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THESIS ABSTRACT  

The design of chiral synthetic polymers capable of self-assembling into stable secondary structures 

represents an attracting approach with important biological applications, such as selective 

subcellular localization, protein surface mimicry and recognition. Chirality in polymers may be 

expressed based on the location of the stereogenic centers: i) main-chain chirality; ii) side-chain 

chirality and iii) self-assembled structures. Synthetic polymers as polyacetylenes, polyolefines and 

polymethacrylamides showing side-chain chirality may be synthesized by radical polymerization 

processes starting from modified α-amino acids. 

In previous work, a new family of biomimetic polymers showing side-chain chirality, named 

polyamidoamino acids (PAACs), were introduced. The first polymer of this family was named L-

ARGO7, derived by the step-wise polyaddition of L-arginine with N,N’-methylenebisacrylamide 

(MBA). The reaction was carried out in water, at 50°C and pH > 9 for 6 days, yielding a polymer 

with Mw ≈8000 and PDI 1.4. L-ARGO7 turned to be highly cytocompatible (IC50 ≥ 8 mg mL-1) and 

easily internalized in mouse embryo fibroblasts balb/3T3 clone A31 cell line proving, in this respects, 

to share some of the unique biological properties of polyarginine cell-permeating peptides.  

The objectives of this work were multiple: to obtain a library of PAACs from the reaction of N,N’-

methylenebisacrylamide with various natural α-amino acids following the same general procedure 

adopted for the synthesis of L-ARGO7, thus demonstrating the versatility of the synthetic process 

devised; to study the solution properties of PAACs, namely as acid-base behavior, ionization state, 

size and viscosity; to elucidate their conformational properties and ability to fold in aqueous media 

into compact and stable secondary structures; to study the responsiveness of these conformations to 

external stimuli; to study the fluorescent properties of PAACs from L-tryptophan; most important, 

to assess the PAAC ability to exhibit chirality-dependent interactions with biomolecules. 

The PAACs synthesized in this work can be classified based on the structural features of the α-amino 

acid residue:  

i) cationic arginine derived PAACs obtained from D-, L- and D,L-arginine; these polymers 

are moderately basic, since the guanidine group is internally neutralized by the 

carboxylate. Basicity is mainly due to the presence of the tert-amine; 
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ii) hydrophobic alkyl-substituted PAACs derived from L-alanine (M-L-Ala), L-valine (M-

L-Val) and L-leucine (M-L-Leu); these polymers are obtained by reacting slightly 

hydrophobic α-amino acids bearing lateral substituents of increased steric hindrance;  

iii) polar glutamine-derived PAAC obtained from L-glutamine (M-L-Gln); glutamine was 

chosen for its ability to form hydrogen bonds as protons donor or acceptor;  

iv) amphipathic homo- and copolymeric L-tryptophan-based PAACs synthesized from, 

respectively, L-tryptophan (M-L-Trp) and L-tryptophan/glycine mixtures (M-G-L-Trp); 

tryptophan was chosen for its fluorescence properties, used to characterized 

conformational and structural features of homo- and copolymers. 

EXPERIMENTAL PART: PAACs SYNTHESIS 

The synthetic procedure of the investigated PAACs is reported in Scheme 1. L-, D- and D,L-PAACs 

were obtained in variable yield (60-70 %) carrying out the polymerization in aqueous solutions at 50 

°C and pH > 9 for 6 days. In no case, traces of hydrolytic degradation or formation of aggregates 

were seen. 

 

Scheme 1. Synthesis of the investigated PAACs (L-enantiomeric form). 

After 6 days, solutions were acidified to pH 4, purified by ultrafiltering through membranes with 

100 and 5 kDa nominal molecular weight cut-off. The intermediated fractions were freeze-dried and 

structurally analysed by means of 1H and 13C NMR in D2O, at pH 4.5. Molecular weights (Mw and 

Mn) was measured by means of size exclusion chromatrographic (SEC) analysis, carried out in 0.1 M 

TRIS buffer pH 8.00 ± 0.05, with 0.2 M NaCl. 
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RESULTS 

i) ARGO7 and Alkyl-substituted PAACs 

Circular dichroism (CD) measurements were recorded between 200 – 280 nm in the 3-12 pH interval. 

Spectra were consistent with the presence of pH-dependent ordered secondary structures, whose 

changes with pH were rapidly achieved and fully reversible. In addition, conformations resulted 

thermodynamically stable and reversible in the 3-70°C range. CD spectra were collected at ionic 

strength up to 2 M NaCl and in presence of denaturating agents, as urea and guanidinium chloride. 

Conformation of ARGO7 isomers resulted unaffected by ionic strength and presence of denaturants, 

whereas M-L-Ala, M-L-Val and M-L-Leu conformations changed with the introduction of 

guanidinium chloride.  

Molecular dynamics (MD) simulations were performed at Politecnico di Milano (prof. G. Raffaini 

and F. Ganazzoli) and revealed that ARGO7 and alkyl-substituted PAACs had a compact, coiled 

structure (Rgs 0.8-1.11 nm). MD showed that PAACs’ main chains were organized into a transoid 

arrangement characteristics of hairpin-like conformations. Structuring and size were mainly 

dictated by intramolecular interactions of electrostatic nature in the polymer main chain, with minor 

dependence from the amino acids side chain. 

Hydrodynamic radius (Rh) was determined by DLS as a function of pH, time, ionic strength and 

presence of denaturating agents (urea and guanidinium chloride). Results revealed that these 

PAACs had monomodal volumetric distributions of 1.5 ± 0.3 nm average radius, stable at 25 °C for 

at least 1 month and unaffected by pH, ionic strength and presence of denaturants. In addition, 

nanoparticles’ dimensions did not change by increasing the PAACs concentration in the 0.5 – 20 mg 

mL-1 range, suggesting these polymers may intramolecularly self-assembled into stable single chain 

nanoparticles.  

ii) glutamine-derived PAACs 

Differently from the other PAACs, M-L-Gln Mw and Mn values were more than two times higher 

than the others. This was tentatively ascribed to the presence of intra- and intermolecular hydrogen 

bonding, further studied with CD and NMR spectroscopy.  
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CD spectra resulted sensitive to the presence of urea, a protein denaturant known to form H-

bonding, with time dependent spectral variations. DOSY, variable-temperature NMR (VT-NMR) 

and NOESY were used to obtain the structural and conformational features of M-L-Gln. DOSY 

showed only one diffusion coefficient, from which a Rh of 3.53 nm was calculated. VT-NMR was 

carried out at pH 4.5 and revealed that side-chain amide groups were involved in the formation of 

H-bonding, whereas only a small percentage of amides of the MBA backbone did the same. In 

addition, NOESY experiments measured two NOEs, both involving CH2 next to the tert-amine and 

CH2 in β and γ position of the glutamine side chain, respectively. Thus, M-L-Gln showed a coiled 

structure in which glutamine side chain moved closer to the main chain. 

iii) tryptophan-based PAACs 

Polymers bearing tryptophan as side substituent were synthesized by Michael-type polyaddition of 

MBA with L-tryptophan, its isomer, and different molar ratio of L-tryptophan/glycine mixtures. 

Differently from the other PAACs, these reactions were carried out under nitrogen flux and by 

portion wise addition of the base to avoid indole oxidation.  

UV–Vis absorption and scattering of polarized IR beam tests showed all of them to have 

composition- and pH-dependent solubility. CD studies and DLS measurements were comparable 

with the other PAACs. CD were consistent with the formation of pH dependent self-assembled 

structures, whose conformation was dictated by the polymer main chain and its average ionization 

degree. Rhs resulted stable for at least 1 month, unaffected by pH but, to some extent, sensitive to 

concentration in the range 1–30 mg·mL−1.  

Photoluminescence analyses, quantum yields, steady state and time-resolved fluorescence were 

measurements at different pH, polymers concentration and tryptophan content. Results indicated 

that the photoluminescence properties of tryptophan derived polymers were governed solely by 

tryptophan. All polymers exhibited pH-dependent quantum yields, lifetimes and emission 

maximum. Interestingly, fluorescence studies conducted on oxygen-free solution gave comparable 

results, indicating compact conformations where L-tryptophan moieties were not accessible to the 

quencher. Also, intermolecular quenching by approaching chains was studied and observed in M-

L-Trp and M-G-L-Trp10. 
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iv) L- and D-ARGO7 chiral recognition 

To assess ARGO7 chiral recognition ability, sodium deoxycholate (NaDC), one of the components 

of bile salts, was chosen as a chiral model surface. Through a stepwise mechanism, NaDC can form 

chiral micelles, whose self-assembly behaviour is mainly affected by pH. In particular, NaDC 

showed three main pH dependent behaviour: homogenous solution (pH > 8), gel phase (pH 7 – 7.5), 

flocculation and aggregation (pH < 7). Pulsed-gradient spin echo NMR (PGSE-NMR), surface 

tension, circular dichroism (CD), dynamic light scattering (DLS), zeta potential (ZP) and small-angle 

neutron scattering (SANS) experiments were carried out on NaDC/L- and NaDC/D-ARGO7 

mixtures, to assess chirality-dependent interactions. Surface tension, DLS, zeta potential and PGSE 

NMR measurements were recorded to characterize NaDC behaviour in solutions (CMC and self-

assembly) as a function of pH and concentration and will not be considered in this report. 

CD measurements were carried out on 5 mg mL-1 of NaDC mixed with 0.5 mg mL-1 of either L-, D- 

or D,L-ARGO7 solutions, in the 190 – 300 nm range in a 1 mm cell. Prior to the analysis, solutions 

were corrected to pD (pH of D2O solutions) 9.06, and 7.50. At pD 9.06, the addition of NaDC did not 

result in any significant modification of the polymers’ spectra, in either L- or D- form of the 

polymers. Thus, no chiral discrimination could be found at this pH. At pD 7.30, CD spectra of NaDC 

gel phase showed different pattern upon addition of L- and D-ARGO7, whereas no changes were 

seen with D,L-ARGO7. Thus, the self-reorganization of NaDC into an ordered gel, was likely due to 

the chiral recognition of the different isomers.  

Small-angle neutron scattering (SANS) measurements were carried out at the ISIS Neutron and 

Muon Source facility (Rutherford Appleton Laboratory in Oxfordshire, UK, under the supervision 

of Prof. Peter Griffiths) to study chiral recognition, by looking at the conformational modifications 

of NaDC micelles upon introduction of the different isomeric forms of the polymer, at different pHs 

and concentrations. SANS collected at pD 8.5 - 8.8 for various NaDC concentrations were consistent 

with the presence of micelles, described by prolate ellipsoids with polar radius of 22 – 28 Å and 

equatorial radius of 7 – 10 Å. By decreasing pH, NaDC micelles’ structure changed from a prolate 

ellipsoid (pD 8.80) to an elongated rod (pD 7.30) described by elliptical cylinders of 487.6 ± 21.2 Å 

length and 2.88 ± 0.19 axis ratio (Figure. 1a, black curve). NaDC/ARGO7 mixtures were prepared 

adding 5 mg mL-1 of NaDC to 0.5 mg mL-1 solution of D-, L-, D,L-ARGO7 and an equimolar mixture 

obtained by mixing L- and D-isomer of the polymer (D-/L-ARGO7). All NaDC/ARGO7 mixtures 

http://www.stfc.ac.uk/about-us/where-we-work/rutherford-appleton-laboratory/
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showed superimposable curves. They were fitted with the same model used for NaDC solutions, 

that is micelles with prolate ellipsoidal morphology (Figure 1a). Only small changes in the total 

charge and in the semi-minor and semi-major axis were seen. This confirmed the modest effect of 

the electrostatic interactions between the two components, ARGO7 and NaDC, and the absence of 

chiral discrimination.  

 

 

  

Figure 1. NaDC scattering data with: a) D-, L-, D,L-ARGO7 and the equimolar mixture D-/L-ARGO7 

at pD 8.5-9.0 and b) the same solutions at pD 7.30-7.60. Mathematical fittings were reported as red 

lines. 

Chiral recognition was then assessed collecting SANS data for 5 mg mL-1 NaDC gels (pD 7.3 – 7.5) 

with 0.5 mg mL-1 of D-, L-, D,L-ARGO7 or an equimolar mixture composed of 0.5 mg mL-1 D-ARGO7 

and 0.5 mg mL-1 L-ARGO7. They showed that NaDC structure was differently affected by the 

chirality of the polymer (Figure 1b), confirming results obtained from CD spectra. In particular, D-, 

D,L-ARGO7 and the equimolar mixture changed SANS pattern in the same way. They retained the 

same rod-like structure of NaDC micelles, albeit with a lower axis ratio (1.51 ± 0.41). Different was 

the case of the NaDC/L-ARGO7 solutions, where L-ARGO7 appeared to trigger the formation of 

NaDC ellipsoidal clusters.  

In conclusion, PAACs represent singular examples of synthetic bioinspired chiral polymers that 

showed potential for biotechnological applications on account of their i) stimuli-responsiveness, ii) 

self-assembly ability and iii) selective interactions with chiral structures, including biological 

structures. 
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1 
Introduction to synthetic chiral polymers and α-amino acid 

based polymers 
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1.1 CHIRAL SYNTHETIC POLYMERS 

Chirality is thoroughly present in nature as an intrinsic property of biomacromolecules, found for 

example in nucleic acids, proteins, polysaccharides and lipids. It can be expressed in different forms: 

D- or L- enantiomers, inherently chiral structures and tridimensional self-assembled architectures. 

Exploiting the chirality of the starting building blocks, nature is then able to build up complex chiral 

architectures, held together by noncovalent interactions (hydrogen bonding, electronic and 

hydrophobic forces). Albeit chirality is found everywhere, the importance of having a certain twist 

to carry out certain biological functions, as the discrimination of pairs of enantiomers, remains still 

unknown.  

Chiral polymers are defined as polymers showing chirality in their primary and/or secondary 

structure. The most-known chiral polymers are the naturally occurring polymers like polypeptides, 

polysaccharides and polynucleotides [1]. They have been widely employed for the synthesis of chiral 

polymer-based materials [2-4]. Recently, also fully synthetic and hybrid chiral polymers have gained 

a great deal of attention as novel smart materials for their widespread applications in catalysis [5-8], 

drug-delivery [9,10], chiral recognition [11,12], chiral resolution [13-15], biosensing [16-18] and 

bioimaging [19]. Among these, their most established applications are as polymer-supported 

catalyst [20] and chiral stationary phases (CSP) to discriminate pairs of enantiomers (resolution), 

with already commercially available materials [21]. Further promising studies are based on dynamic 

helical polymers as innovative smart materials, capable to respond to specific external stimuli. 

Applications of chiral polymers are based on their chiral structure. As such, of utmost importance is 

the development of new and efficient synthetic methods to obtain polymers with well-defined 

architectures. Chiral polymers may be divided into four main groups: i) polymers bearing chiral 

centers in their main; ii) polymers bearing chiral centers as side pendant; iii) polymers showing 

secondary structures, originated by the specific tridimensional twisting of the polymeric chain, and 

iv) polymers able to self-assemble into supramolecular architectures. The first two classes may also 

have specific conformations in solution, and they may be able to self-assembled into more complex 

structures. All these polymers are obtained through either the polymerization of chiral monomers 

or the asymmetric polymerization of achiral monomers. In asymmetric polymerization, an optically-

inactive prochiral monomer or a prochiral monomer with an optically-active auxiliary is 

polymerized to give a polymer with conformational main chain, configurational main chain or side 
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chain chirality. This type of polymerization includes asymmetric synthesis, chirality induction, 

helix-sense selective and enantiomer selective polymerization. 

1.1.1 Main-chain chirality 

Polymers with main-chain chirality are widely used in chiral separation and recognition [21-25], and 

asymmetric catalysis [26], due to their rigid or semi-flexible conformation. Their tendency to assume 

helical or rigid-rod conformation, allowed a higher capability in chiral applications [27-29]. The most 

common synthetic polymers showing main chain chirality, are pseudo peptides like poly (2-

oxazoline)s [30,31], poly(α-amino acid)s [32,33], polylactides [34,35], polyamides [36], polyesters 

[37], polyester amides [38], polyester urethanes [39] and polydepsipeptides [40] (Scheme 1), namely 

copolymers of α-hydroxy acids and α-amino acids.  

 

Scheme 1. Some examples of polymers with main-chain chirality derived from α amino-acids. 

Recently, also polyurethanes and polythiourethanes were synthesized with main-chain chirality 

[41]. For example, a chiral polythiourethane was obtained exploiting the cationic ring-opening 

polymerization of 4(S)-(methoxycarbonyl)-1,3-oxazolidine-2-thione (Scheme 2).  

 

Scheme 2. An example of polythiourethane obtained by cationic ring-opening polymerization 

of cyclic thiourethane [41]. 
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Chiral cyclic and linear polyurethanes [42] were synthesized starting from optically active (R)-1,1′-

bi(2-naphthol) (R-BINOL) and 1,4 phenylene diisocyanate (PDI) (Figure 1).  

 

Figure 1. Repeating unit of a chiral polyurethane obtained from the polyaddition of (R)-1,1′-

bi(2-naphthol) and 1,4 phenylene diisocyanate [42]. 

Polyurethanes and polythiourethanes might show higher order conformations, as α-helix and β-

sheet [42], other than a variety of self-assembled architectures, as spheres or rod-like micelles, 

vesicles and fibers [43].  

Generally, synthetic polymers with main-chain chirality may be synthesized through asymmetric 

polymerization [44-46], by a careful catalyst design, by ring-opening polymerization (ROP) 

[30,34,35] or by polycondensation [25]. To note, the direct polymerization of chiral monomers has 

shown to reduce the polymers processability. This drawback may be overcome by some expedients, 

like introducing long chain alkyl [27], consequently changing the rheological behavior and its 

conformation. For example, the introduction of an alkyl side chain in the chiral poly(propiolic 

esters), resulted in inversion of the helix sense [47]. Main-chain chiral polymers may assume specific 

conformations in solution, and they may self-assemble into ordered structures. For example, poly 

(2-oxazoline)s, whose repeating unit is reported in Figure 2, may be synthesized by ring opening 

polymerization and can self-assembly into ordered secondary structures, held together by dipolar 

interactions between tertiary amides [31]. The microwave assisted polymerization of 2,4-

disubstituted-2-oxazoline monomer, like (R)-2-butyl-4-ethyl-2-oxazoline, gave polymers with 

temperature dependence CD spectra, probably associated to a flexible helical conformation [30]. In 

contrast, the racemic polymer obtained from the (RS)-2-butyl-4-ethyl-2-oxazoline polymerization, 

formed a random coil. By increasing the length of the alkyl side chain, in order ethyl, butyl, octyl, 

nonyl and undecyl, the crystallization rate increases [31]. This phenomenon is a combination of side-
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chain and main-chain crystallization, that generates a wide spectrum of differently oriented crystals, 

whose CD spectra changes with temperature in different manner. 

 

Figure 2. Repeating unit of poly (2-oxazoline)s. 

1.1.2 Side-chain chirality 

Polymers with side chain chirality may be obtained from the following monomers: acryl- and 

methacrylamides [48,49], dienes [50], phenylacetylenes [51,52], isocyanides [53] and 

phenylisocyanides [54], isocyanates [55], norbonene diesters and diamides [56], phosphazenes [57], 

propargylamides [58] and propargyl esters [59], vinyl esters [60] and vinyl ethers [61], acrylates and 

methacrylates [62] (Scheme 3). They are generally synthesized by direct polymerization of chiral 

monomers by atom transfer radical polymerization (ATRP), nitroxide-mediated polymerization 

(NMP), RAFT polymerization, ring opening metathesis polymerization (ROMP), living anionic and 

cationic polymerization, acyclic diene metathesis (ADMET) polymerization, and metal catalyzed 

metathesis or insertion polymerization.  

 

Scheme 3. Some examples of amino acid-derived monomers used to prepare side chain amino 

acid-based polymers. 
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Another well-known class of bioinspired polymers bearing stereogenic centers in their side chain is 

constituted by polypeptoids, or N-substituted glycines derivatives [63]. In contrast to polypeptides, 

the N-substitution deprives polypeptoids of main-chain chirality. Also, they lack the ability to form 

hydrogen bonding interactions along the main chain. As a result, the conformations of polypeptoids 

are strongly dependent on the N-substituent structures and may give rise to well-defined secondary 

structures. One way to synthesized linear polypeptoids is by controlled ring-opening 

polymerization (ROP) of N-substituted N-carboxyanhydride with primary amine initiators (Scheme 

4), whereas cyclic polypeptoids may be obtained by zwitterionic ring-opening polymerizations 

(ZROPs) using, for example, N-heterocyclic carbenes as nucleophilic initiator [63].  

 

Scheme 4. Some primary amine initiators for N-substituted N-carboxyanhydride ring opening 

polymerization to obtain linear polypeptoids. Note: the solid sphere indicates a solid support 

or surface. 

Side-chain chiral polymers show a multitude of applications in asymmetric synthesis, molecular 

recognition, and photoelectrical materials. Similarly to polymers having main-chain chirality, the 

ones with side-chain chirality might show different kind of conformations and supramolecular 

structures, depending on the experimental conditions and the nature of the side substituent. One 

way to induce conformations with prevailing handedness of the backbone is to introduce 

stereocenters in the side-chain [64]. In a series of chiral poly(methacrylamides), the introduction of 

(R)-phenylglycine was reported to enhance the stability and formation of one-handed helix via H-

bonding between the amide groups in the side chains [65]. To increase the asymmetric coupling 

between the stereocenter in the side group and the main chain, the chiral atom is usually linked 

directly to (or close to) the polymerizable group [66,67]. Stereoregular poly(N-alkynylamides) 
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showed that the main-chain helical conformation, induced by the chiral center located in the side 

group, was maintained when stereocenter was separated by few covalent bonds [68]. Whereas, no 

backbone structuring was observed when the distance was higher than seven atoms. Another way 

to synthesized one-handed helical polymers consists in the introduction of bulky side groups in the 

monomers structure. For example, thiphenylmethyl methacrylate (TrMA) and N-triphenylmethyl 

methacrylamide (TrMAM) induced the formation of isotactic one-handed helical polymethacrylates 

and methacrylamides though either anionic or radical polymerization in chiral conditions [21]. 

Polyacetylenes constitutes a different example of synthetic polymers whose main chains may be 

forced in an anisotropic reorganization of atomic groups upon introduction of chiral bulky 

substituents linked to the main chain. Chiral spirobifluorene-derived polyacetylenes reported cis-

transoidal main chain conformation, organized into helical structures (Figure 3) [69]. Polyecetylenes 

conformations may be further induced and stabilized by the presence of chiral initiators or ligands 

[70].  

 

Figure 3. Example of a polyacetylene bearing chiral spirobifluorene moieties and its main 

chain helical conformation.  

1.2 α-AMINO ACIDS DERIVED POLYMERS   

The incorporation of α-amino acids into polymers represents an attracting approach to impart 

unique optical properties and to increase biocompatibility and biodegradability [71]. Amino acids 

may be incorporated either in the polymers’ main chain or in the side chain. Polymers belonging to 

the first group are generally poly(ester amide)s (PEAs), poly (ether ester amide)s (PEEAs) and 
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poly(ester ether urethane urea)s (PEUUs), obtained mainly by polycondensation reactions [71]. As 

an example, biodegradable PEAs were synthesized by interfacial polycondensation starting from L-

phenylalanine [72], in order to obtain porous scaffolds for vascular tissue engineering applications. 

Synthesis of bioinspired polymers bearing α-amino acids as side pendant has been achieved mainly 

by controlled radical polymerization techniques as: atom transfer (ATRP), nitroxide-mediated 

NMP), RAFT and ROP polymerization, to name a few. Prior to the synthesis, modification of the N- 

or C-terminus of the amino acid is carried out to introduce polymerizable functions. Another way 

could be to exploit -SH or -OH additional functional groups. N-Terminus modified polymers such 

as N-acryloyl- or N-methacryloyl-α-amino acids are used to obtain polyacrylamides or 

polymethacrylamides [73-75]. C-terminus modified α-amino acid may be introduced as side 

pendants into the backbone of polymethacrylates [76], polyacrylates [77], polyacetylenes [78,79], 

polyolefines [80], polyvinyl ethers [61] and polyphosphazenes [81]. For example, various α-amino 

acid derived polypropargylamides were synthesized in order to obtain a polymer with stimuli 

responsive helical conformation. Both N- and C-derived polymers may show interesting properties, 

as stimuli responsiveness [82], the ability to self-assemble into complex architecture [83] and pH-

dependent solubility [84]. In addition, they may show chirality-induced structuring in solution 

[79,80] and chiral recognition capacities including differential interactions with organic cell 

components [85].  

1.3 POLYAMIDO AMINO ACIDS (PAACs) 

Polyamidoamino acids (PAACs) are a relatively new family of bioinspired chiral polymers carrying 

α-amino acids as side substituent. These polymers are an offspring of linear polyamido amines 

(PAAs) obtained from prim-amines or bis-sec-amines and bisacrylamides. PAAs are a well-known 

family of soluble synthetic functional polymers with a recognized potential for various applications: 

biotechnological [86,87], water purification [88,89], heterogeneous catalysis [90], coating for sensing 

applications [91–93] and flame retardant agents for cotton textiles [94, 95]. Due to the widespread 

applications of PAAs, PAACs were further explored to assess if and how these polymers may 

address the challenges encountered in biology and biomedical sciences, as their parent. Differently 

from the other α-amino acids derived polymers obtained either by N- or C-modified monomers, 

PAACs retain the acid-base properties and the chirality of the parent amino acids. These polymers 

are synthesized by the stepwise polyaddition of natural α-amino acids, and their stereoisomers, to 
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N,N’-methylenebisacrylamides (MBA) (Scheme 5). Reactions are carried out in water, at 50°C and 

pH > 9 for 6 days [96]. The synthesis is highly specific since the amino-acids’ prim-amine groups are 

the only functional groups reacting and converted into tert-amines after the addition [97].  

 

Scheme 5. Synthesis of PAACs. 

The first polymer of this family was named L-ARGO7, synthesized by the Michael type polyaddition 

of L-arginine to N,N’-methylenebisacrylamide (MBA) [97]. Arginine was chosen for its cell-

permeating properties, as reported in literature in both synthetic polyarginines and arginine-rich 

peptides [98,99]. Supposedly, guinidine groups could interact with biological membranes by 

forming divalent hydrogen bonds with carboxylate-, sulfate- and phosphate groups [98,99].  

Under normal conditions, that is at room temperature (25°C), natural α-amino acids other that 

glycine react very sluggishly with bisacrylamides. The first attempt to synthesize L-ARGO7 was 

carried out at 25 °C, pH > 9 for 6 months, obtaining a polymer in 41% yield, number-average 

molecular weight (Mn) of 10100, and polydispersity index (PDI) of 1.19 [97]. The higher reaction time 

was due to the low arginine reactivity, probably connected to the sterically hindered structure of the 

amine groups. This could explain why, even though the addition of the first N-H group was fast, 

the second one reacted very slowly. The ability of L-ARGO7 and of L-ARGO7-co-MBAP, its 

copolymer with piperazine, to cross cell membranes was evaluated by in vitro studies with mouse 

embryo fibroblasts balb/3T3 clone A31 cells. Both polymers resulted cytobiocompatible, with an IC50 

≥ 8 mg mL-1 for L-ARGO7. They easily entered cells, with a more effective cellular uptake shown by 

the copolymer [97]. The determination of the acid-base properties of L-ARGO7 showed an isolectric 

point of ≈10 and positive net average charges per repeating unit of +0.25 at pH 7.4 [96].  

In order to reduce the reaction time, calcium ions were used as catalysts for the Michael addition 

reaction. Calcium was chosen for its acid-base properties, able to catalyze the addition of amino 

nucleophiles to α,β-unsaturated carbonyl compounds [100]. After the addition of 0.1 mol calcium 

chloride/mol L-arginine, a decrease in the overall reaction time was observed: L-ARGO7 was 
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obtained in 63% yield after 21 days with Mn 16700 and PDI 1.61 [97]. The PAACs synthesized by the 

conventional procedure and those obtained by using Ca2+ as a catalyst showed no difference in 

physico-chemical properties. However, Ca2+ may be retained as counterion and this may affect the 

biological properties. Therefore, extensive and often difficult purification processes are required. To 

solve this problem, higher reaction temperatures were explored. In fact, it is well known that in 

Michael polyadditions an increase in temperature leads to higher polymerization rates [87]. On the 

other hand, higher temperatures may also increase the rates of side reactions, such as retro-Michael 

and amide hydrolysis, leading to a concomitant chain length reduction.  

