

Riemann-Theta Boltzmann Machine Communicated by Prof. M. Bianchini

Journal Pre-proof

Riemann-Theta Boltzmann Machine

Daniel Krefl, Stefano Carrazza, Babak Haghighat, Jens Kahlen

PII: S0925-2312(20)30038-2
DOI: https://doi.org/10.1016/j.neucom.2020.01.011
Reference: NEUCOM 21752

To appear in: Neurocomputing

Received date: 22 January 2019
Revised date: 3 September 2019
Accepted date: 2 January 2020

Please cite this article as: Daniel Krefl, Stefano Carrazza, Babak Haghighat, Jens Kahlen, Riemann-
Theta Boltzmann Machine, Neurocomputing (2020), doi: https://doi.org/10.1016/j.neucom.2020.01.011

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier B.V.

https://doi.org/10.1016/j.neucom.2020.01.011
https://doi.org/10.1016/j.neucom.2020.01.011

CERN-TH-2017-275

Riemann-Theta Boltzmann Machine

Daniel Krefla,1, Stefano Carrazzaa,2, Babak Haghighatb,3, and Jens Kahlenc,4

a Theoretical Physics Department, CERN, Geneva 23, CH-1211 Switzerland
b Yau Mathematical Sciences Center, Tsinghua University, Beijing, 100084, China

c Independent Researcher, Am Dachsbau 8, 53757 Sankt Augustin, Germany

1 daniel.krefl@cern.ch, 2 stefano.carrazza@cern.ch, 3 babak.haghighat@gmail.com, 4 jens.kahlen@gmail.com

Abstract

A general Boltzmann machine with continuous visible and discrete integer valued

hidden states is introduced. Under mild assumptions about the connection matrices,

the probability density function of the visible units can be solved for analytically,

yielding a novel parametric density function involving a ratio of Riemann-Theta

functions. The conditional expectation of a hidden state for given visible states can

also be calculated analytically, yielding a derivative of the logarithmic Riemann-Theta

function. The conditional expectation can be used as activation function in a

feedforward neural network, thereby increasing the modelling capacity of the network.

Both the Boltzmann machine and the derived feedforward neural network can be

successfully trained via standard gradient- and non-gradient-based optimization

techniques.

Keywords: Boltzmann Machines, Neural Networks, Riemann-Theta function,

Density estimation, Data classification

December 2017

1 Introduction

In this work we introduce a new variant of the Boltzmann machine, a type of stochas-

tic recurrent neural network first proposed by Hinton and Sejnowski [1]. Restricted

versions of Boltzmann machines have been successfully used in many applications, for

example dimensional reduction [2], generative pretraining [3], learning features of im-

ages [4], and as building blocks for hierarchical models like Deep Believe Networks, cf.,

[5] and references therein.

Unlike the original Boltzmann machine, the partition function of our new variant,

and thus the visible units’ probability density function, can be solved for analytically.1

Hence, we do not need to invoke the usual learning algorithms for (restricted) Boltz-

mann machines such as Contrastive Divergence [6]. The resulting probability density

function we obtain constitutes a new class of parametric probability densities, gener-

alizing the multi-variate Gaussian distribution in a highly non-trivial way. We have

to make certain assumptions about the connection matrices of our new variant of the

Boltzmann machine, but they are rather mild: Namely, the self-connections in both

the visible and hidden sector have to be real, symmetric and positive definite. Note

that we explicitly allow for self-couplings of the network nodes. The connection matrix

which couples the two sectors needs to be either purely real or imaginary. Furthermore,

in the real case the overall connection matrix needs to be positive definite as well. The

setup is illustrated in figure 1.

If we take the visible and hidden sector states to be continuous in R (we will refer

to this as a continuous Boltzmann machine), it is easy to show that the corresponding

probability density is simply the multi-variate normal distribution, cf., appendix A. In

contrast, our new version of the Boltzmann machine has a continuous visible sector,

but the hidden sector states are restricted to take discrete integer values. One may

see this as a form of quantization of the continuous Boltzmann machine. The case

of a finite number of discrete hidden states has been considered in [7]. In the setup

we discuss in this work, each hidden node possesses an infinite amount of different

states. The set of states of a single node is Z, and therefore the hidden state space

is ZNh , where Nh is the number of hidden units. This is a generalized version of the

1For clarification, we understand under analytically that we can write down a closed form functional

representation. The explicit evaluation of the functional representation requires a numerical approxi-

mation. Also note that the statement holds for the fully connected case. For analytic approaches to

the restricted Boltzmann machine, see [8, 9].

2

Gaussian-Bernoulli Boltzmann machine, cf., [7, 2, 10, 11], which has continuous visible

units and a binary hidden sector.

We will refer to our new variant of the Boltzmann machine as the Riemann-Theta

Boltzmann machine (or RTBM for short). As derived later in the paper, the closed

form solution of the probability density function of the visible units reads

P (v) =

√
detT

(2π)Nv
e−

1
2
vtTv−Bt

vv− 1
2
Bt

vT
−1Bv

θ̃ (Bt
h + vtW |Q)

θ̃ (Bt
h −Bt

vT
−1W |Q−W tT−1W)

, (1.1)

where T and Q are the connection matrices of the visible and hidden sectors, W

represent the inter-connections, Bv and Bh are the biases of the respective sector nodes,

and Nv is the number of visible nodes. The function θ̃ is the Riemann-Theta function

[12] (with some implicit rescaling of the arguments), arising from the quantization of

the hidden sector. It possesses intriguing mathematical properties, and appears in a

diverse range of applications, including number theory, integrable systems, and string

theory. As we will show in this work, this parametric density can in fact be used to

model quite general densities of a given dataset via a maximum likelihood estimate of

the parameters.

In our case the hidden sector of the Boltzmann machine is not binary, hence the

conditional probabilities P (hi|v) are not well suited to be taken as feature vectors in

a setup similar to [2]. We propose to use instead the conditional expectation of the

hidden units, referred to as E(hi|v). The expectation can again be calculated explicitly,

reading

E(hi|v) = − 1

2πi

∇iθ̃(v
tW +Bt

h|Q)

θ̃(vtW +Bt
h|Q)

,

where ∇i denotes the ith inner derivative of the Riemann-Theta function.2 If we take

v ∈ RNv and have Nh hidden units, then

E : RNv W−→ RNh
∇θ̃/θ̃−→ R . (1.2)

We can view E(hi|v) as the ith activation function of a layer of Nh units in a

feedforward neural network. These layers can be arbitrarily stacked and combined

with ordinary neural network layers. For these layers the network will learn not only

the weights and biases of the linear input map, but also the parameter matrix Q (for

2Note that the imaginary prefactor arises from our chosen conventions. The final expressions for

E(hi|v) are purely real for the parameter domains under consideration.

3

instance via gradient descent). That is, the form of the non-linearity most suitable

for each node is learned from the data, in addition to the linear maps. Thus, such a

unit is expected to possess a greater modeling capacity than a fixed standard neural

network non-linear unit. An additional benefit of this novel unit is its robustness

against normalization of inputs due to its intrinsic periodicity, cf., figure 3.

