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ABSTRACT 

 

 

Congenital Dyserythropoietic Anemias (CDAs) are subtypes of bone marrow failure 

syndromes, hallmarked by ineffective erythropoiesis. The most common form is CDA type 

II (CDAII), showing moderate/severe anemia, relative reticulocytopenia, jaundice, 

splenomegaly, and iron overload. It is inherited as an autosomal recessive disorder due to 

loss-of-function mutations in the SEC23B gene. Molecular pathogenesis of CDA II still has 

to be investigated because the described animal models did not recapitulate the clinical 

features observed in humans. To date, treatments for CDAII patients consist of supportive 

therapy, such as erythrocyte transfusions, or bone marrow transplantation or splenectomy 

in transfusion-dependent cases. Recently, members of TGF-β superfamily have been 

studied as potential regulators of erythropoiesis, especially the growth differentiation factor 

11 (GDF11). Through the binding of specific receptors, GDF11 leads to an inhibited late-

stage erythropoiesis. Indeed, two GDF11 inhibitors, ACE-011 and ACE-536, have been 

associated with an improvement of hematologic parameters. Studies with the mouse 

counterpart of ACE-011, RAP-011, on a mouse model of β-thalassemia showed increased 

differentiation of erythroid cells, improvement of the anemic condition and reduced iron 

overload in treated mice. 

The first aim of our study was the establishment of a cellular model of CDA II, that could 

reproduce the main defects of the disease, such as the lack of the erythroid differentiation 

due to the low or absent expression of SEC23B gene. For this aim, we selected the K562 

cell line and, through short-hairpin RNA-based strategy, we obtained two different clones 
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of K562 showing a stable silencing of SEC23B. Then, we decided to assess the effects of 

RAP-011 on this CDA II model, by investigating the pathway involved in the GDF11 

signaling. This treatment simulated the ligand trap function played by RAP-011 towards 

GDF11. The administration of RAP-011 resulted in a reduction of SMAD2 

phosphorylation induced by GDF11 and, moreover, in an increase of different erythroid 

differentiation markers.  
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I. INTRODUCTION 

 

1. Background  

Red blood cells are produced in the bone marrow and released in circulation to deliver the 

oxygen from the lungs to the other organs of the body, even though they are responsible 

for the transport of other gases, such as carbon dioxide and nitric oxide, involved in 

cellular respiration and tissue oxygen supply.  

This function is made possible by the presence of the hemoglobin in the erythrocytes. 

Indeed, this protein, due to the presence of the heme, binds inhaled oxygen in the lungs and 

delivers it to the other organs. The oxygen delivery to the body organs depends on the 

hemoglobin level of the blood, and the hemoglobin value is normally correlated with the 

number of erythrocytes in the circulation. The number of erythrocytes in a healthy 

individual remains remarkably constant for long periods of time, they have a finite life 

span of approximately 110–120 days, and about 1% are recognized as senescent and 

removed daily from the circulation (Koury et al. Blood Rev, 2014). 

Erythropoiesis begins with hematopoietic stem cells (HSCs) in the bone marrow where 

they interact with specific mesenchymal stem cells and colonize specialized HSCs niches 

(Mendez-Ferrer S et al. Nature, 2010). Following this interaction, their asymmetric cellular 

divisions result in other HSCs or in multipotential progenitor (MPPs) cells (Figure I.1A). 

The MPPs cells can differentiate in all the blood cell lineages, including the erythroid cells, 

in a process regulated by a series of decisions linked to the microenvironment (Smith JN et 
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survival and their expansion. 2) During the second phase, there is an increase of some erythroid-specific 

components and a decrease in cell size from late basophilic erythroblasts to polychromatic erythroblasts, 

orthochromatic erythroblasts and finally, the enucleation from the reticulocytes represents the crucial event of 

the erythroid development, preceding the mature erythrocytes formation (Koury et al. Blood 2014). 

 

Erythroid lineage impairment leads to the establishment of the anemia, a condition 

characterized by a lack of red cells or hemoglobin. A few or abnormal red cells and low or 

abnormal hemoglobin are responsible for a reduced delivery of oxygen from the lungs to 

the various organs, with the fatigue as the main symptom arising. Anemias can be 

classified as acquired, occurring for example as a result of a blood loss or a deficient-iron 

diet, or inherited, due to genetic defects in genes involved in erythropoiesis.  

Concerning the inherited anemias, the hereditary hemolytic anemias (HHA) embrace a 

highly heterogeneous group of disorders characterized by hemolytic anemia of variable 

degree and by complex and often unexplained genotype-phenotype correlations. HHA are 

genetic disorders caused by mutations in more than 80 genes controlling red blood cell 

(RBC) production, structure, and function. Mutations in these genes can lead to alterations 

in hemoglobin (Hb) levels, RBC differentiation and proliferation, cell membrane structure, 

and activity of erythrocyte enzymes. This large group of pathologies comprises: 

1. Hemoglobinopathies: disorders due to the presence of abnormal structure of the globin 

chains of the hemoglobin molecule; 

2. Thalassemias: these pathologies are the consequence of a quantitative defect in the 

globin chains of the hemoglobin molecule (α-thalassemia, β-thalassemia); 

3. Hyporegenerative anemias: reduced or impaired production of red blood cells in the 

bone marrow (congenital dyserythropoietic anemias, myelodysplastic syndrome, aplastic 

anemia, Fanconi anemia) 
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4. Hemolytic anemias due to red cell membrane defects: anemic condition occurring for 

defects in red cell membrane proteins, such as hereditary spherocytosis (HS), and 

hereditary stomatocytosis.  

I will deal with the characterization of congenital dyserythropoietic anemias. 

 

2. Congenital dyserythropoietic anemias: classification and diagnostic criteria 

Dyserythropoiesis is defined as a condition of abnormal erythropoiesis affecting the 

differentiation and proliferation pathways of the erythroid lineage with consequent 

defective production of RBCs (Iolascon et al. Curr Opin Hematol, 2011). This condition, 

common to different red blood cell disorders, is typical of dyserythropoietic anemias in 

which there are both morphological and functional disorders, with the predominant 

phenomena being erythroblast abnormalities and ineffective erythropoiesis, respectively 

(Wickramasinghe and Wood. Br J Haematol, 2005). Ineffective erythropoiesis is a term 

used to describe the destruction of developing erythroid cells in the marrow. Normally, a 

few die within the bone marrow (BM) (Odartchenko et al. Cell Tissue Kinet, 1971), but 

ineffective erythropoiesis is prominent in disorders of nucleic acid, heme, or globin 

synthesis. 

Dyserythropoietic anemias can be divided into primary and secondary forms, and both 

inherited and acquired forms can occur. Particularly, congenital dyserythropoietic anemias 

(CDAs) are hereditary diseases that embrace a heterogeneous group of rare anemias 

resulting from different types of abnormalities that occur during the late stages of 

erythropoiesis. CDAs can be considered subtypes of inherited bone marrow failure 

syndromes (IBMFS) being hallmarked by morphological abnormalities of erythroblasts in 

the BM and ineffective erythropoiesis as the predominant mechanism of anemia, 

accompanied by a hemolytic component (Iolascon et al. Blood, 2013). Common clinical 

features of patients with CDAs are anemia, jaundice, splenomegaly, normal or reduced 
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Table I.2. This table summarizes the OMIM classification that considers all the different types and 

subtypes of CDAs and their causative genes, with all the genetic information, including chromosomal 

position, inheritance, and a number of described cases (Gambale et al. Expert Rev Hematol, 2016). 

 

CDA type I 

Typical clinical features of CDA I are macrocytic anemia with a mean corpuscular 

volume (MCV) ranging between 100 and 120 fl, relative reticulocytopenia 

accompanied with variable values of Hb and splenomegaly, whose development is 

observed in adolescence or adulthood. Moreover, about 20% of cases show congenital 

anomalies, particularly syndactyly in hands or feet, absence of nails or supernumerary 

toes, pigeon chest deformity and short stature (Iolascon et al. Haematologica, 2012; 

Gambale et al. Expert Rev Hematol, 2016). Morphological exams at BM level reveal 

hypercellularity and erythroid hyperplasia (E:G of 4 and 8 times the normal), with 30-

60% of polychromatic erythroblasts showing abnormalities of nuclear and chromatin 

structure such as thin chromatin bridges between the nuclei pairs of erythroblasts. A 

minority of erythroblasts shows bi- or multinuclearity, and the nuclei of binucleated 

cells are of different size and shape. At electron microscopy (EM), heterochromatin is 

denser than normal and forms demarcated clumps with small translucent vacuoles, 

giving rise to the metaphor of “Swiss cheese appearance” (Heimpel et al. Eur J 

Haematol, 2010). 

CDA I is inherited in an autosomal recessive manner, and two different subtypes have been 

described following the identification of two causative genes. The first causative gene in 

which pathogenic variants were identified has been CDAN1 (chr15q15.2) (Dgany et al. Am 

J Hum Genet , 2002) that encodes a ubiquitously expressed protein, codanin-1 (Table 1-2). 

Codanin-1 is part of the cytosolic Asf1-H3-H4-importin-4 complex, which is implicated in 
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nucleosome assembly and disassembly (Ask K et al. EMBO J, 2012). More than 300 

patients with CDA I and approximately 60 unique disease-causing mutations have been 

described so far (Iolascon et al. Blood, 2013; Roy and Babbs. Br J Haematol, 2019). Cdan1 

knockout mice die in utero before the onset of erythropoiesis, suggesting a critical role of 

codanin-1 in other developmental processes beyond erythroid cell lineage (Renella et al. 

Blood, 2011). Homozygous or compound heterozygous in CDAN1 gene cover 

approximately 50% of CDA I patients, while in 30% of cases only a single mutant allele 

can be identified (Babbs et al. Haematologica, 2013; Ahmed MR et al. Blood, 2006). 

