≤ m → a = a, which implies
x→ a = a. Therefore a is meet-irreducible in L0〈y1, y2〉.

3. y1, y2 are the meet-irreducible components of m in L0〈y1, y2〉.
We show first that y1 is meet-irreducible, for y2 it is analogous.
Let i : L0 ↪→ L0〈y1, y2〉 be the inclusion map and k : L0〈y1, y2〉 →
L0〈y1, y2〉/↑y2 be the projection onto the quotient of L0〈y1, y2〉 over the fil-
ter ↑y2. Then the homomorphism h = k ◦ i is surjective because L0〈y1, y2〉
is generated over L0 by y1, y2 with k(y2) = 1 and k(y1) = k(y2 → m) =
k(y2) → k(m) = 1 → k(m) = k(m) = h(m). Thus, since h is onto and
h(m) 6= 1 because m /∈ ↑y2, we have that k(y1) = h(m) is meet-irreducible
in L0〈y1, y2〉/↑y2. Note that y2 → y1 = y2 → (y2 → m) = y2 → m = y1.
To show that y1 is meet-irreducible in L0〈y1, y2〉, we prove that for any
x ∈ L0〈y1, y2〉 either x → y1 = 1 or x → y1 = y1. Since k(y1) is meet-
irreducible, k(x → y1) = k(x) → k(y1) is either 1 or k(y1). Hence, either
y2 ∧ (x → y1) = y2 or y2 ∧ (x → y1) = y2 ∧ y1. In the former case,
y2 ≤ x → y1 and so x ≤ y2 → y1 = y1. Thus x → y1 = 1. In the latter,
y2 ∧ (x→ y1) ≤ y1, so x→ y1 ≤ y2 → y1 = y1, which implies x→ y1 = y1.
Therefore y1 is meet-irreducible in L0〈y1, y2〉. Finally, to prove that y1, y2

are the meet-irreducible components of m in L0〈y1, y2〉, we simply have
to notice that y1 � y2 and y2 � y1. Just observe that if y1 ≤ y2 then
m = y1 ∧ y2 = y1 /∈ L0 which is absurd. Analogously, it cannot be y2 ≤ y1.

a
We now prove a series of lemmas which will lead to the main theorem of this

subsection.

Lemma 4.8. Let L be a Brouwerian semilattice and L0 ⊆ L a finite Brouwe-
rian sub-semilattice. Let (h, h,m) be a signature of decomposition type in L0. If
x1, x2 ∈ L are different from 1 and satisfy

x1 → m = x2 ≤ h
x2 → m = x1 ≤ h

(1)

then (x1, x2) is a primitive pair over L0 inducing the signature (h, h,m).

Proof. We prove the result in two steps.
- (x1, x2) is a primitive pair.

Lemma 4.7 shows that x1 6= x2 and x1, x2 /∈ L0. The hypotheses say that
x1 → m = x2 and x2 → m = x1. Furthermore, for any a meet-irreducible
element of L0, we have that m < a implies xi → a = 1 ∈ L0 because xi ≤ h =
m+ for i = 1, 2.

- (x1, x2) induces the signature (h, h,m).
We use the Proposition 3.22. By Lemma 4.7, m = x1 ∧ x2. Let a be meet-
irreducible in L0 and i ∈ {1, 2}. If xi < a then m < a because m ≤ xi. Thus
h = m+ ≤ a. On the other hand, h ≤ a implies xi < a. Indeed, xi /∈ L0 and
xi ≤ h.

a
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Definition 4.9. Let L0 be a finite Brouwerian semilattice and h1, h2 ∈ L0.
We define htL0(h1, h2) to be the maximum length of chains of meet-irreducible
elements of L0

k1 < k2 < · · · < kn

such that h1 ≤ k1 and h2 � kn. Equivalently, since L0 is a Heyting algebra
because it is finite, h1 ≤ k1 and h1 ∨ h2 � kn with the join taken inside L0.
We call htL0

(h1, h2) the height of h1 relative to h2 in L0.
We define the relative height of (h1, h2) in L0, which we denote by HL0

(h1, h2),
as

HL0
(h1, h2) := htL0

(h1, h2) + htL0
(h2, h1)

Intuitively, HL0
(h1, h2) measures how much h1 ∨ h2 is bigger than h1 and h2 in

L0.
Note that HL0

(h1, h2) = 0 if and only if h1 = h2.

Lemma 4.10. Let L be a Brouwerian semilattice and L0 ⊆ L a finite Brouwe-
rian sub-semilattice. Let (h1, h2,m) be a signature of decomposition type in L0.
If y1, y2 ∈ L are different from 1 and satisfy

y1 → m = y2 ≤ h2

y2 → m = y1 ≤ h1

y1 → h2 = h1 → h2

y2 → h1 = h2 → h1

(2)

then:

1. (h1, h2 ∨ y1, y1) and (h1 ∨ y2, h2, y2) are signatures of decomposition type
in L0〈y1, y2〉, where the joins are taken inside L0〈y1, y2〉;

2. htL0〈y1,y2〉(h1, h2) = htL0
(h1, h2) and htL0〈y1,y2〉(h2, h1) = htL0

(h2, h1);
3. If h1 � h2 then htL0〈y1,y2〉(h2 ∨ y1, h1) < htL0

(h2, h1).
If h2 � h1 then htL0〈y1,y2〉(h1 ∨ y2, h2) < htL0(h1, h2).

Proof. We prove the three statements separately.

