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Wide-field choroidal thickness 
profile in healthy eyes
Mohammed Abdul Rasheed1, Sumit Randhir Singh1, Alessandro Invernizzi2, Carlo Cagini3, 
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The introduction of wide field optical coherence tomography (WF-OCT) has provided newer insights 
in the imaging of peripheral choroid. We evaluated choroidal thickness (CT) and large choroidal vessel 
thickness (LCVT) of 20 eyes in horizontal and vertical meridians using WF-OCT. A high-definition line 
scan through the fovea in both horizontal and vertical meridian was captured in primary and extremes 
of gaze to obtain scans up to mid-equator. CT and LCVT measurements were done across predefined 
points in macular area and all quadrants. LCVT was calculated after identifying a large choroidal 
vessel near choroidoscleral interface. The main outcome measures were differences in CT and LCVT in 
macular and four quadrants. Mean CT (331.23 ± 76.34 µ) and LCVT (201.46 ± 54.31 µ) in vertical macular 
segment were significantly more than CT (245.79 ± 55.38 µ; p = 0.0002) and LCVT (150.48 ± 52.58 µ; 
p = 0.004) in horizontal macular segment. CT at peripheral points in all quadrants was significantly 
reduced as compared to subfoveal CT (all p values < 0.05) with maximum reduction in inferior quadrant 
(64.5%). Using linear regression, only quadrant had a significant effect on CT and LCVT (both p < 0.001). 
CT and LCVT are highest at the macular area with reduction towards the periphery. The contribution of 
LCVT to CT is less at the fovea compared to other peripheral points.

The choroid is the most vascular structure of the eye and plays a role in the pathogenesis of various chorioretinal 
disorders1. The detailed analysis of choroid involves the study of multiple quantitative and qualitative parameters 
including choroidal thickness (CT), volume (CV), large or medium choroidal vessel thickness (LCVT; MCVT), 
vascularity index (CVI) and contour2–8. The advancements in optical coherence tomography (OCT) techniques 
including enhanced depth imaging (EDI-OCT) and swept source (SS-OCT) during the past decade have facil-
itated an in depth in vivo analysis of choroid3,9,10. There is extensive literature describing CT in the subfoveal or 
macular area in healthy as well as diseased eyes3,4,7,11,12. However, the details of peripheral choroid have not been 
available in diseases affecting the peripheral retina such as central serous chorioretinopathy (CSCR), polypoidal 
choroidal vasculopathy (PCV), diabetic retinopathy (DR), and pathological myopia10,13–17.

The study of peripheral choroidal details is possible with wide-field imaging involving up to 180–200 degree 
field of view (FOV)9,10,18,19. The wide FOV SS-OCT provides a larger field of view of 80 degrees (=20 mm) in 
the primary gaze or using manual montage to study up to 200 degrees till the equator in both the horizontal 
and vertical meridians9,10,18. This is higher than any other available conventional OCT imaging system. We have 
earlier studied the wide field CVI in macular and peripheral fundus in all quadrants using line scans and manual 
montage20. The macular CVI was significantly lesser as compared to all quadrants despite having maximum cho-
roidal thickness. The reduced CVI at the macular area could be due to a disproportionate increase in the stromal 
component at the subfoveal level20.

Apart from CT and CVI, a recent interest in thickness of choroidal vessels has expanded our understand-
ing about the choroid5,21. Previous reports have shown increased large choroidal vessel thickness and medium 
choroidal vessel thinning in eyes with CSCR and high myopia respectively22,23. Though LCVT was not analyzed 
separately in our previous publication, the possibility of reduced vascular thickness in the macular area compared 
to peripheral choroid was considered based on CVI results20.

The literature on peripheral choroid using advanced imaging modalities is very limited9,10,18,19. In the present 
study, we aim to study the wide-field choroidal details at different positions across the horizontal and vertical 
meridians. We report the regional variation in CT and LCVT up to the mid-equator using SS-OCT.
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Results
Demographic details. The analysis included 20 eyes of 20 healthy subjects. The cohort included 9 males and 
11 females with mean age of 28.85 ± 6.29 years (range from 18–42 years). A total of 14 myope, 5 hyperope and 
1 emmetrope were included with the mean refractive error (spherical equivalent) of −1.05 ± 1.33 diopters (D) 
(range −3.00 D to +0.75 D).