When ARGO7 synthesis was carried out at 50°C, pH > 9 for 6 days, a polydisperse polymer was 

obtained in 92 % yield with Mn ≈ 4600 and PDI 1.4 [96]. The reaction was easily extended to D- and 

D,L-arginine obtaining polymers with the same Mn and PDI [97]. Interestingly, preliminary circular 

dichroism measurements carried out for L-ARGO7 at pH 7 showed the polymers ability to self-

assembled in solution into ordered structures [97]. As for PAAs, an evaluation of the acid-base 

properties of L-ARGO7 was carried out. Results indicated L-ARGO7 never display the typical 

polyelectrolyte behaviour in solution. In fact, its pKas depends only slightly on the protonation 

degree of the macromolecule. By exploiting the different reaction rates of the two hydrogens of the 

amino-acid prim-amine groups with bisacrylamides, the synthesis of L-, D- and D,L-ARGO7 

polymers was recently improved by a step-by-step polyaddition [101]. This allowed the formation 

of monodisperse ARGO7 with controlled sequences and controlled molecular weights [101]. For 

these stereoisomers, hints of chirality-dependent cell internalization were collected at the University 

of Greenwich (Dr. Simon Richardson). Results are currently under investigation.  

1.4 HOW TO STUDY CHIRO-OPTICAL PROPERTIES  

In order to characterize chiral polymers, techniques like circular dichroism (CD), polarimetry and 

Raman optical activity (ROA) are generally employed. Circular dichroism (CD) is based on the 

differential absorption by chromophores of left and right circularly polarised components of plane-

polarised radiation [102]. CD signal arises when optically active chromophores are a) intrinsically 

chiral, due to their structure, b) covalently linked to a chiral center, or c) placed in an asymmetric 

environment [102]. CD spectroscopy is mainly used to study polymers configuration and 

conformation as well as conformational stability in various experimental conditions. The variation 
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of the chiro-optical properties of copolymers obtained from various (R)-N-(1-phenylethyl) 

methacrylamide and 2-hydroxyethyl methacrylate ratios was assessed [103]. The nonlinear variation 

of the CD values with the content of chiral units suggested the presence of secondary structures, 

held together by intramolecular interactions as H-bonding. In the case of (R)-phenylglycine-

modified N-phenylmethacrylamide polymer, named poly(RR-PEBM), CD proved the formation of 

a helical conformation with a preferred screw sense [104]. Its stability was assessed at different 

temperatures and solvents. Intensity of the CD spectra resulted only slightly affected by temperature 

modifications in the -10 – 50°C interval. Instead, a sharp decreased in CD intensity was observed 

when methanol was chosen as solvent suggesting the transition from helix conformation to random 

coil due to the loss of intramolecular interactions in the macromolecule [104]. In literature, stimuli 

responsiveness of polymers’ conformations was recorded measuring dependence of CD spectra over 

pH as well [105]. Among other applications, CD spectroscopy has been used to study chiro-optical 

properties of supramolecular aggregates and complexes, as in case the of cyclodextrins inclusion 

complexes, metal-bound complexes, protein/drugs adducts, biopolymers/small molecules 

complexes, polymer-induced conformation and self-assembled chiral molecules [106]. Interestingly, 

CD was also employed to monitor conformational changes during the aggregation of (R)-1,1’-

binaphthyl-based polymers [107], whose behavior in solution and CD spectra resulted affected by 

the torsional angles between the chromophores.  

Recently, CD was extended to the study of self-assembled soft materials [108], that is hydrogels 

obtained from intrinsically chiral low molecular weight molecules, as amino acids and 

carbohydrates. The ordered structure is driven by various intermolecular interactions, resulting in 

the gelation process and encapsulation of solvent molecules. In the CD spectrum, the interactions of 

the chromophores in the self-assembled state generated a stronger signal compared to the solutions, 

albeit with lower absorbances.  

Similarly, ROA measures the difference in Raman scattering between right and left circularly 

polarised light. This technique is becoming another complementary tool for configurational and 

conformational analysis of biomolecules, including amino acids, peptides, proteins [109], sugars, 

nucleic acids [110] and terpenes [111]. In fact, the ROA spectrum of enantiomers is the same but with 

opposite sign. Combining experimental and theoretical study, helix poly(trityl methacrylate) was 

studied by ROA in order to assign both the helical screw sense and the side-group chirality of the 

synthetic chiral polymer [112]. 
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1.5 APPLICATIONS OF CHIRAL SYNTHETIC POLYMERS  

Chiral synthetic polymers are employed in a variety of applications, some of them were already 

mentioned in the paragraph above. Principally they are adopted as chiral stationary phases (CSP) 

for high-performance liquid chromatography [21].  There are three types of chiral polymers used as 

CSP: i) biopolymers, ii) polymers prepared by modification of naturally occurring polymer 

backbone, such as polysaccharides and iii) those having fully synthetic structure. Group i) is formed 

principally by enzymes and proteins, as bovine serum albumin, α1-acid glycoprotein, ovomucoid, 

avidin and riboflavin binding protein, trypsin, α-chymotrypsin, cellobiohydrolase I and lysozyme 

to name a few. Group ii) consists of a variety of polysaccharides derivatives, like cellulose and 

amylose-derived tribenzoates and tris(phenylcarbamates) [113]. The chiral recognition and 

resolving ability depended on the substituents introduced on the phenyl moieties. The introduction 

of electron-donating or electron-withdrawing substituents improved the chiral recognition ability. 

Among the many derivatives of polysaccharides, 3,5-dimethylphenylcarbamates of cellulose and 

amylose and cellulose tris(4-methylbenzoate) showed high chiral recognition, which permitted the 

resolution of more than 80% of the racemates tested [114]. In group iii) polymethacrylates showing 

helical conformation and polymethacrylamides with side chain chirality were considered. They 

resulted especially effective as CSP [21]. Triphenylmethyl methacrylate (TrMA) formed an isotactic 

polymer named poly(TrMA), characterized by single-handed helical conformation of the main-

chain, through anionic polymerization in presence of n-BuLi with (-)-sparteine. The presence of the 

bulky trityl groups allowed stabilization of the helix. Chiral recognition of the silica-supported 

poly(TrMA) was proved toward more than 200 compounds [115,116]. Polyacrylamides and 

polymethacrylamides bearing the stereogenic centers as side pendants showed chiral recognition 

abilities depending on the polymers’ structure, the racemates and the chromatographic conditions. 

Silica packed column containing polyacrylamide bearing benzyl and ethyl groups, is currently on 

the market. Other chiral synthetic polymers as polyolefines, polystyrene derivatives, poly(vinyl 

ether)s, polychloral, polyisocyanide, polyacetylenes, polyethers and polyamides may be synthesized 

bearing optically active side groups or having a preferred conformations in solution, as such 

possessing chiral recognition abilities [21]. 

Another application is the optical resolution of enantiomers by crystallization, achieved exploiting 

several chiral polymers. A set of optically active DHBCs were synthesized based on PEG-b-PEI block 

(PEG: poly-(ethylene glycol and PEI: branched poly-(ethyleneimine)) [117]. In order to impart 
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polymers of chiral properties, chiral molecules such as (S)-ascorbate (vitamin C), (S)-proline, or (R)-

gluconate were attached to the PEI amino branches. DHBCs was able to separate enantiomers in 

crystallization of conglomerate systems of sodium ammonium tartrate (NaNH4T) and in racemic 

systems of calcium tartrate tetrahydrate (CaT), by slowing down the formation of the 

thermodynamically stable racemic crystals. In another article, DHBCs based on polyethylene oxide 

(PEO) with chiral (R) or (S)-glutamic acid blocks influenced the crystallization kinetics, crystal 

morphology and chiral resolution of D,L-threonine. In particular, the chiral resolution depended on 

the conformation of the polymer, showing the chiral recognition of D,L-threonine take place only 

for the PEO copolymer with R-glutamic acid in is α-helix form.  

Chiral polymers also hold potential for application in chiral catalysts, liquid crystals, nonlinear 

optical materials and chiral sensors. Example of polymer-based chiral probes consisted in polymer 

containing (S)-2,2′-binaphthol moieties in their main chains [118]. This exhibited enantioselectve 

fluorescence enhancement behavior toward the enantiomers of phenylalaninol (PA), whose increase 

in fluorescence intensity resulted linearly correlated with the molar concentration ratios of the D- 

and L-enantiomers. Another example is represented by (R,R)-Salen-based polymer, prepared by 

copolymerization of (R,R)-1,2-diaminocyclohexance with 2,5-dibutoxy-1,4-di(5-tert-

butylsalicyclaldehyde)-phenylene [118]. This polymer can distinguish the two enantiomers of 

phenylglycinol by changing the degrees of fluorescence intensity enhancement. For instance, 

exposure of the sensor to (S)-phenylglycinol leads to a large increase in the fluorescence efficiency, 

whereas lower intensities were recorded in presence of (R)-phenylglycinol. 
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2.1 INTRODUCTION 

In literature [1] many examples of chiral polymers obtained from natural α-amino acids can be 

found. These are generally synthesized either by the radical polymerization of the N- or C-terminus 

functionality of amino acids [2-4] or by the Michael type polyaddition with acrylamide-terminal 

monomers, as for PAACs. These bioinspired polymers show interesting properties: pH-dependent 

solubility [5], self-assembly ability [6], thermosensitivity [7,8], chirality-induced structuring in 

solution [9-11] and chiral recognition [12,13] abilities, as preferential interactions with chiral 

biomolecules or cell components [13].  

In this chapter, three classes of PAACs will be presented and their solution properties determined: 

i) basic PAACs, obtained from L-, D- or D,L-arginine (ARGO7 stereoisomers) [14,15]; ii) alkyl-

substituted PAACs, obtained from L-alanine (M-L-Ala), L-valine (M-L-Val) and L-leucine (M-L-Leu) 

[16]; polar-bearing residues PAACs, obtained from L-glutamine (M-L-Gln). Polyelectrolyte acid-base 

behavior, pH-dependent self-structuring in water and size were firstly determined for all PAACs. 

Then, for M-L-Gln formation of hydrogen bonding was additionally assessed. In all cases, theoretical 

modeling studies were carried out at Politecnico di Milano to better understand conformational 

properties. A comparison between these three classes of polymers will also be discussed. 

2.2 EXPERIMENTAL SECTION 

2.2.1 Materials 

Solvents and reagents, unless otherwise indicated, were analytical-grade commercial products and 

used as received. Tris(hydroxymethyl)aminomethane (TRIS) (≥99.8%), sodium chloride (99.5%), 

guanidine hydrochloride (99%), L-arginine (L-Arg, >98.5%), D-arginine (D-Arg, >99%), D,L-arginine 

(D,L-Arg, >98.5%), L-leucine (L-Leu, ≥98%), L-valine (L-Val, ≥98%,) and L-alanine (L-Ala, ≥98%) were 

purchased from Sigma-Aldrich (Milano, Italy). N,N’-Methylenebisacrylamide (MBA, 96%) 

purchased from Acros Organics (Milano, Italy) and LiOH monohydrate (≥ 98%) was supplied by 

Honeywell Fluka (Steinheim, Westphalia, Germany). HCl and NaOH volumetric standard solutions 

were purchased from Fluka analytics (Milano, Italy). Ultrapure water (18 MΩ·cm−1), produced with 

a Millipore Milli-Q® apparatus (Darmstadt, Hesse, Germany), was used to prepare all solutions. 
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2.2.2 Instruments and methods 

1H and 13C NMR spectra of ARGO7 and alkyl-substituted PAACs were recorded in D2O at 25 °C using 

a Bruker Avance DPX-400 NMR (Bruker, Milano, Italy) operating at 400.13 MHz and 100.40 MHz, 

respectively. Spectra were recorded at pH 4.5. 

1H and 13C NMR spectra of M-L-Gln were obtained in D2O and H2O-D2O 9:1 at 25 °C using a Bruker 

Avance III 400 MHz and a Bruker Avance 600 MHz. For variable temperature analysis, NMR spectra 

of polymer at pH 4.5 and pH 1 were recorded in a range from 298 K to 338 K. The TOCSY spectra, 

with a mixing time of 80 ms, allowed the identification of the spin systems correlations. NOESY 

experiments with mixing times of 200 and 700 ms were used to evaluate the spatial correlations. In 

the 1D, TOCSY, NOESY, solvent suppression was achieved by using the excitation sculpting pulse 

sequence. HSQC and HMBC with J=8Hz were used to confirm carbon assignment. DOSY spectra 

were acquired with the standard Bruker sequence with presaturation during relaxation delay for 

water suppression. For the determination of the diffusion coefficient D, a big delta of 200 ms and a 

little delta of 2500 us were used. 

Fourier-Transform Infrared spectroscopy was recorded in Attenuated Total Reflectance configuration 

(FTIR-ATR) performing 16 scans at 4 cm−1 resolution in the 4000–500 cm−1 range, using a Perkin 

Elmer Spectrum 100 spectrometer (Milano, Italy) equipped with a diamond crystal (penetration 

depth = 1.66  m). Before analysis, samples were dried under a vacuum to constant weight.  

Size exclusion chromatography (SEC) traces were obtained for all PAACs with Toso-Haas TSK-gel 

G4000 PW and TSK-gel G3000 PW columns connected in series, using a Waters model 515 HPLC 

pump (Milano, Italy) equipped with a Knauer autosampler 3800 (Knauer, Bologna, Italy), a light 

scattering (670 nm), a viscometer Viscotek 270 dual detector (Malvern, Roma, Italy) and a refractive 

index detector (Waters, Model 2410, Milano, Italy). The mobile phase was a 0.1 M Tris buffer (pH 

8.00 ± 0.05) solution with 0.2 M sodium chloride. Sample concentration: 20 mg mL−1; flow rate: 1 mL 

min-1; injection volume: 20 µL; loop size: 20 µL; column dimensions: 300 × 7.5 mm2. The instrument 

optical constants were determined using PEO 19 kDa as a narrow polymer standard. All samples 

were filtered through a 0.2 µm syringe Whatman filter before measurements.  

Dynamic light scattering (DLS) analyses were carried out on 0.5-20 mg mL−1 polymer solutions 

prepared in ultrapure water, using a Malvern Zetasizer NanoZS instrument (Malvern, Roma, Italy), 
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equipped with a laser fitted at 532 nm and fixed 173° scattering angle. Before analyses, samples were 

filtered through a 0.2 µm syringe Whatman filter. The solution pH was adjusted to the selected value 

using 0.1 M HCl or 0.1 M NaOH aqueous solutions. Measurements were performed in triplicate, 

and each value was reported as the average of 10 runs. 

Circular dichroism (CD) spectra of ARGO7 isomers were recorded at Università degli Studi di 

Palermo using a JASCO J-715 spectropolarimeter, employing 1 cm path-length quartz cells and the 

following parameters: range 210–400 nm, stop r: 0.2 nm, speed: 200 nm min-1, accumulation: 4, 

response: 0.5 s, bandwidth: 1 nm. The temperature was controlled through a Peltier system. Stock 

solutions were prepared by directly solubilizing ARGO7 homopolymers (L, D or D,L) in MilliQ 

water. Final samples were obtained by dilution to the desired concentration (≈ 0.26 mM, expressed 

as concentration of the repeating units) with NaCl and guanidinium chloride solutions at the 

indicated concentrations and pHs.  

Circular dichroism spectra of M-L-Ala, M-L-Val and M-L-Leu were obtained using a JASCO J-500CD 

spectrometer (Jasco Europe Srl, Lecco, Italy), by scanning from 200 to 300 nm in a 1 cm path-length 

quartz cell at 50 nm min−1 scan speed. Each spectrum was the average of 3 measurements. These 

solutions were prepared at 0.5 mg·mL−1 concentration, dissolving each polymer in either 0.1 M NaCl 

or 2 M urea or guanidinium chloride solutions. Before recording spectra, samples were thermostated 

for 1 h at the desired temperature and pHs. The latter was adjusted using 0.1 M HCl or 0.1 M NaOH 

aqueous solutions and measured by a combined Metrohm microelectrode (Varese, Italy). CD spectra 

were normalized based on the molar concentration of the repeating units (≈1.83 ± 0.17 mM) and 

reported as Molar Ellipticity (θ expressed as mdeg M−1·cm−1).  

Acid-base properties were determined by potentiometric titrations, according to the following 

procedure: samples were dissolved in 0.1 M NaCl solutions (7 mL) to reach the final concentration 

of 0.05 M of repeating unit. Solutions, deaerated by continuous ultrapure N2 bubbling and 

thermostated at 25 °C, were potentiometrically titrated forward with 0.1 M NaOH and backward 

with 0.1 M HCl. In forward titrations, the pH was previously adjusted to 1.8-2.0 with 1.0 M HCl, 

while in backward titrations pH was previously adjusted to 11.8-12.0 with 1.0 M NaOH. The pH-

meter, a Primatrode with a NTC electrode connected to an 827 pH lab Metrohm, was calibrated 

against two pH standard buffers, thermostated at 25 °C. All titration experiments were performed 

in quadruplicate. 
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pKa determination. The pKa1 (side -COOH) and pKa2 (chain tert-amine) values were determined by 

potentiometric titrations. As an example, ARGO7 equilibria and ionizable functions were reported 

in Figure 1. Each pKa were identified as the pH values at the half-equivalent points, located in the 

buffer zone of each specific function (side -COOH and tert-amine). The half-equivalent points were 

obtained as the half-titrant volume amounts added between consecutive inflections in the pH versus 

titrant volume curves (Figure 18). The inflection points were in turn determined by numerically 

calculating the second derivative of the pH versus volume curves. For ARGO7, the pKa3 value of the 

guanidine group was not experimentally determined but assumed to be equal to 13.0. 

 

Figure 1. Simplified sketch of ARGO7 ionic species: L2+ doubly positively charged; L+ positively charged 

zwitterionic; L0 neutral zwitterionic; L- negatively charged.  

β parameter determination. The β parameters of the generalized Henderson-Hasselbalch equation (Eq. 

1a) were determined for both pKa1 (side -COOH) and pKa2 (chain tert-amine) to ascertain the presence 

of interactions between ionizable groups on adjacent monomeric units. They were determined by 

firstly selecting the specific buffer region intervals marked by each pKa. The dissociation degree, α, 

was then calculated in each zone as the ratio between the reacted moles and the total amount of 

moles necessary to reach complete neutralization. β Values were finally obtained from Eq. 1b as the 

slope of the pH versus –log((1-α)/α) curve (Figure A4). Points near inflections deviated from ideality 

and were not considered.  

pKa = pH + b ´ log
1-a

a
    (Eq. 1a)      « pH = pKa - b ´ log

1-a

a
 (Eq. 1b) 

Determination of simulated titration curves. Simulated titration curves were determined following the 

De Levie approach 17 to iteratively refine pKa and β values to achieve the best fitting to the 

L2+ L+ L0 L- 

   

Ka1 Ka2 Ka3 
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experimental data. For ARGO7 isomers, calculations were made based on the following 

considerations: 

• Initial conditions: 

V0 = initial solution volume 

c0 = initial PAACs concentration expressed as molarity of the repeat unit 

cS = initial concentration of ionic strength stabilizer 

ct = titrant concentration (strong base in forward titration or acid in backward titration)  

Vt = volume of the titrant added (strong base in forward titration or acid in backward titration) 

cA or cB = acid concentration (or base in backward titration) used to correct pH 

N = moles of strong acid possibly present as residual from the synthetic process or PAACs 

pretreatments 

 

• Mass balance: 

𝐶𝑃𝐴𝐴𝐶𝑆 = 𝐶𝐿2+ + 𝐶𝐿+ + 𝐶𝐿0 + 𝐶𝐿− =  
𝐶0𝑉0

𝑉0+𝑉𝑡
    (Eq. 2) 

• Equilibrium constants (Eq. 3a-d): 

𝐾𝑎1 =
𝐶

𝐿+𝐶
𝐻+

𝐶𝐿2+𝑦2    (a); 𝐾𝑎2 =
𝐶

𝐿0𝐶
𝐻+

𝐶𝐿+
  (b); 𝐾𝑎3 =

𝐶𝐿−𝐶
𝐻+𝑦2

𝐶𝐿0
  (c);  𝐾𝑤 =  𝐶𝐻+𝐶𝑂𝐻−𝑦2  (d) 

• Concentration fractions (Eq. 4a-d): 

𝛼3 =
𝐶

𝐿2+

𝐶
=

𝐶
𝐻+
3

𝐷
 (a);   𝛼2 =

𝐶𝐿−

𝐶
 =

 𝐶
𝐻+
2 𝑦2𝐾𝑎1

𝐷
  (b);   𝛼1 =  

𝐶
𝐿0

𝐶
=

𝐶
𝐻+𝑦2𝐾𝑎1𝐾𝑎2

𝐷
 (c); 

𝛼0 =  
𝐶𝐿−

𝐶
=

𝐾𝑎1𝐾𝑎2𝐾𝑎3

𝐷
 (d) 

with: 

D = CH+
3 +  CH+

2 y2Ka1 +  CH+y2Ka1Ka2 +  Ka1Ka2Ka3         (Eq. 5) 

The activity coefficients (Davies equation): 

𝑦 = 10
−0.5[

√𝐼

1+√𝐼
−0.3𝐼]

  (Eq. 6) 
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Ionic strength: 

𝐼 =  
1

2
(𝐶𝐻+ + 𝐶𝑂𝐻− + 𝐶𝑁𝑎+ + 𝐶𝐶𝑙− + 4𝐶𝐿2+ + 𝐶𝐿+ + 𝐶𝐿−)              (Eq. 7) 

• Charge balance:  

𝐻+ + 𝑁𝑎+ + 2𝐿2+ + 𝐿+ = 𝐿− + 𝑂𝐻− + 𝐶𝑙− (Eq. 8) 

where (Eq. 9a-f): 

𝐶𝑁𝑎+ =
𝐶𝑇𝑉𝑇+𝐶𝑠𝑉0

𝑉0+ 𝑉𝑇
  (a); 𝐶𝐶𝑙− =

𝐶𝑠𝑉0+𝐶𝐴𝑉𝐴+𝑁

𝑉0+ 𝑉𝑇
   (b);  𝐶𝐿2+ =

𝛼3𝐶0𝑉0

𝑉0+ 𝑉𝑇
    (c); 𝐶𝐿+ =

𝛼2𝐶0𝑉0

𝑉0+ 𝑉𝑇
 (d); 

𝐶𝐿− =
𝛼0𝐶0𝑉0

𝑉0+ 𝑉𝑇
  (e);  𝐶𝑂𝐻− =

𝐾𝑤

𝐶𝐻+𝑦2  (f) 

Combining all former conditions, the following solving equation, representing the whole forward 

titration curve, was obtained in terms of VT as a function of pH: 

𝑉𝑇 =  
𝑉0[𝐶0(𝛼0−𝛼2−2𝛼3)+𝐶𝐴−∆]+𝑁

∆+𝐶𝑇
            (Eq. 10) 

where: 

∆ =  𝐻+ − 𝑂𝐻− =  𝐻+ −
𝐾𝑤

𝐻+𝑦2⁄   (Eq. 11) 

For M-L-Ala, M-L-Val and M-L-Leu, the L2+ terms should not be considered. All expressions were 

simplified into the following final equations: 

𝑉𝑇 =  
𝑉0[𝐶0(𝛼0−𝛼2)+𝐶𝐴−∆]+𝑁

∆+𝐶𝑇
  (Eq. 12) 

and the whole backward titration:  

𝑉𝑇 =  
𝑉0[𝐶0(𝛼0−𝛼2)+𝐶𝐴−∆]+𝑁−(Δ+𝐶𝐵)𝑉𝐵

∆−𝐶𝑇
  (Eq. 13) 
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Simulated titration curves were obtained from Eq. 10-13 in the buffer regions relative to both side -

COOH and tert-amine groups. Calculation were carried out considering 𝐶𝑁𝑎+  and 𝐶𝐶𝑙−  constant 

throughout the whole titration experiment, and equal to 0.1 M. Concentration fractions α and pKa 

values were refined iteratively to achieve the best fitting to the experimental points.  

Determination of speciation diagrams. Speciation diagrams were obtained by plotting the concentration 

fractions of the differently ionic species as a function of pH (Eq. 14a-d). 

ARGO7 concentration fractions: 

𝛼3 =
𝐶

𝐿2+

𝐶
=

𝐶
𝐻+
3

𝐷
  (a); 𝛼2 =

𝐶𝐿−

𝐶
 =

 𝐶
𝐻+
2 𝑦2𝐾𝑎1

𝐷
      (b);     𝛼1 =  

𝐶
𝐿0

𝐶
=

𝐶
𝐻+𝑦2𝐾𝑎1𝐾𝑎2

𝐷
  (c); 

𝛼0 =  
𝐶𝐿−

𝐶
=

𝐾𝑎1𝐾𝑎2𝐾𝑎3

𝐷
  (d) 

M-L-Ala, M-L-Val, M-L-Leu concentration fractions: 

𝛼2 =
𝐶𝐿−

𝐶
 =

 𝐶
𝐻+
2

𝐷
 (a); 𝛼1 =  

𝐶
𝐿0

𝐶
=

𝐶
𝐻+𝑦2𝐾𝑎1

𝐷
       (b);     𝛼0 =  

𝐶𝐿−

𝐶
=

𝐾𝑎1𝐾𝑎2

𝐷
      (c) 

With D and y as previously described, and where the Ka1 and Ka2 values were corrected for β1 and β2.  

Molecular Dynamics Simulations were performed at Politecnico di Milano [18-20], with 

InsightII/Discover 20002 using the consistent valence force field CVFF [21]. For L-ARGO7, 

simulations at different pH were carried out assuming i) at pH 1 full protonation of the amino group 

in the main chain and of the L-arginine guanidinium side group, with a total charge of +20e; ii) at 

pH 6, full protonation of the guanidinium moiety for a total charge of +10e; iii) at pH 14, full 

deprotonation of the carboxyl group and of the guanidinium moiety with a total charge of -10e at 

pH 14. In the case of M-L-Ala, M-L-Val and M-L-Leu simulations were carried out in order to have 

a positive (L+), a null (L0) and a negative (L-) charge per repeat unit, that is: i) at pH 1 when the total 

charge was +10e, ii) at the isoelectric point (pH 5) and iii) at pH 11 when the total charge was -10e. 

Starting from an extended conformation of the polymer chains, after an initial geometry 

optimization, the molecules were subjected to long MD runs: the first lasting 5 ns, in an effective 
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medium with a distance-dependent dielectric constant, and the second for 0.5 ns in explicit water, 

adopting a cubic cell with a size of 44 Å of about 2640 water molecules. Equilibration of the system 

was reached within the initial 1000 ps in the effective dielectric medium, and within 200 ps in water, 

due to the random collisions with the solvent molecules. It was monitored through the time change 

of the total and potential energy together with its components (such as the Coulomb, the Van Der 

Waals and the torsional components), and of the end-to-end distance. The dynamic equations were 

integrated using the Verlet algorithm with a time step of 1 fs at a temperature of 300 K, controlled 

through the Berendsen thermostat. The instantaneous coordinates were periodically saved for 

further analysis. All the energy minimizations where carried out with the conjugate gradient method 

up to an energy gradient lower than 4x10-3 kJ mol-1 Å-1. 

2.2.3 Synthesis of PAACs 

L-, D- or D,L-arginine (2.191 g, 12.453 mmol) was added to a dispersion of N,N’-

methylenebisacrylamide (2.000 g, 12.453 mmol) in water (4.1 mL) under stirring. The resultant slurry 

was warmed under stirring to 50 °C, gradually becoming homogeneous solution. The reaction 

mixture was kept in the dark at the same temperature with occasional stirring for 6 days. After this 

time, the reaction mixture was acidified to pH 3.5 with 6 M hydrochloric acid and ultrafiltered 

through a membrane with nominal molecular weight cut-off 100 kDa to eliminate possible 

particulate impurities. The passed-through portion was then further ultrafiltered through a 

membrane with nominal cut-off 5 kDa. The product, an off-white powder, was then retrieved from 

the retained portion by freeze-drying.  

Table 1. Yields, weight-average molecular weights and polydispersity index of D-, L- and D,L-

ARGO7.  

Sample Yield (%) Mw Mw/Mn a) 

D-ARGO7 88 7700 1.54 

L-ARGO7 92 6500 1.43 

D,L-ARGO7 90 6800 1.48 
a Mw and Mn: weight- and number-average molecular mass. 
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Figure 2. 1H NMR spectra of L-ARGO7 in D2O at pH 4.5. Asterisks represent the signals of methylene 

and double bond protons of the terminal acrylamide. 

1H NMR (D2O, 400.132 MHz, ppm): δ 1.62-1.80 (m, 2H, CH2CH2CHCOO-), 1.83-1.97 (m, 2H, 

CH2CH2CHCOO-), 2.70-2.71 (m, 4H, COCH2CH2N), 3.09-3.15 (m, 2H, CH2CH2CH2CHCOO-), 3.41-

3.51 (m, 4H, COCH2CH2N), 4.11-4.13 (m, 1H, CH2CHCOO−), 4.46 (s, 2H, NHCH2NH), 4.51 (s, 2H, 

NHCH2NH of terminal acrylamide), 5.63–5.65 and 6.08–6.10 ppm (m, 3H, H2C=CH of terminal 

acrylamide) (Figure 2). 

 

Figure 3. FTIR-ATR spectra of L-ARGO7 powder. 