Unfortunately, the explicit computation of the Riemann-Theta functions at each

optimization step comes with a large overhead compared to usual non-linearities, cf.,

section 2. Therefore an efficient implementation of the Riemann-Theta function is

desirable. This work uses the explicit implementation in [14], with [15] as the math

backend (which is based on an optimized implementation of [16, 17]). At least for

toy examples we find indications that smaller network sizes than for standard neural

networks are sufficient, thereby raising the hope that the computational overhead stays

managable.

This work is mainly about the theoretical foundations of the Riemann-Theta Boltz-

mann machine and the derived feedforward neural network. Though we give a couple

of illustrative and explicit examples, we postpone a detailed study of applications to

another time. It is astonishing that the mathematically complicated density (1.1) can

be trained successfully.

For practical applications it would be desirable to better understand good parameter

initializations. In this work we simply initialize via uniformly sampling the parameters

from some fixed range. Introducing regularization, for example via Dropout [18] would

also be useful. On the implementation side it would be very desirable to implement

the Riemann-Theta function more efficiently, perhaps using a GPU [19].

The outline is as follows. In section 2 we will derive the Riemann-Theta Boltzmann

machine in detail, laying the foundation for the following sections. The RTBM can be

explicitly used to learn probability densities, as we will show in section 3. We introduce

feedforward networks of expectation units in section 4 and apply them to some simple

toy examples. In section 5 we show how RTBMs can be used as feature detectors. The

appendix collects some additional material: A derivation of the probability density of

the continuous Boltzmann machine in appendix A, the gradients needed for gradient

descent in appendix B, and the first two moments of P (v) in appendix C.

4

Figure 1: Illustration of the RTBM consisting of Nv visible and Nh hidden nodes. The two

sectors are arbitrarly inter-connected with connection weights encoded in a matrix W which

can be either purely real or imaginary. The weights of the self-connections in a sector are

encoded in matrices Q and T for the hidden sector and visible sector, respectively. These

matrices have to be real, symmetric and positive definite.

2 RTBM theory

The model

We define a Riemann-Theta Boltzmann machine consisting of Nv visible nodes and Nh

hidden nodes as follows. All nodes can be fully interconnected. The connection weights

between the visible units are encoded in a real Nv × Nv matrix T , the weights of the

interconnectivity of the hidden units in a real Nh × Nh matrix Q and the connection

weights between the two sectors in a Nv × Nh matrix W , which can be either purely

real or imaginary. The setup is illustrated in figure 1. We combine the individual

connectivity matrices into an overall connection matrix A by defining A as the block

matrix

A =

(
Q W t

W T

)
,

of dimension (Nv + Nh)× (Nv + Nh). Let us restrict ourselves for the moment to the

case with W real. For reasons which will become more clear below, we require in this

case that A is positive definite.3 The Schur complement A/T of the block T of A is

3Note that positive definiteness of A requires that the diagonal elements of T and Q are greater

than zero. Therefore self-couplings of the RTBM need to be present.

5

given by

A/T = Q−W tT−1W . (2.1)

As A is positive definite, so are A/T , T and Q.

The states of the visible nodes are taken to be continuous in R, while we restrict the

states of the hidden nodes to be in Z. Hence, we are constructing here a generalization

of the Gaussian-Bernoulli Boltzmann machine (whose hidden states are only binary,

cf., [2, 10, 11]). We combine the two state vectors to a single vector x as

x =

(
h

v

)
,

and define the energy of the system to be

E(v, h) =
1

2
xtAx+Btx .

The quadratic form reads

xtAx = vtTv + htQh+ 2vtWh ,

and we introduced above an additional bias vector

B =

(
Bh

Bv

)
.

Note that the positive definiteness of A ensures that E > 0 for large x.

The canonical partition function Z of the system is obtained via integrat-

ing/summing over all states, i.e.,

Z =

∫ ∞

−∞
[dv]

∑

[h]

e−E(v,h) , (2.2)

where [dv] stands for the measure dv1dv2 . . . dvNv and [h] is an abbreviation of

h1, h2, . . . hNh
.

Riemann-Theta function

The key observation we make is that the summation over the hidden states in the

partition function (2.2) can be performed explicitly, in contrast to the case of an or-

dinary Boltzmann machine. In detail, as the energy E(v, h) is a quadratic form, the

6

summation over the discrete states corresponds to a Riemann-Theta function, defined

as [12]

θ(z|Ω) =
∑

n∈Zg

e2πi(1
2
ntΩn+ntz) , (2.3)

with Ω a matrix whose imaginary part is positive definite. The above series converges

absolutely and uniformly on compact sets of the z and Ω spaces, as long as the imagi-

nary part of Ω is positive definite. The Riemann-Theta function is symmetric in z and

quasi-periodic, i.e.,

θ(z +m1 + Ωm2|Ω) = e−2πi(1
2
mt

2Ωm2+m2z)θ(z|Ω) , (2.4)

with m1,m2 ∈ Zg. Note that the set of points m1 + Ωm2 forms a g-dimensional

period lattice. The Riemann-Theta function also possesses a modular transformation

property, however, this will not be of relevance for this work.

Riemann-Theta functions commonly arise in integrable differential equations with

applications in diverse areas. For example, the Kadomtsev-Petviashvili equation, which

describes the propagation of two-dimensional waves in shallow water, possesses a class

of quasi-periodic solutions in terms of the Riemann-Theta function.

Though a simple observation, the linkage between the stochastic network Boltz-

mann machine variant introduced above and Riemann-Theta functions, is novel and

intriguing.

Partition function

Let us define a free energy F as

F (v) = − log
∑

[h]

e−E(v,h) , (2.5)

such that

Z =

∫
[dv] e−F (v) .

We can immediately write down a closed form expression for the free energy in terms

of the Riemann-Theta function introduced above, as the summation over the states h

corresponds to a summation over an Nh-dimensional unit lattice and the energy E is

a quadratic form:

F (v) =
1

2
vtTv +Bt

vv − log θ̃
(
vtW +Bt

h|Q
)
, (2.6)

7

where we made use of the symmetry θ(z|Ω) = θ(−z|Ω) and defined

θ̃(z|Ω) := θ

(
zt

2πi

∣∣∣∣
iΩ

2π

)
.

Note that the redefined θ has periodicity θ̃(z + 2πin|Ω) = θ̃(z|Ω), with n a vector of

integers and that we will also sometimes refer to g = Nh as genus. For g = 1 the

function (2.3) is also known as the 3rd Jacobi-Theta function.

The partition function Z can be calculated explicitly in a similar fashion. First we

integrate out the visible sector, making use of the gaussian integral

∫
[dx] e−

1
2
xtQx+ytx =

(2π)N/2√
detQ

e
1
2
ytQ−1y , (2.7)

this yields

I(h) =
(2π)Nv/2

√
detT

e−
1
2
htQh−Bt

hh+ 1
2

(htW t+Bt
v)T−1(Wh+Bv) .

