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We present a flexible scheme to realize non-Markovian dynamics of an electronic spin qubit, using a nitrogen-
vacancy center in diamond where the inherent nitrogen spin serves as a regulator of the dynamics. By changing
the population of the nitrogen spin, we show that we can smoothly tune the non-Markovianity of the electron
spin’s dynamics. Furthermore, we examine the decoherence dynamics induced by the spin bath to exclude other
sources of non-Markovianity. The amount of collected measurement data is kept at a minimum by employing
Bayesian data analysis. This allows for a precise quantification of the parameters involved in the description of
the dynamics and a prediction of so far unobserved data points.

Introduction.— Realistic physical systems are subject to en-
vironmental noise which affects their quantum dynamics [1–
4]. The rapidly advancing development of quantum technolo-
gies which are aiming to make us of quantum dynamics in a
broad range of applications such as quantum computing [5],
quantum cryptography [6], quantum simulation [7], quantum
sensing [8] and quantum metrology [9] calls for a detailed un-
derstanding of these noise sources that may alter their func-
tion.

Typically, environmental noise does not induce featureless
white noise on the system, but can exhibit spatial and tempo-
ral correlations that can be used when addressing the system-
environment interaction. Non-Markovian noise, that is the
subject of this work, exhibits temporal correlation originating
from some slow internal evolution of the environment [2, 10–
12]. On the one hand, one may combat such non-Markovian
noise by means of dynamical decoupling methods, which al-
low to partially shield the system of interest from the impact
of noise [13–15]. On the other hand, it has been recognised
early on that noise may also be a resource, e.g., for the gen-
eration of entangled states [16, 17]. In particular, one may
explore the specific advantages that colored noise can pro-
vide here; this has been shown in several reports [16, 18–25].
More recently, the introduction of definite and general ways to
quantify the degree of non-Markovianity of quantum dynam-
ics [10, 11, 26–31] has provided a further boost for the quanti-
tative understanding of the role of non-Markovianity in differ-
ent settings and has increased the ability to manipulate open-
system dynamics, in view of possible strategies to reduce the
detrimental effects of noise. In fact, an extended control over
the amount of non-Markovianity has been demonstrated ex-
perimentally in trapped ion systems [32] and photonic setups
[33–36].

Here, we want to take a further step in the direction of the
full control of the non-Markovianity of quantum dynamics,
by investigating theoretically and experimentally the different
dynamical regimes experienced by an electronic spin qubit
of a nitrogen-vacancy center (NV) in diamond [37, 38].
We stress that the system at hand is undergoing a genuine

open-system evolution, in which the main source of noise
inducing non-Markovianity, namely, the nitrogen nuclear
spin is inherent part of the NV center. The procedure in
our work consists of two steps: First a characterization
of the natural background noise to exclude any source of
non-Markovianity besides the nitrogen spin. Therefore we
examine the free-induction decay (FID) of the electron spin
while the interaction with the nitrogen spin is suppressed.
The FID is induced by various sources, such as 13C spins
or additional nitrogen impurities, the diamond surface, but
also experimental limitations, e.g., drifts in the optical setup.
We show that the obtained data can be analyzed efficiently
using Bayesian inference methods [39–42]. These allow for a
large number of free parameters and determine from a multi-
dimensional probability distribution the most likely parameter
set describing the data. They are therefore particularly well-
suited to fully characterize the open-system dynamics at hand.
Secondly, we study how to use the nitrogen spin inherent to
the NV center to control the degree of non-Markovianity of
the electronic spin. Therefore, we manipulate the polarization
of the nitrogen spin to induce collapses and revivals on the
electronic spin coherence, while the polarization direction of
the nitrogen spin defines the amplitude of these collapses and
revivals. The degree of non-Markovianity corresponding to
the different configurations is measured and compared with
the theoretical predictions provided by the Bayesian data
analysis, showing that we can achieve a full control on the
amount of non-Markovianity involved in the evolution of this
solid-state system.

Model.— The NV center is a point defect in the diamond
lattice consisting of a substitutional nitrogen atom adjacent to
a vacancy. Its negatively charged state possesses an electronic
spin triplet 3A ground state [37] with a zero field splitting of
∆ = 2π · 2.87 GHz between the |ms = 0〉 and |ms = ±1〉 states
(from now on we denote S z |ms = i〉 = i |ms = i〉 = i |i〉). Inter-
action with the inherent nitrogen nuclear spin results in a hy-
perfine splitting of the |±1〉 states, depending on the nitrogen
isotope, here 14N (I = 1), which results in a hyperfine splitting
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FIG. 1: (Color online) The sequence for the Ramsey experiments in
(a) consists of a preparation phase, where the pulse R(φ) can control
the population of the 14N spin, two π/2 pulses (either x or y phase)
on the electron spin and the subsequent readout. During the free
period t, the spins undergo the conditional evolution illustrated in
(b). If the electron spin populates |−1〉, it produces a hyperfine field
which induces rotations of the 14N spin. Therefore the pair switches
continuously between a product (left) and an entangled state (right)
[the roles of 14N and electron spin are interchangeable].