1. (h1, h2 ∨ y1, y1) and (h1 ∨ y2, h2, y2) are signatures of decomposition type
in L0〈y1, y2〉.
By Lemma 4.7, y1, y2 /∈ L0 are the meet-irreducible components of m in
L0〈y1, y2〉.
Moreover, in L0〈y1, y2〉 we have that:

h1 ∧ (h2 ∨ y1) = y+
1

(h1 ∨ y2) ∧ h2 = y+
2

(3)

Indeed

h1 ∧ (h2 ∨ y1) = (h1 ∧ h2) ∨ (h1 ∧ y1) = (h1 ∧ h2) ∨ y1 = m+ ∨ y1

which coincides with y+
1 , the successor of y1 in L0〈y1, y2〉. To show this,

observe that, as a consequence of Lemma 4.6, the inclusion L0 ↪→ L0〈y1, y2〉
is dual to a total surjective P-morphism ϕ :M(L0〈y1, y2〉)→M(L). Recall
(see the proof of Theorem 2.13) that the preimage of an element of M(L)
under ϕ consists of the meet-irreducible components of such an element
inside L0〈y1, y2〉. Then ϕ−1(m) = {y1, y2} because y1, y2 are the meet-
irreducible components of m in L0〈y1, y2〉.
As a consequence of the surjectivity and totality of ϕ we have:

↑ϕ−1(↑m \ {m}) = ϕ−1(↑m \ {m}) = (↑y1 ∪ ↑y2) \ {y1, y2}.
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Therefore

↑ϕ−1(↑m \ {m}) ∩ ↑y1 = (↑y1 ∪ ↑y2) \ {y1, y2} ∩ ↑y1

= ↑y1 \ {y1, y2} = ↑y1 \ {y1}.

Which means m+ ∨ y1 = y+
1 . That (h1 ∨ y2) ∧ h2 = y+

2 is proved similarly.
2. htL0〈y1,y2〉(h1, h2) = htL0

(h1, h2) and htL0〈y1,y2〉(h2, h1) = htL0
(h2, h1).

Suppose there exists a chain of meet-irreducibles in L0〈y1, y2〉
k1 < k2 < · · · < kr

such that h1 ≤ k1 and h2 � kr. Let, as above, ϕ :M(L0〈y1, y2〉)→M(L)
be the surjective total P-morphism dual to the inclusion L0 ↪→ L0〈y1, y2〉.
Then

ϕ(k1) < ϕ(k2) < · · · < ϕ(kr)

is a chain of meet-irreducibles in L0 such that h1 ≤ ϕ(k1) and h2 � ϕ(kr).
Indeed, P-morphisms preserve the strict order.
On the other hand, a chain of meet-irreducibles in L0

b1 < b2 < · · · < br

such that h1 ≤ b1 and h2 � br can be lifted to a chain of meet-irreducibles
of L0〈y1, y2〉

k1 < k2 < · · · < kr

such that ϕ(ks) = bs for s = 1, . . . , r using the fact that ϕ is a surjective
P-morphism. We have that h1 ≤ k1 and h2 � kr.
Therefore htL0〈y1,y2〉(h1, h2) = htL0(h1, h2). That htL0〈y1,y2〉(h2, h1) =
htL0

(h2, h1) is shown analogously.
3. If h1 � h2 then htL0〈y1,y2〉(h2 ∨ y1, h1) < htL0

(h2, h1).
Let n2 = htL0

(h2, h1). Note that n2 6= 0 because h1 � h2. Suppose there
exists a chain in M(L0〈y1, y2〉)

k1 < k2 < · · · < kn2

such that h2 ∨ y1 ≤ k1 and h1 � kn2
. We have that k1 is not a meet-

irreducible component of h2 in L0〈y1, y2〉. Indeed, y1 ≤ k1 and the meet-
irreducible components of h2 that are greater than or equal to y1 are the
same that are greater than or equal to h1 because y1 → h2 = h1 → h2, but
h1 � k1. Thus there would exist a continuation of such a chain given by k0

meet-irreducible component of h2 in L0〈y1, y2〉, but this is absurd because
we have proved above that n2 is the maximum length of those chains.
Symmetrically, if h2 � h1 then htL0〈y1,y2〉(h1 ∨ y2, h2) < htL0

(h1, h2).

a

Lemma 4.11. Let L0, L, (h1, h2,m) and (y1, y2) as in Lemma 4.10. Let
(y11, y12) ∈ L2 and (y21, y22) ∈ L2 be primitive pairs over L0〈y1, y2〉 inducing the
signatures (h1, h2 ∨ y1, y1) and (h1 ∨ y2, h2, y2), respectively. Then the extension
of finite Brouwerian semilattices L0〈y1, y2, y11, y12〉 ⊆ L0〈yij | i, j = 1, 2〉 is min-
imal of decomposition type. This implies that any meet-irreducible of L0〈y1, y2〉
different from y1, y2 is still meet-irreducible in L0〈yij | i, j = 1, 2〉.

Proof. By the hypotheses we have that:

1. y11 6= y12 and y11, y12 /∈ L0〈y1, y2〉,
2. y11 → y1 = y12 and y12 → y1 = y11

and for any a meet-irreducible of L0〈y1, y2〉:
3. if y1 < a then y1i → a ∈ L0〈y1, y2〉 for i = 1, 2,
4. y11 < a iff h1 ≤ a and y12 < a iff (h2 ∨ y1) ≤ a.

furthermore
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1. y21 6= y22 and y21, y22 /∈ L0〈y1, y2〉,
2. y21 → y2 = y22 and y22 → y2 = y21

and for any a meet-irreducible of L0〈y1, y2〉:
3. if y2 < a then y2i → a ∈ L0〈y1, y2〉 for i = 1, 2,
4. y21 < a iff (h1 ∨ y2) ≤ a and y22 < a iff h2 ≤ a.