Peak assignment for L-ARGO7 are (Figure 3): 3276 cm-1 (signal 1, O-H stretching); 3180 cm-1 (signal 

2, N-H stretching); 2954 cm-1 (signal 3, C-H stretching); 1641 cm-1 (signal 4, C=O stretching); 1536 cm-
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1 (signal 5, N-H bending); 1387 cm-1 (signal 6, O-H bending); 1187 cm-1 (signal 7, C-N stretching); 

1115 cm-1 (signal 8, C-O stretching). 

M-L-Ala was prepared as L-ARGO7 with the following proportions: L-alanine (2.27 g, 25.00 mmol), 

MBA (4.02 g, 25.00 mmol) and water (8 mL). In addition, LiOH monohydrate (1.07 g, 25.00 mmol) 

was added to the mixture of L-Ala and MBA to deprotonate the amine groups. Yield 81%. 𝑀w=7800; 

𝑀w/𝑀n=1.44. 

 

Figure 4. 1H NMR spectra of M-L-Ala in D2O at pH 4.5. Asterisks represent the signals of methylene 

and double bond protons of the terminal acrylamide. 

1H NMR (D2O, 400.132 MHz, ppm): δ 1.40-1.43 (m, 3H, CH3CH), 2.64-2.79 (m, 4H, COCH2CH2N), 

3.24-3.42 (m, 4H, COCH2CH2N), 3.90-3.96 (m, 1H, CH3CHCOO−), 4.54 (s, 2H, NHCH2NH), 4.60 (s, 

2H, NHCH2NH of terminal acrylamide), 5.73–5.74 and 6.16–6.18 ppm (m, 3H, H2C=CH of terminal 

acrylamide) (Figure 4). 13C NMR (100.623, D2O, ppm): δ 15.14, 33.31, 44.19, 46.35, 61.48, 175.16, 181.28. 
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Figure 5. FTIR-ATR spectra of M-L-Ala powder. 

Peak assignment for M-L-Ala are (Figure 5): 3259 cm-1 (signal 1, N-H stretching); 3045-2948 cm-1 

(signal 2, C-H stretching); 1618 cm-1 (signal 3, C=O stretching); 1531 cm-1 (signal 4, N-H bending); 

1357 cm-1 (signal 5, O-H bending); 1211 cm-1 (signal 6, C-N stretching); 1113 cm-1 (signal 7, C-O 

stretching). 

M-L-Val was prepared as M-L-Ala by substituting L-valine (2.99 g, 25.00 mmol) for L-alanine. Yield 

47%. 𝑀w=5600; 𝑀w/𝑀n=1.30. 

 

Figure 6. 1H NMR spectra of M-L-Val in D2O at pH 4.5. Asterisks represent the signals of methylene 

and double bond protons of the terminal acrylamide. 

1H NMR (D2O, 400.132 MHz, ppm): δ 0.92-0.93 (d, 3H, (CH3)2CH), 1.04-1.05 (d, 3H, (CH3)2CH), 2.23-

2.25 (m, 1H, (CH3)2CHCHCOO-), 2.67-2.75 (m, 4H, COCH2CH2N), 3.44-3.50 (m, 5H, COCH2CH2N 
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and CHCHCOO−), 4.53 (s, 2H, NHCH2NH), 4.59 (s, 2H, NHCH2NH of terminal acrylamide), 5.73 

and 6.17–6.18 ppm (m, 3H, H2C=CH of terminal acrylamide) (Figure 6). 13C NMR (100.623, D2O, 

ppm): δ 17.23, 19.37, 25.85, 28.82, 44.23, 47.28, 73.43, 170.94, 172.52. 

 

Figure 7. FTIR-ATR spectra of M-L-Val powder. 

Peak assignment for M-L-Val are (Figure 7): 3273 cm-1 (signal 1, N-H stretching); 3058-2873 cm-1 

(signal 2, C-H stretching); 1631 cm-1 (signal 3, C=O stretching); 1537 cm-1 (signal 4, N-H bending); 

1375 cm-1 (signal 5, C-H bending); 1326 cm-1 (signal 6, O-H bending); 1194 cm-1 (signal 6, C-N 

stretching); 1117 cm-1 (signal 7, C-O stretching). 

M-L-Leu was prepared as M-L-Ala by substituting L-leucine (3.35 g, 25.00 mmol) for L-alanine. 

Yield 59%. 𝑀w= 6200; 𝑀w/𝑀n= 1.51. 
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Figure 8. 1H NMR spectra of M-L-Leu in D2O at pH 4.5. Asterisks represent the signals of methylene 

and double bond protons of the terminal acrylamide. 

1H NMR (D2O, 400.132 MHz, ppm): δ 0.89 (t, 6H, CH3CH), 1.50-1.55 (m, 1H, CH(CH3)2), 1.76-1.83 (m, 

2H, CHCH2CH), 2.72-2.75 (m, 4H, COCH2CH2N), 3.42-3.45 (m, 4H, COCH2CH2N), 3.69-3.73 (m, 1H, 

CH2CHCOO-), 4.54 (s, 2H, NHCH2NH), 4.59 (s, 2H, NHCH2NH of terminal acrylamide), 5.73 and 

6.17–6.18 ppm (m, 3H, H2C=CH of terminal acrylamide) (Figure 8). 13C NMR (100.623, D2O, ppm): δ 

15.14, 33.31, 44.19, 46.35, 61.48, 175.16, 181.28. 

 

Figure 9. FTIR-ATR spectra of M-L-Leu powder. 

Peak assignment for M-L-Leu are (Figure 9): 3278 cm-1 (signal 1, N-H stretching); 3065-2871 cm-1 

(signal 2, C-H stretching); 1639 cm-1 (signal 3, C=O stretching); 1532 cm-1 (signal 4, N-H bending); 

1367 cm-1 (signal 5, O-H bending); 1192 cm-1 (signal 6, C-N stretching); 1115 cm-1 (signal 7, C-O 

stretching). 

M-L-Gln was prepared as M-L-Ala by substituting L-glutamine (3.67 g, 24.99 mmol) for L-alanine. 

Yield 72%. 𝑀w=21500; 𝑀w/𝑀n=2.31. 
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Figure 10. 1H NMR spectra of M-L-Gln in D2O at pH 4.5. Asterisks represent the signals of methylene 

derived from MBA, on terminal chains. 

1H NMR (D2O, 400.132 MHz, ppm): δ 2.04–2.09 (m, 2H, H2NCOCH2CH2) 2.37–2.55 (m, 2H, 

H2NCOCH2CH2), 2.71-2.75 (m, 4H, COCH2CH2N), 3.40-3.44 (m, 4H, COCH2CH2N), 3.71-3.73 (m, 1H, 

CH2CHCOO−), 4.48 (s, 2H, NHCH2NH of terminal acrylamide), 4.53 (s, 2H, NHCH2NH) (Figure 10). 

13C NMR (D2O, 100.623, ppm): δ 21.57, 29.39, 31.56, 44.24, 47.99, 65.50, 171.99, 177.25. 

 

Figure 11. FTIR-ATR spectra of M-L-Gln powder. 

Peak assignment for M-L-Gln are (Figure 11): 3265 cm-1 (signal 1, N-H stretching); 3105-2904 cm-1 

(signal 2, C-H stretching); 1641 cm-1 (signal 3, C=O stretching); 1538 cm-1 (signal 4, N-H bending); 

1387 cm-1 (signal 5, O-H bending); 1221 cm-1 (signal 6, C-N stretching); 1117 cm-1 (signal 7, C-O 

stretching). 
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ARGININE-BASED POLYMERS 

2.3 RESULTS AND DISCUSSION 

2.3.1 Synthesis of ARGO7 isomers 

-  

Scheme 1. Synthesis of ARGO7 polymers. 

D-, L- and D,L-arginine were added to an aqueous solution of N,N’- methylenebisacrylamide, and 

the synthesis carried out at 50 °C, pH > 9 for 6 days. This pH was chosen to fully deprotonate amine 

groups, since they can react only as free bases (Scheme 1). Previous attempts to synthesize L-ARGO7 

were done carrying out the reaction for six months, at room temperature with CaCl2 as catalyst [14]. 

Now, fairly high molecular weights were obtained lowering reaction time and in absence of added 

catalysts. In fact, syntheses were quenched after 6 days and the concurrent PAA hydrolysis, typically 

showed at temperature > 40°C, was not observed.  

2.3.2 Acid-Base Properties 

Along ARGO7 chains, several carboxyl- and amine groups can be found. As such, ARGO7 is an 

amphoteric polyelectrolyte and its “apparent” pKa1 (carboxyl groups) and pKa2 (tert-amine groups) 

values depend on the dissociation degree . These protonation constants were determined using the 

generalized Henderson-Hasselbalch equation (Eq. 15):  

𝑝𝐻 = 𝑝𝐾a − 𝛽 𝑙𝑜𝑔
1 − 𝛼

𝛼
 (Eq. 15) 
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where Ka is the apparent acidic dissociation constant of the group being pH-determining in the 

buffer titration zone considered and  is the Katchalsky and Spitnik parameter [22]. This parameter 

accounts for possible interactions between ionizable groups of repeat units being spatially or 

topologically adjacent. The pKa and  values of ARGO7 polymers (Table 2) were determined by 

potentiometric titration following the procedure described in Experimental Section.  

Table 2. pKa and β values of ARGO7 isomers in the a) α range 0.2-0.8 (β1) and b) α range 0.1-0.9 

(β2). 

Isomer pKa1a,b β1a,b pKa2b,c β2b,c 

D-ARGO7 2.24 ± 0.10 0.60 ± 0.06 6.41 ± 0.07 1.12 ± 0.02 

L-ARGO7 2.31 ± 0.02 0.60 ± 0.13 6.43 ± 0.06 1.14 ± 0.06 

D,L-ARGO7 2.34 ± 0.06 0.57 ± 0.07 6.39 ± 0.02 1.25 ± 0.01 
a Carboxyl group. b Average values obtained from four forward titration experiments. c Amine 

group. The pKa of the guanidine group was not determined and assumed ≥ 12.3. Reprinted with 

permission from [15]. Copyright (2017) American Chemical Society. 

Titration curves were obtained for D-, L- and D,L-ARGO7 and resulted superimposable (see L-

ARGO7 in Figure 12 as an example), with comparable isoelectric points (9.7), pKa and  values. These 

results excluded differences ascribed to ARGO7 chirality. The Katchalsky and Spitnik parameter β 

were calculated considering α in the range, respectively, 0.2–0.8 for β1 and 0.1−0.9 for β2, to exclude 

points that clearly deviates from the trend.  

a) 

 

b) 

 

Figure 12. L-ARGO7 a) forward titration curve with its second derivative and b) De Levie fitting with and 

without β values. Curves referred to the 1st experiment of Table A1. 

Each ARGO7 repeat unit could exist in four ionization states (Figure 13a) whose relative 

distributions with pH, named speciation curves (Figure 13b), were calculated with the pKa and β 
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values of Table 2, following the method reported in Experimental Section. Speciation curves 

calculated with and without β values resulted superimposable, with negligible differences. Hence, 

the moderately low polyelectrolyte effect did not affect equilibria of charged groups.  

a) 

 

b) 

 

Figure 13. Distribution of charged species a) and speciation diagram b) referred to the 1st titration of L-ARGO7 

(Table A1 and Figure 13): L2+ doubly positively charged; L+ positively charged zwitterionic; L0 neutral 

zwitterionic; L- negatively charged. Speciation diagram reported β-corrected curves (straight line) and 

uncorrected data (dots). 

2.3.3 Circular Dichroism (CD) Analysis 

CD spectra of D- and L-ARGO7 were recorded at 25 °C in 0.1 M NaCl and in the 2.1÷12.1 pH range. 

Results indicated that ARGO7 polymers were able to self-assemble into ordered structures, whose 

CD spectra changed with pH (Figure 14a for L- and Figure A1 in Appendix for D-ARGO7). As 

expected, D- and L-ARGO7 showed mirror-image spectra, whereas D,L-ARGO7 resulted flat (Figure 

A2 in Appendix).  
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Figure 14. L-ARGO7 CD spectra: a) pH dependence and b) differential molar ellipticity at 228 nm. 

Reprinted with permission from [15]. Copyright (2017) American Chemical Society. 

In the CD spectra, the molar ellipticity (Θ) maximum was centered at 228 nm and increased with 

increasing pH (Figure 14a). In particular, its intensity kept increasing in the 5.50 – 8.30 pH range. 

Then, it remained constant.  

The differential molar ellipticity (ΔΘ) at 228 nm was calculated for D- and L-ARGO7 in the whole 

pH range, taking as reference the Θ value at pH 2. Plotting the values as a function of pH, three 

noticeable regions could be detected (Figure 14b): i) the lower plateau at pH 2.0÷5.5, ii) the inflection 

point at pH ~ 6 and iii) the upper plateau at pH > 7.5. These points mirrored the ionization state of 

the ARGO7 chains reported in the speciation diagram (Figure 13). In the first region i), ARGO7 

resulted positively charged, and the major absorption in the CD profile was detected below 220 nm, 

associated to the C=O functional groups. Then, in region ii) the slightly basic tert-amine groups were 

partially deprotonated, changing the chromophores surroundings and hence the repulsion between 

chains. In iii), the tert-amine groups were fully deprotonated and ARGO7 resulted electrically 

balanced, until pH 12.  

ARGO7 was able to assume immediately its conformation, right after pH was adjusted. To assess 

conformational stability and reversibility with pH, two cycles were done: pH was changed from 2 

to 8 and backward. Results indicated that changing pH triggered reversible modification of ARGO7 

conformations (Figure 15). 
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Figure 15. Reversibility of L-ARGO7 CD spectra with respect to a pH change. Reprinted with 

permission from [15]. Copyright (2017) American Chemical Society. 

At pH ~ 8.3 the dependence of L-ARGO7 spectral patterns were assessed over temperature, ionic 

strength, polymer concentration and Mw, presence of denaturants as guanidinium chloride and urea. 

CD spectra did not change upon modification of any of these parameters. First, effect of temperature 

was studied by heating ARGO7 sample at 25°C, then swiping temperature in the 5÷70 °C interval, 

and after, back again to 25 °C. These changing produced only a modest and reversible effect (Figure 

16), indicating ARGO7 conformations were thermodynamically stable.  

 

Figure 16. Temperature dependence of L-ARGO7 CD spectra in the interval 5 ÷ 70 °C and back to 

25 °C, at pH 8.30. 
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a) 

 

b) 

 
 

Figure 17. Modification of CD spectra with: a) increasing ionic strength (0.1 and 2 M NaCl) and presence of 

denaturating agents as 2 M guanidinium chloride and urea, at pH 8.18 ÷ 8.30 and b) different molecular weight 

of L-ARGO7, at pH 8.21 ÷ 8.30. 

Equally, increasing ionic strength from 0.1 to 2 M NaCl did not significantly change CD spectra. The 

same was true when denaturating agents, guanidinium chloride and urea (2 M) (Figure 17a), were 

introduced. It can be stated that ARGO7 structuring was not direct by electrostatic interactions or 

hydrogen bonding, respectively. Even changing Mw, in the range 2.5÷10.5 kDa, had no influence on 

CD spectra (Figure 17b). 

2.3.4 Dynamic Light Scattering (DLS) Measurements  

DLS analyses were carried out on 1 mg mL-1 ARGO7 solution, in 0.1 M NaCl, to evaluate the pH-

dependence of the hydrodynamic radii (Rh) of the polymers. Data were collected within the 2-11 pH 

range and indicated that Rh was not affected by pH variation (Figure 18). In all cases no traces of 

aggregates were seen. 

 

Figure 18. pH dependence of L-ARGO7 particle size from DLS. Reprinted with permission from 

[15]. Copyright (2017) American Chemical Society. 
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2.3.5 Theoretical Modeling 

The molecular dynamics (MD) simulations of L-ARGO7 were carried out with 10 repeat units (Mn = 

3280) at different pH values (Table 2), using a previously adopted Simulation Method [18-20]. 

Gyration radius (Rg), surface accessible to the solvent (S), dipole moment (µ) and end-to-end distance 

(R) were reported in Table 3.  

Results showed L-ARGO7 did not assume an extended conformation, typical of polyelectrolytes, but 

a coiled structure instead, with Rg between 0.9 – 1.03, much smaller than R (Figure 19a and Table 3). 

In the MD runs, these bundled structures were rapidly obtained, with minor fluctuations after 

equilibration (Figure A3 in Appendix).   

Table 3. Properties of simulated L-ARGO7 at different pH values in water at the end of the 

molecular dynamics run. 

pH Charge (e) Rg (nm) R (nm) a) S (nm2)b) µ (D) 

1 +20 1.03 2.51 26.2 26.40 

6 +10 0.92 1.32 20.7 45.51 

14 -10 0.90 1.84 21.4 37.73 
a) distance between the outermost N atoms along the main chain; b) surface accessible to a 1.4 Å 

radius spherical probe. In all cases, SD was less than 2% of the calculated values. Reprinted with 

permission from [15]. Copyright (2017) American Chemical Society. 

Three different pHs were considered: 1, 6 and 14. At pH 1, Rg resulted only slightly bigger than all 

the other pH values, despite the larger overall charge. The same was true for the solvent accessible 

surface (Figure 19b), and the end-to-end distance R (Table 3).  

The dipole moment (µ) mainly depended on the local dipoles of C=O groups along the chain, and 

might explained CD spectral pattern (Figure 11a). In fact, variation of the dipole moment with pH 

(Table 3 and Figure 19c) matched the behavior of the CD spectra. In particular, at pH 1 the dipole 

moment reached its lowest value, probably due to the compensation of some dipole vectors pointing 

in opposite direction. At pH 6, ARGO7 units were electrically balanced and µ recorded its highest 

value. Once ARGO7 chains were negatively charged, at pH 14, µ decreased again (Figure 19c). These 

extreme pH values, 1 and 14, were not considered in the CD experimental studies due to polymers’ 

stability problems. 

Molecular dynamics simulations were consistent with the experimental results, considering the 

different molecular masses. Both pointed toward a coiled conformation, that can exist due to the 
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flexible main chain and the topological separation of the charged groups. Self-structuring was driven 

by electrostatic interactions and hydrogen bonds within the main chain, the arginine side groups, 

and among them. These generated folded structures reminiscent of the protein hairpin conformation 

[23-25]. At pH 6 and 14, torsional angles distribution was quite the same, and ranged between 30° 

and ±180° values (Figure 19a). Instead, at pH 1 distribution of such angles was much more 

concentrated around ±180° (Figure 19a).  

 

Figure 19. a) Main chain molecular conformations in water at the end of the MD runs at pH 1, 6 and 14 and 

torsion angle distributions around the main chain bonds: the histogram are shown with a binning of 30°. 

Color codes: C atoms dark grey; H atoms light gray; N atoms blue; O atoms red. b) Solvent accessible surface 

area in water. The surface area is in dark grey near C atoms, in light gray near H atoms, in blue near N atoms 

and in red near O atoms. c) Dipole moments in water. Color codes are the same as in panel a). Reprinted 

with permission from [15]. Copyright (2017) American Chemical Society. 
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ALKYL-SUBSTITUTED PAACs 

2.3 RESULTS AND DISCUSSION 

2.3.1 Synthesis of M-L-Ala, M-L-Val and M-L-Leu 

Other PAACs were synthesized with the same synthetic procedure adopted for ARGO7. 

Polyaddition was carried out in water at 50 °C and pH ≥10 for 6 days, starting from L-alanine, L-

valine or L-leucine to obtain M-L-Ala, M-L-Val and M-L-Leu, respectively (Scheme 2). Differently 

from ARGO7, LiOH monohydrate was added in stochiometric amount to deprotonate carboxylic 

groups, in this way leaving NH2 groups as free bases.  

 

Scheme 2. Michael polyaddition of PAACs. 

Interestingly, setting the reaction temperature at 50°C did not trigger the radical polymerization of 

MBA vinyl groups, since no traces of insoluble cross-linked matter were observed. In addition, 

reaction time and pH did not cause any hydrolytic degradation, as proved by the absence of 

characteristic peaks in NMR spectra. Yields, weight-average molecular weights (Mw) and 

polydispersity index were reported in Experimental Section.  

As for ARGO7 isomers, physicochemical properties and structuring ability in water of alkyl-based 

PAACs were assessed and compared.  
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2.3.2 Acid-base properties 

M-L-Ala, M-L-Val and M-L-Leu protonation constants (pKa1 and pKa2) were determined using the 

same procedure described for ARGO7 isomers. Their trend with the dissociation constants  is 

reported in Figure 20, while their values are reported in Table 4. 

Table 4. pKa and β values of PAACs in the α range 0.2− 0.8 (β1) and 0.1− 0.9 (β2). 

 aCarboxyl group; b Average values obtained from four forward titration experiments; c Amine 

group; d Isoelectric point. 

 

Figure 20. Dependence of PAAC apparent a) carboxyl- and b) amine pKa values on the dissociation degree. 

Operational conditions: 0.05 M repeating units in aqueous 0.1 M NaCl at 25 °C. 

Generally, polyelectrolytes showed increasing pKas values with increasing ionization degree [26]. As 

polymers become more charged, a greater amount of work is required to remove a proton from a 

carboxyl group or to add a proton to an amine group, owing to charge repulsion. By contrast, 

PAACs’ pKa1s followed an opposite trend: they decreased by increasing the ionization degree, in the 

α range 0.1-0.8 for M-L-Ala, 0.1-0.9 for M-L-Val and M-L-Leu (Figure 20a). Instead, the apparent pKa2 

increased in all cases, along 0.05-0.95 α range (Figure 20b). These changes in pKa1 followed those of 

polymeric carboxylic acids in presence of cationic polyelectrolytes [27]. In this case, deprotonation 

was promoted by the formation of strong inter-polyelectrolyte complexes [27], that affect charge 

shielding. Conformational compactness showed in solution by PAACs may favor strong 

Sample pKa1a,b β1 a pKa2b,c β2 c IPd 

M-L-Ala 2.12 ± 0.04 0.76 ± 0.05 8.13 ± 0.17 1.32 ± 0.04 5.1 

M-L-Val 2.08 ± 0.06 0.68 ± 0.09 6.78 ± 0.03 1.45 ± 0.08 4.4 

M-L-Leu 2.11 ± 0.02 0.61 ± 0.07 7.37 ± 0.16 1.38 ± 0.07 4.7 
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intramolecular interactions between neighboring carboxylate and ammonium groups, carrying 

opposite charges. The formation of these complexes increased the pKa2, since more effort was needed 

to first break the interaction and then release protons from ammonium groups. To notice when M-

L-Ala reached α >0.8, pKa1 increased approaching the normal behavior of polymeric acids [27]. This 

may be ascribed to the fact that α-substituent of alanine is the least bulky and hydrophobic of the 

series, leading to weaker electrostatic interactions between its charged groups.  

Forward titration curves and De Levie fitting calculated with and without β parameter are reported 

in Figure 21. M-L-Ala, M-L-Val and M-L-Leu showed comparable pKa and  values (Table 4), 

independent from the amino-acid side chain. The Katchalsky and Spitnik parameter β were 

calculated considering α in the range, respectively, 0.2–0.8 for β1 and 0.1−0.9 for β2. The average 

values are in line with the ones calculated for the ARGO7 polymers and may be considered, as such, 

a characteristic of all PAACs. 

  

 

 

Figure 21. Forward titration curves of M-L-Ala, M-L-Val and M-L-Leu, referred to the 1st experiment of Table 

A2 in Appendix. 
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PAAC repeating units existed in three ionization states, whose speciation curves were determined 

from the pKa and β values reported in Table 4, following methods described in the Experimental 

Section. The related diagrams are shown in Figure 22.  

 

 

Figure 22. Speciation diagrams of M-L-Ala, M-L-Val and M-L-Leu. 

2.3.3 Circular Dichroism Analysis 

M-L-Ala, M-L-Val and M-L-Leu CD spectra were collected in 0.1 M NaCl, in the 3 – 11 pH range and 

wavelength interval 200-280 nm. Results confirmed ARGO7 behavior, that is all PAACs were able 

to self-assemble in solution into pH dependent structures (Figure 22). At pH ≥7, spectra showed a 

positive molar ellipticity peak (referred to PAAC repeat units) with maximum centered at 228 (M-

L-Ala), 234 (M-L-Val) and 231 (M-L-Leu) nm respectively. The maximum value increased with 

increasing pH and, in all cases, was lowest for M-L-Ala.  
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Figure 22. pH Dependence of PAAC CD spectra of a) M-L-Ala, b) M-L-Val and c) M-L-Leu at 25 °C. Operational 

conditions: 1.83 ± 0.17 mM repeating units in 0.1 M NaCl solution, 25 °C. 

The differential molar ellipticity was calculated taking as reference the molar ellipticity value of each 

maximum at pH 3 (Figure 23). Negative peaks were not considered. In all cases, sigmoidal curves 

were obtained and showed: i) a lower plateau in the pH intervals 3.0-5.5 (M-L-Ala), 3.0-4.8 (M-L-

Val) and 3.0-5.0 (M-L-Leu); ii) an inflection point at pH 8.1 (M-L-Ala), 6.8 (M-L-Val) and 7.3 (M-L-

Leu); and iii)an upper plateau at pH ≥10.4 (M-L-Ala), pH ≥9 (M-L-Val) and pH ≥9.9 (M-L-Leu). These 

trends can be explained by the speciation diagrams of Figure 23. At lower pH, mostly positively 

charged chains may be found for each PAACs. By increasing pH, first zwitterionic and then 

negatively charged chains can be found in solution, due to the tert-amine groups deprotonation. The 

inflection points of the sigmoid corresponds to the half-deprotonation of the PAACs amine groups, 

when pH = pKa2. It appeared the tert-amine protonation degree was the main factor governing 

structuring and, consequently, the shape of the CD spectrum. In addition to the positive peak, a 

negative peak appeared at lower wavelength. Its position kept changing with pH, shifting to lower 

wavelength by lowering pH.  
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Figure 23. pH Dependence of M-L-Ala, M-L-Val and M-L-Leu differential molar ellipticity at 228, 234 and 231 

nm, respectively. Operational conditions: 1.83 ± 0.17 mM repeating units in 0.1 M NaCl solution. Based on data 

points reported in Figure 20. 

Circular dichroism measurements were carried out also in other conditions (Figure 24, upper row): 

i) at different ionic strength (0.1 M and 2 M sodium chloride) and ii) in presence of denaturating 

agents (2 M urea and guanidinium chloride). In all cases, spectra were only slightly affected by ionic 

strength and 2 M urea. Different was the case of 2 M guanidinium chloride solutions, whose 

interaction with the polymers changed significantly both intensity and peak maximum of all PAAC, 

M-L-Ala to a higher extent. Reversibility of each conformations toward temperature and pH was 

assessed as well. Results indicated that PAACs conformations were thermodynamically stable, in 

the 3 – 70°C interval, with only minor changes for M-L-Ala, whose negative peak nearly vanished 

(Figure 24, bottom row). The same was true for pH. M-L-Ala, M-L-Val and M-L-Leu self-structuring 

was quickly formed and showed reversibly by changing pH (Figure 24, intermediate row).  



Chapter 2 
 

68 
 

 

Figure 24. Dependence of PAAC CD spectra on a change of: ionic strength and presence of denaturating 

agents, namely urea and guanidinium chloride (GuaCl) (upper row); pH (intermediate row); temperature 

(bottom row). Operational conditions: 1.83 ± 0.17 mM repeating units and, where not otherwise stated, in 0.1 

M NaCl solution.  

2.3.4 Dynamic Light Scattering (DLS) Measurements  

DLS measurements were carried out on PAACs solutions prepared in 0.1 M NaCl, as a function of 

pH, presence of denaturants, polymers’ concentration and time. Hydrodynamic radii (Rh) of 1 mg 

mL-1 PAAC solutions did not change within the 1.5-11 pH range (Figure 25). Even increasing ionic 

strength or adding denaturating agents did not affect Rhs, both in acidic and basic conditions (Figure 

26). The only differences were seen in water at pH 8.3, where the dimensions of M-L-Ala, M-L-Val 

and M-L-Leu resulted significantly lower, possibly due to stronger intramolecular interactions 

affected by the presence of salts or denaturating agents. 
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Figure 25. pH Dependence of PAAC hydrodynamic radius from DLS at 25 °C in 0.1 M aqueous NaCl. Polymer 

concentration 1 mg mL-1.  

 

Figure 26 PAAC hydrodynamic radii from DLS in: 0.1 M and 2 M NaCl, 2 M urea, 2 M guanidinium chloride 

and plain water. Operational conditions: polymer concentration 1 mg mL-1, 25 °C.  

The particle size was studied as a function of time and concentration, as well (Figure 27). Changing 

concentration in the 0.5-20 mg mL-1 range, did not affect Rh values, ruling out formation of 

aggregates. Data likely suggested these polymers were able to intramolecularly self-assembled into 

single chain nanoparticles, whose Rh remained stable even after one month (Figure 27, dotted line).  
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Figure 27 Concentration dependence of PAAC hydrodynamic radius in Milli-Q water, pH 4.74 ± 0.72 at 0 and 

30 days.  