Average CT and LCVT measurements of horizontal and vertical scans. The mean (±SD) CT in 
horizontal and vertical macular segment was 245.79 ± 55.38 µ and 331.23 ± 76.34 µ respectively which was statis-
tically significant (p = 0.0002). Similarly, mean LCVT (±SD) for horizontal macular segment was 150.48 ± 52.58 µ 
whereas corresponding value for vertical macular segment was 201.46 ± 54.31 µ (p = 0.004). The mean subfoveal 
CT (SFCT) and LCVT (SF-LCVT) were 337.44 ± 82.70 µ and 187.91 ± 61.30 µ respectively in horizontal scan 
whereas the mean subfoveal CT and LCVT in the vertical scan were 353.40 ± 75.35 µ and 205.96 ± 60.36 µ respec-
tively. Both the SFCT and SF-LCVT were thicker in the vertical scan than horizontal but were not statistically 
significant (p = 0.53 and 0.32 respectively). The corresponding values of CT and LCVT in macular segments and 
all other quadrants are described in detail in Table 1. Intraclass correlation coefficient (ICC) for measurements 
showed excellent agreement (ICC = 0.94 to 0.96).

The percentage reduction in CT in different quadrants with respect to subfoveal CT was maximum in inferior 
quadrant (64.5%) followed by superior (60.1%), nasal (49.8%) and temporal (48.7%) quadrants. Similar to the 
above findings, percentage reduction in LCVT with respect to SF-LCVT was maximum inferiorly (60.0%) fol-
lowed by superior (57.1%), temporal (50.7%) and nasal (34.5%) quadrants.

In the horizontal scan, the mean LCVT percentage in the macular area and temporal quadrant were 61.2% 
and 53.5% respectively whereas LCVT percentage in the nasal quadrant was 72.7%. In the vertical scan, the mean 
LCVT percentage in the superior, macular and inferior quadrants were 62.1%, 60.8%, and 65.1% respectively. 
Figures 1 and 2 show the graphical representation of changes in CT and LCVT in different segments in both the 
meridians along with the mean values of CT and LCVT.

Coefficient of variation (CV). CV (SD/mean) of the choroidal parameters was calculated in all quadrants. 
Least CV of CT was noted in macular segments in both the horizontal and vertical meridians (0.23). CV in nasal 
(0.3), temporal (0.29), superior (0.35) and inferior (0.45) quadrant were comparatively higher with maximum CV 
in inferior quadrant. The CV of LCVT was minimum in vertical macular segment (0.27) followed by horizontal 
macular segment (0.35) and other quadrants - nasal (0.45), temporal (0.40), superior (0.37) and inferior (0.58).

CT (µ) LCVT (µ)

Horizontal Scan (Mean ± SD)

Temporal 173.09 ± 49.85 92.62 ± 37.22

T2 136.99 ± 47.23 (p < 0.001)* 75.24 ± 30.74 (p < 0.001)

T1 209.19 ± 52.49 (p < 0.001) 110.01 ± 43.72 (p = 0.001)

Macular 245.79 ± 55.38 150.48 ± 52.58

TM 285.38 ± 47.04 (p = 0.07) 159.79 ± 38.11 (p = 0.66)

HSF 337.44 ± 82.70 187.91 ± 61.30

NM 114.57 ± 36.39 (p < 0.001) 103.74 ± 58.35 (p < 0.001)

Nasal 169.22 ± 56.07 123.05 ± 55.18

N1 146.68 ± 58.62 (p < 0.001) 109.06 ± 45.47 (p = 0.001)

N2 208.43 ± 58.63 (p < 0.001) 148.01 ± 57.48 (p = 0.21)

N3 152.57 ± 50.97 (p < 0.001) 112.10 ± 62.60 (p < 0.001)

Vertical Scan (Mean ± SD)

Superior 142.21 ± 49.51 88.25 ± 32.83

S2 107.73 ± 33.29 (p < 0.001) 72.58 ± 19.91 (p < 0.001)

S1 176.70 ± 65.74 (p < 0.001) 103.93 ± 45.75 (p < 0.001)

Macular 331.23 ± 76.34 201.46 ± 54.31

SM 356.44 ± 78.38 (p = 1.00) 196.65 ± 47.30 (p = 0.99)

VSF 353.40 ± 75.35 205.96 ± 60.37

IM 283.86 ± 75.29 (p = 0.018) 201.78 ± 55.27 (p = 1.00)

Inferior 126.63 ± 57.19 82.46 ± 48.03

I1 163.59 ± 77.05 (p < 0.001) 104.31 ± 62.18 (p < 0.001)