Subsequently, we perform the summations over h, yielding the final expression

Z =
(2π)Nv/2

√
detT

e
1
2
Bt

vT
−1Bv θ̃

(
Bt
h −Bt

vT
−1W |Q−W tT−1W

)
.

Probability density

The probability that the system will be in a specific state is given by the Boltzmann

distribution

P (v, h) =
e−E(v,h)

Z
. (2.8)

Marginalization of h yields the distribution for the visible units, i.e.,

P (v) =
e−F (v)

Z
,

with the free energy as defined in (2.5). As we have closed form expressions for both

Z and F , we can immediately write down the closed form solution

P (v) =

√
detT

(2π)Nv
e−

1
2
vtTv−Bt

vv− 1
2
Bt

vT
−1Bv

θ̃ (Bt
h + vtW |Q)

θ̃ (Bt
h −Bt

vT
−1W |Q−W tT−1W)

. (2.9)

We observe that P (v) consists of a multi-variate Gaussian for the visible units with a

visible unit dependent prefactor given by a Riemann-Theta function. This probability

distribution for the visible units of the RTBM is one of the core results of this work.

Note that this density is well-defined for T , Q and A/T positive definite (cf., (2.1)),

8

−10 −5 0 5 10 15 20
v

0.00

0.02

0.04

0.06

0.08

0.10

P

−30 −20 −10 0 10 20
v

0.00

0.01

0.02

0.03

0.04

0.05

P

−4 −2 0 2 4 6 8 10
v

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

P

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
v

0.0

0.2

0.4

0.6

0.8

1.0

P

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
v

0.0

0.2

0.4

0.6

0.8

1.0

P

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
v

0.0

0.5

1.0

1.5

2.0

P

Figure 2: Plots of P (v) for one-dimensional v and various choices of parameters

Bv, Bh,W, T,Q. Top row: Phase I. Bottom row: Phase II. The first examples in both phases

are with one-dimensional Q, while the remaining plots are for Q of size 2 × 2. The gray

dashed lines mark the means of the distributions.

which explains why we required above A to be positive definite. Furthermore, in order

that P (v) is real, we take these matrices to be real, and Bv as well. The coupling

matrix W and the bias Bh can then be chosen either both from the real (phase I) or

the imaginary (phase II) axis, giving rise to a two phase structure connected at the

null-space of W and Bh. The realness of P (v) in phase II follows from the fact that in

the Riemann-Theta function summation (2.3) the imaginary parts cancel out between

terms with n reflected at the origin.

For illustration, some plots of P (v) in the Nv = 1 case for a sample choice of

parameters are given in figure 2. We observe that for appropriate choices of parameters

non-trivial generalizations of the Gaussian are obtained. Note that the moments of the

probability density (2.9) can be easily calculated: see appendix C.

It is illustrative to consider the logarithmic probability logP (v) in the case with

diagonal Q. For such Q we have the factorization

θ(z|Ω) =

Nh∏

i=1

θ(zi|Ωii) (2.10)

9

(the Riemann-Theta function factorizes into Jacobi-Theta functions). Hence,

logP (v) = −1

2
vtTv −Bt

vv +

Nh∑

i=1

log θ̃
((
Bt
h + vtW

)
i
|Qii

)
+ const .

The constant term includes the Riemann-Theta function of the normalization, which

is however not factorizable for generic parameters. In particular, this means that a

restricted version of the Riemann-Theta Boltzmann machine with Q diagonal does not

provide striking advantages from a computational point of view.

The zeros of the redefined Jacobi-Theta function θ̃(z) (given in (2.3) with g = 1) are

located at z∗ = −
(
n− 1

2

)
Ω+πi. Hence, we infer from the definition (2.3) that logP (v)

is well defined, as θ̃(z|Ω) > 0 always holds in the parameter spaces under consideration.

In phase II the log θ̃ terms are periodic in v. Hence in this case the logarithmic

density consists of an overlap of an inverse paraboloid and Nh periodic functions. The

interpretation of phase I is less clear as θ̃ is not periodic in v. Nevertheless, via proper

tuning of parameters, suitable solutions can be found, cf., figure 2. An interpretation

can be given as follows. From the property of the Riemann-Theta function

θ(z + Ωn|Ω) = e2πi(−ntz− 1
2
ntΩn)θ(z|Ω) , (2.11)

where n ∈ Zg, we deduce that

log θ̃(Bt
h + vtW − Ωn|Ω) = log θ̃(Bt

h + vtW |Ω)− nt(Bt
h + vtW) +

1

2
ntΩn . (2.12)

Hence, P (v) can be seen as a quadratic surface overlapped with periodic functions.

A remark is in order here. The zero locus of the Riemann theta function is given by

an analytic variety of complex dimension g − 1. In cases where the symmetric matrix

Ω is obtained from a genus g Riemann surface by period integrals of its holomorphic

one-forms, the zero locus of the Riemann theta function is exactly determined by the

so called Riemann vanishing theorem (see [20] for further details). However, in general

this is not always the case. The reason is that the dimension of the space of Ω’s, known

as the Siegel upper half space, is that of symmetric matrices and therefore grows like

g(g + 1)/2, whereas the dimension of the moduli space of genus g Riemann surfaces is

zero for g = 0, one for g = 1 and 3g − 3 for g > 1. As one can easily check, these two

dimensions only match for g < 4, and for all other cases the number of parameters of

the Siegel upper half space is bigger than that of the Riemann surface. Therefore, in

general the zero set of the Riemann theta function is not known explicitly, and its study

10

is an important topic in current mathematics. For the P (v) studied in this paper, these

considerations are not of utmost relevance, since from the definition of the partition

function (2.2) it is clear that for real parameters Z only vanishes for E(v, h) = ∞
and therefore P (v) is well defined in phase I, as long as the parameters are finite and

satisfy the positive definiteness conditions above. For phase II the absence of zeros

is less clear. However, after studying some concrete examples we observed that the

gradient flow in parameter space usually does not seem to encounter such points.

Conditional density

The conditional probability for the hidden units is given by

P (h|v) =
P (v, h)

P (v)
=
e−

1
2
htQh−(vtW+Bt

h)h

θ̃(vtW +Bt
h|Q)

.

Note that P (h|v) is independent of T and Bv. For diagonal Q, the density can be

factorized, i.e.,

P (h|v) =

Nh∏

i=1

P (hi|v) . (2.13)

In contrast to the ordinary Boltzmann machine, here we have infinitely many different

states of the hidden units. Hence, it is useful to consider the expectation E(X|Y) :=∑
X P (X|Y)X of the ith hidden unit state. Taking the expectation and marginalization

of the remaining components of h yields the expression

E(hi|v) =
1

θ̃(vtW +Bt
h|Q)

∑

[h]

hi e
− 1

2
htQh−(vtW+Bt

h)h . (2.14)

Comparing with the definition (2.3) and equation (2.6), we infer the relation

E(hi|v) = − ∂F (v)

∂(Bh)i
.