2.3.5 Theoretical Modeling 

Adopting a simulation protocol used in previous work [18-20], molecular dynamics (MD) 

simulations at room temperature and final energy minimizations using molecular mechanics (MM) 

methods were carried out for M-L-Ala, M-L-Val, M-L-Leu with ten repeat units (see Experimental 

Section). Results in water showed polymer’s behavior to be rather similar to previously reported 

ARGO7 [16], that is, the formation of a compact conformation. Data are reported in Table 5.  

In addition, M-L-Ala simulations were run at pH 1, initially at 500 K, then at 400 K and eventually 

at 300 K to check if conformations were trapped in a metastable state. In these cases, no significant 

differences were found for the calculated size descriptors. 
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Table 5. Properties of the simulated PAACs at different pH values in water at the end of the MD runs and 

final geometry optimization. 

Polymer pH Charge (e) Rga (nm) Rb (nm) Sc (nm2) Volumed (nm3) e (D) 

 1 +10 1.07 1.57 21.1 2.35 21.8 

M-L-Ala 5 0 0.74 1.09 12.5 2.61 66.2 

 11 -10 0.80 1.23 16.6 2.65 40.2 

 1 +10 1.04 1.41 22.1 2.55 19.6 

M-L-Val 5 0 0.73 1.57 13.2 2.80 20.6 

 11 -10 0.85 1.46 19.9 2.66 38.1 

 1 +10 1.11 1.73 24.1 2.70 24.4 

M-L-Leu 5 0 0.85 0.84 19.9 2.95 43.0 

 11 -10 0.80 1.14 16.9 3.11 28.0 
aGyration radius; bEnd to end Distance; cSurface area accessible to the solvent defined as the surface accessible 

to a spherical probe having a 0.14 nm radius, roughly the size of a water molecule; dVolume of the optimized 

molecule in water; eDipole moment. 

At both pH 5 and 11, M-L-Ala, M-L-Val and M-L-Leu assumed spherical conformations with lower 

Rg and S than pH 1. When MD were run at pH 1, chains assumed a more anisotropic shape with 

higher radii and S due to the presence of large cavities (Figure 29-31). All the conformations obtained 

at different pHs were quickly achieved in the MD runs, with small fluctuations after equilibration 

(Figure 28). 

 
Figure 28. Time dependence of PAACs’ end-to-end distance within the MD run at different pH values. 

Regardless of pH, Rgs did not change much along the series, resulted unfazed by the different amino 

acid hydrophobic side chain. Hence, coil size was mainly dictated by the conformational properties 

of the backbone and, to a minor extent, by the protonation state of carboxylate and amine groups.  

The variation of the overall dipole moment μ (Table 5) with pH followed the same trend shown by 

CD spectra (Figure 22):  μ was lowest at pH 1, where all units were positively charged and many 

local dipole vectors mutually compensate; At pH 5, at the polymers’ pI, μ was the highest for M-L-
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Ala and M-L-Leu. At pH 11, where chains resulted negatively charged, μ decreased. Differently, for 

M-L-Val the highest dipole moment was obtained at pH 11, due to a favorable combination of 

charged groups and local dipoles. 

Gyration radii were compared with hydrodynamic radii obtained from DLS measurements for 

polydisperse PAAC samples at the same overall charges (Table 6).  

Table 6. pH Dependence of PAAC hydrodynamic radius in water. 

Polymer Rh (nm)a at pH 1.5 Rh (nm)a at pH 5.0 Rh (nm)a at pH 9.0 

M-L-Ala 1.56 ± 0.52 1.54 ± 0.43 0.59 ± 0.17 

M-L-Val 1.13 ± 0.33 0.90 ± 0.21 0.45 ± 0.17 

M-L-Leu 1.40 ± 0.41 1.61 ± 0.49 0.67 ± 0.17 
a Determined by DLS on polydisperse samples (see Experimental section) at 5 mg mL-1 concentration. 

Both MD and experimental results confirmed the compactness of PAAC structures, despite the 

difference in molecular weight and polydispersity. Theoretical values calculated at pH 1 and 5 

matched the experimental data obtained at the same pH, whereas at pH 9.0 results were not 

comparable. In fact, DLS measurements in basic conditions were carried out without equating the 

ionic strength by adding NaCl, approaching the instrument detection limits and resulting as such 

unreliable. As with L-ARGO7, a hairpin-like conformation was assumed by PAACs chains due to 

intramolecular interactions (Figure 29-3a). At pH 1 and 5, these conformations were characterized 

by a distribution of torsion angles peaked around ± 180° (transoid arrangement), less pronounced 

for pH 11, due to repulsive interactions among negatively charged carboxylate groups.  
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Figure 29. a) Main chain molecular conformations in water at the end of the MD runs for M-L-Ala at pH 1, 5 

and 11 and torsion angle distributions around the main chain bonds: the histogram are shown with a binning 

of 30°. Color codes: C atoms dark grey; H atoms light gray; N atoms blue; O atoms red. b) Solvent accessible 

surface area in water. The surface area is in dark grey near C atoms, in light gray near H atoms, in blue near 

N atoms and in red near O atoms. c) Dipole moments in water. Color codes are the same as in row a).  



Chapter 2 
 

74 
 

 

Figure 30. a) Main chain molecular conformations in water at the end of the MD runs for M-L-Val at pH 1, 5 

and 11 and torsion angle distributions around the main chain bonds: the histogram are shown with a binning 

of 30°. Color codes: C atoms dark grey; H atoms light gray; N atoms blue; O atoms red. b) Solvent accessible 

surface area in water. The surface area is in dark grey near C atoms, in light gray near H atoms, in blue near 

N atoms and in red near O atoms. c) Dipole moments in water. Color codes are the same as in row a).  
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Figure 31. a) Main chain molecular conformations in water at the end of the MD runs for M-L-Leu at pH 1, 5 

and 11 and torsion angle distributions around the main chain bonds: the histogram are shown with a binning 

of 30°. Color codes: C atoms dark grey; H atoms light gray; N atoms blue; O atoms red. b) Solvent accessible 

surface area in water. The surface area is in dark grey near C atoms, in light gray near H atoms, in blue near 

N atoms and in red near O atoms. c) Dipole moments in water. Color codes are the same as in row a). 
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GLUTAMINE-BASED POLYMER 

Results obtained for L-ARGO7, M-L-Ala, M-L-Val and M-L-Leu showed that structuring and size 

were dictated mainly by intramolecular interactions of the polymer main chain, independently from 

the nature of the amino-acid side chain. Their solution properties were governed mainly by the tert-

amine ionization degree, concluding that none of these PAACs presented a significant amount of 

intermolecular hydrogen bonding.  

This chapter will introduce M-L-Gln, a glutamine-based PAACs synthesized with the same Michael 

polyaddition reaction. This polymer was chosen since the amino-acid L-glutamine is widely known 

in literature for its ability to associate even in dilute solutions, as a result of hydrogen bonding 

between side chain-side chain (CO2HCHNH2), backbone-backbone (CH2CH2CONH2) and side 

chain-backbone interactions [28,29]. A comparison between the other PAACs and M-L-Gln pH 

dependent solution properties and ability to form intermolecular interactions, preferentially via 

hydrogen bonding, will be conducted. 

2.3 RESULTS AND DISCUSSION 

2.3.1 Synthesis of M-L-Gln 

Scheme 3. Synthesis of M-L-Gln. 

The reaction, a Michael type polyaddition of the amino acid prim-amine with N,N’-

methylenebisacrylamide, was essentially performed as already described in the other chapters, that 

is, in water at 60° and pH ≥ 9. Molecular weights, determined by size exclusion chromatography 

(SEC), revealed that M-L-Gln had significantly higher molecular weights and polydispersity than 

the PAACs so far investigated (Table 7). The broader molecular weight distribution (Mw) probably 
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pointed out to the presence of aggregates. This unique behavior was possibly associated with an 

increased formation, in this polymer, of intra and intermolecular hydrogen bonding, as confirmed 

by molecular dynamics simulations (see below, section 2.3.6).   

Table 7. Comparison of PAACs molecular weights, Mw and polydispersity index, obtained from size 

exclusion chromatography.  

Sample Mw PDI 

M-L-Gln 21500 2.31 

M-L-Ala 7800 1.44 

M-L-Val 5600 1.30 

M-L-Leu 6200 1.51 

 

2.3.2 Acid-base properties 

M-L-Gln carboxyl and tert-amine pKa values (Table 8) were determined by potentiometric titration 

using the modified Henderson Hasselbalch equation following the same procedure used for ARGO7 

and alkyl-substituted PAACs. Both pKas and their trend with the degree of dissociation α were in 

line with the results obtained for the other PAACs. 

Table 8. pKa and β values of M-L-Gln in the α range 0.2–0.8 (β1) and 0.1−0.9 (β2). 

Sample apKa1 cpKa2 aβ1 cβ2 dIP 

M-L-Gln 2.17b ± 0.05 6.80b ± 0.05 0.84b ± 0.09 1.62b ± 0.08 4.5 
a Carboxyl group. b Average values obtained from four forward titration experiments. c Amine group. 
d Isoelectric point. 

The repeat units of M-L-Gln can exist in three ionization states, positively charged (L+), uncharged 

(L0) and negatively charged (L-) (Figure 31b). The pH-dependent speciation curves (Figure 31a) were 

determined from the pKa and β values reported in Table 8 by the method described in the 

Experimental Section. 
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a) 

 

b) 

 

Figure 31. Speciation diagram and ionization states of M-L-Gln. 

2.3.3 Circular Dichroism (CD) Analysis 

CD spectra of M-L-Gln, obtained in 0.1 M NaCl aqueous solution in the pH range 3 – 11, were 

consistent with self-structuring (Figure 32). As for all PAACs so far described, also M-L-Gln showed 

pH-dependent CD patterns. However, differently from other PAACs, the M-L-Gln spectra obtained 

at acidic pH exhibited positive molar ellipticity with maxima centered at 217 nm. Only modest 

negative peaks were present with minima centered at 210 ÷ 215 nm. These positive peaks were 

mainly ascribed to the weak n → π* transition of the CONH groups [30], present both in the polymer 

backbone and in the glutamine side chain. Moreover, by increasing pH, the molar ellipticity maxima 

underwent a progressive bathochromic shift up to 227 nm at pH 9.77, with reduced intensities as 

well. As in the previously described PAACs, the pH-dependence of the spectral patterns was 

dictated by conformational changes of the polymer induced by the different ionization state of the 

ionizable groups.  
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Figure 32. pH-Dependence of M-L-Gln CD spectra. Data were obtained in 0.1 M NaCl solution at 25 °C. The 

overall concentration of the repeating units was 1.66 mM.  

The dependence of CD spectra on ionic strength and presence of denaturants at pH 8.0 was 

investigated immediately after the solution was prepared and even after 24 hrs. The spectral pattern 

was slightly affected by increasing ionic strength up to 2 M NaCl (Figure 33a), remaining unchanged 

over time (Figure 33b). By contrast, in 2 M urea it underwent a significant bathochromic shift, with 

a 237 nm and 243 nm maximum displacement for the negative and positive peak, respectively. 

Concomitantly, intensity of the positive peak decreased and increased for the negative peak. The 

spectral variations were more pronounced after 24 hrs (Figure 5c), suggesting the progressive 

breakdown of hydrogen bonds. 

 

Figure 33. M-L-Gln CD spectra dependence on: ionic strength (blue line) and denaturating agent as 

2 M urea (purple line) in panel a); time after 24 h in 2 M NaCl aqueous solution, in panel b) and time 

after 24 h in 2 M urea in panel c). The overall concentration of the repeating units was 1.66 mM. 
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2.3.4 Dynamic Light Scattering (DLS) Measurements 

Dynamic light scattering analyses were carried out on 1 mg mL-1 solutions of M-L-Gln in 0.1 M 

aqueous NaCl at different pHs. As shown in Figure 34, Rh was ≈2.75 nm, higher than those normally 

recorded for the other PAACs, unaffected by pH modifications. 

 

Figure 34. pH-Dependence of the hydrodynamic radius of M-L-Gln. Data were obtained in 0.1 M 

NaCl at 1 mg·mL−1 and 25 °C. 

In addition, DLS was recorded at higher ionic strength (2 M NaCl) and in presence of denaturants 

(2 M urea and guanidinium chloride). In all cases, Rh did not change upon modifications of these 

parameters (Figure 35).  

 

Figure 35. Dependence of the hydrodynamic radius of M-L-Gln on ionic strength (0.1 and 2 M NaCl) 

and presence of denaturating agents (2 M GuaCl and Urea). Data were obtained at 1 mg·mL−1 and 25 

°C, pH = 8.  

 

 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

1.53 2.00 3.07 3.87 4.57 4.63 5.07 5.87 7.37 8.04 8.87 9.77 10.83

R
h

 (n
m

)

pH

M-L-Gln

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0.1 M NaCl 2 M NaCl 2 M GuaCl 2 M Urea

R
h

 (n
m

)

M-L-Gln



Chapter 2 
 

81 
 

2.3.5 NMR analysis 

NMR techniques like DOSY, variable-temperature NMR (VT-NMR) and NOESY were recorded for 

aqueous M-L-Gln at pH 4.5 and 25°C to obtain its structural and conformational features. 

Measurements were carried out at Università di Milano by Dr. Francesca Vasile. All data were 

compared to glycine-derived PAAC (M-Gly), the structurally simplest and less hindered polymer of 

all the polyamidoamino acids considered so far. M-Gly was synthesized with the same synthetic 

procedure mentioned above, and with comparable molecular weights. 

DOSY measurements were used to calculate the diffusion coefficient and the hydrodynamic radius 

of the polymer. In water at pH 4.5, only one diffusion coefficient was measured, excluding as such 

presence of aggregates that would have apparently increased the molecular weight. Then, 

hydrodynamic radius was calculated using Stokes-Einstein Equation (Eq. 16). The Rh value of M-L-

Gln was 3.53 nm, showing good agreement with DLS data. As expected, Rh resulted higher than both 

Rhs of all the other PAACs and of M-Gly (2.47 nm) of comparable Mw. 

𝐷 =
𝑘𝐵𝑇

6𝜋𝜂𝑟
    (Eq. 16) 

where D is the diffusion coefficient (m2 s-1), kB the Boltzmann's constant (J K-1), η is the dynamic 

viscosity (Pa s) and r the radius of the spherical particle. 

To investigate the formation of hydrogen bonding, variable-temperature NMR (VT-NMR) 

experiment was performed. Attention was focused on the behavior of amide protons in water. When 

these protons are involved in intra- or intermolecular H-bonding formation, they experience a lower 

chemical shift variation (Δδ) upon temperature modification (ΔT). Comparison between amides in 

the glutamine side-chain and in the polymers’ backbone were reported in terms of Δδ/Δt. 

Calculation were carried out assuming chemical shifts reflected equilibrium between conformations. 

The analysis of zwitterionic M-L-Gln (pH 4.5) revealed that the side-chain amide groups were 

involved in the formation of H-bonds, since their Δδ/Δt value was -4.5 ppm, whereas only a small 

percentage of amides of the MBA backbone did the same (Δδ/Δt value was -6.0 ppm). Even M-Gly 

gave the same variation of -6.0 ppm for main chain amides, demonstrating this feature to be the 

same in all PAACs.   
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By decreasing pH to 1, amides groups in M-L-Gln side chain still formed H-bonds but in lower 

amounts. Once the presence of H-bonding was established, further investigation on NOE signals 

were conducted to determine M-L-Gln chain conformations. The NOESY experiments measured two 

NOEs, both involving CH2 next to the tert-amine and CH2 in β and γ position of the glutamine side 

chain, respectively. Thus, M-L-Gln showed a coiled structure in which glutamine side chain moved 

closer to the main chain. Possibly, changing the protonation degree of the tert-amine will sensibly 

affect structural reorganization. 

2.3.6 Theoretical Modeling 

MD analyses were carried out with the same procedure already described for the other PAACs, 

considering 10 repeating units, at different pH: 1, 6 and 14. Gyration radius (Rg), surface accessible 

to the solvent (S) and dipole moment (µ) were reported in Table 9. Similarly to the other PAACs, M-

L-Gln assumed a coiled structure, driven by the main-chain, with Rg between 0.8 – 1.07 nm and 

torsion angle distributions slightly affected by pH (Figure A5).  

Table 9. Properties of simulated M-L-Gln at different pH values in water at the end of the 

molecular dynamics run. 

pH Rg (nm) S (nm2)a) µ (D) 

1 1.07 25.1 19.80 

6 0.82 17.1 32.10 

14 0.98 23.5 23.20 
a) surface accessible to a 1.4 Å radius spherical probe. In all cases, SD was less than 2% of the 

calculated values. 

The dipole moment (µ) was evaluated for the glutamine side chain and the main chain, 

independently. Noticeably, at pH 1 the dipole moment of glutamine side chain was almost three 

times higher than the overall µ of the main chain (Table 10). This peculiarity, coupled with the 

specific orientation of the amino-acid residues, might explain the high intensity peak shown in CD 

spectra (Figure 32). With increasing pH, the overall µ increased and differences between main chain 

and side chain were less pronounced. As expected, when M-L-Gln units were electrically balanced 

(pH 6), µ recorded its highest value.  
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Table 10. Calculated dipole moments among the PAACs studied so far: differences between 

µ of the side-chain and the main chain. 

 pH 1 pH 6 pH 14 

L-ARGO7 

Side chain 26.4 45.5 37.7 

Main Chain 23.7 25.1 19.0 

M-L-Ala 

Side chain 21.8 66.2 40.2 

Main Chain 8.97 14.4 7.3 

M-L-Leu 

Side chain 24.4 43.0 27.8 

Main Chain 15.7 26.1 19.0 

M-L-Val 

Side chain 19.6 20.6 38.1 

Main Chain 15.1 13.6 10.3 

M-L-Gln 

Side chain 19.8 32.1 23.2 

Main Chain 6.4 28.8 20.9 

Differently from the other PAACs, during the MD runs inter- and intramolecular H-bonding was 

formed in high quantity along the 10 repeating units. In particular, the highest amounts of H-bonds 

could be found at pH 6, where M-L-Gln was mainly in its zwitterionic form. At this pH, the overall 

intra- and intermolecular H-bonds along the main chain were 12, and mainly arose from carbonyl 

groups and tert-amine. Instead, considering the glutamine pendants as well, 11 were the H-bonds 

calculated between glutamine’s amide groups, tert-amines and carboxylate groups. The presence of 

this high number of H-bonding might explain the highest Mw, since inter- and intramolecular forces 

stack together both glutamine monomers and the forming chains, resulting in an increase in the local 

concentration of the reactive amines. By decreasing or increasing pH, numbers of H-bonds 

drastically diminished. These data were in line with NMR measurements, showing that side-chain 

amide groups were the main responsible of hydrogen bonding formation. 

2.4 CONCLUSIONS 

In conclusion, a new family of bioinspired polymers named polyamidoamino acids (PAACs) were 

introduced. A small library of chiral polymers was obtained by polyaddition of natural α-

aminoacids to bisacrylamides. In particular, three types of polymer were synthesized and discussed, 

in order: i) arginine-based PAACs obtained from L-arginine (L-ARGO7), D-arginine (D-ARGO7) and 

D,L-arginine (D,L-ARGO7); ii) alkyl-substituted PAACs derived from L-alanine (M-L-Ala), L-valine 



Chapter 2 
 

84 
 

(M-L-Val) and L-leucine (M-L-Leu) and iii) a glutamine-based PAAC obtained from L-glutamine (M-

L-Gln). Synthesis, acid-base properties, self-structuring abilities, intermolecular interactions and size 

in solutions were reported. Results indicated all these polymers behave in a similar way, with minor 

differences owing to the amino acid side chain considered. 

Syntheses were carried out at 50°C for 6 days and pH > 9, obtaining fairly high molecular weights 

ranging from 5600 to 7800 for all PAACs, M-L-Gln excluded. The latter showed higher molecular 

weights (Mw and Mn), associated with the presence of intra- and intermolecular hydrogen bonding, 

as proved by VT-NMR measurements. In no cases, traces of aggregates or side products from 

hydrolytic degradation were seen. Regarding acid-base properties, PAACs did not show the typical 

polyelectrolytes behavior:  their pKa1s decreased with increasing ionization degree implying the 

formation of inter-polyelectrolyte complexes. Thus, to release protons from ammonium groups, this 

complex needs to be broken down first.  

In water, the PAACs considered showed CD spectra revealing, in the wavelength interval 200-280 

nm, a clearly pH-dependent self-structuring. D- and L-ARGO7 showed mirror-image spectra and 

peak maximum centered at 228 nm with positive ellipticity. The same was true for all the other 

PAACs, M-L-Gln excluded, whose maximum was centered at 228 (M-L-Ala), 234 (M-L-Val) and 231 

(M-L-Leu) nm respectively. These positive peaks were mainly ascribed to the weak n → π* transition 

of the CONH groups. Their maximum value increased with increasing pH, allowing calculation of 

differential molar ellipticities (ΔΘ). Sigmoidal curves of ΔΘ vs pH were then obtained with lower 

plateaus at acid pH, upper plateaus at basic pH, and inflection points corresponding to the half-

neutralization of the tert-amine groups of each polymer. In the case of M-L-Gln, owing to the 

presence of CONH2 groups in both the polymer backbone and in the glutamine side chain, CD 

spectra presented high intensity peak in the whole pH range. In acidic conditions, peak was centered 

at 217 nm whereas in basic conditions at 227 nm. For all PAACs, the pH induced conformational 

changes were quickly reversible by changing pH and temperature. Only M-L-Ala showed minor 

changes above 70°C. Conformations were little affected by ionic strength and presence of 

denaturating agents, with some differences: CD spectra of ARGO7 isomers did not change upon 

introduction of either urea or guanidinium chloride, whereas M-L-Ala, M-L-Val and M-L-Leu 

conformations changed with the introduction of guanidinium chloride. The most affected of all 

resulted M-L-Ala. Instead, CD spectra of glutamine derived PAAC resulted sensitive to the presence 

of urea, with time dependent spectral variations.   
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DLS measurements in 0.1 M NaCl gave hydrodynamic radii stable at 25 °C for at least 1 month and 

unaffected by pH, ionic strength and presence of denaturants. In addition, Rhs were not affected by 

increasing concentration in the 0.5-20 mg mL-1 range, suggesting that PAACs may intramolecularly 

self-assembled into single chain nanoparticles. Noticeably, M-L-Gln showed the highest Rh values of 

all PAACs so far considered.  

Molecular dynamics studies on L-ARGO7, M-L-Ala, M-L-Val, M-L-Leu and M-L-Gln revealed that 

all of them have in water a compact structure, with Rg in the range 0.8-1.11 nm and a main chain 

organized into a transoid arrangement, hairpin-like conformation, due to intramolecular 

interactions. For all of them except M-L-Gln, these were principally of electrostatic nature, due to the 

local dipoles, and to a few intramolecular hydrogen bonds within main chain, side groups and 

among them. Structuring and size were dictated mainly by intramolecular interactions in the 

polymer main chain, with minor dependence from the amino acids side chain. Notwithstanding 

their compact structure, a very efficient hydration was still granted by the large cavities presented 

in the modeled structures. Differently from the other PAACs, MD runs of M-L-Gln showed a higher 

number of H-bonding, both along the main chain and the glutamine residues. In particular, VT-

NMR and MD showed that the main responsible of H-bonding in M-L-Gln were side-chain amides 

groups. Consequently, the polymers’ coiled conformation was possibly held together by these 

interactions as well.   
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2.6 APPENDIX 

 

 
Figure A1. pH dependence of D-ARGO7 CD spectra, at 25°C. 

 

 

Figure A2. pH dependence of D,L-ARGO7 CD spectra, at 25°C. 
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Figure A3. The end-to-end distance plotted vs the simulation time for the simulated chain at pH 1, 6, 14 in the 

effective dielectric medium. The inset shows an expanded view of the initial 200 ps. 

a) 

 

b) 

 
 

 

 

 

 

 

 

 
 Figure A4. Determination of β parameters for side –COOH and chain tert-amine of M-L-Ala, M-L-Val 

and M-L-Leu referred to the 1st experiment of Table A2: a) calculation of β values from Eq. 1b and b) 

trend of the β-corrected pKa values versus α according to Eq. 1a. 
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Figure A5. Torsion angle distributions around the main chain bonds of M-L-Gln at pH 1, 6 and 14: the 

histograms are shown with a binning of 30°.  

Table A1. Titration data of ARGO7 isomers. 

L-ARGO7 

Forward 1
st
 2

nd
 3rd 

 -COOH -NR3 -COOH -NR3      -COOH -NR3 

pKa 2.31 6.48 2.29 6.37 2.33 6.44 

Backward 1
st
 2

nd
 3rd 

 -COOH -NR3 -COOH -NR3        

pKa 2.35 6.35 2.43 6.36   

D-ARGO7 

Forward 1
st
 2

nd
 3rd 

 -COOH -NR3 -COOH -NR3      -COOH -NR3 

pKa 2.24 6.37 2.15 6.38 2.34 6.49 

Backward 1
st
 2

nd
 3rd 

 -COOH -NR3 -COOH -NR3        

pKa 2.37 6.51 2.40 6.37   

D,L-ARGO7 

Forward 1
st
 2

nd
 3rd 

 -COOH -NR3 -COOH -NR3      -COOH -NR3 

pKa 2.27 6.40 2.36 6.39 2.39 6.37 

Backward 1
st
 2

nd
 3rd 

 -COOH -NR3 -COOH -NR3   
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pKa 2.40 6.41 2.40 6.36   

Table A2. PAAC pKa values from forward and backward titration data. 

M-L-Ala 

Forward 1
st
 2

nd
 3rd 4th 

 -COOH -NR3 -COOH -NR3      -COOH -NR3 -COOH -NR3 

pKa 2.07 7.90 2.15 8.27 2.13 8.15 2.13 8.24 

Backward 1
st
 2

nd
 3rd 4th 

 -COOH -NR3 -COOH -NR3      -COOH -NR3 -COOH -NR3 

pKa 2.37 7.77 2.36 8.22 2.35 8.18 2.37 8.22 

M-L-Val 

Forward 1
st
 2

nd
 3rd 4th 

 -COOH -NR3 -COOH -NR3      -COOH -NR3 -COOH -NR3 

pKa  2.12 6.78 1.98 6.74 2.11 6.77 2.10 6.82 

Backward 1
st
 2

nd
 3rd 4th 

 -COOH -NR3 -COOH -NR3      -COOH -NR3 -COOH -NR3 

pKa 2.37 6.86 2.22 6.78 2.35 6.79 2.41 6.92 

M-L-Leu 

Forward 1
st
 2

nd
 3rd 4th 

 -COOH -NR3 -COOH -NR3      -COOH -NR3 -COOH -NR3 

pKa 2.14 7.23 2.13 7.45 2.09 7.24 2.10 7.55 

Backward 1
st
 2

nd
 3rd 4th 

 -COOH -NR3 -COOH -NR3 -COOH -NR3 -COOH -NR3 

pKa 2.37 7.16 2.42 7.28 7.28 2.40 7.23 2.68 
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3 
Fluorescent properties and pH dependent self-organization 

of D-, L- and D,L-Tryptophan based polyamidoamino acids 

 

 

“Se ti dico che la città a cui tende il mio viaggio è discontinua nello spazio e 

nel tempo, ora più rada ora più densa, tu non devi credere che si possa 

smettere di cercarla”  

(Calvino, Le città Invisibili) 

 

 

 

 

 

 

 

 

 

 

Lazzari, F.; Manfredi, A.; Alongi, J.; Marinotto, D.; Ferruti, P.; Ranucci, E. Polymers 2019, 11, 

543, doi:10.3390/polym11030543.  

https://www.frasicelebri.it/argomento/citt%C3%A0/
https://www.frasicelebri.it/argomento/viaggio/
https://www.frasicelebri.it/argomento/spazio/
https://www.frasicelebri.it/argomento/fede/
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3.1 INTRODUCTION 

Bioinspired homo- and copolymers synthesized from -amino acids and bearing side-chain chirality 

have gained much attention in recent years due to their widespread applications as stimuli-

responsive materials [1] with tunable pH- [2] and thermoreversible [3] solubility, chirality-

dependent self-assembling via non-covalent forces [4,5] and chiral recognition [6] abilities. Among 

the synthetic side-chain chiral polymers, tryptophan-derived polymers are inherently fluorescent, 

and as such they may be of interest in cellular and molecular imaging [7]. In proteins, the 

fluorescence decay of L-tryptophan residues is used as a diagnostic tool to study their conformation 

[8]. Moreover, it has been shown that L-tryptophan-rich peptides have a critical role on the cellular 

uptake and membrane interaction of arginine-rich cell penetrating peptides [9]. In this case, the 

hydrophobicity of the indole moieties undoubtably plays a major role, whereas the hydrophobicity 

of other amino acids, such as L-phenylalanine [9], was reported to be much less effective in this 

respect. Several examples of tryptophan-derived polymers have been studied. For instance, poly-N-

acryloyltryptophan was chosen as a model to study the chiral interactions with 1,1-bis-2-naphthol 

[10], while copolymers of N-acryloyltryptophan with other acrylamides [11] were employed in 

recognition studies [12–14]. In other cases, the interaction between copolymeric poly-N-

methacryloyltryptophan and -cyclodextrin was investigated [15]. Also, the tryptophan ester of 

polyhydroxyethylmethacrylate was synthesized, and its pH-dependent chiro-optical and 

fluorescence properties studied [16]. 