Recently, the second causative gene of CDA I has been identified. In particular, two 

different mutations in C15orf41 gene (Chr 15q14) were found in three unrelated Pakistani 

families, classified as affected by CDA Ib (Table 1-2) C15orf41 is predicted to encode a 

divalent metal ion-dependent restriction endonuclease, with a yet unknown function. In 

cultured erythroblasts, C15orf41 produces a spliced transcript encoding a protein with 

homology to the Holliday junction resolvases (Babbs et al. Haematologica, 2013). 

However, it has been demonstrated that C15orf41, as well as CDAN1, interacts with 

Asf1b, supporting the hypothesis of an interplay between these two proteins during DNA 

replication and chromatin assembly (Gambale et al. Expert Rev Hematol, 2016; Roy and 

Babbs. Br J Haematol, 2019). Only seven C15orf41 variants have been described so far 

(Russo R et al. Front Physiol, 2019).  

 

CDA type II 

A correct CDA II diagnosis is based on some clinical findings such as the presence of 

normocytic anemia of variable degree, with normal or only slightly increased reticulocyte 

count, but not adequate to the degree of anemia; the hemolytic component, due to the 

ineffective erythropoiesis, explains the onset of jaundice and splenomegaly. Although 

CDA II generally presents mild anemia (mean Hb 9.6 ± 0.2 g/dL), a wide spectrum of 
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clinical presentations can occur, from asymptomatic to severe (Hb range 3.6-16.4 g/dL). 

Indeed, approximately 10% of cases result symptomless, whereas 20% of patients undergo 

a regimen of transfusion dependency. Main complications for CDAII patients (also CDAI 

patients) arise from the alteration of iron balance, that is mainly due to the increased but 

ineffective erythropoiesis, as well as it is observed in other bone marrow failure 

syndromes, but also to the hemolytic component and the transfusion-dependency many 

patients undergo (Gambale et al. Expert Rev Hematol, 2016). The increased iron 

absorption and systemic iron overload follow the downregulation of hepatic hormone 

hepcidin (Kautz et al. Blood, 2014). Different regulators of hepcidin have been studied, 

like the growth differentiation factor 15 (GDF15) and the soluble hemojuvelin (HJV), 

being both increased in CDA I and CDA II patients (Casanovas G et al. J Mol Med, 2011; 

Tamary et al. Blood, 2008; Shalev et al. Eur J Haematol, 2013). Recently, the erythroblast-

derived hormone erythroferrone (ERFE) has been identified as a regulator of iron 

metabolism (Kautz et al. Nat Genet, 2014), and it was proposed as a marker of CDA II, 

given its increased levels in patients affected by this condition (Russo R et al. Blood, 

2016).  

Mean age of onset symptoms of CDA II is approximately 3-4 years but very often a correct 

diagnosis is reached only in the adulthood (22.2 ± 1.7 years) because of the occurrence of 

mild symptoms or the misdiagnosis of CDA II with HS. Similarly to CDA I, the BM 

exams show erythroid hyperplasia with subsequent increased E:G and the presence of more 

than 10% mature binucleated erythroblasts with equal size of two nuclei; this represents 

one of the most common features of CDA II (Russo et al. Am J Hematol, 2014). The 

analysis of RBC membrane proteins by sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS- PAGE) reveals a narrower band size and faster migration of band 3 

in most of the CDA II patients (95%) (Figure I.2B). This is a consequence of the hemolytic 

component that is responsible for an increased clusterization of this protein on the RBC 
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pattern of inheritance (14.0%) has been identified. Nowadays, more than 400 CDA II 

patients were diagnosed, and approximately 100 different mutations in SEC23B have 

been described so far (Russo R et al. Am J Hematol, 2014; Bianchi P et al. Br J 

Haematol, 2016).  

 

CDA type III 

CDA III is the rarest form among classical CDAs. Clinically, patients present with 

absent to moderate anemia, normal or slightly elevated MCV, the normal or faintly low 

relative number of reticulocytes and, in some cases (about 20% of described patients), 

RBC transfusion-dependency. Common symptoms are weakness, fatigue, and 

headache; jaundice and biliary symptoms are also reported while, unlike from other 

CDAs, none of the described patients show an enlarged liver or spleen. Hemolysis is 

also present as attested by low or absent haptoglobin and increased LDH. 

Morphological exams show erythroid hyperplasia with giant multinucleated 

erythroblasts at bone marrow level (Iolascon et al. Blood, 2013). In 2013, the causative 

gene of this condition was identified by target sequencing: KIF23 gene (Chr.15q21) 

encodes a kinesin-superfamily protein MKLP1 that is a component of centralspindlin, 

a subcellular structure required for proper formation of the central spindle and the 

midbody and thus essential for cytokinesis (Liljeholm et al. Blood, 2013). MKLP1 

mutant affects the function of this protein during cytokinesis, leading to the formation 

of the large multinucleated erythroblasts found in BM of the patients. 

 

Transcription factor-related CDAs 

CDA IV and X-linked thrombocytopenia with or without dyserythropoietic anemia 

(XLTDA) belong to this subgroup of CDAs (Table I.2). To date, four patients with 
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CDA IV have been reported, and all of them are characterized by the occurrence of 

normocytic anemia, generally severe, with Hb 5-9.5 g/dL but they presented with a 

normal or slightly increased reticulocyte count with respect to the degree of anemia; 

moreover, elevated values of HbF (>30%) are also observed (Arnaud et al. Am J Hum 

Genet, 2010; Jaffray et al. Blood Cells Mol Dis, 2013). Bone marrow images show 

erythroid hyperplasia and dyserythropoiesis signs, such as basophilic stippling of 

polychromatic erythroblasts and erythrocyte, and internuclear bridging is observed. All 

four patients exhibit the same autosomal-dominant mutation (p.Glu325Lys), in the 

heterozygous state, in KLF1 gene (19p13.2) (Table I.2). KLF1 encodes the 

homonymous protein, which is an essential erythroid-specific transcription factor, 

member of the Krüppel-like factor family. KLF1 is a well-known transcriptional 

activator in erythropoiesis, but it also exerts transcriptional repression in 

megakaryopoiesis. It plays a critical role in regulating the switch between fetal and 

adult Hb expression and is required in terminal erythroid differentiation for the cell- 

cycle progression (Siatecka et al. Mol Cell Biol, 2007). 

XLTDA is a CDA variant characterized by anemia of variable degree since it can show 

hydrops fetalis and transfusion-dependency or dyserythropoiesis without anemia, 

macro-thrombocytopenia with hypo-granulated platelets (PLT) and bleeding tendency. 

BM features are dyserythropoiesis, reduced megakaryocytes with cytoplasmic vacuoles 

and absence of platelet membrane demarcation (Gambale et al. Expert Rev Hematol, 

2016). This is an X-linked recessive disease (Table I.2), due to mutations in the X 

chromosomal gene GATA1 (Xp11.23), encoding for the zinc finger DNA binding 

protein GATA1. This latter belongs to the GATA family of transcription factors, 

involved in the regulation of hematopoiesis. In particular, GATA1 plays an essential 

role in the development and maintenance of both erythroid and megakaryocytic 

lineages. GATA1 has two zinc finger domains: the C-terminal is necessary for DNA 
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binding, while the N-terminal mediates interaction with FOG1 (friend of GATA1), a 

cofactor of GATA1. Of note, the most likely pathogenic mechanism in these disorders 

involves GATA1-FOG1 interaction (Gao J et al. Exp Hematol Oncol, 2015). 

The role of the transcriptional regulator of different genes and pathways may explain 

how different mutations in the same gene can result in disparate phenotypes. Indeed, 

beyond CDA IV, KLF1 mutations have been associated with in(Lu)blood type and 

hereditary persistence of fetal hemoglobin. Similarly, there are different syndromic 

conditions related to GATA1 mutations, in which thrombocytopenia can be associated 

with thalassemia, congenital erythropoietic porphyria, or Diamond–Blackfan anemia 

(DBA)-like disease. Moreover, the co-inheritance of GATA1 and other CDA-gene 

mutations could explain the occurrence of more severe phenotypes (Ciovacco et al. 

Gene, 2008; Di Pierro et al. Eur J Haematol, 2015). Given some common clinical 

features between the CDAs or between CDAs and other forms of inherited bone 

marrow failure syndromes, differential diagnosis, classification, and patient 

stratification are often very difficult. Indeed, the variety of unspecific and overlapping 

phenotypes often hampers the correct clinical management of the patients.  

In particular, the differential diagnosis with thalassemia is important in suspected cases of 

either CDA IV or CDA variants GATA1-related. Among IBMFS, DBA and FA are 

disorders that most frequently undergo differential diagnosis with CDAs. Unlike the 

CDAs, FA generally presents reduction to absent trilinear hematopoiesis, acute 

myelogenous leukemia or solid tumors; moreover, it can also present developmental 

abnormalities more frequently compared to CDAs, particularly CDA I. The positivity to 

the diepoxybutane (DEB) test is a very sensitive and specific tool for guiding FA diagnosis 

(Chirnomas and Kupfer. Pediatr Clin North Am, 2013). Similarly to CDAs, DBA presents 

an isolated inherited red cell production failure. However, unlike CDAs, DBA BM exhibits 

reduced proliferation and survival of erythroid progenitors. Moreover, growth retardation, 
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congenital malformations, and increased HbF levels are more frequent features of DBA 

compared to CDAs. Increased activity of erythrocyte adenosine deaminase is a good II 

level test for establishing the diagnosis of DBA (sensitivity 84%, specificity 95%, positive 

and negative predictive values 91%) (Fargo et al. Br J Haematol, 2013). 

CDAs can be also misdiagnosed with hereditary hemolytic anemias. For example, CDA II 

shares several clinical findings with hemolytic anemias due to red cell membrane defects, 

such as HS (King MJ et al. Int J Lab Hematol, 2015). Of note, CDA II patients are often 

erroneously diagnosed as HS, and consequently, they undergo unnecessary splenectomy. 