I2 89.68 ± 37.34 (p < 0.001) 60.61 ± 33.89 (p < 0.001)

Table 1. Shows the mean and standard deviation (SD) of choroidal thickness (CT) and large choroidal 
vessel thickness (LCVT) in horizontal and vertical meridians involving all locations in macular segments 
and all four quadrants. *All p values are with respect to subfoveal measurements (either CT or LCVT in 
respective meridian). HSF, horizontal subfoveal; VSF, vertical subfoveal; TM, NM, SM, IM represent temporal, 
nasal, superior and inferior macular points respectively. T1, T2, N1, N2, N3, S1, S2, I1 and I2 are points of 
measurements in respective quadrants as depicted in Fig. 1.
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The Pearson correlation coefficient between CT and LCVT in the horizontal and vertical meridian was 0.68 and 
0.85 respectively suggestive of a significant positive correlation as shown in Fig. 3. Nested analysis of variance (ANOVA) 
comparing the CT in different regions (total of 8 and 7 points in horizontal and vertical meridian was done. Pairwise 
comparison of horizontal subfoveal CT and other points using Tukey post hoc test showed that subfoveal CT was sig-
nificantly higher than all points except temporal macula (p = 0.07). Using Tukey post hoc test, pairwise comparison of 
vertical subfoveal CT and other points showed SFCT to be significantly higher (p < 0.05) in all but superior macular 
location (p = 1.00). Similar comparison using nested ANOVA was done for LCVT in both the meridian which showed 
that SF-LCVT was significantly higher than all nonmacular points (p < 0.05) except N2 point (Table 1).

Using linear regression model, the effects of age, gender, refraction, axial length, intraocular pressure (IOP), 
quadrant and blood pressure on CT and LCVT were studied. Only quadrant had a significant effect on CT and 
LCVT (both p-value < 0.001). Rest all variables including age, gender, refraction, axial length, and IOP did not 
have a significant effect on CT and LCVT. Blood pressure readings were available in only 11 out of 20 eyes. The 
mean systolic blood pressure (SBP) (115.63 ± 5.39), diastolic blood pressure (DBP) (76.63 ± 4.24), mean arterial 
pressure (MAP) (89.63 ± 4.05) and mean ocular perfusion pressure (MOPP) (50.06 ± 3.39) mm Hg did not show 
a significant effect on CT and LCVT.

Discussion
We studied the mid-equatorial choroidal changes in healthy eyes using wide-field OCT. Our results show that 
mean CT was maximum in vertical macular segment followed by horizontal macular segment and 4 quad-
rants (temporal >nasal >superior >inferior). The possible reason for highest SFCT could be the high meta-
bolic demand of central macula which derives its nutrition exclusively from choroid11. The macular CT has been 

Figure 1. (Top) Shows graphical representation of variation of choroidal thickness (CT) and large choroidal 
vessel thickness (LCVT). (Bottom) A representative wide-field optical coherence tomography (WF-OCT) at 
different points in horizontal (left side) and vertical meridian (right side).

Figure 2. Shows a bar graph comprising mean of choroidal thickness (CT) and large choroidal vascular 
thickness (LCVT) along with percentage contribution of LCVT in CT in both horizontal and vertical meridian.
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studied previously with superior macular subfield showing higher CT compared to SFCT24. We also obtained 
similar results with higher CT in the superior macula (SM) which was not statistically significant. The reduced 
CT and LCVT in horizontal macular segment compared to vertical macular segment were due to the inclusion 
of peripapillary area in the horizontal segment where the choroid thinning occurs before its termination at the 
optic disc.

The gradient of change in CT in horizontal meridian was gradual compared to the vertical meridian where it was 
much steeper. The inferior quadrant was noted to have minimum CT and LCVT. The percentage reduction in CT 
and LCVT was maximum in the inferior quadrant (>60%) followed by superior quadrant (>55%). This could be 
explained by the physiological changes due to effect of gravity. The blood flow in vertical meridian is against gravity 
in superior quadrant while in the inferior quadrant the flow is with the gravity. This is in contrast to the horizontal 
meridian where the effect of gravity may not be significantly different at all points. This could explain the wide CT 
and LCVT difference in vertical meridian. Another reason for the reduced CT in the inferior quadrant could be due 
to the effect of closure of choroidal fissure which generally occurs in inferior or inferonasal location25.