This chapter reports on the synthesis and characterization of homo- and copolymeric PAACs 

bearing tryptophan and tryptophan/glycine units as side chains. Tryptophan-based homopolymers 

were obtained by polyaddition of D-, L- and D,L-tryptophan to N,N’-methylenebisacrylamide, using 

the same reaction procedure reported in Chapter 2, Experimental Section p. 45. Polymers were 

named M-D-Trp, M-L-Trp and M-D,L-Trp respectively. Copolymers were synthesized starting from 

mixtures of L-tryptophan/glycine at different ratio, to obtain M-G-L-Trp5, M-G-L-Trp10, M-G-L-Trp20 

and M-G-L-Trp40. Their acid-base properties, structuring ability, pH dependent solubility, chiro-

optical and fluorescence properties were determined as well.  
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3.2 EXPERIMENTAL SECTION 

3.2.1 Materials 

Solvents and reagents, unless otherwise indicated, were analytical-grade commercial products and 

used as received. D-, L-, D,L-tryptophan (≥ 98%, 97% and 98% respectively) and glycine (≥ 99%) were 

purchased from Sigma-Aldrich (Milano, Italy). N,N’-Methylenebisacrylamide (MBA, 96%) 

purchased from Acros Organics (Milano, Italy) and LiOH monohydrate (≥ 98%) was supplied by 

Honeywell Fluka (Steinheim, Westphalia, Germany). HCl and NaOH volumetric standard solutions 

were purchased from Fluka analytics (Milano, Italy), while ethanol (≥ 98%) from Riedel-de-Haёn 

(Seelze, Hannover, Germany). Ultrapure water (18 MΩ·cm−1), produced with a Millipore Milli-Q® 

apparatus (Darmstadt, Hesse, Germany), was used to prepare solutions. 

3.2.2 Instruments and methods 

1H and 13C NMR spectra were recorded in D2O at 25 °C using a Bruker Avance DPX-400 NMR 

operating (Bruker, Milano, Italy) at 400.13 MHz (d1 = 10 s) and 100.40 MHz, respectively. Prior to 

the analysis, polymers were dissolved in water and basified with 0.1 M NaOH until pH 10. The final 

product was freeze-dried and dissolved in D2O.  

Fourier-Transform Infrared spectroscopy was recorded as described in Chapter 2, Experimental Section 

p. 39.  

Size exclusion chromatography (SEC) traces were obtained as described in Chapter 2, Experimental 

Section p. 39. 

Dynamic light scattering (DLS) analyses were carried out on 1 mg mL−1 polymer solutions using the 

instrument and procedure reported in Chapter 2, Experimental Section p. 39.  

Circular dichroism (CD) spectra were obtained using the same instrument and procedure of Chapter 

2, Experimental Section p. 40 reported for M-L-Ala, M-L-Val and M-L-Leu. 

Solubility tests were performed in aqueous media at different pH’s by recording the transmittance at 

450 nm with a Perkin-Elmer Lambda 35 spectrometer using plastic cuvettes with 1 cm path length. 

Solutions were prepared by dissolving 20 mg polymer in 0.1 M NaOH (2.7 mL), adjusting the pH 

with 0.1 M or 0.01 M HCl aqueous solutions, and finally diluting with ultrapure water to 1 mg·mL−1 
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concentration. The solutions were thermostated for 90 min at 30 °C before measurements. Each 

analysis was performed in triplicate. The scattering of a polarized IR beam in ultrapure water at 

different pH’s was used to detect the presence of aggregates, if any. 

Acid-base properties, pKa and β parameter determination were determined using the procedure reported 

in Chapter 2, Experimental Section p. 40 with the following quantities: samples were dissolved in a 

0.1 M NaCl aqueous solution (10 mL) to obtain a 0.05 M repeating unit solution. All solutions were 

adjusted to pH 1.2-1.3 using 1 M HCl (0.7 mL). Due to solubility limits, M-G-L-Trp40 was back titrated 

with 0.1 M HCl starting from pH 12.3-12.4 adjusted with 0.1 M NaOH (0.7 mL). 

Determination of simulated titration curves. Simulated titration curves were determined following the 

De Levie approach 17, already reported in Chapter 2, Experimental Section p.41, to iteratively 

refine pKa and β values achieving the best fitting to the experimental data. For tryptophan-based 

copolymers the equations considered were the same as M-L-Ala, M-L-Val and M-L-Leu: 

• Initial conditions: 

V0 = initial solution volume 

c0 = initial PAACs concentration expressed as molarity of the repeat unit 

cS = initial concentration of ionic strength stabilizer 

ct = titrant concentration (strong base in forward titration or acid in backward titration)  

Vt = volume of the titrant added (strong base in forward titration or acid in backward titration) 

cA or cB = acid concentration (or base in backward titration) used to correct pH 

N = moles of strong acid possibly present as residual from the synthetic process or PAACs 

pretreatments 

 

• Mass balance: 

𝐶𝑃𝐴𝐴𝐶𝑆 = 𝐶𝐿+ + 𝐶𝐿0 + 𝐶𝐿− =  
𝐶0𝑉0

𝑉0+𝑉𝑡
    (Eq. 1) 

• Equilibrium constants (Eq. 2a-c): 

𝐾𝑎1 =
𝐶

𝐿0𝐶
𝐻+

𝐶𝐿+
 (a); 𝐾𝑎2 =

𝐶𝐿−𝐶
𝐻+𝑦2

𝐶𝐿0
  (b); 𝐾𝑤 =  𝐶𝐻+𝐶𝑂𝐻−𝑦2  (c); 

• Concentration fractions (Eq. 3a-c): 
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𝛼2 =
𝐶

𝐿+

𝐶
 =

 𝐶
𝐻+
2

𝐷
  (a);        𝛼1 =  

𝐶
𝐿0

𝐶
=

𝐶
𝐻+𝑦2𝐾𝑎1

𝐷
  (b);    𝛼0 =  

𝐶𝐿−

𝐶
=

𝐾𝑎1𝐾𝑎2

𝐷
  (c); 

with: 

D = CH+
2 +  CH+Ka1 +  Ka1Ka2 (Eq. 4) 

The activity coefficients (Davies equation): 

𝑦 = 10
−0.5[

√𝐼

1+√𝐼
−0.3𝐼]

  (Eq. 5) 

Ionic strength: 

𝐼 =  
1

2
(𝐶𝐻+ + 𝐶𝑂𝐻− + 𝐶𝑁𝑎+ + 𝐶𝐶𝑙− + 𝐶𝐿+ + 𝐶𝐿−)  (Eq. 6) 

• Charge balance:  

𝐻+ + 𝑁𝑎+ + 𝐿+ = 𝐿− + 𝑂𝐻− + 𝐶𝑙− (Eq. 7) 

where (Eq. 8a-e): 

𝐶𝑁𝑎+ =
𝐶𝑇𝑉𝑇+𝐶𝑠𝑉0

𝑉0+ 𝑉𝑇
  (a); 𝐶𝐶𝑙− =

𝐶𝑠𝑉0+𝐶𝐴𝑉𝐴+𝑁

𝑉0+ 𝑉𝑇
  (b); 𝐶𝐿+ =

𝛼2𝐶0𝑉0

𝑉0+ 𝑉𝑇
  (c); 

𝐶𝐿− =
𝛼0𝐶0𝑉0

𝑉0+ 𝑉𝑇
  (d);  𝐶𝑂𝐻− =

𝐾𝑤

𝐶𝐻+𝑦2
  (e); 

Combining all former conditions, the following solving equation, representing the whole forward 

titration curve, was obtained in terms of VT as a function of pH: 

𝑉𝑇 =  
𝑉0[𝐶0(𝛼0−𝛼2)+𝐶𝐴−∆]+𝑁

∆+𝐶𝑇
  (Eq. 9) 

where: 

∆ =  𝐻+ − 𝑂𝐻− =  𝐻+ −
𝐾𝑤

𝐻+𝑦2⁄   (Eq. 10) 
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The whole backward titration is expressed in terms of VT as a function of pH:  

𝑉𝑇 =  
𝑉0[𝐶0(𝛼0−𝛼2)+𝐶𝐴−∆]+𝑁−(Δ+𝐶𝐵)𝑉𝐵

∆−𝐶𝑇
  (Eq. 11) 

Simulated titration curves were obtained from Eq. 9-11 with the same calculation reported in 

Chapter 2, Experimental Section p. 41. The same was applied to determine speciation diagrams. 

Absolute photoluminescence quantum yield, Φ, was measured using a C11347 Quantaurus Hamamatsu 

Photonics K.K spectrometer (Hamamatsu City, Shizuoka, Japan), equipped with a 150 W Xenon 

lamp, an integrating sphere and a multichannel detector. Φ was calculated using Eq. 12:  

Φ =  
𝑃𝑁(𝑒𝑚)

𝑃𝑁(𝑎𝑏𝑠)
=  

∫
𝜆

ℎ𝑐
⌈𝐼𝑒𝑚

𝑠𝑎𝑚𝑝𝑙𝑒(𝜆) −  𝐼𝑒𝑚
𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝜆)⌉𝑑𝜆

∫
𝜆

ℎ𝑐
⌈𝐼𝑒𝑥𝑐

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝜆) −  𝐼𝑒𝑥𝑐
𝑠𝑎𝑚𝑝𝑙𝑒(𝜆)⌉𝑑𝜆

 (Eq. 12) 

where PN(em) is the number of emitted photons, PN(abs) the number of absorbed photons, λ the 

wavelength, h the Planck’s constant, c the speed of light, 𝐼𝑒𝑚
𝑠𝑎𝑚𝑝𝑙𝑒

and 𝐼𝑒𝑚
𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

the photoluminescence 

intensities of the sample solution in ultrapure water and of water, respectively, 𝐼𝑒𝑥𝑐
𝑠𝑎𝑚𝑝𝑙𝑒

 and 𝐼𝑒𝑥𝑐
𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

 

the excitation light intensities of the sample solution in ultrapure water and of water, respectively. 

The error made was estimated to be around 5%. 

Steady state and time-resolved fluorescence data were obtained using a FLS980 spectrofluorimeter 

(Edinburgh Instrument Ltd, Livingston, Scotland, UK). Emission spectra were recorded exciting at 

279 nm, corrected for background intensity and quantum efficiency of the photomultiplier tube. 

Excitation spectra were carried out at the maximum of the emission spectrum and corrected for the 

intensity fluctuation of a 450 W Xenon arc lamp. 

Time-resolved fluorescence measurements were performed through the time-correlated single photon 

counting technique with an Edinburgh Picosecond Pulsed Diode Laser EPLED-300 (Livingston, 

Scotland, UK): emitted wavelength 301 nm, temporal pulse width (FWHM) 857 ps. A Ludox solution 

was used as scatter to determine the instrument response function (IRF). Time-resolved fluorescence 

curves were reconvoluted using the IRF and a multi-exponential impulse response function (Eq. 13): 
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𝐼(𝜆, 𝑡) =  ∑ 𝛼i(𝜆) exp (
−𝑡

𝜏i
)

𝑛

𝑖=1

 (Eq. 13) 

where n is the number of exponentials, αi (λ) is the amplitude at wavelength λ and τi is the lifetime 

of the component i. Quality of the fit was evaluated through the reduced 𝜒2 values. Two different 

sets of 1 cm path-length quartz cells were employed for the photoluminescence analysis: the first 

ones were classic fluorescent cuvettes for non-degassed solutions, the second ones were built 

specifically to perform freeze-pump-thaw cycles to remove dissolved oxygen into the solution. To 

degas the solution as much as possible, three freeze-pump-thaw cycles were executed using a 

turbomolecular pump.  

Steady-state, time-resolved and quantum yields measurements were carried out at room 

temperature on L-tryptophan, M-L-Trp and M-G-L-Trp5, M-G-L-Trp10, M-G-L-Trp20 and M-G-L-Trp40 

at pH 11, 7-8 and 1.5-2, considering the solubility limits. The pH was adjusted using 0.1 M HCl or 

0.1 M NaOH aqueous solutions and measured by a combined Metrohm microelectrode.  

3.2.3 Synthesis of L-tryptophan based homo- and copolymers  

M-L-Trp. Thermostated and deaerated ultrapure water (4 mL) was added to a mixture of L-

tryptophan (3.54 g, 17.33 mmol) and MBA (2.79 g, 18.01 mmol) at 50 °C under magnetic stirring. 

After 5 min, a thermostated and deaerated LiOH monohydrate aqueous solution (0.36 g; 8.60 mmol; 

2 mL) was added to the mixture. After 2 h, a second portion of LiOH solution (0.36 g; 8.60 mmol; 2 

mL) was introduced. The reaction mixture was kept at 50 °C for 6 days under nitrogen atmosphere. 

After this time, the solution was acidified to pH 3.5 with 6 M HCl, inducing separation of crude M-

L-Trp in form of a brown oily liquid. The product was extracted five times with ethanol (20 mL) until 

the formation of a brown powder. The polymer was further dried under vacuum until constant 

weight (yield: 92%). Subsequently, 2 g were solubilized in H2O at pH 9 and ultrafiltered through 

membranes with 100000 and then 5000 as nominal molecular weight cut-off. The solution passed 

through the former and retained by the latter was freeze-dried recovering the product as a yellowish 

powder.  
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Figure 1. 1H NMR spectra of M-L-Trp in D2O at pH 10. Asterisks represent the signals of methylene 

and double bond protons of the terminal acrylamide. 

1H NMR (D2O, 400.132 MHz, ppm): δ 2.01–2.08 (m, 4H, COCH2CH2N) 2.33–2.93 (m, 6H, 

COCH2CH2N and CH2CHCOO−), 3.86 and 4.16–4.27 (m, 2H, NHCH2NH), 3.93–4.00 (m, 1H, 

CH2CHCOO−), 5.68–5.71 and 6.13–6.15 ppm (m, 3H, H2C=CH of terminal acrylamide), 6.90–7.06 (m, 

3H, HF, HG, HH of L-tryptophan), 7.21–7.52 (m, 2H, HI, HL of L-tryptophan) (Figure 1). 13C NMR 

(D2O, 100.623, ppm): δ 16.99, 26.10, 28.69, 33.42, 42.97, 43.73, 46.40, 57.40, 63.85, 64.86, 65.83, 110.79, 

111.76, 118.51, 118.72, 119.03, 121.68, 123.65, 124.04, 127.05, 128.05, 136.14, 174.13, 179.54, 181.62.  

 

Figure 2. FTIR-ATR spectra of M-L-Trp powder. 

Peak assignment for M-L-Trp are (Figure 2): 3252-3257 cm-1 (signal 1, N-H stretching); 3057-3059 cm-

1 (signal 2, C-H stretching); 1629-1635 cm-1 (signal 3, C=O stretching); 1533-1542 cm-1 (signal 4, N-H 
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bending); 1338-1342 cm-1 (signal 5, O-H bending); 1225-1228 cm-1 (signal 6, C-N stretching); 1190-

1193 cm-1 (signal 7, C-O stretching); 1041-1047 cm-1 (signal 8, C-C stretching); 744 cm-1 (signal 9, C-H 

vibrations out of the plane of aromatic rings in L-tryptophan).   

M-D-Trp and M-D,L-Trp were prepared as M-L-Trp by substituting D-Trp and D,L-Trp for L-Trp. 

Yields 94% and 98%. 

M-G-L-Trp5. Thermostated and deaerated ultrapure water (5 mL) was added to a mixture of L-

tryptophan (0.53 g, 2.60 mmol), glycine (3.59 g, 47.80 mmol) and MBA (8.09 g, 52.50 mmol) at 50 °C 

under magnetic stirring. After 5 min, thermostated and deaerated LiOH monohydrate solution (1.07 

g, 25.50 mmol, 5 mL) was added to the mixture. After 2 h, a second portion of LiOH (0.36 g, 8.60 

mmol, 2 mL) was introduced. The reaction mixture was maintained at 50 °C for 6 days under 

nitrogen atmosphere. After this time, the solution was acidified to pH 3.5 with 6 M HCl and 

ultrafiltered as in the case of M-L-Trp. Yield: 90 %. 𝑀w=13000; 𝑀w/𝑀n=1.44.  

 

Figure 3. 1H NMR spectrum of M-G-L-Trp5 recorded in D2O, at pH 10 and 25°C. Asterisks represent 

the signals of methylene and double bond protons of the terminal acrylamide. 

1H NMR (D2O, 400.132 MHz, ppm): δ 2.19–2.22 (m, 4H, COCH2CH2N of L-tryptophan bearing units), 

2.32 (t, 4H, COCH2CH2N of glycine bearing units), 2.61-2.62 (m, 4H, COCH2CH2N of L-tryptophan 

bearing units), 2.73–2.76 (m, 4H, COCH2CH2N of glycine bearing units), 2.93 (s, 2H, CH2CHCOO− 

of L-tryptophan), 3.04 (s, 2H, CHCOO− of glycine), 4.29 (s, 1H, CHCOO− of L-tryptophan), 4.35 (s, 

1H, NHCH2NH of L-tryptophan bearing units), 4.44–4.47 (m, 3H, NHCH2NH of both L-tryptophan 

and glycine bearing units), 4.56 (s, 2H, NHCH2NH of terminal acrylamide), 5.68–5.71 and 6.13–6.15 
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ppm (m, 3H, H2C=CH of terminal acrylamide), 7.04–7.13 (m, 3H, HG, HH, HI of L-tryptophan), 7.36–

7.40 (m, 1H, HL of L-tryptophan), 7.60–7.62 (m, 1H, HM of L-tryptophan) (Figure 3). 13C NMR (D2O, 

100.623, ppm): δ 32.87, 44.34, 49.33, 57.33, 175.32, 178.83. Content of L-tryptophan-bearing units by 

1H NMR = 4.53%. 

 

Figure 4. FTIR-ATR spectra of M-G-L-Trp5 powder. 

Peak assignment for M-G-L-Trp5 are (Figure 4): 3247-3260 cm-1 (signal 1, N-H stretching); 3045-3057 

cm-1 (signal 2, C-H stretching); 1617-1625 cm-1 (signal 3, C=O stretching); 1533-1537 cm-1 (signal 4, N-

H bending); 1382-1387 cm-1 (signal 5, O-H bending); 1328-1343 cm-1 (signal 6, C-H bending); 1224-

1229 (signal 7, C-N stretching); 1185-1190 cm-1 (signal 8, C-O stretching); 1114-1118 cm-1 (signal 9, C-

C stretching); 955-958 and 908-914 cm-1 (signal 10,11 C-H vibrations out of the plane in Gly).   

M-G-L-Trp10 was prepared as M-G-L-Trp5 using a different L-tryptophan/glycine ratio (1.04 g, 5.10 

mmol for L-tryptophan and 3.41 g, 45.40 mmol for glycine). Yield 72%. 𝑀w=11400; 𝑀w/𝑀n=1.30.  
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Figure 5. 1H NMR spectrum of M-G-L-Trp10 recorded in D2O, at pH 10 and 25°C. Asterisks represent 

the signals of methylene and double bond protons of the terminal acrylamide. 

1H NMR (D2O, 400.132 MHz, ppm): δ 2.19–2.22 (m, 4H, COCH2CH2N of L-tryptophan bearing units), 

2.31–2.34 (m, 4H, COCH2CH2N of glycine bearing units), 2.61–2.62 (m, 4H, COCH2CH2N of L-

tryptophan bearing units), 2.73-2.76 (m, 4H, COCH2CH2N of glycine bearing units), 2.93 (s, 3H, 

CH2CHCOO−), 3.04 (s, 2H, CHCOO− of glycine), 4.29 (s, 1H, CHCOO− of L-tryptophan), 4.35 (s, 1H, 

NHCH2NH of L-tryptophan bearing units), 4.44–4.47 (s, 2H, NHCH2NH of both L-tryptophan and 

glycine bearing units), 4.56 (s, 2H, NHCH2NH of terminal acrylamide), 5.68–5.70 and 6.13–6.15 ppm 

(m, 3H, H2C=CH of terminal acrylamide), 7.05–7.13 (m, 3H, HG, HH, HI of L-tryptophan), 7.36-7.38 

(m, 1H, HL of L-tryptophan), 7.54–7.62 (m, 1H, HM of L-tryptophan) (Figure 5). 13C NMR (D2O, 

100.623, ppm): δ 32.85, 44.32, 49.30, 51.94, 57.32, 118.52, 121.68, 123.67, 127.03, 136.14, 168.44, 175.21, 

178.81. Content of L-tryptophan bearing units from 1H NMR = 9.70%. 
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Figure 6. FTIR-ATR spectra of M-G-L-Trp10 powder. 

Peak assignment for M-G-L-Trp10 are (Figure 6): 3247-3260 cm-1 (signal 1, N-H stretching); 3045-3057 

cm-1 (signal 2, C-H stretching); 1617-1625 cm-1 (signal 3, C=O stretching); 1533-1537 cm-1 (signal 4, N-

H bending); 1382-1387 cm-1 (signal 5, O-H bending); 1328-1343 cm-1 (signal 6, C-H bending); 1224-

1229 (signal 7, C-N stretching); 1185-1190 cm-1 (signal 8, C-O stretching); 1114-1118 cm-1 (signal 9, C-

C stretching); 955-958 and 908-914 cm-1 (signal 10,11 C-H vibrations out of the plane in Gly).   

M-G-L-Trp20 was prepared as M-G-L-Trp5 using a different L-tryptophan/glycine ratio (2.08 g, 10.20 

mmol for L-tryptophan and 3.03 g, 40.40 mmol for glycine). Yield 72%. 𝑀w=11200; 𝑀w/𝑀n=1.30.  

 

Figure 7. 1H NMR spectrum of M-G-L-Trp20 recorded in D2O, at pH 10 and 25°C. Asterisks represent 

the signals of methylene and double bond protons of the terminal acrylamide. 
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1H NMR (D2O, 400.132 MHz, ppm): δ 2.19–2.22 (m, 4H, COCH2CH2N of L-tryptophan bearing units), 

2.30–2.34 (m, 4H, COCH2CH2N of glycine bearing units), 2.59–2.62 (m, 4H, COCH2CH2N of L-

tryptophan bearing units), 2.72–2.74 (m, 4H, COCH2CH2N of glycine bearing units), 2.93 (s, 3H, 

CH2CHCOO−), 3.04 (s, 2H, CHCOO− of glycine), 4.29 (s, 1H, CHCOO− of L-tryptophan), 4.35 (s, 1H, 

NHCH2NH of L-tryptophan bearing units), 4.44–4.47 (s, 2H, NHCH2NH of both L-tryptophan and 

glycine bearing units), 4.56 (s, 2H, NHCH2NH of terminal acrylamide), 5.67–5.70 and 6.12–6.15 ppm 

(m, 3H, H2C=CH of terminal acrylamide), 7.05–7.13 (m, 3H, HG, HH, HI of L-tryptophan), 7.36-7.38 

(m, 1H, HL of L-tryptophan), 7.54–7.60 (m, 1H, HM of L-tryptophan) (Figure 7). 13C NMR (D2O, 

100.623, ppm): δ 32.85, 44.32, 49.30, 51.94, 57.32, 118.52, 121.68, 123.67, 127.03, 136.14, 168.44, 175.21, 

178.81. Content of L-tryptophan bearing units from 1H NMR from 1H NMR = 17.40%. 

 

Figure 8. FTIR-ATR spectra of M-G-L-Trp20 powder. 

Peak assignment for M-G-L-Trp10 are (Figure 8): 3247-3260 cm-1 (signal 1, N-H stretching); 3045-3057 

cm-1 (signal 2, C-H stretching); 1617-1625 cm-1 (signal 3, C=O stretching); 1533-1537 cm-1 (signal 4, N-

H bending); 1382-1387 cm-1 (signal 5, O-H bending); 1328-1343 cm-1 (signal 6, C-H bending); 1224-

1229 (signal 7, C-N stretching); 1185-1190 cm-1 (signal 8, C-O stretching); 1114-1118 cm-1 (signal 9, C-

C stretching); 955-958 and 908-914 cm-1 (signal 10,11 C-H vibrations out of the plane in Gly); 742-744 

cm-1 (signal 12, C-H vibrations out of the plane of aromatic rings in L-tryptohan).    

M-G-L-Trp40 was prepared as M-L-Trp by substituting an L-tryptophan/glycine mixture (L-

tryptophan 34.17 g, 20.42 mmol; glycine 2.27 g, 30.24 mmol) for L-tryptophan. The product was 

extracted five times with EtOH (20 mL) until the formation of a brown powder, then dried under 

vacuum until constant weight (yield: 41%). 𝑀w=20300; 𝑀w/𝑀n=2.45. 
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Figure 9. 1H NMR spectrum of M-G-L-Trp40 recorded in D2O, at pH 10 and 25°C. Asterisks represent 

the signals of methylene and double bond protons of the terminal acrylamide. 

1H NMR (D2O, 400.132 MHz, ppm): δ 2.11 (s, 4H, COCH2CH2N of L-tryptophan bearing units), 2.22 

(s, 4H, COCH2CH2N of glycine bearing units), 2.51 (m, 4H, COCH2CH2N of L-tryptophan bearing 

units), 2.65 (m, 4H, COCH2CH2N of glycine bearing units), 2.86 (s, 2H, CH2CHCOO−), 2.96 (s, 2H, 

CHCOO− of glycine), 4.06–4.23 (m, 3H, CHCOO- and NHCH2NH of L-tryptophan bearing units), 

4.39–4.47 (m, 3H, NHCH2NH of both L-tryptophan and glycine bearing units), 5.55–5.63 and 5.99–

6.07 ppm (m, 3H, H2C=CH of terminal acrylamide), 6.98–7.02 (m, 3H, HG, HH, HI of L-tryptophan), 

7.30 (m, 1H, HL of L-tryptophan), 7.45–7.55 (m, 1H, HM of L-tryptophan) (Figure 9). 13C NMR (D2O, 

100.623, ppm): δ 32.67, 33.76, 35.08, 44.04, 46.52, 49.19, 57.36, 63.91, 65.78, 111.64, 118.59, 119.02, 

121.68, 122.40, 123.99, 127.04, 136.13, 175.21, 178.74, 179.44, 181.65. Content of L-tryptophan bearing 

units from 1H NMR = 40.5%. 

 

Figure 10. FTIR-ATR spectra of M-G-L-Trp20 powder. 
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Peak assignment for M-G-L-Trp10 are (Figure 10): 3247-3260 cm-1 (signal 1, N-H stretching); 3045-

3057 cm-1 (signal 2, C-H stretching); 1617-1625 cm-1 (signal 3, C=O stretching); 1533-1537 cm-1 (signal 

4, N-H bending); 1382-1387 cm-1 (signal 5, O-H bending); 1328-1343 cm-1 (signal 6, C-H bending); 

1224-1229 (signal 7, C-N stretching); 1185-1190 cm-1 (signal 8, C-O stretching); 1114-1118 cm-1 (signal 

9, C-C stretching); 955-958 and 908-914 cm-1 (signal 10,11 C-H vibrations out of the plane in Gly).    

3.3 RESULTS AND DISCUSSION 

3.3.1 Synthesis of M-L-Trp and M-G-L-Copolymers 

D-, L- and D,L-tryptophan polyamidoamino acids were synthesized by polyaddition of L-, D-, and 

D,L-tryptophan to N,N’-methylenebisacrylamide (MBA) according to Scheme 1. The reaction was 

carried out in aqueous solution, at 50 °C and pH > 9 for 6 days, following the same procedure 

reported for all PAACs (Chapter 2, Experimental Section p. 45). Glycine copolymers were obtained 

in the same way but starting from different glycine/tryptophan mixtures. In the recipe of these 

copolymers, tryptophan was partly added in place of glycine according to the composition reported 

in Table 1. 

 

Scheme 1. Synthesis of L-tryptophan based homo- and copolymers. 

This synthesis was similar to that previously described for MBA-arginine (ARGO7) [18], MBA-L-

alanine (M-L-Ala), MBA-L-valine (M-L-Val) and MBA-L-leucine (M-L-Leu) [19], albeit with some 

differences. Generally, in the polyadditions of acid- or neutral -amino acids with bisacrylamides, 

including alanine, valine, leucine and arginine mentioned above, the base is added at the beginning 

of the reaction, to de-protonate the amine groups. Its amount is equivalent to the carboxyl group of 
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the starting monomer. However, in the case of tryptophan, additional expedients need to be 

adopted, due to the tryptophan’s high sensitivity to O2-mediated oxidation in basic environment 

[20,21]. As such, the reaction mixture was flushed with ultrapure nitrogen and the base, LiOH2 

aqueous solution, was slowly added to the mixture. This resulted in the presence of limited amounts 

of tryptophan salt in an excess of free tryptophan. Only the molar equivalent of salified tryptophan, 

formed at each base addition, reacted. Noticeably, no more solution blackening due to oxidation was 

observed after the tryptophan amine groups reacted with the MBA double bonds. Probably, when 

the base was added in portion to the tryptophan/MBA reacting mixture, the resultant tert-amine 

groups, due to the carbonyl groups in -position, were not basic enough to de-protonate the indole 

ring. Hence, the amino acid prim-amine groups were stepwise activated by deprotonation at a rate 

roughly matching the rate of the addition reaction.  