Notice that properties 4 of y11, y12 and 4 of y21, y22 actually hold for any a ∈
L0〈y1, y2〉 since any element in a finite Brouwerian semilattice is the meet of
meet-irreducible elements.
First of all, we observe that

y2i → y1 = y1 and y1i → y2 = y2 for i = 1, 2.(4)

Indeed,

y1 ≤ y2i → y1 ≤ y2 → y1 = y2 → (y2 → m) = y2 → m = y1.(5)

The second equation of (4) is shown analogously. The inequalities (5) and their
analogues also imply that y2 → y1 = y1 and y1 → y2 = y2.
Moreover

y1i − y2j = y1i and y2i − y1j = y2i for i, j = 1, 2(6)

Indeed,

y11 ≤ y21 → y11 ≤ y2 → y11 = y2 → (y12 → y1) = y12 → (y2 → y1)

= y12 → y1 = y11

and thus y21 → y11 = y11. The remaining equations of (6) are proved analo-
gously.
- (y21, y22) is a primitive pair inducing the signature (h1 ∨ y2, h2, y2).

As a consequence of Lemma 4.7, y1, y2 are meet-irreducible in L0〈y1, y2〉, thus
y2 is meet-irreducible in L0〈y1, y2, y11, y12〉.
y21 6= y22 by property 1 of y21, y22. Also y21, y22 /∈ L0〈y1, y2, y11, y12〉. Indeed,
if y21 ∈ L0〈y1, y2, y11, y12〉 then y22 = y21 → y2 ∈ L0〈y1, y2, y11, y12〉 and vice
versa. In that case, y2 = y21 ∧ y22 ∈ L0〈y1, y2, y11, y12〉 with y21, y22 6= y2

because they are not in L0〈y1, y2〉. This is impossible because y2 is meet-
irreducible in L0〈y1, y2, y11, y12〉.
y21 → y2 = y22 and y22 → y2 = y21 by property 2 of y21, y22.
Since (y11, y12) is a primitive pair inducing the signature (h1, h2 ∨ y1, y1), the
meet-irreducibles of L0〈y1, y2, y11, y12〉 are y11, y12 and the meet-irreducibles of
L0〈y1, y2〉 except y1. If a is a meet-irreducible of L0〈y1, y2, y11, y12〉 such that
y2 < a then a is meet-irreducible in L0〈y1, y2〉 because a 6= y11, y12. Indeed,
y2 ≮ y11, y12 because y2 → y1i = (y21 ∧ y22) → y1i = y22 → (y21 → y1i) =
y1i 6= 1 by (6). Thus y2i → a ∈ L0〈y1, y2〉 by property 3 of y21, y22.

- Every meet-irreducible of L0〈y1, y2〉 different from y1, y2 is still meet-irreducible
in L0〈yij | i, j = 1, 2〉. We have that

M(L0〈y1, y2〉) \ {y1, y2} ⊆ M(L0〈y1, y2, y11, y12〉) \ {y2} ⊆ M(L0〈yij | i, j = 1, 2〉)

because the two extensions involved are both minimal of decomposition type.
a

Lemma 4.12. Let L0, L, (h1, h2,m) and (y1, y2) as in Lemma 4.10. Let
(y11, y12) ∈ L2 and (y21, y22) ∈ L2 be primitive pairs over L0〈y1, y2〉 inducing the
signatures (h1, h2∨y1, y1) and (h1∨y2, h2, y2), respectively. If x1 = y11∧y21 and
x2 = y12 ∧ y22, then (x1, x2) is a primitive pair over L0 inducing the signature
(h1, h2,m).
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Proof. First of all, we observe that

x1 → m = x2 and x2 → m = x1.(7)

Indeed, thanks to equations (4) we have:

x1 → m = (y11 ∧ y21)→ (y1 ∧ y2) = (y11 → (y21 → y1)) ∧ (y21 → (y11 → y2))

= (y11 → y1) ∧ (y21 → y2) = y12 ∧ y22 = x2;

