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Abstract 
The development of human brain is a fascinating and complex process that still needs 

to be uncovered at the molecular resolution. Even though animal studies have revealed 

a lot of its unfolding, the fine regulation of cellular differentiation trajectories that 

characterizes humans has become only recently open to experimental tractability, 

thanks to the development of organoids, human cellular models that are able to 

recapitulate the spatiotemporal architecture of the brain in a 3D fashion. Here we first 

benchmarked human brain organoids at the level of transcriptomic and structural 

architecture of cell composition along several stages of differentiation. Then we 

harnessed their properties to probe the longitudinal impact of GSK3 on human 

corticogenesis, a pivotal regulator of both proliferation and polarity, that we revealed 

having a direct impact on early neurogenesis with a selective role in the regulation of 

glutamatergic lineages and outer radial glia output. Moreover, we spearheaded the use 

of organoids for regulatory toxicology through the study of Endocrine disrupting 

chemicals (EDC), pervasive compounds that can interfere with human hormonal 

systems. Early life exposure to EDC is associated with human disorders, but the 

molecular events triggered remain unknown. We developed a novel approach, 

integrating epidemiological with experimental biology to study the mixtures of EDC 

that were associated with neurodevelopmental and metabolic adverse effects in the 

biggest pregnancy cohort profiled so far. Our experiments were carried out on two 

complementary models i) human fetal primary neural stem cells, and ii) 3-dimensional 

cortical brain organoids and we identified the genes specifically dysregulated by EDC 

mixture exposure, unravelling a significant enrichment for autism spectrum disorders 

causative genes, thereby proposing a convergent paradigm of neurodevelopmental 

disorders pathophysiology between genetic and environmental factors. Finally, while 

EDCs are everywhere, their impact on adverse health outcomes can vary substantially 

among individuals, suggesting that other genetic factors may play a pivotal role for the 

onset of the disorders. We took advantage of organoids multiplexing to recapitulate, 

at the same time, neurodevelopmental trajectories on multiple genetic backgrounds, 

and showed that chimeric organoids preserved the overall morphological organization 

and transcriptomic signatures of the ones generated from single lines. In conclusion 

our work shows the possibility to perform population level studies in vitro and use the 

deep resolution of molecular biology to dissect key aspects of human 

neurodevelopment. 
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Introduction 

Theoretical framework 

Experimental and computational advances in the field of developmental biology are 

revolutionizing our understanding of the basic mechanisms of human life (Atlasi & 

Stunnenberg, 2017; John & Rougeulle, 2018).  

In order to properly understand the implications of such innovations however, it is 

important to contextualize the key concepts and theoretical background that is shaping 

this scientific evolution.  

The study of human physiology and pathology is founded on the attempt to 

systematically observe, describe and classify different types of phenotypic traits, in 

order to understand their causative determinants during organismal development. The 

logic and rigor of the scientific methodology allows to build solid relationships 

between causative factors and observable outcomes. It is clear since centuries that the 

vast majority of the phenotypes are influenced by the interactions between genetic and 

environmental factors.  

This dichotomy however is embodied in a continuous spectrum where different 

weights of influence exist. They oscillate between the two extremes of highly penetrant 

genetic mutation, such as the mutations in BRCA genes for breast and ovarian cancer 

(Petrucelli, Daly, & Pal, 2016) and high-risk environmental factors, like the exposure 

to asbestos for pleural mesothelioma (B. M. Robinson, 2012). However, the vast 

majority of the human diseases that biomedical research is trying to investigate are 

represented by various degrees of low penetrant genetic variants and environmental 

factors that are only contributing for a portion of the phenotype.  

A similar debate actually dates back at the beginning of the 20th century, between the 

Mendelian vision of the discrete impact of single genetic variants versus the Galton 

approach for which continuous traits cannot be attributed to monogenic models, 

followed by the seminal resolution proposed by Fisher, who shows that the random 

sampling of alleles at each locus determines continuous, normally distributed 

phenotypes in the population, assuming many genes affecting a trait (Fisher, 1919). 

This led to the formulation of the infinitesimal model, for which one or several 

quantitative traits are described as the sum of lots of small genetic and a non-genetic 

components. This framework was then used to build better and more efficient 

statistical models for quantitative genetic analysis (Barton, Etheridge, & Véber, 2017).  
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In our historical period this is reflected by the rapid and massive increase of genome 

wide association studies (GWAS), in which hundreds of thousands of single-

nucleotide polymorphisms (SNPs) are tested for association with a disease in hundreds 

or thousands of people. As a results lots of genomic loci have been associated with 

low risks to different disease traits (The Wellcome Trust Case Control Consortium 

,2007; Manolio, 2010; M. H. Wang, Cordell, & Van Steen, 2019).  

Complementary to GWAS, other analytical frameworks have been developed to try 

and explain how genetic variants can affect gene expression, thereby providing an 

intermediate step to associate a DNA sequence to a phenotypic manifestation. 

Expression quantitative trait loci (eQTLs) are loci that explain a part of the genetic 

variance of gene expression. They are typically measured in tens or hundreds of 

individuals. (Brynedal et al., 2017; Nica & Dermitzakis, 2013) and recently allowed 

the comprehensive profile of gene expression variation across human tissues, 

including publicly available genotype, gene expression, histological and clinical data 

for 449 human donors across 44 tissues , with the aim to mechanistically interpret the 

genetic basis of diseases (Gamazon et al., 2018).  

Within the same kind of analytical models, also methylation QTL (meQTL) and 

chromatin accessibility QTL (caQTL) have been used to associate particular 

epigenetic states with the resulting effects on gene expression (Banovich et al., 2018). 

Finally, the recent emergence of single cell multi-omics studies is also fostering an 

increasing interest in dissecting single cell eQTL, with the idea to precisely describe 

how genetic variants regulate gene expression in each specific cell type (Mandric et 

al., 2019; van der Wijst et al., 2018; Wills et al., 2013). 

Those results are shading light on the molecular basis of complex traits, and 

elucidating a scenario characterized on the one hand by lots of common genetic 

variants (present in at least 1% of the population), among which the main drivers are 

situated in non-coding regulatory regions (Y. I. Li et al., 2016), that have a small effect 

size on the phenotype (Shi, Kichaev, & Pasaniuc, 2016), and on the other hand by rare 

variants (with <1% frequency in the population) with larger effect size, that have 

important roles, particularly for the traits related to cognitive and social abilities (De 

Rubeis et al., 2014).  

All of these results, have recently brought to the proposal of the expanded omnigenic 

view of complex traits, for which gene regulatory networks are sufficiently 

interconnected such that all genes expressed in disease-relevant cells are liable to 

affect the functions of the ‘core’ disease-related genes (Boyle, Li, & Pritchard, 2017). 
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Interestingly, the omnigenic notion can be considered as a result of the profound 

debate between reductionism and systems biology, discussed deeply by (Brenner, 

2010) that recent discoveries are pushing towards the systems logic, because of its 

better representation of the real dynamics that characterise biological events (Kevin 

Mitchell, 2019). 

The complexity of the implications of the scientific discoveries on the molecular basis 

of life for our current and future biotechnological society has been comprehensively 

analyzed and discussed in (Nowotny & Testa, 2010), where the authors clearly 

illustrate the importance of contextualizing the building blocks of biology and the 

scientific discoveries to properly understand the different meanings and values they 

acquired when studied, used or manipulated in the lab, in the hospitals or at the 

institutional and political levels.  

The scientific advances of our age, however, still entail a number of problems 

characterizing and limiting the impact and actionability of molecular biology to 

improve public health. The main issues are represented by insufficient diversity of 

participants, gender disparities in authorship and tightly knit social network of 

researchers and consortiums involved in these studies (Mills & Rahal, 2019). 

Moreover, the field still has fundamental unresolved questions, represented for 

example by the problem of how to prioritize actionable targets for large cohorts of 

patients, as well as the still highly debated criteria to select traits that can be analyzed 

with the statistical models previously described, particularly evident in the public 

debate that followed the recent publication of the largest study on the genetic basis of 

sexuality (Ganna et al., 2019). 

Systems medicine, that can be defined as the interdisciplinary field that integrates the 

holistic vision of the human organism with quantitative mathematical models (Systems 

Medicine, 2016), attempts to include the vast spectrum of factors that influence human 

life in a unique framework, that resonate around a network of nodes and connections 

that together contribute to various effects. This concept is thus revolutionizing even 

our imagination and abstraction of biology, where informatic metaphors are better 

suited than the old mechanistic representations. Indeed, we can better study life science 

phenomena if we focus on the processing and the transmission of information at a 

system level. We should modify our abstraction of a static genome that determines the 

rules, towards a complex cellular environment that dynamically regulates gene 

expression for lineage differentiation in response to genetic and external stimuli, but 
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also feed information back to the genome in the context of evolutionary editing  

(Shapiro, 2011).  

Looking back at the historical times when the human mind was represented for the 

first time, through abstractive efforts, with the logic of computational models, in the 

broader attempt, during the  20th century, to connect the structural knowledge of the 

physiology of the brain with the cognitive properties of the mind (only studied by 

psychology at the time), we find the transdisciplinary clash and match between 

medicine, sociology and mathematics that gave birth to the first steps of artificial 

intelligence development (Abraham, 2016) (W. S. (Warren S. McCulloch, 1970). The 

seminal paper by McCulloch and Pitt, respectively a physician and a mathematician, 

formulated the first mathematical model of neural networks, proposing to represent 

the relations between neurons by means of propositional logics and moving the focus 

towards the net of possible activities instead of the single nodes. In this way they built 

the basis of systems biology, network science and machine learning that nowadays are 

already very efficient for studying the biological basis of many human diseases or 

physiological processes  (Eraslan, Avsec, Gagneur, & Theis, 2019; W. S. McCulloch 

& Pitts, 1943). 

Moving one step beyond, from the research of the molecular mechanisms at the basis 

of human pathophysiology to the clinical world and the medical practice, we can 

observe that, even in this context, the approach to diagnosis and treatment of diseases 

is undergoing a profound change that is moving the critical decision making from the 

expertise of physicians to the computational power of machines that can use 

algorithms to stratify, predict and suggest to humans the best guide lines to follow in 

a number of different scenario. The main reason at the basis of this shift is the obvious 

observation that computers can process a number of information, both in terms of 

quantity of data for each patient and number of different individuals that can be cross-

compared at the same time, that is not conceivable for human thinking.  

As illustrated in a recent book by Eric Topol (Topol, 2019) even for a highly 

challenging process such as medical decision making, artificial intelligence is evolving 

rapidly and achieving degrees of efficiency that already overcome human expertise, as 

in the case of big tech companies developing products to monitor and record a huge 

amount of data, analyzed with advanced statistical models, to predict deviation from 

the health status before symptoms onset (Beam & Kohane, 2018; Dillon et al., 2015; 

Miotto, Li, Kidd, & Dudley, 2016; Turakhia et al., 2019). Moreover, with the 

exponential growth rate of the molecular characterization that a lot of patients and 



 12 

healthy individuals are undergoing, it is evident that computational analysis will 

become increasingly important for medical practice.  

There are several potential problems and challenges still associated to the path for 

reaching a smooth and automated medical decision making, especially due to the 

black-box nature of machine learning algorithms (“The Dark Secret at the Heart of AI 

- MIT Technology Review,”), biased learning of machines because of human data 

pattern such as racism and sexism (“Machines Learn a Biased View of Women | 

WIRED,”; “When It Comes to Gorillas, Google Photos Remains Blind | WIRED,”), 

as well as unresolved ethical issues related to the tremendous capability of artificial 

intelligence to threaten patient preference, safety, and privacy (Rigby, 2019). 

Nevertheless, this whole process represents a great opportunity for medical 

practitioners to increase the quality of their action, if they manage to take advantage 

of the efficiency of computational tools in diagnostic and therapeutic decisions, to 

dedicate more time to the unique edges of human relationships and communication 

with the patients, realizing the deep empathy that is needed for medical care, as 

underlined throw-out the history of medicine (Derksen, Bensing, & Lagro-Janssen, 

2013; PEABODY, 1927; Topol, 2019).  

Along the same research interests and goals, part of our work was dedicated to the 

study of an emerging innovation that could have a far-reaching impact on the way in 

which data is collected and circulated in the field of genomic research, namely 

blockchain technology applied to health and genomic research uses (Grishin, Obbad, 

& Church, 2019). 

Over the last ten years, blockchain technology has acquired public awareness 

following the popularization of its most well-known application, the Bitcoin 

cryptocurrency (Bitcoin: A Peer-to-Peer Electronic Cash System, 2008). Blockchain 

is a database distributed across a peer-to-peer network that includes actors, or nodes, 

that voluntarily agree to take part in it. The database serves as a ledger, permanently 

and cryptographically registering all transactions between actors on the network. The 

network is decentralized, as the ledger is distributed between nodes without the need 

to rely on central servers of third-party authorities. Transaction rules are formed by 

common consensus and embedded into software that ensures rules are followed. Each 

actor’s transactions are transparent and accessible to all other actors, although they 

cannot be retroactively modified (Vigna & Casey, 2016). 
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The method of following transactions that are permanently stamped into a historical 

register in the form of a shared yet secure ledger, can potentially be applied to many 

fields beyond money transactions.  

Very recently, initiatives have developed, that apply blockchain technology to collect, 

circulate and use individuals’ genomic and health information for a variety of goals, 

aiming to realize a personalized, more participative biomedicine (Grishin et al., 2019; 

Kain et al., 2019). As owners of their data, individuals are viewed as equal partners in 

the process of maintaining the genomic ledger and are incentivized by the blockchain 

transactional reward structure (Grishin et al., 2018; Mackey et al., 2019). 

While many literature sources focus on blockchain as a form of distributed, 

decentralized ledger and its implications for money and forms of economic 

transaction, we focused on the notions of consensus and reward or incentive to explore 

the implications of applying blockchain for genomic and health information. To this 

purpose, we examined comparatively the business models of emerging platforms that 

represent different models of collecting and ‘tokenizing’ health and genomic data on 

blockchain (Table 1).  

 
Table 1: Review of existing genomics blockchain platforms 

  

Genomic 
Blockchain 

Website Whitepaper  Token Blockchain 
platform 

Nebula Link Link to pdf Nebula Ethereum, 
Blockstack 

Zenome Link Link to pdf ZNA Ethereum 

Ecrypgene Link Link to pdf DNA Ethereum 

Genomes Link Link to pdf GENE Ethereum 

LunaDna Link Not 
available 

LUNA 
coin 

Not available 

 Alphacon Link Link to pdf ALP Ethereum 

Shivom Link Link to pdf OMX Ethereum 

Dnatix Link Link to pdf DNTX Ethereum 

 

We argue that understanding the novel concepts of distributed consensus is crucial for 

properly comprehending the fundamental innovations that blockchain can foster in 
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basic and translational research based on omics data. Within this context, omics 

applications of blockchain claim to decentralize the ecosystem to put users, developers 

and other stakeholders on the same level. This flattened structure can potentially allow 

for the dispersion of power. However, platforms compete, and are sometimes 

structured, to become points-of-entry that create a hierarchy between users or 

customers, and those who develop and control the specific blockchain application. 

Thus it is important that both single users of genetic tests, companies and institutions 

generating and analyzing the data, as well as regulatory agencies will develop a critical 

formation and consciousness for the correct management of genomic data in a 

decentralized environment. 

To conclude this first introductory part, the high degree of human-machine hybridism 

that our society is facing, could foster the longstanding attempt to achieve a 

personalized, interdisciplinary and interactive way to practice medicine and increase 

the importance of the preventive approaches (Gameiro, Sinkunas, Liguori, & Auler-

Júnior, 2018; Loomans-Kropp & Umar, 2019). This processes are indeed reflected by 

the importance of the concept of disease interception, in the structure of the 

international and visionary effort of shaping the next future of European biomedicine, 

in which we are directly contributing within the Lifetime initiative (“The LifeTime 

FET Flagship”). Since the advances of biomedical research are revolutionizing the 

scales and ways in which molecular markers can be analyzed and used for personalized 

medical care, our effort is to integrate the omics approaches, that are already 

interiorized in the research setting, also into the clinical practice, primary care and 

public health policies.   
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Human brain development  

The brain is the most complex and fascinating organ of human species, especially to 

understand the higher cognitive functions that characterize the peculiarity of our 

evolutionary trajectories. In order to properly explore the fundamental mechanisms of 

brain functioning, our approach is to study its developmental unfolding, focusing in 

particular on the neocortex, the evolutionarily newest portion of the brain, composed 

by a high complexity of cell types and organized into a structure of six layers, that is 

particularly enlarged in primates and underpins higher mental functions for humans. 

Genetic and environmental factors interact throughout physiological brain 

development to fine tune the regulation of its complex differentiation during 

embryonic and post-natal life, needed to obtain the different cell types, structure and 

functions that we reach in the adult life. Basic research, until recently mostly 

performed on animal models, provided a lot of molecular insights into the spatial and 

temporal orchestration of neurodevelopment. Notwithstanding, the recurrent failure of 

translational attempts to bring the results obtained in the laboratory settings into 

successful strategies for human therapy in neuropsychiatric and neurological disorders 

underlines the need of models that dynamically project and recapitulate the unique 

properties of human brain development. One of the most important peculiarity of the 

human brain is the higher number of neurons that populate the cortex. Also, human 

cortical expansion is accompanied by increased folding of the pial surface, that 

generates a gyrencephalic rather than lissencephalic neocortex. The main reason that 

can explain these features however comes from processes that happen during the early 

stages of fetal life, reflecting the prolonged and increased proliferation of neural 

progenitor cells (NPCs). After neural tube closure, in the area identified as ventricular 

zone (VZ), neural stem cells form the primary germinal layer that starts to proliferate 

and establish a pool of neuronal progenitors, called apical radial glia (aRG). aRG cells 

are elongated cells, with protrusion towards both the ventricular (apical) and pial 

(basal) surfaces of the neocortex and begin the asymmetric cell division that generate 

the progenitors that migrate superficially into the subventricular zone (SVZ). These 

basal progenitors that populate the SVZ in human, however, undergo a rapid (between 

gestational week 11 and 17) expansion that constitute the outer SVZ, where outer 

radial glia (oRG) cells proliferate and generate the vast majority of the cells that will 

differentiate to become cortical neurons, such as the ones that will populate the middle 

and upper layers of the cortex. One of the reasons that differentiate the proliferative 

capacity of aRG vs oRG is that while the former can only divide next to the ventricle, 
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the latter can divide throughout the SVZ. oRG cells are morphologically similar to 

aRG cells, with the pial extensions that constitute a fundamental characteristic for 

girenchephalic species in order to guide neuronal migration. Even though they express 

specific markers, such as HOPX and ARHGAP11B, it is only the combination of their 

gene expression signature, characteristic morphology and localization that allows to 

unequivocally identify this cell type. oRG have also a specific mode of cell 

proliferation, called mitotic somal translocation because of the jump-like behaviour of 

the daughter cell after division. Moreover, with proliferation, each oRG can produce 

hundreds of neurons that migrate to different cortical layers and also astrocytes, 

depending on the timing of differentiaion. After the progenitor expansion, indeed, 

cortical plate neurons are generated following an inside-out order that sees the 

migration  of deep layers neurons followed by upper layers ones, afterwards. 

Moreover, within the layers of the cortex there is the additional integration of cell 

lineages with different developmental origin, like excitatory and inhibitory neurons 

that come from the dorsal pallium and the ganglionic eminence of the ventral 

subpallium, respectively. Finally, different developmental trajectories also intersect 

among each others for the non - neuronal cell componenet of the brain cortex, with the 

differentiation and integration of the astrocytes, mainly deriving from the dorsal 

telenchefalon, the oligedendrocytes from the ganglionic eminence and microglial cells 

that instead populate the central nervous system after a differetiation from the 

mesodermal lineage.  