Taking the derivative yields

E(hi|v) = − 1

2πi

∇iθ̃(v
tW +Bt

h|Q)

θ̃(vtW +Bt
h|Q)

, (2.15)

where ∇iθ denotes the ith directional derivative of the first argument of the Riemann-

Theta function. For diagonal Q, E(hi|v) reduces via the factorization property (2.10)

to

Ed(hi|v) = − 1

2πi

θ̃′((vtW +Bt
h)i |Qii)

θ̃((vtW +Bt
h)i |Qii)

. (2.16)

11

−3 −2 −1 0 1 2 3
v

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

E

−3 −2 −1 0 1 2 3
v

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

E

−4 −2 0 2 4
v

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

E

−2 −1 0 1 2
v

−0.003

−0.002

−0.001

0.000

0.001

0.002

0.003

E

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
v

−0.4

−0.2

0.0

0.2

0.4

E

−4 −2 0 2 4
v

−1.0

−0.5

0.0

0.5

1.0

E

Figure 3: Plots of E(h|v) for one-dimensional v and various choices of parameters Bh,W,Q.

Top row: Phase I. Bottom row: Phase II. The plots on the RHS are with Q of size 2 × 2,

whereas the remaining plots are with one-dimensional Q.

Here, θ′ refers to the derivative with respect to the first argument. (We use a subscript

d to indicate that this expression holds only in the diagonal case.)

It is illustrative to consider the diagonal case in more detail. Clearly, in phase II

the expectation Ed is periodic in v due to the known relation θ′(z+π|Ω)
θ(z+π|Ω)

= θ′(z|Ω)
θ(z|Ω)

[21]. In

contrast, in phase I it is not periodic, but is rather some trending periodic function.

This can be inferred from (2.12), which turns under the derivative into

∂(Bh)i log θ̃(Bt
h + vtW − Ωn|Ω) = ∂(Bh)i log θ̃(Bt

h + vtW |Ω)− ni . (2.17)

The different behaviors of Ed in the two phases is illustrated using a sample choice of

parameters in figure 3.4

Learning

The learning of parameters of (1.1) is performed via maximum likelihood. That is, for

N samples xi of some unknown probability density we take the cost function

C = −
N∑

i=1

logP (xi) ,

4Note that in phase II the expectations are purely imaginary and that we take the freedom to

rotate to the real axis in this case.

12

and solve the optimization problem

argmin
Bv ,Bh,W,T,Q

C .

The gradients of P are easy to calculate, cf., B.2. Hence, we can solve the optimization

problem either via a gradient or non-gradient based technique. In this work, we will

mainly make use of the CMA-ES optimizer [29], which follows an evolutionary strategy

and is suitable for Nh small (Nh < 5).

The parameters of P (v) need to satisfy the condition that A/T , T and Q are

positive definite. Finding an initial solution to these conditions can be easily achieved

by generating a random real matrix X of size (Nv + Nh) × (Nv + Nh) and taking

A = XX t. For all examples presented in this paper the X matrix elements are sampled

from a uniform distribution in the [−1, 1] domain. The component matrices can then be

directly extracted from A and will automatically fulfill the above conditions. However,

what is less clear is that during the optimization, we stay in the allowed parameter

regime.5 We observe empirically that this is often the case, i.e., the parameter flow

seems to tend to conserve the conditions, at least for Nh small. Note that for CMA-ES a

tuning of the initial standard deviation to be sufficiently small may be required. In case

we encounter a bad solution candidate with CMA-ES, i.e., not satisfying the positive

definiteness condition on A, the method is set up to replace the bad solution with a

new solution candidate until the total desired population size for each iteration step

is reached. For increasing Nh we expect to hit more frequently inconsistent solutions,

therefore it would be promising to switch to an optimization algorithm taylored for

positive definiteness constraints.

Finally, we remark that a suitable initial Q value is needed for convergence to a

good solution. At the time being we only have indirect control over the Q initialization

via the range of allowed values for the X entries and the CMA-ES range bound.

Computation

The main computational cost of the Riemann-Theta Boltzmann machine lies in the

evaluation of the Riemann-Theta function and its derivatives, as the complexity scales

exponentially with the number of hidden units. One should take note that the current

5Note that in this work we optimize directly the elements of A and therefore we may loose the

positive-definiteness. An alternative approach would be to optimize over the elements of L given by

the log-Cholesky decomposition of A = LLT , which would guarantee positive-definiteness.

13

implementation of the Riemann-Theta function allows us to experiment on a desktop

computer only with 3 to 4 hidden units comfortably.

The algorithm to evaluate the Riemann-Theta function can be sketched as fol-

lows. The evaluation requires the identification of the shortest vector in a given Nh-

dimensional lattice, which is known as the shortest vector problem (SVP), cf., [22]

and references therein. The Lenstra-Lenstra-Lovasz algorithm (LLL) can be used to

solve approximately for the shortest vector in polynomial time with the error growing

exponentially with increasing Nh. As in practice the error grows only slowly for Nh

not too large, the LLL algorithm is sufficient for our purposes. See [23] for an extended

discussion about computational aspects of the Riemann-Theta function.

In this work we make use of the algorithm of [16] for the computation of the

Riemann-Theta function and its derivatives. This algorithm is fully vectorizable over

the set of input data, which means that for given parameters T,W,Q we can calculate

the Riemann-Theta function and its derivatives for the complete input dataset at once,

with no significant added cost in comparision to a single evaluation.

3 RTBM mixture models

Density estimation

We saw in the previous section that the probability density of the RTBM visible units

is a non-trivial generalization of the Gaussian density. Hence, we expect that for

Nh →∞, and considering a mixture model

M(v) =
1∑N

i=1 e
ωi

N∑

i=1

eωi P (i)(v) , (3.1)

with N the number of components, we can approximate a given smooth probability

density arbitrarily well, as long as the density vanishes at the domain boundaries. Note

that the P (i) should be centered at the degenerate or far separated maxima and that

the exponential weighting in (3.1) ensures that M(v) ≥ 0 for all ωi. The mixture model

setup is illustrated in figure 4.

It is well known that ordinary mixture models with components based on stan-

dard distributions, like the Gaussian, are well suited to model various kinds of low

dimensional probability densities for sufficiently large N . However, for generic target

distributions and finite N good results are not always to be expected. Using neural

14

Figure 4: Illustration of the RTBM mixture model. The inputs are feed into a layer of

RTBMs. The outputs of the RTBMs are then fed into a layer which adds and normalizes

according to (3.1).

networks instead to model probability density functions comes with the advantage of

a high modeling capacity, but with the drawback that it is difficult to obtain a nor-

malized output, cf., [24, 27, 28]. The benefit of taking the RTBM density function as

components of a mixture model, as in (3.1), is that we have the best of both worlds:

an intrinsically normalized result and a high intrinsic modelling capacity. The learning

of M(v) is performed as for P (v) described in the previous section.

Examples

As a first example, let us consider the gamma distribution with probability density

function reading

pγ(x, α, β) =
βαxα−1eβx

Γ(α)
.