showing the second equation of (7) is analogous.
In the rest of the proof we will refer to the properties of y11, y12, y21, y22 listed
at the beginning of the proof of Lemma 4.11.
- (x1, x2) is a primitive pair over L0.
x1, x2 6= 1 since y11, y12, y21, y22 are not in L0. m is meet-irreducible and
equations (7) imply that m = x1 ∧ x2. Thus if x1 = x2, then x1 = m = 1 but
this is absurd. By equations (7) we get that x1 → m = x2, x2 → m = x1.
Furthermore x1, x2 /∈ L0. This is because m is meet-irreducible in L0 and
x1 → m = x2, x2 → m = x1 are different from 1 and m.
It remains to show that, for any a meet-irreducible element of L0 and i = 1, 2,
if m < a then xi → a ∈ L0. We show x1 → a ∈ L0, that x2 → a ∈ L0 is
proved analogously.
Since m < a, we have h1 ∧h2 = m+ ≤ a. Thus h1 ≤ a or h2 ≤ a. We consider
these two cases separately. Suppose h1 ≤ a. Then x1 → a = 1 ∈ L0 because
x1 ≤ y11 ≤ h1. Suppose h2 ≤ a and h1 � a, we want to prove that x1 → a =
a ∈ L0. Note that the meet-irreducible components of a in L0〈y1, y2〉 coincide
with the meet-irreducible component of a in L0〈yij | i, j = 1, 2〉. Indeed, since
a is the meet of its meet-irreducible components in L0〈y1, y2〉, it is sufficient
to prove that any meet-irreducible component b of a in L0〈y1, y2〉 is meet-
irreducible in L0〈yij | i, j = 1, 2〉. We have b 6= y1, y2 because h2 ≤ b and
h2 � y1, y2. Indeed, if h2 ≤ yi then 1 = h2 → yi = h2 → (yj → m) = yj →
(h2 → m) = yj → m = yi with i 6= j which is absurd. Thus by Lemma 4.11
we have that b is also meet-irreducible in L0〈yij | i, j = 1, 2〉.
Since a is meet-irreducible in L0 and h1 � a, we have h1 → a = a. For
any b meet-irreducible component of a in L0〈y1, y2〉 we have h1 � b because
h1 → a = a means that h1 is not smaller than or equal to any meet-irreducible
component of a. Since h1 � b and in particular h1∨y2 � b, then property 4 of
y11 and property 4 of y21 imply that y11, y21 � b. Therefore x1 = y11∧y21 � b
because b is meet-irreducible in L0〈yij |i, j = 1, 2〉. This implies that x1 → a =
a because x1 is not smaller than or equal to any meet-irreducible component
of a in L0〈yij | i, j = 1, 2〉.

- (x1, x2) induces the signature (h1, h2,m).
We use Proposition 3.22. Let a be meet-irreducible in L0〈y1, y2〉.
If hi ≤ a then xi ≤ yii < a by property 4 of y11 and property 4 of y22

If x1 < a then m < a by (7) and m+ = h1∧h2 ≤ a. Let b be a meet-irreducible
component of a in L0〈y1, y2〉. We claim that h1 ≤ b. We have that b is meet-
irreducible in L0〈y1, y2〉 and b 6= y1, y2 because x1 < b and x1 ≮ y1, y2. Indeed,
by equations (6), we have:

x1 → y2 = y11 → (y21 → y2) = y11 → y22 = y22 6= 1

x1 → y1 = y21 → (y11 → y1) = y21 → y12 = y12 6= 1
(8)

Suppose h1 � b, then by property 4 of y11 we would get y11 ≮ b. Furthermore,
h1 ∨ y2 � b and by property 4 of y21 we would get y21 ≮ b. Then b would
also be meet-irreducible in L0〈yij | i, j = 1, 2〉 by Lemma 4.11. Therefore x1 =
y11 ∧ y21 ≮ b but this is absurd. Thus for any b meet-irreducible component
of a we have h1 ≤ b and hence h1 ≤ a. For x2 the reasoning is analogous.
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a

Lemma 4.13. Let L0, L, (h1, h2,m) and (y1, y2) as in Lemma 4.10 with h2 <
h1. Let (y11, y12) ∈ L2 be a primitive pair over L0〈y1, y2〉 inducing the signature
(h1, h2 ∨ y1, y1). If x1 = y11 and x2 = y12 ∧ y2, then (x1, x2) is a primitive pair
over L0 inducing the signature (h1, h2,m).

Proof. By equations (3), we have y+
2 = (h1 ∨ y2) ∧ h2 = h2 in L0〈y1, y2〉.

We will refer to the properties 1, 2, 3, 4 of y11, y12 listed at the beginning of the
proof of Lemma 4.11. We have

x1 → m = x2 and x2 → m = x1.(9)

Indeed,

x1 → m = y11 → (y1 ∧ y2) = (y11 → y1) ∧ (y11 → y2) = y12 ∧ y2 = x2

x2 → m = (y12 ∧ y2)→ (y1 ∧ y2) = (y12 → (y2 → y1)) ∧ (y12 → (y2 → y2))

= y12 → y1 = y11 = x1

We have used that y11 → y2 = y2, this is proven in the same way as (4) in
Lemma 4.12.
- (x1, x2) is a primitive pair over L0.

Equations (9) imply m = x1 ∧ x2. Moreover, if x1 = x2 then x1 = m = 1 but
this is absurd because x1, x2 6= 1 since y11, y12, y2 /∈ L0. Thus x1 6= x2. We
have x1, x2 /∈ L0 because m is meet-irreducible in L0 and x1 → m = x2 and
x2 → m = x1 are different from 1 and m.
By equations (9) we have x1 → m = x2 and x2 → m = x1.
It remains to show that, for any a meet-irreducible element of L0 and i = 1, 2,
if m < a then xi → a ∈ L0.
If m < a then h2 = h1 ∧ h2 = m+ ≤ a. Thus h1 ≤ a or h2 ≤ a. We consider
these two cases separately. Suppose h1 ≤ a. Then x1 → a = 1 ∈ L0 because
y11 ≤ h1 = x1, moreover x2 < y2 ≤ h2 < h1 ≤ a imply x2 → a = 1 ∈ L0.
Suppose h2 ≤ a and h1 � a. Clearly x2 → a = 1 because x2 ≤ y2 ≤ h2 ≤ a.
We want to prove that x1 → a = a ∈ L0. Note that the meet-irreducible
components of a in L0〈y1, y2〉 coincide with the meet-irreducible components
of a in L0〈y1, y2, y11, y12〉. Indeed, since a is the meet of its meet-irreducible
components in L0〈y1, y2〉, it is sufficient to prove that any meet-irreducible
component b of a in L0〈y1, y2〉 is meet-irreducible in L0〈y1, y2, y11, y12〉. We
have b 6= y1 because h2 ≤ b and h2 � y1. Indeed, h2 � y1 holds because
h2 ≤ y1 would imply 1 = h2 → y1 = h2 → (y2 → m) = y2 → (h2 → m) =
y2 → m = y1 which is absurd. Then we have that b is also meet-irreducible
in L0〈y1, y2, y11, y12〉. This follows from the fact that (y11, y12) is a primitive
pair over L0〈y1, y2〉 inducing the signature (h1, h2 ∨ y1, y1) which implies that
M(L0〈y1, y2〉) \ {y1} ⊆ M(L0〈y1, y2, y11, y12〉). Since a is meet-irreducible
of L0 and h1 � a it is h1 → a = a. For any b meet-irreducible component
of a in L0〈y1, y2〉 we have h1 � b because h1 → a = a means that h1 is not
smaller than or equal to any meet-irreducible component of a. Since h1 � b, by
property 4 of y11, we have that x1 = y11 ≮ b, therefore x1 � b because b 6= y11