L-Tryptophan/glycine copolymers were prepared in the same way, starting from a mixture of L-

tryptophan and glycine, with the tryptophan molar content ranging from 5% to 40%. The amount of 

tryptophan is indicated by the subscripts of the copolymer’s acronyms, namely M-G-L-Trp5, M-G-L-

Trp10, M-G-L-Trp20 and M-G-L-Trp40. The structure of homo- and copolymers was confirmed by 1H 

and 13C NMR, and FTIR-ATR analyses (see Experimental Section). In the 1H NMR spectra, the 

presence of the peaks of terminal acrylamide groups were visible. Moreover, peaks assigned to the 

tryptophan M hydrogen were split, probably due to conformational effects. The molar ratios in the 

reaction recipes were comparable to those calculated from 1H NMR in the resultant copolymers 

(Table 1). 

Table 1. Comparison of copolymers tryptophan content from reaction recipes and 1H NMR. 

Sample Tryptophan content in the feeda Tryptophan content from 1H NMRa 

M-G-L-Trp5 5  4.53 

M-G-L-Trp10 10 9.70 

M-G-L-Trp20 20 17.4 

M-G-L-Trp40 40 40.5 
a Expressed as mole %. 

Normally, in PAAs and PAACs SEC analyses, the mobile phase is a TRIS buffer solution at pH 8, 

with 0.2 M sodium chloride. However, the poor solubility of M-D-Trp, M-L-Trp and M-D,L-Trp in 

this solvent, discouraged the use of this technique for determining their molecular weights. Then, 

the number-average molecular weights (Mn) were estimated in the range 3500–5000 by end-group 

counting in their 1H NMR spectra, choosing as end-groups the easily determined terminal double 
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bonds. Two cases were considered: 1) polymeric chains bear acrylamide double bonds at both ends; 

2) polymers bear statistically only one terminal acrylamide double bond per macromolecule. 

Whenever possible, as in the case of copolymers, the results were compared with those of SEC. In 

both cases, the trend was decreasing Mn by increasing tryptophan content (Table 2). To note, the Mn 

values obtained by SEC were in better agreement with those calculated from 1H NMR if two 

terminals acrylamide units per macromolecule were assumed.  

Table 2. NMR and SEC Mn evaluation of homo- and copolymers: comparison between calculated 

and experimental Mn values.  

Sample Mn from 1H NMRa Mn from 1H NMRb Mn from SEC 

M-G-L-Trp5 12000 6000 9000 

M-G-L-Trp10 8800 4400 8800 

M-G-L-Trp20 7600 3800 8600 

M-G-L-Trp40 5700 2850 8300 

M-L-Trp 5400 2700 -- c 
a calculated assuming terminal acrylamide units at both chain ends, b calculated assuming 

terminal acrylamide units at one chain end. c Analyses were not carried out due to solubility 

limits. 

Weight- (Mw) and number-average (Mn) molecular weights of the tryptophan-based copolymers 

were determined by SEC employing a right and small angle light scattering detectors with a 670 nm 

laser (Figure 11). Since tryptophan excitation maximum is 280 nm [22], any interference from 

tryptophan fluorescence was excluded.  

 

Figure 11. Size exclusion chromatography (refractive index signal) of L-tryptophan based 

copolymers in 0.1 M TRIS buffer (pH 8.00 ± 0.05) solution with 0.2 M sodium chloride. 
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3.3.2 Acid-Base Properties 

Acid-base properties of tryptophan-derived PAACs were determined by potentiometric titration 

using the Henderson-Hasselbalch equation and procedure described in Experimental Section. The 

titration curves (Figure 12) presented only two inflection points and two buffer regions. Hence, in 

all these copolymers, units bearing glycine and L-tryptophan presented similar acid-base properties. 

This result may be confirmed observing that the parent amino acids have almost the same pKa values, 

respectively 2.34 (carboxyl group) and 9.6 (amine group) for glycine and 2.83 and 9.30 for 

tryptophan. 

Table 3. pKa and β values of M-G-L-Trp copolymers in the α range 0.2–0.8 (β1) and 0.1−0.9 (β2). 

Sample pKa1a,b pKa2b,c β1a,b β2b,c IPd 

M-G-L-Trp5 2.05 ± 0.15 7.78 ± 0.12 0.61 ± 0.08 1.39 ± 0.03 4.9 

M-G-L-Trp10 2.06 ± 0.18 7.75 ± 0.18 0.61 ± 0.06 1.36 ± 0.06 4.9 

M-G-L-Trp20 2.04 ± 0.19 7.74 ± 0.13 0.57 ± 0.05 1.60 ± 0.11 4.9 

M-G-L-Trp40 - 7.77 ± 0.02e - 1.51 ± 0.07e - 
a Carboxyl group. b Average values obtained from four forward titration experiments. c Amine 

group. d Isoelectric point. e Calculated from the simulated titration curves by the De Levie 

approach. 

Figure 12. Titrations of M-G-L-Trp5, M-G-L-Trp10, M-G-L-Trp20 and M-G-L-Trp40: experimental, simulated 

and β corrected curves. Due to solubility limits, for M-G-L-Trp40 only the backward titration is reported. 
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The Katchalsky and Spitnik parameter β were calculated considering α in the range, respectively, 

0.2–0.8 for β1 and 0.1−0.9 for β2, to exclude values that clearly deviates from the trend. The average 

values are in line with the ones calculated for the other polymers of the PAAC family (Table 3).  

Glycine and L-tryptophan repeat units in the M-G-L-Trp copolymers can exist in three ionization 

states (Figure 13). The pH-dependent speciation curves (Figure 13) were determined from the pKa 

and β values reported in Table 3, following methods described in Experimental Section. 

Figure 13. Distribution of charged species referred to the 1st titration of M-G-L-Trp5, M-G-L-Trp10, M-G-L-

Trp20 and M-G-L-Trp40: ionization states (above); simulated and β corrected speciation curves (below). The 

speciation curve of M-G-L-Trp40 is calculated assuming pKa1 = 2.00. 

3.3.3 Solubility Properties 

UV–Vis measurements (Figure 14A) and scattering of polarized IR beam (Figure 14B) tests were 

carried out on 1 mg·mL−1 polymer solutions at different pHs. Light transmittance measurements 
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were recorded at 480 nm, outside PAACs’ absorption wavelength range. Both analyses indicated 

composition and pH-dependent solubility of all homo- and copolymers. Copolymers with lowest 

tryptophan content, namely M-G-L-Trp5, M-G-L-Trp10 and M-G-L-Trp20, resulted completely soluble 

in the whole 2–12 pH range. Differently, M-G-L-Trp40 showed a solubility gap centered at pH 4.5, 

close to the polymer IP, whereas M-L-Trp proved soluble only at pH > 7. The polarized IR beam 

scattering tests were in line with the UV-vis measurements.  

 

Figure 14. Solubility of M-G-L-Trp copolymers in water. A) pH-dependence of transmittance at 480 

nm; B) scattering of a polarized IR beam. Measurements were performed on 1 mg mL−1 solutions at 

25 °C. 

 

 



Chapter 3 
 

113 
 

3.3.4 Dynamic Light Scattering (DLS) Measurements  

To evaluate the pH-dependence of Rh of tryptophan-based PAACs, DLS measurements were carried 

out in 0.1 M NaCl solution at 1 mg mL−1. Data were collected within the pH range 2-11 for M-G-L-

Trp5, M-G-L-Trp10 and M-G-L-Trp20, and within the pH range 7–11 for M-G-L-Trp40, M-L-Trp, M-D,L-

Trp and M-D-Trp. In all cases, monomodal volumetric distributions were observed. Similarly to the 

other PAACs [19], Rh values did not significantly change across their solubility pH range (Figure 

15).  

 

Figure 15. pH-dependence of the hydrodynamic radius of M-G-L-Trp copolymers. Data were 

obtained in 0.1 M NaCl at 1 mg·mL−1 and 25 °C. 

The stability over time was assessed for all M-G-L-Trp copolymers by recording DLS, at pH 2 and 8, 

on the same solution kept at room temperature for one month (Figure 16). Measurements did not 

show any significant variation of Rh. 
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Figure 16. Hydrodynamic radius of M-G-L-Trp copolymers at 0 and 1 month. Data were recorded in 

0.1 M NaCl at 1 mg·mL−1 and 25 °C. 

The Rh dependence on concentration was assessed for both homo- and copolymers. For M-G-L-Trp 

copolymers, by decreasing concentration Rh increased (Figure 17). This trend suggested that a 

polyelectrolyte effect occurred, that is, when in dilute solutions charges resulted less shielded 

causing, as such, coil expansion. In contrast, homopolymers’ Rh was little affected by changing 

concentration in the 1–30 mg mL−1 range. Variations may be overshadowed by a more rigid 

conformation probably induced by the superior bundling ability of the bulky, hydrophobic indole 

substituents. 

 

Figure 17. Hydrodynamic radius of M-G-L-Trp copolymers in the 1–30 mg mL−1 range. Data were 

recorded in 0.1 M NaCl at pH 8 and 25 °C. 

3.3.5 Circular Dichroism Analysis 

The CD spectra of M-L-Trp and M-G-L-Trp in 0.1 M NaCl at pH 2, 7–8 and 11 are shown in Figure 

18, where curves were normalized based on the molar concentration of the tryptophan units. These 

spectra proved that all polymers self-structure into stable conformations, whose CD pattern were 

highly affected by pH and tryptophan content. The dependence over pH may be considered a 
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general feature of PAACs’ CD spectra, independent by the nature of the amino acid residue, as 

already shown by MBA-arginine (ARGO7) [18], bearing cationic residues, MBA-L-alanine (M-L-Ala), 

MBA-L-valine (M-L-Val) and MBA-L-leucine (M-L-Leu), bearing alkyl residues [19]. 

Among the CD spectra of homo- and copolymers, M-G-L-Trp5 resulted the most intense and most 

affected by pH of all. At pH 2.0, the negative band centered at 222 nm was mainly associated to the 

weak n → π* transition of the CONH groups [22]. Hence, the CONH absorption most probably 

masked the high-energy π → π* transition of indole [23,24], named Bb, reported in literature as a 

positive band at 220 nm. The high intensity of M-G-L-Trp5 CD spectrum was associated to a strong 

dipole moment, possibly caused by the specific conformations assumed by the large excess of 

glycine-bearing repeat units. When pH is increased from 2 to 7, the CD spectra reported a 2 nm shift, 

possibly ascribed to the modification of the macromolecule average ionization degree. As expected 

from M-G-L-Trp5 speciation curves, at pH 7, 22% of the main chain tert-amine groups were 

deprotonated and the average net charge per repeat unit was −0.14. The same hold true in basic 

conditions. At pH 11.0, all tert-amine groups were deprotonated, and the net charge per repeat unit 

was −1. In the CD spectrum, this resulted in changes of both intensities and wavelength at which 

maxima were found. In particular, the negative peak centered at 226 nm decreased in intensity, 

whereas a the positive peak increased. Apparently, as for the other PAACs studied so far, the 

protonation degree of the tert-amine in the main chain was considered the major responsible of the 

CD spectra modification and, as such, was recognized fundamental for structuring. 

The remaining polymers, M-G-L-Trp10, M-G-L-Trp20 and M-G-L-Trp40 proved to be less pH-

responsive. This difference might be associated to the increasing tryptophan content, whose dipole 

moment and Bb transition canceled out those of glycine repeating units, causing as such lower 

intensities. Apart from the trend observed with L-tryptophan content, M-G-L-Trp10, M-G-L-Trp20 and 

M-G-L-Trp40 showed the same variation with pH of the wavelength at which the molar ellipticity 

maxima occurred. Finally, M-G-L-Trp20 and M-G-L-Trp40 spectra, at pH 8 and 11, corresponding, 

respectively, to 67% and 100% tert-amine deprotonation, were comparable to those of M-L-Trp. They 

both presented a positive peak with equal or higher intensity than the negative one and seemed 

rather unaffected by pH. Overall, an increase in L-tryptophan content, from M-G-L-Trp5 to M-L-Trp, 

caused negative peaks, at the same pH, to shift of 10 nm toward higher wavelengths, with reduced 

intensities as well due to the balancing of the dipole moments. In contrast, the UV–Vis absorption 

spectra remained unmodified (Figure 19). The CD dependence over the amount of tryptophan 
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suggested chromophores might establish intramolecular interactions between each other. On the 

other hand, the positive peaks showed only intensity differences. In fact, as the content of tryptophan 

became higher, the major contribution was associated with the consequently predominant indole Bb 

transition. The CD spectral pattern of M-L-Trp, with the highest tryptophan content, was similar to 

that of L-tryptophan, whose aromatic side chain generated only one strong positive transition at pH 

7.0 [25]. 

 

Figure 18. pH-Dependence of M-G-L-Trp CD spectra. Data were obtained in 0.1 M NaCl solution at 

25 °C. The overall concentration of the repeating units was 1.81 ± 0.25 mM. The curves were 

normalized accounting for the molar concentration of tryptophan units. 
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Figure 19. Circular dichroism and UV-vis absorption spectra of L-tryptophan derived homo- and copolymers, 

at pH 11.  

3.3.6 Photoluminescence Analysis 

Generally, the fluorescent properties of L-tryptophan are exploited to probe conformational 

dynamics and the microenvironment of proteins and peptides [26]. These properties originate from 

the two low-energy indole excited states, namely 1La and 1Lb [27–31]. The dipole moment of 1Lb is 

small and very close to the value of the ground state (1.86 D), whereas the dipole moment of 1La is 

large (5.86 D), imparting L-tryptophan fluorescence high sensitivity to changes in the micro-

environment [32]. In water, L-tryptophan exists in three ionization states. All of them are fluorescent 
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[33,34], and their emission spectra are pH- [34] and solvent [35] sensitive. In the present work, 

preliminary photoluminescence studies were carried out to assess the pH-dependence of L-

tryptophan emission spectra and quantum yields. Collected data resulted comparable to those 

reported in literature, both showing that L-tryptophan emission spectra shifted to higher wavelength 

with increasing pH (Figure 20 and Table 4), due to changes in the local electrostatic environment of 

the indole side group [36].  

 

Figure 20. pH-dependence of the emission spectra of M-L-Trp and M-G-L-Trp10 compared with those 

of L-tryptophan at λex = 279 nm. For the sake of clarity, some curves have been omitted. 

Table 4. L-Tryptophan, homo- and copolymers emission maximum recorded by steady-state 

fluorescence measurements of non-degassed solutions in distilled water versus pH at λex = 279 

nm.  

pH 
L-Trp 

λem (nm)  

M-G-L-Trp5 

λem (nm)  

M-G-L-Trp10 

λem (nm)  

M-G-L-Trp20 

λem (nm)  

M-G-L-Trp40 

λem (nm)  

M-L-Trp 

λem (nm) 

11  356  356  356  355  356  356 

7  348 347 348 348 351a 350a 

2  344  345  345  345  343a   
a Analyses carried out at pH 1.5-8, instead of 2 and 7, due to solubility limits. 
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Quantum yields (QY) measurements (Table 5) resulted dependent on pH. In particular, the highest 

value was reached at pH 11, for L-tryptophan anionic form (22.1%), followed by the zwitterionic 

form (11.7%) at pH 7, and by the cationic form (4.2%) at pH 2. Differences were ascribed to various 

intramolecular quenching processes affecting the indole excited states, represented by the 

positively-charged ammonium group and the carboxyl group. In agreement with literature [37], 

time-resolved fluorescence measurements showed biexponential decays, from which two lifetimes 

were determined (Table 6). The trend with pH of those lifetimes was the same as for quantum yields. 

Lifetimes are normally interpreted by the rotamer model [37–39]. This model implies that, as the 

interconversion between rotamers is slower (ms) than the fluorescence time scale (ns), the 

fluorescence decay is multiexponential with relative amplitudes proportional to the rotamer 

populations. The different lifetimes of the L-tryptophan rotamers arise from the different distances 

of the quenching functional groups from the indole moiety. For example, at pH 7 the calculated 

lifetimes were 0.2 and 2.79 ns. The former was attributed to the rotamer whose ammonium group 

resulted closer to the indole ring, whereas the latter was ascribed to rotamers whose carboxylate 

groups, a less efficient quencher, were closer to the indole ring [38]. Considering L-tryptophan 

ionization degree, similar considerations were made to explain lifetimes recorded at pH 2 and 11, 

and the decrease, by decreasing pH, of their values (Table 6). In air, also O2-collisional quenching 

processes may occur [40,41]. To study the efficiency of O2 as a L-tryptophan quencher, QYs of 

degassed and non-degassed solutions at pH 11 were recorded (Table 5). According to literature 

[40,41], higher QY was recorded for degassed solutions. 

Table 5. Quantum yields of L-tryptophan, M-G-L-Trp and M-L-Trp copolymers at different pH’s. 

All values should be considered with a ± 5% S.D. 

pH L-tryptophan M-G-L-Trp5 M-G-L-Trp10 M-G-L-Trp20 M-G-L-Trp40 M-L-Trp 

11 
23.0 

28.4a 

14.3 

15.2a 

9.5 

11.0a 

7.6 

7.8a 

7.2 

7.5a 

6.3 

6.1a 

7 11.7 8.5 6.4 5.7 4.9b 4.0b 

2 4.9 5.6 4.7 4.9 2.0b - 
a Analyses carried out after three freeze-pump-thaw cycles, in O2 free environment. b Analyses 

carried out at pH 1.5–8, instead of 2 and 7, due to solubility limits. 

In the present work, the fluorescence properties of M-L-Trp and M-G-L-Trp copolymers were studied 

at 2 × 10−4 M concentration, referred to the repeat units, in non-degassed ultrapure water at different 

pH’s. The chosen pH values were different for different tryptophan contents in the polymers, since 

M-L-Trp and M-G-L-Trp40 showed solubility only at pH > 8. Excitation spectra were carried out at 
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the polymer emission maxima, whose values are reported in Table 4. The UV–Vis and excitation 

spectra of all tryptophan-based PAACs were superimposable to that of L-tryptophan, irrespective of 

tryptophan content (Figure 21a) and pH (Figure 21b).  

  

Figure 21. UV-Vis absorption spectra of: a) L-tryptophan-based homo- and copolymers spectra recorded at 

pH 11; b) M-G-L-Trp5 recorded at different pHs. L-Tryptophan is reported for comparison purposes as well. 

The emission spectra (Figure 20) were recorded at 279 nm, resulted unstructured and, at the same 

pH, almost superimposable to that of L-tryptophan. This provided solid evidence that the 

photoluminescence properties of all tryptophan derived polymers were governed solely by 

tryptophan. As in case of the amino-acid, in M-L-Trp and M-G-L-Trp copolymers an increase in pH 

induced a slight increase of the emission wavelength maximum (λem) (Table 4), associated with the 

different ionization degree of the microenvironment surrounding the indole ring. 

Absolute photoluminescence quantum yield measurements (Table 5) showed that QY values 

decreased with decreasing pH. This dependence was attributed to intramolecular quenching 

processes involving the excited state of indole. As hypothesized for peptides, in tryptophan-based 

polymers three possible quenchers of indole fluorescence were identified: main chain amide groups, 

protonated amines and carboxyl group [42–45]. At higher pH’s, higher QYs were observed, 

considering the electron transfer from the indole to the carboxylate quenching groups was less 

efficient than, at lower pH’s, the transfer to both COOH and ammonium groups [37,41]. To notice, 

at all pH values, by increasing L-tryptophan content, a significant decrease in QY was recorded, 

reaching the lowest value in the case of M-L-Trp. In addition, these values resulted significantly 

lower than those of L-tryptophan, even in the case of M-G-L-Trp5, the copolymer with the lowest 

tryptophan content. Probably, at higher tryptophan contents, the proximity among L-tryptophan 
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moieties maximized the quenching due to tryptophan-to-tryptophan homotransfer (resonance 

energy transfer) [46–48]. 

To assess the efficiency of O2 as a quencher, the absolute QYs of degassed and non-degassed M-L-

Trp and M-G-L-Trp solutions were compared at pH 11 (Table 5). Unexpectedly, in contrast to what 

observed with L-tryptophan, no significant differences were detected. This might be ascribed to the 

low accessibility of O2 to L-tryptophan bearing units for conformational reasons [49].  

To evaluate intermolecular tryptophan quenching by approaching chains, solutions at different 

concentration were tested. Non-degassed solutions of M-L-Trp and M-G-L-Trp10 were studied at pH 

11 in the 1 × 10−3–1 × 10−5 M concentration range of the repeat units (Figure 22). As expected, the two 

curves exhibited different absolute QY values but, more importantly, their trends were similar. In 

both cases, the QY values decreased with increasing concentration, suggesting quenching 

mechanisms related to intermolecular interactions. 

 

Figure 22. Quantum yields of M-L-Trp and M-G-L-Trp10 recorded at pH 11 and increasing 

concentration of the polymer repeat units (r.u.). 

Time-resolved fluorescence measurements were performed on M-L-Trp and M-G-L-Trp copolymers 

as a function of pH, at 2 × 10−4 M concentration referred to the repeat units and λex = 301 nm (Figure 

23). As previously reported for L-tryptophan, two lifetimes—a short (0.8–1.2 ns) and a long one 

(3.62–6.13 ns)—were calculated. Both lifetimes decreased with decreasing pH and increasing 

tryptophan content of the polymer samples (Table 6). 

 



Chapter 3 
 

122 
 

Table 6. L-tryptophan, homo- and copolymers time-resolved fluorescence measurements of non-

degassed solutions in distilled water versus pH. In brackets % of L-tryptophan populations that decay 

at the calculated τ time. λex = 301 nm. 

pH 
L-Trp 

τ (ns); % 

M-G-L-Trp5 

τ (ns); % 

M-G-L-Trp10 

τ (ns); % 

M-G-L-Trp20 

τ (ns); % 

M-G-L-Trp40 

τ (ns); % 

M-L-Trp 

τ (ns); % 

 

11 

 

τ1 = 0.30       

(0.59) 

τ2 = 6.89     

(99.41) 

τ1 = 1.07  

(14.63) 

τ2 = 6.13  

(85.37) 

τ1 = 1.07  

(32.16) 

τ2 = 5.54  

(67.84) 

τ1 = 1.21  

(37.56) 

τ2 = 5.66  

(62.44) 

τ1 = 1.01   

(37.74) 

τ2 = 4.63   

(62.26) 

τ1 = 0.87       

(34.77) 

τ2 = 3.62    

(65.23) 

 

7 

 

τ1 = 0.20       

(9.66) 

τ2 = 2.79     

(90.34) 

τ1 = 0.79  

(30.11) 

τ2 = 3.41  

(69.89) 

τ1 = 0.88  

(32.28) 

τ2 = 3.40  

(67.72) 

τ1 = 0.80  

(32.74) 

τ2 = 3.14  

(67.26) 

τ1 = 0.94a   

(41.96) 

τ2 = 3.14a   

(58.04) 

τ1 = 0.81a        

(42.26) 

τ2 = 3.49a      

(57.74) 

 

2 

 

τ1 = 0.05      

(27.50) 

τ2 = 1.34      

(72.50) 

τ1 = 0.41  

(22.88) 

τ2 = 2.35  

(77.12) 

τ1 = 0.50  

(22.70) 

τ2 = 2.30  

(77.30) 

τ1 = 0.56  

(21.00) 

τ2 = 2.25  

(79.00) 

τ1 = 0.27a   

(30.10) 

τ2 = 1.11a   

(69.90) 

 

a Analyses carried out at pH 1.5-8, instead of 2 and 7, due to solubility limits. 
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Figure 23. Emission decay of M-G-L-Trp5 vs pH at λex 301 nm: data (black line), IRF (blue line) and convolution 

fit (red line). Weighted residuals are shown under the decay curves. 

3.4 CONCLUSIONS 

New polymers belonging to the PAACs family were synthesized by Michael-type polyaddition of 

MBA with L-tryptophan, its isomer, and different molar ratio of L-tryptophan/glycine mixtures. 

Differently from the other PAACs, tryptophan-based homo- and copolymer were synthesized under 

nitrogen flux and by portion wise addition of the base to avoid indole oxidation. Firstly, acid-base 

properties were evaluated, to assess their polyelectrolyte behavior. Then size, self-structuring ability 

and fluorescent properties were studied. All of them showed composition- and pH-dependent 

solubility, as ascertained from UV–Vis absorption and scattering of polarized IR beam tests. 

Hydrodynamic radii were measured by DLS in 0.1 M NaCl. Results indicated that Rh were stable for 

at least 1 month, and unaffected by pH in the range 1–11 for M-G-L-Trp5, M-G-L-Trp10 and M-G-L-
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Trp20 but only in pH range 7–11 for M-G-L-Trp40 and M-L-Trp homopolymers. Instead, they were, to 

some extent, sensitive to concentration in the range 1–30 mg·mL−1. Similarly to the other PAACs, all 

MBA-tryptophan aqueous solution gave rise to pH dependent CD spectra, revealing self-structuring 

dictated by the polymer main chain and its average ionization degree. Photoluminescence analyses, 

quantum yields, steady state and time-resolved fluorescence measurements, resulted governed 

solely by tryptophan photo physics. All polymers exhibited pH-dependent quantum yields, 

lifetimes and emission maximum. Interestingly, fluorescence studies conducted on oxygen-free 

solution gave comparable results, indicating compact conformations where L-tryptophan moieties 

were not accessible to the quencher. Also, intermolecular quenching by approaching chains was 

studied and observed in M-L-Trp and M-G-L-Trp10.  

It can be reasonably concluded that tryptophan-containing PAACs, combining chirality, 

multifunctionality, pH-dependent water solubility, self-structuring in water, chiro-optical and 

fluorescence properties, represent singular examples of synthetic bioinspired chiral polymers and 

can open an interesting field of investigation because of their selective interactions with chiral 

structures, including biological structures. 
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4 
Chiral recognition of D- and L-Arginine derived 

polyamidoamino acids with pH dependent self-assembled 

sodium deoxycholate 
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4.1 INTRODUCTION 

Bile salts are a complex mixture of several cholic acid derivatives, composed by a rigid, slightly bent 

steroid structure and a short aliphatic side chain. Physiologically, their main function lies in the 

formation of mixed micelles able to solubilize lipids and fat-based compounds [1]. As well, cholic 

acids and cholate-derived compounds are exploited in the absorption of low-solubility drugs [2,3] 

and membrane chemistry [4]. Bile salts are ionic facial amphipiles, i.e. when hydrophilic and 

hydrophobic groups are located on two opposite faces. The steroid backbone is composed of a 

convex methyl rich hydrophobic face and a concave hydroxyl rich hydrophilic side. Upon increasing 

concentration in aqueous solutions, bile salts are able to self-assemble into different chiral micelles 

[5-8], whose chirality may arise from both the stereogenic centers present in their structures and 

from the twisted conformation. To describe micelles formation, the most known and accepted 

model, is a two-step mechanism. Firstly, hydrophobic forces drive the back-to-back formation of 

primary aggregates, secondly, by further increasing concentration, aggregates are held together by 

hydrogen bonding and generate elongated secondary micelles [9]. Taking into account both steps, 

cholate-derived micelles appear polydisperse [10]. Small angle neutron scattering (SANS) reported 

rod-like structures with various aggregation numbers, highly affected by concentration [11,12], ionic 

strength and pH [13]. Upon decreasing pH, these rods became more and more elongated until a 

thixotropic gel is formed [14]. The supramolecular complex resulted by the micelles entanglement 

[15] assumed a helical structure [14]. 

Among bile salts, sodium deoxycholate (NaDC) is one of the most familiar gelators. Whereas NaDC 

pH dependent behaviour is widely studied, albeit poorly understood, very little is known on its 

ability to interact with chiral molecules or polymers and to show enantiomeric selection. NaDC is 

known to separate chiral drugs or organic compounds in micellar electrokinetic capillary 

chromatography (MECC) [16-18], with advantages like reduction of retention factor values and 

possible extension of the elution range [19]. Foreseeing its behaviour, i.e. the driving forces behind 

the chiral recognition, is of paramount importance in predicting the results of specific chiral 

interactions in more complex systems, and hence to be exploited in techniques like MECC or as 

smart delivery vehicles. Enantio-preference release from NaDC/Tris(hydroxymethyl)aminomethane 

hydrogel was recorded for D-tryptophan and (R)-ibuprofen, starting from the racemic mixtures [20]. 

Additionally, isothermal titration calorimetry (ITC) studies showed NaDC is capable of bind more 

tightly the (S)-atropisomer of 1,1’-binaphthyl-2,2’-diylhydrogenphosphate (BNDHP), resulting in a 
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chiral guest-host recognition [21]. Nonetheless, regarding synthetic biobased chiral polymers 

literature remains scarce [22-24].  