The gamma distribution has skewness 2/
√
α and therefore cannot be approximated

well by a normal distribution. We draw 2000 samples from pγ(x, 7.5, 1) and train

a single RTBM with three hidden nodes on the samples with the CMS-ES parameter

bound set to [−50, 50]. (Here and in the following examples, we take only samples with

|x| < 20 into account, for numerical reasons of the theta function implementation.) The

histogram of the training data together with the true underlying probability density

and the resulting RTBM fit is shown in figure 5 (top left). Note that the RTBM was

able to generate a good fit to the skewed distribution.

15

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
v

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

P

−4 −2 0 2 4
v

0.0

0.1

0.2

0.3

0.4

0.5

P

−20 −15 −10 −5 0 5 10 15 20
v

0.00

0.05

0.10

0.15

0.20

P

−20 −10 0 10 20
v

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P

−1 0 1 2 3 4 5 6
v

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

P

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
v

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

P

Figure 5: Top left: Gamma distribution fitted by a single RTBM with Nh = 2. Top middle:

Cauchy distribution fit via a single RTBM with Nh = 3. Top right: Fit of Cauchy distribution

mixture via a layer of two RTBMs with Nh = 3. Bottom left: Gaussian mixture fit by a

single RTBM with Nh = 3. Bottom middle: Custom mixture model fit using a single RTBM

with Nh = 4. Bottom right: Uniform distribution fit via a single RTBM with Nh = 3. In all

figures the blue line corresponds to the underlying true distribution, while the red line is the

fit. The histograms show the samples the models are trained on.

As another example, consider the Cauchy distribution with probability density

pC(x, x0, γ) =
γ

π((x− x0)2 + γ2)
.

In contrast to the normal distribution, this distribution possesses heavy tails and is

therefore more difficult to model. We consider pC(x, 0, 1) and draw 1000 samples as

training input for a single RTBM with Nh = 3 (with the parameter bound set to 40).

The resulting fit is shown in figure 5 (top middle) together with the sample and the

true underlying density. Note that the heavy tails are clearly picked up by the RTBM

fit.

In order to illustrate a mixture model, let us consider the mixture of Cauchy dis-

tributions given by

mC(v) = 0.6 pC(v, 0, 1) + 0.1 pC(v, 5, 5) + 0.3 pC(v, 10, 1) .

We set up an RTBM layer consisting of two RTBMs with Nh = 2, cf., figure 4, and

train on a sample of m(v) as above. The resulting fit is shown in figure 5 (top right).

16

The two peaks are well captured by the fit. However, the tails of this particular fit

turned out to be rather wrinkly, which is a characteristic of RTBM-based fits. This

is clear from the discussions in section 2. Essentially, one can view P (v) as a sort of

Fourier approximation to other densities. We expect that by increasing the number

of hidden nodes, or averaging over different runs, the quality of the fit can be further

improved.

More one dimensional examples are shown on the bottom row of figure 5. For the

next examples we always draw 5000 samples. On the bottom left plot we fit a single

RTBM with three hidden units (with the parameter bound set to 30) to a Gaussian

mixture defined as

mG(v) = 0.6 pG(v,−5, 3) + 0.1 pG(v, 2, 2) + 0.3 pG(v, 5, 5) ,

where pG(v, µ, σ) is the normal distribution. The RTBM achieves a good level of

agreement with the underlying distribution.

We also model the probability density function (for short pdf) defined in [24] (bot-

tom center) and the uniform distribution (right center) between [−5, 5] with a single

RTBM with four and three hidden units, respectively (the parameter bound is set to

30). We observe that in both cases, regions where the underlying pdf is sharp and flat,

which are in general difficult to model via neural networks, are reproduced reasonably

well. As already mentioned above, the oscillatory effects are an artifact of the Fourier

like approximation, and we expect that a larger number of hidden units can improve

on this. (For this, a better implementation of the Riemann-Theta function would be

desirable.)

In figure 6 we present three examples of two-dimensional pdf determinations. In

all plots we show the samples used by the fit as a 2d projected histogram with a

gray gradient color map, while the contours of the underlying model and the trained

RTBM fit are shown as blue and red (contour) lines. The side panels illustrate the

projections along both axes. On the left plot we model a correlated two-dimensional

normal distribution centered at the origin which has covariance matrix Σ with elements

σ2
X = 1, σ2

Y = 2 and σ2
X,Y = 0.8, via a single RTBM with one hidden unit. The center

plot shows a fit via an RTBM layer consisting of two RTBMs with one hidden unit

trained on samples of a Gaussian mixture

mG(v) = 0.5 pG(v, [2, 2],Σ) + 0.5 pG(v, [−2,−2], 1) .

17

−4 −2 0 2 4
v1

−4

−2

0

2

4

v2

0.0

0.2

0.4

P(v1)

0.0 0.2
P(v2)

−6 −4 −2 0 2 4 6
v1

−6

−4

−2

0

2

4

6

v2

0.0

0.1

0.2

P(v1)

0.0 0.2
P(v2)

−6 −4 −2 0 2 4 6
v1

−6

−4

−2

0

2

4

6

v2

0.0

0.2

0.4
P(v1)

0.00 0.25 0.50
P(v2)

Figure 6: Left: Fit to a multivariate correlated Gaussian distribution via a single RTBM

with Nh = 1. Middle: Correlated multivariate Gaussian mixture fit using a layer of two

RTBMs with Nh = 1. Right: Gaussian mixture fit via a single RTBM with Nh = 2. In all

figures the contour plot of the trained model is shown together with its projections along the

two axis. The blue line corresponds to the underlying true distribution, the red line to the

fit and the histograms show the samples the models are trained on.

Finally, on the right plot we train a single RTBM with two hidden units to fit the

Gaussian mixture

mG(v) = 0.5 pG(v, [0, 0], 1) + 0.25 pG(v, [4, 0], 1) + 0.25 pG(v, [−4, 0], 1) .

For all examples we observe that the RTBM reproduces the underlying distribution

quite well. In order to quantify the quality of the RTBM pdf estimate, in table 1 we

compute the mean squared error (MSE)

MSEA
B =

1

Nbins

Nbins∑

i=1

(Ai −Bi)
2 ,

where the index i refers to the bin index of the corresponding input sampling histogram.

Small values indicate good agreement between the measured quantities.

We compare the MSE distances between the underlying distributions from figures

5 and 3 to the RTBM predictions and three other common fitting models. Namely,

a gaussian mixture (GMM), a (gaussian) kernel density estimator (GKDE) and the

continous gaussian restricted Boltzmann machine (CRBM) with binary hidden units,

cf., [25]. The hyper-parameters of these models are manually picked for the best fitting

result. In particular, we use 20 hidden units for the CRBM with 10k training iterations

making use of the package [26] (GaussianBinaryVarianceRBM).