The lack of substantial improvement after intervention leads to a re-examination of the 

case, allowing the correct diagnosis of CDA II. The most useful pointer to correctly 

establish the diagnosis of CDA II is the inadequate reticulocyte count for the degree of 

anemia. Indeed, the marrow stress is higher in CDA II compared to HS for the same Hb 

level as attested by the increased sTfR levels observed in CDA II patients (Russo et al. Am 

J Hematol, 2014). Moreover, another relevant issue was about the differential diagnosis 

between CDA and PK (pyruvate kinase) deficiency. Pyruvate kinase deficiency is 

hemolytic anemia hallmarked by the deficiency of pyruvate kinase enzyme, with 

consequences on the red cells metabolism. However, due to some shared clinical 

manifestations between CDAs and PK deficiency, a relevant number of PK deficient 

patients (about 36%) were misdiagnosed with CDA. In this case, only a multigene panel-

based approach helped to solve the issue, through the identification of mutations in PKLR 

gene in patients who were wrongly diagnosed with CDA (Russo R et al. Am J Hematol, 

2018). 

Following this classification, now I will discuss CDA II, describing the molecular 

pathogenesis, the role of the causative gene, the epidemiology, and the patient's 

management.  

 



 

26 
 

3. SEC23B: molecular and functional characterization 

In 2009 a study performed by different research groups highlighted the role of SEC23B as 

the causative gene of CDA II. Notably, 33 individuals, who were diagnosed with CDA II 

on the basis of clinical, morphological, and biochemical criteria were enrolled for a 

genome-wide SNP analysis. First results of this study led to the identification of a single 

common homozygous region on chromosome 20p11.23–20p12.1 so that it was possible to 

hypothesize which of the genes of this region could be involved in CDAII onset. Given the 

impaired cis, medial, and trans-N-glycan Golgi processing of erythroblast glycoproteins in 

CDA II, the role of the proteins involved in the secretory pathways was considered. 

Therefore, sequencing of the SEC23B gene unraveled different mutations in the patients 

that could justify their phenotype, so they concluded that this was CDAII causative gene 

(Schwarz et al. Nat Genet, 2009). This finding represented a turning point for the story of 

this disorder because, from this moment on, a lot of studies investigated the role of this 

gene and the mechanisms involved in the molecular pathogenesis.  

SEC23B encodes the homonymous protein that is one of the components of COPII 

complex, whose function is to transport vesicles of newly-synthesized proteins from 

endoplasmic reticulum towards the Golgi apparatus (anterograde transport), and this 

process represents the counterpart of the retrograde transport (from Golgi apparatus 

towards endoplasmic reticulum) played in the opposite direction by COPI complex (Figure 

I.3A). This process, occurring at the ER exit sites, is particularly accurate and, indeed, 

requires a quality control system to operate in order to transport only properly folded 

proteins (Russo R. et al. Am J Hematol, 2013).  
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Figure I.3B. Different steps of vesicle formation, from the selection of the cargo to the prebudding complex 

formation, the polymerization of different players and the budding of the vesicle are shown. Moreover, it is 

shown how different components have a specific role in each phase of this process (Adapted from Sato et al. 

FEBS Lett, 2007).  

 

Different isoforms exist for these proteins, each encoded by a different gene: two isoforms 

of Sar1, Sec23 and Sec31, and four isoforms of Sec24, have been reported, while only one 

isoform of Sec13 has been characterized (Russo R et al. Am J Hematol, 2013). 

Particularly, SEC23 isoforms, SEC23A and SEC23B, share 85% amino acid sequence 

identity, even if they are encoded by different genes, and are ubiquitously expressed. 

Despite this high percentage of identity, these two isoforms are responsible for two 

different disorders charged two different tissues: while SEC23B mutations are causative of 

CDA II, involving erythroid cells development, SEC23A has been found out to be the 

causative gene of Cranio-lenticulo-sutural dysplasia (CLSD), an autosomal recessive 

disorder characterized by late-closing fontanels, sutural cataracts, facial dysmorphisms, 

and skeletal defects. The reason why mutations of SEC23B are confined to the erythroid 

lineage development (as well as SEC23A downregulation leads to a bone development 

disease), can be found in a peculiar role of this protein for the red blood cells development, 

more than other systems. A hypothesis comes from one of the biochemical hallmarks of 

CDAII, the hypoglycosylation of the protein Band 3 on red blood cells membranes. Indeed, 

since complex COPII is involved in the transport of proteins properly folded and modified, 

SEC23B deficiency may have a role in this defect of transport that leads to a reduced 

membrane exposure of a working form of Band 3. As a result of this dysfunction, red 

blood cells show higher amounts of aggregated Band 3 on the membranes. Moreover, 

aggregated proteins can bind naturally occurring antibodies, mediating the phagocytosis 

and the removal of the erythrocytes from the circulation; this may be the explanation for 

the hemolysis typical in CDAII. However, mutations in the SEC23B gene can explain the 
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aberrant glycosylation of erythroblasts, but it is still unclear how the reduced function of 

this gene can affect the cell division along the erythroid differentiation generating bi- or 

multinucleated erythroblasts. However, in vitro studies showed that during erythroid 

differentiation there was an increased expression of SEC23B 5-7 fold over SEC23A 

expression, underlining the specific role of this gene for the erythroid lineage (Schwarz et 

al. Nat Genet, 2009).  

 

4. CDA II animal models 

The pathophysiology study of CDA II is difficult mainly due to the absence of a reliable 

animal model. Zebrafish model was obtained through the antisense morpholino technology 

aimed at inhibiting SEC23B expression. In this case, a reduction of the lower jaw was 

observed 3 days post fertilization as well as the presence of binucleated erythroblasts 

typical of CDAII. However, other characteristics of the disorder, such as the 

hypoglycosylation of band 3 or the duplication of rough ER, were not observed. Moreover, 

this model could not allow recapitulating the human phenotype because of the lethality of 

sec23b morphants at day 6 post-fertilization (Schwarz et al. Nat Genet, 2009). Different 

models of SEC23B-deficient mice have been generated without reproducing CDA II 

phenotype. Indeed, SEC23B deficiency results in different phenotypes in humans and mice 

(Tao et al. Proc Natl Acad Sci, 2012; Khoriaty et al. Mol Cell Biol, 2014). In particular, the 

absence of phenotype in SEC23B-deficient mice seems to be related to the different 

SEC23B/SEC23A expression ratio in murine and human tissues. Indeed, this ratio is higher 

in mouse pancreas compared to BM, whereas it is higher in human BM relative to the 

pancreas. Of note, SEC23A and SEC23B are paralogous components of the COPII 

complex. This observation is in agreement with the compensatory expression of SEC23A 

that seems to ameliorate the effect of low SEC23B expression alleles in CDA II patients. 

Interestingly, concerning CDAII patients, a compensatory mechanism SEC23A-mediated 
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that could balance the deficiency of SEC23B expression, was observed (Russo R et al. 

Blood Cells Mol Dis, 2013). Therefore, recent studies underlined the interchangeable 

functions of SEC23A and SEC23B in vivo; indeed, the SEC23A-upregulation was 

demonstrated to ameliorate the phenotype of SEC23B-deficient mice (induced by lentiviral 

infection), increasing primary erythroid human cell numbers, correcting the defective 

hypoglycosylation of membrane proteins (Pellegrin et al. Br J Haematol, 2019) and 

reverting the lethal pancreatic phenotype observed in mice (Khoriaty et al. Proc Natl Acad 

Sci U S A, 2018).  

5. Epidemiology and mutations knowledge 

The prevalence of CDAs varies widely among European regions, with minimal values 

of 0.04 cases/million in North Europe and the highest in Mediterranean countries, 

particularly in Italy (2.49/million). This is mainly true for CDA II, which is more 

frequent than CDA I with an overall ratio of approximately 3.0 (Heimpel et al. Eur J 

Haematol, 2010). The studies on molecular epidemiology of CDA I and II highlighted 

the elevated allelic heterogeneity of both conditions as most of the causative variations 

are inherited as private mutations (Iolascon A et al. Haematologica, 2012). 

To date, according to the International Registry of CDAII, > 400 cases and approximately 

100 different variants have been described (HGMD professional database, 2019). The 

allelic heterogeneity is another feature of this disorder but, even though most mutations 

result from independent events, there are 4 SEC23B mutations (R14W, E109K, R497C, 

I318T) accounting for more than 50% of the mutant alleles (Iolascon et al. Haematologica, 

2010; Russo R et al. Am J Hematol, 2011) (Figure I.5A).  
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is necessary to evaluate the CBC and the iron balance very frequently, while for non-TD 

patients timing for the CBC depends on the degree of anemia. A parameter to monitor the 

degree of the anemia in these patients is the amount of Hb: patients with moderate/severe 

anemia show less than 9 g/dL of Hb compared to those with mild anemia. Finally, iron 

overload has to be examined annually by evaluation of ferritin and transferrin saturation, 

while MRI-T2 can be performed every five years in order to exclude or evaluate the degree 

of hepatic or heart iron overload.  

Management of CDA II patients is also based on the choice of correct therapeutic approach 

to adopt, depending on the clinical situation. For example, patients presenting with severe 

anemia (Hb < 7 g/dL) may undergo a transfusion regimen and the frequency of the 

transfusions is usually related to the degree of anemia. Another option is represented by 

bone marrow transplantation, that has been performed in some cases successfully (Russo R 

et al. Am J Hematol, 2014; Unal S et al. Pediatr. Transplant, 2014; Modi G et al. Case Rep 

Hematol, 2015). Moreover, splenectomy also leads to benefits, especially when performed 

on TD-patients whose number of transfusions is reduced or abolished following the 

surgical treatment. Instead, for non-TD CDA II patients, the surgical removal of the spleen 

only shows a slight increase of Hb values (King MJ et al. Int J Lab Hematol, 2015). While 

for hereditary spherocytosis the effectiveness of splenectomy was demonstrated, the role of 

this surgical procedure in other anemias has been controversial for long. Recently, ultimate 

guidelines on the outcome of the splenectomy in hemolytic anemias were collected and the 

differences in the usefulness of this practice depending on the type of disorder were 

highlighted. According to these guidelines, splenectomy is recommended only for CDAII 

patients showing a severe degree of anemia and/or symptomatic splenomegaly (Iolascon et 

al. Haematologica, 2017). 