Due to the ability of D- and L-ARGO7, the first polymers of the PAACs family, to self-assemble in 

solution forming mirror-image chiral structures, chirality-dependent interaction with chiral surfaces 

or biomolecules may be shown. The aim of this chapter is to report how the enantiomeric forms of 

the chiral arginine-based polymers (D- and L-ARGO7) might interact with the different pH 

dependent self-assembled structures of NaDC micelles.  

4.2 EXPERIMENTAL SECTION 

4.2.1 Materials 

Solvents and reagents, unless otherwise indicated, were analytical-grade commercial products and 

used as received. L-arginine (≥ 98.5%), D-arginine (≥ 99%,) and D,L-.arginine (≥ 98.5%), sodium 

deoxycholate (≥ 97%),  deuterium oxide (D2O, 99.9%), deuterium chloride (DCl, 99%) and sodium 

deuteroxide (NaOD, 40 wt.-% in D2O) were purchased from Sigma-Aldrich (Milano, Italy), while 

N,N’-methylenebisacrylamide (MBA, 96%) from Acros Organics (Milano, Italy). 0.3 M HCl and 0.3 

M NaOH volumetric standard solutions were purchased from Fluka analytics (Milano, Italy). 

Ultrapure water (18 MΩ·cm−1), produced with a Millipore Milli-Q® apparatus (Darmstadt, Hesse, 

Germany), was used to prepare all solutions. 

4.2.2 Instruments and methods  

Pulsed-gradient spin-echo nuclear magnetic resonance (PGSE-NMR) and 1H NMR were carried out in 

D2O at 25 °C using a 400 MHz Bruker FT NMR spectrometer operating at 400.13 MHz, employing a 

5 mm diffusion probe. Spectra were recorded at different pD (pH of the D2O solution), using diluted 

NaOD and DCl solutions. In PGSE-NMR, parameters used for the stimulated echo sequence were 

the followings: diffusion time (D) was set to 150 ms, the duration of the gradient pulses (d) was held 

constant at 1 ms and their intensity (G) varied from 5 to 300 G cm-1. The number of scans was set to 

16, accumulated over 32 gradient steps. Typically, self-diffusion coefficients (Ds) were calculated 

with CORE software [25]. In some cases, where specified, Ds were extracted by fitting peak 
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intensities (I) to the simplified Stejskal-Tanner equation (Eq. (1)), obtained when the total echo time 

2τ is held constant and the gradient strength G varied.  

𝐼 = 𝐼0𝑒−𝐷𝑠𝛾2𝐺2𝛿2(∆−
𝛿

3
)  Eq. (1) 

where I0 is the signal intensity in the absence of gradient pulses and γ the gyromagnetic ratio of 

protons [26]. 

Size exclusion chromatography (SEC) traces were obtained for ARGO7 isomers following the 

procedure described in Chapter 2, Experimental Section p. 40. 

Surface tension measurements were carried out using a maximum bubble pressure tensiometer, model 

SITA Science line t60 (SITA Messtechnik GmbH, UK), calibrated with 0.1 M NaCl solution. The 

surface tension of NaDC and NaDC/L-ARGO7 aqueous mixtures, at different pHs and 

concentrations, was measured in triplicate at 25°C. A bubble lifetime of 15 s was used to ensure full 

equilibration.  

Dynamic light scattering (DLS) analyses were carried out on i) ARGO7, ii) NaDC and iii) their 

mixtures at difference concentration and pHs, in the solubility range. Solutions were prepared using 

0.1 M NaCl and analysed by a Malvern Zetasizer NanoZS instrument (Malvern, Worcestershire, 

UK), equipped with a laser fitted at 532 nm and fixed 173° scattering angle. Before analyses, samples 

were filtered through a 0.2 µm syringe Whatman filter. The solution pH was adjusted to the selected 

value by the MPT-2 autotitrator (Malvern, Worcestershire, UK), using 0.3 M HCl or 0.3 M NaOH 

aqueous solutions. Typically, measurements were performed in triplicate and each value reported 

as the average of 10 runs. 

Zeta potentials (ZP) was measured in 0.5 mm folded capillary cells on the same NaDC and ARGO7 

solutions employed for DLS measurements. Solution pH was adjusted by the MPT-2 accessory 

mentioned above. Before each measurement, samples were filtered through a 0.2 µm syringe 

Whatman filter. Data were collected after the stability of the ZP was reached, in monomodal mode 

and were reported as an average of 6 runs.  

Circular Dichroism (CD) spectra were recorded using a Chirascan spectrophotometer (Applied 

Photophysics Ltd., Surrey, UK) equipped with a Peltier temperature control system. Typically, CD 



Chapter 4 
 

133 
 

signals were acquired at 25°C by scanning in the 190 - 280 nm range, in rectangular quartz cells with 

1 mm path-length at various pHs. Each spectrum was the average of 4 measurements at 2.5 s time-

per-point. Samples of NaDC, D- and L-ARGO7 and NaDC/ARGO7 mixtures were prepared in 0.1 

M NaCl solution using D2O. The pH was adjusted with 0.1 M DCl or 0.1 M NaOD aqueous solutions 

and measured by a combined Metrohm microelectrode (Metrohm, Cheshire, UK). At pH 7.3, when 

NaDC/ARGO7 systems formed gels, measurements were performed after 2 hrs. After this time, it 

was observed that CD measurements resulted stable and reproducible (see for example NaDC 

spectra in Figure A1 in Appendix). 

Small-angle neutron scattering (SANS) experiments were performed on the fixed-geometry, time-of 

flight LOQ diffractometer at the ISIS Spallation Neutron Source, Rutherford Appleton Laboratory, 

Didcot, UK. A range defined by Q = (4π/λ) sin(θ/2) between 0.009 and 0.67 Å-1 was obtained by using 

neutron wavelengths (λ) spanning from 2.2 to 10 Å with a fixed sample-detector distance of 4.1 m. 

The samples were contained in either 1- or 2-mm path length, UV-spectrophotometer grade, quartz 

cuvettes (Hellma, GmBh) and mounted in aluminum holders on top of an enclosed, computer-

controlled, sample chamber. All experiments were conducted at 25°C and different pD (pH of the 

D2O solution). Experimental measuring times were approximately 50 – 60 min. All scattering data 

were i) normalized for the sample transmission, ii) background corrected using a quartz cell filled 

with D2O, and iii) corrected for the linearity and efficiency of the detector response using the 

instrument specific software package. 

4.2.3 Synthesis of ARGO7 isomers 

The synthesis of L-, D- and D,L-ARGO7 isomers was carried out as previously described in Chapter 

2, Experimental Section page 46. SEC and 1H NMR were reported in the same chapter at pages 46-

47.  
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4.2.4 Structure and 1H NMR of NaDC 

 

Figure 1. 1H NMR spectra of NaDC in D2O at pH 8.50. 

1H NMR (D2O, 400.132 MHz, ppm): δ 0.65 (s, 3H, -CH3 1), 0.86-0.93 (m, 6H, -CH3 1 and 3), 2.18 (m, 

2H, -CH2COO-), 3.55 (m, 1H, -CH 5), 3.98 (m, 1H, -CH 6) (Figure 2). 

4.3 RESULTS AND DISCUSSION 

4.3.1 Synthesis of ARGO7 isomers 

D-, L- and D,L-ARGO7 were obtained following the synthesis described previously (Chapter 2, 

Experimental Section page 47). Molecular weights were measured by size exclusion 

chromatography in TRIS buffer solutions at pH 8.00. Number-average molecular weights Mn did not 

show any differences between the three isomers. All the stereoisomers were also characterized by 

1H NMR spectra and FT-IR/ATR and resulted the same. 

4.3.2 Phase behavior of NaDC/water mixtures 

It is widely known that NaDC/water mixtures showed a pH- [27] and concentration [9] dependent 

behaviour. In order to identify the phase-stability boundaries of the chosen model system NaDC, 

0.5 – 50 mg mL-1 NaDC/water mixtures in 0.1 M NaCl and at different pHs, were studied. When 

NaDC concentration was higher than 2.5 mg mL-1, NaDC/water showed three different phases 
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(Figure 2): transparent homogenous liquids (pH ≥ 7.50), transparent gels (pH 7.0 – 7.5), precipitate 

(pH ≤ 7.00) (Figure 2). When NaDC concentration was lower than 2.5 mg mL-1, only two phases were 

seen: transparent homogenous liquids (pH ≥ 6.50) and precipitate (pH 6.00) (Figure 2). 

 

 

Figure 2. Phase behaviour of NaDC/water mixture as a function of pH and concentration. ☆: 

transparent homogeneous liquid; △: transparent gel; □: precipitate.  

4.3.3 Phase behavior of NaDC/water/ARGO7 mixtures 

In Chapter 2, the acid-base properties of ARGO7 isomers were reported and showed isoelectric 

points of 9.7. Therefore, D-, L- or D,L-ARGO7 resulted mainly positively charged when pH < 9.0. 

Being NaDC negative charged until -COOH neutralization, it is expected that NaDC/water/ARGO7 

mixtures have some form of pH dependent electrostatic interactions that may alter the phase 

transitions observed for the NaDC/water system. On the other hand, since D- and L-ARGO7, but not 

D,L-ARGO7, and NaDC are chiral, modification of the phase transitions may occur also due to some 

chirality dependent interactions. To ascertain this point, mixtures containing 0.5 wt % of either D-, 

or L- or D,L-ARGO7 and 5 mg mL-1 NaDC in 0.1 M NaCl were tested. 

Differences were observed for the gel phase and at the onset of flocculation. In particular, for 

NaDC/water/L-ARGO7 mixtures, transparent gel was formed at pH 7.60. Interestingly, the gel 
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formation took a longer time, and produced a soft opaque gel compared with that obtained in the 

absence of the polymer. NaDC/water/D-ARGO7 mixtures gave a transparent gel at pH 7.50, whereas 

D,L-ARGO7 formed a transparent and harder gel at pH 7.25. Additionally, when the polymer was 

present in the mixtures, precipitation occurred at higher pH than in the binary NaDC/water system 

(pH 6.90 vs pH 6.70).  

4.3.4 Surface tension of NaDC/water/ARGO7 mixtures 

In the literature the critical micellar concentration (CMC) of NaDC is extensively studied under 

various conditions of pH, ionic strength and temperature [28-30]. It is known that the transition 

region is broader than that of classical amphiphiles and may present two CMCs [31], the first 

associated with the formation of small aggregates and the second to the presence of stable micelles 

[31]. In this chapter, surface tension measurements were performed on NaDC/water and 

NaDC/water/L-ARGO7 systems at various concentrations and at set ionic strength, in 0.1 M NaCl. 

This was done for determining the CMC value of NaDC and assessing the possible variations in 

micelle formation due to the presence of L-ARGO7. 

The concentration dependence of the surface tension of NaDC/water mixtures was studied at pH 

8.63 ± 0.47 and 24.7 ± 0.4 °C, and showed decreasing values with increasing concentration, reaching 

initially a minimum and then a plateau. The CMC of NaDC value was determined by linear fitting, 

taking into account the intersection of two drawn lines with respect to the log-concentration of 

NaDC (Figure 3). NaDC showed a CMC of 0.802 mg mL-1 in 0.1 M NaCl in accordance with the 

literature data [9]. The addition of 0.5 wt % of L-ARGO7 did not affect the surface tension of 

NaDC/water system (gray dots in Figure 3). This may be ascribed by the fact that the water-soluble 

L-ARGO7 remained in the aqueous phase and therefore did not interfere with the water/air 

interphase.  
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Figure 3. Surface tension trend with increasing NaDC concentration in 0.1 M NaCl, at pH 8.63 ± 0.47 and 

temperature of 24.7 ± 0.4 °C (black dots) before and after the addition of 0.5 wt % L-ARGO7 (gray dots).  

4.3.5 Dynamic light scattering and ζ-potential measurements  

Dynamic light scattering and ζ-potential measurements were performed to evaluate electrostatic 

interactions in several conditions of pH, NaDC concentration and NaDC/L-ARGO7 ratio. This was 

done to select the right conditions to use later to detect chiral interactions.  

The pH-dependence of the ζ-potential of both NaDC/water and NaDC/water/L-ARGO7 mixtures 

was studied in the pH interval 6.5 – 9.5, at 0.1 M NaCl. Along this pH interval, both mixtures changed 

their phase (see phase behavior of binary mixtures in Figure 2). As already shown, the presence of 

L-ARGO7 did not substantially alter this pattern. The ζ-values recorded for NaDC were always 

negative, irrespective of pH and concentration (Figure 4 and Figure A2 in Appendix). Also in the 

case of 0.5 mg mL-1 L-ARGO7 solution, ζ-values resulted negative, notwithstanding ARGO7 

isoelectric point of 9.7 (Figure 4). This might be explained by the molecular dynamics simulations 

carried out on ARGO7 solutions (see Chapter 2, page 60). Results indicated carboxylate groups were 

prevailingly exposed on the outer surface of the ARGO7 compact conformation, as such resulting in 

negative ζ-potential values. 
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Figure 4. pH-Dependence of ζ-potentials values ofL-ARGO7 (black line), NaDC (gray line) and 

NaDC/water/L-ARGO7 mixtures (blue line) at various NaDC concentration, above the CMC. The 

concentration of L-ARGO7 is 0.5 mg mL-1. 

The ζ-values of NaDC/water/L-ARGO7 mixtures were recorded at different NaDC concentration 

and pHs (blue line in Figure 4). At NaDC concentration ≤ CMC, ζ-potential curves showed the same 

trend of plain L-ARGO7 solution, albeit with more negative ζ-values (Figure A2 in Appendix). At 

NaDC concentration > CMC, curves showed a pH dependence trend similar to that of pure NaDC 

solutions (Figure 4). Differences in ζ-values were observed between pH 6.7 – 7.5, possibly caused by 

the protonation of the tert-amine groups of the L-ARGO7 main chain. In fact, speciation curves 

reported in Chapter 2 page 56 showed that 10% of these groups were protonated. From the ζ-

potential trends it seemed the NaDC/L-ARGO7 ratio of 10:1 was the best in minimizing electrostatic 

interactions.  

DLS measurements were carried out on both NaDC/water and NaDC/water/L-ARGO7 mixtures in 

0.1 M NaCl and pH ≥ 7.50, according to NaDC solubility. In all cases hydrodynamic radii (Rh) of 

NaDC did not change upon changing concentration or pH (Table 1). Even in the NaDC/water/L-

ARGO7 mixtures, Rh values resulted comparable with NaDC/water systems. The volumetric size 
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recorded for L-ARGO7 alone was in line with the data obtained in Chapter 2 page 57, associated 

with a compact structure. 

Table 1. Hydrodynamic radii of NaDC before and after adding L-ARGO7 from DLS volume size distribution. 

 NaDC/water NaDC/water/L-ARGO7* 

CNaDC (mg mL-1) 
Rh NaDC (nm) 

at pH 8.50 

Rh NaDC (nm) 

at pH 8.50 

2.5 1.32 ± 0.29 1.83 ± 0.49 

3.5 1.70 ± 0.45 1.63 ± 0.46 

4.5 1.39 ± 0.41 1.50 ± 0.40 

5.0 1.63 ± 0.37 1.57 ± 0.46 

* In all cases, the concentration of L-ARGO7 was 0.5 mg mL-1 and its size 2.05 ± 0.53 nm, at pH 7.5. 

4.3.6 Self-diffusion coefficients (Ds) in NaDC/water/ARGO7 mixtures 

Pulsed-gradient spin echo (PGSE) NMR sequence is generally employed to measure the self-

diffusion coefficients (Ds) of different species in a multicomponent solution [32]. PGSE-NMR was 

employed to record Ds values of ARGO7 isomers, NaDC and NaDC/water/ARGO7 mixtures. 

Measurements were carried out in D2O containing 0.1 M NaCl at different concentration, pH and 

ionic strength. Data are reported with their pD, that is the pH measured in D2O. 

For ARGO7 isomers, it may be observed that all peaks decayed mono-exponentially, demonstrating 

that the molecular dimensions of the polymers were homogeneous. The hydrodynamic radii (Rh) 

were obtained from the Ds values using the Stokes-Einstein equation (Eq. 2). 

𝐷 =
𝑘𝐵𝑇

6𝜋𝜂𝑟
  Eq. (2) 

where kB is Boltzmann’s constant, T is the absolute temperature, η is solution viscosity, and r is the 

hydrodynamic radius of the particle. For L- and D-ARGO7 the concentration dependence of the Ds 

values was determined at pD 9.0 in the concentration range 5 – 30 mg mL-1 (Table 1), whereas the 

pH dependence was determined at pD 2, 5, 7 and 11 with 10 mg mL-1 ARGO7 solutions (Table 2). 

The Rh values were around 2 nm and did not significantly vary with concentration. As for pH, they 

only moderately varied even at very high pH. The values reported were in line with those previously 

obtained by dynamic light scattering. 
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Table 1: Concentration dependence (C) of L- and D-ARGO7 self-diffusion coefficients and hydrodynamic 

radii, at pD 9.0. 

 

Table 2: pH dependence of the D- and L-ARGO7 self-diffusion coefficients and hydrodynamic radii. 

 

 

 

 

 

 

 

* Self-diffusion coefficients were extracted from the simplified Stejskal-Tanner equation (Eq. (1)) due to the 

small intensity of each proton signal. 

For NaDC/water system, the PGSE NMR spectra showed that all peaks decayed monoexponentially, 

confirming the presence in solution of only one component. The Ds values were recorded at pD 8.86 

± 0.56 in the 0.5 – 50 mg mL-1 concentration range (black line in Figure 5a) and showed that the CMC 

of NaDC was equal 1 mg mL-1 as already calculated from surface tension measurements.  

The same technique was adopted to study the dependence, in the NaDC/water/ARGO7 mixtures, of 

the Ds of both NaDC and ARGO7 isomers on the NaDC/ARGO7 ratio at two different pH’s, namely 

pD 9.0 (gray line in Figure 5a), where the system was a homogeneous liquid, and pD 7-8 (gray line 

in Figure 6a), where the system was a transparent homogeneous gel. At pD 9.0, the Ds of NaDC was 

significantly affected by the presence of L-ARGO7 for NaDC concentrations in the 1-5 mg mL-1 range, 

that is, up to a 1:1 NaDC/ARGO7 ratio (Figure 5a). Instead, at NaDC/ARGO7 ratios > 1 the Ds of 

NaDC in the mixture was very close to that of plain NaDC (Figure 5a). The Ds of ARGO7 in the 

mixtures decreased with increasing NaDC/ARGO7 ratio with respect to the obtained values for plain 

L-ARGO7 solution (Figure 5b).  

It should be observed that whereas all the NaDC peaks always decayed monoexponentially, even 

after the addition of the polymer, peaks of L-ARGO7 decayed monoexponentially only at 

 D-ARGO7 L-ARGO7 

C 

(mg mL-1) 

Ds 

(m2 s-1 x 10-10) 

Rh 

(nm) 

Ds 

(m2 s-1 x 10-10) 

Rh 

(nm) 

5 1.06 ± 0.03 2.03 ± 0.12 1.11 ± 0.02 1.93 ± 0.07 

10 1.08 ± 0.02 1.99 ± 0.08 0.876 ± 0.04 2.45 ± 0.16 

15 1.04 ± 0.04 2.06 ± 0.16 0.942 ± 0.02 2.28 ± 0.08 

20 1.11 ± 0.02 1.93 ± 0.07 0.827 ± 0.04 2.60 ± 0.16   

30 0.945 ± 0.01 2.27 ± 0.01 0.872 ± 0.03 2.46 ± 0.12 

 D-ARGO7 L-ARGO7 

pD 
Ds 

(m2 s-1 x 10-10) 

Rh 

(nm) 

Ds 

(m2 s-1 x 10-10) 

Rh 

(nm) 

2.0 ± 0.1* 0.884 ± 0.03  2.43 ± 0.02 0.757 ± 0.04 2.84 ± 0.03 

5.0 ± 0.4 1.13 ± 0.08 1.90 ± 0.28 0.899 ± 0.10 2.39 ± 0.12 

7.0 ± 0.2* 1.19 ± 0.10 1.80 ± 0.03 1.38 ± 0.09 1.56 ± 0.19 

11.0 ± 0.8 1.23 ± 0.08 1.75 ± 0.26 1.18 ± 0.09 1.82 ± 0.18 
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NaDC/ARGO7 ratios >1. When NaDC/ARGO7 ratio < 1, biexponential decays were seen, ascribed 

to the free and NaDC-bound ARGO7 respectively.  

 

  

Figure 5. Self-diffusion coefficients (Ds) at pD 9.0 of: a) NaDC/water and NaDC/water/L-ARGO7 systems and 

b) L-ARGO7 in the same mixtures. In this case, for comparison purposes, also 5 mg mL-1 Ds of plain L-ARGO7 

was reported (pale gray dotted line).  

Table 3: Hydrodynamic radii of NaDC alone and in presence of L-ARGO7, at pD 9, obtained from PGSE-

NMR applying Stokes-Einstein equation. 

 NaDC/water NaDC/water/L-ARGO7 NaDC/water/L-ARGO7 

CNaDC (mg mL-1) Rh NaDC (nm) Rh NaDC (nm) Rh L-ARGO7 (nm) 

0.5 0.480 ± 0.20 -- -- 

1 0.484 ± 0.09 0.970 ± 0.18 1.40 ± 0.20 

2 0.671 ± 0.12 -- -- 

5 1.20 ± 0.35 1.37 ± 0.18 1.89 ± 0.33 

10 1.44 ± 0.21 1.59 ± 0.15 1.87 ± 0.28 

20 2.08 ± 0.32 2.31 ± 0.30 2.35 ± 0.36 

30 2.31 ± 0.33 -- -- 

40 2.80 ± 0.39 -- -- 

50 3.53 ± 0.27 3.28 ± 0.44 3.26 ± 0.33 

At pD 7-8, when NaDC/water/L-ARGO7 mixtures appeared as transparent gels, NaDC peaks still 

decayed monoexponentially, exhibiting Ds very close to those determined at pD 9.0 (Figure 6a). In 

these conditions, whereas Ds values of NaDC recorded in absence and presence of L-ARGO7 were 

almost the same, Ds of L-ARGO7 observed in the mixtures kept decreasing with increasing 

NaDC/ARGO7 ratio (Figure 6b).  
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Figure 6. Self-diffusion coefficients (Ds) at pD 7-8 of: a) NaDC/water and NaDC/water/L-ARGO7 systems and 

b) L-ARGO7 in the same mixtures. In this case, for comparison purposes, also 5 mg mL-1 Ds of plain L-ARGO7 

was reported (pale gray dotted line).  

Table 4: Hydrodynamic radii of NaDC alone and in presence of L-ARGO7, at pD 7-8, obtained from PGSE-

NMR applying Stokes-Einstein equation. 

 NaDC/water NaDC/water/L-ARGO7 NaDC/water/L-ARGO7 

CNaDC (mg mL-1) Rh NaDC (nm) Rh NaDC (nm) Rh L-ARGO7 (nm) 

0.5 0.480 ± 0.20 -- -- 

1 0.484 ± 0.09 0.560 ± 0.12 0.75 ± 0.19 

2 0.671 ± 0.12 -- --* 

5 1.20 ± 0.35 0.99 ± 0.21 --* 

10 1.44 ± 0.21 1.07 ± 0.20 1.11 ± 0.17 

20 2.08 ± 0.32 1.97 ± 0.33 1.29 ± 0.21 

30 2.31 ± 0.33 2.20 ± 0.27 --* 

40 2.80 ± 0.39 3.08 ± 0.36 2.44 ± 0.33 

50 3.53 ± 0.27 3.22 ± 0.32 2.63 ± 0.29 

* In this cases CORE software gave only one Ds value associated to either NaDC, L-ARGO7 or both. In no case 

two distinct values of Ds, for NaDC and L-ARGO7, were obtained.  

4.3.7 Circular dichroism of NaDC/water/ARGO7 stereoisomer mixtures 

NaDC conformational changes induced by pH-dependent chiral interactions with ARGO7 

stereoisomer were studied by means of circular dichroism (CD) spectroscopy in 0.1 M NaCl at two 

different pH’s, namely 9.0, in which NaDC is completely water soluble, and 7.30, where the 

NaDC/water system is a transparent, homogeneous gel. Since it is known from the literature that 

NaDC micelles may show chiral discrimination [16-18, 20,21], interactions were studied only 

between NaDC above its CMC, when it formed micelles, and ARGO7 stereoisomers. The CD spectra 

of NaDC and NaDC/water/L-ARGO7 mixtures were first carried out at pD 9.06 in the NaDC 

concentration range of 2.5 – 5.0 mg mL-1. This to identify the best experimental conditions necessary 
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for CD measurements, keeping in mind that the NaDC/L-ARGO7 ratio of 10:1 best minimized 

electrostatic interactions. In all cases, the UV-vis spectra of NaDC/water systems showed absorbance 

lower than 1.0 in the 200 -270 nm (Figure A3a). CD spectra resulted superimposable, with a low 

intensity minimum at 211 nm. The major absorption, probably due to C=O groups, fell below 200 

nm (Figure A3b). The NaDC selected concentration was 5 mg mL-1. Consequently, L- and D-ARGO7 

concentration was set to 0.5 mg mL-1. Confirming previously reported data (Chapter 2, page 53), the 

L- and D-ARGO7 spectra were in mirror-image relationship. At pD 7.30, the 5 mg mL-1 NaDC/water 

system appeared as a homogeneous gel and showed a different CD pattern, suggesting NaDC ability 

to self-assemble into stable pH-dependent structures (Figure 7). 

The CD spectra of the NaDC/water/D-ARGO7 and NaDC/ water/L-ARGO7 systems carried out at 

pD 9.06 and pD 7.30, NaDC concentration 5 mg mL-1 and ARGO7 concentration 0.5 mg mL-1 are 

reported in Figure 7. 

  

  

Figure 7. CD spectra of NaDC, D- and L-ARGO7 and NaDC/water/ARGO7 stereoisomers mixtures 

at different pH’s. Experimental conditions: NaDC concentration 5 mg mL-1; ARGO7 concentration 

0.5 mg mL-1; temperature 25°C; optical path 1 mm. 
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It can be noticed that at pD 9.06, that is, when the NaDC/water/ARGO7 mixtures are homogeneous 

transparent liquids, no significant differences can be observed between the spectra of L-ARGO7 and 

D-ARGO7 and those of their mixtures with NaDC (Figures 7a and 7b). Simulated traces of 

NaDC/ARGO7 mixtures were calculated as the sum of the CD traces of the two components alone 

(dotted blue line in Figures 7a and 7b). They showed a significant difference with the experimental 

traces. However, for the two isomers, both traces were still in a mirror-image relationship, showing 

that in these conditions no traces of chiral-dependent interactions were detected. Chiral-dependent 

interactions existed at pD 7.30, that is, when the NaDC/ARGO7 mixtures appeared as transparent, 

homogeneous gels. In fact, the experimental CD trace of the NaDC/L-ARGO7 mixture differed much 

more significantly from the simulated curve compared to the NaDC/D-ARGO7 mixture. In addition, 

whereas the spectrum of the NaDC/D-ARGO7 mixture retains its shape, the spectrum of the 

NaDC/L-ARGO7 mixture changes both shape and intensity. 

4.3.8 Small-angle neutron scattering (SANS) measurements  

4.3.8.1 NaDC/water system 

An in-depth understanding of the conformational changes of the structure of NaDC micelles upon 

chiral interactions with ARGO7 stereoisomers, was carried out by means of small-angle neutron 

scattering (SANS) experiments. Analyses were recorded as a function of NaDC concentration and 

pH and reported as scattering intensity vs scattering vector (Q) with their pD, that is the pH 

measured in D2O. 

At pD 8.5 – 8.8, scattering data collected in the NaDC concentration range of 5 – 100 mg mL-1, showed 

curves consistent with the presence of micellar structures (Figure 8a). In order to determine their 

shape, all curves were fitted with the theoretical scattering function of prolate ellipsoids with polar 

radius of 22 – 28 Å and equatorial radius of 7 – 10 Å. To account for interparticle interactions of 

charged spheroidal objects, the Hayter-Penfold Rescaled Mean Spherical Approximation (RMSA) 

structure factor was introduced for all data. Results about radii, scattering light density (SLD) and 

charge values were reported in Table A1 in Appendix and were in all cases comparable (Figure 8a). 

To note, above 35 mg mL-1, a small shoulder at 0.1 A-1 appeared suggesting changes in interparticle 

interactions due to different electrostatic charges.   
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Figure 8. Small angle-neutron scattering data of NaDC as a function of: a) concentration, at pD 8.5 – 8.8 and b) 

pH, at 5 mg mL-1 concentration. The mathematical fittings are reported in the graph as red line. 

