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CHAPTER 1

Introduction

The quest for new materials

During the last decades materials prediction and characterization has gained increasing popularity

in the scientific community. Several areas of physics received significant boost from this quest and

new physics was discovered. Supported by a rich theoretical framework and driven by a number

of crucial experimental discoveries in the field, the search of exotic carbon allotropes pioneered

this quest. Fullerenes [1], nano-onions [2], carbon nanotubes (CNT) [3, 4] , sp linear carbon

chains (SPCC) [5] and graphene [6] are cornerstones in material science and opened the route to

theoretical analysis and experimental synthesis of numerous innovative structures. For instance,

graphene is one of the forefathers for the physics of bi-dimensional materials which is nowadays

a rich playground for several disciplines, from quantum field theory to electronic engineering.

As a matter of fact, low-dimensional systems including graphene and SPCCs intrigued physicists

for long times to the point of being addressed and largely theoretically characterized long before

their synthesis [7–9]. The experimental realization of graphene prompted the synthesis of several

2-dimensional, or quasi 2-dimensional materials, such as: hexagonal boron nitride, molybdenum

disulfide, black phosphorus [10, 11]. Even in this case some of these low-dimensional systems,

such as molybdenum disulfide, had already been theoretically characterized. In a similar way,

the synthesis of carbon nanotubes prompted that of inorganic nanotubes, made of boron-nitride

[12] or transition-metal disulfides [13, 14]. In this context, the evolution of carbon allotropes

was so important to induce Hirsch to define of the current century as the era of carbon allotropes

[15]. What is common to the synthetic carbon allotropes is the contemporary presence of con-

jugated π electrons and of strong covalent bonding in low dimensionality: either zero, one or

two-dimensions. These characteristics lead to unusual physical and chemical properties.

Among these low-dimensional systems, perhaps graphene is currently the most popular and

broadly investigated one. Graphene uniqueness arises mainly form its bi-dimensional atomic

honeycomb arrangement. Due to the trigonal-planar bonding geometry, graphene has a remark-

able structural flexibility. σ bonds are responsible for its high mechanical resistance, ultra-high

elastic modulus and ultimate tensile strength [16, 17]. At the same time, the electronic prop-

erties of graphene mainly arise from the half-filled π orbitals. Graphene is a semi-metal with

Fermi level falling exactly at the so-called Dirac cones [18]. These are features in the band struc-

tures with peculiar approximately linear dispersion relation. Given the bi-dimensionality of the

systems the bands become locally the intersection of two conical surfaces. The electrons wave

function close to these points is described by the relativistic Dirac equation, even though their

7
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Fermi velocity is considerably lower than the speed of light, approximately vF = c/300 [19].

These electrons behaving as mass-less Dirac particles exhibit unusual behaviour with respect to

ordinary electrons in metals. For instance integer [20] and fractional [21] quantum Hall effect

and Klein tunneling have been observed in graphene [22]. Klein tunneling specifically allows

electrons to propagate up to micro-metric distances without being scattered [6, 23]. A direct

consequence is graphene’s remarkable charge-carrier mobility with no need for doping [23–25].

Dirac electrons have a chiral nature, following the honeycomb decomposition in triangular sub-

lattices. This characteristic is employed in “valleytronics” where the electron flavor becomes a

controllable variable [26]. Moreover, graphene’s electronic properties depends on it’s mesoscopic

shape. For instance, different boundaries come with different electronic character [27]: zig-zag

nano-ribbons are predicted to be always metallic [28], whereas armchair nano-ribbons can be

metallic or semiconducting [29]. The gap, whose size decreases with increasing the ribbon width,

opens due to the anti-ferromagnetic coupling between the magnetic moments of edge atoms sit-

ting on different sublattices. Besides the unusual electronic properties, bi-dimensional structure

of graphene also comes with interesting mechanical features. For instance, it posseses a flexural

vibrational mode [30] which is absent in bulk systems and it is responsible for the out-of-plane

corrugation of graphene and for its superior thermal conductivity at room temperature together

with the other acoustic modes. The Young’s modulus of graphene, that is of the order of TPa, is

also related to graphene’s flexural mode, through its characteristic quadratic dispersion relation

[30, 31]. Besides they are also connected through the mean-square amplitute of thermal vibration

at finite temperature [32].

Graphene can be thought of as a “precursor” of the fullerenes and nanotubes. Indeed, fullerenes

can be imagined starting from graphene flakes introducing pentagons defects and conveniently

wrapping the flake. Instead, nanotubes can be thought as rolled graphene ribbons along a given

direction. Fullerenes have been first convincingly detected in 1985 [1] after being largely debated

and first-time observed several times [33]. Since then, they received significant attention from the

scientific community. Specifically, the one detected by Kroto et al. is C60, consisting of twelve

pentagons located at the vertex of an icosahedron whose faces are composed by twenty regular

hexagons. Twelve is the only possible number of pentagons, whereas the hexagons number can

be higher or lower. A high number of combinations has been predicted and some of them experi-

mentally detected, including non-spherical close cages such as C70 which is characterized by an

ellipsoidal shape. In 2000 the smallest possible fullerene C20 was synthesized [34], made by 12

pentagons arranged in a tetrahedron. Different experimental techniques [35, 36] reveal a discrep-

ancy in bond lengths in C60: the bonds involving two adjacent hexagons are sistematically shorter

than those involving hexagons and pentagons. This is due to the fact that C60 is not spherically

aromatic [37], meaning that double bonds are avoided on pentagons. Thus the delocalization of

electrons around the molecule is limited, contributing to the buckyballs electron affinity [38]. The

geometry of C60 can be interpreted in terms of sp2 hybridization, even though the curvature of

fullerenes requires a significant deviation from trigonal planar shape. Bent planar configuration

confers an excess of strain to the structure. This extra strain contributes to fullerenes enhanced

chemical reactivity [39]. Besides appearing as isolated molecules, fullerenes can form extended

patterns known as fullerites: regular arrangements of Cn connected by Van der Waals bonds

with semiconductor character [40–42]. Doping or functionalization can attribute metallic or even

superconductive character to fullerites [43].
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Carbon nanotubes can be imagined as degenerate fullerenes, even tough they consist in tubes

made of rolled graphene nanoribbons [44]. Their radius ranges from a few to tens of nanometers,

while they can be up to half meter long [45]. CNTs exist in single, double-walled or multi-walled

configurations. The multi CNT configurations consist of nested coaxial tubes, interacting with

Van der Walls forces, with an average separation of the order of 0.3 nm. CNTs can be divided

in two categories, depending on the path that encircle the tubes orthogonally to its central axis.

According to this path they are named zigzag and armchair. CNTs not belonging to these two

families are named chiral, and lack inversion symmetry [46]. This distinction radically affects

electronic properties [47]. Indeed all armchair CNTs are metallic, whereas the zizag have a small

gap at the Fermi level. Chiral CNTs show a configuration-dependent behaviour [48]. This net

separation in the electronic behaviour has exceptions, because electrical properties are strongly

dependent on curvature effects, particularly in small-diameter tubes [47]. Despite their immediate

connection with graphene, CNTs do not show analogous to Dirac cones. This is due to the distor-

tion from the sp2 planar hybridization, which induces hybridization between σ and π orbitals that

modifies the bands dispersion. Nonetheless valleys can be identified also in nanotubes. Indeed it

is possible to divide the electronic orbits in two flavors, that roughly correspond to clockwise and

counterclockwise motion around the nanotube [46]. Similarly to graphene, sp2 covalent bonds

confer to nanotube a remarkable tensile strength and elastic modulus. Such characteristics are re-

ferred to single CNTs. In case of multi-walled CNTs or bundles of CNTs weak shear interactions

between adjacent tubes or shells lead to significant reduction in the effective strength [49]. A pos-

sible way to partially compensate this loss appears to be light-irradiation to induce cross-linking

among the different shells or single tubes [50].

Alongside these low dimensional systems, it has largely been debated the existence of an

allotrope consisting only of sp hybridized carbons. This search for sp-carbon wires dates back

to the second half of the XX century [51–54]. Due to their peculiar mono-dimensional nature

they have been elusive for long time, challenging chemists for half a century, causing also some

inconvenient [55]. The analysis of linear sp chains received a boost following the enthusiasm

for graphene synthesis, and they gained popularity for their enhanced mechanical and transport

properties [56–59]. Contrary to other synthetic allotropes, stable extended SPCCs are extremely

difficult to obtain even with modern laboratory techniques. Indeed, the longest chain ever re-

ported consists of 6000 carbons, embedded in a double-walled CNT [60]. The scaffold is crucial

to confer stability to the carbon wire, as confirmed by the current length-limit for the totality of

isolated chains, which is approximately 40 atoms [61]. Due to their instability, isolated sp-chains

have been studied only in gas-phase [62] or by means of matrix isolation at low temperature [63],

or when separated by synthesis reactions byproducts to prevent chain-chain interactions [64]. On

the other hand, pure carbon solid containing considerable amount of carbynoid structure can be

efficiently produced [65]. The reason for SPCCs instability is their extreme reactivity towards

chemical environment, whether it consists of controlled-atmosphere [66, 67] or other chemical

reactants such as water and oxygenr [58, 59]. Also thermal fluctuations induce quick buckling

in the chains which can lead the sp atoms to undergo transition to sp2 or sp3 hybridizations in

order to gain stability [59]. In theory, sp-carbon chains may exist in two different states, depend-

ing on how carbon atoms link. Chains with carbon connected with all-equivalent double bonds

are named cumulenes, those made of alternated single (long) and triple (short) bonds are named

polyynes. Due to Peierls distortion, infinite chains, which are usually referred to as carbyne, ex-
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ists in the polyyne state [58, 68]. For finite chains, ab-initio simulations show that such distortion

induces a significant bond length alternation (BLA) only for chains longer than fifty atoms [69].

Despite being ideal systems, carbynes have been widely characterized theoretically, revealing in-

teresting properties. Simulations result in Young modulus exceeding that of graphene [70]. High

frequency phonons and ballistic thermal transport allow for remarkable thermal conductivity at

room temperature [71]. Electronic properties change with the Peierls transition. Indeed, cumu-

lene carbynes are metallic, whereas polyyne are semiconducting [72]. Furthermore, due to their

one-dimensional nature, the electronic properties of finite SPCCs radically depends on the local

environment, including the different end groups which can be employed to stabilize the chains

[73]. For instance hydrogen-terminated SPCCs were stabilized for several months together with

Ag nanoparticles when diluted in solutions. SPCCs properties appear to be tunable by means of

a broad range of tools: engineering the length by means of external strain, embedding the chains

within different chemical environment or within different end groups.

A further step in the search for artificial allotropes of carbon, was the synthesis of polyynes

terminated with sp2-conjugated end-groups [74]. Such systems proved to be stable in ambient

conditions without need of solvents even against reaction with oxygen [75]. Moreover, they open

the route to the creation of systems graphene-like, but based on sp-sp2 combination. In such

systems, the connection sp sp2-conjugated carbons could affect the benzenic-ring conjugation.

This could produce a further delocalization of π electrons from the molecule to the chain, affecting

its BLA and therefore its electronic gap. Evidences emerged regarding the independence of the

electronic behaviour of sp-chains with respect to the dimension of the sp2 end-groups. Thus, to

tune the electronic properties of SPCCs, the use of extended graphene-like terminations turns out

to be more or less equivalent to finite-size terminations for tuning SPCCs properties. Specific

end groups should be employed instead [58]. Indeed, it is now recognized that rather than the

nature of the end group, the specific chemical connectivity between sp chain and the end group

is responsible for tuning the chain character. Moving from phenyl-groups terminations, extended

artificial bi-dimensional structures involving regular arrangements of sp-sp2 carbons have been

synthesized. Such systems, named graphynes, had been addressed years back as modification of

graphene [76], but they recently gained more attention. For instance, Sun et al. [77] were able to

synthesize graphyne made of four-atoms carbon-wires connected trough benzenic rings on a gold

substrate starting from halogenated precursors of carbynes. This study along with others [78]

addressing the possibility of mixing orbital hybridizations, set the basis for a further exploration

of the family of artificial carbon allotropes.

Besides scientific interest, what makes these allotropes appealing are their numerous poten-

tial applications. For instance, chemical functionalization of fullerenes provides the possibility

of combining their properties with those of other compounds. Even though a newer-generation

of more efficient organic photo-voltaic devices based on non-fullerene acceptors has emerged in

the latest years [79, 80], fullerenes-based devices have been widely studied for their promising

electron-acceptor nature [81, 82]. Moreover, fullerenes have been largely analyzed in chemical

and biological applications [83, 84] such as in inhibition process of HIV-1 replication. Nano-

medicine benefits also from functionalized carbon nanotubes which could be employed as a tool

to smart drug delivery [85]. CNTs have also been debated as potential water transport pumps and

filters [86, 87]. Besides, their strength and flexibility suggest that they could have a significant

role in nanotechnology engineering for instance as a reinforcement for polymer matrices [88].
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Graphene, as well as other 2-dimensional systems, has been widely and intensely studied for dig-

ital and analog electronics [89], for flexible and stretchable electronics [90] and opto-electronics

[91, 92]. Also linear sp chains have been intensively investigated due to their potential applica-

tions in molecular electronics, specifically when integrated within other carbon allotropes [58].

Nonetheless, compared to the wide variety of newly identified structures [93], relatively few

breakthrough applications have been realized to date. Indeed, the depicted outstanding properties

of carbon allotropes are limited by several factors. For instance, graphene suffers from the lack of

a systematic and practical approach to open a band-gap [94–97] and from the interaction with any

surrounding “supports”, which actually affects its properties. Furthermore, graphene properties

appear to depend directly on the method of production of the layers. At the moment the capability

of generating extended layers with industrially sustainable techniques is limited. Nanotubes and

carbynes face similar issues. For the CNTs production it is not yet clear how to control their

helicity and how to dis-entangle bundled CNT matrices and then disperse them uniformly and

align them in a controlled way [98, 99]. SPCCs instead do not exists in free-standing conditions

as they need physical supports right from their synthesis. Besides they show a high chemical

reactivity toward chemical environment [59, 65, 100]. All these limitations, as much as the quest

for new physics, routed the search for materials with similar properties, but easier to produce and

control compared to carbon, specifically for bi-dimensional systems. Therefore, the quest for new

materials, including carbon allotropes, as for new synthesis routes and new applications, focusing

on electronics, opto-electronics, quantum computing, coatings, continues nowadays.

Theoretical research, running in parallel to the experimental inquiry, greatly benefited from

the evolution and the spread of computational resources. The diffusion of ab-initio-based codes,

as much as the development of new more agile algorithms [93, 101] opened new possibilities

in this area of physics. Large databases of characterized structures are available today [102,

103], with a clear tendency to develop computational environments aimed to automated high-

throughput calculations and to the automatic storage and sharing of data [104, 105]. Besides the

possibilities of increase the information sharing across the scientific community, the underlying

idea consists in removing guesswork from materials design helping experimental research to tar-

get the most promising materials starting from computational datasets. A possible drawback of

this race toward automatization is that research becomes closer and closer to informatics, and ma-

terials physics to data-mining. Among these open-access digital materials databases, the Samara

carbon allotropes database (SACADA) [106] collects hundreds of theoretical and experimental

polytopes of carbon. This high number of structurally non-equivalent atomic arrangements arises

from the variety of possible carbon orbital hybridizations. Indeed, carbon possesses three en-

ergetically competitive different types of hybridization sp, sp2, and sp3 [107, 108]. The sp3

configuration gives rise to three-dimensional networks with insulating properties along with high

stiffness, as in cubic and hexagonal diamond [109]. In contrast the sp and sp2 hybridizations can

be responsible for flexible low-dimensional structures [23, 58, 88] such as carbyne and graphene,

which usually come with smaller electronic interband gaps, or even metallic or semi-metallic

properties. Intermediate hybridizations are quite frequent as well, as in the fullerenes and the

nanotubes.

During this PhD, I focused on the definition and the characterization of new allotropes of

carbon. At the basis of this work stands a paradigm regarding the possibility of mixing different

carbon hybridization kinds in such a way to obtain novel periodic structural configurations. These
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”hybrid” allotropes may come along with intriguing physical and chemical properties, as is the

case for those investigated in this thesis. For instance, we mention the possibility of controlling

a semiconducting-metal transition by tuning the temperature. For what concern spontaneously

formed allotropes, the possibility of mixing hybridizations is not a-priori excluded by nature, but

apparently it is restricted to non-periodic structures such as amorphous carbon [110–112]. Beyond

carbon-only based structures, nature frequently provides examples of coexistence of different hy-

bridizations of carbon orbitals in the same composite. Following this direction deep search and

analysis have been performed in the past decades. Indeed, various carbon nano-aggregates have

been widely analyzed theoretically and experimentally [113, 114], with the aim of understand-

ing and controlling their growth or aggregation properties, and eventually controlling relative

percentages of hybridizations. Occasionally hybrid mesoscopic crystalline structures showing

different atomic coordinations were synthesized: for instance fullerites. Besides, fullerites were

largely employed as precursor for more complex nanostructures: schwarzite, hollow diamonds,

nanowires [115–117]. Moreover, carbon nanoparticles, nanocluster and thin films [114, 118]

gained broad interest for their numerous potential applications: from enhancer of electrical con-

ductivity in polymer materials to drug release in medicine, from reinforcement of rubbers, to

aerospace applications. Lately the inquiry for unconventional carbon materials has been push

forward by interesting discoveries such as that of Q-carbon [119] and graphynes structures [58,

65]. In this sense, a deeper theoretical knowledge of the physical and the chemical properties

of ”hybrid” complex allotropes, could provide hints for their synthesis and their further usage in

suitable applications.

Thesis summary

The theoretical discovery and the characterization of three new crystalline carbon allotropes is

reported in this PhD thesis. Two of them are based on mixing sp2 and sp3 orbital hybridiza-

tions, the third one includes linear hybridization sp combined with sp3. Chapter 2 defines and

investigates the single-ring novamene [120] and the protomene allotropes [121]. The structures

are outlined and commented in detail with their energetics compared with the standard carbon

allotropes. The electronic and vibrational properties are also outlined and commented. A broader

class of novamene allotropes is also introduced. These allotropes exhibit the possibility to undergo

a transition from metallic to semiconductor behaviour and back. Such transition is induced by the

formation of dimers reducing the presence of planar hybridizations in the allotropes. Chapter 3

presents the simplest structure of the zayedene class [122]. Its energetic, structural and electric

properties are introduced. It possess a well-defined metallic behaviour independently on the pres-

ence of the sp carbons. The thermodynamical stability of the linear sp-chain is analyzed starting

from the high-temperature behaviour of the structure. The composition of this class and prelimi-

nary results for a few of its elements are sketched. Chapter 4 draws the conclusion and the outlook

of the present research.



CHAPTER 2

Mixing sp
2 and sp

3 hybridizations

The current chapter focuses on two carbon allotropes obtained combining planar and tetrahedral

hybridizations, named novamene and protomene. The former is actually a class of allotropes, each

element being defined by a certain number of benzenic ring around which the basic unit is build.

The allotrope analyzed hereby is the simplest element in this class: the single-ring novamene.

Instead, the planar hybridized carbons in protomene do not form such a regular arrangement

as benzenic ring. Thus we did not identify a class of connected allotropes. Both the structures

were analyzed throuh ab-initio simulations for instance comparing their relative stability and their

electronic behaviour to those of natural carbon allotropes.

2.1 Novamene

The allotrope we describe in the present section, is based and developed starting from the atomic

structure of fullerenes. Indeed, if one considers one of the benzenic-ring of a standard C60 bucky-

ball, with the three pentagons surrounding it one obtains the basic building block of the current

allotrope [123–125]. Instead of bending the pentagons to form the ”spherical” shape, one could

keep them in the same plane of the benzenic ring. This basic structure has a three-fold rotational

symmetry around the z axis at the center of the hexagon, assuming the ring in the xy plane. In

order to construct a new allotrope, one needs to define its primitive cell. The basic structure of

fullerenes is a good starting point, but it is necessary to fill the three empty volumes included

between two pentagons in such a way to allow periodicity in space. One possible solution is

presented in Fig. 2.1. If the carbons on the external sides of the pentagons have tetrahedral sp3

hybridization, then is possible to fill the empty space between the pentagons without bending

the structure towards a bucky-ball shape. The resulting cell is described by a threefold rotational

symmetry, with the axis placed at the center of the hexagon. This identifies the underlying Bravais

lattice as hexagonal. However, the periodic repetition of such a cell, along a hexagonal lattice

primitive vectors led a bulk system spotted by holes, as shown in Fig. 2.2. Such cavities would

lower the stability of the structure, eventually giving rise to local reconstructions modifying the

regular allotrope. Thus, it is necessary to introduce two more carbon atoms per primitive cell,

disposed at the middle of two out of the six cavities reported in Fig. 2.2 in order to prevent

significant reconstruction events. The result of this scheme is a new allotrope of carbon, which is

named “Novamene”.

13
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Figure 2.1: Possible arrangement of sp2 carbon inside a network of pentagons and heptagons

that prevents the formation of a C60 bucky-bal. This pattern keep the overall average structure

flat, even though not planar. The basic planar geometry of fullerene is highlighted with red and

yellow, the heptagons preventing the buckling are colored in light-blue.

b

a

Figure 2.2: The cavities in the periodic repetition of the structure shown in Fig. 2.1 are high-

lighted in light blue. The primitive cell is identified with dashed black lines.
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Figure 2.3: The basic structure of single-ring novamene: the primitive cell is highlighted with the

dashed line. The switching carbons are colored in red, all the remnants in blue. Panel 1 reports

a cut perpendicular to the c primitive vector, the atoms are labelled with letter A or B, according

to the plane where they belong. Panel 2 reports a vertical cut in the plane of a and c primitve

vectors; the planes are labelled with A and B.

2.2 The crystal structure of single-ring novamene

Figures 2.1 and 2.2 show the result of surrounding the six-carbon ring with sp3 carbons. This sp3

carbon arranges in 3 five-carbon rings and 3 seven-carbon rings, which assemble together. The

seven-carbon rings, locally recognized as hexagonal diamond, partially sticks out of the plane

giving rise to a non-planar configuration. The first model of this allotrope was constructed as a

physical three-dimensional ball-and-stick model. With such a model, at first a unit cell has been

identified and starting from that, the primitive unit cell and its symmetries were determined. This

primitive cell is reported in Fig. 2.3: the section perpendicular to the c vector is reported in panel

1, and panel 2 reports a vertical section in the plane xz. Since the study of the proposed carbon

allotrope starts from a qualitative model, it is important to propose physical constraints to the

bond-lengths in this arrangement. As such, the proposed structure is better understood by making

comparisons to known carbon allotropes, including diamond, graphite lonsdaleite, and fullerene.