We observed that LCVT changes are not proportionate to the changes in CT from macular region to the 
periphery. The CT in macular region appears to be maximum, however, significant contribution to CT appears 
from medium choroidal vessel and choriocapillaris rather than large choroidal vessels. As a corollary, large cho-
roidal vessels contribute significantly to CT toward the periphery. This may partly explain the reason for ocular 
pathologies to have a differential propensity to macula or peripheral retina. For instance, changes in age related 
macular degeneration (AMD) are more concentrated in the macular region and is characterized by atrophy of 
medium and smaller vessel at macula while the peripheral region may be undisturbed5,12.

Although all three layers are thickest at posterior pole, the high density of medium choroidal vessels and cho-
riocapillaris at fovea as compared to other peripheral points where the contribution of LCVT to CT is particularly 
higher needs further attention. This extensive network of smaller vessels subfoveally provide the majority of blood 
supply to the fovea and this variation may account for the specialized role of fovea in maintaining visual acuity5. 
The analysis of CV of CT and LCVT shows maximum consistency in the macular segment as compared to other 
quadrants. The inferior quadrant was noted to have maximum variation of CT and LCVT.

Analysis of the watershed zones plays a significant role in understanding the distribution of the choroidal 
vasculature. This has been made possible by the pioneering work by Hayreh. However, the distribution patterns of 
these segmental watershed zones have a high interindividual variation thereby precluding any generalized pattern 
in the normal population25. The watershed zone is present at or near the disc in majority of the eyes. This explains 
the wide variability and reduced CT and LCVT in the peripapillary region.

The study has certain limitations due to its small sample size and cross-sectional nature. The effect of age, 
gender and axial length on CT and LCVT are difficult to comment due to small numbers in each category. The 
scans included only line scans in horizontal and vertical meridians, volumetric evaluation of region may help in 
better understanding of the choroidal vascular network and thickness analysis. The involvement of only a single 
observer could have added a certain amount of bias, however, the intraobserver reproducibility was excellent 
(ICC = 0.94 to 0.96). Extrapolation of these findings of the normal eyes to the diseased eyes may be difficult. The 
presence of mirror artifact in the retinal periphery due to alterations in globe contour limits the image acquisition 
beyond a certain extent.

In conclusion, this study provides an understanding of the choroidal architecture up to the mid-equator along 
with the details about the regional differences in the CT and LCVT in healthy eyes. Choroid is thickest at fovea 
and thickness reduces towards periphery. The CT and LCVT appear to more consistent at macular segments, 

Figure 3. (Left) and (Right) show scatter plots of large choroidal vessel thickness (LCVT; µ) on Y-axis and 
choroidal thickness (CT; µ) on X-axis in the horizontal and vertical meridian respectively with a statistically 
significant correlation (both p < 0.001).
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however, LCVT does not contribute significantly to SFCT compared to the peripheral points. Future studies about 
variation of these choroidal parameters using wide-field OCT imaging in different chorioretinal diseases could 
provide detailed information about the disease-specific changes.

Methodology. The study undertaken was an observational, cross-sectional study involving only healthy sub-
jects. The study was conducted at the Eye Clinic, Sacco Hospital (Milan, Italy) and at the Eye Clinic, S. Maria Della 
Misericordia Hospital (Perugia, Italy) after prior approval from the ethics committee of the respective institutes. 
All the study procedures adhered to the tenets of the declaration of Helsinki. A written, informed consent detail-
ing the nature of the study and the risks involved was obtained from all the study participants.

The study included healthy individuals of more than 18 years of age with best-corrected visual acuity (BCVA) 
of <0.09 logarithm of minimum angle of resolution (logMAR) (Snellen acuity >20/25). The refractive error 
(spherical equivalent) in the study subjects was ±≤3 diopter (D) with no ongoing or prior history of ocular or 
systemic disease known to affect retinal or choroidal morphology or physiology.

A comprehensive ocular examination including refraction, BCVA, slit lamp biomicroscopy, IOP, dilated fun-
dus examination using indirect ophthalmoscopy and +90D noncontact lens along with axial length measure-
ments was undertaken to rule out any occult ocular pathology. Systemic examination included a general physical 
examination and measurement of SBP and DBP. MAP was derived from SBP and DBP (=2/3 of DBP +1/3 of 
SBP). MOPP was derived from MAP and IOP i.e. 2/3 of difference between MAP and IOP.