18

Distribution MSEpdf
RTBM MSEpdf

GMM MSEpdf
GKDE MSEpdf

CRBM

Gamma 6.8 · 10−6 2.4 · 10−5 [3] 2.8 · 10−5 [0.5] 5.8 · 10−3

Cauchy 2.9 · 10−5 8.1 · 10−5 [10] 1.5 · 10−5 [0.4] 4.8 · 10−3

Cauchy mixture 6.5 · 10−5 7.6 · 10−5 [9] 3.3 · 10−5 [0.5] 2.9 · 10−3

Gaussian mixture 1.9 · 10−6 4.7 · 10−6 [3] 2.1 · 10−6 [1.0] 1.3 · 10−3

Custom mixture 6.7 · 10−4 1.5 · 10−3 [10] 5.4 · 10−4 [0.1] 2.3 · 10−2

Uniform 8.2 · 10−5 2.5 · 10−4 [10] 7.6 · 10−5 [0.2] 1.8 · 10−3

Corr. Gaussian 2.7 · 10−7 5.6 · 10−7 [1] 4.6 · 10−6 [0.3] 1.4 · 10−6

Corr. Gaussian mixture 2.2 · 10−7 2.2 · 10−7 [2] 2.2 · 10−6 [0.3] 2.1 · 10−5

Gaussian mixture 5.8 · 10−6 3.9 · 10−7 [3] 2.4 · 10−6 [0.3] 7.8 · 10−6

Table 1: Distance estimators for the examples in figures 5 and 6. The mean squared error

(MSE) is taken between the fitting model and the underlying distribution (pdf). The numbers

in the brackets correspond to the number of constituents of the gaussian mixture model

(GMM), respectively to the bandwidth of the gaussian kernel density estimator (GKDE)

model.

In general, we observe that the RTBM fit is superior to the CRBM and GMM

fits, but can not consistently outperform the kernel based fits for the one dimensional

examples. This is somewhat expected, as our examples are based on a large set of dense

samples. It is interesting to note that in the last of the two dimensional examples we

are able to model a multi-model distribution relatively well with a single RTBM, which

would not be possible with a single gaussian.

4 Theta neural networks

The conditional expectation E(hi|v) can be used as an activation function in a feedfor-

ward neural network, replacing the usual non-linearities. In detail, for Q of dimension

Nh × Nh we can build a neural network layer consisting of Nh nodes, with the out-

put at the ith node given by E(hi|v). Here the inputs of the layer are given by the

v and we have the usual linear map W occuring in 2.14. See also the illustration in

figure 7. The setup simplifies considerably if we restrict Q to be diagonal due to the

factorization property 2.13. In the diagonal case the activiation function at each node

is independently given by the derivative of the logarithmic 3rd Jacobi-Theta function,

19

Figure 7: Illustration of a feedforward neural network with layers consisting of a RTBM. We

take as ith output of a RTBM based layer the expectation E(hi|v). Note that the matrices

T do not enter the expectations. The RTBM layers can be arbitraly mixed and combined

with other layers.

with its second parameter freely adjustable (cf., 2.16). Here, we will mainly consider

this simplified setup due to its reduced computational complexity. Complex networks

can be built by stacking such layers and inter-mixing them with ordinary neural net-

work layers. We will refer to such networks which include RTBM-based layers as theta

neural networks (TNN).

The gradients of the expectation unit can be calculated, and are given in appendix

B.1. Hence the TNN can be trained as usual via gradient descent and backpropagation,

in which case the additional parameters Q can be treated similar to biases. However, as

in the previous section it turns out that CMA-ES produces better results in particular

examples, and therefore is currently our optimizer of choice.

Examples

For illustration, let us consider a simple example. We want to learn the time-series

y(t) = 0.02t+ 0.5 sin(t+ 0.1) + 0.75 cos(0.25t− 0.3) +N (0, 1) , (4.1)

which is a sine-cosine mixture with linear trend and added Gaussian noise N (0, 1).

The signal with and without added noise is plotted in figure 8. In order to learn the

underlying signal, we set up a network with layer structure 1 : 3− 3− 2 : 1, consisting

of Ed activation functions in phase I with 38 tunable parameters in total, making use

20

0 20 40 60 80 100
t

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

y

0 20 40 60 80 100
t

−1

0

1

2

3

y

0 25 50 75 100 125 150 175
t

−1

0

1

2

3

4

y

Figure 8: Left: The original signal given by a Sine-Cosine mixture with linear trend. Middle:

With added gaussian noise. Right: The reconstructed signal from a sample of points and its

extrapolation (right of red line)

of the library [14]. The network is trained on 500 pairs of (t, y) values with t ∈ [0, 100],

sampled from (4.1) via the CMA-ES optimizer with stopping criterium 10−4 using the

MSE loss function. The learned signal and its extrapolation is shown in the right plot

of figure 8. The final MSE loss for the training and testing data sets are 3.6 · 10−2 and

3.8 ·10−2 respectively. The similarity between both values emphasizes that we were not

only able to reconstruct the original signal from the noisy data on the training range,

but also that the network learned the underlying systematics, as the extrapolation

shows.

As a classification example, let us consider the well known Iris data set [30]. This

data set contains 150 instances from three different classes with four attributes. We

reserve 40% of the data as the test set. In order to investigate the modelling capacity

of the Ed activation functions, we set up two independent single-layer networks 4 : 3

with the output unit activation functions in one network taken to be Ed, and in the

other, tanh. Both networks are trained via gradient descent and the adam optimizer

for an increasing number of iterations in 100 independent repetitions. Note that for

the initialization of the Q-parameters, we sample uniformly from the range [2, 18].

The achieved precision scores are plotted in figure 9. We observe that the TNN-based

classification converges more slowly, but ultimately achieves statistically significantly

better classification rates than the network based on tanh units, on both the train and

test data.

We plot the learned activation functions at each node for both toy examples dis-

cussed above in figure 10. We observe that the TNNs learned a varity of activation

functions, as theoretically expected. We conclude that the additional learning of pa-

21

102 103 104 105 106
iterations

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec
isi
on

 sc
or
e
tra

in
 se

t

DiagExpUnit
tanh

102 103 104 105 106
iterations

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec
isi
on

 sc
or
e
te
st
 se

t

DiagExpUnit
tanh

Figure 9: Left: Precision score achieved on the train set as a function of iterations. Right:

Precision score achieved on the test set as a function of iterations. The score is ploted as the

mean and standard deviation for 100 repetitions. The x-axis is plotted with a logarithmic

scale.

−4 −2 0 2 4
v

−1.0

−0.5

0.0

0.5

1.0

E

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
v

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

E

Figure 10: Left: The learned activation functions for the trending Sine-Cosine mixture.

Right: Learned activation functions for the Iris dataset. Each line corresponds to Ed(h|v) of

a node.

22

rameterization of the Ed activation function (its shape) may have indeed benefits over

a rigid activiation function like tanh. Therefore TNN may be a promising direction for

further research.

5 RTBM classifier

The conditional expectation, which we already made use of in the previous section to

build TNNs, offers a further possibility to extend the applicability domain of RTBMs to

classification tasks. There are two possible ways to achieve data classification through

RTBMs. The first method consists of using TNNs, as in the previous section. In this

case, the TNN classification requires the choice of an appropriate cost function, usually

the mean squared error, and an adequate TNN architecture, which may contain extra

layers which are not RTBM based. The second method follows [4]. In the first step it

segments the input data into small patches. For each patch a single RTBM model or

RTBM mixture is used to generate the underlying probability density of the input data.