Indeed, the proposed structure draws on elements of each of these compounds. For instance

as previously stated, the motif of single hexagonal rings of carbon surrounded by three carbon

pentagons is similar to the fundamental repeating pattern in “bucky-balls”. In that structure, C-C
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Number of rings Number of combinations

1 1
2 1
3 3
4 7
5 22
7 339
9 7036
12 829987
15 110716585

Table 2.1: The number of nonequivalent combinations hexagonal rings as a function of the

number of rings in the plane.

distances in the hexagonal rings surrounded by a total of six alternating pentagons and hexagons

are on the order of 1.45 − 1.49 Å [125]. In contrast, in the present novamene the grouping of

3 pentagons surrounding a central hexagonal ring remains “in plane”, thanks to 7-atom carbon

rings popping up from the A to the nearing B plane. For the AB interplanar distance we initially

take a tentative 2.5 Å. The initial guess for the structure is built enforcing the threefold symmetry

around the center of the sp2 hexagon, and a repeated hexagonal cell with the same symmetry.

Each periodically repeated cell includes 26 carbon atoms, 15 of which in the A plane (the one

containing the sp2 hexagons) plus 11 in the B plane, see Fig. 2.3. It is crucial to consider the

possibility that the atoms in the B layer marked in red, hereby named “switching atoms”, could

move out of the plane switching from sp2 to sp3 and forming an extra bond with their partners

in the next B layer. As this bonding occurs with the atoms in one plane moving toward the other,

the two planes are not equivalent any more, with the result that the minimum repeated cell for

the dimerized structure includes a ABA’B’ alternation for a total of 52 atoms. This possiblity

should be taken into account also for the sp2 atoms in the benzenic ring. It is intuitive that in

this case the different sp2 carbon cannot form extra bonds indipendently one from the other. The

primitive cells are reported in Fig. 2.4 and 2.5. The latter represents the configuration where all

the switching atoms in red dimerize with their counterparts in previously equivalent layers. The

former represents a possible halfway configuration where the benzenic ring is not distorted. Each

of these structures is characterized by the same space group P-62m (#189).

2.2.1 The novamene class

Each combination of rings with the additional enveloping lonsdaleite layer leads to a different

allotrope of carbon. A parallel to this allotropy was demonstrated with the fullerenes: their study

began with the pursuit of identifying the structure of C60. This concept grew rapidly with other

allotropes such as C70, carbon nano-onions, and so on. In turn, this lead to the idea and dis-

covery of single-walled carbon nanotubes, multi-walled ones, and numerous other fullerene-type

allotropes of carbon. The geometric arrangements of adjacent hexagonal rings are called fusenes

[126, 127], as sketched in Fig. 2.6, and numbered in Tab. 2.1. For a quick idea of hexagonal

fusenes possible nonequivalent arrangements see Fig. 2.6. This classification provides a “menu”
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Figure 2.4: The structure of single-ring novamene where only the isolated sp2 atoms form dimers.

The primitive cell is highlighted with the dashed line. Panel 1 reports a cut perpendicular of the c

primitive vector. Panel 2 reports a vertical cut in the plane of a and c primitve vectors; the planes

are labelled with A,A’ and B,B’.
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Figure 2.5: The structure of single-ring novamene with all possible dimers formed: those in-

volving the isolated sp2 carbons and those involving the sp2 carbons forming the benzenic ring.

The primitive cell is highlighted with the dashed line. Panel 1 reports a cut perpendicular to the c

primitive vector. Panel 2 reports a vertical cut in the plane of a and c primitve vectors; the planes

are labelled with A,A’ and B,B’.
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Figure 2.6: The possible nonequivalent disposition of hexagonal fusenes, which consist in the

basis of the novamene class, see Tab. 2.1.

for the configurations of the hexagonal rings forming the sp2 carbon core of the novamene com-

pounds that we introduce in the present work. Based on the above considerations, it is intuitive

that other novamene-type allotropes would also be possible. This concept expands the number of

rings “encased” in hexagonal diamond, tilting the sp2-sp3 balance in favor of sp2, and leading to

a number of other structures.

2.3 Structural and electronic properties

To obtain a reliable equilibrium structure for the single-ring novamene, we employed state of the

art DFT simulations. For this allotrope the electronic structure is described in the local density

approximation (LDA) using a plane-waves basis with a kinetic energy cutoff of 408 eV, with

standard ultrasoft pseudopotentials to account for the 1s core electrons of carbon [128] as imple-

mented in the Quantum Espresso [129, 130] package. The same standard approach was adopted

in similar carbon-only contexts in previous works [100, 131–137]. Starting from the tentative

initial structure described in section 2.2, the atomic positions and cell parameters are relaxed until

a local minimum of the total DFT energy is identified. Atomic relaxation is carried out until all

all components of all forces are equal to or less than 4 pN, the residual stress less than 10 bar

and the total energy converged to less than 10−6 eV/atom. Tab. 2.2 reports the main structural

and electronic properties of three possible configurations of the single-ring novamene compared

to selected carbon allotropes. The * symbol refers to experimental values. Each configuration

corresponds to a different possible combination of the switching atoms present in the structure,

coloured in red in Fig. 2.3, 2.4 and 2.5. The first column of Tab.2.2 describe the configuration

where no one of the switching atom has an sp2 hybridization. Thus the benzenic ring warps to

bond with the vertically nearest-neighbour rings, as depicted in Fig. 2.5. The second column rep-

resents a configuration where the benzenic ring does not dimerize while the two extra sp2 carbon

do, as shown in Fig. 2.4. The third column describe the structure reported in Fig. 2.3 where no
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Structural Single-ring Single-ring Single-ring graphite diamond lonsdaleite

parameter novamene novamene novamene

ground state benzenic no dimers

Natoms per cell 52 52 26 4 2 4

∆E per atom 0.203 0.227 0.269 −0.146 0.0 0.025
[eV]

Band gap 3.061 0.34 0.0 0.0 4.22 3.03
[eV] 0.0∗ 5.47∗ 4.5∗

a,b 8.440 8.419 8.418 2.433 3.523 2.477
[Å] 2.464∗ 3.567∗ 2.510∗

c 4.791 4.998 2.519 5.898 − 4.126
[Å] 6.711∗ − 4.120∗

Density 3509 3381 3354 2639 3649 3638
[kg/m3] 2261∗ 3516∗ 3521∗

Table 2.2: The main structural properties of three novamene configurations. The first column

corresponds to the lowest-energy configuration with all dimers formed, reported in Fig. 2.5, in

which all the sp2 atoms dimerize. The second column describes the configuration reported in

Fig. 2.4, where the isolated sp2 carbon form dimers, while the benzenic ring is still undistorted,

hereby named ”Novamene benzenic” . The third column corresponds to the configuration with

no dimers formed, shown in Fig. 2.3. The numerical values for the standard carbon allotropes

are reported as a comparison. The ∗ indicate experimental values which of course are not yet

available for novamene. The difference in binding energy is computed through equation 2.1,

where the reference binding energy of diamond is ELDA
b = −8.908 eV, as computed using the

LDA.
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Figure 2.7: The total energy of the single-ring novamene crystal structure as a function of the

(fixed) vertical position of the switching atoms, with all other atomic positions allowed to relax.

The benzenic ring remains plain. Insets display the atomic configurations corresponding to the

minima, the maximum and an intermediate distortion. The minima represent equivalent relaxed

configurations with the dimers forming across B-B’ or B’ -B planes, see Fig. 2.4. The reference

coordinate z = 0 identifies the high-symmetry non-dimerized condition where switching atoms

hybridize exactly sp2 and remain in the B planes, so that planes A = A’ and B = B’, and the crystal

can be described in terms of a 26-atoms cell.

sp2 atom dimerized. The second line of Tab. 2.2 reports the values of ∆E defined as:

∆E =
Enovamene

Nnovamene
− Ediamond

Ndiamond
, (2.1)

where Enovamene and Ediamond are respectively the total energy of the novamene configuration

and that of diamond. These energies are divided by the number of atoms of the corresponding

primitive cell. ∆E coincides also with the difference in binding energy for the two allotropes.

The values of ∆E in Tab. 2.2 indicate that the resulting lowest-energy structure is the one with

no sp2 bonds. This ground state is just 0.203 eV higher in binding energy with respect to di-

amond. This configuration is likely to be characterized by sharp local energy minimum, which

would guarantee its long-term stability. Simulations confirm the intuitive idea that the binding

energy decreases with increasing number of formed dimers. Indeed the configuration reported in

Fig. 2.4 is recognized as a meta-stable state with a binding energy 0.024 eV per atom above the

ground state, or more significantly, 0.208 eV per pair of switching atoms. Instead, the simulations

evaluate the total energy of the no-dimer configuration reported in Fig. 2.3 above the ground state

as 0.066 eV per atom, or 0.429 eV per pairs of switching bonds (8 dimers can form at most).

That is to say, the formation of the dimers involving sp2 carbons from the benzenic ring has a

different energetic cost with respect to the formation of dimers involving the lonely sp2 carbons.

Such a discrepancy in the dimers formation energy arises from the high stability of the benzenic
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ring. Indeed the high stability favour the system in Fig.2.4 by lowering its binding energy to-

wards the value of the ground state configuration. As reported in Fig. 2.7 the energy barrier

separating the no dimer configuration from the novamene benzenic one, respectively shown in

Fig. 2.3 and in Fig. 2.4, is relatively shallow around its ≈ 1 eV maximum value. A similar profile

is expected also for the energy barrier of the switching sp2 carbons forming the benzenic ring,

even though with lower values. Increasing the temperature would certainly favor the exploration

of this shallow double-well potential profiles, most likely leading to the non-dimerized phase.

This energetics suggests a weak Peierls dimerization transition [138]. The electronic character

of the different configurations is also reported in Tab. 2.2. DFT simulations identify the ground

state configuration as a wide-gap semiconductor, while the novamene benzenic configuration as

a small-gap semiconductor. Instead, when no dimer is present a metallic behaviour is detected.

The tendency of LDA to overestimate binding and to underestimate energy gaps is evident in Tab.

2.2 in the comparison of the predicted properties of standard allotropes with the experimental

values. The rather small difference in total energy among the various configurations suggests the

possibility to switch between the ground-state distorted semiconductor to the undistorted metal

and back. Such switching may be driven by temperature, light, and/or uniaxial strain. One fur-

ther investigated possibility consists in an alternating bonding pattern with one of the pairs of the

switching atoms binding inside the cell, and the other two atoms binding to like atoms in neigh-

boring cells. The total energy of such a combination has been determined for the configuration

with the plain benzenic ring: it is the same within the simulation resolution, and the crystal is a

small-gap semiconductor in this other structure too. This suggests how in the actual crystal each

individual vertical row of switching atoms can form dimers almost independently of the other

rows. As a result, even with perfectly ordered dimerized lines, we can predict a weak lateral cor-

relation (and therefore structural disorder) of these dimerized lines. Given the complexity of the

analyzed structures it is rather surprising that from a thermodynamical point of view, at least at

0 K, DFT simulations predict the three single-ring novamene structures to be slightly less stable

than graphite and diamond, which are defined by much simpler atomic arrangements.

Electronic properties of the single-ring novamene

For every band structure analyzed in this section, the path in the first Brillouin zone runs over

high symmetry points reported in Fig. 2.8. Fig. 2.9 presents the band structure of the relaxed

lowest energy configuration. The overall density of states is very much similar to that of hexag-

onal diamond [139]. These bands describe the energies of σ orbitals characterizing lonsdaleite.

Around the Fermi level, the bands are rather flat in all the sampled directions. They retain some

dispersion in the kz direction especially. These simulations indicate that single ring novamene in

its lowest configuration is a semiconductor characterized by a 3.061 eV indirect gap, most likely

larger in reality due to the well-known tendency of the LDA to underestimate band gaps. The

minimum of the conduction band is at the Γ point while the maximum of the valence band is

along the Γ-A line not far away from the center of the first Brillouin zone. Such a gap value

could cause single-ring novamene to have an absorption band falling in the shortest wave-length

portion of visible spectra, which would led to a yellow color. Nonetheless, LDA has the tendency

to underestimate band gap, therefore ground state single-ring novamene is likely to be transparent

against visible light, but to have an absorption window in the ultraviolet region. Fig. 2.9, 2.10 and
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Figure 2.10: The electronic states of single-ring novamene-benzenic configuration in an energy

region around the top of the valence band (dashed line). Left: the DFT-LDA Kohn-Sham band

structure along the path in the first Brillouin zone highlighted in Fig. 2.8. Right: the density of

electronic states of these bands.

level. These bands describe the energies of π orbitals localized mostly on the hexagonal rings.

As for the ground state configuration, they are dispersive mostly in the kz direction, while they

are quite flat in the in-plane directions, indicating strong localization around the sp2 rings, the

vertically-dispersed π bonds and “insulation” provided by the surrounding sp3 carbons. This

flatness determines peaks in the density of states near the band edges. The density of state re-

ported on the right panel is analogous to the hexagonal diamond one, except for the bands near

the Fermi energy, which move in very close, and remain separated by a quite small gap. This

could originate strong light absorption in the infrared immediately above the gap energy. The

anisotropy of these novamene structures could provide directional guides for excitons generated

by absorbed light in solar-energy harvesting applications [140]. Fig. 2.11 reports the band struc-

ture of the no-dimer combination, which is clearly metallic. The bands are particularly dispersive

on the vertical portion of the path and rather flat in the horizontal sections. As a consequence,

the density of states close the Fermi level diminish significantly towards zero. The bands crosses

the Fermi level in the kz direction, revealing an increasing delocalization of the π orbitals that

are localized on the benzenic ring. Even though the proposed allotrope has not been isolated yet,

the DFT relaxation provides enough structural information regarding the equilibrium geometry

to generate a theoretical X-ray diffraction (XRD) pattern, shown in Fig. 2.12. While the XRD

pattern of the proposed single-ring novamene structure exhibits several overlapping occurrences

with experimental peaks of diamond, graphite, and lonsdaleite, the larger cell generates numerous

additional peaks in between the main peaks of the more conventional allotropes.
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Figure 2.11: The electronic states of the no-dimer single-ring novamene. Left: the DFT-LDA

Kohn-Sham band structure along the path in the first Brillouin zone highlighted in Fig. 2.8. Right:

the density of electronic states of these bands.

2.4 Further investigations

The results of this chapter have been published in 2017 [120]. Following this publication, single-

ring novamene has also been investigated by other authors. Oliveria et al. in 2018 [141] studied

its elastic properties and its fracture mechanisms in tensile/elongation regimes by means of ab-

initio and fully atomistic molecular dynamics simulations, using the ReaxFF force field within

LAMMPS [142]. According to their work single-ring novamene presents ultimate strength val-

ues around ≈ 100 [GPa], lower than other carbon allotropes (≈ 150 GPa for armchair graphene

and ≈ 148 Gpa for diamond), but it has the highest ultimate strain along the z-direction ≈ 22.5%

(≈ 21.5% for armchair graphene and 18.9% for diamond). Its Young’s modulus is ≈ 600 GPa to

be compared with ≈ 1300 Gpa and ≈ 1270 Gpa for diamond and graphene. Their results indicate

a significantly anisotropic behavior, with a recurrent sudden drop of the stress values with no clear

evidence of a plastic region, which indicates a brittle material. Moreover, the authors point out

as how the allotrope anisotropic behaviour is present also in the fracture dynamics. Indeed the

fracture originating from deformed heptagons and pentagons propagates in different way along

the x and y directions. The major anisotropy is present along the z direction, characterized by

the highest strength before failure. Finally, one interesting feature reported in [141] is the forma-

tion of multiple and long carbon linear chains in the final fracture stages. This effect has been

theoretically predicted and observed experimentally in other carbon-based nanostructures [137].
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Figure 2.12: Simulated XRD pattern of novamene (green) in its DFT-LDA ground-state con-

figuration, compared to the diffraction patterns of graphite (black) and diamond (blue), shifted

upward for better visibility. The patterns are computed for the standard radiation wavelength

λ = 154 pm of the Cu Kα line.

2.5 Protomene

The second allotrope investigated in this thesis is named protomene. It shares some general fea-

tures with the novamenes of the previous section, with some significant novelties. The underlying

idea is analogous: mixing sp2 and sp3 hybridization kinds to form a periodic structure. Also in

this case the majority of the atoms share a tetrahedral hybridization: 6 atoms out of 24 against 2

out of 26 in novamene, can adopt a perfectly planar sp2 geometry. In principle, the sp2 atoms can

move out of the plane to build comparably weak bonds with partner atoms in the next vertically

stacked lattice cell. Similarly to novamene one can expect this extra bond formation to lower the

total energy by approximately 1 eV per bond.

2.6 The crystal structure of protomene

As described for novamene, the structure of protomene has threefold symmetry axes, which are

compatible with crystallization in a hexagonal lattice. Starting from an initial conjecture for

the structure we adapted it to a proper crystal repetition symmetry, which is reported in Fig. 2.13.

This figure identifies the correct minimum primitive cell before any dimer formation: its primitive

cell, containing 24 atoms, is sketched by a dashed line. The sp2 carbon atoms, labelled from 1

to 12, are colored in red, the sp3 in blue. The group of 4 atoms labeled 1, 3, 5, and 7 sits

around the corner of the cell, the two more labeled 9 and 11 isolated within the cell. The atoms

labeled with even-number share equivalent positions in the primitive cell below. This can be better

understood from panel b of Fig. 2.13, which reports a side cut of the repeated primitive cells.

The main novelty with respect to the allotrope class analyzed in the previous section consists

in the absence of any benzenic ring. The sp2 atoms are distributed all over the primitive cell:



2.6. THE CRYSTAL STRUCTURE OF PROTOMENE 27

b

a

x

y

b

a

9(10)

11(12)

7(8)

1(2)

3(4)

5(6)

c

b a

1

2

3 5 7

84 6

11

12

9

10
A3

B2

A2

B1

A1

B3x

z

Figure 2.13: A ball-stick model of the structure of protomene, relaxed in its no-dimer configu-

ration. (a) A view down the threefold-symmetry ẑ axis; (b) a side view in the ŷ direction. The

hexagonal primitive cell is highlighted by black dashed lines and contains 24 atoms. The prim-

itive vectors a, b, c are indicated. The “switching” sp2 carbon atoms are highlighted in red.

In this structure these switching atoms are all in their no-dimer (higher-energy) configuration:

atoms 1, 3, 5, 7 are equivalent to 2, 4, 6, 8 and they are placed in successive A planes of adjacent

cells; atoms 9, 11 are equivalent to 10, 12 and they occupy successive B planes, which stand at

intermediate heights between A-type planes.
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two of them bound with sp3 carbons, instead the one placed at the edges of the highlighted

primitive cell in Fig. 2.13 bond together forming group of four atoms. This arrangement could

possibly be the starting point for an extension of this single allotrope towards its specific class.

Indeed with some creativity one could imagine to enlarge this sp2-only areas to more complex

shapes, forming new and more intricate configurations. One interesting solution could be to

imagine extended sp2 area, surrounding the primitive cell reported in Fig. 2.13, which should

be modified accordingly. Such a class of allotropes would be reminiscent of novamene. The

labelled sp2 atoms in Fig. 2.13 have the possibility to form further bonds with similar atoms

in adjacent crystalline planes. Since dimer formation usually leads to energy lowering, among

all possible realizations of interplane dimers we expect that the lowest-energy state, the favored

state, will be the one with as many interplane dimers as possible. When any number of dimers

is formed, successive A or B planes are not equivalent any more, with the result that the ẑ-

directed c primitive vector doubles in length, implying a primitive-cell doubling, as illustrated in

the comparison of figs. 2.13 and 2.14. In principle, one could conceive extended patterns of dimer

formation in the horizontal xy plane. This would lead to a cell-multiplication to form a supercell

with primitive vectors being multiples the a and b. Dimers-pattern extended along the ĉ direction

are also possible. The number of possible patterns of cross-plane dimers, and of those extended

in the three-dimensional volume would increase exponentially with the number of non-equivalent

cells involved in the pattern. Each of this patterned configurations is higher in energy with respect

to the most stable one. Thus, one could imagine to produce each of them, exciting the ground

state combination by mean of an external perturbation, such as an electromagnetic field with the

suitable frequency. For sake of simplicity, due to the rapid growth of the cell, in this work we do

not consider such extended combinations. Instead we consider only all the possible dimer patterns

within one horizontal primitive cell, combining two 24-atoms cells stack on top of each other to a

full 48-atoms primitive cell. The central pairs (9-10 and 11-12) can form independently from each

other. Indeed they are structurally rather distant and the distortion induced by the formation of a

single dimer remains localized to its nearest neighbours. As a consequence, the configurations,

as in fig. 2.14, with both central dimers formed around plane A2 of fig. 2.13 should have very

similar cohesive energy compared to the structurally non-equivalent configuration with alternate

central dimers, namely one dimer formed around the central A2 plane and two others around the

A1 andA3 planes in fig. 2.13. On the other hand, vertical displacements of the four pairs of corner

atoms are strongly correlated with one another, since these atoms are connected by direct in-plane

bonds: the formation of one dimer will drive the formation of all three others. Concerning the

corner atoms, it turns out that the most stable configuration is the one with alternating dimers: if

atoms 1 and 2 bond together across the B1 plane, then the neighbouring sp2 atoms (3 − 6) will

tend to form bonds across the B0 and B2 planes of vertically adjacent cells, as shown in panel

b of Fig. 2.13. All other possible combinations are likely to be associated with a less favorable

cohesive energy. This is due to the tetrahedral conformation of the sp3 hybridization, which

minimizes the total energy of the electronic configuration. Any displacement from this minimum

rise the energy of the configuration. Consider, e.g., the configuration with all corner dimers

formed across the same B plane: this is a rather unstable combination, involving three 4-atoms

rings with highly deformed bond geometries. Having fixed the corner sp2 carbons, three possible

combinations exist for the central dimers. Indeed, one could find alternatively the formation of:

no central dimer, two dimers across the same B plane, or two dimers across alternating planes.
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Figure 2.14: The completely relaxed ground-state configuration of protomene, with the energeti-

cally most convenient dimerization pattern. (a) top view down the ẑ direction; (b) side view in the

ŷ direction. The c primitive vector is twice as long compared to the no-dimer configuration be-

cause A′ and B′ planes are no longer translationally equivalent to A and B planes. The primitive

cell is highlighted with a black dashed line.
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The combination with a single central dimer formed is not a stable configuration as is. Indeed the

formation of a single dimer breaks one of the lattice symmetries and induces the remaining pair of

central sp2 atoms to bond. This is also valid for the corner dimers. But in that case, apart from the

symmetry breaking, local distortion of bonding geometry has a direct role in driving the change

in the coordination of the neighbouring sp2 carbons. In general, the space group describing the

symmetries of different configurations will depend on the dimers pattern: specifically, the 48-

atom-cell structure displayed in fig. 2.14 is characterized by the space group P-31m (#157).