Choroidal Imaging. The OCT scans were obtained using Spectralis® HRA + OCT (Heidelberg Engineering, 
Heidelberg, Germany) in automated real-time mode at 100 frames/scan. A line scan of high resolution (quality 
index [QI] more than 30 dB) passing through the fovea in primary gaze was chosen in both horizontal and ver-
tical meridian for detailed analysis. Separate line scans were taken in different directions of gaze involving all 
quadrants. The images were then manually montaged after removing any overlapped areas to obtain a composite 
image. The choroidal imaging was done during morning hours (9 am to 12 pm) to avoid any diurnal fluctuation 
in choroidal parameters.

Measurement of CT and LCVT. Using previously reported automated algorithm, outer and inner choroidal 
boundaries were delineated26. CT was defined as the perpendicular distance between the hyperreflective lines 
of Bruch’s membrane and choroidoscleral interface (CSI). LCVT was measured at the same or any point within 
close proximity of the point of measurement of CT if a large choroidal vessel (≥100 µ) was present near CSI. The 
arbitrary cut-off of 100 µ was chosen as per a previous publication in the absence of any well defined criteria for 
large choroidal vessel27. The unit of measurement was defined as the distance between the temporal margin of 
the optic disc and center of fovea as described in our previous and other publications10,20. Macular segment was 
defined as twice the disc-fovea distance in both the horizontal and vertical meridian. The respective quadrants 
were described similarly as 2x disc-fovea distance in each meridian. CT and LCVT were measured at each unit 
distance from the disk margin in both directions in horizontal and from fovea in the vertical direction. CT and 
LCVT measurements were done in three areas separately in the horizontal (macular, nasal and temporal quad-
rants) and vertical scans (macular, superior and inferior quadrants). In view of the absence of choroidal tissue 
at the site of the optic disc, this area was not considered for any measurements. A total of 8 and 7 points were 
assessed in the horizontal and vertical scan respectively as depicted in Fig. 4.

Figure 4. Shows a representative fundus photograph (montage) of right eye with arrows showing the 
direction of line scans across both horizontal and vertical meridian (left side). Top-right and top-bottom 
shows representative wide-field optical coherence tomography (WF-OCT) in horizontal and vertical meridian 
respectively showing the choroidal thickness (CT) and large vessel choroidal thickness (LCVT) in macular 
segments and all four quadrants. HSF, horizontal subfoveal; VSF, vertical subfoveal; TM, NM, SM, IM represent 
temporal, nasal, superior and inferior macular points respectively. T1, T2, N1, N2, N3, S1, S2, I1 and I2 are 
points of measurements in respective quadrants.
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The LCVT percentage was measured by dividing the mean LCVT with CT and multiplying the outcome by 
100 (LCVT/CTx100). All the measurements were done by a single masked observer (MAR) and repeated twice 
for 3 prefixed points in both horizontal and vertical meridian after a gap of one week to eliminate any potential 
source of error. Intraclass correlation coefficient (ICC) was calculated to measure intraobserver reproducibility.

Statistical analysis. All the measured variables were tabulated and expressed as mean with standard devia-
tion (mean ± SD). LCVT was also expressed as percentage of CT. Nested ANOVA test was done to study variation 
of CT and LCVT in different segments along with the pairwise comparisons if differences were statistically sig-
nificant. Pearson correlation was used to study the relationship between CT and LCVT in both the meridians. We 
also studied the effect of age, gender, refraction, axial length, IOP, quadrant and blood pressure on CT and LCVT 
using linear regression model. P value of ≤0.05 was considered statistically significant. The statistical analysis was 
done using R Statistic Software (R version 3.3.1 - The R Foundation for Statistical Computing).

The datasets generated and analyzed during the current study are available from the corresponding author on 
reasonable request.
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	Figure 1 (Top) Shows graphical representation of variation of choroidal thickness (CT) and large choroidal vessel thickness (LCVT).
	Figure 2 Shows a bar graph comprising mean of choroidal thickness (CT) and large choroidal vascular thickness (LCVT) along with percentage contribution of LCVT in CT in both horizontal and vertical meridian.
	Figure 3 (Left) and (Right) show scatter plots of large choroidal vessel thickness (LCVT µ) on Y-axis and choroidal thickness (CT µ) on X-axis in the horizontal and vertical meridian respectively with a statistically significant correlation (both p < 0.
	Figure 4 Shows a representative fundus photograph (montage) of right eye with arrows showing the direction of line scans across both horizontal and vertical meridian (left side).
	Table 1 Shows the mean and standard deviation (SD) of choroidal thickness (CT) and large choroidal vessel thickness (LCVT) in horizontal and vertical meridians involving all locations in macular segments and all four quadrants.