In addition to the radial domain of the laminar structure, the human cortex is also 

organised in a tangential fashion, with different cortical areas (orbital (OFC), 

dorsolateral (DFC), ventrolateral (VFC), medial (MFC), and primary motor (M1C) 

cortices of the frontal lobe; the primary somatosensory (S1C) and posterior inferior 

(IPC) cortices of the parietal lobe; the primary auditory (A1C), posterior superior 

(STC), and anterior inferior (ITC) cortices of the temporal lobe; and the primary visual 

(V1C) cortex of the occipital lobe) reflecting the different computational functions 

they have to perform. Those functional differences are however determined by 

different trajectories that start already during the fetal period of neuronal maturation, 

as illustrated by the hourglass pattern of transcriptomic regulation between cortical 

areas, across different time of development, with the greatest interareal differences 

present in the prenatal period, followed by a decrease in transcriptional divergence 

during infancy and childhood and an increase from adolescence onward. Several 

studies showed that different morphogens, during early phases of neurodevelopment, 
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can pattern the specific cortical areas differentiation, in particular the gradients along 

dorso-ventral and anterio-posterior axes of extracellular  signals, such as Sonic  

hedgehog  (Shh),  Fibroblast  Growth  Factors  (FGFs),  Retinoic  Acid  (RA),  Bone 

Morphogenetic  Proteins  (BMPs),  the WNT  family  of  secreted  proteins,  and  

epidermal  growth factors  (EGFs). Those evidences points to the protomap and radial 

unit hypotheses for which neocortical areas share similar dimensions and organization 

among different species and are independent from the connections with extracortical 

neurons. On the other hand, it was shown that the wiring of thalamocortical afferents 

(TCA) is highly plastic and both cortical and subcortical connections can interact with 

the early neurons in the subplate for re‐specifying their phenotype before they assume 

their final position in the cortex, following the protocortex hypothesis. Even though 

different mammals show similar fundamental mechanisms of areal specification, 

subtle differences could illuminate key aspects of cortical evolution, such as the 

expression patterns of the transcription factors SP8 and COUP‐TFI that differ between 

human and rodents, and could explain the increased size and complexity of the 

association areas of the ventro‐temporal cortex including the ventral stream of 

cognitive visual processing. (Alfano & Studer, 2013; Bystron, Blakemore, & Rakic, 

2008; Clowry et al., 2018; M. Florio & Huttner, 2014; Marta Florio, Borrell, & 

Huttner, 2017; Kyrousi & Cappello, 2019; Lui, Hansen, & Kriegstein, 2011; Miller, 

Bhaduri, Sestan, & Kriegstein, 2019; Molnár et al., 2019; Namba & Huttner, 2017; 

Noctor, Martinez-Cerdeño, & Kriegstein, 2007; Pletikos et al., 2014; Pollen et al., 

2015; Taverna, Götz, & Huttner, 2014; Wilsch-Bräuninger, Florio, & Huttner, 2016) 
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 Figure 1: A schematic illustration of cortical development 

 
 

 

Figure 2: A schematic illustration of fetal brain development 
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Given the premise on the molecular description of the main neurodevelopmental 

processes, the vast apparatus of developmental epigenetics, also needs to be briefly 

reviewed and dissected in its multiplicity of meanings, to properly understand how the 

dynamic process of brain development can be studied and manipulated. As we recently 

elaborated in the book chapter (Caporale & Testa, 2019), the study of the regulation 

of gene expression, and the epigenetic states of the early embryo, constitutes the 

current challenge and promise to molecularly describe, quantitatively measure and 

intervene on the principles that govern developmental biology. The entire epigenetic 

landscape, including the broad set of molecular layers, ranging from histone marks 

and chromatin states, to DNA modifications and non-coding RNA, is indeed the key 

player for controlling developmental trajectories. As a matter of fact, a mutation in any 

of the known chromatin remodeller and/or transcriptional regulator is the ultimate 

cause of several disorders of the central nervous system as well as cancer, depending 

on the developmental stage in which the mutation takes place (Gabriele, Lopez Tobon, 

D’Agostino, & Testa, 2018). On the one hand epigenetics can serve developmental 

biology research as a tool in reprogramming, to regenerate tissues in the personalized 

approach that is allowed by the use of induced pluripotent stem cells (iPSC). On the 

other hand, epigenetic is a way to measure organism’s developmental time, a tool to 

analyze and predict functional states in vitro. The latter sense, however, requires itself 

two lineages of epigenetic meanings: if epigenetic is meant just in the shallow “epi” 

sense, then all that matters is to verify which of the epigenetic layers are most relevant 

for verifying cell identities and are most amenable to tractability in vitro, an approach 

that has been recently used to demonstrate the ability of experimental systems to 

recapitulate in vivo dynamics (Bouschet et al., 2017; Luo et al., 2016). If instead 

epigenetic is meant in the sense of developmental and heritable states, it may be 

possible to check, even in the early stages of an experimental model differentiating in 

vitro, if the epigenetic patterns are properly in place so that can be predictive of future 

developmental milestones. Seminal works in line with the predictive principle were 

recently carried out and show that it is possible to use epigenetic information, in 

particular DNA methylation profiles, to predict complex phenotypic traits and diseases 

(McCartney et al., 2018; Shah et al., 2015). As it was in-depth argued before, the very 

same term epigenetic has the blurred contours required for representing the flexible 

and versatile concepts that entangle “the whole complex of developmental processes” 

that connect genotype and phenotype (Meloni & Testa, 2014).   
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Neurodevelopmental disorders 

Neurodevelopmental Disorders (NDDs) encompass a broad group of diseases 

characterized by alterations in the development of the central nervous system (CNS) 

resulting in varying degrees of cognitive symptoms. Several conditions are grouped 

under NDD diagnosis, including intellectual disability (ID), learning disorders, 

communication disorders, motor disorders, attention deficit hyperactivity disorder 

(ADHD) , autism spectrum disorder (ASD) as well as schizophrenia among the others 

(“DSM-5,” 2016; Thapar, Cooper, & Rutter, 2017).  

The worldwide prevalence of NDDs is estimated to be around 4% according to the 

systematic analysis of the Global Burden of Disease Study 2016 (Global Research on 

Developmental Disabilities Collaborators et al., 2018). This value doesn’t take into 

account visual and hearing loss that were the most prevalent developmental disabilities 

recorded worldwide, and pools together intellectual disabilities, ASD, epilepsy and 

ADHD. On the other hand, a systematic review analyzing intellectual disability alone, 

gives estimates around 1% (McKenzie, Milton, Smith, & Ouellette-Kuntz, 2016). 

NDDs prevalence is different across socio economic classes, with a disproportionally 

higher rate in low-middle income countries (Bitta, Kariuki, Abubakar, & Newton, 

2018). Moreover, compared to the analysis performed by the same initiative in 1990, 

there was only a marginal decline in developmental disabilities prevalence, in contrast 

with the strong decrease of mortality among children younger than 5 years, reflecting 

the absence of any systematic global initiative to curtail this problem. Thus NDDs 

entail an enormous global burden in term of personal suffering, health care 

expenditures and lost productivity (Willsey et al., 2018). 

Even if NDDs are very heterogenous, the boundaries between them are not clearly 

defined, neither at the level of clinical manifestations, nor for the underlying multi 

factorial etiology and pathophysiology. With GWAS performed on large cohorts, 

indeed, increasing evidences are showing common genetic variants that are shared 

between different NDDs and also other neuropsychiatric diseases, such as bipolar 

disorders and major depressive disorders (The Brainstorm Consortium et al., 2018).  

As recently systematized in a comprehensive review by our lab, mutations in 

chromatin regulators and transcription factors figure prominently among the most 

common genetic causes of NDDs, with 152 listed in the Simons Foundation Autism 

Risk Initiative (SFARI) database. This molecular convergence into epigenetic 

regulation constitutes a first step to elucidate the broader phenotypical links between 

multiple NDDs, underlining the importance of identifying shared gene regulatory 
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networks to better shape the classification of brain disorders and develop new 

therapeutic potentials (Gabriele et al., 2018). 

Moreover our lab provided key contributions to the characterization of such 

conditions, through i) the first systematic characterization of the transcriptional 

dysregulation of a paradigmatic Copy Number Variation (CNV) causing Williams-

Beuren syndrome and 7q11.23 duplication syndrome, using the reprogramming of 

induced pluripotent stem cells, and finding that the deletion and the duplication of the 

chromosomal region 7q11.23, already at the early stage of pluripotency, alters the 

expression of genes that are involved in the health domains connected to the specific 

clinical impairment of the syndromes (Adamo et al., 2015), ii) the recent discovery of 

a new neurodevelopmental disorder caused by the haploinsufficiency of YY1 

(Gabriele et al., 2017; Nabais Sá, Gabriele, Testa, & de Vries, 2019), and iii) the 

identification of the downstream targets of the dystonia-causing histone 

methyltransferase KMT2B that is selectively required for neuronal reprogramming 

(Barbagiovanni et al., 2018).  

Fully penetrant NDD causing mutations in genes that regulate transcription are 

particularly relevant as they operate at a level of regulatory control that almost 

invariably affects cell fate and hence most likely translates into developmental 

phenotypes. Amidst the rising awareness of the impact of the three-dimensional 

genome organization on development and disease dynamics, as shown in the case of 

cell type specific genome organization in the context of schizophrenia (Rajarajan et 

al., 2018), our lab recently proposed the notion of the epigenetic manifold underlying 

human cognition (Vitriolo, Gabriele, & Testa, 2019): a new paradigm for studying 

NDD that aims at systematically anchoring cognitive functions to the dynamic 

hierarchy of the 3D regulatory genome unfolding through neural development at the 

level of individual cells in their mutual set of proximal and distal connections. These 

intellectual trajectories led us to develop one of the key conceptual innovations for our 

future research directions, namely the use of NDDs to leverage the convergences and 

divergences across their phenotypes to illuminate the evolutionary trajectories of the 

modern human brain.  

The promise and challenge of the next decade, indeed, is represented by the advance 

of precision psychiatric medicine in moving beyond the discovery of genes that are 

associated to neuropsychiatric traits, towards the elucidation of the mechanistic 

relations that connect molecular mechanisms to clinical outcomes (Iakoucheva, 

Muotri, & Sebat, 2019).  
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Genetics architecture of Autism Spectrum Disorder 

The genetic architecture of NDDs is characterized by heterogenous causes among 

different patients and a high complexity of causes within individuals (Mitchell, 2015). 

Autism spectrum disorder (ASD) is a broad set of NDDs characterized by i) young age 

of insurgence, ii) impairment in communication and social abilities, iii) restricted 

interests and repetitive behaviors, and iv) symptoms that affect patients’ function in 

various areas of their life (“DSM-5,” 2016). The degree of symptoms’ severity has 

wide variance among the affected individuals and the genetic background has a strong 

influence on clinical onset (Yoo, 2015).  

The prevalence of ASD is estimated to be between 1 and 2%, a value that has increased 

in the last decades (Baio et al., 2018; “Data &amp; Statistics on Autism Spectrum 

Disorder | CDC,” n.d.). 

Two paradigms have been proposed to address the genetic contribution to ASD: the 

common variants and rare variants models. The first derives from the observation that 

lots of common variants have small contribution to ASD onset, with the hypothesis 

that clinically diagnosed ASD individuals can be considered as the extreme portion of 

a spectrum of genetically influenced behaviors that extend over the entire population, 

that carry a peculiar combination of polygenic mutations. Common polygenic variants, 

distributed all over the genome, have been estimated to account for at least 20% of 

ASD liability and act additively as risk factors (Anney et al., 2012; Gaugler et al., 

2014; Klei et al., 2012). On the other hand, the second model reflects the presence of 

rare, highly penetrant variants. Those variants can be single point mutation or CNV 

that arise de novo in the germinal cells of the patients and, being affected by negative 

selection in evolution because of their negative impact on reproductive fitness, are 

characterized by low frequency in the general population (Saffen, 2015).  

Importantly, in contrast to other neuropsychiatric disorders, that usually manifest later 

in life, such as schizophrenia, bipolar disorder, and major depression, where GWAS 

have mainly identified a polygenic scenario with multiple alleles of very small effect 

(Ruderfer et al., 2018; Schizophrenia Working Group of the Psychiatric Genomics 

Consortium, 2014; Wray et al., 2018), progress in ASD genetic research has advanced 

with the discovery of a lot of rare, de novo, coding, heterozygous, germline mutations 

that contribute to about 20%–30% of clinical cases of ASD (De Rubeis et al., 2014; 

Iossifov et al., 2014; Sanders et al., 2015) commonly observed in global developmental 

delay, in addition to autism itself (Deciphering Developmental Disorders Study, 
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2015), and that offer transformative potential to illuminate ASD pathophysiology and 

critically important for new therapeutic discoveries (Sestan & State, 2018).  

Moreover the systematic work carried out by the Simons Foundation Autism Research 

Initiative (SFARI) already characterized and scored 1089 genes for their strength of 

association to ASD, including 450 (15.5%) common variants and 2462 (84.5%) rare 

variants (for which missense variants represent the most common type of mutation) 

(“Statistics - SFARI Gene”). 

Finally, a recent attempt to extend the transmission disequilibrium approach to 

encompass polygenic risk scores, showed that common polygenic predictors 

encompassing ASD, schizophrenia and years of educational attainment, are 

unambiguously associated to ASD risk and that they also contribute to the phenotype 

in the cases of patients carrying de novo deleterious mutations (Weiner et al., 2017). 

The variability and complexity embodied in the genetic basis of ASD inspired the 

effort of recent neuroscience to look for convergent molecular pathways that can group 

a number of different genetic mutations, into categories that share developmental 

features and can explain the similarity of phenotypes between heterogenous 

conditions. The main biological pathways that have shown convergency in the context 

of ASD are represented by the epigenetic regulation of gene expression, post-

transcriptional alternative splicing, regulation of translation, and synaptic activity, 

particularly evident for example in the context of mammalian target of rapamycin 

(mTOR), mitogen activated protein kinase (MAPK) and Wingless (WNT) signaling 

pathways, as well as higher order neuronal differentiation processes, such as 

migration, regional patterning, axonal and dendritic harboring, needed to establish the 

correct brain circuits (Gandal et al., 2018; Geschwind, 2011; Iakoucheva et al., 2019; 

Quesnel-Vallières, Weatheritt, Cordes, & Blencowe, 2019; Ruzzo et al., 2019). This 

effort can be summarized by the comprehensive Psychiatry Cell Map Initiative 

(PCMI), whose goal is to uncover new molecular, cellular, and circuit level 

understanding of neuropsychiatric disorders to reveal new targets for future therapies 

and bridge the gap between gene discovery and translational biology (Willsey et al., 

2018). 
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Environment factors and endocrine disruptors 

In addition to the complexity of the genetic architecture underlying ASD, this spectrum 

of disorders is characterized by the concomitant presence of several specific 

environmental factors with an influence on its pathogenesis.  

Environmental factors that have an impact on ASD onset include maternal nutrition, 

hormonal equilibrium and stress status, as well as drug use and exposure to 

environmental chemicals, including air pollutants, pesticides, plastics derivatives and 

metals (Homberg, Kyzar, Scattoni, et al., 2016; Pelch, Bolden, & Kwiatkowski, 2019).  

Prenatal exposure to alcohol is one example of non-genetic risk factor, that seems to 

act through the dysregulation of the SHH pathway, and has an estimated prevalence 

that ranges from 6 to 9 per 1000 children (May et al., 2014). Also,  many studies 

observed a higher risk for ASD or ADHD symptoms in subjects prenatally exposed to 

tobacco smoke (Tran & Miyake, 2017).  

Maternal nutrition is very important to ensure the correct fetal supply of nutrients, in 

particular for fat-soluble vitamins (A, D, E), tryptophan and nutrients related to single 

carbon metabolism (choline, vitamins B2, B6, B12 and folate) that can contribute to 

the methylation of metastable epialleles in the progeny, that is persistent also in 

differentiated tissues (Dominguez-Salas et al., 2014). The maternal stress status, for 

which the neuroendocrine axis is very sensitive, has also been associated to alteration 

of epigenetic programming that can impair correct neuronal development (Maccari, 

Krugers, Morley-Fletcher, Szyf, & Brunton, 2014). Moreover, a recent study in mice 

described how maternal care deprivation can alter the function of progeny’s brains, by 

modulating the activity of the retrotransposon LINE-1 that is a key source of somatic 

mosaicism in the brain, as well as altering the methylation of binding sites of the 

transcription factor YY1 and the expression of the  DNA Methyltransferase DNMT3A 

(Bedrosian, Quayle, Novaresi, & Gage, 2018).  

As for drug use, epidemiological studies showed that prenatal exposure to SSRI 

(Boukhris, Sheehy, Mottron, & Bérard, 2016) and valproic acid (Christensen et al., 

2013) increase the risk of ASD in the offspring, and even prenatal exposure to 

paracetamol has an impact on language development (C.-G. Bornehag et al., 2018). 

The early phases of human life, in particular prenatal life, has huge importance for the 

correct development and functioning of the human brain (Joseph M. Braun, 2017). 

Environmental chemical exposure is a key factor alone for ASD risk, because of its 

pervasive nature and its ability to influence the early phases of fetal development 

(Zoeller et al., 2012). This is particularly relevant for the endocrine disruptive 
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chemicals (EDC), defined by the WHO as an exogenous substance or mixture that 

alters function(s) of the endocrine system and consequently causes adverse effects in 

an intact organism, or its progeny, or (sub)population (“WHO | Global assessment of 

the state-of-the-science of endocrine disruptors,” 2013). The definition of EDC is a 

non-trivial process, that entails complex mechanisms that have to be taken into account 

and has huge implication for the society, given the immense number of stakeholders 

connected to this area, as it is shown by the recent effort of European Commission in 

mediating between industry, society, institutions and scientific results to define EDC 

and the policies for their usage (“Process to set scientific criteria to identify endocrine 

disruptors | Public Health, European Commission”). As an example, it is still not clear 

if heavy metals such as lead, cadmium, mercury, arsenic, manganese, and zinc, that 

are known neurotoxicants, should be classified as EDCs. Heavy metals are very diffuse 

as environmental contaminants and the exposure is indeed associated to NDDs (Tran 

& Miyake, 2017). 

The exposure of fetal brains to EDC, in any case, is of particular concern because, 

through the dysregulation of the delicate hormonal balance, epigenetic responses can 

mediate effects on neuronal progenitors that have long term adverse health impact 

(Baccarelli & Bollati, 2009; Schug, Blawas, Gray, Heindel, & Lawler, 2015; Tran & 

Miyake, 2017). EDC adverse effects on neurodevelopment, indeed, can act at different 

scales and times, such as progenitor proliferation and migration, as well as neuronal 

maturation or the synthesis, transportation and release of neurotransmitters (Schug et 

al., 2015), and their association to ASD has been hypothesized to be mediated by the 

alteration of estrogen and NRF1 signaling pathways, in experimental studies, as well 

as epigenetic modifications that yet need to be systematically characterized (Moosa, 

Shu, Sarachana, & Hu, 2018). The relative costs for health care systems and society 

are as a consequence immense, given estimates over $1.9 billion in the United States 

and $265 million in the European Union (Lee, 2018). 

In the following paragraph the compounds that are better known in terms of their 

molecular effect on neurodevelopment are reviewed. 

Phthalates derive from a multitude of consumer products, including personal care 

products, medications, and plastics. They are ingested, inhaled and absorbed from the 

derma, and they can also cross the placenta. (Carl-Gustaf Bornehag et al., 2005; Joe 

M Braun et al., 2014; A. R. Singh, Lawrence, & Autianx, 1975). Because of their 

chemical properties, they may interfere with the action or metabolism of androgens, 

thyroid hormones, and glucocorticoids. Prospective cohort studies have associated 
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phthalates with ADHD and ASD behaviors, reduced mental and psychomotor 

development, emotional problems, and reduced IQ (Engel et al., 2010; Whyatt et al., 

2012). 

Bisphenol A (BPA) is used in several plastics that are present in day life consumer 

products. It is known to act through the binding of estrogen receptors α and β as a weak 

agonist (Milligan, Balasubramanian, & Kalita, 1998), but it can also interfere with 

androgen and thyroid signaling pathways (Romano et al., 2015). Different studies 

suggest that BPA exposure is associated with behavioral and cognitive problems in 

children, but there are inconsistencies with regard to the period of life with the greatest 

vulnerability and sex-specific effects (Joseph M. Braun, 2017).  

Perfluoroalkyl Substances (PFAS) are used in water-resistant materials, industrial 

surfactant and food containers, thus, like phthalates and bisphenols are spread 

everywhere in the environment ((EFSA), 2008). They are very resistant so they 

bioaccumulate in human for several years. They are active on several endocrine axes, 

in particular interacting with the peroxisome proliferator activated receptor (PPAR), 

glucocorticoid and thyroid pathways (Boas, Feldt-Rasmussen, & Main, 2012; Vanden 

Heuvel, Thompson, Frame, & Gillies, 2006; Ye, Guo, & Ge, 2014). Their exposure 

has been linked to ASD and ADHD risk by epidemiological studies (Liew et al., 2015; 

Ode et al., 2014). 

Polychlorinated biphenyl (PCB) were used as coolants, plasticizers, and flame 

retardants, among other uses, until their production was banned. Because of their 

resistance to degradation, however, human continue to be exposed to them. Their 

mechanisms of action are not well known but exposure has been associated to 

problems such as inattention, impulsiveness, and other ADHD–related behaviors 

(Marczylo, Jacobs, & Gant, 2016; Schug et al., 2015).  

Finally, neurotoxicological studies on EDC have brought to the attention of scientists 

and regulators three important issues that are usually underestimated and, in general, 

not properly addressed in other contexts: the importance of low doses, long term 

effects and mixtures. It was observed, indeed, that even EDC doses similar to the 

environmental levels can have significant effects in experimental models, showing 

peculiar dose-response patterns that are not monotonic (Vandenberg et al., 2012), even 

if this phenomenon seems to be not so common (Beausoleil et al., 2016). Moreover, 

EDC can cause effects that only manifest much later in life than the period of exposure 

(Barouki, Gluckman, Grandjean, Hanson, & Heindel, 2012), most likely because of 

epigenetic mechanisms of information transmission (Skinner, Manikkam, & Guerrero-
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Bosagna, 2010). As far as EDC mixtures are concerned, there are still huge gaps of 

knowledge regarding their mechanisms of action, especially if considering molecules 

that interfere with different hormonal pathways, for which additive predictive models 

are not suited and additional experimental evidences and testing systems are required 

(Kortenkamp, 2014). To conclude EDC are challenging the whole field of toxicology 

that now needs to find innovative tools and models to study and regulate the potential 

danger associated to chemical exposure and thus embodies both the challenge and the 

opportunity to translate new scientific discoveries into policies (Barouki, 2017). 
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Interplay genetics vs environment  

The results previously presented highlight the complex interplay between genetic and 

environmental factors in the context of ASD pathophysiology. This is for example 

demonstrated by the strong contribution of the genetic background for the response to 

environmental stressors, such as the differential susceptibility to estrogen exposure in 

mice (Spearow, Doemeny, Sera, Leffler, & Barkley, 1999), or by the evidence of 

single nucleotide polymorphisms that in mice confer resistance to the adverse effects 

induced by the exposure to the endocrine disruptor Di(2-ethylhexyl)phthalate (DEHP). 

In this case the effect is mediated by the increased expression of the estrogen receptor 

as well as alteration of specific promoter methylation, that are regulated in opposite 

fashion by the genetic variants and the chemical exposure (Stenz, Rahban, Prados, 

Nef, & Paoloni-Giacobino, 2019). Moreover twins studies have shown, through the 

analysis of structural brain measures, in a cohort including ASD patients, that while 

cerebral and cerebellar gray matter (GM) and white matter (WM) volume, surface 

area, and cortical thickness, were primarily influenced by genetic factors, mean 

curvature appeared to be primarily influenced by environmental factors (Hegarty et 

al., 2019).  