2.7 Structural and electronic properties

To characterize the different equilibrium configurations and their electronic properties, we em-

ployed density functional theory (DFT) simulations, with a well-established approach [100, 132,

137, 143–151]. For each configuration we compared the results obtained within local density

approximation (LDA) and within generalized gradient approximation [152, 153] in the Perdew-

Burke-Erzoff (PBE) [154] formulation. We employed ultrasoft pseudo-potentials to account for

core electrons as implemented in Quantum Espresso [129]. For both functionals the wave func-

tions are expanded on a plain-waves basis with a kinetic-energy cutoff of 408 eV, which guaran-

tees the convergence of the total energy of a simple carbon structure (diamond) within 10−3 eV.

We sampled the Brillouin zone with a 10× 10× 20 Monkhorst-Pack k-point grid [155] for each

configuration showing at least one dimer formed. Instead, due to its higher fisrt Brillouin zone,

to sample the no-dimer combination we employed a 10× 10× 30 Monkhorst-Pack k-point grid.

This choices guarantee a mesh whose density is at least 10 points×nm3 for every analyzed dimer-

pattern. We performed simulations to fully relax the nuclei positions allowing the cell primitive

vectors to change with a conjugated-gradient method. The starting point is an initial rough con-

figuration built from the analysis of the structure symmetry as described in Sect. 2.6. Atomic

relaxation is performed until the following convergence conditions are reached: all components

of all forces must be smaller than 4 pN and the total-energy difference between two successive

relaxation steps must be smaller than 10−3 eV. Tab. 2.3 summarizes the simulation results on

the two main relaxed structures of protomene: the no-dimer configuration of fig. 2.13, and the

ground state, namely the configuration with the largest possible number of dimers formed, as dis-

played in fig. 2.14. The same quantities for the case of novamene are shown for comparison. The

difference in binding energies relative to diamond is reported in such a way to have an absolute

reference of the stability of these allotropes. ∆E is defined by equation 2.1 with the appropriate

protomene quantities: Where the reference binding energy of diamond is ELDA
b = −8.908 eV

(EPBE
b = −8.252 eV), as computed using the LDA or (parenthesized) the PBE exchange and cor-

relation functional. The LDA-DFT simulations result in a binding energy per atom of −8.708 eV

for the ground state and −8.636 eV for the no-dimer configuration, only 2.2% and 3% less stable

than diamond respectively, while novamene is 2.6% less stable than diamond [120]. These low

values are quite surprising given the much deeper complexity of the reported configurations. As

can be seen from Tab. 2.3, the PBE functional corresponds to LDA in predicting the protomene

ground state to be slightly more stable than novamene. The ground state configuration is clearly

identified by the one with dimers formed by 9− 10 and 11− 12 atoms across the same A′ plane

(as in fig. 2.14), but the alternative possibility of bonds across alternating A−A′ planes is essen-

tially degenerate within 1 meV per atom. Although cross-plane bonding occurs independently,
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Structural protomene protomene novamene diamond graphite

parameter no-dimer ground state ground state LDA LDA

LDA(PBE) LDA(PBE) LDA(PBE) (PBE) (PBE)

Natoms per cell 24 48 52 2 4

Ndimers corner − 4 − − −
Ndimers central − 2 2 − −
∆E per atom 0.271 0.199 0.227 0 −0.146
[eV] (0.188) (0.132) (0.1350) (0) (−0.318)

band gap 0.000 3.380 0.336 4.220 0.000
[eV] (0.000) (1.274) (0.371) (4.445) (0.000)

a,b 8.072 8.074 8.419 3.523 2.433
[Å] (8.166) (8.157) (8.510) (3.570) (2.458)

c 2.472 4.828 4.998 3.523 5.898
[Å] (2.509) (4.977) (5.090) (3.570) (6.444)

density 3432 3512 3381 3649 2639
[kg m−3] (3303) (3338) (3248) (3504) (2366)

Table 2.3: The main structural properties of two protomene configurations, the no-dimer one and

the dimerized ground state, compared with those of novamene, of fcc diamond and of graphite.

The difference in binding energy is computed through equation 2.1, where the reference binding

energy of diamond is ELDA
b = −8.908 eV (EPBE

b = −8.252 eV), as computed using the LDA

or (parenthesized) the PBE exchange and correlation functional.



32 CHAPTER 2. MIXING SP 2 AND SP 3 HYBRIDIZATIONS

Corner dimers 0 0 4 4

Internal dimers 0 2 0 2

Natoms 24 48 48 48

∆E [eV] 0.271 0.228 0.264 0.199

band gap [eV] 0.000 0.000 0.000 3.380

Table 2.4: The energetical properties (computed with LDA) of the four inequivalent protomene

configurations, the no-dimer one and the dimerized ground state compared to two intermediate

combination with 2 and 4 dimers formed out of 6. The difference in binding energy is computed

through equation 2.1, where the reference binding energy of diamond is ELDA
b = −8.908 eV

(EPBE
b = −8.252 eV), as computed using the LDA or (parenthesized) the PBE exchange and

correlation functional.

the formation of bonds between B and B′ planes favors the formation of bonds of the other kind

by reducing slightly the lattice spacing in the ẑ direction. Indeed, as reported in Tab. 2.3, c lat-

tice spacing of the ground-state structure is significantly shorter than twice the c spacing of the

no-dimer 24-atom-cell structure. Structures with an intermediate number of dimers, as reported

in Tab. 2.4, exhibit intermediate values of the total energy. As said, the formation of one single

dimer in the corner-group induces the formation of the other. Indeed, the third column in Tab. 2.4

represents the fully relaxed state for all the possible combination among the corner dimers. The

DFT simulation provides enough information to evaluate the X-ray powder diffraction pattern

(XRD) of protomene in its ground-state configuration: fully relaxed atomic positions and lattice

primitive vectors. This pattern is displayed in fig. 2.15, and compared with the XRD patterns of

novamene and diamond. This very simple analysis of the XRD pattern is intended as theoreti-

cal benchmark for future experimental attempts to isolate and detect protomene samples. These

patterns are obtained for an incident X-ray beam with λ = 154 pm. The diffracted intensity

is distributed, as in novamene, among numerous small-intensity peaks, while diamond, with its

quite small cell in real space, has widely spaced reciprocal vectors, generating few strong peaks.

Natural tiling analysis

It is interesting to examine the structural properties of the new allotrope with classification tech-

niques based on a network-topology analysis. To this purpose, we used face symbols to describe

the so-called natural tilings of protomene. Comprehensive guides for the detailed meaning of

these topology concepts can be found in literature, for instance in articles [156–158]. Here we

give just a very introductory definition of some basic concepts. In short, a face symbol character-

izing a tile, has the form [Aα.Bβ . . .]. The exponents α, β represent the number of faces whose

perimeter is a ring withA,B sides. According to the cited literature, a ring is a cycle that is not the

sum of two smaller cycles, while a strong ring cannot be decomposed in any number of smaller

cycles. Obviously a ring is made by the bonds connecting the atoms of a system. The union face-

to-face of different tiles represents the net composed by vertices (atoms) and edges (bonds). If

several tiles are present together, the natural tiling is the sum of all single face symbols. To count

the prevalence of each one of the face symbols in the crystal structure, stoichiometric coefficient
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Figure 2.15: Simulated XRD pattern of protomene (red) in its DFT-LDA ground-state config-

uration, compared to the diffraction patterns of novamene (green) and diamond (blue), shifted

upward for better visibility. The patterns are computed for the standard radiation wavelength

λ = 154 pm of the Cu Kα line.

are introduced before the actual description of the tile. For example: X[Aα.Bβ ] + Y [Cγ .Dδ] is

the natural tiling of a structure with two different tilings appearing in a X : Y ratio. We made use

of the ToposPro software [159] to identify the natural tiling of the protomene ground structure,

obtaining:

13[63] + 3[52.62] + 6[64] + 3[62.72] + 6[52.63] + 3[64.72] + 3[52.65] + 2[69].

Fig. 2.16 displays the individual tiles forming protomene. Each color corresponds to a different

class of tiles. For instance, the thirteen red tiles in Fig. 2.16 are part of the 13[63] cage. Since the

single tiling characterizing the diamond structure is [64], we deduce that protomene includes 15%

of diamond cages. On the other hand, we exclude the presence of regions topologically equivalent

to hexagonal diamond (lonsdaleite), classified [63] + [65], due to the lack of [65] in the protomene

natural tiling. The obtained topological classification can be useful as an example to search this

structure in a database of previously published structures, such as SACADA [106, 160]. Since

the natural tiling is unique, this search is particolarly useful to make sure that protomene had not

been developed before.

Electronic properties

Fig. 2.17 reports the electron energy bands and the corresponding density of states for the ground-

state configuration of protomene. As reported in Tab. 2.3, the dimer formation involving all

initially sp2 atoms produces a gap opening in the band structure at the Fermi level. The band

structure depicted in fig. 2.17 predicts protomene to be a wide-bandgap semiconductor. The

DFT-LDA gap amplitude is estimated at 3.38 eV. However the DFT-PBE simulation estimates
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Figure 2.16: Natural tiling for the protomene structure: panel a top view down from the ẑ
direction; panel b side view in the ŷ direction. Different classes of tiles are labeled by different

colors: 13[63] red, 3[52.62] dark green, 6[64] yellow, 3[62.72] light-green, 6[52.63] light-blue,

3[64.72] purple, 3[52.65] pink, 2[69] blue.
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Figure 2.17: The electronic states of protomene in an energy region around the top of the valence

band (dashed line). Left: the DFT-LDA Kohn-Sham band structure along the path in the first

Brillouin zone highlighted in the inset at the right side. Right: the density of electronic states of

these bands.

the same gap at less than half this energy. The reason for this difference lays in the well-known

tendency of DFT-LDA to overbind: the LDA computed interplane dimers are probably shorter and

more strongly bonded than in reality, thus generating a larger bonding-antibonding separation,

which reflects in the protomene band gap. On the other hand, the DFT-LDA method is known

to underestimate band gaps. The PBE functional may sometimes capture the electronic band gap

slightly more accurate than LDA, but its tendency to underbind determines a quite small bonding-

antibonding splitting associated with weaker interplane dimerization. As a result, a gap estimation

in the 3 eV region is most likely realistic. One interesting feature of the protomene band structure

is the presence of a direct gap, locate at the center of the first Brillouin zone . Despite the discussed

uncertainty about the precise amplitude of the protomene gap, it is significantly larger than in

novamene (0.3−0.4 eV), but clearly smaller than in diamond (where, however, the gap is indirect).

The density of electronic states is reported in fig. 2.17. Despite the rather flat nature of certain

regions of the band structure, the overall density of states is fairly smooth. The gap between

the valence band and the conduction band is the only gap in this energy region, and the density

of states changes from relatively small near the gap itself to a rather large few electron-volts

away from it, in both the valence and the conduction regions. Fig. 2.18 reports the analogous

electronic properties of the no-dimer configuration, where the primitive cell consists of 6 sp2

hybridized carbon plus 18 sp3 ones. The path in the first Brillouin zone is the same shown in

Fig. 2.17. As reported in Tab. 2.3, the total absence of dimers corresponds to having 6 electrons

per primitive cell that are unpaired. As such, this combination is predicted to have a metallic

behaviour, as the electronic states crossing the Fermi energy level confirm. Four bands can be

distinguished crossing the Fermi level along those portion of the path parallel to the c primitive

vector, revealing a prevalent metallic behaviour in such a direction. Besides, the high dispersion
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Figure 2.18: The electronic states of metallic protomene in an energy region around the Fermi

level (dashed line). Left: the DFT-LDA Kohn-Sham band structure along the path in the first

Brillouin zone highlighted in the inset at the right side in fig. 2.17 . Right: the density of electronic

states of these bands.

of the bands along those portion of the path parallel to kz corresponds to a certain delocalization

of the corresponding orbitals.

2.8 The vibrational spectrum

In order to simulate the vibrational properties of the ground state configuration of protomene, we

make use of density-functional theory in its perturbative expansion (DFPT), as implemented in

Quantum Espresso [129, 130]. Besides the cited articles, for detailed information see Appendix

B. Basically in DFPT the vibrational frequencies are obtained through diagonalization of the dy-

namical matrix, connected to the force constants matrix. The construction of such matrices can be

reduced to the estimate of the response of the electrons density to a displacement of the ions (the

perturbation). This response function is computed within linear response theory employing the

perturbed Kohn-Sham orbital and the unperturbed ones. In this analysis the phonons frequencies

are computed along the same k-points path as for the electron energy bands. This is a standard

path for hexagonal Brillouin zone, as it goes through all the high symmetry point in the irre-

ducible zone. The frequencies are computed separately at each ~k point, in order to use efficiently

the available computational resources. The overall 24 points are distributed as follows along the

path: 5 in each long segment (Γ →A, L→M, K→H), three for the other portions. Fig. 2.19

displays the phonon frequencies along such a path in k-space. The acoustic branches are clearly

visible as they depart from zero frequency at Γ; the transverse acoustic branch, the lower of the

two, is twofold degenerate along the Γ−A high-symmetry line. At higher frequency, mostly in

the 400 − 1400 cm−1 range, the numerous optical phonon branches cluster and intersect with

each other. The optical branches are numerous accordingly to the high number of atoms form-
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Figure 2.19: Phonon dispersion computed along the same Brillouin-zone path as drawn for the

electron bands in Fig. 2.17.

ing the primitive cell of protomene: following the 3N − 3 rule, N being the number of atoms

in the primitive cell, one obtains 141 branches. Near 1500 cm−1 and separated from the great

majority of phonon branches by a small gap (∼ 90 cm−1), we find two optical phonons, each of

them twofold-degenerate along the Γ−A line. We analyze in particular the atomic displacement

corresponding to these optical modes close to Γ. Fig. 2.20 reports the eigenvectors of the dy-

namical matrix computed by means of Quantum Espresso. Each arrow represents the direction

of the displacement in selected modes. The length of each arrow is directly proportional to the

maximum atomic displacement associated with the selected vibration mode. Note that each ar-

row is magnified by a factor 102 and only those components larger than 0.01 Åare shown. Each

panel represents a specific normal mode. Panel a and b represent the eigenvectors of the 139th

and the 140th modes as representative of the optical modes below the gap in Fig.2.19. Panel c,

d, e, f represent the 4 high-frequency optical modes above the gap. Panel f shows one of the

acustic modes as a comparison. The 4 high-frequency modes are characterized by localized vi-

braion as they only involves the dimerized 9 and 11 carbons from picture 2.14 and their nearest

neighbours, whereas below the gap the modes involve also different carbons. From the analysis

of the eigenvectors one can recognized the modes above the gap as mainly stretching modes of

the short nearly-horizontal bonds connecting the atoms labeled 9-11 from Fig. 2.14 forming the

central dimers with one of those surrounding them. This feature of the phonon spectrum could

be considered as a signature for experimental identification. Overall, the computed vibrational

spectrum is consistent with a quite congested Raman spectrum, probably not too much different

from the “D band” of amorphous carbon [161]. This band is associated with the irregular (the

D stands for disorder) distribution of atoms. It is centered at 1350 cm−1. Such a D peak is not

present in perfect crystals, for instance pristine graphite, which is instead characterized by the so

called “G” band at approximately 1540−1600 cm−1. If limitations in the graphite domain shows

up, for instance induced by grain boundaries, imperfections, adatoms, then the D-peak would be

present with an intesity proportional to the “degree” of disorder.
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2.9 Further investigations

The results of this section have been published in 2018 [121]. Starting from this work, Oliveira et

al. [162] investigated the mechanical properties of protomene and their temperature dependence,

by means of fully atomistic reactive (ReaxFF potential) molecular dynamics and DFT (GGA/PBE

functional) simulations. Their results suggest that similarly to novamene, protomene is a me-

chanically anisotropic system against tensile deformations. At room temperature, the predicted

ultimate strength is ≈ 100 GPa and the Young’s modulus is ≈ 600 Pa. Other carbon allotropes

have higher values, but protomene still performs better than other materials, such as some ceram-

ics, silicon, steel under tensile stress. Like for novamene, protomene exhibits the highest ultimate

strain along the z-direction ≈ 24.7% and a sudden failure along each Cartesian direction. The

temperature dependence of the mechanical properties has been studied from 10 up to 900 K. At

the ultimate strength tends to decrease along all the directions by some 10%, especially in the xy

plane. Also the ultimate strain is affected by the temperature: the most considerable variations are

observed for the z-direction, with a decreasing of 77.0% in its value through the analyzed range.

The Young modulus instead is not very sensitive to temperature increase with variation of the

order of 10%. The authors point out how the complex deformation mechanism of protomene is

associated with changes in the relative number of sp3 to sp2 bonds. Indeed, the increase of tem-

perature causes an almost linear increase in the ratio between the number of sp2 and sp3 carbons,

at a rate of ≈ 0.04% for each 1 K of increase. As shown in the previous sections, these changes

have important consequences because they are associated with structural changes, besides induc-

ing a transition from a semiconductor to a metallic structure. The results of Oliveria et al. show

that this transition could be obtained through temperature variations applied to the system, or by

uniaxial mechanical stretching parallel to protomene ĉ primitive vector, or through a simultaneous

combination of both. Temperature gradients would induce the formation of alternating dimer-non

dimer areas within novamene sample.
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Figure 2.20: Each panel reports the eigenvectors of the dynamical matrix for a specific normal

mode, in the limit of long wavelength perturbations. Panel a and b represent the eigenvectors

of the 139th and the 140th modes; Panel c, d, e, f represent the 4 high-frequency optical modes

above the gap; panel f shows one of the acoustic modes as a comparison.





CHAPTER 3

Mixing sp and sp3 hybridizations

3.1 Zayedene

In this chapter we explore the possibility of combining sp and sp3 hybridized carbon. Specif-

ically, we consider sp-carbon chains (SPCCs) included in hexagonal diamond cavities. Due

to their highly unsaturated configuration, SPCCs tend to react easily with other carbon forming

extra bonds, switching from sp to sp2 or sp3 hybridization. As such, in order to find a SPCC

inside a cavity its should be sufficiently large. On one hand, the cavity should be long enough to

accommodate the chain without too much strain and, on the other hand, wide enough to keep it

isolated and prevent spontaneous reaction with the atoms on the cage surface and the consequent

deterioration of the sp-hybrization. To fabricate such a cavity in bulk carbon, we could equally

well consider standard cubic diamond, or any other sp3 allotrope. Due to its hexagonal structure,

the choice falls on lonsdaleite: its c primitive vector suggests a natural direction for the cavity

long axis. Thus, the analyzed systems are constructed as follow: bulk hexagonal diamond spot-

ted with an array of cavities, each of which holding one or several SPCCs. In principle random

distributions of cavities could be present in a sample, but here for simplicity we consider periodic

arrays. The irregular case would indicate a defective structure rather then a new carbon allotrope.

The name to indicate these allotropes should be ”zayedene”. This name comes as a tribute to

Zayed Bin Sultan al Nahyan, the former sheikh of the United Arab Emirates, where this structure

was first imagined. Likewise novamene in section 2.1, it would be more appropriate to define

zayedenes as a class of allotropes. Indeed, a large number of periodic cavity distributions can be

imagined. One could classify different structures on the basis of the shape of the cavity and as a

function of the number and the orientation of the chains. The number of possible combinations

scales as a function of this three degrees of freedom. Clearly the simplest system to imagine is

based on cylindrical cavities. Fig. 3.1 reports one of the simplest of such structures: the cylin-

drical cavity have the symmetry axis parallel to the primitive cell c vector, with a single SPCC

aligned alon this axis. Fig. 3.2 reports more possible structures belonging to this class: each panel

but the last one reports a different possible orientation of the chain in the same cylindrical cavity

reported in Fig. 3.1. The last panel is a horizontal section of the system; possible non-equivalent

bonding sites located at the upper/lower cylinder faces are labelled Si, the atoms on the cavity

axis are labelled C.

41
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m h [Å] N l [Å] ǫ

1 5.66 4 3.87 46 %

2 9.78 6 8.95 9.3 %

3 13.90 10 14.03 -0.9 %

4 18.02 12 16.57 8.7 %

5 22.14 16 21.65 2.2 %

6 26.26 20 26.73 -1.7 %

7 30.38 22 29.27 3.7 %

8 34.50 26 34.35 0.4 %

9 38.62 28 36.89 4.9 %

10 42.74 32 41.97 1.9 %

Table 3.1: A comparison between the height h Å of the cavity and the unstrained length of the

SPCC l Å ; m is the number of lonsdaleite units defining the cavity and N is the number of atoms

in the chain, see Fig 3.1; ǫ is the percentage strain, i.e. the difference in lengths normalized to the

SPCC length l.

Since the carbons in the cage are sp3, the extremal atoms of the SPCC are bound with the cage

through a single bond. As a consequence, we expect the carbon chain to display a non-negligible

bond-length alternation (BLA). That is, to be in a polyynic state. Then, the length of SPCC can be

written as l = N ·(bt+bs)+bt ; where b t = 1.21 Å and b s = 1.33 Å are the length of the triple

bond and of the single bond [100, 148, 163]. In principle, some qualitative information about the

stress state of the SPCC can be extracted by the a comparison of its length l with the significant

dimensions of the cavity (e.g. in our case is the length of the cavity in the symmetry axis direction)

reported in table 3.1. The 26-atoms chain is the one that fits best its corresponding cage: the strain

ǫ = (h− l)/l is as small as ≈ 0.4%. Among the first three configurations, C6 (6 atom chain) has

ǫ ≈ 9.3%, C10 has ǫ ≈ −0.9%, C12 has ǫ ≈ 8.7%. Then, we can infer that C6 and C12 experience

a significant tensile strain whereas C10 is subjected to a small compressive strain. The volume of

the cylinder is crucial to define the number of atomsNtot in the primitive cell. Such volume Vcage

considered as a function of the radius R of the cylinder scales more rapidly than Vcyl = πhR2.