Then, for each input data we collect the conditional expectation values for all hidden

units of the RTBM instances trained in probability mode. These expectation values are

taken as a feature vector and are feed into a custom classifier. This method provides the

advantage of using the probability representation of RTBMs as an autoencoder which

preprocess the input data and simplifies the classification task. Figure 11 illustrates

schematically this method for an image example.

Example

In order to show the potential capabilities of classification with RTBMs, we have per-

formed a short proof-of-concept test based on jet substructure classification data from

[31]. The task consists of discriminating between jets from single hadronic particles

and overlapping jets from pairs of collimated hadronic particles. For this example we

have selected 5000 images for training and 2500 for testing. Each image is provided in

a 32 pixel by 32 pixel format. As a reference algorithm we use the logistic regression

classifier which in the test dataset scored a precision of 77%.

The TNN regression obtained a precision score of 79% using two RTBM layers,

the first with 1024 (32x32) visible units and three hidden units and second layer with

three input units and one hidden unit. The precision values quoted for the reference

and TNN regression have also been tested on images resized using principal component

23

Figure 11: Illustration of an RTBM classifier. An input image is segmented in blocks of four

pixels. We model the probability density of each segment using a single RTBM. The resulting

RTBM prediction in expectation mode is then fed into a standard classifier algorithm.

analysis (PCA), showing negligible variations. The same network setup with however

hyperbolic non-linear activation funtions scored 55% precision in our tests.

The RTBM classifier obtained a precision score of 83% with the probability density

determined by 50 RTBMs with two input and two hidden units after resizing images

to 10x10 pixels using PCA. The classification is performed by logistic regression using

as input the expectation values from the 100 hidden units. We have verified that

the classification accuracy obtained with RTBMs in this example is similar to results

provided by simple neural networks (MLP) and boosted decision trees. These results

confirm that RTBM classifiers could be interesting candidates for classification tasks.

Acknowledgments

We would like to thank G. van der Geer for valuable discussions and S. M. Tan for

help in improving the manuscript. S. C. is supported by the HICCUP ERC Consolida-

tor grant (614577) and by the European Research Council under the European Union’s

Horizon 2020 research and innovation Programme (grant agreement n◦ 740006).

24

A Continuous Boltzmann machine

For completeness, we will briefly derive in this appendix the probability density P (v)

of the Boltzmann machine with continuous visible and hidden sector states. The setup

is as in section 2.

The partition function in the continuous case reads

Z =

∫ ∞

−∞
[dv][dh] e−E(v,h) ,

and can be calculated exactly making use of (2.7). We obtain

Z =
(2π)

Nv+Nh
2√

detA
e

1
2
BtA−1B .

The free energy now reads

F = − log

∫ ∞

−∞
[dh] e−E(v,h) ,

and evaluates to

F =
1

2
vtTv +Bt

vv −
Nh

2
log 2π − 1

2
log detQ− 1

2
(vtW +Bt

h)Q
−1(W tv +Bh) .

From the definition of the Boltzmann distribution (2.8) we obtain

P (v) =
e−

1
2
vt(T−WQ−1W t)v+Bt

hQ
−1W tv− 1

2
BtA−1B+ 1

2
Bt

hQ
−1Bh

(2π)
Nv
2

√
det((T −WQ−1W t)−1)

,

where we made use of the determinantal formula for block matrices, giving detA =

det(Q) det(T −W tQ−1W). The resulting probability density function is essentially a

multi-variate Gaussian distribution with covariance matrix given by the inverse of the

Schur complement

(A/Q)−1 = (T −WQ−1W t)−1 .

Hence, the Boltzmann machine with continuous visible and hidden sector is trivial.

25

B Gradients

B.1 E(hi|v)

The gradients of the expectation unit (2.15) can be easily calculated to be given by

∂E(hi|v)

∂(Bh)j
= κji ,

∂E(hi|v)

∂Wjk

= κkivj ,

∂E(hi|v)

∂Qjk

= (1 + δjk)
−1ρjki ,

(B.1)

with

κji = − 1

(2πi)2

(∇j∇iθa
θa

− (∇jθa)(∇iθa)

θ2
a

)
,

and

ρjki =
1

(2πi)3

(∇j∇k∇iθa
θa

− (∇j∇kθa)(∇iθa)

θ2
a

)
. (B.2)

(We used the abbreviation θa = θ̃(vtW + Bt
h|Q).) Note that in order to arrive at the

derivative with respect to Q, we made use of the heat equation like relation

∂Qjk
θ̃(z|Q) = − 1

(2πi)2
(1 + δjk)

−1∇j∇kθ̃(z|Q) , (B.3)

which can be easily derived from the definition (2.3).

B.2 P (v)

In order to calculate the gradients of the probability density (2.9) we make use of

relation (B.3) to infer that

∂P (v)

∂(Bh)i
=
P (v)

2πi

(∇iθa
θa
− ∇iθb

θb

)
,

∂P (v)

∂(Bv)i
= P (v)

(
−vi − (T−1Bv)i + (T−1WDb)i

)
,

∂P (v)

∂Qij

= −(1 + δij)
−1 P (v)

(2πi)2

(∇i∇jθa
θa

− ∇i∇jθb
θb

)
,

∂P (v)

∂Wij

= P (v)

(
vi
∇jθa
θa

+ (Bt
vT
−1)i
∇jθb
θb
− (HbW

tT−1)ji − (T−1WHb)ij

)
,

(B.4)

with the normalized gradient vector and (rescaled) hessian matrix

(Db)i :=
1

2πi

∇iθb
θb

, (Hb)ij :=
(1 + δij)

−1

(2πi)2

∇i∇jθb
θb

.

26

(Note that we defined θb := θ̃ (Bt
h −Bt

vT
−1W |Q−W tT−1W).)

The gradient with respect to T requires that we restrict T to be diagonal, such that

detT =
∏

i Tii and (T−1)ii = 1
Tii

. Under this restriction, we easily obtain

∂P (v)

∂Tii
= P (v)

(
T−1
ii + (Bv)

2
iT
−2
ii − v2

i

2
− (Bv)iT

−2
ii (WDb)i + T−2

ii (WHbW
t)ii

)
.

C Moments

We want to compute moments of the probability density P (v). To this end note that

we infer from (B.4)

viP (v) = P (v)
(
−(T−1Bv)i + (T−1WDb)i

)
− ∂P (v)

∂(Bv)i
. (C.1)

Using the normalization
∫

[dv]P (v) = 1, we immediately deduce that the first moments

read

〈vi〉P ≡
∫

[dv] vi P (v) = −(T−1Bv)i + (T−1WDb)i −
∂

∂(Bv)i

∫
[dv]P (v)

= −(T−1Bv)i + (T−1WDb)i .

(C.2)

Similarly, we can compute the second moments

〈vivj〉P ≡
∫

[dv] vivj P (v)

= 〈vi〉P 〈vj〉P + T−1
ij +

(T−1W)ik(T
−1W)jl

(2πi)2

(∇k∇lθb
θb

− ∇kθb∇lθb
θ2
b

)
.

Higher order moments can be calculated analogously by taking more derivatives.