since y11 /∈ L0〈y1, y2〉 . This implies that x1 → a = a because x1 is not smaller
than or equal to any meet-irreducible component of a in L0〈y1, y2, y11, y12〉.

- (x1, x2) induces the signature (h1, h2,m).
We use Proposition 3.22. Let a be meet-irreducible in L0〈y1, y2〉.
By property 4 of y11 we have that h1 ≤ a iff x1 = y11 < a.
If h2 ≤ a then x2 ≤ y2 < h2 ≤ a since h2 = y+

2 .
If x2 < a, since m = y1 ∧ y2 ≤ y12 ∧ y2 = x2, then m < a and h2 = h1 ∧ h2 =
m+ ≤ a.
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Theorem 4.14. Let L be a Brouwerian semilattice satisfying the Splitting Ax-
iom.
Then for any finite Brouwerian sub-semilattice L0 ⊆ L and for any signature
(h1, h2,m) of decomposition type in L0 there exists a primitive pair (x1, x2) ∈ L2

over L0 inducing that signature.

Proof. We prove the theorem by induction on HL0
(h1, h2).

Base case of induction: HL0
(h1, h2) = 0.

In this case we have h1 = h2 = m+. We denote h1 = h2 by h.
Since m � h, we can apply the splitting axiom to m,h, h. Hence there exist
elements x1, x2 ∈ L different from 1 such that:

x1 → m = x2 ≤ h
x2 → m = x1 ≤ h.

(10)

By Lemma 4.8, we have that (x1, x2) is a primitive pair inducing the signature
(h1, h2,m). Inductive step.
Assume the statement of the theorem be true for any pair (h1, h2) of relative
height smaller than n, we show it is true for HL0

(h1, h2) = n.
Since m� m+ = h1 ∧ h2, we can apply the splitting axiom to m,h1, h2 to find
y1, y2 ∈ L different from 1 such that:

y1 → m = y2 ≤ h2

y2 → m = y1 ≤ h1

y1 → h2 = h1 → h2

y2 → h1 = h2 → h1

(11)

By local finiteness, L0〈y1, y2〉 is finite and thus a Heyting algebra. By
Lemma 4.10 we have

1. (h1, h2∨y1, y1) and (h1∨y2, h2, y2) are signatures of decomposition type
in L0〈y1, y2〉, where the joins are taken inside L0〈y1, y2〉;

2. htL0〈y1,y2〉(h1, h2) = htL0
(h1, h2) and htL0〈y1,y2〉(h2, h1) = htL0

(h2, h1);
3. If h1 � h2 then htL0〈y1,y2〉(h2 ∨ y1, h1) < htL0

(h2, h1).
If h2 � h1 then htL0〈y1,y2〉(h1 ∨ y2, h2) < htL0

(h1, h2).

We can now apply the inductive hypothesis. To do so we shall consider differ-
ent cases.
First, we consider the case in which h1 � h2 and h2 � h1, i.e. h1, h2 are incom-
parable.
In this case HL0〈y1,y2〉(h1, h2 ∨ y1) < HL0(h1, h2).
Indeed, since h1 ∨ (h2 ∨ y1) = h1 ∨ h2 and so htL0〈y1,y2〉(h1, h2 ∨ y1) =
htL0〈y1,y2〉(h1, h2), we have:

HL0〈y1,y2〉(h1, h2 ∨ y1) = htL0〈y1,y2〉(h1, h2 ∨ y1) + htL0〈y1,y2〉(h2 ∨ y1, h1)

= htL0〈y1,y2〉(h1, h2) + htL0〈y1,y2〉(h2 ∨ y1, h1)

< htL0(h1, h2) + htL0(h2, h1) = HL0(h1, h2).