Finally, the iron overload typical of this condition is treated with the administration of iron 

chelators and this strategy is based on the guidelines for the treatment of thalassemic 
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Figure I.6A. Sotatercept is the result of the extracellular domain of the Activin Receptor IIA, aimed at 

recognizing the specific ligand, and the Fc domain of the IgG1 immunoglobulin. This structure makes this 

drug a “ligand trap” capable of competing with the natural Activin Receptor IIA in the binding of TGF-β 

superfamily member (Adapted from Lotinun S et al. Bone, 2010).  

 

Activins, as well as Growth Differentiation Factors (GDFs) and Bone Morphogenetic 

Factors (BMPs), are cytokines belonging to the Transforming Growth Factor-β family 

(TGF-β) whose signaling is mediated by twelve different serine/threonine kinase receptors 

(7 type I and 5 type II receptors) (Harrison CA et al. Growth Factors, 2011; Akhurst RJ et 

al. Nat Rev Drug Discov. 2012; Breda L et al. Hematol Oncol Clin North Am, 2014). 

Activin receptors II are shared by different GDFs and BMPs (Tsuchida K et al. Cell 

Commun Signal, 2009), but the downstream pathway activated by these molecules requires 

the formation of a ternary complex between Activin receptors type I (ACVR1A and 

ACVR1B) and Activin Receptors type II (ACVR2A and ACVR2B) (Worthington JJ et al. 

Trends Biochem Sci. 2011). Sotatercept recognizes and binds the ligand of the Activin 

Receptor IIA, inhibiting the interaction between ligand and receptor and, accordingly, the 

ligand downstream pathway. For this reason, different studies focused on its effects in 

order to establish if it could be proposed as a therapeutic agent for bone marrow failure 

syndromes hallmarked by dyserythropoiesis. These studies underline how these effects 

were possible due to the neutralization of a possible negative regulator of erythropoiesis 

that is produced by BM stromal cells, that have a relevant role in creating the 

microenvironment of developing erythroid cells (Iancu-Rubin C et al. Exp Hematol, 2013). 

Encouraging results were obtained by treating wild-type mice with RAP-011 (murine 

ortholog of ACE-011). Red blood cells parameters showed increases in red blood cell 

count, hemoglobin and hematocrit values, and reticulocyte count. The activity of RAP-011 

requires the presence of BM accessory cells because of the production of a TGF-β 

molecule recognized by the ligand trap (Carrancio S et al. Br J Haematol, 2014). The levels 
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of some members of TGF-β superfamily were assessed, but only one of this resulted 

upregulated in thalassemia: Growth Differentiation Factor 11 (GDF11). Indeed, the 

assessment of GDF11 levels in β-thalassemic mice sera showed an upregulation of the 

molecule in comparison with the levels detected in wild-type mice, respectively. The same 

trend was observed in the assessment between the sera of thalassemic patients and healthy 

controls (Dussiot M et al. Nat Med, 2014). Given these encouraging results, Sotatercept 

has been proposed as a possible therapeutic agent capable of overcoming the ineffective 

erythropoiesis condition typical of β-thalassemia, but also of Diamond-Blackfan Anemia 

(Ear J et al. Blood, 2015) and Myelodysplastic Syndrome (Mies A et al. Curr Hematol 

Malig Rep, 2016).  

Finally, following these in vitro studies and their interesting results, the effects of 

Sotatercept and Luspatercept on the erythropoiesis were assessed in different clinical trials. 

Particularly, clinical trials on β-thalassemic patients (Motta I et al. Expert Opin Investig 

Drugs, 2017; Cappellini MD et al. Haematologica, 2019; Piga A et al. Blood, 2019) and 

Myelodysplastic patients (Mies A et al. Semin Hematol, 2017; Platzbecker U et al. Lancet 

Oncol. 2017; Komrokji R et al. Lancet Haematol, 2018; Bewersdorf et al. Leukemia, 2019) 

obtained encouraging results in terms of increased hemoglobin levels and tolerability.  

 

7. Aims 

Congenital Dyserythropoietic Anemia type II is the most common form among the CDAs, 

although it is still considered a rare disorder. Probably, it is possible to assume that its 

frequency is still underestimated because of the availability of diagnostic methods and the 

differential diagnosis with the other hereditary anemias with overlapping features (Russo R 

et al. Am J Hematol, 2014; Russo et al. Am J Hematol, 2018). In the last years a major 

knowledge on CDA II causative gene and the advent of next-generation sequencing 

technologies allowed to simplify the diagnostic procedures and to identify novel SEC23B 
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variants (Russo R et al. Am J Hematol, 2018). However, still little is known about the 

molecular pathogenesis of this disease, also because of the lack of a reliable animal model 

reproducing the features of CDA II. Moreover, the management of patients is still based on 

supportive cares for the different symptoms arising from the disorder.  

The first aim of my study was the establishment of a cellular model of CDA II capable of 

recapitulating the defect at the basis of this disorder. For this purpose, we selected K562 

cells that can be considered the most suitable for studies on red cell disorders, among the 

secondary cell lines. Since CDA II is a loss-of-function disorder, we reached our purpose 

by stably silencing SEC23B expression in K562 cells by means of short hairpins RNA. 

Following the shRNA-based knockdown of K562 cells, we assessed the effects of SEC23B 

silencing on some typical erythroid characteristics in order to determine if this could be a 

reliable model for CDA II. 

In the second part, we decided to evaluate the effects of RAP-011 (murine ortholog of 

ACE-011) on SEC23B-silenced K562 cells. Indeed, given the common features between β 

-thalassemia and CDA II, we decided to test the effectiveness of the ligand trap on our 

model in a preclinical study. Before assessing if RAP-011 could restore erythroid 

differentiation, we also focused on the effects of GDF11 on cells in order to understand if 

it could have a role in CDA II molecular pathogenesis. 
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II. MATERIALS AND METHODS 
 
 

1. Cell cultures 

K562 cell line (ATCC, Manassas, VA) is a model of chronic myelogenous leukemia 

(CML), so it is representative of cells of the myeloid lineage (Lozzio CB et al. Blood, 

1975). K562 cells were maintained in RPMI medium (Sigma Aldrich, Milan, Italy) 

supplemented with 10% FBS (Sigma Aldrich), 2% Pen/Strep (Sigma Aldrich) and 1% L-

Glutamine (Sigma Aldrich). Cells were grown in humidified 5% CO2 at 37°C.  

 

2. Production of Lentiviral particles and infection of K562 cell line 

To obtain a SEC23B loss-of-function model of CDAII on K562 cells we applied the short-

hairpin RNA-based strategy. Short-hairpin RNAs are artificial RNA molecules capable to 

silence target gene expression via RNA interference. The expression of these shRNAs in 

mammalian can be obtained through the delivery of plasmids or viral vectors (Paddison PJ 

et al. Gene Dev. 2002). In this study, a pGIPZ Lentiviral shRNAmir vector was used to 

knockdown SEC23B gene expression (Thermo Fisher Scientific, Inc.). We used two 

different shRNAs for SEC23B (sh-70 and sh-74). A non-silencing pGIPZ Lentiviral 

shRNAmir was used as control (RHS4346, sh-CTR). HEK-293T were transfected by 10µg 

of sh-RNA plasmid DNA and 30µl of Trans-Lentiviral packaging Mix (Open Biosystems) 

and 25µl of TransFectin (Bio-Rad) in 10mm plate. The supernatants (10 ml for points) 

were harvested after 24 hours, centrifuged at low speed to remove cell debris and filtered 

through a 0.45 μm filter. HEK293T cells were seeded at the concentration of 5x105 cells 

and, after reaching a confluence of 70%, they were transduced with different dilutions of 

viral vector stocks. For each transduction, 8 µg/ml of Polybrene (Sigma Aldrich) was used 

(Zhang B et al. Genet Vaccines Ther. 2004). After 48 hours of incubation, the transduced 
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cells were examined microscopically for the presence of TurboGFP expression (90-95%). 

The reported data are representative of the experiments performed and confirmed by using 

both lentiviral vectors for each gene. The lentiviral particles of sh-CTR, sh-70 and sh-74 

(50 MOI) were used to infect the K562 cell line. After 48h of infection, the cells were 

maintained in puromycin (0.5 mg/mL) for 2 weeks and then analyzed for GFP+ expression 

and sorted by cell sorting flow cytometry assay. The sorted GFP+ cells were then assayed 

for SEC23B expression to verify the stability of the produced clones. The strategy used for 

the production of these K562 sh-SEC23B cells was already described (Russo R et al. 

Blood, 2016). The efficiency of SEC23B silencing of these clones was assessed by gene 

and protein expression analyses, through quantitative-real time PCR and Western Blot, 

respectively, where the expression levels of the sh-SEC23B clones were compared to the 

ones observed in the Sh-CTR.  

 

3. Erythroid differentiation  

Erythroid differentiation of K562 SEC23B-silenced cells was performed through the 

administration of hemin. Hemin is an iron-containing porphyrin with chlorine that can be 

formed from a haemgroup, such as haem b found in the hemoglobin of human blood. 

Particularly, it contains ferric iron (Fe3+) ion with a coordinating chloride ligand. Hemin 

was demonstrated to induce the development of erythroid phenotypic features when 

administered to K562 cells, such as the increased synthesis of fetal hemoglobin (HbF) 

(Benz EJ Jr et al. Proc Natl Acad Sci U S A, 1980). 