However, the current knowledge and scientific data about gene per environment (GxE) 

interactions are still limited and additional experiments, with proper design need to be 

further performed to illuminate the most relevant interactions at the population level 

(Esposito, Azhari, & Borelli, 2018). This is especially challenging for the GxE of low 

penetrant common variants, since a lot of research effort focused until now only in 

dissecting the impact of specific environmental factors on the NDD highly penetrant 

mutation (Dick et al., 2015). The increasing resolution of environmental data records 

(“The Human Exposome Project,”), coupled with the higher number and depth of 

genomic profiles, will likely help to perform more efficient statistical GxE analysis on 

larger cohorts and push the field closer to the stratification of developmental disorders 

based on both genetic and environmental marker (Esposito et al., 2018; Loo & 

Martens, 2007; Torkamani, Andersen, Steinhubl, & Topol, 2017). 

To conclude, an efficient strategy to address the challenges of translational 

neuropsychiatry must include i) a better understanding of the molecular mechanisms 

of action of the drugs currently used for NDDs (Homberg, Kyzar, Stewart, et al., 

2016); ii) the identification of common targets across different disorders (Stewart & 

Kalueff, 2015); iii) the tracing of the temporal dimension of NDDs (Xu et al., 2014); 

and iv) the focus on the role of epigenetics to bridge the gap between genetic and 
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chemical factors (De Rubeis et al., 2014). Of positive note, the molecular elucidation 

of the environmental influence on neurodevelopment, together with the observation 

that ASD patients, even if stressed during common activities, often have strong 

abilities in specific tasks, suggests that rather than fitting ASD patients with the 

‘standard’ lifestyle shaped for the majority of the human population, a personalized 

environmental therapy should be beneficial for these patients (Homberg, Kyzar, 

Scattoni, et al., 2016). 
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Brain Organoids  

The possibility of deriving human pluripotent stem cells, either from embryos 

(embryonic stem cells, ESCs) or from somatic cells (induced pluripotent stem cells, 

iPSCs) has transformed our ability to model and study the early stages of human brain 

development, allowing experimental access for the first time. The scientific 

advancements of the last decades with 3D cultures, are enabling, for the first time, an 

accurate recapitulation of the physiological paths that go from the pluripotent state to 

the terminally differentiated specific cell types, reproducing the structural and 

functional properties of in vivo organogenesis, thus opening the doors to the molecular  

dissection of genetic and environmental influence on NDDs. 

The first evidences showing the potency of PSCs to form embryoid bodies and then 

differentiate into the neural lineage come from the exposure to patterning factors, such 

as retinoic acid (RA), as illustrated in (Bain, Kitchens, Yao, Huettner, & Gottlieb, 

1995; Kawasaki et al., 2000; M. Li, Pevny, Lovell-Badge, & Smith, 1998). 

Afterwards, a major improvement in the capacity to funnel differentiation towards 

specific neuronal types was achieved through the modulation of the SMAD pathway, 

whose inhibition pushes the cells efficiently towards ectodermal fate (Chambers et al., 

2009; Elkabetz et al., 2008; Watanabe et al., 2005).  

While this kind of patterning tries to recapitulate the gradual stages of 

neurodevelopment, parallel research efforts have been carried out to push the 

differentiation of neurons in a fast and reproducible way. This led to the discovery of 

the Ngn2 protocol, in which the transcription factor over-expression is able to induce 

the maturation of functional neurons from PSCs in less than one month. (Qi et al., 

2017; Yingsha Zhang et al., 2013), as well as protocols to robustly differentiate non 

neuronal cell-types of the CNS, such as astrocytes, oligodendrocytes and microglia 

(Abud et al., 2017; Ehrlich et al., 2017; Ye Zhang et al., 2016). 

On the other hand, the interest for recapitulating in vitro the complexity of human brain 

development, given the importance of the early and intermediate stages as well as the 

interactions between different cell types to understand brain diseases, ushered the 

development of the transforming model of organoids, 3D structures grown from stem 

cells and consisting of organ-specific cell types that self-organizes. Brain organoids 

can be derived from both pluripotent stem cells, ESCs and iPSCs. Starting from the 

pluripotent state, when cells grow on a matrix in a monolayer, most of the organoids 

protocols are characterized by the generation of embryoid bodies as a first step. There 

are several approaches that aim at recapitulating different regions and/or complexity 
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of the CNS development, each of which is better suited for addressing different 

biological questions, but there are common aspects to all brain organoid protocols, 

which include i) the formation of self-organizing structures, in particular rosettes 

which resemble the embryonic stratification of the epithelium of the neural tube with 

apico-basal polarity and subdivided into proliferative and differentiating zones, ii) the 

generation of different subpopulations of progenitors usually absent in the 2D 

counterparts and iii) a considerable degree of basic compartimentalization at the 

extracellular level that includes the production of their own rudimentary extracellular 

matrix (ECM)  (Di Lullo & Kriegstein, 2017; Giandomenico & Lancaster, 2017; 

Kelava & Lancaster, 2016; Kyrousi & Cappello, 2019; Quadrato, Brown, & Arlotta, 

2016).  

Different brain organoids can be on the other hand very different in their specificity to 

recapitulate cerebral structures, such as whole brain organoids (Lancaster et al., 2017, 

2013; Quadrato et al., 2017), forebrain organoids (Qian et al., 2016; Velasco et al., 

2019), midbrain organoids (Jo et al., 2016), hippocampal organoids  (Sakaguchi et al., 

2015), hypothalamic organoids (Qian et al., 2016), thalamic organoids (Xiang et al., 

2019), pituitary organoids (Ozone et al., 2016) and specific brain regions such as the 

cortical organoids or spheroids (Paşca et al., 2015).  

Moreover, within the recapitulation of the cerebral cortex, there is the possibility to 

differentiate the most dorsal part of the forebrain (the pallium), that give rise to 

glutamatergic neurons or the ventral one (the subpallium) that, resembling the 

ganglionic eminence, give origin to GABAergic interneurons (Bagley, Reumann, 

Bian, Lévi-Strauss, & Knoblich, 2017; Birey et al., 2017; Paşca et al., 2015; Sloan et 

al., 2017). In this way, 3D differentiation of pluripotent stem cells into cortical brain 

organoids can recapitulate the physiological emergence of the six distinctive neuronal 

layers of the cortex, along with astrocytes (Sloan et al., 2017), oligodendrocytes 

(Madhavan et al., 2018; Marton et al., 2019) and the outer radial glia subset of 

progenitors that underlies the specific expansion of the human neocortex  (Bershteyn 

et al., 2017; Pollen et al., 2019, 2015). Moreover recent studies show their ability to 

reproducibly reproduce the cell diversity of human brain, as well as producing patterns 

of electrical activities whose oscillations resemble the prenatal human 

electroencephalography (Trujillo et al., 2019; Velasco et al., 2019).  

Finally, their recapitulation of neural differentiation has been corroborated with 

functional studies assessing connectivity. Transplantation of human brain organoids 

into the mouse brain showed integration of the grafted tissue with axonal projections 
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to different host brain regions (Mansour et al., 2018). Strikingly, co-culture of brain 

organoids with sections of the spinal column dissected from embryonic mice, in which 

the associated peripheral nerves and paraspinal muscles were intact, demonstrated the 

ability of cortical organoids of forming dense axon tracts that innervated the mouse 

spinal cord resulting in muscle contraction (Giandomenico et al., 2019). 

Because of their capacity to recapitulate human neurodevelopment, one of the most 

exciting and useful application of organoids is the opportunity to use them to model 

human diseases. This experimental platform, indeed, opens up the possibility to study 

the molecular mechanisms of several diseases, both for genetic and environmental 

causes. It allows to isolate one of the two factors (genes or environment) and 

selectively interrogate its impact on the disease. Neurodevelopmental and 

neurodegenerative diseases, in particular, are a promising and expanding area research 

for organoids-based disease modelling. For studying NDDs, indeed, human cellular 

systems are particularly relevant because the animal models that have been used for a 

long time, are often insufficient and inappropriate to examine the pathogenesis of such 

complex brain disorders that can involve cellular types, in particular neuronal 

progenitors, that are human specific.  

A number of different brain disorders were indeed already studied and manipulated 

taking advantage of the use of brain organoids, such as microcephaly (Lancaster et al., 

2013), for which researchers reprogrammed iPSC from a patient carrying an 

heterozygous truncating mutations in CDK5RAP2, differentiated brain organoids and 

observed a premature neuronal maturation phenotype. In the case of lissencephaly 

(Bershteyn et al., 2017), iPSC and organoid differentiation showed an impairment of 

neuronal migration and mitosis for a specific class of neuronal progenitors, namely the 

outer radial glia. A similar approach was used also for studying an environmental 

cause of neurodevelopmental delay, the Zika virus exposure (Garcez et al., 2016; Qian 

et al., 2016), where cerebral organoids exposed to the virus were affected by increased 

cell death and reduced proliferation. Idiopathic autism spectrum disorders (ASD) was 

also studied by means of iPSC derived brain organoids (Marchetto et al., 2017; Mariani 

et al., 2015). The transcriptomic analysis revealed an imbalanced overproduction of 

GABAergic interneurons that is hypothesized to be dependent on the dysregulation of 

the gene FOXG1. As for genetically caused ASD, patients affected by Timothy 

syndrome were studied with the use of cortical glutamatergic and GABAergic cortical 

organoids and the results of the analysis showed an impairment of the migration of the 

inhibitory neurons (Birey et al., 2017). When researchers applied the same approach 
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for exploring the transcriptional dysregulation of the brain development of patients 

with schizophrenia, they identified an altered proliferation of neuronal progenitors that 

was hypothesized to be linked to the alteration of the expression of the gene FGFR1 

(Stachowiak et al., 2017). Finally Alzheimer's Disease (Abud et al., 2017; Raja et al., 

2016) organoids were suitable to test the effects of different drugs relative to the 

secretion of the peptides amyloid beta. All those results are elucidating, through the 

use of the same experimental platform, the molecular mechanisms that are 

dysregulated in a number of severe brain disorders, with the potential to improve the 

current therapeutic effectiveness. 

Advances in bioengineering, microfluidic systems and biomaterials are transforming 

the potential to automatize the process of organoids generation and maintenance, 

thereby significantly increasing the throughput. This implies that drug screening, and 

population level genomic and epigenomic studies will eventually be addressable 

through the use of organoids. Moreover, the versatility of fluidic chips permit to finely 

control the fluxes that feed the organoids as well as the matrices around which 

organoids develop. This approach indeed permits to reach a high precision in the 

control of spatiotemporal dynamics over the microenvironment that govern the 

morphogenetic signals for stem cells niches (Nikolce Gjorevski et al., 2016; Nikolche 

Gjorevski, Ranga, & Lutolf, 2014).  

Recent advances in biomaterials and nanotechnology have enabled extensive progress 

toward such systems often named organ-on-chip for their characteristic top-down 

approach in constructing the models, in contrast to relying on biological self-

organization and assembly of organoids. Different chips are designed for different 

modelling aims, consisting of a complex array of signaling mechanisms from the niche 

support cells, to the extracellular matrix, often mimicked by hydrogels, for which 

mechanical properties can be tuned by changing parameters such as pore size, 

crosslinking density, and topology (S. Kim, Lee, Chung, & Jeon, 2013), as well as 

physical and chemical conditions such as oxygen and pH levels (Yin et al., 2016). 

Another active area of research is exploring the development of the vascular system in 

relation to the organ of interest. In a recent study, perfusable network of blood vessels 

in vitro were created within microfluidic channels through the spatially controlled co-

culture of endothelial cells and stromal fibroblasts, pericytes or cancer cells. Secretion 

of proangiogenic growth factors and extracellular matrix proteins by the stromal cells 

supported angiogenesis of the endothelial cells, producing perfusable networks that 

show strong barrier function and stability. The in vitro derived microvasculature 
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allows the delivery of nutrients and chemical compounds into the luminal space of the 

endothelium (S. Kim et al., 2013).  

Interestingly also, researchers are characterizing how the shape and the geometry of 

the matrices used as scaffolds can pattern stem cells for differentiation through the 

modulation of the Notch and Hippo signaling pathway (Totaro et al., 2017; Yui et al., 

2018). Those are promising directions to get closer to recapitulate the human 

physiological development with an in vitro experimental system.   
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Single cell omics 

The capacity of multicellular organisms to generate a panel of diversified structures 

and functions, using the information encoded in a single genome is one of the most 

interesting questions in developmental and evolutionary biology. This is achieved by 

compartimentalization at multiple scales: from molecules, to tissues and organs, 

through which the cells, during the differentiation processes are guided to express 

genes in specific ways to achieve a particular function.  

Historically, in order to build a taxonomy of cell types using a Linnean framework 

(Linné, 2013), the classifications of different cells within a tissue or across different 

tissues has been based on microscopy and, more recently, on fluorescence-activated 

cell sorting (FACS). Even though the resolution of those observation can achieve the 

level of single cells, the number of molecules or features that can be recorded at the 

same time is very limited. These taxonomies can be useful especially in the case of 

somatic static tissue, however they have lots of limits when trying to classify complex 

developing organ or whole organisms, because of the lack of a precise hierarchy in the 

continuum that characterize embryonic development and because often different 

molecular mechanisms at the basis of cell differentiation are tight enough that they 

cannot be physically separated from their function.  

The recent development of single-cell omics represents a disruptive technique since 

we now have the opportunity to quantify simultaneously a high number of molecular 

states for each cell that constitute a complex tissue or organ. It is now possible to 

genome-wide profile RNA, DNA, histone modifications, chromatin accessibility, 

DNA methylation, nuclear lamina interactions, chromosomal contacts, and the protein 

signatures of single cells. Among those, single cell RNA seq is at the forefront because 

of the higher throughput and accuracy, and its application to the clinics is now closer. 

(Chappell, Russell, & Voet, 2018; Tanay & Regev, 2017) 

These advances opened up the possibility to overcome the inherent limitations 

associated to the averaged read-out of bulk sequencing for a mixture of heterogenous 

cell populations, revealing at unprecedented details the developmental landscape of 

several systems and represents the current frontier to precisely dissect the cellular and 

molecular architecture of organ development (Clark, Lee, Smallwood, Kelsey, & Reik, 

2016; Kelsey, Stegle, & Reik, 2017). Indeed, large consortia, like the Human Cell 

Atlas Project, are trying to build reference maps of the molecular states of all the cell 

types in healthy human tissues to study physiological states, developmental 

trajectories, regulatory circuitry and interactions of cells, and also provide a framework 
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for understanding cellular dysregulation in human disease (Ecker et al., 2017; Lifetime; 

Regev et al., 2017; Taylor et al., 2019).  

One of the most interesting potentials of single cell omics data analysis is the 

reconstruction and analysis of developmental trajectories. Single cell transcriptomes 

can be projected, after dimensionality reduction, in a common analytical space, 

through different algorithms that can define a distance between the single cells coming 

from a complex tissue, on the basis of the similarity of their transcriptomes, thus 

defining a new temporal concept defined pseudotime (Haghverdi, Büttner, Wolf, 

Buettner, & Theis, 2016; Tritschler et al., 2019). This is recently acquiring even a 

dynamic spin, with the introduction of the concept of RNA velocity, which models the 

derivative of mRNA abundance through an estimate of spliced vs unspliced 

transcripts, and thus infer the direction of transcriptional regulation between cells in 

the pseudotime trajectory (Gorin, Svensson, & Pachter, 2019; La Manno et al., 2018; 

“scVelo”).  

Similarly to other areas of data analysis, however, there are a lot of challenges, 

particularly related to the attempt of integrating different experiments and correcting 

batch effects, due to the variability that can arise from different sources, from the 

library preparation and sequencing, to the different platforms that can be used to 

perform single cell experiments. In the case of single cell datasets, this issue is even 

more difficult to solve, especially because of the sparsity of the data due to the dropout 

events (Tracy, Yuan, & Dries, 2019), those genes that can have a zero value for 

technical rather than biological reasons. In the recent period, indeed, a lot of efforts in 

the scientific community are converging to try and develop new methods for data 

integration and correction (Stuart & Satija, 2019) 

In addition to the high resolution of the high dimensional molecular landscape of many 

single cells, current advancements are improving the accuracy and feasibility of 

performing spatial transcriptomics experiments, in which it is possible to couple the 

transcriptome of single cells with the information of its spatial position within a tissue 

(Burgess, 2019; Rodriques et al., 2019; Weinstein, Regev, & Zhang, 2019). 

Moreover, an emerging strategy to reduce the costs and technical variability of single 

cell experiments, thereby increasing the number of biological replicates that can be 

profiled in each library and sequencing run, is the multiplexing of samples. This is a 

general idea that can be implemented in different ways. One possibility is to take 

advantage of the genetic variation between individuals to deconvolute in silico single 

cells that comes from different genetic backgrounds on the basis of SNPs, as in the 
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case of (Heaton et al., 2019; Huang, McCarthy, & Stegle, 2019; Kang et al., 2018a). 

The other option is to use barcodes, that can be coupled to each single cell with the use 

of specific antibodies targeting membrane proteins or lipids, as in the case of 

(McGinnis et al., 2019; Mimitou et al., 2019; Stoeckius et al., 2017, 2018) that give 

the opportunity to not only multiplex together many samples at the same time, but also 

to couple the transcriptomic readout with protein expression data, or to perform single 

cell CRISPR screening with multi modal read out. 

Finally, the possibility to integrate organoidogenesis with single cell analysis can be 

leveraged to elaborate a unique high dimensional analytical space, with a vast amount 

of molecular features, that is providing the scientific community with new insights into 

the definition of developmental trajectories and is already revolutionizing the criteria 

to define the identity of a cell. These processes are thus re-shaping our understanding 

of developmental biology, prompting also towards a more dynamic and functional 

definition of developmental regions (Martinez Arias & Steventon, 2018).  

We can thus conclude that the burgeoning field of single cell omics and organoids, 

that is directed towards an holistic “omni-omics” dissection of cells, organs and 

organisms, provides the scientific community with a new conceptual resource and an 

operational toolkit that bring back the Waddingtonian idiom of developmental paths 

into the epistemic feature that has become tractable and quantifiable through robust 

experimental iterations.  
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Evolutionary perspective  

As anticipated previously, we recently elaborated in the lab the innovative idea to 

study evolutionary trajectories within the network of NDDs, integrating their 

molecular and clinical features. In particular, for one of the domain that have arguably 

undergone the most salient changes between anatomically modern humans (AMH) and 

archaic humans (AH), the brain, our interest is focused on globularization. The reason 

is that while the theory of domestication observed a reduction of the skull, and thus of 

the brain, in all domesticated species, this is clearly not the case for H. sapiens, in 

whom differences in brain shape have been in place of a reduction of brain volume. 

This specific phenotype, termed globularization, refers to the well-known skull shape 

difference between AMH, who have a globular neurocranium, and extinct species of 

the genus Homo, who had a more elongated neurocranium.  

It has been argued that this shape change is the outcome of differences in brain growth 

trajectory early in life (Gunz, Neubauer, Maureille, & Hublin, 2010; Hublin, 

Neubauer, & Gunz, 2015), which impact skull growth to yield the distinctive, globular 

shape associated with AMH. Importantly, this distinct brain growth trajectory is 

uneven and therefore reconfigures the modern brain in specific areas, most clearly 

affecting the parietal lobe (especially the precuneus), the cerebellum, and the frontal 

pole, but also impacting the temporal lobe and the olfactory bulbs.  

A mechanistic dissection of this evolutionary process has been hampered till now by 

several key limitations.  

First, the thus far understandably prevalent focus on fixed AMH alleles (i.e. variations 

present in all AMH and excluded from all AH) did not take into account either the 

extent of AMH genetic variation or the complex interbreeding among different 

hominin lineages. As recently demonstrated by our lab, widening the spectrum to 

include nearly fixed changes (i.e. present in at least 90% in the present-day human 

population while absent from all 5 high quality ancestral genomes) has proven of key 

value not in expanding the catalog of relevant AMH v. AH changes to new gene 

networks (Zanella et al., 2019).  

Second, the functional dissection of AMH v. AH alleles has thus far progressed on a 

one-by-one basis, leaving the reconstruction of the multi-allele network logic 

underlying our modern features wholly unscrutinized.  

Third, the few single-gene mechanistic studies have been anyway carried out in model 

organisms, with obvious caveats for inferring their impact on quintessential AMH 

features and in the specific regulatory context of modern human tissues.  
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Cerebral Organoids (CO) thus come into play as a key tool to comprehensively dissect 

globularization. CO can be used to investigate outstanding AMH features genome 

wide, and across a spatiotemporal axis of brain morphogenesis with functional readout. 

It is possible to apply a combination of CRISPR-based perturbations (Boettcher et al., 

2018; Datlinger et al., 2017; Dixit et al., 2016; Xie, Duan, Li, Zhou, & Hon, 2017a), 

scRNAseq, and advanced microscopy, coupled to electrophysiological profiles of 

neuronal function and network activity, in a dedicated panel of brain organoid models, 

selected to identify and probe the impact of the given AMH-circuit(s) on its predicted 

phenotype.  

The brain shape change in the evolutionary context of globularization, can be studied 

and dissected into the interplay between the protomap and the protocortex hypothesis 

about brain cortex arealization, isolating patterning factors and thalamocortical 

connections during multiple stages of differentiation. The early phases of patterning 

can me modelled with the chimeric organoids by (Cederquist et al., 2019), in particular 

by generating gradients of FGF8 (the one among the FGF family with the most clear-

cut effects in areal size and positioning) and SP8 expression for the frontal regions as 

well as NR2F1 and EMX2 for the caudal ones. On the other hand, the combination of 

cortical organoids with the thalamic ones, using the assembloids protocol described in 

(Xiang et al., 2019), allows to study how thalamocortical axons can modulate neuronal 

fate and connectivity potential after the early patterning.  