The reverse would lead to a value of R where holes start to appear in the cage. The thickness of

the cage is another central parameter to describe the number of atoms as a function of R. Since a

thick cage would make the structure more reminiscent to impure lonsdaleite rather than to a new

allotrope, hereby we consider the thinnest meaningful cage. This corresponds to a single vertical

slice of bulk lonsdaleite separating two cavities belonging to adjacent primitive cells. This choice

is also motivated by the rapid scaling of the number of atoms with the increase of the primitive

cell dimensions. The role of the radius R in the simulated model structures can be defined more

precisely introducing the quantities mc and ma. They describe the repeated lonsdaleite units in

the vertical c stacking and in the horizontal xy plane, respectively. To prevent a cavity in one

repeated block to get too close (or even worst to merge with) neighboring cavities, the following

inequalities must be respected:

mc ≥ m+ 1 (3.1)

ma a > 2R+ tcage , (3.2)
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where a = 2.51 Å is the lonsdaleite lattice spacing in the xy plane; and tcage = 0.72 Åis the

minimum acceptable thickness of the cage, which is the length of a single C-C bond projected in

the horizontal plane. It corresponds to the thickness of a zig-zag shaped portion of lonsdaleite. At

the same time, R must exceed several Å in order to allow a longer SPCC to bend or vibrate like

a string, without a rapid re-bind with the cavity inner surface. Given these conditions, the model

involves a total number of atoms

Ntot = N + 4m 2
amc −Ncavity , (3.3)

enclosed in a periodically repeated cell of volume m2
amc a

2 c
√
3/2, with N being the number of

atoms in the SPCC. In Eq. (3.3), the number of atoms removed from the cavity cylindrical volume

is

Ncavity ≃ 8× 3−1/2 πmR2a−2c−2 , (3.4)

where the ≃ symbol indicates that this estimation needs to be rounded to a near integer, depending

on which atoms near the cylindrical surface are counted in or out. Tab. 3.2 reports the different

possible combinations of the quantities defining the different zayedenes along with the number of

atoms characterizing the structures. With 4 valence electrons per carbon atom, the total number

of electrons per simulation cell amounts to 4Ntot.

ma mc R [Å] m N Ntot Ncavity

4 3 210 52

5 4 330 76

5 3 5 2 6 306 100

6 6 416 160

7 7 552 232

4 3 252 78

5 4 396 114

5 4 5 3 10 360 144

6 6 490 240

7 7 666 348

4 3 292 104

5 4 460 152

5 5 5 4 12 412 200

6 6 556 320

7 7 728 464

Table 3.2: The parameters used to build the nine different configurations. ma and mc are the

number of repeated lonsdaleite unit cell along the a, c primitive vectors; R is the radius of the

cavity, m is the number of lonsdaleite c units defining the cavity height, and N is the number of

atoms in the SPCC, see Fig. (3.1). Ntot is the total number of atoms in the allotrope primitive cell

according to Eq. (3.3); Ncavity is the number of the removed carbons according to Eq.(3.4).
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3.3 Numerical Simulations

Due to the relatively large number of atoms forming the primitive cell, it is worth using a numer-

ical method capable to handle such large systems without being too computationally demanding.

Ab-initio methods would be the state of the art, given their accuracy in the reproduction of elec-

tronic ground-state of molecular and periodic systems. But usually it is required to build and

diagonalize a Nel × Nel Hamiltonian matrix several times during a run, and the state of the art

algorithms scales as N3
el, with N being the number of electrons in the system. In these systems

Nel ≈ 102 − 103. This means that the relaxation of these system could become extremely de-

manding from a computational point of view. As a consequence, for a qualitative analysis on the

energetics of the class of allotropes and its dependence on the size of the cavity and the length

of the chain, we employed tight-binding (TB). Whereas to specifically characterize the electronic

properties of few specific structures in this class we employed DFT in the version implemented

in Siesta [165]. This choice arises for three main reasons. First, tight-binding does not involve by

default a self consistent updating of the Hamiltonian; this speeds up significantly the calculations.

In this sense TB can be seen as a ”quick and dirty” method, not being so far from the exact quan-

tum description of DFT, retaining a wave-function description of the electronic states, but still

relying on a previously prepared parametrization of the matrices elements necessary to describe

the system. Second, TB exists in several different formulation including one derived as zero-order

perturbation to DFT formalism (DFTB) [166], see paragraph 1.2. At least in the formalism this

DFTB formulation retains some of the features of DFT such as the existence of some terms in

the Hamiltonian related to human’s ignorance on those part of the many-body problem repre-

senting electronic correlation. Furthermore, since DFTB is a perturbative approach, one could

in principle add more and more terms in the expansion until the required precision is reached.

The zero order is a pure TB method, the inclusion of the first-order correction aims to adjust

the independent-electron picture of TB, etc. Third, TB relies on an externally and previously

produced parametrization, which can be targeted to reproduce determined quantities and highly

refined.

Validation of the tight-binding model

We employed a TB parameterization which has been reported to reproduce structural and me-

chanical properties of sp3 carbon quite accurately [167, 168]. Nontheless, it is worth to validate

the force field also on a one-dimensional systems, such as SPCCs which are part of the systems

under analysis. For this purpose, we compare the dependence of the total energy of a C12 SPCC

isolated in vacuum on the length of its central bond, from a shorter-than equilibrium spacing, until

full decomposition into 2 C6. The SPCC is not interacting with its periodic replica: the ĉ vector of

the box is much longer than the SPCC length. After detaching the two halves of the C12 around its

center, all the atoms are let free to relax to their equilibrium positions apart from the two forming

the central bond, whose distance is kept fixed. As a reference, we take DFT-GGA as implemented

in SIESTA (Perdew-Burke-Ernzerhof functional [128], DZP basis)[165]. In Fig. 3.3, we compare

the resulting ab-initio adiabatic potential with the homologous TB curves, as obtained by means

of the DFTB+ implementation [169]. The energies are reported in eV and the displacement in

pm. The energies are shifted by twice the total energy of a C6 chain, in this way the 0 eV level in

the graph corresponds to the dissociation energy computed with each method. Three curves are
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shown: the solid line represents ab-initio results; the dashed line corresponds to TB energies; the

dot-dashed line reports TB energies computed with second order fluctuation in electron density

included in the Hamiltonian, which is now computed self-consistently (SCC) [166]. The aim of

including a self-consistent cycle is to improve the independent particle picture typical of TB. In

dftb method specifically, the portion of the Hamiltonian which is computed self consistently con-

tains the exchange-correlation terms of the Coulomb interaction. Which means, it take account

of our ignorance on the electron correlations. Fig. 3.3 reports a general qualitative agreement

between TB and DFT descriptions for this 1D system. Nonetheless few remarkable differences

can be identified. Both SCC-TB and pure TB tend to underestimate the bond energy by ≃ 2 eV

and to overestimate the optimum length for the central bond: ≃ 1.3 Å against ≃ 1.25 Å from the

ab-initio method. Moreover, the predicted bond length alternation (BLA) assumes different val-

ues when computed with the different methods. BLA is computed as follows for relaxed SPCCs:

BLA =

(N−1)/2
∑

i=1

[

d2i
Neven

− d2i−1

Nodd

]

(3.5)

where:

d2i = |~r 2i+1 − ~r 2i| Neven = ⌊N
2

− 1⌉

d2i−1 = |~r 2i − ~r 2i−1| Nodd = ⌊N
2

+ 1⌉

N represents the number of atoms, so N − 1 is the number of bonds; ~ri the position of the i-

th atom. Then, the BLA is simply the difference in the average length of even/odd alternating

bonds. Its value obtained through DFT is 0.1 Å, whereas tight binding BLA is 0.4 Åwhen relaxed

with SCC approximation and twice as much without it. This is probably a consequence of the

poor performances of the employed TB Hamiltonian when finite-size effects in Peierls distortion

appears. It was reported [58, 69] that finite-size effects decrease the degree of alternation in bond

lengths for short SPCCs. As a consequence, the BLA is predicted to increase with the number of

atoms in the chains, and to be more significant for the central bonds of the chain. In zayedene,

the carbon in the cage shows sp3 hybridization forcing the SPCC to be in a well defined polyyne

state. So this incapability of TB to reproduce DFT prediction is not likely to be relevant. Finally,

TB fails for high positive strain of the central bond. DFT-GGA give rise to the expected attractive

profile in Fig. 3.3, whereas the TB model shows a level crossing to a dissociative state above 225

pm . Indeed, Fig. 3.3 indicates that the asymptotic limit is incorrect. The reason is an unphysical

charge transfer between the two C6 sections which leads, at high separation, to a total energy

lower than twice that of a single isolated C6. SCC corrections smoothen out the level crossing

through renormalization of the Mulliken charges. Suppressing the unphysical charge transfer

leads to a symmetric charge distribution between the two C6 and allows for a correct description

of the asymptotic energetics. The incorrect dissociative regime above 230 pm remains. Due to the

unsaturated carbons, the molecular C12 dissociation studied here should be considered as a worst-

case scenario. In the calculations we carried out, the bond saturation of all sp carbon prevents the

formation of such unphysical charged states, leading to far better reliability of the TB model, even

in its no-SCC version, which we adopted throughout. The only significant problem in the adopted

TB model stands in its spontaneous tendency to convert the (001) surface layer of lonsdaleite from
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Figure 3.3: Comparison of the binding energy curves of a C12 chain → 2 C6 chains, as a function

of the length of the central bond (with all other bonds being left free to relax) obtained with

the different electronic-structure models considered in the present thesis. Solid line: reference

calculation, the accurate DFT-GGA obtained by means of the SIESTA package; dashed line: one-

shot TB, no charge self consistency; dot-dashed line: self-consistent charge TB (TB-SCC). For

all curves, the zero reference energy (dotted) is taken as twice the energy of an isolated C6 chain.

sp3 to sp2. This can be problematic in case of larger cavities, as will become clear in the next

section.

TB energetic analysis: symmetric SPCC orientations

In principle SPCCs with different number of atoms can be found in wide variety of orientations.

Hereby we focus on configurations similar to the one reported in Fig. 3.1: straight chains in-

cluded in cylindrical cavities with the SPCC placed along the symmetry axis of the cylinder. We

analyze three different chain lengths, each inserted in five cavities with different radius: fifteen

prototype configurations overall. The defining parameters according to the model equations 3.1

are listed in Table 3.2. Once the cavity is defined and the SPCC included, the system is optimized

through tight-binding conjugated-gradient (CG) relaxation as implemented in DFTB+ [169]. The

maximum force component has to be lower than 5 · 10−6 eV/Å before convergence is achieved.

Both atomic positions and primitive vector are optimized. Table 3.3 summarizes the main results

of these relaxations. First, consider the difference in the total adiabatic energy per atom of each

structure, relative to that of perfect bulk lonsdaleite, defined as:

∆E =
Etot

Ntot
− Ebulk

Nbulk
. (3.6)

The differences in binding energy range from 0.3 to ≈ 0.5 eV per atom, apparently with a visible

tendency to increase as the size of the cavity increases, involving more cut bonds. The non-

monotonic trend of ∆E as a function of Nsurf (the number of atoms forming the internal cavity
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surface) is due to the different cage thickness characterizing the different combinations. Indeed

as one can infer from table 3.2, a larger cavity radius does not necessarily require a corresponding

increase in the lateral side of the supercell represented by ma. If it does not, then the cage will be

thinner, the imagines of the cavity closer to each other and the overall system is less reminiscent

of a defective bulk system, which would be more stable than any element in this types of structure.

This is basically the reason why the difference in binding energy of those configurations having

R = 5 Åis systematically larger than to the others. This result suggests that the dominant factor

N R [Å] a [Å] c [Å] ρ [kg/m3] ∆E [eV] Nsurf Ecost [eV] Egain [eV]

3 10.06 16.58 2884.0 0.35 38 3.64 3.70

4 12.56 16.63 2917.4 0.33 50 3.81 3.23

6 5 12.584 16.590 2682.4 0.42 60 3.86 3.91

6 15.051 16.611 2539.8 0.40 86 3.00 -3.53

7 17.594 16.553 2480.9 0.42 110 3.62 -15.97

3 10.07 20.82 2749.7 0.40 56 3.22 3.15

4 12.54 20.84 2783.6 0.37 68 3.69 2.67

10 5 12.596 20.810 2511.0 0.48 84 3.82 3.48

6 15.069 20.815 2387.4 0.44 101 3.87 -3.81

7 17.493 20.836 2375.6 0.46 128 4.18 -7.74

3 10.07 24.84 2669.5 0.43 74 3.03 2.71

4 12.57 24.9 2691.2 0.40 98 3.26 2.26

12 5 12.606 24.861 2401.7 0.51 108 3.46 1.39

6 15.000 25.009 2274.8 0.45 146 3.19 1.45

7 17.687 25.001 2142.9 0.43 182 3.27 -8.88

Table 3.3: The energetics of the relaxed configurations: N fixes the length of the CN chain,

R is the cavity radius, and the other structural parameters are as listed in Table 3.2. ρ is the

average density of the allotrope, systematically smaller than that of pure lonsdaleite, which is

ρ ≃ 3548.9 kg/m3 within the same DFTB model, to be compared with the experimental value

ρ ≃ 3510 kg/m3. ∆E is the difference in total energy per atom between the considered structure

and bulk lonsdaleite. Ecost, Eq. (3.7), is the energy required to cut the Nsurf bonds, thus creating

the cylindrical cavity. Egain is on half of the energy variation associated to the chain bonding to

the inner cavity walls.

in the lower stability of these allotropes is the energy cost

Ecost =
Ecage + Ecyl − Ebulk

Nsurf
(3.7)

required to cut the bonds and dig the appropriate cylindrical cavity out of bulk lonsdaleite. The

three total adiabatic energies at the right hand side of Eq. (3.7), have the following meaning: Ecage

is the energy of the lonsdaleite cage surrounding the cavity without SPCC; Ecyl is the energy of

the cylindrical portion of lonsdaleite that has been removed to create the cavity; and Ebulk is the

energy of a portion of bulk lonsdaleite with the number of atomsNbulk = Ncage+Ncyl. All these

energies refer to fully-relaxed configurations. Nsurf , also reported in Table 3.3, is the number of

cut bonds at the surface of the cylinder. Table 3.3 reports this energy per cut bond, which, as
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binding sites C − S1 S1− S2 S1− S3 S1− S4 S1− S1

δE [meV] 0.0 3.3 −11.9 −15.6 −8.3

Table 3.4: The difference in the total adiabatic energy per atom of each structure, relative to the

C-C structure with both sides of the SPCC attached to the central C binding sites, as in Fig. 3.1.

δE = (ES − EC−C)/N , where the Si labels identify the relevant pair of binding sites, see

Fig. 3.4.

expected, is approximately constant as a function of the cavity size. Of course the number of

cut bonds Nsurf increases as the cavity size is increased, resulting in a progressive deterioration

of the overall stability of the allotrope, observed in the increasing excess energy ∆E above. On

the other hand, the bonds of the SPCC with the cage are beneficial to the overall stability. We

quantify this stabilizing contribution with

Egain =
Ecage + Efree CN

− Etot

2
, (3.8)

namely the bonding energy (per bond) that is gained when attaching the SPCC inside the cavity.

Here Efree CN
is the energy of an unsaturated CN SPCC isolated in vacuum. The quantity Egain

depends on the stress state of the SPCCs, arising from the strain ǫ reported in Table 3.1. Indeed,

according to that table, the C6 and C12 SPCCs are strained by ∼ 9%, while for C10 buckles under

a ∼ −1% compressive strain. In this comparison, large strains ǫ decrease the bonding energy of

the chain, as occurs for the C6 and C12 configurations, due to the additional elastic-deformation

contribution. The unexpected dependence ofEgain on the cavity radiusR occurs as a consequence

of the tendency of the surface layers of hexagonal carbon to graphitize and correspondingly bulge

out inside the cavity, thus pressing the SPCC into buckling. However, recent research [170] re-

ported lonsdaleite to possess a remarkable graphitization resistance mechanism which is partially

responsible for its high hardness. Therefore the graphitization characterizing the larger cavities is

an non-physical feature of the adopted TB model. The values obtained for the larger cavities are

therefore strongly biased by this feature.

3.3.1 Other structures: shifted and rotated SPCC

Each of the 15 prototypes analyzed in the previous section include a SPCC that is initially parallel

to the c of lonsdaleite along the cylinder axis. The configurations reported in Fig. 3.2 loose this

symmetry. This possibility introduces extra degrees of freedom in the definition of the class ele-

ments: whether the SPCC is simply shifted or also rotated, this group consists of an extension of

the previous class. We carried out full relaxation in TB also for these systems, with the same level

of theory employed in section 3.3. Panels a-e of Figure 3.4 report side views of the resulting

relaxed configurations, labelled according to the initial binding sites. Table 3.4 reports the dif-

ference δE in energy per atom, relative to the center-center (C-C) configuration described in the

first line of tables 3.2 and 3.3. The arrangements reported in Fig. 3.4 a,b , S1− C and S1− S2,

are energetically almost equivalent to the C −C one. In these configurations a consistent section

of the SPCC maintains its sp-character. The other three arrangements (S1 − S3, S1 − S4 and

the vertical S1 − S2) are energetically favorable. As can be see in the corresponding panels,
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this is obviously a consequence of the reconstruction of the chain with the cavity side. Such a

reconstruction doesn’t produce proper lonsdaleite. Indeed frustrated arrangements including pen-

tagonal carbon rings originates from the TB relaxation. The presence of these frustrated atomic

dispositions prevent a further lowering in the adiabatic energy. Generally speaking, the energy

gain increases proportionally with the number of atoms rebinding properly to lonsdaleite. The

main message of these relaxations is that SPCCs are indeed unstable against re-conversion to sp2

or sp3 carbon. As a consequence, in order to prevent this re-conversion, one needs to place the

SPCCs near the central axis in cavities of sufficiently large lateral size.

3.4 High-temperature stability

From the analysis of Sect. 3.3, one can conclude that the SPCCs bound to the inside surface of a

suitably sized cavity in lonsdaleite correspond to local minima of the adiabatic potential energy

of carbon, therefore to metastable allotropes. Given a sufficiently long time, these metastable

allotropes would eventually reconvert to one of the more stable ones. Clearly, one interesting

issue is to understand whether a sample of this allotropes would remain stable at ordinary pressure

and temperature conditions. Likely, the decomposition of the sp-chain would be the first step

in this re-conversion process. The conversion of sp carbon into sp3 carbon, and concluded by

an intricate sequence of crystallization steps. Besides, it would be interesting to understand if

the three-dimensional cavity surrounding the SPCC could limit its high reactivity. Indeed sp

bonding easily tends to interact with external, e.g. atmospheric, reactant which enables carbon

to switch to a more stable (saturated) electronic configuration [58]. Specifically, oxygen atoms

are responsible for SPCCs gradual destruction whereas helium, hydrogen and nitrogen do not

chemically interact with the sp chains [59]. The reported lifetime of SPCCs range from few

seconds [171] to several hours [59]. These wide range depends both on the thermodynamic

conditions under which the experiments are carried out and on the nature of the system analyzed.

We focus here on the thermal stability of the simplest configuration among those described in the

previous sections: a C6 included in a cylindrical cavity having a R = 3Å, and being coincident

with the cavity symmetry axis. The number of atoms in the primitive cell is 210 including the

SPCC. The room-T stability is studied following a well-established method. The kinetics of the

SPCC breaking reaction at high temperature and standard pressure is simulated by means of tight-

binding molecular dynamics (TBMD). From these high-T MD simulations one can extrapolate the

average lifetime of the chain under standard conditions: direct investigation of properties at room

temperature would be computationally overwhelming. The molecular dynamics is performed

using the Velocity-Verlet algorithm as implemented in DFTB+ [169], with the force field given

by the TB Hamiltonian (TBMD, see [172]).

3.4.1 Equilibration

To equilibrate the system we employed the Nose-Hoover thermostat [173] and the Berendsen

barostat [174]. In the Nose-Hoover thermostat method the external bath is represented as one

virtual particle coupled with the system. The coupling is defined in such a way to correct the

kinetic energy and therefore the temperature during the evolution toward the target temperature.

This method becomes more effective if one introduces chains of particles instead of a single
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one to represent the bath. This method take care of the limit in the one-particle formulation

which predicts canonical distribution only for ergodic systems [175]. In the present work, the

coupling factor and the length of the chain representing the thermostat are chosen through a

variational approach as those values that minimize the fluctuations in T. Similarly to the Nose-

Hoover case, in the Berendsen barostat method the target pressure is obtained by coupling the

system to an external bath. The internal virial is modified to adjust the pressure to the needed

value; that is to say, an appropriate correcting term is added to the equation of motion describing

particles position. The coupling factor is directly proportional to the isothermal compressibility

of the system and is chosen to minimize pressure fluctuations. The system is initially equilibrated

at 1500 K and 1 bar; the simulations run for 5 ps plus ≈ 17 ps for temperature and pressure

equilibration respectively, on a total number of ≈ 11 ·104 MD steps, with time step of τ = 0.5 fs.

From this run we selected 7 groups of 10 uncorrelated configurations each. The weak correlation

is is guaranteed by the time-distance separating any of these two configurations, longer than the

decay-time of the velocity auto-correlation function computed from the equilibration at 1500

K. This decay-time is evaluated to ≃ 0.02 ps. Each configurations group is then equilibrated

to a different temperature: T = 1500, 1800, 2100, 2400, 2550, 2700 K . The seventh group is

equilibrated to T = 3000 K with the aid of an intermediate equilibration step at 2550 K. This

intermediate step is necessary to prevent possible breaking of the SPCC caused by the rapid

temperature variation.