Analogously, HL0〈y1,y2〉(h1 ∨ y2, h2) < HL0(h1, h2).
Therefore we can apply the inductive hypothesis on both the two signatures
(h1, h2 ∨ y1, y1) and (h1 ∨ y2, h2, y2) considered inside L0〈y1, y2〉 to obtain two
primitive pairs (y11, y12) ∈ L2 and (y21, y22) ∈ L2 of decomposition type over
L0〈y1, y2〉 which induce the two signatures, respectively.
Let x1 = y11 ∧ y21 and x2 = y12 ∧ y22. Lemma 4.12 guarantees that (x1, x2) is a
primitive pair of decomposition type over L0 inducing the signature (h1, h2,m).
Finally, we consider the case in which h1 and h2 are comparable.
We assume h1 < h2. Then, as shown above, h2 � h1 implies HL0〈y1,y2〉(h1 ∨
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y2, h2) < HL0(h1, h2). Thus, we can apply the inductive hypothesis on the
signature (h1 ∨ y2, h2, y2) considered inside L0〈y1, y2〉 to obtain the primitive
pair (y11, y12) ∈ L2 over L0〈y1, y2〉 which induces that signature. Define x1 = y11

and x2 = y12 ∧ y2. Lemma 4.13 guarantees that (x1, x2) is a primitive pair of
decomposition type over L0 inducing the signature (h1, h2,m).
The case h2 < h1 is analogous and the case h1 = h2 is considered in the base
case of the induction. a

4.2. Density axioms. [Density 1 Axiom] For every c there exists b 6= 1
such that b� c

Theorem 4.15. Any existentially closed Brouwerian semilattice satisfies the
Density 1 Axiom.

Proof. It is sufficient to show, by Lemma 4.2, that for any finite Brouwerian
semilattice L0 and c ∈ L0 there exists a finite extension L0 ⊆ L with b ∈ L
different from 1 such that b� c.
Let C be the upset of M(L0) corresponding to c.
Let P be the poset obtained from M(L0) by adding a new least element l ∈ P
such that l ≤ p for any p ∈ M(L0). Let ϕ : P → M(L0) be the surjective P-
morphism such that dom ϕ =M(L0) and it is the identity on its domain. Then
↑l� C. Let L be the Brouwerian semilattice dual to P and b ∈ L corresponding
to ↑l. a
[Density 2 Axiom] For every c, a1, a2, d such that a1, a2 6= 1, a1 � c, a2 � c
and d → a1 = a1, d → a2 = a2 there exists an element b different from 1 such
that:

b� c

a1 � b

a2 � b

d→ b = b

Theorem 4.16. Any existentially closed Brouwerian semilattice satisfies the
Density 2 Axiom.

Proof. It is sufficient to show, by Lemma 4.2, that for any finite Brouwerian
semilattice L0 and c, a1, a2, d such that a1, a2 6= 1, a1 � c, a2 � c and d→ a1 =
a1, d→ a2 = a2 there exists a finite extension L0 ⊆ L with b ∈ L different from
1 such that b� c, a1 � b, a2 � b and d→ b = b.
Let C,A1, A2, D be the upsets of M(L0) corresponding to c, a1, a2, d.
We proceed in two ways depending on whether C is empty or not.
If C = ∅ choose two minimal elements α1, α2 respectively of A1 and A2 and
obtain a poset P by adding a new element β to P0 and setting for any x ∈ P :

• x ≤ β iff x = β or x ≤ α1 or x ≤ α2.
If α1, α2 are incomparable, they become the only two predecessors of β in
P , otherwise if e.g. α1 ≤ α2 then α2 is the only predecessor of β.

• β ≤ x iff x = β, i.e. β is maximal in P .

Define a surjective P-morphism ϕ : P →M(L0) taking dom ϕ =M(L0) and ϕ
acting as the identity on its domain. Take B = ↑β, we have:

• B � ∅ = ↑ϕ−1(C),
• A1 ∪ {β} = ↑ϕ−1(A1)� B,
• A2 ∪ {β} = ↑ϕ−1(A2)� B,
• B = ↑ϕ−1(D)→ B.

Indeed, since d → a1 = a1 and d → a2 = a2, D does not contain any
minimal element of A1 or A2, in particular it does not contain α1 or α2.

Thus, take L to be the Brouwerian semilattice dual to P and b ∈ L corresponding
to B.
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If C 6= ∅ let γ1, . . . , γn be the minimal elements of C.
Choose for any i = 1, . . . , n two minimal elements α1

i , α
2
i respectively of A1 and

A2 such that α1
i ≤ γi and α2

i ≤ γi. Notice that they exist and γi 6= α1
i , γi 6= α2

i

because A1 � C and A2 � C.
Obtain a poset P by adding new elements β1, . . . , βn to P0 and setting for any
x ∈ P :

• x ≤ βi iff x = βi or x ≤ α1
i or x ≤ α2

i .
If α1

i , α
2
i are incomparable they become the only two predecessors of βi in

P , otherwise if e.g. α1
i ≤ α2

i then α2
i is the only predecessor of βi.

• βi ≤ x iff x = β or γi ≤ x,
i.e. γi is the unique successor of βi in P .

Define a surjective P-morphism ϕ : P →M(L0) by taking dom ϕ =M(L0) and
ϕ acting as the identity on its domain.
Take B = ↑β1 ∪ · · · ∪ ↑βn, we have:

• B � ↑ϕ−1(C),
• A1 ∪ {β1, . . . , βn} = ↑ϕ−1(A1)� B,
• A2 ∪ {β1, . . . , βn} = ↑ϕ−1(A2)� B,
• B = ↑ϕ−1(D)→ B.

Indeed D does not contain any minimal element of A1 or A2, in particular
it does not contain α1

i or α2
i for any i = 1, . . . , n.

Then, take L to be the Brouwerian semilattice dual to P and b ∈ L corresponding
to B. a

Lemma 4.17. Let L be a Brouwerian semilattice and L0 ⊆ L a finite Brouwe-
rian sub-semilattice. Let (h, ∅) be a signature of addition type in L0 and 0L0 the
least element of L0. If 1 6= t ∈ L is such that t� 0L0

, then:

1. L1 := L0 ∪ {t} is a Brouwerian sub-semilattice of L,
2. (h, 0L0 , t) is a signature of decomposition type in L1,
3. If (x1, x2) is a primitive pair of elements of L over L1 inducing the signa-

ture (h, 0L0
, t), then x1 is a primitive element of L over L0 inducing the

signature (h, ∅).