Processing in parallel wild type lines and iPSC edited for the AMH specific circuits, 

evolutionary relevant molecular alterations can be described, alongside their 

interference with cortical arealisation, thus shading lights into the dynamics of 

globularization events that characterized AMH. 
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Aim of the thesis  
 

The societal and public health impact of recent biomedical discoveries is massive, and 

it is giving rise to a complex discussion on how to deal with the promises and pitfalls 

that these processes entails, as clearly illustrated in the recent debate on the New 

England Journal of Medicine and the Lancet about “Precision public health” 

(Chowkwanyun, Bayer, & Galea, 2018, 2019; Health, 2019; Horton, 2018). 

This PhD thesis would like to be a small step into the translational and interdisciplinary 

integration of systems medicine approaches. For this work I started from my clinical 

and statistical background and moved to explore the mechanistic gaze of molecular 

biology and bioinformatics, coupled with epidemiology, in order to study some of the 

processes by which genetic and environmental factors can shape the development of 

human brain. The hope is that our results will be helpful for the development of better 

public health policies as well as novel understanding of the basic mechanisms that can 

be translated into medical diagnosis, therapy and preventive care in the context of 

neuropsychiatric disorders.  

 

 

Specific aims: 

• benchmark the use of cortical brain organoids to recapitulate the salient 

features of human brain development, by means of systematic characterization 

of bulk and single cell transcriptomes, as well as imaging analysis of structures 

and architecture of cellular composition, of multiple stages of organoids 

differentiation; 

• dissect the molecular mechanisms and developmental trajectories that 

characterize peculiar aspects of human brain corticogenesis, through the 

specific chemical manipulation of the GSK3 pathway, given its key role in 

regulating fundamental processes of early brain development, such as neuronal 

progenitor proliferation and polarity; 

• define the mixtures of Endocrine Disruptive Chemicals of potential danger for 

human health and unravel their mechanisms of action, by integrating 

epidemiology with experimental testing on human in vitro models, to improve 

EDC risk assessment and policy making and develope better tools for 

regulatory neurotoxicology; 
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• implement and validate innovative experimental and computational systems to 

disentangle the effects of genetic variants and environmental factors on 

neurodevelopmental dynamics, by multiplexing at different levels 

organoidogenesis of different individual iPSC lines, towards the idea of 

realizing experimental epidemiology in vitro. 
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Results 
 

Human cortical brain organoids recapitulate fetal neurodevelopment  

To model the development of the human brain cortex we imported and improved the 

protocol to differentiate cortical organoids (CO) through the patterning of the dorsal 

telencephalon (Birey et al., 2017; Paşca et al., 2015; Sloan et al., 2017). This protocol 

recapitulates the neuroectodermal induction with the first 5 days of DUAL-SMAD 

inhibition, followed by the expansion of the pool of the neuronal progenitors of the 

dorsal telenchephalon during the 18 days of EGF and FGF exposure, ushering in the 

organization of radial glia cells in ventricular zone-like structures. Afterwards there is 

the gradual differentiation of glutamatergic neurons with the BDNF and NT3 

supplement and the long-term maintenance in Neurobasal that also allows the 

maturation of deep and upper layers neurons as well as astrocytes.  

 

Immunofluorescence of cortical brain organoids across differentiation 

The complex set of cell populations in the CO organize themselves spontaneously 

around ventricular-like structures with the progenitor cells in the inner most regions 

and the mature cells in the more cortical regions of the organoids. 

Immunostainings revealed indeed the sequential presence of an organized architecture 

of cells expressing markers of apical progenitors (PAX6 and NESTIN), intermediate 

progenitors (TBR2), outer radial glia (HOPX), neurons of different maturation stages 

(TUJ1, MAP2, TBR1, CTIP2) and astrocytes (GFAP) between day 12 and 180, that 

are represented in Figure 3 along with the scheme of differentiation stages of the 

protocol by (Paşca et al., 2015). We systematically performed immunofluorescence 

characterization of the early (Day20-25), intermediate (Day50), and advanced 

(>Day100) stages of organoids differentiation for at least 3 different organoids derived 

from at least 3 different iPSC lines.  
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Figure 3. Immunofluorescence of cortical brain organoids across differentiation 

A. Representative images of organoids at various stages of differentiation following the protocol by 
(Paşca et al., 2015). Ventricular-like structures with typical radial organization are observed. Apical 
progenitors markers PAX6 and NESTIN are expressed. TBR2-positive intermediate progenitors are 
found outside the layer of apical progenitors. The post-mitotic neuronal marker TUJ1 and MAP2 as 
well as the astrocytic marker GFAP are observed in more advanced stages. 
B. Representative confocal and widefield images of organoids at 20, 50 and 100 days of differentiation. 
Apical progenitors markers PAX6 and NESTIN are expressed. TBR2-positive intermediate progenitors 
are found outside the layer of apical progenitors. The post-mitotic neuronal marker TUJ1, and the lower 
layer neurons markers CTIP2 and TBR1 are observed as well as HOPX that is expressed by outer radial 
glia cells. Scale bar 20 um.  
C. Representative 3D images of organoids clarified with the iDISCO protocol 
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Transcriptomic characterization of cortical brain organoids across 

differentiation 

We then characterized the CO model through RNAseq by analyzing its longitudinal 

dynamics in 4 healthy donor lines and two differentiation rounds, from iPSC up to 

200-day-old organoids. We also cross compared this dataset with our in-house cohort 

of primary fetal central nervous system tissues and 2D fetal progenitors cultures. 

Moreover we compered our data to publicly available transcriptomic profiles of human 

fetal brain from the BrainSpan Atlas. We first performed principal component analysis 

(PCA) of CO transcriptomes along with primary fetal central nervous system tissues 

and 2D cultures of fetal cortex. PCA is a dimensionality reduction technique that 

allows to project and visualize the overall contribution of the transcriptme of each 

sample in a low dimensional space, where the principal components are the axis that 

capture the main sources of variability across the samples. This uncovered a clear 

temporal dynamic of CO towards recapitulation of the primary tissues and culminating 

with the close clustering of day 200 organoids with fetal cortex and in sharp contrast 

to the separate positioning of 2D cultures (Figure 4A). As a next step, stage-wise 

differential expression analysis of the CO unveiled a first phase of rapid evolution (till 

day 100), followed by a second phase of more gradual transcriptional modulation 

(Figure 4B). Gene modulation trajectories through development, defined by Weighted 

Gene Co-expression Network Analysis (WGCNA), confirmed the progressive 

downregulation of cell proliferation markers with the concomitant up-regulation of 

neuronal maturity signatures characteristic of the dorsal pallium (also confirmed by 

immunostaining, Figure 4C). Importantly, benchmarking this model against fetal 

corticogenesis datasets from post-conceptional week 8 through 37 (BrainSpan) 

highlighted a high and stage-specific degree of concordance that also recapitulated the 

velocity of fetal cortex gene expression programs (Figure 4D). Finally our CO cohort, 

including 4 individual iPSC lines in 2 rounds of differentiation, resulted very 

reproducible across replicates with overall similar maturation profiles during the entire 

time of differentiation (Figure 4A and 4D), thus reliably and reproducibly mimicking 

the human fetal cortical maturation. 
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Figure 4 Transcriptomic characterization of cortical brain organoids across 
differentiation 

A. Principal component analysis including transcriptomes from CO at day 25, 50, 100, 150 and 200 of 
differentiation, 2D cultured cortical tissue from PCW13 and 19 embryos and freshly isolated tissues 
from different brain regions at 13 and 19 PCW.  
B. Number of DEGs observed performing differential expression analysis of CBOs at each stage against 
the previous. 
C. Dendrogram of the WGCNA analysis of CO at all stages of differentiation highlighting the 14 
modules identified. Heatmap showing the Spearman correlation analysis of the identified modules with 
developmental stage as a continuous variable or stage by stage.  
D. Heatmap showing Spearman correlation of CO bulk transcriptomes at the indicated stages vs human 
fetal cortex transcriptomes from the BrainSpan dataset at the indicated postconceptional weeks (PCW). 
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Human cortical brain organoids can be used to dissect specific aspect of 

human corticogenesis  

Having benchmarked our protocol to differentiate multiple cell lines into several stages 

of CO, we harnessed this model to investigate the role of the GSK3 pathway in the 

molecular landscape of human brain development. (López-Tobón, Villa, Cheroni, 

Trattaro, Caporale, et al., 2019) 

The regulation of the proliferation and polarity of neural progenitors is crucial for the 

development of the brain cortex and even if animal studies have implicated glycogen 

synthase kinase 3 (GSK3) as a pivotal regulator of both proliferation and polarity, its 

functional relevance for the unique features of human corticogenesis remains to be 

elucidated. We thus chronically exposed human CO to a specific GSK3b inhibitor to 

probe its longitudinal impact through multiple developmental stages, and different 

layers of molecular and phenotypic profiles (figure 5).  

 

 

 

 
Figure 5 Experimental design 

hPSCs differentiated following two parallel protocols, in 3D (up) cortical organoids or 2D (down) dual-
smad inhibition. In both cases, parallel rounds were either exposed or not to GSK3 inhibitor CHI99021 
(1 uM) starting from day 0 until indicated sample collection timepoint.  
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GSK3 is essential for cortical organoid morphogenesis  

Chronic GSK3b inhibition resulted in an increase in organoid size concomitant with a 

virtually complete loss of the ventricular like structures (Figure 6), with a strong effect 

at day 50. This is consistent with the known role of the GSK3b receptor tyrosin kinase 

in regulating progenitor proliferation, in particular through its interactions with the 

Wnt and sonic hedgehog signaling pathways (W.-Y. Kim et al., 2009; McCubrey et 

al., 2016). Moreover GSK3 is involved in neurodevelopment through the 

phosphorylation of a broad set of substrates, including transcription factors essential 

for brain development, such as CREB (Grimes & Jope, 2001) neurogenin2 (Ma et al., 

2008), β-catenin (Aberle, Bauer, Stappert, Kispert, & Kemler, 1997) and multiple 

microtubule-associated proteins (Izumi, Fumoto, Izumi, & Kikuchi, 2008). Indeed, 

studies in animal models have provided a wealth of evidence linking GSK3 activity to 

the regulation of early and late neurogenesis and to the maintenance of the overall 

polarity of the radial glia scaffold (Yokota et al., 2010). Unexpectedly, the difference 

we observed in organoid size and radial organization was accompanied no significant 

difference at day 50 in the proportion of PAX6+ cells. Moreover, staining of early 

neuron markers TBR1 and DCX revealed a profound disarray in tissue architecture 

(Figure 6) with only a slight reduction in TBR1+ cells, indicating that GSK3 activity 

is critical for the correct morphogenesis of the developing cortex while having a 

selective impact on the differentiation of specific cell subtypes. 

 

 
Figure 6 Morphogenetic alterations caused by chronic GSK3 inhibition 

Representative images from day 50 organoids immunostained with: A. anti-PAX6 (red), anti-Nestin 
(green), DAPI (blue), B. anti-DCX (white), anti-KI67 (green), DAPI (blue), C anti-TBR1 (yellow), 
DAPI (blue), scale bar = 50 µm   
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Cortical organoids recapitulate the main features of mid-fetal human 

corticogenesis at single cell resolution 

 
Given the impact of GSK3 in organoids structure, we harnessed single cell 

transcriptomics combined with distance-based analytical tools to break-down the 

effects of the inhibitor exposure in terms of population frequencies and developmental 

trajectories found during this time frame. We carried out droplet-based single-cell 

mRNA sequencing to profile over 30000 cells (N =33293) in 11 biological samples 

from unexposed and exposed CO at day 50 and day 100 of differentiation, attaining 

15 unsupervised cell clusters defined using Louvain modularity algorithm (Šubelj & 

Bajec, 2014). By projecting the expression levels of canonical population markers over 

uniform manifold approximation and projection (UMAP) (Figure 7 A,B), combined 

with the overlap of cluster-specific genetic signatures from single-cell RNA-seq 

datasets of fetal human brain samples (Pollen et al., 2015) (Figure 7E) and considering 

their position over diffusion map (Figure 7C), we grouped the Louvain clusters into 

five main population identities, including proliferating radial glia (RG), Intermediate 

progenitors (IPC) (including a discernible subset of outer radial glia, oRG), early 

neurons (EN), Neurons (N) and Choroid (C). We then investigated the underlying 

developmental trajectories using diffusion map (Figure 7C-D). This confirmed the 

presence of a hierarchical progression from RGs to postmitotic neurons linked by 

intermediate populations (Figure 7C). The application of pseudotime, with an origin 

anchored in the early progenitors, reproduced the organization of populations from RG 

to N (Figure 7D). Together, these results confirm that patterned cortical organoids 

recapitulate cardinal features of human corticogenesis including the presence of early 

and intermediate progenitors, the emergence of oRGs and their hierarchical 

positioning in neurogenic trajectories. 
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Figure 7 Cortical organoids recapitulate the main features of cortical development at 
the single cell transcriptomic level 

A. Louvain clusters in UMAP plot colored by cluster identity; lines depict population areas defined by 
contrast with markers obtained from human fetal brain dataset (Radial glia: 8, 13, 14; Intermediate 
progenitor cells: 2, 7, 12; outer radial glia: 4; early neurons: 5, 10; Neurons: 0, 1; Choroid: 11).  
B. UMAP plots. For each sub- panel, cells (represented as dots) are colored according to the expression 
levels of representative cell type markers (STMN4, GNG3, DCX: neurons; HOPX, PTPRZ1, 
FAM107A: outer radial glia; DLL1, DLL3, ROBO3: early neurons; SMOC1, IFITM3, HES1: 
intermediate progenitors; AURKA, UBEC2C, TACC3: proliferating progenitors; CXCL14, PLS3, 
TTR: choroid).  
C-D. Diffusion map representing the developmental trajectory of the system. Cells (dots) are colored 
according to cluster identity (C) and to pseudotime trajectory (D), from origin in black to terminal state 
in light yellow according to wishbone algorithm. 
E. Heatmap of the overlaps between marker genes characterizing the internal organoids clusters and 
external gene signatures of the relevant single cell clusters from human fetal brains (Nowakowski et al., 
2017). Colors are based on the log2Enrichment computed for each pair of comparisons. * indicates an 
overlap with p-value < 0.05. 
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GSK3 inhibition differentially affects specific domains of corticogenesis 

A comparative analysis of subpopulations revealed a selective impact of GSK3 

inhibition on the relative proportion of specific cell subtypes (Figure 8 A-H).  

A salient effect was the almost complete loss of a subpopulation characterized by the 

expression of genes expressed in choroid cells (CXCL14, TPD52L1, PCP4, EMX2) 

(Figure 8 A,B), as well as a noticeable decrease in frequency (FQ) of NEUROD2- 

expressing cells at day 100 in neuronal clusters (0,1,5) without affecting NEUROD6 

or NEUROG2 expressing cells (Figure 8 C,D), underscoring the selectivity of GSK3 

activity on these neurogenic pathways.  

Noteworthy, analysis of the frequency and distribution of cells expressing a canonical 

oRG gene signature (HOPX, TNC, FAM107A, PTPRZ1) (Pollen et al., 2015) (Figure 

8 E,F), showed a marked reduction in both frequency and expression levels upon 

CHIR-treatment at day 100, which was further confirmed by a reduction of HOPX+ 

cells in the tissue (Figure 8 I).  

Given the cardinal role of oRG on neuronal production and cortical expansion, we 

checked the distribution of expression of telencephalic markers including forebrain 

determinant (FOXG1), early neurons (DCX), lower layer (BCL11B, RBFOX3) and 

upper layer (SATB2, POU3F2) markers. While upper layer markers were either not 

detected or present at very low frequencies, consistent with their surge at later stages 

of organoid corticogenesis, the expression of lower layer and general neuronal identity 

markers was unchanged by CHIR (Figure 8 H), whereas FOXG1 was significantly 

reduced at day 50 (Figure 8 G,H). Interestingly, despite the mild changes in frequency 

and expression levels of BCL11B at day 50 and day 100 (Figure 8 H), staining for its 

protein product (CTIP2) + cells showed a drastic reduction in d100 CHIR-treated 

organoids (Figure 8 I), pointing to regulatory mechanisms at the post-transcriptional 

level reported to affect CTIP2 activity and stability. 

Finally, the application of pseudotime, independently to all conditions and stages, 

revealed two developmental trajectories, one that goes from RG to Neurons through a 

subset of IPCs and one that becomes apparent by day 100 and ends in an oRG identity 

(Figure 8 K). Strikingly, GSK3 inhibition resulted in a complete loss of the oRG-

generating trajectory at day 100 (Figure 8 K). In agreement, HOPX distribution of 

expression on pseudotime peaked at day 100 in control organoids, while remained 

stalled in day 100 CHIR-treated organoids (Figure 8 K). Together, these results 

indicate that GSK3 inhibition results in a severe reduction of HOPX expressing cells 

with the attending impact on oRG- dependent lineages. 
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Figure 8 Effects of GSK3 inhibition at a single cell level in cortical organoids. 

Visualization of normalized expression levels for genes identifying specific populations either in 
UMAP divided by CHIR-treated and control samples (A, C, E, G). Sub-sampled cluster-specific 
expression levels (violin plots), Fisher test, significance p-value *** = < 0.001, ** = < 0.01, * = < 0.05. 
FQ =normalized cell frequencies of cells expressing detectable levels/total population (bar plots) (B, D, 
F, H). The following genes are examined: (A-B) CXCL14 in UMAP and CXCL14, PCP4, TDP52L1, 
EMX2 in violin plots on cluster 11 for choroid population; (C-D) NEUROD2 in UMAP and 
NEUROD2, NEUROD1, NEUROG2, NEUROD6 on clusters 0, 1, 5 for neuronal markers; (E-F) HOPX 
in UMAP and HOPX, TNC, FAM107A, PTPRZ1 on cluster 4 for oRG markers; (G-H) FOXG1 in 
UMAP and FOXG1 (total) and BCL11B, RBFOX3 and DCX on clusters 0, 1, 5 for dorsal telencephalon 
markers. I. Representative widefield fluorescence images from day 100 organoids immunostained with 
anti-CTIP2 (red), anti-HOPX (grey), DAPI (blue), scale bar = 20 um. K. Over-imposition of pseudotime 
analyses performed separately for each experimental condition as color-scale on UMAP calculated on 
the complete system. Blue (origin); dark red (terminal state) according to wishbone trajectories. 
Visualization of the expression levels of representative genes along the condition-specific pseudotime.  
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From cohort to molecules: adverse impact of endocrine disruptors on 

neurodevelopment 

In addition to the detailed elucidation of key aspects of human corticogenesis, the work 

previously presented demonstrates the possibility to use the CO model to investigate 

the effects of chemical exposure on brain development, a potential that we then used 

in a different context to study the impact of environmental compounds on 

neurodevelopment.  

Human populations are exposed to a large number of chemicals with known or 

suspected endocrine disrupting properties (EDCs) (System & Others, 2014). This 

represents a major unmet challenge because while exposure to single EDCs has 

repeatedly been associated with major diseases and impaired development 

(Bergman  Heindel, J.J, Jobling, S., Kidd, K.A., Zoeller, R.T., 2013), real life entails 

simultaneous exposure to multiple EDCs in mixtures, with additive effects at lower 

doses than experimental effect thresholds for single compounds (Kortenkamp, 2014). 

In addition, experimental evidence with mixtures is often limited to combinations 

within the same chemical class or to observational measurements on more complex 

mixtures, thus lacking causative weight to link actual population-based exposure with 

adverse health outcomes in humans. Here we pursued a systematic integration of 

epidemiological and experimental evidence to elucidate the molecular pathways 

affected by EDC mixtures that are causally related to adverse outcomes in humans. 

 
An integrated epidemiological-experimental design assessing the impact of EDC 

mixtures on human health and development 

To assess health outcomes of real-life EDC exposures we harnessed: i) the power of a 

population-based mother-child pregnancy cohort to measure prenatal EDC exposures, 

combined with novel biostatistical tools to infer associations between specific EDC 

mixtures and two child health domains: neurodevelopment and metabolism/growth 

(Figure 9); ii) complementary assays in human systems, to establish causality and 

deconvolute gene regulatory networks and in vitro cellular responses dysregulated by 

these EDC mixtures in concentrations corresponding to human exposure (Figure 9). 
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Figure 9 Overview of the study  

A. Identification of two EDC mixtures that are associated with adverse health outcomes in two health 
domains, neurodevelopment and growth. In the SELMA pregnancy study, EDCs were measured in 
urine or serum of women around pregnancy week 10. B. Associations between these exposures and 
language delay of the children at age 2.5 years or birth weight were established using weighted quantile 
sum regression. This resulted in the identification of compounds that contributed to the association with 
the adverse health outcome (language delay or reduced birth weight) in the mixture. C. Based on their 
ratios found in the SELMA women’s serum, the chemicals were mixed to compose MIX N (based on 
the association with language delay, blue coloured) and MIX G (based on the association with birth 
weight, orange coloured) for subsequent use in the experimental systems in concentrations 
corresponding to 0.1X, 1X, 10X, 100X, and 1000X serum concentrations in the SELMA mothers. 
D. Identification of gene regulatory networks and cellular responses dysregulated  by MIX N and MIX 
G, along with their dose-response relationships. Transcriptome analyses were carried out in Human 
Foetal Primary Neural Stem Cells and cortical organoids as well as in iPSC-derived or adult 
mesenchymal stem cells (MSCs) upon 48 h treatment with 0.1-1000X MIX N and MIX G, respectively. 
Significant transcriptional changes were detected already at 1X concentrations. 
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Definition and establishment of EDC-mixtures impacting human 

neurodevelopment and metabolism 

Humans are exposed to several classes of EDCs including phthalates, phenols and 

perfluorinated alkyl acids (PFAAs) (System & Others, 2014). We focused on prenatal 

exposures to mixtures of 15 parent compounds (comprising 20 analytes/metabolites), 

measured in the Swedish Environmental Longitudinal, Mother and child, Asthma and 

allergy (SELMA) study. SELMA is a population-based pregnancy cohort that 

recruited more than 2,300 women in the first trimester from prenatal clinics in 

Värmland county, Sweden, from November 2007 to March 2010. Detailed recruitment 

and sample collection procedures have been described previously (C. G. Bornehag & 

Moniruzzaman - Paediatric and …, 2012). The chemicals compounds was selected 

because of their known or suspected endocrine disrupting properties. However, the 

selection of chemicals can be seen as a paradigm for how to evaluate mixture 

exposures from a health and developmental point of view rather than including all 

potential health relevant EDCs (Bergman  Heindel, J.J, Jobling, S., Kidd, K.A., 

Zoeller, R.T., 2013).  