 

Upon decreasing pH, the structure of 5 mg mL-1 NaDC micelles changed from a prolate ellipsoid 

(pD 8.80) to an elongated rod (pD 7.30) described by elliptical cylinders of 487.6 ± 21.2 Å length and 

2.88 ± 0.19 axis ratio (Figure 8b and Table A2 in Appendix). By further decreasing pH, at the brink 

of NaDC aggregation and flocculation (pD 6.80), rods’ dimensions increased reaching lengths of 

630.5 ± 4.3 Å and axis ratio of 5.25 ± 0.012 with a concomitant reduction in SLD (Figure 8b and Table 

A2 in Appendix).  

4.3.8.2 NaDC/water/ARGO7 liquid phase at pD 8.50-9.50 

Once the shape of the micelles was assessed, 5 mg mL-1 of NaDC were mixed with 0.5 mg mL-1 

solution of D-, or L-, or D,L-ARGO7, or an equimolar mixture obtained by mixing L- and D-isomer 

of the polymer (D-/L-ARGO7), to reach the total concentration of 0.5 mg mL-1. Mixtures were 

prepared in the pD range of 8.50-9.50, conditions at which NaDC/water/ARGO7 systems resulted as 

transparent homogenous liquids (see phase boundaries in Figure 2, page 132). At this concentration 

the solutions of ARGO7 alone did not give rise to a significant scattering data, independently from 

the considered pH. Consequently, only modification of the NaDC behavior in the mixtures were 

assessed.  

At pD 8.50 – 9.50, for all the stereoisomers, data resulted superimposable and were fitted with the 

same prolate ellipsoid model used for the NaDC/water system (Figure 9a). Thus, only small changes 

in the total charge and in the semi-minor and semi-major axis were seen (Table A3 in Appendix). 

These results confirmed the trend observed from CD measurements, that is the modest effect of the 
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electrostatic interactions between ARGO7 stereoisomers and NaDC micelles, and the absence of 

chiral dependent interactions.  

In order deeply investigate how the interactions in the NaDC/water/ARGO7 liquid mixtures may 

affect the conformation of NaDC micelles, it was chosen to change NaDC/D-polymer ratio (Figure 

9b). When the NaDC/D-ARGO7 ratio reached 1:2, that is at 70 mg mL-1 of D-ARGO7 and 35 mg mL-

1 NaDC, micelles changed from prolate to triaxial ellipsoid (Figure 9b and Table A4 in Appendix). 

Hence, the addition of the polymer changed the magnitude of NaDC hydrophobic forces, due to the 

complete charge neutralization of its carboxylate groups. At pD 8.40, ARGO7 average net charge per 

repeating units is slightly positive (+0.011), since the tert-amine groups were almost completely 

deprotonated and the remaining internally shielded by the carboxylate groups (see Chapter 2, page 

56). The guanidine pendant remained positively charged. This coupled with the presence of 

carboxylate and amine groups, sources of hydrogen bonding, may unbalanced NaDC hydrophobic 

forces and thus change micelles structure. In conclusion, when NaDC/D-ARGO7 ratio reached 1:2, 

SANS data confirmed the existence of interactions between NaDC and D-ARGO7.    

  

Figure 9. NaDC scattering data in presence of: a) D-, L-, D,L-ARGO7 and the equimolar mixture D-/L-ARGO7 

and b) increasing concentration of D-ARGO7. Mathematical fittings were reported as red lines. 

4.3.8.3 NaDC/water/ARGO7 gel phase at pD 7.30-7.50 

Based on the results obtained from the CD spectra, further investigations were carried out in order 

to assess the possible chiral recognition by means of SANS measurements. Solutions were prepared 

with 5 mg mL-1 NaDC and 0.5 mg mL-1 of D-, L-, D,L-ARGO7 or an equimolar mixture obtained by 

mixing L- and D-isomer of the polymer (D-/L-ARGO7), to reach the total concentration of 0.5 mg 
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mL-1. Mixtures were prepared in the pD range of 7.30-7.50, conditions at which NaDC/water/ARGO7 

systems resulted as transparent gels (see phase boundaries in Figure 2, page 132).  

SANS data confirmed that NaDC conformation was affected in different ways by the chirality of the 

polymer (Figure 10a). In particular, D-, D,L-ARGO7 and the equimolar mixture changed SANS 

pattern in the same way: they retained the rod-like structure of NaDC micelles as in the NaDC/water 

system, albeit with a lower axis ratio (1.51 ± 0.41) and a smaller SLD (Figure 10a and Table A5 in 

Appendix). Instead, in the case of NaDC/water/L-ARGO7 mixture, the correlation length model 

used to describe shape independent functions was chosen in order to fit SANS curve (Figure 10a 

and Table A6 in Appendix).  

 
 

Figure 10. 5 mg mL-1 NaDC scattering data: a) in a mixture with 0.5 mg mL-1 D-, L-, D,L-ARGO7 and the 

equimolar D-/L-ARGO7 and b) in a mixture with higher Mn D-, L- and D,L-ARGO7. Mathematical fittings were 

reported as red lines.  

In order to study if and how the length of the ARGO7 chains may affect the chiral-dependent NaDC 

self-structuring, chiral interactions were assessed in the NaDC/water/ARGO7 mixtures prepared 

with ARGO7 stereoisomers with higher number-average molecular weights, Mn D-ARGO7 = 8400, Mn L-

ARGO7 = 10600 and Mn D,L-ARGO7 = 8800 (Figure 10b and Table A7-8 in Appendix). The addition of L-

ARGO7 triggered the conformational change of NaDC micelles from ellipsoidal cylinder to 

ellipsoids with 8.73 ± 1.34 Å polar radii and 17.71 ± 0.51 Å equatorial radii, and a significant low 

charge (Table A8 in Appendix). Instead, D- and D,L-ARGO7 retained the NaDC rod-like structures, 

albeit with higher dimensions and lower SLD than NaDC/water (Table A7). These results suggested 

that chirality and length of the polymer chain affected NaDC conformation in aqueous solution. 

Thus, it is possible to conclude that NaDC is a suitable model for the chiral recognition of ARGO7 

stereoisomers.  
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SANS collected in the 5 – 100 mg mL-1 range on NaDC/water systems at pD 7.3-7.5 showed 

concentration-dependent structuring of NaDC. When NaDC concentration was lower than 35 mg 

mL-1 SANS pattern were always described by the elliptical cylinder model (Figure 11a).  

 

Figure 11. NaDC scattering data as a function of concentration, at pD 7.3 – 7.5. Mathematical fittings were 

reported as red lines.  

Interestingly, when the concentration was 40 and 50 mg mL-1, NaDC showed a layered structure 

with a peak centered at 0.07 Å-1 (Figure 11b). Their SANS patterns were described by the broad peak 

mathematical model, with a Porod’s exponent of 0.9 for 40 mg mL-1 and 1.6 for 50 mg mL-1. These 

values suggested a layered structure composed of stacked rigid rods. The d-spacing describing the 

distance between scattering centers was calculated as Q = 2π/d and resulted of 8.97 nm. The same 

layered structure can still be seen at 100 mg mL-1 (Figure 11c). However, at this concentration the 

sharp peak was lost suggesting a more amorphous material than the lowest concentrations. To assess 

the influence of ARGO7 stereoisomers on NaDC layered structure, SANS data were collected for 

NaDC/water/ARGO7 mixtures prepared with 5 mg mL-1 of L-, D-, D,L-ARGO7 and an equimolar 

mixture of D- and L-ARGO7 and 50 mg mL-1 NaDC solution at pD 7.5 – 7.6. SANS measurements 
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did not show any difference (Figure 12), excluding as such interactions of any nature between 

ARGO7 polymers and NaDC, in these conditions.  

 

 

Figure 12. Scattering data recorded for 50 mg mL-1 NaDC solutions mixed with 5 mg mL-1 of D-, L-, D,L-

ARGO7 and the equimolar mixture D-/L-ARGO7, at pD 7.5 – 7.6.  

4.3.8.4 NaDC/water/ARGO7 heterogeneous phase at pD 6.40-6.90 

To assess the pH-dependence of the chiral interactions, SANS measurements were carried out at pD 

6.40-6.90, when NaDC/water and NaDC/water/ARGO7 systems appeared as heterogeneous 

mixtures (precipitate), due to NaDC flocculation (see phase boundaries in Figure 2, page 132). 

Samples were prepared mixing 5 mg mL-1 NaDC solutions and 0.5 mg mL-1 of D-, L-, D,L-ARGO7 or 

an equimolar mixture composed of 0.5 mg mL-1 D-ARGO7 and 0.5 mg mL-1 L-ARGO7. Diffraction 

pattern showed the same behaviour of NaDC/water/ARGO7 gels (Figure 12). D-, D,L-ARGO7 and 

the equimolar mixture gave rise to superimposable pattern, modelled by the elliptical cylinder 

model with higher lengths and SLD, and smaller axis ratios and charge than NaDC/water at the 

same pD (Figure 12 and Table A9 in Appendix). Instead, L-ARGO7 triggered the formation of 

spheroidal NaDC clusters, represented by the correlation length function used to fit the scattering 

data (Figure 12 and Table A10 in Appendix). In these conditions, changes induced by the presence 

of ARGO7 stereoisomers were linked to their chirality and the overall ionization degree of the 

polymer chains. At pD 6.8, 30% of ARGO7 chains resulted positively charged, while the remaining 

70% were in their zwitterionic form, capable to induce H-bonding. Electrostatic interactions between 

ARGO7 chains and NaDC neutralized NaDC carboxylate groups at higher pH than NaDC/water 

alone and resulted in longer rods. Once the charge was neutralized, NaDC micelles packed together 
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by hydrophobic forces, whose magnitude and orientation were affected by the chirality of the 

polymer, as stated by SANS modified pattern.  

 

Figure 12. 5 mg mL-1 NaDC scattering data in presence of 0.5 mg mL-1 D-, L-, D,L-ARGO7 and the equimolar 

mixture D-/L-ARGO7, at pD 6.40-6.90. Mathematical fittings were reported as red lines.   

4.4 CONCLUSIONS  

Sodium deoxycholate (NaDC), one of the components of bile salts, was chosen as a chiral model 

surface to detect chiral interactions with ARGO7 stereoisomers. In order to characterize the model 

system and choose the optimum conditions to be used later for chirality-dependent interactions 

studies, surface tension, dynamic light scattering, ζ-potential, pulsed-gradient spin echo NMR 

measurements were first carried out on NaDC/water and NaDC/water/L-ARGO7 mixtures.  

Results for NaDC/water systems indicated a concentration- and pH-dependent solubility in 0.1 M 

NaCl. At NaDC concentration > 2.5 mg mL-1, NaDC showed three phases: homogenous solution (pH 

≥ 7.50), gel phase (pH 7.0 – 7.5), flocculation and aggregation (pH ≤ 7.00), whereas below 2.5 mg mL-

1 only two phases were seen: homogenous solution (pH ≥ 6.50) and precipitation (pH 6.00). The same 

phases were seen even in the presence of 0.5 wt % ARGO7 stereoisomers, with some differences in 

the pH that induced the phase transitions, likely due to the chirality of the polymer. From surface 

tension measurements, the CMC of NaDC/water at pH 8.63 ± 0.47 in 0.1 M NaCl resulted of 0.802 

mg mL-1, value that did not change in presence of 0.5 wt % of L-ARGO7. The ζ-potential 

measurements indicated the NaDC/L-ARGO7 ratio of 10:1 was the best in order to minimize 

electrostatic interactions. Hence mixtures were prepared with 5 mg mL-1 NaDC and 0.5 mg mL-1 

ARGO7 polymers. DLS and PGSE-NMR recorded 1.8-2.1 nm for plain D- and L-ARGO7, regardless 
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of concentration and pH, and increasing size from 1.20 to 3.53 nm for plain NaDC, in the 

concentration range 5 – 50 mg mL-1. Radii of NaDC were not affected by the presence of L-ARGO7.  

In order to study chiral recognition, measurements of circular dichroism and small-angle neutron 

scattering were carried out on NaDC/water and NaDC/water/ARGO7 mixtures. Circular dichroism 

spectra recorded at pD 9.06 did not show any sign of chiral discrimination, since the presence of 

NaDC did not result in any significant modification of the polymers’ CD spectra, in either L- or D- 

form. At pD 7.30, when NaDC/water/ARGO7 mixtures appeared as gels, spectra of NaDC showed 

CD pattern differently affected by presence of L- or D-ARGO7, indicating that the self-

reorganization of NaDC into an ordered gel triggered the chiral recognition of the different 

stereoisomers. Morphology of NaDC micelles in presence and absence of ARGO7 stereoisomers was 

deeply studied by SANS analyses. Concentration-dependent data collected for NaDC at pD 8.5 - 8.8 

were consistent with the presence of micelles, described by prolate ellipsoids. By decreasing pH, 

NaDC micelles’ conformation changed to elongated rods. Coherently with CD measurements, at pD 

8.5, NaDC/water/ARGO7 stereoisomers mixtures showed superimposable curves, indicating 

absence of chiral discrimination, whereas at pD 7.30-7.50, NaDC conformation was differently 

affected by the chirality of the polymer. In particular, D- and D,L-ARGO7 changed SANS pattern in 

the same way, retaining the rod-like structure of NaDC micelles, whereas L-ARGO7 seemed able to 

trigger the formation of NaDC ellipsoidal clusters. The same chiral-dependent interactions were 

observed at pD 6.40-6.90, at the onset of flocculation, and at pD 7.50 for higher Mn ARGO7 polymers.  

It can be concluded that D- and L-ARGO7 are able to selectively interact, based on their chirality, 

with NaDC micelles. This coupled with their already proved cytobiocompatibility and cell-

internalization, may open the way for intracellular selective drug targeting or delivery of bioactive 

entitites (proteins, liposomes and nucleotides to name a few). 
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4.6 APPENDIX 

  

Figure A1. CD spectra of 30 mg mL-1 NaDC/water systems in 0.1 M NaCl and pH 7.30 as a function of time. 

 

  

Figure A2. NaDC/water mixtures trend of ζ-values with pH and a) NaDC concentration between 0.05 – 1.0 

mg mL-1 and b) NaDC concentration between 2.5 – 5.0 mg mL-1. Data were collected in 0.1 M NaCl. 

 

  

Figure A3. Concentration-dependence of a) UV-vis and b) CD spectra of NaDC/water systems, recorded at pD 

9.06 in quartz-cell of 1 mm path length.  
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Table A1. Parameters obtained for NaDC/water as a function of concentration, using the hydrated ellipsoid 

mathematical model: scattering light density (SLD), polar and equatorial radii and charge. All values had a 

S.D. lower than 1 %. 
 

CNaDC  

(mg mL-1) 

SLD  

(10-6 Å-2) 

Rpolar  

(Å) 

Requatorial 

(Å) 

Charge 

(e) 

5 1.50 22.67 7.96 24.30 

20 2.24 23.47 10.45 15.48 

35 2.17 24.81 10.44 14.41 

40 2.20 25.47 10.44 14.77 

50 1.69 24.64 7.26 13.37 

100 2.10 28.25 9.97 12.95 

 

Table A2. pH-Dependent parameters obtained for NaDC/water systems using the hydrated ellipsoid and the 

hydrated elliptical cylinder mathematical model: scattering light density (SLD), radii and charge. All values 

had a S.D. lower than 1 %. 
 

pD 
Mathematical 

Model 

SLD 

(10-6 Å-2) 

Rminor 

(Å) 

Axis 

ratio 

Length 

(Å) 

Rpolar 

(Å) 

Requatorial 

(Å) 

Charge 

(e) 

8.80 
Hydrated 

Ellipsoid 
1.50 --- --- --- 22.67 7.96 24.30 

7.30 

Hydrated 

Elliptical 

Cylinder 

3.87 8.36 2.98 482.82 --- --- 53.31 

6.80 

Hydrated 

Elliptical 

Cylinder 

1.42 22.94 5.26 630.49 --- --- 60.78 

 

Table A3. Parameters obtained for 5 mg mL-1 NaDC at pD 8.50-9.50 in presence of the polymers (D-, L-, D,L-

ARGO7 and the equimolar mixture D-/L-ARGO7) using the hydrated ellipsoid mathematical model: scattering 

light density (SLD), polar and equatorial radii and charge. All values had a S.D. lower than 1 %. 
 

CNaDC 

(mg mL-1) 
Polymers 

CARGO7 

(mg mL-1) 

SLD 

(10-6 Å-2) 

Rpolar 

(Å) 

Requatorial 

(Å) 

Charge 

(e) 

5 D-ARGO7 0.5 1.60 29.36 6.08 11.19 

5 L-ARGO7 0.5 1.34 23.24 8.07 22.96 

5 D,L-ARGO7 0.5 2.40 22.29 8.48 17.06 

5 D-/L-ARGO7 0.5 2.48 21.62 9.30 25.13 
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Table A4. Parameters obtained for 35 mg mL-1 NaDC at pD 8.50-9.50 in presence of 3.5, 35 or 70 mg mL-1 D-

ARGO7: scattering light density (SLD), polar and equatorial radii and charge. All values had a S.D. lower than 

1 %. 
 

CNaDC 

(mg mL-

1) 

CD-ARGO7 

(mg mL-

1) 

Mathematical 

Model 

SLD 

(10-6 Å-

2) 

Rpolar 

(Å) 

Requatorial 

minor 

 (Å) 

Requatorial 

major 

(Å)* 

Charge 

(e) 

35 -- 
Hydrated 

Ellipsoid 
1.85 22.00  8.50 14.00 

35 3.5 
Hydrated 

Ellipsoid 
2.12 28.16  7.79 12.12 

35 35 
Hydrated 

Ellipsoid 
3.50 44.38  5.48 3.69 

35 70 

Hydrated 

Triaxial 

Ellipsoid 

3.53 5.39 51.87 29.66 0.001 

* Defined as equatorial major radius in hydrated triaxial ellipsoids, whereas it is defined as equatorial radius 

in ellipsoid. 

 

 

Table A5. Parameters obtained for 5 mg mL-1 NaDC solutions at pD 7.30-7.50 mixed with 0.5 mg mL-1 of D-, 

D,L-ARGO7 and the equimolar mixture D-/L-ARGO7 using the hydrated elliptical cylinder mathematical 

model: scattering light density (SLD), radius minor, axis ratio, length and charge. All values had a S.D. lower 

than 1 %. 
 

Solutions 
SLD 

(10-6 Å-2) 

Rminor 

(Å) 

Axis 

ratio 

Length 

(Å) 

Charge 

(e) 

NaDC 3.87 8.36 2.98 482.82 53.31 

NaDC/D-ARGO7 3.65 7.97 1.51 438.69 42.25 

NaDC/D,L-ARGO7 3.32 4.29 4.96 1992.5 19.70 

NaDC/D-/L-ARGO7 3.60 10.47 1.02 539.46 65.23 

 

 

Table A6. Parameters obtained for 5 mg mL-1 NaDC/water/L-ARGO7 system at pD 7.30-7.50 using the shape 

independent mathematical function: correlation length, Porod exponent and Lorentz exponent. All values had 

a S.D. lower than 1 %. 
 

Solutions 
Correlation length 

(Å) 
Porod’s Exponent 

Lorentz’s Exponent 

(Å-2) 

NaDC/L-ARGO7 10.62 2.73 1.95 
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Table A7. Parameters obtained for 5 mg mL-1 NaDC at pD 7.30-7.60 in presence of higher Mn D-, L-, D,L-

ARGO7 and the equimolar mixture D-/L-ARGO7, using the hydrated elliptical cylinder mathematical model: 

scattering light density (SLD), radius minor, axis ratio, length and charge. All values had a S.D. lower than 1 

%. 
 

Solutions 
SLD 

(10-6 Å-2) 

Rminor 

(Å) 

Axis 

ratio 

Length 

(Å) 

Charge 

(e) 

NaDC 3.87 8.36 2.98 482.82 53.31 

NaDC/D-ARGO7 2.14 6.90 1.84 586.81 34.75 

NaDC/D,L-ARGO7 0.560 3.44 2.40 1908.9 50.71 

NaDC/D-/L-

ARGO7 
3.15 5.94 3.68 2557.4 22.26 

 

Table A8. Parameters obtained for NaDC/water/L-ARGO7 (higher Mn) mixture, at pD 7.3 – 7.6 using the 

hydrated ellipsoid mathematical model: scattering light density (SLD), polar and equatorial radii and charge. 

All values had a S.D. lower than 1 %. 
 

Solutions 
SLD 

(10-6 Å-2) 

Rpolar 

(Å) 

Requatorial 

(Å) 

Charge 

(e) 

NaDC/L-ARGO7 2.54 8.73 17.71 4.85E-4 

 

Table A9. Parameters obtained for 5 mg mL-1 NaDC at pD 6.6 – 6.9 in presence of D-, D,L-ARGO7 and the 

equimolar mixture D-/L-ARGO7, using the hydrated elliptical cylinder mathematical model: scattering light 

density (SLD), radius minor, axis ratio, length and charge. All values had a S.D. lower than 1 %. 
 

Solutions 
SLD 

(10-6 Å-2) 

Rminor 

(Å) 

Axis 

ratio 

Length 

(Å) 

Charge 

(e) 

NaDC 1.42 22.94 5.26 630.49 60.78 

NaDC/D-ARGO7 2.73 15.42 1.65 2364.7 10.02 

NaDC/D,L-ARGO7 2.34 16.19 1.51 4027.4 3.67 

NaDC/D-/L-ARGO7 2.67 15.69 1.53 12044 5.04 

 

Table A10. Parameters obtained for NaDC/water/L-ARGO7 mixture, at pD 6.6 – 6.9, using the shape 

independent mathematical function: correlation length, Porod exponent and Lorentz exponent. All values had 

a S.D. lower than 1 %. 
 

Solutions 
Correlation length 

(Å) 
Porod’s Exponent 

Lorentz’s Exponent 

(Å-2) 

NaDC/L-ARGO7 12.94 3.50 2.19 
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CONCLUSIONS  

Different types of amino-acid deriving polymers, of the polyamidoamino acids family (PAACs), 

were synthesized by the stepwise Michael-type polyaddition of natural α-amino acids, and their 

stereoisomers, to N,N’-methylenebisacrylamides (MBA). Reactions were carried out in water, at 

50°C and pH > 9 for 6 days. Differently from synthetic polymers obtained by radical polymerization 

of modified α-amino acids, PAACs retain the acid-base properties and the chirality of the parent 

amino acids.  

The PAACs synthesized in this work can be classified based on the structural features of the α-amino 

acid residue: arginine derived PAACs (ARGO7), alkyl-substituted PAACs (M-L-Ala, M-L-Val, M-L-

Leu), glutamine-derived PAAC (M-L-Gln), homo and copolymeric L-tryptophan-based PAACs (M-

L-Trp and M-G-L-Trp). 

i) Arginine-based PAACs 

Cationic arginine-based PAACs were synthesized from the addition of L-arginine (L-ARGO7), D-

arginine (D-ARGO7) and D,L-arginine (D,L-ARGO7). Acid-base properties were determined and 

showed a modest polyelectrolyte effect. Differently from common synthetic polyelectrolyte, pKa1 

associated to -COOH/COO- equilibria decreased with increasing ionization degree, ascribed to the 

formation of inter-polyelectrolyte complexes. Circular dichroism spectroscopy indicated that L- and 

D-ARGO7 polymers were able to self-assemble in water into stable pH-dependent conformations, 

with mirror-image spectra. Differential molar ellipticity were reported as a function of pH, 

describing a sigmoidal curve affected by the ionization degree of the tert-amine groups in the main 

chains. Conformational changes induced by pH and temperature were quickly achieved and fully 

reversible. In addition, ARGO7 conformations resulted stable at ionic strength up to 2 M and 

presence of denaturating agents as guanidinium chloride and urea. Molecular dynamics studies 

carried out at Politecnico di Milano (Prof. Raffaini and Prof. Ganazzoli) revealed ARGO7 had a 

compact hairpin-like conformation (Rg 0.8-1.11 nm) whose main chain was organized into a transoid 

arrangement. These pH-dependent structures were held together by intramolecular interactions of 

electrostatic nature.  
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ii) Alkyl-based PAACs 

Hydrophobic alkyl-substituted PAACs were synthesized from L-alanine (M-L-Ala), L-valine (M-L-

Val) and L-leucine (M-L-Leu). Acid-base properties, self-structuring abilities and size in solutions 

indicated results comparable with ARGO7 polymers, with minor differences due to the amino acid 

side chain. Circular dichroism spectroscopy confirmed the formation of stable self-assembled 

structures, rapidly formed and interconverted with pH. Differently from ARGO7, these 

conformations were affected by the presence of guanidinium chloride. DLS measurements indicated 

Rhs stable for at least 1 month (25°C), unaffected by increasing concentration in the 0.5-20 mg mL-1 

range, associated with the formation of intramolecularly self-assembled single chain nanoparticles. 

Molecular dynamics studies showed compact structure dictated mainly by intramolecular 

interactions in the polymer main chain, with minor dependence from the amino acids side chains.  

iii) Glutamine-based PAACs 

Polar glutamine-based PAAC was obtained from L-glutamine (M-L-Gln). Differently from the other 

PAACs, molecular dynamics showed a higher number of H-bonding, both along the main chain and 

the glutamine residues, responsible for the higher Mn and Rh recorded. Variable temperature NMR 

indicated that the side-chain amides groups were mainly involved in the formation of H-bonding, 

and they were as such responsible of the M-L-Gln stable conformation. Circular dichroism 

spectroscopy showed pH-dependent self-assembled structures, sensitive to the presence of urea, 

with time dependent spectral variations. 

iv) Tryptophan-based PAACs 

Amphipathic tryptophan-based homo- and copolymer were synthesized by Michael-type 

polyaddition of MBA with L-tryptophan, its isomer, and different molar ratio of L-

tryptophan/glycine mixtures. They all showed composition- and pH-dependent solubility. 

Hydrodynamic radii resulted stable for at least 1 month, and unaffected by pH in the range 1–11 for 

M-G-L-Trp5, M-G-L-Trp10 and M-G-L-Trp20 and pH range 7–11 for M-G-L-Trp40 and M-L-Trp 

homopolymers. Tryptophan-based copolymers showed Rhs modestly affected by pH and 

tryptophan content, whereas they resulted sensitive to concentration in the range 1–30 mg·mL−1. 

Similarly to the other PAACs, all tryptophan-based homo- and copolymers gave rise to pH 

dependent CD spectra, ascribed to their ability to self-assemble into stable structures governed by 
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the main chain average ionization degree. Photoluminescence analyses, quantum yields, steady state 

and time-resolved fluorescence measurements, resulted governed solely by tryptophan photo 

physics. Both homo and copolymers showed pH-dependent quantum yields, lifetimes and emission 

maximum. Interestingly, fluorescence studies conducted on oxygen-free solution gave comparable 

results, indicating compact conformations where L-tryptophan moieties were not accessible to the 

quencher. Also, intermolecular quenching by approaching chains was evaluated and observed in 

M-L-Trp and M-G-L-Trp10.  

v) Chiral interactions in NaDC/water/ARGO7 mixtures 

Sodium deoxycholate (NaDC), one of the components of bile salts, was chosen as a chiral model 

surface to detect chiral interactions with ARGO7 stereoisomers. In order to study chiral recognition, 

circular dichroism spectroscopy and small-angle neutron scattering were carried out on 

NaDC/water and NaDC/water/ARGO7 mixtures. Circular dichroism spectra were recorded at pD 

9.06 and 7.30. Results indicated sign of chiral recognition only at pD 7.30, when 

NaDC/water/ARGO7 mixtures appeared as transparent gels.  In fact, at pD 7.30, NaDC spectral 

pattern were modified in different ways by the presence of L- or D-ARGO7, whereas at pD 9.06, no 

significant modification of the CD spectra was recorded. This behavior indicated that the self-

reorganization of NaDC into an ordered gel may trigger the chiral recognition of the different 

stereoisomers. Small angle neutron scattering was then performed to evaluate the changes in NaDC 

micelles morphology in presence of L- or D-ARGO7. At pD 8.5, SANS data collected in the 5 – 100 

mg mL-1 NaDC concentration range were consistent with the presence of micelles, described by 

prolate ellipsoids. As expected from CD measurements, in these conditions NaDC/water/ARGO7 

stereoisomers mixtures showed superimposable curves, described by the same mathematical model 

used for NaDC/water system, indicating absence of chiral discrimination. The conformation of 

NaDC micelles changed from prolate ellipsoids to elongated rods when pH was decreased. At pD 

7.50, SANS data showed scattering curves differently affected by the presence of the ARGO7 

stereoisomers. In particular, D- and D,L-ARGO7 changed SANS pattern in the same way, retaining 

the rod-like structure of NaDC micelles, whereas L-ARGO7 triggered the formation of NaDC 

ellipsoidal clusters. The same modification of the scattering pattern were observed even at pD 6.90, 

at the onset of NaDC flocculation.  
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In conclusion, results indicated PAACs showed potential for biotechnological applications due to 

their pH- and composition responsiveness, intermolecular self-assemble ability into compact 

nanostructures, fluorescent dependent properties, selective chiral interactions with biomolecules, 

opening the way for intracellular selective drug targeting or delivery of bioactive entities. 