In our study, 50 µM hemin (Sigma) was added to the culture medium of the K562 sh-CTR, 

sh-SEC23B-70 and sh-SEC23B-74 (4×105/mL). Cell samples were collected at specific 

time points: before hemin addition, day 0, and at days 1, 2 and 3 after hemin addition. Cell 

samples were used for the assessment of differentiation obtained through this process. In 

our study, differentiation was assessed by FACS detection of transferrin receptor 1 (CD71) 
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and glycophorin A (CD235), being both surface markers of differentiation of erythroid 

precursors (Andolfo I et al. Haematologica, 2010). Similarly, 600 µM sodium butyrate 

(Sigma) was administered to K562 sh-CTR, sh-SEC23B-70 and sh-SEC23B-74 and the 

same time points were considered to assess its effects: day 0, before sodium butyrate, and 

days 1, 2 and 3. 

 

4. Patients  

Twenty-two CDA II patients and 17 age and gender-matched healthy controls (HCs) were 

enrolled in the study. Peripheral blood leukocytes (PBLs) and plasma were isolated from 

both CDA II patients and HCs. Samples were obtained after informed consent, according 

to the Declaration of Helsinki. CDA II diagnosis was based on clinical findings, 

biochemical and molecular analyses.  

Plasma was separated from blood following centrifugation of 10 minutes at 3000 rpm. 

Plasma was collected from the top of the tubes and transferred to 2 ml tubes, stored at -80 

°C. Mononuclear cells were isolated using Ficoll-Hypaque (1.077-0.001 kg/L; Sigma-

Aldrich, Milan, Italy). These pellets were collected for the isolation of RNA and stored at -

80 °C. 

 

5. RAP-011 treatment 

K562 sh-CTR and sh-SEC23B-74 cells were selected for RAP-011 treatment. 

Recombinant human GDF11 protein (R&D Systems, 1958-GD) was used at 50 ng/ml, 

while RAP-011 (a murine version of Sotatercept, ACE-011), provided by Celgene 

Corporation, was used at 0.05 g/l. 

The first treatment was aimed at evaluating the right concentrations of the main 

components of this experiment (GDF11 and RAP-011) and the effects of this strategy, 

based on GDF11-administration versus a combined GDF11+RAP-011 administration. In 
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the second case, the addition of the ligand trap should inhibit the binding of GDF11 and so, 

the activation of its downstream pathway. K562 sh-CTR cells were counted, led to a 

concentration of 400.000 cells/ml and induced in erythroid differentiation by the 

administration of hemin, as previously described. After 3 and 6 days, cells were divided for 

three different groups: non-treated cells, GDF11-treated cells, and GDF11+RAP-011-

treated cells. The first group represents our negative control, while GDF11 addition should 

reproduce the pathologic context and the third group simulates the ligand trap activity 

exerted by the RAP-011 towards the GDF11. Cells were collected after 3 hours, 

centrifugated and the resulting pellets were used for protein extraction.  

The second treatment was repeated on both sh-CTR and sh-SEC23B-74 cells. A time-

course treatment with three different points was performed: 0.5 hours, 1 hour and 2 hours. 

At each of this interval, the same amount of cells was collected through centrifugation and 

the resulting pellets were used for different applications (RNA isolation, extraction of total 

proteins and nuclear proteins, immunofluorescence, cell cycle analysis).  

 

6. Cell viability assay 

K562 sh-CTR and K562 sh-SEC23B-74 cells were counted and seeded as six replicates 

into 96-well plates at a density of 1x104 cells per well. Cells were treated with two 

different concentrations of RAP-011 (50 and 100 μM) and cells treated with the vehicle 

were used as control. Cell viability was assessed after 24h, 48h and 72h from the start point 

by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay according 

to the manufacture protocol (Promega, Milan, Italy). In the case, 10 μl was of this solution 

was added to each well and cells were incubated for 3 hours at 37. Then, cells were 

centrifugated, the medium was aspirated as much and replaced for 1 hour with 100 ul 

DMSO that dissolves formazan crystals. Following this step, we read the absorbance of the 
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plate at 570 nm by a spectrophotometer. These values are proportional to the viability and 

the metabolism of cells.  

 

7. Gene expression analysis 

RNA isolation 

Total RNA was extracted from PBLs and K562 cells using Trizol reagent (Life 

Technologies). This reagent is mainly composed of phenol capable of lysing cell or tissue 

samples and isolating RNA from all the other components. Following the addition of 

Trizol on cell pellets, we lysed the cells pipetting different times, then samples were 

incubated for 5 minutes at room temperature to help the dissociation of the nucleoproteins 

complex. Then, chloroform was added (per 1 ml of Trizol, we used 300 µl of chloroform), 

samples were mixed and centrifugated for 20 minutes at 13000 rpm at +4 C. Following this 

step, we had a lower red phenol-chloroform, an interphase, and an aqueous phase. The 

upper phase, containing the RNA, was transferred to another clean tube and mixed with 

isopropanol (volume ratio 1:1) to precipitate the RNA. For this purpose, the tubes were 

shaken and centrifugated for 15 minutes at 13000 rpm at 4 °C. After removing the 

supernatant, we had a white pellet corresponding to the RNA. We resuspended the pellet in 

Ethanol 75% (prepared in DEPC water) to wash the RNA and centrifugated for 10 minutes 

at 13000 rpm at 4 °Cs. At this point, we removed the supernatant and we let the pellet air-

dry. Then, the RNA was resuspended in DEPC water, the tubes were transferred in a heat 

block for 10 minutes at 65 °C, in order to let the RNA solubilize. Finally, RNA samples 

were stored at -80 °C. 

Retrotranscription 

Quantization of RNA samples was obtained through the spectrophotometer that is designed 

to measure the absorbance and calculate the concentration of nucleic acids (260 nm) 

Synthesis of cDNA from total RNA (1 μg) was performed using a cDNA synthesis kit 
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(Applied Biosystems, Milan, Italy). This kit consists of the Reverse Transcriptase that 

performs the synthesis of cDNA from RNA, the dNTPs used for the synthesis, the Random 

Primers and a Buffer containing components necessary for the RT activity.  

 RT Buffer (10x): 2 L 

 dNTPs (25x): 0.8 L 

 RT primers (10x): 2 L  

 RT: 1 L 

 H2O: To final volume 

 RNA: 1 g 

 

We used the thermocycler since this reaction requires different temperatures in order to 

obtain the synthesis.  

Quantitative real-time PCR analysis 

Gene expression analysis on cDNA samples was based on Quantitative Real-Time PCR 

(qRT-PCR) using Power SYBR Green PCR Master Mix (Applied Biosystems). This 

method represents a variant of PCR, allowing to obtain a measurement of the amplified 

samples. For each sample, we used 60 ng of cDNA as template, the Mix containing the 

polymerase and all the components necessary for the reaction, and the forward and reverse 

primers to recognize the selected genes. In the case, qRT-PCR was performed to evaluate 

the gene expression of GDF11, SEC23B, SEC23A, GATA1, KLF1, ABCB6, ALAS2, HBB, 

HBG, BCL-2, BAX, BAD, CCNA2, ACVR1A, ACVR1B, ACVR2A, ACVR2B, FAM132B 

genes. Samples were amplified on Applied Biosystems 7900HT Sequence Detection 

System using standard cycling conditions. The primers were designed by the Primer 

Express 2.1 program (Applied Biosystems). β-actin and GAPDH were used as internal 

controls. Relative gene expression was calculated by using the 2-ΔCt method, while the 

mean fold change = 2-(average ΔΔCt) was assessed using the mean difference in the ΔCt 

between the gene and the internal control11.  
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8. Protein expression analysis 

 

Protein extraction 

Proteins were extracted from cell lines pellets using RIPA lysis buffer (TRIS-HCl pH 7.5 

50 mM, NaCl 150 mM, Triton 1%, Glycerol 10%, SDS 0.1%) in presence of a protease 

inhibitor cocktail (Roche) and a phosphatase inhibitor cocktail (Roche). Samples in the 

tubes were vortexed to lyse the cells for 15 minutes at 4 °C and then centrifugated to 

isolate the protein content. Protein extract concentrations were determined by the Bradford 

assay (BioRad, Milan, Italy) that is based on the binding of protein molecules to 

Coomassie dye that results in a change of color of the solution from brown to blue, 

depending on the concentration of the samples. Each sample was quantified with Bradford 

solution through the measurement of the absorbance at 595 nm. The concentration values 

were obtained through the comparison with a standard curve, showing increasing amounts 

of bovine serum albumin (BSA). Every measurement was performed in duplicate and a 

mean of the values was used.  

Western Blot 

Total protein extracts (30 or 50 μg) were mixed with Sample Buffer Laemli 2X (SBL) and 

heated at 100 °Cfor 5 minutes. Both the 2-mercaptoethanol contained in the SBL and the 

heating were used to help protein denaturation. Indeed, these samples were analyzed by 

sodium-dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), a method based 

on electrophoresis that separates charged molecules by mass. Proteins are negatively 

charged by SDS contained in the SBL and in the matrix of the gel, so the separation of the 

proteins is due to the migration from a negative to a positive pole. Gels were prepared with 

different concentrations of polyacrylamide depending on the size of the protein to 

investigate. The proteins, separated on the gel depending on their mass, were then 
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transferred to PVDF (polyvinylidene difluoride) membranes (Biorad, Milan, Italy), that are 

useful for all the applications of the Western Blot. This membrane is activated with 

Ethanol, so it is positively charged during the transfer and naturally attracts the proteins 

negatively charged from the polyacrylamide gel. In order to check if the proteins were 

transferred properly from the gel, the membrane was stained with Ponceau S Solution. This 

red solution allows a reversible detection of the protein bands on the membrane. Then, the 

membrane was incubated with Nonfat-Dried Milk (NFDM) or BSA to saturate all the non-

specific sites in order to have cleaner and more specific signals. Following this step, 

membranes were incubated with following primary antibodies: rabbit anti-SEC23B 

antibody (1:500; SAB2102104, Sigma Aldrich, Milan, Italy), rabbit anti-pSMAD2 (1:500; 

43108,Cell Signaling), rabbit anti-SMAD 2/3 (1:1000;5678, Cell Signaling). Mouse anti-β-

actin antibody (1:12000; A5441, Sigma Aldrich, Milan, Italy) and rabbit anti-GAPDH 

(1:1000; 2118, Cell Signaling) were used as the controls for equal loading. Following the 

incubation of these primary antibodies, goat anti-mouse IgG (1:4000; GtxMu-003, 

ImmunoReagents, Inc.) and goat anti-rabbit IgG (1:4000; GtxRb-003, ImmunoReagents, 

Inc.) were used. Signal was obtained through Chemiluminescence detection with 

photographic films or CCD cameras. Semi-quantitative analysis of protein expression was 

performed as previously described (Russo R et al. Blood Cells Mol Dis, 2013). The bands 

were quantified by Quantity One software (Biorad) to obtain an integrated optical density 

(OD) value, which then was normalized with respect to the β-actin or GAPDH.  