3.4.2 MD and analysis

In order to prevent the Berendsen barostat to artificially displace SPCC atoms in unstable posi-

tions closer to the breaking condition of the chain, the average lifetime of the SPCC is computed

in the microcanonical fixed-volume (NVE) ensemble. The choice of the energy-conserving en-

semble is acceptable since the size of the system allows the temperature to be well-defined against

fluctuations, that scales as the inverse of the number of particles. The average lifetime is defined

as the time that one has to wait on average in order for the population to be reduced to one third

of its initial value. This definition accounts for any breaking reaction of the chain, no matter what

kind of failure mechanism drives it. The SPCC-breaking event is detected by means of a marker

l which represents the length of the longest bond in the chain:

l = max
i=0...N

|ri − ri+1| . (3.9)

In this definition, for i = 1, . . . , N , the ri is the position of the i-th atom of the CN SPCC. r0

and rN+1 represent the positions of the two cage atoms bound to SPCC extrema. At first, the

SPCC is defined to be broken when the marker l overcomes a threshold chosen to be 2.1 Å ,

which is above the breaking point of the dimer suggested by the adopted TB parametrization, and

is approximately where such parametrization fails, see Fig. 3.3. Fig. 3.5 displays the evolution of

this marker at T = 2100 K as a function of the simulation time for four out of the ten independent

configuration employed to extrapolate the average lifetime. As reported by Fig. 3.6, this definition

leads to a non-monotonic trend of the unbroken chains population over time. The presence of

the upward steps induces some uncertainty during the fit procedure which propagates through the

extrapolation procedure resulting in an unphysical decay rate. In order to reduce the sensitivity to

these instantaneous fluctuations, the istantaneous value of l has been replaced by its average 〈l〉
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Figure 3.5: Four examples (out of 10) of the time dependence of the longest SPCC bond length

l, defined in Eq. (3.9). Each curve reports an independent microcanonical simulation carried out

starting with uncorrelated snapshots previously equilibrated at T = 2100 K. Arrows indicate the

definitive rupture times.
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Figure 3.6: Solid lines: The time dependence of the population of unbroken SPCCs obtained

executing, for each temperature T , 10 different numerical simulations starting from independent

initial conditions. For sake of clarity, 5 populations out of the 7 considered are reported. A

downward step is marked each time a SPCC breaks. Dashed curves: the exponential fit of each

population decay.
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Figure 3.7: Solid lines: the time dependence of the population of unbroken SPCCs obtained exe-

cuting, for each temperature T , 10 independent numerical simulations starting from uncorrelated

initial conditions. For sake of clarity, 5 populations out of the 7 considered are reported. The

T = 1500 K case involves 20 independent simulations, for improved accuracy. The downward

steps in every curve correspond to a rupture of the SPCC, described by the time-average of the

quantity l defined in eq. 3.9. Dashed curves: the exponential fit of each population decay.

over a 100 fs time interval. Therefore we define the SPCC to be broken when this time-average

〈l〉 exceeds 2.1 Å. Also in this case this threshold corresponds approximately to the validity range

of the adopted TB model and to the C-C bond inflection energy, see section 3.3 and in particular

Fig. 3.3. The breaking time is taken as the first time step for which the 〈l〉 > 2.1 Åcondition is

verified. Fig. 3.5 illustrates the evolution of the longest bond length as a function of the simulation

time for four out of the ten simulations carried out for T = 2100 K. Note that, in Fig. 3.5,

the spike of the black curve crossing the threshold now is not recognized as a rupture event,

thanks to averaging l: for the black-curve sample, the rupture is recognized to occur at a later

time, not visible in this figure. At a fixed T , each simulation run independently from the others,

therefore the population of unbroken SPCC is expected to decay exponentially with time. With

such a new definition of breaking, the resulting population of entire chains is represented by a

stepwise decreasing function,Fig. 3.7, starting from the initial number of independent samples,

and decreasing by one each time a SPCC breaks. This stepwise decreasing function can be fit

with an exponential function: Nunruptured = N0 exp(−t/τ) (dashed curves in Fig. 3.7). Fig. 3.7

reports how higher temperature simulations exhibit a more rapid decay of the unbroken SPCC

population compared to the colder ones. 5 ps TBMD simulation runs are sufficient to evaluate

this decay for all considered temperatures, except the lowest one, T = 1500 K, where, for a better

accuracy we both triple the time duration to 15 ps, and double the number of independent samples

to 20 (reporting the properly normalized population in Fig. 3.7). In this way, all simulations last

for a time longer than or comparable with the relevant decay time τ . Fig. 3.7 shows these decays

and fits for the seven temperatures considered. According to Arrhenius formula, the temperature

dependence of the decay rate τ−1 is described by logarithmic equation:

log(τ−1) = log(A)− Eb

kBT
= a− Tb

T
. (3.10)
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Figure 3.8: Points: the inverse lifetime τ−1 of the SPCC obtained from the fits of the decaying

population of unruptured chains, as a function of the inverse temperature. The error bars are too

small (≃ 0.01%) to be visible on the reported scale. Solid line: an Arrehenis fit of the lifetimes.

coeff value standard deviation std percentage

a = log(A) [log(s−1)] 34.471 ±0.006 0.2%
Tb = Eb/kB [K] 14771 ±121 0.8%

Table 3.5: Best-fit values and standard deviation σ on the coefficients in the Arrhenius Eq. (3.10).

The last column reports the relative uncertainties. The fit correlation coefficient Ca,Tb
= 0.972.

Fig. 3.8 reports the decay rates τ−1 resulting from exponential fits of the stepwise decaying

populations with errorbars representing the fit uncertainties. A weighted linear fit interpolates

through these data, with the weights being the inverse of the squared uncertainties on τ−1 obtained

from the population fits. The fit has been performed with the Scipy python package. Table 3.5

reports the resulting fitting coefficients with their standard deviations and percentage errors. The

aim of this fit is to obtain some quantitative prediction for the energy barrier Eb = kBTb against

SPCC breaking, and the thermal attempt rate A for this process. The resulting energy barrier is

Eb = (1.273±0.001) eV. By means of an extrapolation to 300 K, one obtains the desired estimate

for the room-temperature decay rate. Inserting the obtained parameters in the Arrhenius equation

one finds:

kroom = Ae
[−

Eb

kBTroom
] ≃ (3.86± 0.35)× 10−7 s−1. (3.11)

which corresponds to an average life-time τ of the order of 1 month. Following the interpreta-

tion of the Arrhenius equation we predict that in an hypothetical sample of zayedene, of this or

some analogous class, the number of entire SPCC would undergo breaking reaction with a rate

expressed by eq. 3.11. That is to say, the number of entire SPCC would be reduced approximately

to one third in time corresponding to τ . In section 3.3 we described the limit of the employed TB

parametrization, specifically the failure in the description of the long range interactions among
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the carbon atoms in sp systems. It is straightforward that the numerical results reported in the

current section are not to be intended as quantitative estimates of the the properties of these al-

lotrope. From fig. 3.3 the barrier against breaking appears to be lower in the TB model compared

to the more accurate DFT. Therefore a longer room-temperature lifetime is to be expected in re-

ality compared to the rest of our analysis. From a semi-quantitative point of view, our estimation

agrees well with the observation of the slow decay of the fraction of sp carbon and its reconver-

sion into nanostructured sp2-sp3 carbon: the SPCC fraction decays steadily over the course of

months, if kept at room temperature under vacuum or in an inert-gas atmosphere [65, 148, 176–

180].

3.5 Vibrational density of states

Interesting information can be extracted from the correlation function of specific dynamical or

static quantities of a system. For instance, the fluctuation-dissipation theorem connects the re-

sponse of a system to external perturbation to microscopical fluctuations that characterizes its

equilibrium state. The Green-Kubo relations [181] describe how such responses are relaxed to-

wards equilibrium connecting transport coefficients to time-integrated correlation function of suit-

able dynamical quantities. The dynamical structure factor is a clear example of such connections.

In this case we are interested in studying the vibration frequency spectrum of our configuration,

because the vibration frequencies of the SPCCs can be used as a fingerprint to experimentally

detect their presence when not directly detectable, for instance with Raman spectroscopy [58]. It

can be shown [182, 183] that the density of vibration frequencies can be extracted from simulation

trajectories through the following equation:

ρ(ω) =
1

3NatkBT

∫ ∞

−∞

∑Nat

i=1〈vi(t0) · vi(t0 + t)〉
∑Nat

i=1〈vi(t0) · vi(t0)〉
ei ω t dt , (3.12)

We computed the correlations among velocities from a 1 ps long TBMD simulation, using as a

starting point previously equilibrated runsat T = 30 K. The duration of the simulations is chosen

to give a resolution in the frequencies of the order of ∆ν ≃ 1/tmax ≃ 1 THz. The trajectories

are recorded with a time interval sufficiently short to safely cover even the highest possible vi-

brational frequencies Given that the highest optical frequencies in Diamond are ≃ 1300 cm−1,

and those of SPCC are reported around 1800 − 2300 cm−1 [58] we adopt τ = 0.5 fs. Then, the

maximum frequency sampled will be νmax ≃ 1/τ ≃ 6 ·104 cm−1, safely exceeding the expected

frequency ranges. Fig. 3.9 reports the density of states of frequencies averaged over 10 different

simulations at T = 30 K. In this way different regions of the configuration space are sampled to

excite uniformly the normal modes. The atomic initial positions in every simulation are displaced

adding random Gaussian displacement from the equilibrated configurations, with σ = 0.05 Å. It

is important to have small displacements around equilibrium position in such a way to remain in

the validity limit of the harmonic approximation. If not, the density of vibration frequency would

include anharmonic effects, described by phonon interactions (in quantum mechanics language:

three body annihilations or decays, at the pure anharmonic order) with corresponding variation in

the phonons DOS profiles. Fig. 3.9 reports the density of normal-mode frequencies for three dif-

ferent structures: in red the zayedene of the first row of Table 3.2 repeated 2×2×2 times along its

primitive vectors, in blue the corresponding lonsdaleite cage with the empty cylindrical cavities,
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Figure 3.9: The phonon densities of states extrapolated from the velocity auto-correlation func-

tion. The area is normalized to 3, which is the number of oscillators per atom. According to

the literature the group of high frequencies around 2200[ cm−1] represents the modes localized

mainly on the chain.

and in black pure lonsdaleite represented by a 7×7×8 repetition of its primitive cell. The profile

of the blue and the red curves is qualitatively similar. The main difference consists in the small

peak around 2200 cm−1 which is missing in the DOS profile from the configurations without the

SPCC. We therefore point it as a fingerprint for the presence of the chain in the cavity. This could

be directly verified with an analysis of the modes corresponding to the frequencies in the peak,

but this is going to be part of future developments. In this thesis we simply observe that this

explanation is in agreement with what reported in the literature [58, 184–186]. The effect of the

cavity is to shift the vibrational frequencies down to smaller values compared to pure lonsdaleite.

This effect is more evident for the long wave-length modes which become softer with respect to

those of pure hexagonal carbon. This correspond to a loss of rigidity that can be expected for bulk

systems when spotted by an array of cavities.

3.6 Electronic properties

This section illustrates the electronic properties of the simplest possible configuration among

those described in section 3.2, specifically in Tab. 3.1: C6 chain included in its corresponding

cylindrical cage with radius R = 3 Å. The resulting complete primitive cell is made by 210

atoms, including the 6 sp atoms. The symmetry group is trigonal while for bulk lonsdaleite is

hexagonal. Specifically, as obtained through Findsym tool [187] the group is number 156, or

P3m1 in the Hermann-Mauguin notation, which consists in 6 symmetry operations.

3.6.1 TB vs DFT description

The state of the art for the analysis of electronic band structures is density functional theory.

Nonetheless, due to its preferable “agility”, TB retains some utility in this sense, specifically

when intricate systems are addressed, see appendix C.1. For coherence reason with the methods
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employed so far for the analysis of zayedene, and due to the high number of electron present in the

system, we considered the possibility to employ TB to compute the band structure of zayedene.

The feasibility of this route critically depends on the performances of TB parametrization to

reproduce electronic properties. Therefore, it is indispensable to compare the bands obtained with

ab-initio and TB simulations for a reference simple system. For sake of simplicity this reference

is going to be pure lonsdaleite.

Siesta and localized basis

The possibility of obtain a poor description of electronic bands with TB and the consequent need

for DFT, make necessary to understand which DFT implementation employ. Given the high num-

ber of atoms involved in zayedene and the presence of the cavity, using a plan-wave based code

such as Quantum Espresso could turn into cumbersome simulations. Indeed, an accurate expan-

sion of the electronic wave functions localized on the internal cavity surface would require a high

number of wave vectors. Instead, a suitable choice consists in employing a localized atomic-

orbital based code, such as Siesta, see appendix A.2. In principle at the same parallelization

level, localized-basis should be less computationally demanding with respect to plane-waves ba-

sis, giving qualitative comparable results [165]. Several options for the orbital basis are given

within the framework of Siesta, with different level of complexity. It’s worth analyzing how

the different basis perform with respect to plane-waves DFT. In this way, one has a benchmark

for the level of precision obtained by using a certain basis. One possible way, is a variational

study to establish which basis best approximate plane-waves DFT results for a specific quantity.

For instance we chose the shorter lattice spacing a of pure carbon lonsdaleite. We focus on two

standard pseudo-atomic orbitals (PAO) bases as implemented in Siesta: DZP and SZP. SZP em-

ploys a single ζ function to approximate the radial part of the orbital, adding polarization orbitals

constructed from perturbation theory. The DZP basis employs two ζ functions plus polarization

orbitals. Normally, both basis are subjected to an orbital-confining cutoff radius. In the Siesta

implementation, this radius can be determined defining the excitation energy of the PAO given to

the confinement to a finite-range. Fig 3.10 reports the total energy per primitive cell of lonsdaleite

as a function of the lattice step a for SZP and DZP with different confinement energy values. For

each choice of the basis, self-consistent simulations with fixed cell and fixed atomic positions are

performed for different lonsdaleite a lattice-spacing. The coordinates of the atoms in the prim-

itive cell are scaled accordingly. A 3x3x4 Monkhorst-Pack k-point mesh is employed. For the

exchange correlation energy, we employed GGA through the Perdew-Burke-Ernzerhof functional

[128]. As shown in Fig.3.10, the DZP basis with a confinement energy of 272 meV (green line)

minimizes the distance of the minimum from to the plane-wave result obtained with Quantum

Espresso [129] with a converged kinetic-energy cutoff (100 Ry), shown in red.

Lonsdaleite band structure

Fig .3.11 reports a comparison between the band structure of pure lonsdaleite computed with

TB and DFT as implemented in Siesta with DZP basis with 272 meV as confinement energy.

The inadequacy of TB parametrization employed in the previous sections to reproduce electronic

properties of carbon stands out. Indeed, while the occupied Kohn-Sham states are reproduced

with an overall qualitative good agreement by the two methods, the energies of the empty states
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Figure 3.10: The total energy per primitive cell of bulk lonsdaleite as a function of its lattice

spacing a. The different lines correspond to different localized basis. The red line correspond to

the results obtained with Quantum Espresso with a highly converged kinetic energy cutoff.

are largely unsatisfactory. For instance, TB predicts a direct band gap located at the center of the

first Brillouin zone, whereas DFT predicts an indirect gap, with the maximum of the valence band

in Γ and the minimum of conducting band in K. Further more, TB by far overestimates the ab-

initio value: 6.6 eV against 3.4 eV predicted by Siesta, which is smaller than the corresponding

value for cubic diamond, as it should be [139, 163]. Therefore cheap TB description has to be

abandoned in favour of more reliable ab-initio method.
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Figure 3.11: The band structure of the pure hexagonal diamond along the path reported on

the abscissa axis. The Fermi level is represented by the black dashed line. The blue bands

are computed with Siesta, the red with TB. The qualitative agreement of filled bands can be

appreciated, whereas empty TB bands dot not coincide with DFT ones.
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Figure 3.12: The band structure of the C6 zayedene evaluated along the path reported in Fig. 2.8.

The flat bands around EF (black dot-dashed line) are given mainly by the dangling bonds inside

the cavity, with little SPCC involvement.

3.6.2 Bands, DOS and PDOS

Once TB has been discarded and the best basis kind for DFT calculations is identified, see section

3.6.1, zayedene structure is relaxed by means of CG algorithm as implemented in Siesta [165] .

The primitive vectors and the atomic positions are both allowed to vary. The forces are converged

below 10−4 eV/Å , with a 3x3x4 Monkhorst-Pack k-point mesh. For the exchange correlation

energy, we consider a generalized gradient approximation (GGA), the Perdew-Burke-Ernzerhof

functional [128]. Bands and DOS are computed for the completely relaxed structure. The left

panel in Fig. 3.12 reports the electronic band structure obtained on the path shown in Fig. 2.8. The

right panel in Fig. 3.12 reports the corresponding DOS. The metallic character of the allotrope

is evident in both figures. Several flat bands are present around the Fermi level, arising from the

dangling bonds inside the cage. Specifically, a more careful analysis reveals that two bands cross

the Fermi level. To verify whether also the SPCC contributes to the metallicity of the structure or

not, we evaluate the projected density of states (PDOS) on the SPCC and on the atomic orbitals

of the cage. The PDOS gµ(E) dE counts the number of Kohn-Sham states having energy in the

range E and E + dE, weighted by their overlap with a given atomic orbital µ:

gµ(E) =
1

Nk

bands
∑

i

∑

k

∑

ν

c∗ν,i(k)cµ,i(k)Sν,µ(k)δ(E − Ei(k)) . (3.13)

Here cµ,i(k) is the coefficient of the projection of the ψi(k) Kohn-Sham wave function with

eigenenergy Ei(k) on the µ-th atomic orbital; Sν,µ(k) is the superposition matrix of the atomic

basis. We replace the delta function with a Gaussian with width σ = 0.15 eV. For the DOS

calculations we employ a 15× 15× 15 grid of k points, after verifying that convergence has been

achieved. The DOS of a specific set α of atoms is then simply the sum of the PDOS relative to

every orbital of every atom in that set: gα(E) =
∑

µ∈α gµ(E). For instance, if the set α coincides
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with the entire primitive cell, then gα(E) coincides with the total DOS g(E). Given the small

fractional number of atoms in the SPCC, their contribution to the total DOS is relatively small. In

particular, around the Fermi levelEF there is little or no contribution of the SPCC orbitals. On the

contrary, the contributions of the atoms forming the cavity surface are dominant around EF. This

decomposition proves that the metallic behavior of this allotrope arises due to the cage dangling

bonds, and not because of the presence of the SPCC. Accordingly, even though these results hold

for this specific zayedene, if one computed the band structure of any similar crystal, one would

find a qualitatively similar situation: extremely flat bands crossing the Fermi level associated to

the cavity dangling bonds.



CHAPTER 4

Conclusions

In this thesis we focused on the development and the characterization of three specific exotic car-

bon allotropes. Two out of the three allotropes analyzed are the simplest elements in potentially

rich classes of analogous structures. The fundamental concept of this thesis is the possibility

of having periodic structures made of pure carbon where different bonds hybridization coexists.

Such a possibility is not a-priori excluded by nature, indeed amorphous carbon is spontaneously

formed (coal for instance) where sp2-sp3 bonding are simultaneously present with variable per-

centages. Nonetheless, apart from amorphous carbon, this is not so common: peculiar allotropes

such as glassy carbon, have been recognized to be formed just by sp2 bonding [110]. On the

other hand, given their high complexity, the synthesis of these specific polytropes would require

a technological level which is probably beyond the current state-of-the-art laboratory techniques.

The first class introduced, named novamene, is made of sp3 carbon doped with sp2 with

specific benzenic ring substructures. The variety of the arrangements of these substructures de-

termines the complexity of the class. Probably novamene with extended sp2 areas enclosed inside

sp3 have higher possibility of being synthesized. By ab-initio studies we prove the relative sta-

bility of the simplest of these compounds, single-ring novamene, and its possibility to undergo

a metal-semiconductor transition when external perturbation are applied, whether they are elec-

tromagnetic, mechanical, or involving temperature or pressure. The structural information (space

group, lattice parameters, and atomic positions) provided the necessary starting ground for the

successive investigations of the mechanical properties of the structure. The main challenge ahead

is the synthesis of actual crystals of novamene, and their experimental characterization. Recently,

J. Narayan, and A. Bhaumik [188] synthesized a novel phase of carbon by nanosecond laser melt-

ing and quenching carbon from the super under-cooled state in the form of thin films or filaments.

They called this material “Q-carbon”, and showed that it has an amorphous structure. The Ra-

man spectrum of Q-carbon exhibits a very large fraction of sp3 (75% − 85%) bonded carbon

from the relative intensity of the diamond peak at 1333 cm−1 and the sp2-related peaks at 1140

cm−1 and 1580 cm−1. Even though this is pure speculation, this single-ring novamene has an sp3

fraction (77%) that is comparable. Following this intriguing conjecture, one could imagine that

a detailed structural analysis could prove that Q-carbon is a disordered arrangement containing a

considerable percentage of single-ring novamene, plus hexagonal carbon, plus possibly multiple-

ringed novamene. After all, also amorphous carbon is not purely amorphous but it is spotted by

locally ordered atomic arrangements dispersed in a matrix of disordered carbons. A further step

will be the exploration of phonon spectra and thermodynamical stability as a function of pressure

and temperature. Besides, deeper electronic characterization of more complex elements in the

63
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novamene class could be interesting. Also electrical transport properties and the optical prop-

erties of these compounds should be investigated in depth. In principle, in addition to carbon,

novamene-type structures could be relevant even for silicon and germanium.

The second allotrope investigated is a variation of novamene without the benzenic rings. In

analogy with novamene we name it protomene. Also in this case we characterized the basic

energetic and electronic properties of the allotrope. From DFT, protomene qualifies as a new

potentially-useful direct-gap semiconductor, with band gap close to well known semiconductors

such as GaN [189]. As a consequence, protomene may possess similar semiconducting properties,

which would enable it to have applications for high-power, high-temperature and high-frequency

electronic devices with high breakdown voltages. Due to the gap amplitude near the blue end

of the visible spectrum, protomene may find applications in opto-electronic components, e.g.

to blue- or UV-light generating light emitting diodes, or as a UV filter in optics. Furthermore,

the well defined direct gap suggests that potentially protomene may have more applications in

semiconductors devices than carbon nanotubes (CNT) and graphene in terms of energy band

gap. Indeed, one obstacle to overcome in fabrication of CNTs is controlling whether the CNT

is metallic and semiconducting. Protomene instead is clearly semiconducting up to a transition

temperature. One relevant aspect to consider is that thermal expansion in protomene is likely to

play against the inter-plane bonding. On the contrary, it would favour the no-dimer metallic con-

figuration. Therefore, as temperature is raised, a structural phase transition is likely to occur from

the low-temperature semiconducting 48-atoms cell structure of fig. 2.14 to the high-temperature

metallic phase characterized by the 24-atoms cell structure of fig. 2.13. As this transition is ap-

proached, the band gap would close rapidly, much faster than the slow decay due to thermal

expansion in diamond and silicon. Accordingly, this phase transition would provide a sensitive

temperature-controlled optical filter and electric-switching applications. Moreover, given the in-

creasing number of sp2 bonds, this phase transition would undermine the hardness of protomene

in its insulating phase [162]. Therefore, protomene, as much as novamene, is expected to show

somewhat lowering hardness as the temperature is raised. The gap in the phonon optical frequen-

cies is to be considered as a fingerprint of this allotrope, detectable through Raman spectroscopy

or neutron scattering. Besides, this gap could lead to protomene potential applications in surface-

acoustic-wave based devices, acoustic filtering or mirroring. The metal-semiconductor transition

induced for instance by rising the temperature is a common feature of the two allotropes analyzed

in Chapter 2 and it is purely dictated by the presence of the sp2 ”switching atoms”. Considering

its potential applications, this is probably the most intriguing feature of the analyzed allotropes.