Proof. We prove the result in two steps.
- L1 is a Brouwerian sub-semilattice of L and (h, 0L0 , t) is a signature of de-

composition type in L1.
L1 is clearly closed under meets. It is also closed under implications. Indeed,
for any a ∈ L0 we have t < a and thus t→ a = 1 and t ≤ a→ t ≤ 0L0

→ t = t,
therefore a→ t = t. This also shows that t is a meet-irreducible of L1. More-
over, it is clear that the meet-irreducibles of L1 are the meet-irreducibles of
L0 and t.
(h, 0L0

, t) is a signature of decomposition type in L1 because h∧ 0L0
= 0L0

=
t+.

Since (x1, x2) is a primitive pair inducing the signature (h, 0L0
, t), we have the

following list of properties:

1. x1 6= x2 and x1, x2 /∈ L1,
2. x1 → t = x2 and x2 → t = x1

and for any c meet-irreducible of L1:

3. if m < c then xi → c ∈ L1 for i = 1, 2,
4. x1 < c iff h ≤ c and x2 < c iff 0L0

≤ c.
Recall that Lemma 3.15 implies that for any c ∈ L1:

(i) xi → c ∈ L1 or xi → c = b ∧ xj for some b ∈ L1 with {i, j} = {1, 2}.
(ii) c→ xi = xi or c→ xi = 1 for i = 1, 2.
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- x1 is a primitive element of L over L0 inducing the signature (h, ∅).
x1 /∈ L0 because x1 /∈ L1. Let a be a meet-irreducible of L0. Then x1 → a ∈
L0. Indeed, by property 4 of x2, it follows from 0L0

≤ a that x2 < a. Thus,
by (ii) either x1 → a ∈ L1 or x1 → a = b ∧ x2 with b ∈ L1. The latter is
impossible because we would get x2 < a ≤ x1 → a = b ∧ x2 ≤ x2. Therefore
it has to be x1 → a ∈ L1. Thus, x1 → a ∈ L0 because t < a ≤ x1 → a.
We have that a→ x1 = x1 or a→ x1 = 1 by property (ii).
We use Proposition 3.22 to show that x1 induces the signature (h, ∅).
x1 < a if and only if h ≤ a by property 4 of x1. Moreover a ≮ x1. Indeed, if
a < x1 then 0L0

< x1 and so 1 = 0L0
→ x1 = 0L0

→ (x2 → t) = x2 → (0L0
→

t) = x2 → t = x1 which is impossible because x1 /∈ L1.
a

Lemma 4.18. Let L be a Brouwerian semilattice and L0 ⊆ L a finite Brouw-
erian sub-semilattice. Let (h, {m1, . . . ,mk}) be a signature of addition type in
L0 with k ≥ 1. Let y ∈ L be a primitive element over L0 inducing the signature
(h, {m1, . . . ,mk−1}). Then

1. (h,m+
k ,mk) is a signature of decomposition type in L0〈y〉, where m+

k is the
unique successor of mk in L0〈y〉;

2. let (m′k,m
′′
k) be a primitive pair inducing the signature (h,m+

k ,mk) and
1 6= x ∈ L such that

x� h, y � x, m′k � x and d→ x = x(12)

where d =
∧
{b meet-irreducible of L0 s.t. b � m1, . . . , b � mk}. Then x is

a primitive element inducing the signature (h, {m1, . . . ,mk}).

Proof. By Definition 3.10 and Proposition 3.22, we have that for any a meet-
irreducible of L0:

1. y /∈ L0,
2. y → a ∈ L0,
3. either a→ y = y or a→ y = 1,
4. y < a iff h ≤ a, and a < y iff a ≤ mi for some i = 1, . . . , k − 1.

Recall that Lemma 3.11 shows that the properties 2 and 3 actually hold for any
a ∈ L0.
Notice thatmk is still meet-irreducible in the Brouwerian sub-semilattice L0〈y〉 ⊆
L generated by L0 and y since L0 ⊆ L0〈y〉 is a minimal finite extension of
addition type by Theorem 3.12.
- (h,m+

k ,mk) is a signature of addition type in L0〈y〉.
Indeed, mk � m+

k = h ∧m+
k .

The elements m′k,m
′′
k ∈ L satisfy:

1. m′k,m
′′
k /∈ L0〈y〉 and m′k 6= m′′k ,

2. m′k → mk = m′′k and m′′k → mk = m′k

and for any a meet-irreducible of L0〈y〉:
3. if mk < a then m′k → a ∈ L0〈y〉 and m′′k → a ∈ L0〈y〉,
4. m′k < a iff h ≤ a and m′′k < a iff m+

k ≤ a.

Observe that property 4 actually holds for any a ∈ L0〈y〉 since any element in a
finite Brouwerian semilattice is the meet of meet-irreducible elements.
- x is primitive over L0.