We identified mixtures of EDCs in prenatal urine and serum in SELMA that were 

associated with two major child health outcomes: neurodevelopment, measured as 

language delay at 30 months of age and metabolism/growth, measured as birth weight. 

Delays in language development in early childhood as assessed by validated tests have 

been shown to be predictive of later academic achievement and the need for special 

education (Miniscalco, Nygren, Hagberg, Kadesjö, & Gillberg, 2006). Therefore, 

language delay, assessed in early childhood, is an important indicator of later 

neurodevelopmental impairment. Birth weight is an early marker for in utero growth 

and a  low birth weight is associated with metabolic syndrome including obesity and 

glucose intolerance (Kopec, Shekhawat, & Mhanna, 2017) as well as other health 

issues during childhood.  

The current analyses of SELMA cohort includes 1874 pregnant women (Table 2), 

assessed for their urinary or serum EDC levels around the 10th week of gestation (Table 

3). Specifically, we profiled urine levels of 10 metabolites of 5 phthalates, bisphenol 

A (BPA) and triclosan (TCS), as well as serum levels of 8 perfluorinated alkyl acids 

(PFAAs). 

Specific mixtures (in terms of both composition and dose) were associated with the 

two health outcomes in a three-step procedure (Figure 9). Firstly, we identified the 

prenatal exposure to EDCs that was associated with lower birth weight or language 
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delay in children by using weighted quantile sum (WQS) regression (Carrico, 

Gennings, Wheeler, & Factor-Litvak, 2015). EDCs included in these exposures are 

hereafter referred to as sEDCs (‘selected EDCs based on WQS regression weights). 

Secondly, we estimated the equivalent daily intake (DI) of sEDCs measured in the 

urine (i.e., phthalates and alkyl phenols), and estimated serum concentrations from the 

DI for these urinary measurement-based compounds. Thirdly and finally, we used the 

geometric means, on a molar basis, for either the measured or estimated serum levels 

of all compounds and established mixing proportions to prepare, for experimental 

validation, the two mixtures associated to language delay (MIX N) and lower birth 

weight (MIX G) (Figure 9). Mixtures were tested across concentrations (0.1X, 1X, 

10X, 100X, 1000X) corresponding to human exposure (Table 3), where 1X denotes 

the geometric mean of exposure levels in SELMA pregnant women. 
 

Table 2 Description of the study population including 1,874 pregnant women and 
their children in the SELMA study   

 
Pregnant women  Children  

Age at enrollment (year); 
mean (SD) 

31.0 
(4.8)  

Gestational age at birth 
(week); mean (SD) 

39.3 
(1.8)  

Weight at enrollment (kg); 
mean (SD) 

69.6  
(13.6)  

Birth length (cm); mean 
(SD)  

51.2 
(2.6)  

Gestational age for 
biosampling (week); 
mean (SD)  

9.9 (2.1)  Sex (girls) 47.2%  

Smoking during pregnancy 
(yes) 

4.7%  APGAR score (<10)  12.7%  

Parity (null parity) 44.8%  Birth weight (g); mean (SD) 3.619 
(584)  

Education (university or 
higher) 61.4%  Language delay (<50 

words) 10.0%  
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Table 3 Distribution of phthalate and phenol metabolites in urine and perfluorinated 
compounds (PFAS) in serum analysed in 1st trimester of 1,874 pregnant women in 
the SELMA study   

 
Compound  Metabolite   Phthalate and phenol metabolites in 

urine 
(ng/mL) 

    Median  95%  GM (95% CI)  
DEP  MEP  62.6  507.7  68.7 (65.3-72.3)  
DBP  MBP  71.9  233.1  69.0 (66.5-71.5)  
BBzP  MBzP  16.8  99.4  16.6 (15.8-17.4)  
DEHP  MEHP  3.8  15.6  3.8 (3.6-3.9)  

 MEHHP  16.6  66.6  16.3 (15.7-17.0)  

 MEOHP  11.2  45.0  11.1 (10.7-11.6)  

 MECPP  15.7  62.7  15.8 (15.2-16.4)  

DiNP  MHiNP  5.9  54.6  6.2 (5.9-6.6)  
 MOiNP  2.7  19.2  2.9 (2.8-3.0)  

 MCiOP  8.7  74.9  9.8 (9.3-10.2)  

BPA    1.5  6.2  1.5 (1.4-1.6)  
Triclosan    0.8  351.4  1.3 (1.2-1.5)  
Compound    Perfluorinated  compounds (PFAS) in serum  

(ng/mL)   
    Median  95%  GM (95% CI)  
PFOA    1.60  3.96  1.60 (1.56-1.64)  
PFOS    5.35  12.29  5.30 (5.18-5.43)  
PFNA    0.53  1.29  0.54 (0.53-0.55)  
PFDA    0.25  0.59  0.26 (0.25-0.27)  
PFUnDA    0.23  0.54  0.21 (0.21-0.22)  
PFDoDA    0.03  0.08  0.03 (0.03-0.03)  
PFHxS    1.23  3.71  1.32 (1.29-1.36)  
PFHpA    0.02  0.09  0.02 (0.02-0.02)  
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MIXN disrupts human neurodevelopmental pathways 

 

To define the molecular impact of MIX N, we first employed primary neural stem cells 

sourced from the cortex of human foetuses at post-conception week (PCW) 11 and 19 

(henceforth Human Foetal Primary Neural Stem Cells (HFPNSC)). Given the 

potentially non-linear and non-monotonic dose-response patterns associated with EDC 

mixtures (Beausoleil et al., 2016), the experimental design included 5 doses of MIX 

N, ranging from 0.1X to 1000X and a global assessment of impact on gene expression.  

To this end, RNA-seq was performed after 48h MIX N exposure and patterns of EDC 

dose-dependent transcriptional responses determined using an analysis that considers 

MIX N dilutions (including the DMSO control) as distinct categories. This unbiased 

approach, which does not assume any particular response pattern (e.g., linearity or 

monotony), allowed us to define a core list of differentially-expressed genes (DEGs), 

which follow similar dose-responses in the two fetal cortical lines (figure 10 A). This 

core set includes the genes EPHB2 and CLSTN2, which are of particular relevance for 

the original phenotype scored in the SELMA cohort (ie. language delay), insofar as 

they are downregulated by acute MIXN exposure (Figure 10 B) and belong to the 

Simons Foundation Autism Research Initiative (SFARI) list of genes causing ASD 

through a loss of function mutation.  
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Figure 10 Transcriptional effect of acute MIXN exposure on HFPNSC  

A. Heatmap of the differentially expressed genes (DEGs) identified through categorical analysis  
B. DEGs were clustered into major dose-response patterns, mean smoothed fold change were plotted 
across the different MIX N dilutions  
 
  

A. Differentially expressed genes upon acute 
MIXN exposure on HFPNSC B. Dose-response patterns

Line1-E3381-1 clusters of the 20 DEGs

Line2-E3361-1 clusters of the 20 DEGs

Line1 and 2 SFARI genes
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MIXG disrupts human metabolic pathways 

Following the same logic applied to MIX N, we evaluated the molecular impact of 

MIX G on two growth/metabolism-relevant human models, bone marrow-derived 

mesenchymal stem cells (adult MSCs) and iPSC-derived mesenchymal stem cells 

(iPSC-MSC) which display comparable molecular hallmarks, allowing validation 

across experimental systems. Both MSC models were exposed to increasing 

concentrations of MIX G for 48h and profiled by RNA-Seq. Differential expression 

analysis showed dose dependent increases or decreases of gene expression upon MIX 

G exposure starting already at the 1X concentration and consistent across lines (Figure 

11 A). Moreover we found that 6 of those DEGs are also associated to low birth weight 

in GWAS (Figure 11 B).  

 

 

Figure 11 Transcriptional effect of acute MIXG exposure on Mesenchymal Stem Cells  

A. Heatmap of the differentially expressed genes (DEGs) identified through categorical analysis  
B. DEGs were clustered into major dose-response patterns, mean smoothed fold change were plotted 
across the different MIX N dilutions  
 
 
 

  

A. Differentially expressed genes upon acute 
MIXG exposure on MSC B. Dose-response patterns

Line1 and 2 clusters of the 40 DEGs

Line1 and 2 Low birth weight associated DEGs
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Dissecting the impact of MIX N versus MIX G on human development 

Despite having similar chemical compositions, MIX N and MIX G had been linked to 

different health outcomes on the basis of epidemiological evidence. We thus sought 

the molecular basis of this distinction by cross-exposure of representative models to 

the alternative mixture. HFPNSC were exposed to MIX G, using the same five 

dilutions as for MIX N. Strikingly the mixtures showed marked differences in the 

affected genes, in particular with respect to ASD and ID associated targets that were 

only significantly enriched in MIX N DEGs (figure 12 A), consistent with the 

association of MIX N exposure to early verbal skills.  

Finally, to evaluate the specificity of MIX N and MIX G on cellular responses, we 

compared their effects on lipid droplet accumulation in adult MSCs. Whereas adult 

MSCs exposed to MIX G showed significant increase in lipid accumulation already at 

1X (figure 12 B), MIX N showed significant increase only at 100X and only in the 

male line (figure 12 B). Together, these results provide experimental evidence of the 

mixture-to-phenotype dissection that had been originally only inferred at the 

population level, establishing the power of such integrated approaches for defining the 

molecular traces of EDC exposure across the population, organismal and cellular 

scales.  
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Figure 12 Dissection of MIXN vs MIXG  

A. Overlaps, enrichment and significance between neurodevelopmental disorder relevant genes and, 
respectively, MIX N- and MIX G-associated DEGs in HFPNSC. 
B. For adult MSCs, lipid droplet accumulation was quantified using Bodipy 493/503 staining upon 
treatment with the indicated concentrations of MIXN and MIXG for 3 weeks. Values are normalised to 
nuclei count and representative of three independent experiments for each of the 2 donors, shown as 
mean ± SD from 3 to 6 replicates of a single experiment. 
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Chronic expo on Human Fetal Primary Neural Stem Cells 

While most proximally representing the target tissue of real-life EDC exposure (ie- 

developing fetal brain tissue), HFPNSC are inherently limited, as a non self-renewing 

experimental system, by the inherent features, technical and ethical alike, of their 

procurement. Hence, the observation that even an acute exposure to MIXN was able 

to trigger convergent dysregulation in a core set of phenotypically-relevant genes in 

two genetically independent fetal samples, sourced at different developmental stages, 

gave us the confidence to investigate the molecular impact of MIXN exposure in a 

setting that more closely approached human in vivo exposure. Specifically, we 

selected the two most relevant doses, 1X and 1000X and exposed cortical HFPNSC 

over two weeks to mimic the continuous exposure that occurs in vivo, profiling 

transcriptomes in 4 replicates of the cortical line already profiled in the acute setting.  

Differential expression analysis revealed a major impact of MIXN exposure, mainly 

concordant between the two doses, specific for the mix, as compared to DMSO, and 

confirm the significant dysregulation of 3 of the genes, namely DHRS3, LGI4 and 

GPX3, previously identified in the acute setting. As for MIXN specific effects, the 

analysis revealed 151 DEGs (FDR < 0.05 and logFC > 0.5) significantly modulated 

by at least one of the 2 concentrations of MIXN exposure that, as shown both in the 

heatmaps and the scatterplot follow the same directions of dysregulation (Figure 13 

A,B). Gene ontology categories enriched upon 1X MIXN exposure, are related to 

chromatin regulation and cell proliferation among the upregulated genes, while 

metabolic processes and response to hormonal signaling are enriched among the 

downregulated genes, in particular GPX3 (glutathione peroxidase), FXYD (related to 

the regulation of ion transport channels) are relevant down-regulated genes while 

DSCAML1 (adhesion molecules involved in neuronal differentiation and also 

associated to Down syndrome) is significantly up-regulated. Moreover, gene set 

enrichment analysis (GSEA) revealed an enrichment among the upregulated genes for 

neurodegenerative diseases categories and oxidative phosphorylation (Figure 13 C,D). 

Furthermore, given our epidemiological evidence associating MIXN exposure to 

language delay, and the central role of chromatin dysfunction in autism and intellectual 

disabilities we tested whether MIXN-induced DEGs were enriched for genes 

associated with these conditions. We found significant enrichment for genes 

associated with Intellectual Disabilities, Developmental Disorders and Autism 

Spectrum Disorders (ASD) (Figure 13 E). 
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Figure 13 Transcriptional effect of chronic MIXN exposure on HFPNSC  

A. Heatmap of the differentially expressed genes (DEGs) identified through categorical analysis, (FDR 
< 0.05 and logFC > 0.5) in the left panel, (FDR < 0.05 and logFC > 1) in the right panel  
B. Scatterplots representing the fold-change induced by 1X vs 1000X exposure relative to DMSO. 
DEGs shared between the 2 conditions are reported in yellow, while DEGs specific of 1 of the 2 in blue. 
C. Results of gene ontology enrichment analysis performed on the DEGs, divided for up- regulated and 
down-regulated genes. Bar plots depict the p-values for the top-10 Cellular Component GO terms. 
D. Gene sets significantly associated with MIXN exposure by GSEA.  
E. Overlaps, enrichment and significance between DEGs and genes associated to intellectual disability, 
developmental disorders and autism spectrum disorders in published databases. Gene expression across 
exposure conditions for the DEGs that overlap with the list of SFARI genes. 

A. Differentially expressed genes upon chronic MIXN exposure on HFPNSC

B. MIXN 1X vs 1000X

C. Gene Ontology Enrichment Analysis

E. Neurodevelopment disorders causing genes: overlaps and gene expression dysregulation

D. Gene Set Enrichment Analysis
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Human cortical brain organoids for developmental neurotoxicology 

While primary neural stem cells directly sourced from fetal telencephali represent the 

arguably most proximal model of human neurodevelopment, their availability is 

limited and hence they are ill suited for large-scale and iterative studies required to 

advance regulatory toxicology. We thus explored the transcriptomic impact of MIX N 

using a neurodevelopmental model based on self-renewing sources of human induced 

pluripotent stem cells (iPSC): 3D cortical brain organoids (henceforth CO) that 

recapitulate human in vivo corticogenesis, as previously shown by us (López-Tobón 

et al., 2019). We thus followed the same experimental design used for fetal samples, 

having this time the opportunity to mimic even better the real life scenario, exposing 

in 4 replicates, cortical brain organoids from day 0 to day 50 in a chronic exposure 

setting that simulates the physiological conditions of early brain development during 

the first 10 weeks of pregnancy, when the women of the SELMA cohort were profiled. 

The results of the transcriptome analysis confirmed the major impact on gene 

expression already at 1X concentration, mainly concordant between the 2 doses of 

MIXN and a specific effect of MIXN exposure as compared to all the other conditions 

(Figure 14 A,B). 

As for MIXN effects, we found 662 DEGs (FDR < 0.05 logFC>=0.5, fig 5 C). 

Interestingly we found that MIXN significantly repress SLC5A7, a sodium and 

chloride transporter involved in synaptic formation, while it up-regulates genes related 

to neuronal fate NEUROG1, FEZF2 and GAD2 (which is consistent also in fetal). 

There is an enrichment for biological processes related to detection of chemical 

stimulus and cell-matrix adhesion among the downregulated genes, while negative 

regulation of neuron differentiation and brain development are enriched among the up-

regulated genes (Figure 14 C,D). 

Furthermore, following the same analysis we did for the fetal data. we found 

significant enrichment for genes associated with Intellectual Disabilities, 

Developmental Disorders and Autism Spectrum Disorders (ASD) (figure 14 E). In 

particular, plotting the expression of the most relevant genes for ASD, among MIXN 

DEGS, from the SFARI database we observed that the mutations causing ASD for a 

loss of function, are also down-regulated in our datasets (Figure 14 E). 
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Figure 14 Transcriptional effect of chronic MIXN exposure on cortical organoids  

A. Heatmap of the differentially expressed genes (DEGs) identified through categorical analysis, (FDR 
< 0.05 and logFC > 0.5) in the left panel, (FDR < 0.001 and logFC > 1) in the right panel  
B. Scatterplots representing the fold-change induced by 1X vs 1000X exposure relative to DMSO. 
DEGs shared between the 2 conditions are reported in yellow, while DEGs specific of 1 of the 2 in blue. 
C. Results of gene ontology enrichment analysis performed on the DEGs, divided for up- regulated and 
down-regulated genes. Bar plots depict the p-values for the top-10 Cellular Component GO terms. 
D. Gene sets significantly associated with MIXN exposure by GSEA.  
E. Overlaps, enrichment and significance between DEGs and genes associated to intellectual disability, 
developmental disorders and autism spectrum disorders in published databases. Gene expression across 
exposure conditions for the DEGs that overlap with the list of score1-2 SFARI genes. 

A. Differentially expressed genes upon chronic MIXN exposure on Organoids

B. MIXN 1X vs 1000X

C. Gene Ontology Enrichment Analysis

E. Neurodevelopment disorders causing genes: overlaps and gene expression dysregulation

D. Gene Set Enrichment Analysis
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Specificity of Mixture effects and comparison with single compound exposure 

Conscious of the complexity of dealing with the molecular events triggered by 

endocrine disruption and in addition to that, by mixtures of EDCs, our experimental 

design included a panel of additional exposures, performed on the same human in vitro 

systems, used as controls to ensure the specificity of the results observed.  

To further investigate the transcriptional effects specific of MIXN, in addition to 0.1% 

DMSO as a negative control, 10µM T3 exposure was used as a modulator of thyroid 

hormone responsive genes,  given its essential roles in both brain development 

(Williams, 2008) and metabolism (Mullur, Liu, & Brent, 2014) and previous 

epidemiological (Morgenstern et al., 2017) and experimental (Fini et al., 2017) 

evidence implicating the main chemical classes present in both mixtures as TH 

disruptors. We thus exposed the human cellular models to a concentration that is 

significantly higher than the physiological dose of T3 in the developing human brain 

(Calvo, Roda, Obregón, & de Escobar, 1998; Kester et al., 2004). In addition, given 

the complexity of MIXN and MIX G composition, and the fact that BPA and TCS are 

two of the few compounds that differ between MixN and MixG, these chemicals were 

also used for treatment as a single compounds, at the same concentration in which they 

are present in 1X MIXN or 1X MIX G. Furthermore, we tested in the same experiment 

different batches of MIXN, synthesised in different time points and stored in different 

labs for different periods, and performed a batch correction so to avoid technical 

variability. Figure 15 A,B shows that, both for HFPNSC and CO the genes identified 

are specifically dysregulated by MIXN exposure and that BPA alone cannot explain 

the transcriptional effect of MIXN. Figure 15 C shows that triclosan alone cannot 

explain the transcriptional effect of MixG. 
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Figure 15 Dissection of mixture vs single compounds effects  

Heatmap of the differentially expressed genes (DEGs) identified through categorical analysis upon 
exposure to 1X MIXN, T3, BPA or Triclosan. Scatterplots representing the fold-change induced by 2 
exposure conditions compared between each other, relative to DMSO. DEGs shared between the 2 
conditions are reported in yellow, while DEGs specific of 1 of the 2 in blue. Results for the HFPNSC 
dataset in A, cortical organoids in B, mesenchymal stem cells in C. 
  

A. DEGs MIXN on HFPNSC  DEGs T3 on HFPNSC  DEGs BPA on HFPNSC

B. DEGs MIXN on Organoids  DEGs T3 on Organoids  DEGs BPA on Organoids

C. DEGs MIXG on MSC  DEGs Triclosan on MSC
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Cellular phenotypes induced by EDC mixtures 

In addition to the molecular dissection of MIX N effects, the same organoids that were 

profiled at the transcriptomic level after the chronic 50 days of exposure, were also 

used to perform immunofluorescence analysis in order to score the cellular phenotypes 

and understand if MIX N had an impact on the developmental processes of neuronal 

differentiation. In particular we stained all the conditions for KI67 that mark 

proliferating progenitors and DCX, a protein involved in neuronal migration and 

represents a marker of early neurons. The results show an increased number of KI67 

positive cells coupled with a decrease of DCX expressing cells in the MIX N exposed 

organoids, thus suggesting an effect of EDC that is favoring neural progenitors 

proliferation while hindering neuronal differentiation (Figure 16,17 A, B) 

To further dissect this aspect, we interrogated in a supervised approach the 

transcriptomics data for a larger subset of genes related to proliferation (MKI67, 

CCNB1, CCNB2, CDC20, CDC20B, CDCA8, and HMGB2) and neural 

differentiation (DCX, SATB2, NEUROG1, SYP, MAP2, RBFOX3, and L1CAM), 

confirming the results observed at the protein level, also at the level of gene expression 

(Figure 16,17 C).  
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Figure 16 Cell proliferation effects of chronic MIXN exposure on cortical organoids  

A. Representative captions from immunostaining performed for anti-KI67(green)/DAPI(blue), 
widefield fluorescence images acquisition 40X. 
B. Violin plot of the ratio between the positive areas for KI67, normalised on the DAPI positive areas 
across exposure conditions. Areas were measured on several fields per organoid for at least 3 different 
organoids per condition. 
C. Gene expression across exposure conditions for a selected set of genes regulating cell proliferation. 
. 
 