Finally, the zayedene allotrope class consists in a mixture of sp and sp3 hybridized carbon. sp

hybridization of carbon creates linear acetylenic chains, which in these allotropes are included in

surrounding sp3 cages. The arbitrariness in the definition of the cavity and the surrounding cage,

on the number and on the orientation of the SPCCs makes this class of allotropes potentially rich.

One further degree of freedom is the choice of the sp3 system forming the cage: in principle we

could define these allotropes digging cavities in any sp3 bulk arrangements, hexagonal or cubic

diamond etc. Using a TB model we analyze from a qualitative point of view the structural and

binding properties of several different combinations of SPCCs with different lengths and cylindri-

cal cavities with different radius. The analysis of high-temperature kinetics of the chain-breaking

reaction for the simplest structure allows to predict the room-temperature lifetime of the order of

months, similar to what is observed experimentally for sp-sp2 combinations [58]. This is probably
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a lower limit to the thermodynamic stability of zayedene. Through TBMD we identify a high-

frequency peak in the vibration spectrum around 2200 cm−1 which is recognized as the fingerprint

of the SPCC. Such a peak should be visible in IR or Raman spectroscopy. Its intensity should

also allow one to estimate the concentration of cavities with SPCCs in the sample. The metallic

character of the simplest allotrope is revealed by accurate ab-initio simulations. The obtained

flat band sub-structures are associated with the dangling bonds of the cavity surface whereas the

SPCC orbitals do not contribute significantly to the metallic character. The presence of very nar-

row bands at the Fermi level, suggests that zayedene structures, if synthesized, could provide an

interesting playground for materials science, where the interplay of electron-electron correlation,

electron-phonon coupling, and disorder may lead to several competing metallic, insulating, and

possibly even superconductive states, in a potentially rich phase diagram. For these reasons, it

would be quite interesting to synthesize and characterize one or more of these allotropes in the

lab. This same strategy of inserting SPCCs in suitable cavities could turn useful even outside

the carbon-only concept. More general scenarios worth pursuing as well, include the insertion or

growth of SPCCs inside cavities e.g. in silicon or germanium clathrates [190–192] which could

be the subject of further investigation.





APPENDIX A

A.1 The many-body problem

The behaviour of electrons, ions and of all constituents of matter is described by complex objects

called wave-functions, hereby labelled with the Greek letter Ψ. The degree of complexity of

these objects greatly depends on the nature of the system. Indeed, their shape as long as their time

evolution is defined by the Hamiltonian operator Ĥ describing the system through the Schrödinger

equation:

ih̄
∂

∂t
Ψ = Ĥ Ψ (A.1)

in such a way that, generally speaking, Ψ is a function of all the degrees of freedom of the system.

For instance, calling xj = (rj , σj) a vector whose component are the spacial coordinates and the

spin of the j-particle, then

Ψ = Ψ(x1,x1, . . .xN , t). (A.2)

If the system is made by non-interacting components, or if these interact with a common ex-

ternal potential, Ĥ assumes a simple form, being the sum of single-particle Hamiltonians. In

such a case, the wave function Ψ is reduced to the symmetric or anti-symmetric products of

single-particle wave functions. For instance, the global wave function describing a system of

independent identical Fermions is a Slater determinant:

Ψ(x1,x1, . . .xN , t) =
1√
N !
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∣
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(A.3)

Unfortunately, due to the complex interacting nature of ordinary matter, one can not rely on

this independent particle picture to describe real systems. As a consequence, the Hamiltonian

cannot be separated in a sum of identical terms and the wave function has a complicated system-

dependent shape. The Hamiltonian describing a system of Ne interacting electrons and Nn inter-

acting ions is:

Ĥ = T̂e + T̂n + V̂e−e + V̂e−n + V̂n−n (A.4)
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where T̂e and T̂n are respectively the electronic and the nuclei kinetic terms defined as

T̂e =
∑

i

p2
i

2me
T̂n =

∑

I

P2
I

2mn
(A.5)

and the V̂ terms represent the Coulomb interactions among the constituent, defined as:

V̂e−e =
∑

i<j

e2
∣

∣ri − rj
∣

∣

V̂n−n =
∑

I<J

ZIZJe
2

|RI −RJ |
V̂n−e = −

∑

I,j

ZIe
2

∣

∣RI − rj
∣

∣

. (A.6)

A universal solution for eq.(A.1) for many-body systems described by Hamiltonian (A.4) is un-

known. Actually, analytic solutions have been determined only for very simple systems, such as

the hydrogen atom or the ideal particle gas. Thus, the analysis of system showing more complex

features is usually performed with numerical methods. One of the earliest attempt to address

many-electrons problems is the Hartree method. The electron are assumed as independent par-

ticles with no requirement on the symmetry of the collective wave function. As a consequence,

this method fails in describing a standard model used to describe the role of electrons interaction

in solids such as the homogeneous electron gas. The simple requirement of the wave function

anti-symmetry led to the Hartree-Fock (HF) method, which provides an analytic treatment of the

jellium model. Moreover, HF ensures fairly accurate treatment of atomic and small molecules

energetic, but it is not suitable for the description of many electron systems such as bulk solids.

What is common to the failure of Hartree and HF methods is the crude approximation of the wave

function which is based on an independent particle picture. Within this picture all the correlations

among the electrons are neglected.

A.1.1 The Born-Oppenheimer approximation

The Hamiltonian (A.4) describes a portion of matter coupling the electrons and the nuclei dynam-

ics through the V̂n−e. Therefore, the wave function describing such system, is a function of both

electronic and ionic degrees of freedom:

Ψ = Ψ(r1, r2, . . . rNe
,R1,R2, . . .RNI

, t). (A.7)

From now on in the current section, the letter r and R represent the whole set of electrons and

ionic coordinates. An intuitive way to simplify the description of this intricate behaviour consists

in assuming Ψ to have a separable form. This approximation, named after Born and Oppenheimer

[193, 194], relies on the fact that the nuclei are much more massive than the electrons, hence on

the time-scale of electronic motion they are nearly fixed. Thus the electronic component of the

separated wave function have a simple parametric dependency on the specific ionic configuration.

Specifically, the total wave function in eq. (A.7) can be expanded1 on the eigenfunctions of the

electronic Hamiltonian:

Ĥel = T̂e + V̂e−e + V̂e−n + V̂n−n (A.8)

1To the extent of Born-Oppenheimer approximation validity, accurate solutions can be obtained using only one or a

few terms.
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where the nuclei kinetic term T̂n has been neglected. The secular problem reads:

Ĥelφ
el
i (r;R) = µiφ

el
i (r;R) (A.9)

where the eigenfunctions {φeli (r;R)} define the ith many-electron states clamped to the nuclei

configuration represented with R, having an Hamiltonian eigenstate µi. Therefore the total wave

function reads:

Ψ =
∑

i

φeli (r;R)χi(R) (A.10)

where the χi(R) corresponds to the nuclei wave-function. A first-order Born-Oppenheimer ap-

proximation holds also for a single contribution in the decomposition of the total wave function.

With the aid of eq. (A.10), the secular problem for the total Hamiltonian can be written, after

some manipulations, as:

[ 1

2mn
∇2

R + (µj − E)
]

χj(R)− 1

2mn

∑

i

[

2τji · ∇R + τ ′ji]χi(R) = 0 (A.11)

where the equation was projected onto the jth electronic state, and the electronic degrees of

freedom were integrated out. For simplicity the nuclei are taken with the same mass mn.

The matrices τ , τ ′ are the non-adiabatic couplings describing the mutual dependency of the

electronic and the nuclei equations. Their matrix elements are defined as:

τji =
1

2mn

∫

φel ∗j (r,R)∇Rφ
el
i (r,R)dr (A.12)

and

τ ′ji =
1

2mn

∫

φel ∗j (r,R)∇2
Rφ

el
i (r,R)dr. (A.13)

When these matrix elements are negligible, or zero, the electron and the nuclei dynamics are

uncoupled. As a consequence the electrons motion follow immediately the motions of the nu-

clei during their time evolution. This condition corresponds to adiabatic surfaces in the ionic

configurations space that never cross each other2. When two electronic state come very close

in energy, a condition named avoided crossing, or even exactly degenerate in energy, the adia-

batic approximation fails. Indeed, in that case, two adiabatic potential surfaces would become

very close, or in contact with each other at some point in the configuration space, making the

so-called vibronic-coupling τ crucial to define the correct coupled dynamics of ions and elec-

trons. Molecular systems where the Jahn-Teller effect takes place can be thought as an example

of the limits of Born-Oppenheimer validity. The adiabatic approximation is a cornerstone for

most of the available DFT codes today. Indeed, the electronic Hamiltonian is solved assuming

fixed nuclei configuration given as an input, and the ions repulsive energy is added at the end of

the calculations in order to compute the total energy Etot of the system. Such Etot coincide with

2After some manipulation, the dependence on τ
′ in equation (A.11) can be removed. In this formulation the equation

of nuclei assume a compact shape which emphasizes the connection of τ to Berry’s phase. The dependence on the Berry’s

connection could be removed through suitable unitary transformation of the nuclei wave function χ(R), usually named

diabatic transformation. The disadvantage in this case would be the loss of the diagonal shape of the µ matrix, thus one

would lose the visual description of adiabatic surfaces, one per electronic state.
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the eigenvalue E in equation (A.11) where the τ are neglected.

A.2 Density functional theory

The state of the art for the description of electronic properties in solid state and molecular physics

is density functional theory (DFT). The focus of the quantum mechanical description of matter is

transposed from the global wave function to the much simpler ground-state electron density. The

convenience is straightforward: the global wave function in eq. (A.2) depends on every degree of

freedom of the system, the single-electron density just on three spatial coordinates. Indeed, the

electron density can be written as:

ρ(r) = 〈Ψ|ρ̂(r)|Ψ〉 = (A.14)

= N
∑

σ,σ2,...,σN

∫

∣

∣Ψ(rσ, r2σ2, r3σ3, . . . , rNσN )
∣

∣

2
dr2dr3 . . . drN (A.15)

where ρ̂(r) =
∑

i δ(r−ri). Note that the spin dependency is included in the density, therefore all

possible spin components are comprised. Basically this choice allows to map the many-electron

problem to a self-consistent-field one-particle problem for the ground-state properties. This is a

huge simplification which allowed DFT to become probably the most popular simulation tech-

nique for first principle study of molecular and solids ground-state properties. What is even more

surprising is that DFT is an exact theory for the ground-state energy. This exactness is extended

to ground-state structural properties and with a reasonable degree of approximation to a large

number of quantities directly connected to ground-state energy when suitable perturbations are

included (i.e. polarizability, elastic constant, magnetic susceptibility etc.).

A.2.1 Density functional formalism

The first theoretical formulation of DFT appeared in 1964 in a paper from Hohenberg and Kohn

[195]. In their work, the authors proved that the connection between the external potential in-

cluded in a many-body Hamiltonian and the corresponding electronic ground-state density is a

one-to-one map. The work is developed under the hypothesis of a static external potential and for

non-degenerate ground-states. The theory has been shown to be extendable beyond these initial

assumptions. Therefore both time-dependent external potentials and degenerate ground-states can

be described with an analogous formalism [196]. The main results of Hohenberg and Kohn can

be summarized in the following statements:

1. the ground-state energy of the many-body system can be written as a functional of the

electron density

Evext [ρ] =

∫

vext(r)ρ(r)d(r) + F [ρ] (A.16)

where the second functional F does not depend on vext and therefore is called a universal

functional of the density;

2. Evext
[ρ(r)] is minimum for the ground-state electron density:

Evext
[ρgs] < Evext [ρ] ∀ρ 6= ρgs. (A.17)
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The demonstration of these propositions, which is a reductio ad absurdum and employs the Ritz

variational principle, can be easily found in textbooks and in literature [195, 197, 198]. According

to the second statement the ground-state density minimizes the energy functional in eq. (A.16).

Thus the following equation holds:

δ

δρ(r)

{

Evext [ρ(r)]− λ
[

∫

ρ(r)dr−N
]}

∣

∣

∣

∣

ρGS(r)

= 0 (A.18)

where the number of electrons is fixed to N and λ is the required Lagrange multiplier. It is

important to stress that the Hohenberg and Kohn theorem do not give any information on the

shape of F [ρ]. If it was a simple functional of the electron density then it would be relatively

straightforward to determine the ground-state density and energy, but generally speaking the uni-

versal functional is unknown. Indeed from eq. (A.16) it is clear that F [ρ] = T [ρ] + Ee−e[ρ] =

T [ρ] +EHa[ρ] +Exc[ρ] , where T is the kinetic-energy, EHa is the mean-field interaction energy

while Exc is the exchange-correlation contribution to interaction energy i.e. those interaction

contribution not included in a mean-field term. Thus, DFT formalism suffer from our ignorance

about electrons interaction beyond the mean-field Hartree term: the universal functional inherit

the ignorance that we had on the many-body wave function. As a consequence at this level DFT

formalism is exact but useless from a practical point of view. One first possible attempt to over-

come this issue is the Thomas-Fermi method [199, 200], where the electrons are treated as an

ideal gas subjected to the ionic potential. The kinetic-energy is then computed per unit volume

resulting in term scaling with ρ
5

3 (r) with ρ(r) being the electron density. This model is valuable

since it is a starting point for building a practical orbital-free density functional technique, but

led to poor quantitative results for atomic and molecular calculation. Specifically, Teller [201]

reported the failure of Thomas-Fermi model to predict correct molecular bonding energy: this is

predicted to be higher than those of separated atoms. This inaccuracy is mainly due to the absence

of exchange and correlations terms in the energy functional. The exchange term was later on in-

cluded by Dirac, but also in this case the model led to poor predictions due to the crudeness of

the kinetic-energy expression. All these attempt to retain an orbital-free density functional have

been circumvented by Kohn-Sham DFT formulation which will be outlined in the next section.

A.2.2 Kohn-Sham formulation

Kohn and Sham introduced a powerful formalism [202] that became the cornerstone of modern

practical use of DFT. The drawback of this formulation consists in the introduction of a basis set

of wave functions, because one of the purposes of DFT is exactly to get rid of wave functions

in the many-body problems. Nonetheless, the exceptional simplicity of the basis introduced by

Kohn and Sham led to a valuable environment for a practical development of DFT.

Kohn-Sham equations

In addition to the real interacting electrons system, Kohn and Sham introduce an auxiliary non-

interacting identical electron system having the same density of the real one and the same number

of particles N. The auxiliary system is therefore described by a Slater determinant as defined in

eq.(A.3), built with single-particle wave functions {φi(r)}Ni=1 named Kohn-Sham orbitals. Thus,
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the electron density is simplified from eq. (A.14) to the following:

ρ(r) =

N
∑

i=1

fi
∣

∣φi(r)
∣

∣

2
, (A.19)

where

fi =
1

eβ(ǫi−EF) + 1

is the average occupation number of the single-particle state with energy ǫi according to the

Fermi-Dirac statistics. Moreover, the single-electron basis enables also the electronic kinetic

term to assume a very simple shape:

〈T 〉KS = − h̄2

2me

N
∑

i

fi

∫

φ∗i (r)∇2
iφi(r)dr (A.20)

where EF is the Fermi energy of the system and β = (kBT )
−1 with T the temperature of the

Fermions system. The introduction of the Kohn-Sham orbitals allows one to isolate all the com-

plexities of the many-body wave function into one single term of the energy functional expressed

in eq. (A.16): the exchange-correlation component. Indeed the energy functional can be written

as:

Evext
[ρ] =

∫

vext(r)ρ(r)d(r) + TKS[ρ] +
1

2

∫

ρ(r)ρ(r′)

|r− r′| drdr
′ + Exc[ρ] (A.21)

where the exchange-correlation functional is defined as:

Exc[ρ] = T [ρ]− TKS[ρ] + Ee−e[ρ]− EHa[ρ]. (A.22)

If the variational principle as written in eq. (A.17) is expressed in terms of the Kohn-Sham

orbitals, a set of N single-particle equations are derived, which are formally equivalent to the

Hartree-Fock equations. Indeed through eq. (A.19):

δ

δρ(r)

δρ(r)

δφ∗i (r)
=

δ

δφ∗i (r)
(A.23)

and eq. (A.17) becomes:

δ

δφ∗i (r)

{

Evext [ρ(r)]−
∑

k,l

λk,l
[

∫

φ∗k(r)φl(r)dr− δk,l
]}

=

[

− h̄2

2m
∇2

i + vext(r) + vHa(r) + vxc(r)
]

φi(r)−
∑

j

λi,jφj(r) = 0.

Through a suitable unitary transformation which preserves the electron density and the sum of

the eigenvalues, one obtain a set of single-particle equation, whose behaviour is governed by a
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self-consistent effective Hamiltonian:

Heffφi(r) =
[

− h̄2

2m
∇2

i + veff(r)
]

φi(r) = ǫiφi(r), (A.24)

where

veff(r) = vext(r) + vHa(r) + vxc(r) (A.25)

vHa(r) =
δEHa[ρ(r)]

δρ(r)
(A.26)

vxc(r) =
δExc[ρ(r)]

δρ(r)
. (A.27)

Eq. (A.24) represents the single-particle Kohn-Sham equation for the ith orbital. These are

very similar to the HF equations introduced in sect. A.1. The main difference is the exchange-

correlation term defined in eq. (A.27). The exact exchange interaction is explicitly considered

in HF through the non-local Fock potential involving the density matrix, favouring parallel spin

order. Notably, the Fock potential removes exactly the self-interaction spurious contribution in-

cluded in the classic Hartree term. Instead, in Kohn-Sham equations the exchange is incorporated

in the local vxc term, which account also for the correlations among electrons.

Once the Kohn-Sham orbitals and eigenvalues ǫi in eq. (A.24) have been determined, the

exact total ground-state energy of the system reads:

Evext
=

∑

i

fiǫi −
1

2

∫

ρ(r)ρ(r′)

|r− r′| drdr
′ −

∫

vxc(r)ρ(r)dr+ Exc[ρ(r)]. (A.28)

The second term in the right member is needed to remove the double-counting effects in eq.

(A.24), arising from the functional derivative in eq. (A.26). The last two terms in the right

member are needed since no theoretical justification exists to state that Exc is a linear functional

of electrons density.

Kohn-Sham eigenvalues

Despite the Kohn-Sham equations provide an exact description of the ground-state electrons

density and total energy, the Lagrange multipliers ǫi do not have an a-priori physical mean-

ing. Nonetheless, they are usually considered as the orbital energies characterizing the electronic

states. Indeed, theoretical results exist which attribute certain physical meaning to the eigenener-

gies. As stated by Koopmans’ theorem [203], in HF under the hypothesis of frozen orbitals i.e.

the orbitals of the ion are identical to those of the neutral molecule, the Lagrange multiplier of

the highest occupied orbital corresponds to the first ionization energy when the self-consistent HF

potential vanishes at infinite distance. In Kohn-Sham equations, the presence of the correlation

term in (A.28) prevent the Koopmans’ theorem to be valid. Instead the Janak’s theorem holds

[204]. The theorem states that the variation of the ground-state total energy in eq. (A.28) with



74 APPENDIX A.

respect to an orbital occupation coincides to the Kohn-Sham eigenvalue of that orbital:

∂Evext

∂fi
= ǫi.

Thus, the ground-state total energy is a continuous function of the occupation number, and this

function is piece-wise linear. The slope of the segments are the eigenvalues ǫi. In case on exact

DFT, it can be shown that these slopes are discontinuous with the occupancy fi. This reflects the

non-analytic behaviour of the exact functional. Janak’s theorem attributes a physical meaning to

the single Kohn-Sham eigenenergies. For instance the difference in total energies of an N + 1

electrons system with that of an N -electrons one is

EN+1 − EN =

∫ 1

0

∂Evext

∂fN
dfN

which is interpreted as the first ionization energy of a system, and could be evaluated with approx-

imate methods such as the Slater transition state method [204, 205]. The fN in the last equation

is the occupancy of the highest occupied Kohn-Sham state.

Besides Janak’s theorem, a DFT version of the Koopmans’ theorem exists which ensures that

the eigenvalue of the uppermost occupied Kohn-Sham orbital equals the exact ionization potential

with opposite sign. Almbladh and von Barth [206] compare the asymptotic behaviour of DFT

electron density (which is exact) to the one derived directly from the many-body Hamiltonian.

The main difference is recognized in the exponent determining the decay into vacuum. This is

related to the highest occupied eigenvalue for DFT density and to the first ionization potential for

the second.

DFT has been widely used to characterize the electronic behaviour of materials through its

prediction on the band gap. Besides a dependency on the choice of the approximated exchange-

correlation functional, which is discussed in section (A.2.3), a fundamental issue exists regarding

the computed gap within DFT. Indeed, the fundamental gap defined as the difference of the elec-

tron affinity and the first ionization energy [207], has often been reported to be underestimated

[208, 209]. The reason stands in its definition [210]:

Efund
gap = IN −AN =

= ǫN+1(N + 1)− ǫN+1(N) + ǫN+1(N)− ǫN (N) =

= ∆xc + EDFT
gap .

where EDFT
gap = ǫN+1(N)− ǫN (N) being ǫi(N) the ith Kohn-Sham eigenvalue of a system with

N electrons. The quantity ∆xc is connected to the discontinuity in the derivative of the exchange-

correlation potential. Therefore, DFT is somehow by construction underestimating the band gap.

It is actually debated the possibility of this ”natural” underestimation of not being a drawback,

but an effect following the capability of DFT to approximately account for exchange-correlation

holes [211]. Indeed it is physically expected to be an approximation to the excitation energy if

electrons and holes are close rather than an approximation to the fundamental gap.

As a ground-state theory, DFT in its reported formulation is not developed to investigate ex-

cited states. Extensions have been proposed and developed during the years to deal with external
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perturbation, in order to have a theoretical method to compare and analyze experimental results.

For instance, time-dependent DFT (TD-DFT) relaxes the hypothesis of stationary states at the

base of classic DFT [212]. TD-DFT shares some similarity with Hohenberg-Kohn formalism for

the ground state even though no variational principle holds for time-dependent states. This ex-

tension evolved towards practical application mainly in the field of spectroscopic excitation and

real-time evolution in non-perturbative fields.