Secreted proteins 

Expression of secreted proteins was assessed by loading plasma samples (from patients and 

healthy controls) to SDS-PAGE, followed by transfer to PVDF membrane and incubation 

with the anti-GDF11 antibody (1:500; ab124721, Abcam, Cambridge, UK) and the goat 

anti-rabbit IgG (1:4000; GtxRb-003, ImmunoReagents, Inc.), as previously described. 

Normalization of results was obtained through the Ponceau red staining of the blots. 
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Subcellular fractionation 

Subcellular fractionation in nuclear and cytosolic proteins was performed according to the 

Schreiber method (Schreiber et al 1990). Harvested cells were washed twice with ice-cold 

PBS and homogenized with ice-cold buffer [10 mM HEPES, pH 7.9; 1.5 mM MgCl2, 1 

mM EDTA, 0.5 mM DTT, 10% (v/v) glycerol, 1mM PMSF, and protease inhibitor cocktail 

(Roche)]. After resuspension, we syringed suspension and then centrifuged in order to 

separate cytosolic suspension from the nuclear pellet. Then, the nuclear pellet was 

resuspended in the same lysis buffer in the presence of KCl 3M. Nuclear extract was stored 

in ice for 1h, then centrifuged for 30 minutes at 16.000 g. 

For protein expression analysis, 15 μg of nuclear proteins extracts were loaded to SDS-

PAGE, transferred to PVDF membrane and saturated with NFDM, as previously described. 

Membranes were incubated with mouse anti-GATA1 antibody (1:500; H00002623-M06, 

Abnova), mouse anti-HSP-70 (1:5000; SAB4200714, Sigma Aldrich, Milan, Italy) and 

rabbit anti-SMAD4 (1:1000; ab215968, Abcam). Rabbit anti-LAMIN-B (1:50; sc-6216, 

Santa Cruz) and mouse anti-TBP (1:1000; ab51841, Abcam) were used as the control for 

equal loading of nuclear proteins. Semi-quantitative analysis of protein expression was 

performed as previously described. 

 

9. Immunofluorescence 

K562 sh-CTR and K562 sh-SEC23B-74 GDF11-treated and GDF11+RAP-011 treated 

cells were counted and 1x106 of them were centrifugated. Then, cells were fixed, by 

resuspending the pellet with the Paraformaldehyde solution (PFA) and incubating for 10 

minutes at room temperature. After centrifugation to remove PFA, the cell pellet was 

washed with Ammonium Chloride dissolved in PBS (two incubations of 10 minutes 

separated by centrifugations of 5 minutes) at room temperature. Then, cells were 

resuspended in PBS at a concentration of 1x106/ml. Cells were plated on microscopic 
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slides (3x105 cells) that had been previously treated with polylysine. Polylysine shows 

positive charges, so it can bind easily negatively charged proteins on the cell surfaces. 

Polylysine was dissolved in solution and added to the slides in order to allow the adhesion 

of the cells. Then, plated cells underwent permeabilization by adding Triton 0.1%, in order 

to allow the binding of the antibodies to intracellular proteins. As previously described for 

Western Blot, cells were incubated with BSA/PBS to saturate the non-specific sites. 

Afterward, cells were incubated with primary antibody (rabbit anti-GATA1, 1:50) and 

secondary antibody (Alexa Fluor 546 goat anti-rabbit; Life Technologies) at 1:200 dilution. 

Nuclei were stained with 1 μg/ml DAPI in PBS for 15 min at room temperature. The 

coverslips were mounted in 50% glycerol (v/v) in PBS and imaged by Zeiss LSM 510 

Meta confocal microscope equipped with an oil immersion plan Apochromat 63× objective 

1.4 NA. Red channel excitation of Alexa546 by the Helium/Neon laser 543 nm line was 

detected with the 560-700 nm emission bandpass filter (using the Meta monochromator). 

Blue channel excitation of DAPI by the blue diode laser 405 nm line was detected with the 

420-480 nm and emission bandpass filter. 

 

10. Cell cycle analysis 

K562 sh-CTR and K562 sh-SEC23B-74 cells were collected following both the GDF11 

and GDF11 + RAP-011 treatment to perform flow cytometry analysis. Cells were washed 

twice in PBS 1X and after they were resuspended in 1 ml of a solution consisting of 29 

g/lpropidium iodide (SIGMA), 25 g/l RNAse (SIGMA), and 0.004% NP40 in PBS 

1X. Cells were incubated for 3 hours at 37°C. The flow cytometry analysis was performed 

by the flow cytometry facility at CEINGE Institute. 
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11. Statistical analysis 

Quantitative data were compared using Student’s t-test or Mann Whitney test, as 

appropriate. Qualitative data by chi-square test, correlation analysis by Spearman's rho (ρ) 

correlation coefficient. A two-sided p<0.05 was considered statistically significant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

III. RE

 

1. K562 as

In order to

chose the 

be used t

administer

erythroid 

evaluated 

(CD71+ c

this surfac

on day 3 (

 

 

ESULT

s a cell line

o find a cel

K562 cell l

o reproduc

red drugs u

differentiat

by calculat

cells). This 

ce receptor t

(Figure III.1

S 

e model for 

ll line capab

line. K562 

ce the eryth

used for the

tion by usin

ting the per

analysis ex

that is abou

1A).  

erythroid c

ble to repro

cells are a h

hroid or me

e differentia

ng hemin (

rcentage of 

xhibited an 

ut 5-fold on 

cell developm

oduce red b

human mye

egakaryocy

ation. We t

50 µM ). A

K562 cells

increase in

day 1, abou

ment 

lood cells d

elogenous le

ytic develop

tested these

After 3 day

s positive fo

n the percen

ut 11-fold on

developmen

eukemia cel

pment, depe

e cells abili

ys the differ

or the transf

ntage of pos

n day 2 and

 

nt features, 

ll line and c

ending on 

ity to under

rentiation w

ferrin recep

sitive cells 

d about 14-f

49 

we 

can 

the 

rgo 

was 

ptor 

for 

fold 



 

50 
 

Figure III.1A. Percentages of K562 cells showing CD71 surface receptor following hemin addition at days 

1, 2 and 3. A constant increase of this percentage was shown as a result of a fold change on the percentage of 

CD71+ K562 cells at day 0. These results were produced by FACS analysis. 

 

This method of stimulation to the erythroid differentiation was compared with another one, 

based on the administration of another drug, the sodium butyrate (2 mM). In this case, an 

increase in the number of  CD71+ K562 cells was also observed, but the percentages of 

differentiation, folded on day 0, were lower than the ones observed with hemin addition 

(Figure III.1B).  

 

 

 

Figure III.1B. Percentages of K562 cells showing CD71 surface receptor following sodium butyrate 

addition at days 1, 2 and 3. The increases in percentages of CD71 positive cells were 6-fold, 7-fold and 7.6-

fold for 1, 2 and 3 days, respectively. These values were shown as a result of a fold change on the percentage 

of K562 cells showing CD71 on their surface at day 0. These results were produced by the FACS analysis. 

 

2. Silencing of SEC23B expression in K562 cells 

K562 cell line was chosen as a model for our studies on CDAII given its ability to 

reproduce some erythroid features, such as the presence of the transferrin receptor on their 
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sh-CTR cells exhibited an augmentation of Bcl-xL gene levels, sh-SEC23B-74 cells 

showed a downregulation of the same gene. In order to investigate further on the apoptotic 

pathway, we also measured gene levels of two pro-apoptotic members, Bax and Bad. In 

this case, a decrease in the gene levels of Bax and Bad, responsible for apoptotic cell death, 

was observed in both K562 sh-CTR and sh-SEC23B-74 following the GDF11+RAP-011-

based treatment (Figure III.10) 
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IV. DISCUSSION 

 

 

 

Congenital Dyserythropoietic Anemias are red blood cells disorders hallmarked by 

defective erythroid maturation. Consequences of this maturation block are the 

establishment of ineffective erythropoiesis condition and related morphological 

abnormalities charged to the erythroblasts (Renella R et al. Hematol Oncol Clin North 

Am. 2009; Iolascon et al. Haematologica, 2012). Due to these features, CDAs can be 

considered subtypes of bone marrow failure syndromes (Iolascon et al. Blood, 2013). 

Among these, CDA type II is the most common form with more than 400 described cases 

so far (Russo et al. Am J Hematol. 2014; Bianchi et al. Br J Haematol. 2016). Typical 

clinical features of CDA II are anemia, relative reticulocytopenia, jaundice, splenomegaly, 

gallstones, and iron overload. Due to the phenotypic manifestations, this disorder has been 

misdiagnosed with the hereditary spherocytosis (HS) (King MJ et al. nt J Lab 

Hematol. 2015), until the causative gene, SEC23B, was identified in 2009 (Schwarz et al. 