References

[1] G. E. Hinton and T. J. Sejnowski, “Analyzing Cooperative Computation.” In Proceed-

ings of the 5th Annual Congress of the Cognitive Science Society, New York, May 1983.

[2] Hinton, G. E. and Salakhutdinov, R. R., “Reducing the Dimensionality of Data with

Neural Networks”, Science vol. 313, p.504-507, American Association for the Advance-

ment of Science, 2006

[3] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed et al, “Deep neural networks for

acoustic modeling in speech recognition: the shared views of four research groups,”

IEEE ignal Process. Mag. 29(6):82-97, 2012

27

[4] A. Krizhevsky, “ Learning Multiple Layers of Features from Tiny Images,” MSc thesis,

University of Toronto, 2009

[5] R. Salakhutdinov, “Learning Deep Generative Models”, PhD thesis, University of

Toronto, 2009

[6] G. E. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep belief nets.”

Neural Computation, 18:15271554, 2006.

[7] M. Welling, M. Rosen-Zvi and G. E. Hinton. “Exponential family harmoniums with an

application to information retrieval.” In Proceedings of the 17th Conference on Neural

Information Processing Systems. MIT Press, December 2004.

[8] A. Barra, G. Genovese, P. Sollich, D. Tantari, “Phase transitions in Restricted Boltz-

mann Machines with generic priors.” Physical Review E, 96(4), 042156, 2017.

[9] A. Barra, G. Genovese, P. Sollich, D. Tantari, “Phase diagram of restricted Boltzmann

machines and generalized Hopfield networks with arbitrary priors.” Physical Review E,

97(2), 022310, 2018.

[10] A. Barra, A. Bernacchia, E. Santucci and P. Contucci. “On the equivalence of Hopfield

networks and Boltzmann Machines.” Neural Networks, 34, 1-9, 2012.

[11] Hinton G.E., “A Practical Guide to Training Restricted Boltzmann Machines”, Neural

Networks: Tricks of the Trade. Lecture Notes in Computer Science, vol 7700, Springer

[12] Mumford, D., “Tata Lectures on Theta I.” Boston: Birkhauser, 1983.

[13] I. M. Krichever “Methods of algebraic geometry in the theory of non-linear equations,”

Russian Math. Surveys 32:6 (1977), 185-213.

[14] S. Carrazza and D. Krefl, “Theta: A python library for Riemann-Theta

function based machine learning,” AGPLv3 licence, http://riemann.ai/theta

doi:10.5281/zenodo.1120325

[15] “openRT: An open-source implementation of the Riemann-Theta function,” AGPLv3

licence, http://github.com/RiemannAI/openRT

[16] B. Deconinck, M. Heil, A. Bobenko, M. Van Hoeij and M. Schmies, “Computing Rie-

mann Theta Functions,” Mathematics of Computation, Volume 73, Number 247, p.1417-

1442, 2003

[17] C. Swierczewski, B. Deconinck, “Computing Riemann theta functions in Sage with

applications,” Mathematics and Computers in Simulation 127(2016) 263-272

[18] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, “Dropout:

A Simple Way to Prevent Neural Networks from Overfitting,” Journal of Machine Learn-

ing Research, 2014, vol. 15, p.1929-1958

[19] G. Williams, “Computing the Riemann Theta Function,” Mathematical Methods Sem-

inary, University of Washington, October 2013

[20] Farkas, H. M. and Kra, I., “Riemann Surfaces”, Springer-Verlag, 1980.

28

[21] Whittaker, E. T. and Watson, G. N., “A Course in Modern Analysis”, 4th ed. Cam-

bridge, England: Cambridge University Press, 1990

[22] D. Micciancio, “The shortest vector in a lattice is hard to approximate to within some

constant,” SIAM J. COMPUT, Vol. 30, No. 6, pp. 20082035, 2001

[23] J. Frauendiener, C. Jaber and C. Klein, “Efficient Computation of Multidimensional

Theta Functions,” arXiv:1701.07486 [nlin.SI].

[24] D.S. Modha, Y. Fainman “A learning law for density estimation,” IEEE Transactions

on Neural Networks (1994), vol. 5, issue 3, 519-523. doi:10.1109/72.286931

[25] J. Melchior, N. Wang, L. Wiskott, “Gaussian-binary restricted Boltzmann machines for

modeling natural image statistics,” PLOS ONE, 2017 doi:10.1371/journal.pone.0171015

[26] J. Melchior, “PyDeep” Github, 2017 https://github.com/MelJan/PyDeep.git

[27] A. Likas, “Probability density estimation using artificial neural networks,” Computer

Physics Communications Volume 135, Issue 2, 1 April 2001, p.167-175

[28] L. Garrido, A. Juste “On the determination of probability density functions by using

Neural Networks,” Computer Physics Communications, Volume 115, Issue 1, 1998

[29] N. Hansen, A. Ostermeier, “Completely derandomized self-adaptation in evolution

strategies,” Evolutionary Computation (2001), no.2, 159-195

[30] C.L. Blake, C.J. Merz CI repository of machine learning databases. University of Cali-

fornia, https://archive.ics.uci.edu/ml/datasets/Iris/

[31] P. Baldi, K. Bauer, C. Eng, P. Sadowski and D. Whiteson, Phys. Rev. D 93 (2016) no.9,

094034 doi:10.1103/PhysRevD.93.094034 arXiv:1603.09349 [hep-ex].

29

Daniel Krefl received his PhD in Physics from Ludwig Maximilian Uni-
versity of Munich in 2009. He held postdoctoral positions at the University of
Tokyo and Seoul National University, and was a Simons fellow at UC Berkeley
and a Marie-Curie fellow at CERN. Currently, he performs research in compu-
tational biology at the University of Lausanne. His research interests include
mathematical physics, machine learning, metabolomics and big data analytics.

Stefano Carrazza received his PhD in Physics from the University of Milan
in 2014. He held postdoctoral positions at the University of Milan, and a fellow
at CERN. Currently, he is a researcher at the University of Milan. His research
interests include high energy physics phenomenology, machine learning, parton
distribution functions and Monte Carlo simulation.

30

Babak Haghighat received his PhD in Physics from the University of Bonn
in 2009. He was then a postdoctoral member at the Institute for Theoretical
Physics, Utrecht University from 2010 to 2011, and afterwards a research asso-
ciate at Harvard University from 2011 to 2016. Currently, is Assistant Professor
at the Yau Mathematical Sciences Center, Tsinghua University since 2016.

Jens Kahlen received his Diploma in Chemical Engineering from RWTH
Aachen University in 2009, and the PhD degree from Max Planck Graduate
Center with Johannes Gutenberg University Mainz in 2014. His research inter-
ests are in machine learning, probabilistic modeling, and system identification.

31

Declaration of Competing Interest

All authors have participated in (a) conception and design, or analysis and
interpretation of the data; (b) drafting the article or revising it critically for
important intellectual content; and (c) approval of the final version.

This manuscript has not been submitted to, nor is under review at, another
journal or other publishing venue.

The authors have no affiliation with any organization with a direct or indirect
financial interest in the subject matter discussed in the manuscript

32