A.2.3 Exchange-correlation functionals

Kohn-Sham formulation of DFT provides a practical framework to face complex many-electron

problems, which would be otherwise unmanageable. Nonetheless, the complexity of the many-

body problem is not entirely eliminated. Indeed, our ignorance of the exact wave-function in

eq. (A.2) is now reflected on the exact shape of the exchange-correlation functional defined in

eq. (A.22). Thus, several approximations has been proposed and employed during the years:

the local-density approximation (LDA) and general gradient approximation (GGA) are probably

the most widely employed. These approximations are often represented as the first steps of the

Jacob’s ladder, which points towards the exchange-correlation heaven-exactness (and complexity)

[213].

Local-density approximation is probably the most popular one. This is particularly suitable

for system having a slowly varying spatial density. Indeed, the exchange-correlation functional

is built from the exchange-correlation energy of an homogeneous interacting electron gas with

density ρ(r):

ELDA
xc [ρ(r)] =

∫

ǫhegxc (ρ(r))ρ(r)dr (A.29)

where ǫhegxc (ρ(r)) = ǫhegx (ρ(r))+ǫhegc (ρ(r)). The first term is known in its exact form the analysis

of the homogeneous gas, the second one can be analytically known only in its extreme density

limits. The behaviour for intermediate values is based on interpolations of quantum Monte Carlo

results performed by Ceperley et al. [214]. Despite its simplicity, LDA provides a good de-

scription of bulk materials. This is due to its exactness for at least one very peculiar system, the

homogeneous gas, which make LDA capable to respect the correct sum rule to the exchange-

correlation hole. That is, there is a total electronic charge of one electron excluded from the

neighbourhood of the electron. Nonetheless being a local approximation make LDA incapable of

correct the nonphysical electronic self-repulsion arising from the Hartree potential in eq. (A.25).

This results in systematic inaccuracy in the prediction of specific quantities. Specifically, under-

estimates of band gaps and over-bind of electrons. Such an nonphysical term is compensated

exactly in HF by the Fock operator which naturally remove the interaction of one electron with

itself. However, this precise compensation results in an overestimate of the band gap, because the

exchange term do not cancel the self-interaction for virtual orbitals.

The next step in the Jacobi’s ladder is the general-gradient approximation which relax the

strict locality requirement of LDA. For those systems whose electronic density exhibits significant

variations in space, LDA is no longer a suitable approximation. A natural extension consists in

including the gradient of the density in the description. In this way, the exchange-correlation

functional acquires a semi-local character. Unluckily, low-order density gradient expansions are

useless since the results are worse than LDA. Indeed at this order the sum rules for exchange-
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correlation holes is no longer satisfied. Practically, generalized expressions are used, which have

been shown to usually improve results over LDA [208]. Such generalized-gradient approximation

functionals read:

EGGA
xc [ρ(r)] =

∫

ǫxc(ρ(r),
∣

∣∇ρ(r)
∣

∣)ρ(r)dr (A.30)

These functionals are usually created by fitting a wide number of materials, while requiring the

kernel to respect some constrains such as to recover LDA kernel for homogeneous system, or

having some known asymptotic behaviour. The Perdew-Burke-Ernzerhof functional comes from

the second route, requiring, among other properties, the correct behaviour of the functional for

low-limit density gradient. Both LDA and GGA admit extensions for spin-polarized system.

The electron density dependence is split in the two spin-component: ǫxc(ρ
↑, ρ↓) = ǫx(ρ

↑, ρ↓) +

ǫc(ρ
↑, ρ↓), where following the work of Oliver and Perdew [215] the paramagnetic exchange term

can be written in term of the exact HF exchange term as: ǫx(ρ
↑, ρ↓) = 1

2 [ǫx(ρ
↑, ρ↑)+ǫx(ρ

↓, ρ↓)].

One further extension of GGA is meta-GGA. A dependency on the non-interacting kinetic-

energy density is used as input to the functional as well as the electron density and its gradient.

The spin-independent form of this functional is thus:

EMGGA
xc [ρ(r)] =

∫

ǫxc(ρ(r),
∣

∣∇ρ(r)
∣

∣ , τKS(r))ρ(r)dr (A.31)

where τKS(r)) =
∑

i
1
2

∣

∣∇φi(r)
∣

∣

2
. This functional allows for a more accurate description of band

gaps. However the derivation of vxc would require to calculation the derivative of the kinetic-

energy density, which increases the computational complexity.

In order to circumvent the spurious self-interactions effect arising in the Hartree term, one

possible solution is to include the exact Fock operator in the functional. Based on this idea,

hybrid functionals have been arranged: some amount of the exact exchange is combined with

given local or semi-local density functional approximation. This is done in the following way:

Ehybrid
xc = αEFock

xc + (1− α)EDFT
x (A.32)

with α running from 0 to 1 determines the percentage of exact exchange to introduce. It’s physical

meaning is connected through the quasi-particle equation to the system dielectric function. Since

the term EFock
x is built from the Kohn-Sham orbitals, and it is non local, Hybrid functional

calculations could be expensive. Different form of hybrid functionals exist, based on different

recipes: HSE06 addresses metal systems correcting short-range terms of PBE functional; PBE0

substitute a specific fraction of PBE exchange; B3LYP is based on a mixture of LDA and GGA

functionals.

A.3 DFT in practice

The standard approach to solve Kohn-Sham equations consists of numerical self-consistent meth-

ods. The following procedure forms the basis common to modern available ab-initio codes. The

first step is the choice of a starting point for the electronic density of the system. With this ten-

tative density, the effective potential of entering Kohn-Sham equations is built. Here is where

the approximation on the exchange-correlation functional enters. Then, the equations are solved
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and the eigenvalues and the orbitals are obtained. Actually, following a long-standing approach

in condensed matter, the differential equations are solved through the diagonalization of the cor-

responding secular-problem matrix. The new orbitals define a new density which is mixed with

those stemming from a number of previous cycles. The code then returns to the calculation of

the Hamiltonian and start again until convergence is reached, according to some criterion. The

criterion(s) are usually connected to the relative change of some physical quantity between con-

secutive steps, usually the electronic density or density matrix elements. Once the convergence

criterion is met the calculation is completed and the Kohn-Sham equations are considered to be

numerically solved self-consistently. This is a general outline of the self-consistent procedure

common to ab-initio codes.

The very starting point of an ab-initio simulation consists in the definition of the basis used to

expand the orbitals. The most common distinction is between localized basis and delocalized

basis sets. The expansion on a wave-function basis is truncated to obtain a computationally

accessible set of equations. With this in mind, the reliability of the simulations depends directly

on how many terms are employed to expand the orbitals. Which is usually determined by the

convergence of extensive physical quantities.

A.3.1 Plane-waves basis

Bloch’s theorem provides a basis for the expansion of electrons wave function which naturally

describe their delocalized nature when subjected to a periodic potential. Bloch’s wave functions

are lattice-periodic functions modulated by plane waves: ψ(r) = eik·ru(r). Following this idea,

one possible basis set to express Kohn-Sham orbitals in bulk systems is the plane wave (PW)

basis. Such a basis make very easy to control the convergence quality of simulations. Indeed,

better convergence can be achieved directly increasing the number of plane waves employed in

calculations. This is usually driven by one cutoff parameter: the kinetic-energy related to the

plane-wave state. Therefore, the PW basis is defined by:

〈r|k+G〉 ∝ 1√
Ω
ei(k+G)·r h̄2

2m
|k+G|2 ≤ Ecut (A.33)

where G is a reciprocal-lattice vector, k is a wave vector in the first Brillouin zone, Ω is the

primitive-cell volume and Ecut is the cutoff on the kinetic-energy of PW. Given a PW basis

{ϕk(r)}, the ith Kohn-Sham orbitals can be expanded as:

φi(r) =
∑

G

ci,k+Gϕk+G(r).

Thus, the secular problem corresponding to Kohn-Sham equation (A.24) for the ith orbital be-

comes:
∑

G′

[HKS(k+G,k+G′)− ǫiδG,G′ ]ci,k+G′ = 0. (A.34)

The matrix HKS(k) is an N ×N matrix, being N the number of basis elements. The expansion

over PW basis provides many advantages: the elements of the basis are orthonormal and periodic

by construction, they are unbiased because there is no freedom in choosing PWs and there is

no dependence on the ions coordinates. Besides the matrix elements of the Hamiltonian assume
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relatively simple form. Finally and importantly to achieve a better convergence of the results it

is simply necessary to raise the cutoff. Drawbacks exists: supercells are required to simulate

non-periodic systems, surfaces or defective lattices for instance, and fast-varying densities are

not easily represented with plane waves. Specifically, capturing the rapid variation of the valence

electrons wave-function close to the nuclear position requires a stunning number of plane waves.

This specific issue led to the development of pseudo-potentials, introduced in section (A.3.3).

A.3.2 DFT with localized atomic orbitals

Localized basis sets are one possible alternative to plane waves. Contrary to delocalized basis set,

different flavours can be selected: linear combination of atomic orbitals (LCAO), Gaussian-type

orbitals, linearized Muffin-Tin orbitals etc. the SIESTA code [165], which has been employed

in chapter 3.1 of the present thesis, makes use of the LCAO approximation. This means that the

Kohn-Sham orbitals are expanded as:

φi(r) =
∑

ν

ci,νϕν(r)

where ϕν(r) is an atomic orbital describing the single-electron state ν. Taking the atomic or-

bitals ϕν(r) as Bloch-type functions, allow to deal with periodic systems. The secular problem

connected to Kohn-Sham equations is now:

∑

ν

[HKS
µ,ν(k)− ǫi(k)Sµ,ν(k)]ci,µ(k) = 0. (A.35)

which is already diagonal in the crystal momentum-space, indeed no k 6= k′ term contributes.

The matrix Sµ,ν(k) is the overlap matrix, which would be the identity matrix if the basis was

orthogonal.

The orbitals are localized in space in such a way that they vanish beyond a certain radius rc.

With this approximation the number of matrix elements to be computed and stored is significantly

reduced. This is needed specifically for order-N method [165] which rely heavily on the sparsity

of the Hamiltonian and overlap matrices. BeingN the number of electrons, order-N method is an

N -scaling method alternative to the matrix diagonalization which is the main bottleneck for DFT

simulations in terms of computational effort since it normally scales as N3. Unfortunately, the

order-N method in SIESTA is only implemented for well-defined gap bulk systems, which is not

the case for the system analyzed in chapter 3.1. Inside the cutoff radius, the atomic basis orbitals

are the products of a numerical radial function times a spherical harmonic. Generally speaking,

several orbitals could share the same angular dependence, but different radial dependence. This

is one of the main degree of freedom in the definition of basis: the number of radial functions

ζ employed to define the orbital radial profile inside the cutoff radius. Single-ζ orbital basis

could be used. In this case the radial profile is a angular-momentum dependent eigenfunction of

a pseudo-atom (described with a pseudo-potential) within a spherical box, for an energy ε chosen

so that the first node occurs at the desired cutoff radius rl,c. As an alternative, multiple-ζ basis

are introduced: two or more radial wave functions for a given angular momentum are computed

within a ”split-valence” scheme [216] and are successively mixed to retain the zero value beyond

rl,c. Furthermore, to obtain well converged results, it is generally necessary to include polariza-
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tion orbitals, to account for the wavefunction deformation induced by bond formation. To obtain

these extra orbitals the pseudo-atom is perturbed with an external electric field. The orbitals re-

sulting from the first-order perturbation theory are added to the basis [165]. Conventionally the

different basis are indicated with acronyms: single-ζ plus polarization-orbitals is SZP, double-ζ

plus polarization-orbital basis is DZP etc. Given its good balance between well converged results

and reasonable computational cost, DZP is usually named the standard basis.

A.3.3 Pseudo-potentials

The possibility of employing plane-wave basis drove the introduction of pseudo-potentials which

rapidly become a common ingredient for ab-initio calculations. This is a further approximation

introduced in ab-initio simulations, which aims to simplify the practical treatment of electrons

interactions while preserving the accuracy of DFT calculations.

The necessity emerges when the core electrons wave functions are considered in the expan-

sion on the plane wave basis3. Indeed, given the true orbitals orthogonality, the higher angular

momentum wave functions shows strong oscillations near the potential-energy singularities at the

ionic core sites. Such feature requires a huge amount of plane wave components to be captured.

Thus a large amount of terms have to be computed and stored to build the electron density and

the hamiltonian in Kohn-Sham equations. However, only valence electrons are significant to the

physics of chemical bonding and in general to the physical properties of the system. On the con-

trary, the wave functions of core electrons are mostly unaffected by the chemical environment.

As a consequence, core electrons can be frozen out and ignored during the calculations. A simple

justification of the nature of pseudo-potential is given in the so-called orthogonal plane waves

method, developed by Herring in 1940 [210, 218]. The wave functions of valence electrons is

decomposed in a smooth term and in a rapidly oscillating term. In order to make the smooth

term orthogonal to the core states, the second component is expanded in terms of the such core

electrons wave functions:

|φvi 〉 = |φ̃vi 〉+
∑

k

ak|φck〉. (A.36)

The coefficient of the expansion ak are readily found by projecting the valence state over the kth

core state:

ak = −〈φck|φ̃vk〉. (A.37)

Inserting the two previous definitions in the Schrödinger equation for the ith valence electron

gives a first definition of pseudo-potential:

Ĥ|φvi 〉 = Ĥ
[

|φ̃vi 〉+
∑

k

ak|φck〉
]

= ǫi|φvi 〉 (A.38)

gives:

[Ĥ + V̂nl]|φ̃vi 〉 = [T̂ + V̂eff ]|φ̃vi 〉 = ǫi|φ̃vi 〉. (A.39)

where a non-local extra-potential is added to the original hamiltonian, so that V̂eff = V̂ + V̂nl,

3Despite there is no strict necessity to use them, pseudo-potentials can also be employed even within local-basis

context. In SIESTA for instance they are employed in the norm-conserving Troullier-Martins parametrization [217], to

get rid of the core electrons and to allow for the expansion of a smooth (pseudo)charge density on a uniform spatial grid.
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defined as follows:

V̂nl =
∑

j

(ǫvi − ǫcj)|φcj〉〈φcj |. (A.40)

The term Veff is a pseudo-potential. With such an effective hamiltonian, the smooth component

of the valence orbitals are degenerate in energy with the exact orbitals. Actually, as stated by

Phillips and Kleinman [219] the non local potential in equation (A.39) is a repulsive term which

soften the action of the original Coulomb potential.

One practical way of implement pseudo-potential formalism is to write them in a fully non-

local form. This can be done for instance with the formalism introduced by Kleinman in [220]

where the pseudo-potential reads:

V̂PS = V̂local +

lmax
∑

l=0

m=+l
∑

m=−l

|δVlφlm〉〈φlmδVl|
〈φlm|δVl|φlm〉 (A.41)

The φlm are the atomic pseudo wave functions (including angular term) for the reference state

|lm〉 and δVl(r) = Vl(r)−Vlocal(r). The local term Vlocal(r) is in principle arbitrary, but it has a

long-ranged behaviour reminiscent of Coulomb potential: −Zve
2

r . Usually, Vl(r) = Vlocal(r) for

r > rcore irrespective of the value of the angular momentum l.

Operatively, a pseudo-potential is obtained with following procedure. First, through the radial

Schrödinger equation, one obtains the atomic valence orbitals of a specific element. With these

orbitals one creates a set of node-less pseudo wave functions. The radial Schrödinger equation

for these node-less (pseudo)orbitals can now be inverted to build the pseudo-potentials Vl(r) for

each angular momentum l. Finally the, Hartree and exchange-correlation contributions due to

the valence electron density built from the pseudo-orbitals, are subtracted from the total pseudo-

potential. This procedure is called ”unscreening” and is needed to avoids to double counting

the exchange-correlation contributions by the valence electrons when the pseudo-potential is em-

ployed in effective simulations. Furthermore, since the exchange-correlation potential is not a-

priori a linear functional of the density, namely Vxc[ρPS + ρc] 6= Vxc[ρPS] + Vxc[ρc], a simple

subtraction of the contribution by Vxc[ρPS] is usually not sufficient and the so-called non-linear

core corrections are needed [210].

When the pseudo-orbitals are computed, some extra conditions may be required. For instance,

generally speaking by construction each pseudo-orbitals shares the same orbital energy of the

corresponding all-electron orbital φaelm(r), has to be node-less, it coincides with the all-electron

orbital for r > rcutoff . Further more, norm-conservation can be required:

∫

r<rcutoff

∣

∣φpslm(r)
∣

∣

2
r2dr =

∫

r<rcutoff

∣

∣φaelm(r)
∣

∣

2
r2dr

The core radius rcutoff is approximately at the outermost maximum of the wavefunction. These

pseudo-potentials have wide transferability, but could become hard to employ, meaning that high

cutoff in the plane-wave basis are required. This translate into larger CPU and RAM requirements.

To overcome this possible hardness and obtain even more simplified and quick pseudo-potentials

one could relax the condition over the conservation of the norm. These sorts of potentials are

named ultra-soft. The cutoff radius rc can be increased without loss of transferability, but a

drawback appears. Since the orbital norm is no longer conserved, a so-called augmentation charge
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must be included in the electronic density at each step of the self-consistent procedure. Such extra-

charge need also to be included in forces routine when calculated within the Hellman-Feynman

theorem [221].





APPENDIX B

B.1 Ab-initio calculation of phonons

Phonons in crystals are collective excitations corresponding to atomic vibrational modes. These

vibrations propagate with a wave-vector q and are characterized by vibrational frequencies ω(q)

defining the periodic displacements of the atoms around their equilibrium positions. The wave-

vector q is the equivalent of the Bloch vector for the electronic states. Therefore all non-equivalent

q are localized inside the first Brillouin zone (1BZ), i.e. the unit cell of the reciprocal lattice.

Similarly to electrons, phonon frequencies fold in the 1BZ forming “bands”. A system with

N atoms in the unit cell is characterized by 3N frequencies for each q. Among these, 3 are

acoustic modes involving coherent vibrations of all the atoms in the primitive cell, the other

3N − 3 are the optical modes involving relative atomic motion inside the primitive cell. To

describe the vibrational properties of a crystal one introduces the dynamical matrix D(q), which

is the mass-reduced Fourier transform of the inter-atomic force constant matrix. TheD(q) matrix

can be derived under the harmonic approximation when expanding the crystal adiabatic energy

around atomic equilibrium positions for small atomic displacements. In this case, “small” refers to

interatomic distances. The dynamical-matrix eigenvalues ω2 are the squared phonon frequencies

while the atomic displacements are related to its eigenvectors ǫ [222–224]:

∑

α

[Dα,β(q)− ω2δα,β ]ǫβ = 0. (B.1)

where Greek letters α, β are collective indices: they represent the Cartesian coordinates of all

the atoms in a primitive cell. Thus the indices range from 1 to 3N and the dynamical matrix

is 3N × 3N . According to harmonic approximation, phonons corresponds to stationary states.

They can not account for several physical phenomena such as thermal expansion or thermal con-

ductivity limitations in insulators. To describe these effects one needs to go beyond the harmonic

approximation and to include higher-order terms in the adiabatic energy expansion.

To obtain crystal vibration frequencies within DFT framework, one can rely mainly on two

techniques: the frozen phonons and perturbative expansion of DFT. In the frozen phonons method,

the inter-atomic force constant matrix is built directly through an explicit evaluation of its ele-

ments. It is later diagonalized at a generic q. Thus finite, periodic, displacements of a few atoms

in an otherwise perfect crystal at equilibrium are introduced, and the forces acting on the dis-

placed atoms are computed. To obtain the frequencies of a lattice vibrations with generic q, this

method needs to work with proper supercells whose linear dimensions must be therefore at least
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of the order of 2π
q . Since the number of atoms grows rapidly with the size of the supercell, the

application of this technique are usually limited to zone-center phonon modes analysis or along

selected high-symmetry path. Besides, complex materials are not advisable. The main advantage

of the frozen-phonon approach is that it does not require any specialized computer code. This

technique can indeed be implemented using any standard total energy and force code. The main

drawback is the unfavorable scaling of the computational load with the number of atoms in the

primitive cell and with the range R of the inter-atomic force constants. Indeed supercells needs

linear dimensions higher than R, including a number of atoms Nsc ∝ R3. Thus, given the cu-

bic scaling of self-consistent DFT calculations with the number of atom considered, a full frozen

phonons calculation will scale as 3NR9. Obviously for increasing system complexity such calcu-

lation becomes rapidly overwhelming for ordinary computational resources. As a consequence,

complex systems require techniques which can perform better than frozen phonons. Perturbative

expansion of DFT, also known as DFPT, reduces the overall computational effort computing the

dynamical matrix through linear-response theory. Besides, it includes the possibility of treat polar

materials, which is something not directly provided by frozen phonons [224]. DFPT is desirable

for complex systems: having no necessity for a supercell the scaling with the number of atoms is

favourable with respect to frozen phonons. For instance, consider the calculation of inter-atomic

force constants through grid-based DFPT. The wave vectors in the Brillouin need a spacing of the

order of the inverse of the range of the inter-atomic force constants: ∆q ∝ 2π
R . Hence the number

of q points in such a grid is of the order of R3. The calculation of each column of the matrix

has a computational cost of the order of N3 and the number of such columns is 3N . Therefore,

the cost for the calculation of the complete inter-atomic force constant matrix, thus of complete

phonon dispersion, is of the order of 3N4R3.

B.2 Linear response: density functional perturbation

theory

In the framework of Born-Oppenheimer approximation, where the lattice and electrons have un-

coupled dynamics, the ground-state energy obtained by DFT coincide with the energy of a system

of interacting electrons moving in the field of fixed nuclei. Within this approximation, one define

the adiabatic-energy surface as:

E({R}) = µel
i + Vn−n({R}) (B.2)

where Vn−n({R}) is the Coulomb energy ion-ion repulsion defined in eq. (A.6). with µel
i defined

in eq. (A.9) where i labels an electronic eigenstate (in the context of Kohn-Sham DFT it is defined

through (A.28)). In the adiabatic approximation context, given an electronic state, the adiabatic-

energy surfaces governs ionic motion. The equilibrium geometry of the system is the one where

each atom do not experience any net resulting force, represented by the global minimum of the

adiabatic potential energy surface (B.2). Local minima correspond to metastable states. For small

deviation from this condition, the harmonic approximation allows the adiabatic energy surface

to be treated as a paraboloid. In this context it can be shown that the dynamical matrix can be

obtained through linear response theory, with the perturbing potential being a variation in the

external nuclear potential.
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The Feynman-Hellman theorem states that the first derivative of the eigenvalues of a Hamil-

tonian, Hλ that depends on a parameter λ, is given by the expectation value of the derivative of

the Hamiltonian:
∂Eλ

∂λ
= 〈Ψ|∂Hλ

∂λ
|Ψ〉.