Nat Genet. 2009). Molecular diagnosis, based on SEC23B sequencing, helped to improve 

the management of CDA II patients. Indeed, a correct diagnosis between these two 

diseases should avoid the worsening of the iron overload condition (Danise P et al. Clin 

Lab Haematol. 2001). CDA II is inherited with an autosomal recessive pattern, indeed 

patients are homozygous or compound heterozygous (Schwarz et al. Nat Genet. 2009; 
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Bianchi P et al. Hum Mutat. 2009). Sequencing led to the identification of more than 100 

different mutations in the SEC23B gene, with some of these occurring more frequently in 

specific geographic areas. The elevated frequency of some mutations has been 

demonstrated to be due to the founder effect in those areas (Russo R et al. Am J Hematol. 

2013, Russo R et al. Am J Hematol. 2014; Amir A et al. Acta Haematol. 2011). While 

great advances have been reached in the diagnostic process of CDA II, an evaluation of the 

functional effects of SEC23B gene loss-of-function still lacks. Difficulties in reaching this 

aim can be explained by the ubiquitous role of SEC23B, that is not involved in a specific 

erythroid function. Indeed, SEC23B encoded protein is part of the COPII complex, 

involved in the vesicle trafficking of newly synthesized proteins from endoplasmic 

reticulum towards the Golgi apparatus. This function is played by this gene ubiquitously, 

and for this reason, it has not been explained why the loss of function of this gene is the 

basis of only a red blood cell disorder (Russo R et al. Am J Hematol. 2013). Maybe, the 

erythrocytes maturation requires the transport of a specific product in the vesicle 

trafficking that is lacking with the downregulation of SEC23B. Recently, some SEC23B 

variants were associated with Cowden syndrome, that is an autosomal-dominant disorder 

characterized by the onset of epithelial cancers (Yehia L et al. Am J Hum Genet. 2015; 

Yehia L et al. Hum Mol Genet. 2018). However, concerning the CDA II, a SEC23B-

deficient mouse model was generated but it does not reproduce the anemic phenotype 

observed in CDAII patients, but only degeneration of secretory tissues, such as the 

pancreas and salivary glands (Tao J et al. Proc Natl Acad Sci USA, 2012). The explanation 

of this lacking phenotype can be found in the compensatory role played by the paralogous 

gene of SEC23B: SEC23A. The proteins encoded by SEC23A and SEC23B have the same 

functions in the COPII complex but, probably, their expression varies between humans and 

mice, and among the different tissues (Iolascon A et al. Blood, 2013). In this case, the 

deficiency of SEC23B is not sufficient because of the massive presence of SEC23A. The 
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compensatory role of this gene in CDA II was demonstrated since patients, expressing 

lower levels of SEC23B, showed an upregulation of SEC23A, aimed at ameliorating the 

anemic phenotype (Russo R et al. Am J Hemat. 2014). Moreover, CDA II mouse models 

failed to exhibit human features probably because of an overlap between the functions of 

these two paralog genes. Indeed, SEC23B-deficiency in mice resulted in lethality, given 

the constitutive role of this gene, so chimeric mice with a deficiency restricted to the 

erythroid compartment were obtained. Still, these mice did not show the anemic phenotype 

as well as red cells abnormalities, hypoglycosylation of band 3 and erythroid hyperplasia 

were not observed (Khoriaty et al. Mol Cell Biol. 2014 ). However, SEC23B deficiency 

involved pancreatic dysfunctions responsible for the lethality, while a normal pancreatic 

development was shown by SEC23A deficient mice (Khoriaty et al. Sci Rep. 2016). The 

functions of these genes are interchangeable with different levels of expression in the 

organs between human and mice. The overlap of their functions was clear since the 

insertion of SEC23A coding sequence in SEC23B-deficient mice rescued their lethal 

pancreatic phenotype (Khoriaty et al. Proc Natl Acad Sci U S A 2018).  

Given the absence of a reliable mouse model of CDAII, we decided to study the traits of 

this disorder through the establishment of an “in vitro” model. We selected the K562 cell 

line that shares some features with the erythroid lineage since these cells derive from the 

myeloid lineage, as well as the erythrocytes. These cells were demonstrated to reproduce 

some typical traits of red blood cells, when treated with some drugs, such as hemin (Benz 

EJ Jr et al. Nature, 1979) or sodium butyrate (Lozzio CB et al. Nature, 1979). We decided 

to induce K562 cells in erythroid differentiation by administering both these drugs, in order 

to select the most effective method to reproduce erythroid characteristics. The outcome of 

these experiments was evaluated by the increase of the transferrin receptor (CD71) on the 

cells surface by flow cytometry analysis. Indeed, the expression of this surface marker is 

significantly higher in red blood cells compared to the other cell types (Liu Q et al. Leuk 
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Lymphoma, 2014). K562 cells treated with hemin showed a greater increase of CD71 

receptors on their surfaces than the cells treated with sodium butyrate. Our CDA II in vitro 

model was established through the stable silencing of SEC23B expression in K562 cells. 

Particularly, we generated two K562 clones stably silenced for SEC23B, i.e. sh-SEC23B-

70 and sh-SEC23B-74. The assessment of SEC23B expression confirmed the silencing for 

both the clones compared with the clone K562 sh-CTR at the gene and protein level. The 

main difference between the two clones lies in the different expression of the paralog gene 

SEC23A. Indeed, K562 sh-SEC23B-74 clone showed an up-regulation of SEC23A, while 

sh-SEC23B-70 clone showed similar levels of silencing of the paralogs, maybe due to a 

non-specific activity of the short hairpin. This observation is in line with previous studies 

on low SEC23B expression alleles that are not associated with CDA II severe clinical 

presentation because of a compensatory expression of the paralog SEC23A, as previously 

mentioned (Russo R et al. Am J Hematol. 2014). Moreover, when we tested the ability of 

these clones to reproduce erythroid features following the stimulation induced by hemin, 

K562 sh-SEC23B-70 and sh-SEC23B-74 underwent a depletion of CD71 positive cells 

during the days 2 and 5 considered for the experiment, while the clone sh-CTR showed an 

increase in the percentage of cells expressing the transferrin receptor, as expected for a 

positive control. Following this experiment, we also measured the levels of SEC23B for 

the entire duration of the experiment in our SEC23B-silenced models as well as SEC23A. 

The results confirm the silencing of SEC23B at the gene and protein level, as well as the 

upregulation of SEC23A in sh-SEC23B-74 clone. These results suggest the use of these 

clones as a CDA II cell model capable to reproduce the defects in the differentiation at the 

basis of this disorder.  

The establishment of this model gave us the opportunity to explore the therapeutic options 

aimed at the overcoming of the defect causative of CDA II. Indeed, nowadays, blood 

transfusion therapy or treatments with erythropoiesis-stimulating agents (ESA), such as 
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recombinant erythropoietin, are the front line therapies for anemia associated with 

ineffective erythropoiesis (Gambale et al. Expert Rev Hematol. 2016; Motta I et al. Expert 

Opin Investig Drugs, 2017). However, both treatments are not without risks, and in some 

cases, they are not effective (Aapro et al. Ann Oncol. 2018). Therefore, there is a clinical 

need for novel agents supporting ineffective erythropoiesis with a different mechanism of 

action from existing ESA. Although the recent progress in our knowledge of molecular and 

functional pathways during normal and pathological erythropoiesis, limited therapeutic 

options are available to treat ineffective erythropoiesis.  

ACE-011, as well as its murine counterpart RAP-011, is a chimeric protein in which the 

extracellular domain of the ActRIIA receptor is fused to the Fc portion of the human IgG1 

antibody. ACE-011 antagonizes activin and several other members of the TGF-β 

superfamily that signal through the ActRIIA. Clinical trials based on Sotatercept (ACE-

011) in healthy post-menopausal women led to the enhanced bone formation and decreased 

bone resorption, as expected, but surprisingly this treatment also produced an amelioration 

of hematologic parameters, such as increased hemoglobin (Hb) and hematocrit levels 

(Ruckle J et al. J Bone Miner Res 2009; Raje N et al. Curr Opin Mol Ther; Sherman 

ML et al. J Clin Pharmacol. 2013). These effects on erythroid parameters encouraged to 

assess the functionality of this drug on ineffective erythropoiesis. Recently, a phase II 

clinical trial for β-thalassemic patients was performed in order to evaluate the tolerability 

and the efficacy of the chimeric protein. This study involved both transfusion-dependent 

and non-transfusion-dependent patients who were treated with different doses of 

Sotatercept for 22 months. An increase in hemoglobin values of  >1 g/dl was observed in 

non-transfusion-dependent patients for 12 weeks, while for transfusion-dependent patients 

a >20% reduction in transfusion burden was obtained for 24 weeks. Furthermore, this 

study demonstrated the tolerability of the drug on patients enrolled in the trial (Cappellini 

MD et al. Haematologica, 2019). 
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These findings led researchers to assess the effects of the chimeric protein on ineffective 

erythropoiesis through different in vitro and in vivo studies that produced encouraging 

results (Iancu-Rubin et al. Exp Hematol. 2013; Carrancio S et al. Br J Haematol. 2014; 

Dussiot et al. Nat Med. 2014; Langdon et al. Am J Hematol. 2015). ACE-011 and its 

murine analog RAP-011 neutralizes GDF11 functions by inhibiting its binding to the 

ActRIIA or ActRIIB and the consequent downstream pathway.  

Due to the shared pathomechanisms between β-thalassemia and CDA II, we firstly 

evaluated the role of GDF11 in the pathogenesis of CDA II through the measurement of 

GDF11 expression in patients compared to HCs. Our analyses highlighted the 

overexpression of GDF11 in CDA II patients compared to HCs at the gene and protein 

level, and these findings suggested a similar role for GDF11 in both CDA II and β-

thalassemia. 

A slight increase of GDF11 cytokine production in K562 SEC23B-silenced cells compared 

to non-silenced ones was observed. However, the extent of this increase was not as 

significant as the one observed in ex vivo evaluation on CDA II patients. This difference 

between ex vivo and in vitro analyses may lie in the absence of systemic production of 

GDF11 as regards K562 cell line.  