 

A. Immunofluorescence of organoids: cell proliferation

CNT DMSO T3 BPA MixN	1X MixN	1000X

DAPI KI67 DAPI KI67 DAPI KI67 DAPI KI67 DAPI KI67 DAPI KI67

B. Immunofluorescence quantification (3 different organoids per condition)

C. Cell proliferation genes in the transcriptomic dataset
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Figure 17 Neuronal maturation effects of chronic MIXN exposure on cortical 
organoids  

A. Representative captions from immunostaining performed for anti-DCX(red)/DAPI(blue), widefield 
fluorescence images acquisition 20X. 
B. Violin plot of the ratio between the positive areas for DCX, normalised on the DAPI positive areas 
across exposure conditions. Areas were measured on several fields per organoid for at least 3 different 
organoids per condition. 
C. Gene expression across exposure conditions for a selected set of genes regulating neuronal 
maturation. 

CNT DMSO T3 BPA MixN	1X MixN	1000X

DAPI DCX DAPI DCX DAPI DCX DAPI DCX DAPI DCX DAPI DCX

A. Immunofluorescence of organoids: neuronal differentiation

B. Immunofluorescence quantification (3 different organoids per condition)

C. Neuronal maturation genes in the transcriptomic dataset
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Transcription factors identified as master regulators of the EDC mixture-

dependent transcriptional effect 

As a next step, we reasoned that the best way to identify the key regulators responsible 

of the transcriptomic phenotype and, as a consequence of the cellular and clinical 

adverse effects, was to perform a master regulator analysis starting from the 

dysregulation observed in the chronic exposure setting. Our analytical approach for 

this purpose takes advantage of 2 key novelties represented by the opportunity to 

leverage the recently released data from the Psychencode consortium (D. Wang et al., 

2018)  to have better information about the regulatory activity of transcription factors, 

specifically in the neurodevelopmental context, and by the use of a curated regulon 

(see methods and online resources). Using this approach we identified key 

transcription factors, whose dysregulation relayed the transcriptional impact of MIX 

N. In the fetal dataset we identified transcription factors known to be fundamental for 

regulating neuronal development and implicated in neurodevelopmental disorders, 

such as FOXG1 (Vegas et al., 2018) and CUX1 (Platzer et al., 2018), as well as in 

organoids where we identified ARID2 (Shang et al., 2015) and NFKB1 (Yonggang 

Zhang & Hu, 2012) at the basis of the transcriptional dysregulation (Figure 18). 
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Figure 18 Master regulator analysis on genes dysregulated by MIXN chronic exposure  

VIPER plots (Alvarez et al., 2016) showing the projection of the negative (repressed, shown in blue 
color) and positive (activated, shown in red color) targets for each TF, as inferred by ARACNE and 
correlation analysis when reverse engineering the regulatory network (vertical lines resembling a bar-
code), on the gene expression signature (GES) (x-axis), where the genes in the GES were rank-sorted 
from the one most down-regulated to the one most upregulated in the ‘test’ vs ‘reference’ conditions. 
The two-columns heatmap displayed on the right side of the figure shows the inferred differential 
activity (first column) and differential expression (second column), with the rank of the displayed genes 
in the GES (shown all the way to the right). Results for the HFPNSC in A and for the organoids in B. 
C. Heatmap of differentially activity for the transcription factors identified upstream of HFPNSC DEGs 
D. Heatmap of differentially activity for the transcription factors identified upstream of organoids DEGs 
 
 

  

A. Master regulator analysis based on 
Psychencode HFPNSC

B. Master regulator analysis based on 
Psychencode Organoids

C. Master regulator analysis based on 
curated regulon HFPNSC

D. Master regulator analysis based on 
curated regulon Organoids
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Characterization of the hormonal pathways related to the genes affected by the 

EDC mixtures 

Finally, in order to systematically characterise how the different endocrine pathways 

are related to MIXN effects, we analysed the hormonal pathway information 

associated to the DEGs and TFs previously identified, from the repository most 

commonly used to perform gene set enrichment analysis (Subramanian et al., 2005), 

as well as manually curated information for hormonal related genes (Chatonnet, 

Flamant, & Morte, 2015; B. K. Singh, Sinha, & Yen, 2018). The results show a strong 

intersections between the DEGs and transcription factors identified in our experiments 

and genes involved in all the main endocrine pathways, thus confirming the complex 

mechanisms of action of mixtures of endocrine disruptors. Among the 802 DEGs 

identified in HPFNSC and CO under MIX N exposure, 264 were involved in six 

endocrine pathways (estrogen, androgen, thyroid, PPARg, progesterone, corticoid). 

The most significantly regulated signalling pathways associated with the most DEGs 

identified were thyroid (143) > estrogen (76) > progesterone (50) > PPARg (36) > 

androgen (23) > corticoid (12). Genomatix Pathway System (GEPS) program was used 

to identify critical hubs of disruption by common environmental chemicals through 

hormonal pathways. This software determines interactions through both publicly 

available and in-house hand-curated data (Cartharius et al., 2005; Frisch, Klocke, 

Haltmeier, & Frech, 2009). The network was then visualized with Cytoscape (Shannon 

et al., 2003) (figure 19). 
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Figure 19 Gene network interactions of hormonal pathways related to the genes 
dysregulated by MIXN chronic exposure 

Hormonal pathways gene interactions were generated by the Genomatix GEPS program that connects 
differentially expressed genes and transcription factors identified upon chronic exposure of MIXN on 
HPFNSC and CO. 
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Dual strategy for multiplexed organoidogenesis 

We showed that cortical brain organoids are instrumental for regulatory toxicology, in 

particular to properly study the effect of chemical exposure during relevant 

developmental windows. They can also help to increase the throughput of chemical 

screening being a system that starts from self-renewable cells. Moreover, the 

opportunity to differentiate organoids from iPSC reprogrammed from different 

individuals, allows to test the effect of environmental factors on different genetic 

backgrounds. With the vision of applying chemical exposures on organoids cohorts of 

hundreds of iPSC lines, and thus dissect the differential impact of genetic variants on 

environmental factors, we set up and optimised 2 multiplexing strategies, in parallel 

with our previous experimental designs, that aim to study, at single cell transcriptomic 

level, the effects of inter-individual variability in response to EDCs, taking advantage 

of the reduction in technical variability, costs and workload needed to differentiate 

organoids from several cell lines. In the first approach, namely the downstream, we 

multiplexed samples just before library preparation, reducing the variability across 

library and sequencing runs while also decreasing the costs. In the second approach, 

the upstream, different pluripotent stem cell lines were multiplexed during the 

generation of the organoids, obtaining a chimeric model that could overcome also the 

variability related to culturing conditions (Figure 20). 
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Figure 20 Schematic representation of multiplexing organoidogenesis with parallel 
strategies  
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Fluorescent tagged iPSC lines and benchmarking of the chimeric organoid 

model 

First, in order to unravel the spatial distribution of different cell lines inside chimeric 

brain organoids within the upstream multiplexing strategy, we generated 2 different 

iPSCs lines that stably express either GFP or mCherry in their cytoplasm to follow 

their distribution in the organoids. Since the expression of the reporters was not 

homogeneous among cells, we performed fluorescence-assisted cell sorting (FACS) 

to select only cells with a high expression of the fluorescent reporters. Also, we 

performed cell proliferation assay on the different iPSC lines used, in order to verify 

that the starting proliferation rate at the pluripotent state was homogeneous. As a next 

step we generated chimeric organoids by mixing an equal number of cells during the 

first step of embryoid body generation. We performed multiple rounds of chimeric 

organoids generation and differentiation, testing the efficiency of the system when 

using 3 or 4 different iPSC lines, also trying different combinations of lines, as shown 

in Table 4. After the first period of 25 days of differentiation, we performed short 

tandem repeat (STR) profiling as a first proof that all the lines were retained in the 

organoids. 

 

Table 4 Cell lines used and experiments performed for multiplexing  

 

 

Cell lines used and experiment performed

Cell line ID Cell line name specie origin sex

hiPSC 1 KOLF human Healthy control (fibroblast) Male

hiPSC 2 3391B human Healthy control (fibroblast) Female

hiPSC 3 MIFF1 human Healthy control (fibroblast) Male

hiPSC 4 809.1.5 human Healthy control (fibroblast) Female

HiPSC 5 A15461 human Healthy control (fibroblast) Male

Cell lines/ combinations Chimeric org. 1 Chimeric org. 2 Chimeric org. taggged Downstream 

 multiplexinghiPSC 1 X X X

hiPSC 2 X X X (+GFP) X

hiPSC 3 X X X X

hiPSC 4 X X (+mCherry)

hiPSC 5 X X

Model/ Experiments Cell Proliferation 

assay

STR analysis IF Live imaging FACS scRNAseq

Chimeric org. 1 X X X

Chimeric org. 2 X X X

Chimeric org. “tagged” X X X X

Pure cell lines X X X X (tagged cell 

lines)

Downstream 

multiplexing
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Figure 21 STR analysis  

Two different combination of 25 days old chimeric brain organoids shows the presence of all the four 
mixed genotypes in both models. STR fingerprints of each pure cell line were previously determined 
both in donors’ fibroblasts and in their corresponding 

 
 
 
As a next step we performed immunofluorescence stainings to characterise the 

expected markers and morphological organization of the chimeric organoids. After 50 

days of differentiation chimeric brain organoids fully recapitulated the structure of 

pure lines-derived organoids displaying ventricle-like structures organized in a radial 

pattern and mainly composed by PAX6 positive apical progenitors. They also showed 

the expected expression and distribution of the neuronal marker Tuj1 (Figure 22 A). 

Immunofluorescence of 100 days old organoids also showed the presence of cortical 

lower layers, CTIP2+ and Reelin+ neurons (Figure 22 B). Finally, we were able to 

image the chimeric organoids generated with the fluorescence tagged lines (Figure 22 

C) and observe the absence of a rigid regionalization of the different lines in the 

organoids. 
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Figure 22 Immunofluorescence of chimeric brain organoids 

A. Selected panels for Tuj1, Nestin and Pax6 stainings in 50 days organoids confirm the similarity 
between chimeric model structural organization and those of pure lines-derived organoids. 
B. Selected panels for CTIP2 and Reelin confirms chimeric brain organoids differentiation proceeds 
giving rise to specialized and spatially organised cell populations. 
C. Confocal image of 150 days old chimeric tagged organoid sections. It’s possible to observe the 
three distinct cell populations that compose the organoid, namely GFP+ cells, mCherry+ cells and 
double-negative cells which can be identified by the presence of Hoecst+ nuclei that do not co-localize 
with fluorescent reporters. 
 
 
 
 
 
 
 
 
 
 
  

3391B day50

Chimeric 2 day100

Chimeric 1 day100

Chimeric Tagged 
 > 120 days
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Single cell transcriptomics deconvolution 

As indicated in the experimental design, we performed downstream and upstream 

multiplexing of different cell lines before single cell library preparation, using the 10X 

Genomics platform and RNA sequencing. Afterwards we had the opportunity to 

demultiplex the data and associate the identity of each cell line, thanks to their SNP 

profiles (Figure 23).   

 

 
Figure 23 Scheme of the demultiplexing pipeline 

 
Briefly we called the genetic variants of each line from the sequencing of the bulk 

transcriptomes that we already had, and then we associated the identity of every single 

cell, following 2 different approaches, namely Demuxlet (Kang et al., 2018a) and 

SoupOrCell (Heaton et al., 2019) that proved to be highly concordant for our data. 

Following this pipeline we observed that the differences between the lines in terms of 

cell numbers per multiplexed samples, are higher in the upstream approach. In both 

cases we found the presence of all the starting iPSC lines, however, while for the 

downstream approach the range of variability in cell numbers is comparable with the 

experiments performed without multiplexing, for the upstream approach we found in 

2 out of 3 experiments that 1 of the 4 lines was heavily under represented and it was 

not possible to attribute the result to a specific line (Figure 24).  

 

 

Parallel demultiplexing strategy with  
SoupOrCell

Single Cell sequencing of Multiplexed OrganoidsBulk RNA-seq of pure lines

Variant calling (GATK suite)

Demultiplexing
Via Demuxlet software

Identification of cell Identities (IDs)

Multiplexed Organoids:

Day50

1x Upstream

1x Downstream

Day100

2 x Upstream

Day250

1x Downstream

Demultiplexing pipeline

MIFF1, KOLF, 3391b, 809-1-5

MIFF1, 3391b, KOLF, SA2, A15441, DESTa

MIFF1, KOLF, 3391b, 809-1-5

MIFF1, KOLF, 3391b, a15461

3391b,  KOLF, MIFF1, DESTa, CROLE, a15441

Barcode filtering (cellranger)✓

✓
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Figure 24 Deconvolution of cell line identities in upstream and downstream 
multiplexed samples 
Barplot representing the number of cells assigned to each individual cell line after association of the 
SNP signatures, by Demuxlet, between the single cell dataset and the variants selected from the bulk 
transcriptomes, for each round of multiplexing experiments 
 

After the deconvolution of cells’ genetic identity, we analysed the data following the 

same pipelines applied to the other single cell datasets, performing the filtering, 

normalization, dimensionality reduction and clustering. Remarkably both for the 

downstream and upstream samples, the cells from the different lines show an 

homogeneous distribution across the manifold, with the principal component of 

variability driven by neuronal differentiation genes, thus confirming the big advantage 

of reducing the batch effect that is usually observed when plotting different samples 

in the same space without any batch correction. We were also able to assign the identity 

of the different cell clusters to the expected populations and observed that all different 

cell lines were represented in each of the clusters.  

Extending the pipeline to all Multiplexed Organoids

Day50 (upstream) Day100 (upstream) Day250 (downstream)

MIFF1, KOLF, 3391b, 809-1-5 MIFF1, KOLF, 3391b, a15461 3391b,  KOLF, MIFF1, DESTa, CROLE, a15441
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KOLF2

MIFF1
3391b
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KOLF2

MIFF1
3391b

KOLF2
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MIFF1

a15441
MIFF1

3391b
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MIFF1CROLE

Total initial Cells:  17089 Total initial Cells:  4843 Total initial Cells:  6105 Total initial Cells:  10492

Day50 (downstream)

MIFF1, KOLF, 3391b, A1544,
SA2D, DEST1

Total initial Cells:  17089
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Figure 25 Cell populations decomposition in multiplexed brain organoids 
A.Shared nearest neighbor (SNN) modularity optimization based clusters (computed in Seurat) and 
plotted using UMAP.  
B. Cell identity assigned using Demuxlet and plotted using UMAP 
C. Barplot of number of cells assigned to each identity and distribution of the cell indemnities in each 
of the clusters previously identified 
D.Heatmap of the overlaps between marker genes characterizing the internal organoids clusters and 
external gene signatures of the relevant single cell clusters from human fetal brains (Nowakowski et al., 
2017). Colors are based on the log2Enrichment computed for each pair of comparisons.  
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Discussion and future directions 
The current vision for improving regulatory decision making relies on the transforming 

potential of high throughput and high content data to elucidate and quantify the 

molecular, cellular and organismal responses to chemicals (Califf et al., 2016). In the 

context of chemical regulation most authorities, including the Organisation for 

Economic Co-operation and Development (OECD), recommend integrated 

approaches to testing and assessment (IATA) that incorporate results from multiple 

methodologies. Emphasis is placed on molecular initiating events (MIE) that lead to 

physiologically measurable adverse outcome pathways (AOP). Here we first identified 

the adverse outcomes (language delay or low birth weight) in humans, then proceeded 

to determine the prenatal chemical mixtures associated with these outcomes in children 

and, finally, established the causative molecular and cellular impacts using in vitro 

human models. By making EDC mixtures experimentally tractable as the ‘real life’-

relevant unit of exposure, these complementary methodologies allowed us to uncover 

the gene networks specifically altered by neurodevelopment- or growth-targeting EDC 

mixtures and define endocrine axis of vulnerability. Furthermore, by establishing the 

value of human reprogrammed models based on self-renewing sources, we both 

expand their reach to regulatory toxicology and enrich the latter experimental human 

insight. Together, this approach allowed us to define dysregulated gene networks, 

identified and validated through complementary methods, that can be exploited to link, 

mechanistically, MIEs to AOPs. As such it represents a methodology and approach 

broadly applicable within the new regulatory frameworks globally.  

We then moved forward to develop new experimental platforms within the vision of 

incorporating the contribution of human genetic variability to the assessment of 

chemical exposure by multiplexing organoidogenesis.  

Our approach, in the context of chemical exposure was limited to iPSC lines derived 

from healthy individuals, but the chimeric model clearly represents an ideal platform 

to study and test the cell type specific effects of genetic diseases if a mutant line is 

grown in the same organoid with a wild type line. 

Moreover, taking advantage of the high number of cell replicates within each cell 

population, given by single cell transcriptomics, it is possible to associate a genetic 

variant to the effect on gene expression in a specific cell population using the eQTL 

framework (Kang et al., 2018a; Shabalin, 2012; van der Wijst et al., 2018).  

In the case of our data, since the number of individuals is still far from the minimum 

required for significant de novo eQTL calling, we are instead focusing on a supervised 
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approach in which we are starting from SNPs that are already associated to gene 

expression alteration on relevant cell types for neurodevelopment, or to 

neurodevelopmental disorders (“Autism-SNPedia”; “dbGaP PsychENCODE 

Consortium”; “GENEX-FB2”; “GTEx Portal - eQTL dashboard”; “LIBD eQTL 

Browser”) to study more in-depth their association to neurodevelopmental dynamics. 

In this way we can take advantage of the longitudinal profiling of our organoids cohort 

and of the high number of differentiation replicates that we can compare across the 

different multiplexing strategies. The innovative idea we are proposing is thus to look 

for the associations between genetic variants and the developmental trajectories that, 

for each individual iPSC lines we can capture throughout organoids differentiation 

thanks to single cell transcriptomics deconvolution. As it is shown in the recent 

preprint by (Cuomo et al., 2019), pseudotime alignment of the single cells, improve 

the power to detect cell type specific eQTL. In our design we are analyzing how 

previously known SNPs correlate with the shape and velocity of developmental 

trajectory, to define, as a proof-of-concept, the idea of eDTL (expressed 

developmental trait loci) that could be generalized to the study of different organ 

development and applied to study gene regulatory mechanisms when dealing with the 

appropriate number of iPSC lines. 

There are a number of challenges however to take into account in multiplexing 

experimental design, represented for example by the impact of cell autonomous vs 

interactions in the chimeric model (especially if the platform is used to combine a 

disease with a wild type line), or by the differences in the proliferative rates of each 

cell line that can lead to an imbalance of the composition of chimeric organoids. We 

are implementing, indeed, experimental screenings to test the number of lines that can 

be simultaneously grown in a single chimeric organoids, given the importance of this 

same approach for all the different pooled CRISPR based perturbations that we are 

envisioning for different projects of the lab (Boettcher et al., 2018; Datlinger et al., 

2017; Mimitou et al., 2019; Xie, Duan, Li, Zhou, & Hon, 2017b). 

To conclude, our multiplexing experiments represent the attempt to make a concrete 

example of experimental epidemiology in vitro, with the cohort of organoids that can 

be used to study the specific impact of genetic variants on neurodevelopment and that 

we defined as “Europe in a dish”.  
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Materials and methods  
Cell lines culture and quality control 

Human induced pluripotent stem cells have been previously validated in our  

laboratory (Adamo et al., 2015). They were cultured in TeSR/E8TM medium (Stemcell 

technology) supplemented with penicillin (100 U/mL) and streptomycin (100 μg/mL), 

with daily media change at 37 °C, 5 % CO2 and 3 % O2 in standard incubators. Before 

hiPSCs plating, cell culture dishes were coated with matrigel as follows: matrigel stock 

solution (Corning) is diluted 1:40 in DMEM/F12 medium (Euroclone) and the 

resulting matrigel solution was used to coat dishes at least 10 minutes at 37 °C. hiPSCs 

were normally splitted 1:6 to 1:10 using ReLeSRTM (Stemcell technology) when 

confluency reached approximately 60-70%. When single-cell dissociation was needed, 

accutase solution (Sigma-Aldrich) was used. While ReleSRTM contains only EDTA 

salts and detaches cells in clumps, accutase solution contains a proteolytic enzyme that 

dissociate colonies at single cell level. When using accutase, ROCK inhibitor 5uM 

(Sigma Aldrich) was used to enhance cell survival. To cryopreserve hiPSC lines, cells 

were dissociated when 60% confluent with accutase and resuspended in TeSR/E8 

medium, 10 % DMSO and ROCK inhibitor 5µM. Cell lines were kept mycoplasma-

free by routinely testing for contaminations. 

They were routinely assessed with STR profiling to confirm the correct identity of the 

lines using the kit GenePrintR 10 system (Promega). Cell lines were profiled with 

Array-CGH for verifying the absence of chromosomal rearrangements, using the 

Agilent kit SurePrint G3 Human CGH Microarray 8x60K. 

Human foetal primary neural stem cells (HFPNSC) were provided by Dr. Steve 

Pollard’s laboratory. They were derived from the cortex of post-conception week 11 

and 19, male embryo and from the ganglionic eminence of post-conception week 8, 

male embryo. They were cultured in our cell culture in the media Sigma D8437 

DMEM/HAMS-F12 (which comes with Hepes and Glutamine) complemented with:  

 For Wash Media = 500ml bottle Sigma D8437 

 + 5mls Pen-Strep (Gibco 15140-122) 

 +1ml BSA Soln 7.5% (Gibco 15260-037) 

 For Complete Media = 500ml bottle Sigma D8437 

 +7.25ml Glucose (Sigma G8644) 

 +5ml MEM NEAA 100x (Gibco 11140-035) 

 + 5mls Pen-Strep (Gibco 15140-122) 

 +800uL BSA Soln 7.5% (Gibco 15260-037) 
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 +1mL bMercETOH 50mM (Gibco 31350-010 (20ml))          

 +5ml B27 Supplement 50x (LifeTech/Gibco 17504-044) 

 +2.5ml N2 Supplement 100x (LifeTech/Gibco 17502-048) 

 All reagents brought to 37degree before adding; N2 supplement swirled gently to 

avoid precipitation. Before adding to the cells, the complete media is supplemented 

with mouseEGF to final concentration 10ng/ml (peprotech) and humanFGF to final 

concentration 10ng/ml (peprotech)/Laminin to final concentration 1ug/ml (Sigma 

L2020-1MG/ML). For detaching the cells Accutase Solution from Sigma(A6964 

100ml) is used. The standard method of remove media, PBS rinse, accutase – cells 

detach – add wash media and collect cells, spin to pellet cells(then resuspend in 

complete media + EGF + FGF + Laminin. Depending on cell line a rough guide is 

usually a 1 in 4/ 1 in 5 split for Human cells and approx. 1 in 8/1 in 10 for mouse cells. 