In the current case the parameter λ coincides with one, or several, atomic coordinates, and the

theorem holds due to Born-Oppenheimer approximation because the ions coordinates enter the

electronic wave functions only as parameters1. Thus, within the adiabatic approximation context

the force acting on the Ith nucleus in the electronic ground state is:

FI = −∂ER

∂RI
= −

∫

drρR(r)
∂VR(r)

∂RI
− ∂Enn(R)(r)

∂RI
(B.3)

where ρR(r) is the electronic density, VR(r) is the external potential of DFT representing the

Coulomb interaction among nuclei and electrons and EN (R) is defined in eq. (A.6). The sub-

script R labels the parametric dependency on the fixed ionic configuration.

Deriving eq. (B.3), one obtains the inter-atomic force constant matrix, which is by construc-

tion the Hessian matrix of the adiabatic energy with respect to nuclei coordinates:

∂2ER

∂RI∂RJ
=

∫

ρR(r)
∂VR(r)

∂RI∂RJ
dr+

∫

∂ρR(r)

∂RJ

∂VR(r)

∂RI
dr+

∂2Enn(R)

∂RI∂RJ
. (B.4)

The terms on the right member of this equation require the calculation of the ground-state electron

charge density ρ(r) as well as of its linear response2 to a distortion of the nuclear geometry
∂ρR(r)/∂RJ . Thus, once the ground state ρ(r) is known, one is left to compute the linear response

of the electron-density to the ions displacement [224, 226]. This linear response can be obtained in

terms of the perturbed Kohn-Sham orbitals in a self consistent way, through first-order standard

perturbation theory [227]. Being Hscf the unperturbed hamiltonian in eq. (A.24), |φi〉, ǫi the

unperturbed ith Kohn-Sham orbital and its eigenvalue respectively, then the perturbed orbital

|δφi〉 is defined by the equation:

[Hscf − ǫi]|δφi〉 = −(δvscf − δǫi)|φi〉. (B.5)

where δvscf is the first order correction to the self-consistent potential of eq. (A.25):

δvscf = δvext +

∫

δρ(r′)

|r− r′|dr
′ +

δvxc
δρ(r)

δρ(r) (B.6)

and δǫi = 〈φi|δvscf |φi〉 is the first order correction to the ith eigenvalue. In the context of solid

state physics eq. (B.5) is also known as Sternheimer equation [228]. The self-consistent character

of these equations is evident in the dependency of the perturbed potential on the corrections to the

electronic density. Such corrections are defined in terms of the perturbed orbitals, which are the

1In DFT implementation, if a plane wave basis is employed to expand the Kohn-Sham orbitals then the theorem is

still valid, but it is no longer true in case of a LCAO approximation, because the atomic orbitals depends explicitly on the

ions coordinates and pulay forces appears
2This result is understood in terms of the so-called 2n+1 theorem [225], which basically states that the 2n+1 order

derivative of an hamiltonian eigenvalue, can be expressed in term of the previous derivative up to order n.
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solutions of eq. (B.5), through:

δρ(r) = 2ℜ
Nel
∑

j=1

φ∗j (r)δφj(r) (B.7)

Thus an iterative procedure is needed to solve equation (B.5). Once convergence is achieved, one

is able to compute the linear response of electrons density to the displacement of the ions, and

the hessian matrix in (B.4) and the dynamical matrix. The secular problem of eq. (B.1) is now

recovered and the phonons eigenvalues can be obtained for a generic wave-vector q.

One of the main advantages of DFPT, compared to non-perturbative methods, is that within

DFPT the response to the different Fourier components of a perturbation are decoupled. That is

to say, the response of the system on perturbation with a certain wavelength is independent from

the response to different wavelengths perturbations. Indeed eq. (B.5), after some manipulation,

can be decomposed into Fourier components in such a way to deal with lattice-periodic functions

only. This feature prevents the use of supercells to calculate phonon frequencies at arbitrary wave

vectors q with workload that is essentially independent of the phonon wavelength.

B.3 DFPT in practice

Plane-waves based codes such as Abinit [229] or Quantum espresso [129] compute the phonon

frequencies by means of density functional perturbation theory. The approach coincides with the

one described in the previous section. Thus, the charge response to lattice distortion of definite

wave-vector q is computed starting from the electronic structure of the regular crystal, obtained

from a conventional DFT self-consistent calculation. A different response in the electron density

have to be calculated for each independent wave vector. The DFPT implementation in Quantum

Espresso allows for two routes for the calculation of phonons dispersion, either with or without

a q grid. If the grid is employed, the dynamical matrix is computed on each q vector. Then, the

inter-atomic force constant matrix is built through a Fourier interpolation. Finally, the knowledge

of this approximated force constant matrix allow for the dynamical matrix to be computed and

diagonalized at a generic q vector. Otherwise, one can perform a direct calculation of the dynam-

ical matrix at each specified q wave vector along the required path in the first Brillouin zone. The

3N frequencies are then extracted by diagonalization of the matrix at each q.

In Quantum-Espresso implementation of the ground-state energy calculation, the k-points

grid employed to sample the first Brillouin zone, i.e. to solve Kohn-Sham equations, is not entirely

used to compute the various physical quantities. Instead, calling G the group of crystal symme-

tries, only a subset of such k points is considered: only the wave vectors which are nonequivalent

under the operations of G are employed. Thus, only those k points enclosed in the so called irre-

ducible Brillouin zone of the lattice are needed. The physical quantities that are defined by means

of first Brillouin zone integration are obtained averaging over its value on this k-point subset after

having imposed the symmetries of the crystal. In general, regardless of the details of the systems,

time-reversal symmetry is assumed so k and −k are considered as equivalent. Thus the inversion

symmetry on the grid is always present, and the sums can always be performed on half of the

k points of the mesh. Similarly, in a phonon calculation the linear response equations are not

computed on each k wave vector on the grid. This implies that, the Sternheimer equations (B.5)
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are not solved on each element of the grid. Instead, only the k vectors which are nonequivalent

under rotations of the group Gq are considered. The group Gq is called the small group of q

and includes all the rotations of the symmetry group G which leaves unchanged q or transform

it into an equivalent q+G′ (G′ in this case is a primitive reciprocal lattice vector). The density

response function ∂ρ(r)/∂Rq is obtained by summing on this k-point subset and then, by imposing

the symmetries of Gq. The denominator of the response function indicates a perturbation of the

ions coordinates characterized by a wave vector q. As for ground-state DFT, due of time reversal

symmetry, the response is not needed for both q and −q. Of course in case of lack of symmetries,

the k points are all needed. Once the density response function has been determined at a certain

q, one is able to determine the dynamical matrix D(q). Moreover, one can exploit the lattice

symmetries once more. Indeed, let’s define the subset of {q̃} obtained rotating the q with the

rotations of the group G as the star of q. Thus, every vector in the star of q yields to the same

electron-density response function: ∂ρ(r)/∂Rq = ∂ρ(r)/∂Rq̃.
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C.1 Density functional tight-binding

Despite its great success, DFT computational scaling limits the size of the treatable systems. Thus

semi-empirical and empirical methods remains valid for the analysis of space and time scales not

achievable by DFT. One empirical method which is useful in many ways is density functional

tight-binding (DFTB) [166]. It is a tight binding formulation which can be derived from a Taylor-

series expansion of the Kohn-Sham density functional total energy of eq. (A.28) (plus the ion-ion

repulsion energy) around a reference density ρ(r). The reference density is assumed to be that of a

free and neutral atomic system. Clearly this choice does not minimize the DFT energy functional.

But one could assume that it neighbors the true minimizing density: ρmin(r) = ρ0(r) + δρ(r)

with δρ(r) assumed to be small. The second-order expansion of DFT total energy in fluctuation

δρ(r) reads:

E[δρ] = EBS[δρ] + ECoul[δρ] + Erep (C.1)

where:

EBS[δρ] =
∑

a

fa〈ψa|H[ρ0]|ψa〉 (C.2)

corresponds to the evaluation of the effective Kohn-Sham Hamiltonian built with the unperturbed

atomic density ρ0 over the single particle state |ψa〉. Eq. (C.2) describes the band structure of this

atomic neutral system. The term:

ECoul[δρ] =
1

2

∫ ∫

(δ2Exc[ρ0]

δρ δρ′
+

1

|r− r′|
)

drdr′ (C.3)

represents the energy from charge fluctuations. It is mainly due to Coulomb interaction but con-

tains also xc-contributions. The last term:

ERep = −1

2

∫

VHa[ρ0](r)ρ0(r)dr+ Exc[ρ0(r)] + EII −
∫

Vxc[ρ0](r)ρ0(r)dr (C.4)

is collectively named the repulsive energy due to the presence of the ion-ion repulsion term de-

fined in eq. (A.6), but it contains more quantities from the Taylor expansion. The repulsive term

is usually reduced to a sum over different atoms

Erep =
∑

I<J

V IJ
rep(RIJ) (C.5)
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depending on the relative distance RIJ of the I and J atoms. The Coulomb term can be written

in terms of the Mulliken charges [230], which represent the induced charge on the atom I , thus

an extra electrons population on the atom I , as

ECoul =
∑

I<J

γ(RIJ)∆qI∆qJ . (C.6)

The γ(RIJ) represents the distance-dependent charge-charge interaction connected to the chem-

ical hardness U = IE −AE where IE is the ionization energy and EA is the electron affinity.

Following a tight-binding approach, the energy in eq. (C.1) is expanded on a minimal atomic

orbital basis |ψµ〉. Minimality means having only one radial function for each angular momentum

state. Thus:

|ψa〉 =
∑

µ

caµ|φµ〉. (C.7)

After simple manipulations, the energy in equation (C.1) becomes:

E =
∑

a

fa
∑

µν

ca∗µ c
a
νH

0
µν +

∑

I<J

γIJ(RIJ)∆qI∆qJ +
∑

I<J

V IJ
rep(RIJ). (C.8)

with the Mulliken charge expressed as:

∆qI =
∑

a

fa
∑

µ∈ I

∑

ν

1

2

(

ca∗µ c
a
ν + c.c.

)

Sµν . (C.9)

fa is the occupation of the ath single particle state, Sµν is the overlap matrix of the atomic orbitals

basis. The minimum of this expression is obtained by variation of δ(E −∑

a ǫa〈ψa|ψa〉), where

ǫa are undetermined Lagrange multipliers, constraining the wave function norms. Thus:

∑

ν

caν(Hµν − ǫaSµν) = 0 (C.10)

is the secular equation to be solved, where the Hamiltonian matrix element, with I and J labelling

different atoms, is:

Hµν = H0
µν +

1

2
Sµν

∑

k

(γIk + γJk)∆qk µ ∈ I, ν ∈ J . (C.11)

Of course molecular systems can be perfectly described with this atomic orbital formalism. For

periodic systems the Kohn-Sham orbitals are expanded on a Bloch waves basis instead of a pure

localized basis:

φµ(k, r) =
1√
N

∑

R

eik·Rφµ(r−R) (C.12)

where R is a lattice vector. The Kohn-Sham orbitals, hence, being expressed as linear combina-

tions on this basis, are themselves Bloch waves. In either cases, the atomic orbitals should not

be taken from free atoms, as they would be to diffuse. To this purpose, they are defined by an
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Hamiltonian with an additional artificial confinement potential, which reads:

Hpseudo = − h̄2

2m
∇2 − Ze2

r
+ VHa(r) + Vxc(r) + Vconf(r). (C.13)

Typically, the confining potential is a spherical power potential. Other form has been employed,

such as the Woods-Saxon potential [231]. In this way the orbital diffuse tails are cut off and their

overlap are reduced. As a consequence the sparsity of the Hamiltonian matrix increases, helping

its diagonalization.

This TB formulation naturally incorporate a pure independent-electron approach and its exten-

sion including electron-electron interaction through Mulliken charges. The independent electrons

picture is obtain neglecting the term depending on the extra-charges ∆qk in the Hamiltonian

(C.11). If the correction are included, then the construction of the Hamiltonian is treated self-

consistently. From an initial guess of the Mulliken charge population one obtains the second term

at the right member of eq. (C.11). Once the matrix has been assembled new coefficient {caµ}
are obtained from the secular problem in eq. (C.10) and new Mulliken population is built from

(C.9). The procedure is repeated until certain convergence condition is reached. In both cases, the

tight-binding spirit is adopted by accepting the matrix elements H0
µν as the principal parameters

of the method. This means that these matrices elements are previously computed and stored in

a parameters file read every time the matrices have to be constructed. The repulsive term in the

Hamiltonian has to be previously computed too. Usually, it is designed in such a way to adjust the

pseudo-atomic description of some reference systems against ab-initio predictions or empirical

results.

C.2 Tight-binding parametrization

Three objects in DFTB are parametrized before the simulations: the Hamiltonian matrix, the over-

lap matrix and the repulsive potential. Usually, the method to build these objects consists in the

minimization of some objective functions against a set of parameters introduced in the Hamilto-

nian and in the repulsive term. There is no standard recepy for such parametric description, on the

contrary a certain freedom is possible. The objective function is usually the difference between

some physical quantity computed with the current parametrization and ab-initio methods, or with

respect to some empirically known quantity. The minimization procedure occurs through global

minimum search algorithms, such as particle swarm, simulated annealing, genetic algorithms etc.

[232]. The objective function is defined according to what the tight-binding aims to reproduce.

For instance it will be the difference in binding energy if energetic stability is to be analyzed.

Moreover, several functions could be employed. The difference in binding energy could be sup-

ported by a forces comparison if geometrical relaxation is foreseen, or the band structure could be

also addressed, in order to obtain a parametrization capable to reproduce the electronic properties

of the analyzed system as well. One widely employed workflow to prepare the parametrization

consists in starting with the optimization of the Hamiltonian and overlap matrices, followed by

the fit of the repulsive term in (C.8) to best approximate ab-initio results. Some finer method

includes a second round, where the matrices elements are adjusted in such a way to reproduce the

first-round final results. The repulsive part is newly fitted to ab-initio results [232].

The elementsHµν parametrized are described more in detail in what follows. The on-diagonal
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elements of the Hamiltonian H0
µµ are the on site energies of the pseudo-atomic orbitals for the

different angular momentum, computed within DFT formalism. The effective potential of the

Kohn-Sham equations does not contains the additional confinement potential. Besides, only one-

center integrals are retained in the calculation of these elements. I.e. the crystal field contribution

from different atoms is neglected. Thus, calling vAeff the effective potential arising from the nu-

cleus A, the matrix element reads:

H0
µµ =

∫

φ∗µ(r)
[

− h̄2

2m
∇2 + vAeff

]

φµ(r)dr. (C.14)

All the terms including an effective potential vBeff arising from a B 6= A are neglected. The

on-diagonal elements correspond to the on-site energies for the state labeled with µ. Being on-

site, these elements are stored and read as they are whenever required during the simulations.

Instead, the off-diagonal elements of the Hamiltonian are computed with DFT within a two-

center approximation: one assumes the integral with three different localized centers, to be small

enough to be neglected. In this case, the matrix element reads:

H0
µν =

∫

φ∗µ(r)
[

− h̄2

2m
∇2 + vAeff + vBeff

]

φν(r)dr. (C.15)

where µ ∈ A and ν ∈ B. The off-diagonal elements are computed through this equation and

are stored in the form of tables as a function of the distance among the nuclei A and B, which

coincide with the orbitals center. However, the calculation of these off-diagonal matrix elements,

as for the overlap matrix, is simplified by the Slater-Koster transformations: only few integrals

have to be calculated numerically for each pair of orbitals which are later combined to assemble

all the others.

The repulsive potential is built to fit the results of the Hamiltonian parametrization to the DFT

ones. Several procedures exists in order to build these pairwise potentials. One possible method

consists in evaluating the repulsive potential as the difference in the total energy computed with

DFT and DFTB according to eq. (C.2) as a function of the pairwise atomic distance over a group

of target structures:

Vrep(R) = 〈EDFT(R)− EBS(R)〉. (C.16)

The brackets correspond to averaging over the ensemble of the target structures. The points

{R, Vrep(R)} are then fitted with spline functions to ensure continuity of the derivatives up to a

certain order. Another possible solution consists in expressing each pairwise repulsive potential

as a linear combination of cutoff polynomials. This is a faster solution giving potentials with

comparable quality to the spline method.

C.2.1 Slater-Koster integrals

The elements of the matrices are not entirely computed from scratch to prepare the parametriza-

tion. Instead, only specific integrals, representing the dependence of the matrices elements on the

orbital centers distance, are needed to complete the matrices. Slater-Koster transformation rules

allow every Hµν or Sµν involving s, p or d orbitals, to be written in term of one to three simple

integrals named Slater-Koster integrals. These simpler integrals are taken among a group of 10,
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labeled ddσ, ddπ, ddδ, pdσ, pdπ, ppσ, ppπ, sdσ, spσ, ssσ, depending on the atomic orbitals µ, ν

involved and on the value of l of the molecular orbitals considered σ, π, δ. For instance, using the

letter τ to label these 10 integrals, an overlap matrix element namely reads:

Sµν =
∑

τ

cτSµν(τ) (C.17)

The matrices elements are hence computed according to this law, and stored in the form of ta-

bles as a function of the distance among the nuclei, which coincide with the orbitals center. The

number of columns forming the table is twice the number of nonequivalent orbitals combina-

tions: one for the Hamiltonian one for the overlap matrix. For instance, the integral table for a

homonuclear system consisting only of carbon will have 20 columns: ten for the Hamiltonian

Hddσ, Hddπ, Hddδ, Hpdσ, Hpdπ, Hppσ, Hppπ, Hsdσ, Hspσ, Hssσ and the equivalent for the over-

lap matrix. Clearly, each column involving d orbitals will be a column of zeros.

C.2.2 Tight-binding molecular dynamics

Regular tight-binding total energy does not require a self-consistent construction, since the Hamil-

tonian and the repulsive energy are read by the parameters file. As such, tight-binding is a prefer-

ential framework to perform molecular dynamic simulations for systems which are not accessible

by ab-initio molecular dynamics. Indeed, Car-Parriniello molecular dynamics provides a pow-

erful framework to describe the inter-atomic interactions through self-consistent first-principles

calculations in connection with the time-evolution of the system. The electronic and atomic lev-

els are described, but information on the dependency of materials properties on the temperature

and pressure can be extracted. Although, the method is computationally too expensive for many

purposes in materials research [233]. Tight-binding based molecular dynamics is a compromise

between the effectiveness of classical molecular dynamics, and the quantum description, exact

but cumbersome, of ab-initio molecular dynamics. The quantum mechanics description is re-

tained through the LCAO expansion, and the force field is obtained by the total energy expressed

in equation (C.8) through its gradient with respect to the atomic positions. The force field cannot

be prepared before the simulations as it depends directly on the atomic coordinates of each spe-

cific configuration during the time evolution. It is computed at every step of advancement of the

dynamics of the nuclei and it is employed to determine the successive one.





APPENDIX D

D.1 Supplementary materials

The atomic coordinates of the investigated allotropes are given as supplementary contents of the

publications produced throughout this PhD.

Specifically, the Cartesian coordinates of single-ring novamene configuration reported in

Fig.2.4 can be found as .xyz file at

https://www.sciencedirect.com/science/article/pii/S2405844016310386#

upi0005 .

The fractional coordinates of the atomic non-equivalent positions of protomene can be found

at https://www.sciencedirect.com/science/article/pii/S0008622317310692

as .cif file.

The fractional atomic coordinates of zayedene can be found at https://pubs.rsc.org/

en/content/articlelanding/2019/cp/c9cp03978c#!divAbstract as .cif file.
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138. Grüner, G. The dynamics of charge-density waves. Rev. Mod. Phys. 60, 1129 (1988).

139. A., D. & C., P. Electronic structure and optical properties of Si, Ge and diamond in the

lonsdaleite phase. J. Phys. Condens. Matter 26, 045801 (2014).

140. Zhang, Y., Maddox, S. & Manteghi, S. Verification of Class B S-N curve for fatigue design

of steel forgings. Int. J. Fatigue 92, 246 (2016).

141. Oliveira, E., da Silva Autreto P.A, Woellner, C., et al. On the mechanical properties of

novamene: A fully atomistic molecular dynamics and DFT investigation. Carbon 139, 782

(2018).

142. Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput.

Phys. 117, 1 (1995).

143. Kawai, T., Miyamoto, Y., O. Sugino, O., et al. Graphitic ribbons without hydrogen-termination:

Electronic structures and stabilities. Phys. Rev. B 62, R16349 (2000).

144. Liu, Y., Jones, R., Zhao, X., et al. Carbon species confined inside carbon nanotubes: a

density functional study. Phys. Rev. B 68, 125 (2003).

145. Wassmann, T., Seitsonen, A. P., Saitta, A. M., et al. Structure, stability, edge states, and

aromaticity of graphene ribbons. Phys. Rev. Lett. 101, 096 (2008).

146. Okada, S. Energetics of nanoscale graphene ribbons: Edge geometries and electronic struc-

tures. Phys. Rev. B 77, 041408 (2008).

147. Jr., E. H., Pontes, R., Fazzio, A., et al. Formation of atomic carbon chains from graphene

nanoribbons. Phys. Rev. B 81, 201406 (2010).

148. Castelli, I. E., Salvestrini, P. & Manini, N. Mechanical properties of carbynes investigated

by ab initio total-energy calculations. Phys. Rev. B 85, 214–110 (2012).



BIBLIOGRAPHY 111

149. Zanolli, Z., Onida, G. & Charlier, J. Quantum Spin Transport in Carbon Chains. ACS Nano

4, 5174 (2010).

150. Cinquanta, E., Manini, N., Ravagnan, L., et al. Oxidation of carbynes: Signatures in in-

frared spectra. J. Chem. Phys. 140, 244708–244714 (2014).

151. Esser, M., Esser, A. A., Proserpio, D. M., et al. Bonding analyses of unconventional carbon

allotropes. Carbon 121, 154 (2017).

152. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic

behavior. Phys. Rev. A 38, 3098 (1988).

153. Perdew, J. P., Chevary, J. A., Vosko, S. H., et al. Atoms, molecules, solids, and surfaces:

Applications of the generalized gradient approximation for exchange and correlation. Phys.

Rev. B 46, 6671 (1992).

154. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Sim-

ple. Phys. Rev. Lett. 77, 3865 (1996).

155. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B

13, 5188 (1976).

156. Blatov, V. A., O’Keeffe, M. & Proserpio, D. M. Vertex-, face-, point-, Schläfli-, and Delaney-
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