We have x /∈ L0. Indeed, if x ∈ L0 then, by property 4 of y, it would be h ≤ x
because y < x. This is impossible because x 6= 1 and x� h.
Let a be meet-irreducible in L0. If h ≤ a then x → a = 1 ∈ L0 since x ≤ h
by equations (12). If h � a then by property 4 of m′k we have m′k ≮ a. We
consider two cases:
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– If h � a and a 6= mk, then a is still meet-irreducible in L0〈y,m′k,m′′k〉
(since L0〈y〉 ⊆ L0〈y,m′k,m′′k〉 is a minimal finite extension by Theo-
rem 3.16). Hence m′k → a = a. Therefore x → a = a ∈ L0 because
a ≤ x→ a ≤ m′k → a = a since m′k ≤ x.

– If a = mk, then m′k � x by equations (12) and

x→ mk = x→ (m′k ∧m′′k) = (x→ m′k) ∧ (x→ m′′k) = m′k ∧ (x→ (m′k → mk))

= m′k ∧ ((m′k ∧ x)→ mk) = m′k ∧ (m′k → mk) = m′k ∧m′′k = mk ∈ L0.

We also have a → x = 1 or a → x = x. Indeed, we consider again two cases.
Suppose a ≤ mi for some i = 1, . . . , k. If i 6= k then a ≤ y ≤ x and a→ x = 1
by property 4 of y and equations (12). If i = k then a ≤ mk ≤ m′k ≤ x and
a→ x = 1. Suppose now a � mi for any i = 1, . . . , k then, by definition of d,
we have d ≤ a. So a→ x = x because x ≤ a→ x ≤ d→ x = x.

- x induces the signature (h,M).
We use Proposition 3.22.
If x < a, then m′k ≤ x < a and thus h ≤ a by property 4 of m′k.
If h ≤ a, then x < a because x < h by (12).
If a < x and a � m1, . . . , a � mk, then d ≤ a and 1 = a → x ≤ d → x = x
which is absurd. Thus, mi ≤ a for some i = 1, . . . , k.
Let a ≤ mi for some i = 1, . . . , k. If i 6= k, then a ≤ mi < y < x because
mi < y by property 4 of y. Therefore a < x. If i = k then a ≤ mk < m′k < x
and thus a < x.

a

Theorem 4.19. Let L be a Brouwerian semilattice satisfying the Splitting,
Density 1 and Density 2 Axioms. Then for any finite Brouwerian sub-semilattice
L0 ⊆ L and for any signature (h,M) of addition type in L0 there exists a prim-
itive element x ∈ L over L0 inducing that signature.

Proof. Let M = {m1, . . . ,mk}, the proof is by induction on k.
Base case: k = 0, i.e. M = ∅.
Let 0L0

be the minimum element of L0. By Density 1 there exists 1 6= t ∈ L
such that t� 0L0 .
By Lemma 4.17, L1 := L0∪{t} is a Brouwerian sub-semilattice of L and (h, 0L0 , t)
is a signature of decomposition type in L1. Thanks to the Splitting Axiom, we
can apply Theorem 4.14 to the signature (h, 0L0

, t) in L1 and obtain the existence
of a primitive pair (x1, x2) ∈ L2 inducing the signature (h, 0L0

, t). Lemma 4.17
shows that x1 is a primitive element over L0 inducing the signature (h, ∅).
Inductive step.
Assume k ≥ 1 and that the statement of the theorem is true for any signature
(h,M) with #M = k − 1. By inductive hypothesis there exists a primitive
element y ∈ L over L0 which induces the signature (h, {m1, . . . ,mk−1}). By
Lemma 4.18, (h,m+

k ,mk) is a signature of decomposition type in L0〈y〉. Since
L satisfies the Splitting Axiom, we can apply Theorem 4.14 to the signature
(h,m+

k ,mk) in L0〈y〉 to obtain a primitive pair (m′k,m
′′
k) of elements of L induc-

ing (h,m+
k ,mk). We want to apply the Density 2 Axiom on h, y,m′k, d where

d =
∧
{b meet-irreducible of L0 s.t. b � m1, . . . , b � mk}.

We need to show that we can apply the axiom. Since y is primitive over L0 and
induces the signature (h, {m1, . . . ,mk−1}), by Lemma 3.11 and Proposition 3.22,
we have the following two properties of y:

1. for any a ∈ L0, either a→ y = y or a→ y = 1,
2. for any b a meet-irreducible of L0, y < b iff h ≤ b, and b < y iff b ≤ mi for

some i = 1, . . . , k − 1.



28

y � h since y < h because h ∈ L0 and, by property 1 of y, we have h→ y = y.
m′k � h since m′k < h and h → m′k = h → (m′′k → mk) = m′′k → (h → mk) =
m′′k → mk = m′k. Notice that h → mk = mk because mk is meet-irreducible in
L0 and mk < h.
d→ y = y because for any b meet-irreducible in L0 such that b � m1, . . . , b � mk

we have b→ y = y. Indeed, otherwise it would be b→ y = 1 because y is meet-
irreducible in L0〈y〉. So b < y and then, by property 2 of y, we would have
b ≤ mi for some i < k, which is impossible.
d→ m′k = m′k. Indeed, since mk is meet-irreducible in L0:

mk ≤ d→ mk ≤
∧
{b meet-irreducible of L0 s.t. b � mk} → mk = mk.

So d→ m′k = d→ (m′′k → mk) = m′′k → (d→ mk) = m′′k → mk = m′k.
Then, by the Density 2 Axiom, there exists 1 6= x ∈ L such that

x� h, y � x, m′k � x and d→ x = x.

Lemma 4.18 shows that x is a primitive element of L inducing the signature
(h,M). a
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[18] L. Vrancken-Mawet, Dualité pour les demi-lattis de Brouwer, Bull. Soc. Roy. Sci.
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