Because sh-SEC23B-70 clone did not reproduce one of the traits of CDA II, showing 

downregulation of the paralogous gene SEC23A, we decided to perform a treatment based 

on RAP-011 on sh-SEC23B-74 clone, in parallel with the sh-CTR clone, as a positive 

control. Before treating cells, we tested if the drug could have any cytotoxic effect on our 

cells, so we used different concentrations of RAP-011 on sh-CTR and sh-SEC23B-74 

clones. After selecting the right concentration of the drug, we evaluated the viability of 

treated cells compared to the cells treated with the vehicle. Still, cells exhibited an 

increased survival following the administration of RAP-011.  
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However, given the proposed role for GDF11 in the ineffective erythropoiesis, we 

administered the cytokine to cells in order to simulate the pathologic context and to 

analyze the effects of the interaction between GDF11 and RAP-011. GDF11 activity is 

exerted through the binding of an activin receptor (IIA or IIB) and the consequent 

activation of a downstream pathway whose first step is the increased phosphorylation of an 

intracellular mediator, the protein SMAD2. In our model, the administration of GDF11 to 

both sh-CTR and sh-SEC23B-silenced cells produced increased phosphorylation of 

SMAD2 at different times, as expected, while the combined treatment of GDF11 and RAP-

011 produced an inhibition of GDF11-receptor binding that led to reduced phosphorylation 

of SMAD2. These data show the effectiveness of this treatment in the inhibition of 

GDF11-activated pathway. However, in order to understand how the inhibition of this 

pathway could improve erythroid survival, we investigated the role of the transcription 

factor GATA1 during the drug treatment. Some studies (Arlet JB et al. Curr Opin Hematol. 

2016) demonstrated that ineffective erythropoiesis in β-thalassemia leads to a major 

involvement of chaperone heat-shock protein 70 (HSP70) in order to facilitate the 

refolding of the denatured proteins; therefore, HSP70 cannot exert its chaperone function 

towards cytoplasmic GATA1 that is more prone to caspase 3-mediated cleavage. Main 

consequences of this condition are a reduced GATA1 nuclear translocation and an altered 

erythroid gene expression that is consistent with bone marrow syndromes. We focused on 

GATA1 protein expression in the nuclear compartment in order to check if GDF11 and/or 

RAP-011 could affect its localization. Both sh-CTR and sh-SEC23B nuclear extracts 

showed a greater amount of GATA1 after RAP-011 administration compared to the 

amount of GATA1 observed in samples treated with GDF11. Interestingly, HSP70 showed 

the same trend, i.e. a higher nuclear concentration in RAP-011-treated samples compared 

to those treated with GDF11. Moreover, we investigated the role of SMAD4, another 

mediator of TGF-β signaling, that exerts its functions by forming a heterotrimeric complex 
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in the nucleus with SMAD2 and SMAD3 proteins (Shi Y et al. Nature, 1997; Chacko et al. 

Nat Struct Biol. 2001; Chacko et al. Mol Cell. 2004). Thus, it should be necessary for the 

nuclear transmission of GDF11 signaling, maybe through alteration of target genes 

transcription. In our case, RAP-011-treatment led to a decrease in SMAD4 protein 

expression at the nuclear level in both sh-CTR and sh-SEC23B-74 clones. A decreased 

amount of nuclear SMAD4, following RAP-011 administration, should be linked to the 

increased GATA1 nuclear translocation and transcriptional activity. The increased nuclear 

localization of GATA1 was confirmed by immunofluorescence assay.  

Hence, we analyzed gene expression of some of the most representative erythroid markers 

besides GATA1, like KLF1 that encodes the homonymous erythroid transcriptional factor, 

HBG that encodes the γ-globin, ALAS2 gene that codifies an enzyme involved in the heme 

biosynthetic pathway. In agreement with the enhanced nuclear translocation of GATA1 

transcription factor-mediated by RAP-011, we observed an increased expression of 

specific genes of erythroid lineage in SEC23B-silenced cells. Afterward, we evaluated the 

effects of this treatment on the cell death pathway through the gene expression analysis of 

Bcl-2 family members. These genes regulate different aspects of cell death since some play 

an anti-apoptotic role while others show pro-apoptotic functions. In the case, we assessed 

Bcl-2 that is involved in the inhibition of the apoptosis and we found increased levels of 

gene expression in sh-CTR and sh-SEC23B-74 RAP-011-treated cells, and Bcl-xL where a 

different trend is observed. Instead, gene levels of two apoptosis activators, Bax and Bad, 

were lower in sh-CTR and sh-SEC23B-74 cells following RAP-011 administration. In 

order to find any correlations between these effects on protein and gene expression after 

the administration of RAP-011, we assessed the expression of the activin receptors (type I, 

IB, IIA, and IIB) that are responsible for the GDF11 signaling. Analysis of gene expression 

showed that RAP-011 leads to reduced gene expression of all these receptors, mostly 

concerning sh-SEC23B-74 cells. These results are explained by the ligand trap function 
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played by RAP-011. Indeed, removal of GDF11 from circulation prevents the cytokine 

from binding to the activin receptor II and this may cause a decreased synthesis of 

receptors. Moreover, FACS cell cycle analysis showed a similar trend for sh-CTR and sh-

SEC23B-74 RAP-011-treated cells as regards the percentage of cells in each phase of the 

cell cycle. Indeed, we observed an increased percentage of G1 and G2 phase with a 

decreased number of cells in S-phase. Thus, gene expression analysis of cyclin A2 gene, 

CCNA2, whose levels are at peak in S phase, confirms the FACS cell cycle analysis since it 

showed a decrease in CCNA2 gene expression for RAP-011-treated cells. These results 

highlight the role of RAP-011 in promoting the overcome of the maturation block that is 

characterized by a higher amount of cells arrested in S-phase (Libani IV et al. Blood, 

2008).  

Interestingly, we investigated also the ERFE  gene and protein expression after RAP-011 

treatment. ERFE encodes erythroferrone, a protein involved in iron overload condition 

establishment that is one of the main complications arising from dyserythropoiesis, and for 

its role, it was recently proposed as a marker of iron-loading anemias as CDA II and β-

thalassemia (Kautz L et al. Blood, 2015; Latour C et al. Haematologica, 2017; Russo R et 

al. Blood, 2016). Interestingly, while sh-CTR-treated cells did not show significant 

differences in gene and protein expression compared to that observed in GDF11-treated 

cells, sh-SEC23B-74 cells exhibited a marked decrease of ERFE at mRNA and protein 

level, in response to RAP-011 administration. These data seem to show effects on the iron 

overload by restoring physiological levels of the erythroferrone hormone. 

 

Conclusions 

Herein, we firstly established an in vitro model reproducing CDA II features, such as the 

defect in the erythroid differentiation, due to the lack of the SEC23B functions. Then, we 

proposed the role of GDF11 as a trigger of the ineffective erythropoiesis of CDA II and 
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These results may encourage the use of Sotatercept (ACE-011) as a therapeutic drug for 

CDA II patients. This is in agreement with the recent results obtained by a phase II clinical 

trial based on Sotatercept on β-thalassemic patients (Cappellini et al. Haematologica, 

2019). Indeed, both transfusion-dependent and non-transfusion-dependent patients 

exhibited a good response in terms of increase of Hb values, reduction of RBC transfusions 

(for the first class of patients) and, finally, a reduction of systemic iron overload 

(Cappellini et al. Haematologica, 2019). 

 
 
 
 
Future perspectives 

 

Given the creation of this in vitro model of CDAII, based on SEC23B silencing performed 

on K562 cells, there are different aspects of the disease that can be studied or assessed 

through different assays. However, the next step of our study will lead us to explore new 

ways to engineer cells in order to obtain a more accurate picture of the disease that is the 

object of our study. Nowadays, genome editing strategies are based on CRISPR-Cas9 

system, that can be used to “delete” a certain gene from the genome or to “insert” a 

specific mutation, responsible for a certain phenotype (Ran Fa et al. Nat Protoc. 2013). In 

our case, we aimed at obtaining a SEC23B gene knockout from HUDEP-2 cells. This cell 

line represents the first described source of immortalized erythroid progenitors so far. 

Given the abilities of these cells to give rise to enucleated RBCs and to produce human 

hemoglobin and other specific erythroid markers (Kurita R et al. PLoS One, 2013), these 

cells can represent a deep breakthrough in the knowledge of pathogenetic mechanisms of 

red blood cells disorders, among which there is the CDA II.  

Moreover, a more detailed description of the mechanisms of ineffective erythropoiesis 

underlying the CDAII, and the related systemic consequences, such as the iron overload, 
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can be possible thanks to the establishment of an animal model. Difficulties in obtaining a 

reliable mouse model of CDAII are due to the role played by SEC23B paralog gene, 

SEC23A, whose increased expression tends to compensate the downregulation of the 

causative gene, hiding the effects of SEC23B knockdown and making impossible to 

observe a typical anemic phenotype. A reliable mouse model could be obtained through an 

inducible and tissue-specific downregulation of both the genes confined to the erythroid 

compartment. This could represent a way to reproduce in a mouse model the clinical 

situation of the disease in the humans.  

Both these CDAII models, HUDEP-2 knockout for SEC23B and the mouse knockdown for 

SEC23B and SEC23A, could be useful to assess the efficiency of an approach based on 

gene therapy. By introducing a lentiviral vector expressing the SEC23B coding sequence, 

it should be possible to overcome the defects in the erythroid differentiation due to the lack 

of SEC23B itself. This could represent a turning point for CDAII patients because it could 

lead to a complete restore of the phenotype from the disease. Indeed, the most interesting 

aspect of the strategies based on the gene therapy can be found in the power of the vectors 

to integrate stably in a genome host, replacing a gene that resulted non-functional because 

of low levels of expression or a structural defect.  
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