For freezing the cells Wash Media + 10%DMSO is used.   

Adult human bone marrow derived mesenchymal stem cells (hMSCs) from 2 donors 

were a kind gift of Dr. Katarina Leblanc (Center of Hematology and Regenerative 

Medicine, Department of Medicine, Karolinska Institutet, Sweden) and were cultured 

in Dulbecco's Modified Eagle's medium (DMEM, Gibco ® by Life technologies) 

supplemented with 10% heat-inactivated fetal bovine serum (FBS) (Gibco® by 

Thermo Fisher Scientific) (see also SI). Human indcuded pluripotent stem cell-derived 

mesenchymal stem cells (hiPSC-MSCs) were obtained and cultured from neural crest 

stem cells derived from iPSCs in our lab according to the protocol described by 

(Menendez et al., 2013) and previously used in (Adamo et al., 2015). Adult MSCs 

were routinely cultured at 37°C, 5% CO2 in growth media (GM): Dulbecco's Modified 

Eagle's medium (DMEM, Gibco ® by Life technologies) supplemented with 10% 

heat-inactivated FBS (Gibco® by Thermo Fisher Scientific), 1% 

penicillin/streptomycin (Gibco® by Thermo Fisher Scientific) and 2% glutamine 

(Gibco® by Thermo Fisher Scientific). iPSC-MSCs were cultured under the same 

conditions but in DMEM/F12 (Gibco® by Thermo Fisher Scientific) medium 

supplemented with 10% heatinactivated FBS, 1% penicillin/streptomycin and 1% 

glutamine. 

  

 

  



 89 

Cortical Brain Organoids 

For the differentiation of cortical brain organoids we used the protocol described by 

(Paşca et al., 2015), with minor modifications to improve its efficiency.  

For the work on GSK3b inhibition, hPSCs were plated onto cell cycle-arrested mouse 

embryonic feeders (MEFs)(Millipore) for one passage, colonies grown for at least 48h 

and then enzymatically detached by incubation with 0.7 mg/ml dispase (Invitrogen: 

17105-041) for approx. 30 min. Suspended colonies were subsequently transferred 

into ultra-low- attachment 100 mm plastic plates (Corning) in FGF2-free knockout 

serum medium. For the first 24 h (day 0), the medium was supplemented with the 

ROCK inhibitor Y-27632 (EMD Chemicals). For neural induction, dorsomorphin 

(Merck, 5 μM) and SB-431542 (Tocris, 10 μM) were added to the medium until day 

5. From day 6 onward, organoids were moved to neural medium (NM) containing 

Neurobasal (Invitrogen 10888), B-27 serum substitute without vitamin A (Invitrogen 

12587), GlutaMax 1:100 (Fisher 35050071), 100 U/ml penicillin and streptomycin 

(Invitrogen) and 50 mM b-Mercaptoethanol (Gibco 31350010). The NM was 

supplemented with 20 ng/ml FGF2 (Thermo) and 20 ng/ml EGF (Tocris) for 19 days 

with daily medium change in the first 10 days, and every other day for the subsequent 

9 days. On day 12, floating organoids were moved to orbital shaker (VWR Standard 

Orbital Shaker, Model 1000) and kept on constant shaking at 50 rpm to promote 

nutrient and oxygen exchange. To induce neurogenesis, FGF2 and EGF were replaced 

with 20 ng/ml BDNF (Peprotech) and 20 ng/ml NT3 (Peprotech) starting at day 25, 

while from day 43 onwards only NM without growth factors was used for medium 

changes every other day. 

For the other projects, since we optimized the protocol to avoid the use of MEF, the 

following procedures were followed: when the hiPSC line reached 80% confluency in 

a 10 cm dish, colonies were dissociated with Accutase and centrifuged to remove the 

enzymatic suspension. After resuspension in TeSR/E8 medium supplemented with 

5uM ROCK inhibitor cells were counted with a TC20 automatic cell counter (Biorad) 

and resuspeded to get a final concentration of 2 x 105 cells/mL. 

100 uL/well of cell suspension were seeded into PrimeSurfaceR  96 well plates 

(SystemBio) and then the plates spinned at 850 rpm for 3 minutes to promote the 

formation of embryoid bodies. The utilization of ultra-low attachment plates is 

fundamental to avoid cell adhesion. The day of the EB generation is referred to as day 

-2. On day -1, medium is not changed, leaving EBs undisturbed.  On day 0 media 

change is performed adding differentiating medium one, composed of 80% 
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DMEM/F12 medium (1:1), 20% Knockout serum (Gibco), 1 mM Non-essential amino 

acids (Sigma), 0.1 mM cell culture grade 2-mercaptoethanol solution (Gibco), 

GlutaMax (Gibco, 1:100), penicillin 100 U/mL, streptomycin (100 μg/mL), 7 uM 

Dorsomorphin (Sigma) and 10 uM TGFβ inhibitor SB431542 (MedChem express). 

Dorsomorphin and TGFβ inhibitor are used to perform DUAL-SMAD inhibition, 

promoting the induction of neuroectoderm. 

From day 0 to day 4, media change is performed every day with the very same medium 

while on day 5 differentiation medium two is added until day 24 with daily media 

change for the first 7 days. 

Differentiation medium two is composed of neurobasal medium (Gibco) 

supplemented with B-27 supplement w/o vitamin A (Gibco, 1:50), GlutaMax (1:100), 

penicillin 100 U/mL, streptomycin (100 μg/mL), 20 ng/mL FGF2 (Thermo) and 20 

ng/mL EGF (Thermo). 

On day 12 organoids are moved to 10cm ultra low attachment dishes and grown on 

shakers to enhance oxygen and nutrient supply. From day 12 onwards media change 

is performed every other day. On day 24, FGF2 and EGF are replaced with 20 ng/mL 

brain-derived neurotrophic factor (BDNF, Thermo) and 20 ng/mL neurotrophin-3 

(NT3, Thermo) to promote differentiation of neural progenitors. From day 42 onwards, 

grow factors are removed. 

The volume of medium needed for each plate vary according to the size and number 

of organoids per plate as it must be sufficient to ensure they are completely covered. 

As a general rule, media volume increases while proceeding with differentiation, 

reaching a maximum of approximately 35 mL/plate. 

For EDC chemical exposure of HFPNSC, were seeded in 6-well plates. When 

confluency was reached 0.1% DMSO or the other compounds diluted in DMSO, MIX 

N, MIX G in 5 different concentrations (from 0.1X to 1000X), 0.04 nM BPA,  10 uM 

T3 were added to the culture media and used to culture cells for 48 hours or for 15 

days (in the chronic setting), adding the chemical every time medial change was 

performed (every other day). After the exposure cells were collected for RNA 

extraction. 

For EDC chemical exposure of organoids, 0.1% DMSO, or the other compounds 

diluted in DMSO, MIXN in the 2 different concentrations used (1X and 1000X), 0.04 

nM BPA and 10 uM T3 were added to the culture media and used to culture cells from 

day 0 to day 50. After the exposure, organoids were collected for both RNA extraction 

and fixed for immunofluorescence analysis. 
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For the EDC chemical exposure on MSC, cells were seeded in 6 well plates and 

expanded until they reached 70-80% confluence. Growth media was replaced by 

treatment media consisting of DMEM supplemented with 10% charcoal stripped FBS, 

1% penicillin/streptomycin and 2% glutamine two days before experiment start, and 

cells were kept in this media throughout all experiments. Treatment was performed for 

48h before the cells were lysed. For adipogenic induction and lipid accumulation 

assessment, cells were seeded in 96 well plates and treatments were performed in 

treatment media for 14-21 days where medium was changed twice a week.  
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RNA sequencing  

Total RNA was isolated with the RNeasy Micro Kit (Qiagen, Hilden,Germany) 

according to the manufacturer's instructions. RNA was quantified with Nanodrop and 

then the integrity was evaluated with Agilent 2100 Bioanalyzer (only if the quality 

ratios were not optimal after Nanodrop analysis). TruSeq Stranded Total RNA LT 

Sample Prep Kit, Illumina was used to run the library for each sample. Sequencing is 

performed with the Illumina HiSeq 2000 platform, sequencing on average 10 millions 

50bp paired-end reads per sample. 

RNA-seq data analysis (EDC Mix project)  

All the data and the code have been organized in a repository that will be open upon 

publication of the paper. Gitlab access can be granted upon specific request. 

RNA-seq quantification was performed directly from the reads using Salmon 6.1, 

using the hg38 Refseq annotation. Only genes with at least 20 reads in each of at least 

2 concentrations of the mixture using the same cell lines were included for further 

analysis; small (<200nt) genes, ribosomal RNA genes, and fusion genes were 

excluded. Batch correction was applied to get rid of technical variability due to 

experiments performed in different rounds using surrogate variable analysis (Parker et 

al., 2014). Differential expression analysis was performed on the estimated counts 

after TMM normalization with edgeR (M. D. Robinson, McCarthy, & Smyth, 2010) 

using a likelihood ratio test on the coefficients of a negative binomial model including 

the genetic background and the mix concentration. The concentration was treated as a 

categorical variable (i.e., converted to factor), and tested for any non-zero coefficient. 

Genes identified through this method were then kmeans-clustered on the basis of their 

smoothed fold change upon each concentration (using the NbClust R package to 

determine the consensus number of clusters). The mean smoothed fold change pattern 

for the main cluster(s) were plotted for dose-response patterns. 

Enrichment analysis 

Gene Ontology (GO) enrichment analyses were performed with the goseq R package, 

and topGO (version 2.30.1) including correction for eventual RNA-seq transcript-

length bias and excluding genes without annotation. Terms with at least 10 but no more 

than 1,000 associated genes were considered, and Fisher’s exact test was used. The 

tested genes (excluding small and lowly-expressed genes) were used as a background. 

Parent terms with significantly enriched children terms were filtered out to improve 

the specificity of the enrichments. Unless stated otherwise, other enrichment tests were 

performed using the hypergeometric test. 
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Master regulator analysis  

The psychencode network (D. Wang et al., 2018) was reconstructed using human fetal 

and adult brain datasets, combining general information about motifs, accessibility, 

3D contact (HiC), eQTLs and correlations with target gene expression. It includes not 

only regulatory interactions proximal to the TSS, but also distal enhancers. It is 

particularly valuable because it is specific to brain tissues. Of course, it can detect only 

interactions for which there is variation among the population and during 

development. The downside is that none of the interactions are validated. The curated 

regulon is instead limited to TF bindings close to the TSS, and only to a small subset 

of TFs. The interactions are also not at all tissue-specific. The advantage is that there's 

a lot of experimental binding evidence in there (e.g. ChIPseq), as well as curated 

interactions, and that the interactions are weighted by amount of evidence. Master 

regulator analysis and visualization was performed with the VIPER package (Alvarez 

et al., 2016). 

RNA-seq data analysis (general) 

Bulk transcriptome analysis. Differential gene expression. Gene expression 

quantification at the gene level was performed by Salmon (version 0.8.2) (Patro et al., 

2017), using hg38 RefSeq annotation. To estimate differential expression, the matrix 

of gene counts was analyzed by edgeR (version 3.20.9) (Robinson et al., 2009). For 

each time point, genes with an expression level of at least 2 cpm (count per million) in 

at least 3 samples were selected for the analysis. Small genes, ribosomal genes and 

fusion genes were excluded. After TMM normalization, differential expression 

analysis comparing treated to untreated samples was performed using a likelihood ratio 

test on the coefficients of a negative binomial model. Significantly modulated genes 

were selected setting an absolute value of log2 fold change (Log2FC) higher than 1 

and a false discovery rate (FDR) lower than 5%. Log2 cpm values, were used for 

heatmap representation of gene expression profiles (visualized as z-scores). Heatmaps 

were produced with pheatmap R package (version 1.0.10, Raivo Kolde (2018). 

pheatmap: Pretty Heatmaps.). Analyses were performed in R version 3.4.4. Functional 

annotation of biological functions was performed by Gene ontology analysis and Gene 

set enrichment analysis (GSEA) using as set source H1 collection from the Molecular 

Signature Database (Liberzon et al., 2015). Gene Ontology Enrichment Analysis. Gene 

ontology enrichment analysis for the Cellular Component domain of the ontology was 

performed on the 898 DEGs identified at day 50, split in up-regulated and down-

regulated genes. The pool of tested genes (as selected for differential expression 
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analysis) was used as background. The analysis was performed by topGO (version 

2.30.1) (Adrian Alexa and Jorg Rahnenfuhrer 2016). topGO: Enrichment Analysis for 

Gene Ontology), relying on Fisher test and Weight01 method to take into account 

ontology hierarchy; minimum node size was set at 15. After imposing an enrichment 

cut-off of 2, a 0.01 p-value cut off was applied to select significantly enriched GO 

terms. Barplot in supplementary figure 4 shows the top-10 categories ranked for p-

value.  

Gene set enrichment analysis. GSEA was applied to each developmental stage with 

GSAA software, version 1.2 (Xiong et al., 2014). Raw reads for the same genes tested 

for differential expression were analyzed by GSAASeqSP (permutation type ‘gene 

set’).  

Single cell library preparation and sequencing 

Briefly, a small volume (6 - 8 μl) of single-cell suspension at a density of 1000 cells/μl 

was mixed with RT-PCR master mix and immediately loaded together with Single-

Cell 3′ gel beads and partitioning oil into a single-cell 3′ Chip. The gel beads were 

coated with unique primers bearing 10× cell barcodes, unique molecular identifiers 

(UMI) and poly(dT) sequences. The chip was then loaded onto a Chromium instrument 

(10× Genomics) for single-cell GEM generation and barcoding. RNA transcripts from 

single cells were reverse-transcribed within droplets to generate barcoded full-length 

cDNA using Clontech SMART technology. After emulsion disruption, cDNA 

molecules from one sample were pooled and preamplified. Finally, amplified cDNAs 

were fragmented, and adapter and sample indices were incorporated into finished 

libraries which were compatible with Illumina sequencing. The final libraries were 

quantified by Qubit system (Thermo) and calibrated with an in- house control 

sequencing library. The size profiles of the pre-amplified cDNA and sequencing 

libraries were examined by Agilent Bioanalyzer 2100 using a High Sensitivity DNA 

chip (Agilent). Two indexed libraries were equimolarly pooled and sequenced on 

Illumina NOVAseq 6000 platform using the v2 Kit (Illumina, San Diego, CA) with a 

customized paired-end, dual indexing format according to the recommendation by 10× 

Genomics. Using proper cluster density, a coverage around 250 M reads per sample 

(2000–5000 cells) were obtained corresponding to at least 50,000 reads/cell. 

Organoids were collected at day 50, 100 or 250. 3-5 organoids per condition were 

dissociated by incubation with a solution of 0,5 mg/ml trypsin + 0,22 mg/ml EDTA 

(Euroclone) with 10 ul of DNaseI 1000 U/ml (Zymo Research) for 30 – 45 min 

according to organoid size. Digested suspensions were passed once through 0.4 uM 
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FlowmiTM cell strainers, resuspended in PBS and counted using a TC20 Automated 

Cell Counter (Biorad). Droplet-based single-cell partitioning and single-cell RNA-Seq 

libraries were generated using the Chromium Single-Cell 3′ Reagent v2 Kit (10× 

Genomics, Pleasanton, CA) following manufacturer’s instructions  (Zheng et al., 

2017). Briefly, a small volume (6 – 8 μl) of single-cell suspension at a density of 1000 

cells/μl was mixed with RT-PCR master mix and immediately loaded together with 

Single-Cell 3′ gel beads and partitioning oil into a single-cell 3′ Chip. The gel beads 

were coated with unique primers bearing 10× cell barcodes, unique molecular 

identifiers (UMI) and poly(dT) sequences. The chip was then loaded onto a Chromium 

instrument (10× Genomics) for single-cell GEM generation and barcoding. RNA 

transcripts from single cells were reverse-transcribed within droplets to generate 

barcoded full-length cDNA using Clontech SMART technology. After emulsion 

disruption, cDNA molecules from one sample were pooled and pre-amplified. Finally, 

amplified cDNAs were fragmented, and adapter and sample indices were incorporated 

into finished libraries which were compatible with Illumina sequencing. The final 

libraries were quantified by real -time quantitative PCR and calibrated with an in-

house control sequencing library. The size profiles of the pre-amplified cDNA and 

sequencing libraries were examined by Agilent Bioanalyzer 2100 using a High 

Sensitivity DNA chip (Agilent). Two indexed libraries were equimolarly pooled and 

sequenced on Illumina NOVAseq 6000 platform using the v2 Kit (Illumina, San 

Diego, CA) with a customized paired end, dual indexing (26/8/0/98-bp) format 

according to the recommendation by 10× Genomics. Using proper cluster density, a 

coverage around 250 M reads per sample (2000–5000 cells) were obtained 

corresponding to at least 50,000 reads/cell. 

Single cell transcriptome analysis  

Before downstream analyses, data deriving from the 11 samples was integrated by 

Seurat v3.0-alpha analytical framework (Stuart et al., 2018). After normalization, 

anchors for data integration were identified considering 3000 anchor points (genes) 

and 40 dimensions. For data reduction, UMAP was applied with 50 nearest neighbors 

(nn); cluster initial positions were set considering PAGA node position (Scanpy 

v1.3.1) (Wolf et al., 2018). On the integrated dataset, clusters were identified by 

applying Louvain with Multilevel Refinement from Seurat with resolution parameter 

at 0.7. This resulted in the identification of 15 clusters. For cluster annotation, we 

applied the FindMarker Seurat function, using MAST as test and filtering for up-

regulated genes with adjusted P value < 0.05. The obtained lists were compared in an 
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overlap analysis with gene lists derived from two published single cell datasets : from 

the WGCNA analysis of single cell clusters of human fetal brains (paper by 

Nowakowski et al, DOI: 10.1126/science.aap8809), data were downloaded from the 

web portal at https://cells.ucsc.edu/?ds=cortex-dev and upregulated genes 

(vg_diff.float>1.5) were selected for each relevant cluster, from the differential 

expression analysis of single nuclei clusters (Table S6 of the paper by Amiri et al, 

DOI: 10.1126/science.aat6720), upregulated genes were selected for each relevant 

cluster fold change > 0 and adjusted P value < 0.05. P values and enrichment 

coefficients were computed relative to a universe of 3000 genes used for all the other 

single cell analysis. To test for unbalance in the number of highly expressing cells for 

representative genes per cluster or cluster set, a threshold of expression at the 90th 

percentile was fixed, and the number of cells above or below the threshold in treated 

and untreated cells was compared by Fisher test. The identification of the threshold 

and sub-sequent analysis was performed on the sub-sampled dataset, separately for 

Day 50 and Day 100.  

Cell cycle analysis were performed using Scanpy function score_genes_cell_cycle, 

relying on the genes from (Kowalczyk et al., 2015). Diffusion map algorithm for 

dimensionality reduction was performed with Scanpy with 50 nn. Pseudotime analysis 

for lineage branching reconstruction was applied using wishbone algorithm (Setty et 

al., 2016). The analysis was performed on the complete dataset, as well as separately 

for each of the four biological conditions in order to infer stage or treatment-selective 

trajectories; the origin was identified with the same method applied on complete 

dataset. Trajectories were reproduced defining using at least 3 different markers. 

Partition-based graph abstraction (PAGA) algorithm was applied on the complete 

dataset, as well as separately for each of the four biological conditions and plotted with 

layout Reingold Tilford. The position of the nodes identified on the complete dataset 

was exploited in the graph for each biological condition.  

Neurodevelopmental Disorder relevant genes 

I collected in the following repository a pipeline to analyse a list of genes relative to 

public repositories that are relevant in the context of NDD. 

https://crockol.github.io/NDDrelevantGenes/ 
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Immunohistochemistry for neuronal systems.  

Cortical organoids were fixed with PFA 4% overnight, then transferred to sucrose 

30% between 24 / 48h until precipitated and mounted in Killik cryopreservation 

media for later sectioning, or processed for paraffinization. Sections were washed 

with PBS and incubated 30 min in sodium citrate buffer pH 6.0 for antigen retrieval.  

Section were then blocked in 10% normal goat serum (NGS), 0.5% Triton X100 

diluted in PBS for one hour at room temperature. The sections were then incubated 

overnight at 4 °C with primary antibodies diluted in PBS solution containing 2% 

NGS and 0.1% Triton X-100. PBS was used to wash the primary antibodies and the 

cryosections were incubated with secondary antibodies containing 2% NGS and 

0.1% Triton X-100 for 1 h.  

Primary antibodies were prepared in PBS + 5% normal donkey serum (Jackson 

Immuno Resarch) overnight at 4°C. The following primary antibodies and dilutions 

were used: anti-PAX6, 1:200 (Biolegend); anti-KI67, 1:200 (Abcam 15580); anti-

NESTIN, 1:500 (Millipore); anti– DCX, 1:1000 (BD Biosciences 611706); anti-

TBR1, 1:200 (Abcam 31940). After primary incubation, sections were washed three 

times with PBS and the incubated with appropriate secondary antibodies conjugated 

to Alexa fluorophores 488 or 594 (Molecular Probes, Invitrogen) diluted 1:500 in 

blocking solution and incubated for 2 h at RT. Before mounting, sections were 

incubated with Hoechst 33258 (5 μg/mL; Molecular Probes, Invitrogen) or DAPI 

1:5000 (Merck), as indicated on each caption.  

Quantification of nuclear markers was done by using the automatic cluster counter 

ITCN plugin from FIJI (v.1.49 NIH-USA) for at least 3 organoids from 3 independent 

lines. Images were RGB converted and cluster counts were done over pre-defined 

concentric grids from VLS. The relative number of positive cells was calculated as a 

percentage of total DAPI+ cells. Images were acquired with a Leica DMI 6000B 

microscope (10x, 20x and 40x objectives) and analyzed with LAS-AF imaging 

software and then processed using Image J (v1.49 NIH, USA) to adjust contrast for 

optimal RGB rendering. Semi-quantitative measurements were made in imageJ, the 

background noise was removed with a sliding paraboloid filter of dimension 500 px, 

then a gaussian filter was applied. A positive cell was considered the local maxima 

with a minimum threshold of signal to noise. To evaluate the density of cells we 

consider organoid slice stained with DAPI, from the images of the whole organoid we 

remove, with a sliding paraboloid filter, the background and then apply a common 
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threshold on all the conditions. The area of the resulting mask is considered as area 

occupied by nuclei and used as normalization. 

Lipid droplet accumulation assay  

Cells were seeded in black-walled 96 well plates with µCLEAR bottom (Greiner Bio 

One) and exposed to DMSO or the indicated concentrations of MIX G or N as 

described above six replicate wells. Staining was performed using Bodipy 493/503 

and Hoechst 33342 as described in SI and references therein. Images were acquired 

immediately using the Image Xpress Micro High-Content Analysis System (Molecular 

Devices, Sunnyvale California USA). Images were taken in FITC and DAPI channel 

at 10x magnification, at 16 sites per well. Images were further analyzed with the 

MetaXpress High-Content Image Acquisition and Analysis software (Molecular 

Devices, Sunnyvale California USA). Using the Transfluor HT analysis module, lipid 

droplets were quantified by measuring the integrated granule intensity and this value 

was normalized to nuclei count. The average signal for treatments are presented as 

ratios compared to the average signal of the DMSO control on the same plate.  
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Epidemiological exposure assessment  

Using data from the Swedish Environmental Longitudinal Mother and child Asthma 

and allergy (SELMA) pregnancy cohort8 (described in SI), mixtures of prenatal EDC 

exposures of relevance for health outcomes in children were identified. Exposure was 

measured in urine and serum taken in week 3-27 of pregnancy (median week 10, and 

96% of the samples were taken before week 13). First morning void urine samples 

were analyzed for 10 phthalate metabolites (Mono-ethyl phthalate (MEP), metabolite 

of DEP; Mono-n-butyl phthalate (MnBP), metabolite of DBP; Monobenzyl phthalate 

(MBzP), metabolite of BBzP; Mono-(2-ethylhexyl) phthalate (MEHP), Mono-(2-

ethyl-5-hydroxylhexyl) phthalate (MEHHP), Mono-(2-ethyl-5-oxohexyl) phthalate 

(MEOHP), Mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), metabolites of 

DEHP; Mono-hydroxy-iso-nonyl phthalate (MHiNP), Mono-, oxo-iso-nonyl phthalate 

(MOiNP), Mono-carboxy-iso-octyl phthalate (MCiOP), metabolites of DiNP); and 

alkyl phenols including Bisphenol A (BPA) and Triclosan (TCS)). Serum samples 

were analyzed for 8 perfluorinated alkyl acids (perfluoroheptanoic acid (PFHpA), 

perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic 

acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorododecanoic acid 

(PFDoDA), perfluorohexane sulfonate (PFHxS) and perfluorooctane sulfonate 

(PFOS)) as 

described in SI and publications therein.  

Health examinations  

For a measure of metabolism and growth in the children, we used birth weight data 

from the Swedish national birth register. For a measure of neurodevelopment we used 

data from a routinely made language screening of the children when they were 30 

months old. Language development was assessed by nurse’s evaluation and parental 

questionnaire, including the number of words the child used (<25, 25-50 and >50).  A 

main study outcome was parental report of use of fewer than 50 words, termed 

language delay (LD) corresponding to a prevalence of 10%.   

Biostatistical analyses  

Weighted quantile sum (WQS) regression9, adjusted for covariates, was used to 

establish associations between mixture exposures and lower birth weight or language 

delay in children (see SI). In short, WQS regression is a strategy for estimating 

empirical weights for a weighted sum of concentrations most associated with the 

health outcome. The results are a beta coefficient associated with the weighted sum 

(estimate, SE and p value) and the empirical weights (which are the average weights, 
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constrained to sum to 1, from an ensemble step - here, 100 bootstrap samples)). The 

components most associated with the health outcomes have non-negligible weights, 

and were treated as sEDCs when the estimated weight exceeds the equi-weight case. .   

Next, we estimated the equivalent daily intake (DI) of sEDCs  measured in the urine 

(i.e., phthalates and alkyl phenols), and estimated serum concentrations from the DI 

for these urinary measurement-based compounds (see SI).  Finally, we used the 

geometric means, on a molar basis, for either the measured (PFAAs) or estimated 

serum levels (phthalates and alkyl phenols) and established mixing proportions to 

prepare one mixture associated with low birth weight (MIX G) and one associated with 

language delay (MIX N).  These two mixtures were used in the experimental studies.  

Similar Mixture Approach (SMACH) 

We conducted a ‘similar mixture approach’ (SMACH) using the SELMA pregnancy 

cohort linking human exposures with estimates of adverse outcomes in zebrafish and 

xenopus. In short, we modeled the total distance each zebrafish swam using 4 

connected 10-minute flexible curves fit using truncated power cubic splines (Figure 

A). Characteristics of these curves were evaluated across zebrafish as a function of 

exposure concentrations. Herein, the average maximum distance across the 4 cycles 

was modeled to reflect the change in swimming patterns due to exposure to Mixture 

N. We used a piecewise nonlinear model to approximate the concentration-response 

relationship (Figure B). For the XETA, Results from three individual experiments 

were combined with the T3 condition as control. The read-out was a normalized level 

of fluorescence – i.e., where the control mean is 100%.  A piecewise model was used 

to approximate the concentration-response relationship (Figure B). 

A benchmark dose (BMD) from each assay was estimated and its lower one-sided 95% 

confidence limit (BMDL) calculated for use in the ‘similar mixture risk index’ 

(SMRI). The benchmark response (BMR) was based on either established guideline 

values (i.e., XETA) or 1 STD decrease from the control mean (i.e., zebrafish average 

maximum distance).  The SMACH was conducted by first testing whether the 

concentrations in SELMA pregnant women were sufficiently similar to the domain-

specific reference mixture (Marshall et al, 2015). For those determined to be 

sufficiently similar, the SMRI was calculated – i.e., the sum of concentrations relative 

to the estimated BMDL from experimental studies. The percentages of women with 

SMRI exceeding 1 were tabulated to provide a level of concern. Finally, adjusted 

models were used to determine if children associated with the highest and lowest decile 

of SMRI were significantly different in language delay for MIX N. 
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Composition of the mixtures 

The chemicals needed for the mixtures were obtained from commercial custom 

synthesis laboratories or vendors BPA, Dimethylsulfoxide (DMSO), MBzP, PFHxS, 

PFNA, PFOA and PFOS were obtained from Sigma-Aldrich 

Inc. (St. Louis, MO, USA). Triclosan was purchased from Dr. Ehrenstorfer 

(Augsburg), MEP and MiNP were obtained from Toronto Research Chemicals (North 

York, ON, Canada). MBP and MEHP were purchased from TCI, Tokyo Chemical 

Industry Co., Ltd (Japan). For MIX N, 1M solutions in DMSO were prepared using, 

MEP, MBP, MBzP, MiNP, BPA, PFHxS, PFNA, PFOS. For MIX G, 1M solutions in 

DMSO were prepared using, MEP, MBP, MBzP, MEHP, MINP, Triclosan, PFHxS, 

PFOA, and PFOS.  
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Generation of iPSC lines tagged with mCherry or GFP 

To permanently tag 2 different pluripotent cell lines the following commercial 

lentiviral 3rd generation vectors were used: 

Plasmid CD550A-1 (system biosciences) was used to tag the hiPSC line 2 with a 

cytoplasmic eGFP tag under a GSK promoter. 

Plasmid pSicoR-EF1α-mCherry-puro (Trono Lab) was used to tag the hiPSC line 4 

with a cytoplasmic mCherry tag under an EF1α promoter. 

Lentiviral vectors preparation 

3rd generation packaging plasmids were used to generate lentiviral vectors. Plasmid-

bearing bacterial strains were grown overnight in Luria-Bertani broth supplemented 

with 1 ug/mL ampicillin. The bacterial culture has been kept in a standard incubator 

at 37° C, 5% CO2 under shaking conditions. Plasmids were extracted and purified with 

NucleoBond Maxi kit (Macherey-Nagel) following manufacturer specifications and 

quantified using a nanodrop spectrophotometer. 

To verify plasmid purity 1ug of each plasmid has been digested with restriction 

enzyme EcoIII (New England BioLabs) following the protocol recommended from the 

enzyme’s manufacturer. The digested products were run for 1 hour in a 1,25% agarose 

gel in presence of 2 ng/ml SYBR safe dye (ThermoFischer) and then visualized under 

a UV lamp. 

The preparation of lentiviral vectors bearing the transgenic constructs has been 

performed according to the protocol published by Dull and colleagues (Dull et al., 

1998). 

Lentiviral infection and antibiotic selection 

The 2 previously mentioned hiPSCs lines were dissociated with acutase and plated in 

6 wells at a concentration of 2x104 cells/well in mTeSR medium supplemented with 

ROCK inhibitor 5uM (Clinisciences). 

The day after, media was changed to remove ROCK inhibitor and 10, 7, 4, 1 or 0,1 uL 

of lentiviral suspension were added to 5 wells of the 6-wells plate where the specific 

hiPSC line was growing, to assess the best-working viral concentration. The untreated 

well served as a control for selection. Cells were then grown for 48 hours performing 

daily media changes to allow the integration and expression of the viral transgene. 

From the third day after infection cells were treated for 5 days with puromycin 

(1ug/mL) to select infected cells. Puromycin titration was not necessary as the working 

concentration was already assessed and, after 24 hours, all the cells of the negative 

control were dead. When almost confluent, wells were inspected under a fluorescent 
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microscope to visually select the cell population infected with the lowest viral 

concentration able to give fluorescent cells. The selected cell population was detached 

with ReLeSR and expanded for a minimum of 3 passages before further utilization.  

For both lines 1 uL of the mCherry or GFP lentiviral suspension was enough to obtain 

a homogeneously detectable signal of the fluorescent transgene. 

Multiplexing strategy 

In our experimental design we adopted two distinct multiplexing strategies, namely 

upstream and downstream, that differ for the moment in which the different cell lines 

have been mixed. 

In the downstream approach we generated brain organoids by taking each of the four 

hiPSC lines separately to obtain 3D structure containing only one specific genotype. 

These organoids have been grown in separate dishes according to their cell line of 

origin. Upon reaching the timepoint, organoids derived from different cell lines were 

dissociated separately, the cells counted and 2,5x105 cells was taken from each 

genotypically diverse cell suspension and mixed together in the same vial. Due to the 

massive presence of cell debris that interfered with cell counting procedures, we 

considered total count a representative counting of our samples. Volume was 

subsequently adjusted to reach a concentration of 1x106 cells/mL. 

In the upstream approach instead, we generated brain organoids by mixing equal 

amounts of PSCs derived from each cell line to obtain the so-called chimeric brain 

organoids. Briefly, after dissociation of hiPSc colonies, cells were counted and mixed 

in equal proportions, namely 25% from each line) to reach a global amount of cells of 

2,4x106 which in our case represented the number of cells needed to seed an entire 

96MW of embryoid bodies. The resulting cell suspension was subsequently diluted to 

reach the working concentration and organoids were generated as explained in the 

following chapter. A comprehensive summary of the models used for the different 

experiments can be found in table 3, at the end of “materials and methods” section 

Chimeric brain organoids generation 

Pure lines-derived and chimeric brain organoids were generated using a slightly 

modified version of the protocol developed by Pasca and collegues (Paşca et al., 2015), 

which allows to obtain dorsal telencephalon cortical organoids. The cell lines used in 

this project are shown in Table 4. To generate organoids hiPSC were expanded in 10 

cm plates following the general rules previously described. When the most abundant 

hiPSC line reached 80% confluency, colonies were dissociated with accutase and 

centrifuged to remove the enzymatic suspension. After resuspension in TeSR/E8 
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medium supplemented with 5uM ROCK inhibitor cells were counted with a TC20 

automatic cell counter (Biorad) and equal amount of each cell line were mixed at the 

final concentration of 2 x 105 cells/mL. 

100 uL/well of cell suspension were seeded into PrimeSurfaceR  96 well plates 

(SystemBio) and then the plates spinned at 850 rpm for 3 minutes to promote the 

formation of embryoid bodies. The utilization of ultra-low attachment plates is 

fundamental to avoid cell adhesion. The day of the EB generation is referred to as day 

-2. On day -1, medium is not changed, leaving EBs undisturbed.  On day 0 media 

change is performed adding differentiating medium one, composed of 80% 

DMEM/F12 medium (1:1), 20% Knockout serum (Gibco), 1 mM Non-essential amino 

acids (Sigma), 0.1 mM cell culture grade 2-mercaptoethanol solution (Gibco), 

GlutaMax (Gibco, 1:100), penicillin 100 U/mL, streptomycin (100 μg/mL), 7 uM 

Dorsomorphin (Sigma) and 10 uM TGFβ inhibitor SB431542 (MedChem express). 

Dorsomorphin and TGFβ inhibitor are used to perform DUAL-SMAD inhibition, 

promoting the induction of neuroectoderm. 

From day 0 to day 4, media change is performed every day with the very same medium 

while on day 5 differentiation medium two is added until day 24 with daily media 

change for the first 7 days. 

Differentiation medium two is composed of neurobasal medium (Gibco) 

supplemented with B-27 supplement w/o vitamin A (Gibco, 1:50), GlutaMax (1:100), 

penicillin 100 U/mL, streptomycin (100 μg/mL), 20 ng/mL FGF2 (Thermo) and 20 

ng/mL EGF (Thermo). 

On day 12 organoids are moved to 10cm ultra low attachment dishes and grown on 

shakers to enhance oxygen and nutrient supply. From day 12 onwards media change 

is performed every other day. On day 24, FGF2 and EGF are replaced with 20 ng/mL 

brain-derived neurotrophic factor (BDNF, Thermo) and 20 ng/mL neurotrophin-3 

(NT3, Thermo) to promote differentiation of neural progenitors. From day 42 onwards, 

grow factors are removed. 

The volume of medium needed for each plate vary according to the size and number 

of organoids per plate as it must be sufficient to ensure they are completely covered. 

As a general rule, media volume increases while proceeding with differentiation, 

reaching a maximum of approximately 35 mL/plate. 

Timepoints chosen for analysis were day 50 (+/- 3 days), day 100 (+/- 2 days) and day 

150 (+/- 5 days) 
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Proliferation assay 

The 6 lines of PSCs were simultaneously dissociated at cell level with accutase, 

counted and resuspended in TeSR/E8 medium supplemented with 5uM ROCK 

inhibitor. 

Meanwhile, 4 different 24 wells (one per each timepoint) were coated with matrigel 

solution 1:40 in DMEM/F12 and the PSC lines was seeded in four replicates per line 

on each plate at a concentration of 10 000 cells/well. Negative control was obtained 

by coating 4 wells with matrigel and adding the same amount of medium without cells. 

Analytical timepoints were set at 3, 27, 51 and 75 hours after plating. Media change 

was performed daily at the same time starting from 24 hours after seeding. ROCK 

inhibitor was removed since the first media change. 

To evaluate proliferation CellTiter 96R aqueous one solution (Promega) was used. This 

ready-to-use solution contains a novel type of tetrazolium salt, MTS, that is oxidized 

by mitochondrial succinate DH to produce a formazan salt. The enzyme is active only 

in live cells and thus formazan production is directly dependent upon the total number 

of live cells. MTS-derived formazan has an absorbance peak around 490 nm which 

allows its measurement through conventional spectrophotometers. Briefly, at each 

timepoint 20 uL of MTS solution per well were added to 100 uL of fresh TeSR/E8 

media, according to manufacturer specifications. The plate was incubated for 60 

minutes at 37 °C, 3% O2, 5% CO2 and right after absorbance was measured at 

λ=490nm using a GlowMax spectrophotometer. 

STR analysis 

Chimeric brain organoids were collected after 26 days of differentiation taking one 

single organoid for each replicate to verify the presence in each organoid of all the 

original genotypes mixed. For genomic DNA extraction the Dneasy® Blood & Tissue 

Kit (Qiagen) was used according to manufacturer instructions. DNA was eluted in 50 

μL of buffer AE. Nanodrop spectrophotometer was used to quantify genomic DNA. 1 

μL of deionized water was used to initialize the machine. The program for dsDNA was 

selected and then 1 μL of elution buffer was used as blank. Samples were quantified 

by the instrument measuring the  

absorbance at 260 nm. 10ng of DNA from each sample were then processed with the 

GenePrintR 10 system (Promega) to amplify 8 different STR loci according to quality 

ATCC guidelines. Detection of STR amplicons was performed using the Applied 

BiosystemR 3500 genetic analyzer using POP-4 polymer as recommended in the 

GenePrintR 10 system protocol. 
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Organoids live imaging 

Brain organoids were collected after 200 days of differentiation, rinsed with sterile 

PBS and embedded in 3% low melting agarose for vibratome cutting. Slices were cut 

100 um using a vibratome and transferred in 24 wells with glass bottom in Neurobasal 

medium. The day after media was removed and slices were incubated for 30 minutes 

in PBS solution containing 5 ug/mL Hoechst 33258 (SantaCruz) to stain nuclei. After 

two 5 minutes rinses with sterile PBS to remove unbound dye, media was added again 

to allow cell survival and live imaging was performed straightaway using a confocal 

microscope  

Organoids paraffinization 

Organoids were harvested on day 50, 100 and 150, fixed overnight at 4 °C in 

paraformaldehyde 4%/PBS solution (SantaCruz). After rinsing with PBS, organoids 

were embedded in 2% low melting agarose dissolved in PBS to facilitate inclusion. 

After agarose solidification, blocks were put in 70% ethanol and kept at 4 °C before 

sending to the facility for paraffin embedding, sectioning and routine 

haematoxylin/eosin staining.  

Organoids immunofluorescence  

Deparaffinization and rehydration was achieved by consecutive passages of 5 minutes 

each in the following solutions: 2 x histolemon, 100% ethanol, 95% ethanol, 80% 

ethanol and water. Sections were then incubated for 45 min at 95 °C with 10mM 

Sodium citrate buffer (Normapur) + Tween 20 0,05% (Sigma) for simultaneous 

antigen retrieval and permeabilization; then left to cool for at least 2 hours at RT.  For 

GFP staining, antigen retrieval was not performed since it disrupts the epitope/s 

recognized by all the 3 available commercial anti-GFP antibodies. After 30 minutes 

incubation in blocking solution (5% normal donkey serum in PBS), Primary antibodies 

were prepared in PBS + 5% normal donkey serum overnight at 4 °C. The day after, 

secondary antibodies were diluted in PBS and applied to the sections for 1 hour. DAPI 

was added for 5 minutes at room temperature. After each incubation 3 x 5 minutes 

washing steps with TBS buffer were performed. After a final rinse in deionized water, 

slides were dried and mounted using Mowiol mounting media.  

The following primary antibodies were used: Pax6 (Rabbit, 1:200, Biolegend), Tuj1 

(Mouse, 1:1000, Biolegend), Nestin (Mouse, 1:500, Millipore), GFP (Rabbit, 1:200, 

Evrogen), mCherry (Mouse, 1:200, Thermo), Reelin (Mouse, 1:400, Millipore), 

CTIP2 (Rat, 1:400, Abcam). Secondary antibodies were taken from Campus technical 

kitchen and all diluted 1:300 in PBS. Images were acquired using a standard 
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fluorescence microscope (Leica) at 20X, 40X and 63X magnification and then 

processed with FIJI software. 

Total RNA extraction and bulk sequencing, single cell transcriptomics and 

analysis as detailed before 

Demultiplexing 

Alignment of RNA-seq reads on reference Genome (GRCh38-1.2.0 was used) was 

performed using STAR 2.6.1 aligner. During this phase, A first Index was generated 

starting from reference fasta sequence and then the first alignment cycle (per sample) 

has been performed in order to detect possible exon junctions splitting the reads 

alignment. At this point a second index has been generated using the gathered 

informations in the previous alignment. Finally, the actual alignment of row reads was 

carried out Generating an unsorted BAM file for every sample multiplexed. 

For the Variant Calling we must specify we used GATK suite starting from bulk 

transcriptomic data obtained from each pure line, which to date has not a validated 

pipeline for joint genotyping of sample cohorts that was our final purpose. Therefore, 

we proceeded modifying the original DNA-seq joint variant call pipeline by 

introducing data pre-processing of RNA-seq method. Then, we applied a raw filtering 

on discovered variants based on the number of SNP detected within specific bp 

windows (at least 3 SNP in 35 BP windows). This approach led us to the production 

of gVCF files containing variants with a quality score distribution different and less 

accurate than the one used in the implementation of Demuxlet which was obtained 

from standard whole genome sequencing (Kang et al., 2018b).  

In the end, genetic identity deconvolution was performed on the filtered dataset using 

Demuxlet algorithm. Demuxlet was ran with standards and GT field of the VCF file 

used as reference value for the Identity Call. 
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