of A‖ ≈ 2.14 MHz [45]. We use a low nitrogen (< 1 ppb) di-
amond with a concentration of 0.2% 13C nuclear spins to pro-
long the electron spin coherence time. We identified a native
NV center, located deep (few µm) below the diamond surface.
The Hamiltonian of this configuration is given by [38]

Hlab = ∆S 2
z + γeBzS z + PI2

z + γN BzIz

+S zA‖Iz + A⊥
(
S xIx + S yIy

)
+ HR (1)

where S (I) are the electron (14N ) spin-1 operators, Bz a mag-
netic field applied along the NV symmetry axis and the elec-
tronic (14N ) gyromagnetic ratio is labeled by γe (γN), the
quadrupole splitting P and orthogonal interaction A⊥. An ap-
plied field of Bz = 453 G lifts the degeneracy between the
|±1〉 states. The Hamiltonian HR contains all remaining terms
originating from the environment of the NV, e.g. 13C spins and
other nitrogen impurities, including their coupling to the elec-
tron spin, but may also considered as an effective Hamiltonian
responsible for experimental imperfections [43, 44]. We apply
the secular approximation due to the large zero field splitting
∆ � A⊥ ≈ 2π ·2.70 MHz [45], which prohibits flips of the 14N
spin and also removes all terms in HR not coupling to S z [43].
Because all free energy terms commute with the remaining in-
teraction Hamiltonian S zA‖Iz, these terms can be removed in
a rotating frame yielding

H = S zA‖Iz + HR. (2)

We employ the electron spin as a noise sensor for the envi-
ronment choosing the subspace spanned by the |0〉 and |−1〉
state as an artificial qubit. Because of the pure dephasing
Hamiltonian, the reduced density matrix of the electron spin
only experiences a modulation of the coherence elements,
hence the FID is efficiently measured by a Ramsey experi-
ment, whose scheme is sketched in Fig.1(a). The electron spin
preparation and readout is achieved optically. Spin-selective,
non-radiative inter-system crossing to a metastable singlet
state between electronic excited and ground state [37] enables
a strong electron spin polarization into the |0〉 ground state.

The higher photoluminescence intensity of the |0〉 state allows
to determine the electron spin state. We polarize the nitrogen
nuclear spin in the |mI = 1〉 state by optical pumping [46] and
rotate it by a radio frequency pulse R(φ) to a desired coherent
state. After polarization, a π/2 pulse flips the electron spin to
the superposition state |ψ〉 = (|0〉 + |−1〉)/

√
2. For a time t

the system will evolve freely depending on the electron spin
state as depicted in Fig.1(b), i.e. according to the conditional
Hamiltonian Hi = 〈i|H |i〉. Assuming an initial product state,
ρ = ρ(e) ⊗ρ(N) ⊗ρ(R) (with ρ(e) = |ψ〉 〈ψ| and ρ(R) arbitrary), the
dynamic of the electron spin is completely described by the
coherence modulation, i.e.

ρ(e)
0,−1(t) ∝ 〈0| trN,R

[
ρ(t)

]
|−1〉 = trN,R

[
e−itH0ρ(N) ⊗ ρ(R)eitH−1

]
,

(3)
where trN,R [•] denotes the partial trace over the nitrogen and
bath degrees of freedom. Assuming no residual population
left in |−1〉, the length of the Bloch vector associated with the
qubit in the {|0〉 , |1〉} subspace is equivalent to the coherence.
This length can directly be calculated as

r(t) =
[
p2

0 + p2
1 + p2

−1 + 2p0(p1 + p−1) cos(A‖t)

+2p1 p−1 cos(2A‖t)
]1/2
|L(t)|, (4)

where L(t) = tr
[
e−it〈0|HR |0〉ρ(R)eit〈−1|HR |−1〉

]
and pi is the initial

population in the state |mI = i〉 of the nitrogen spin. Using the
normalization constraint, we parameterize p1 = p cos2(φ/2),
p0 = p sin2(φ/2) and p−1 = 1 − p where φ is a mixing an-
gle and p the amount of population in the desired subspace
of |mI = 0, 1〉. For the readout, the electron spin is rotated
back to the z-axis (either around x or y) and after a subsequent
readout pulse the fluorescence light is recorded proportional
to r(t). The detailed calculation of L(t) quickly becomes te-
dious, as it requires explicit knowledge about the bath and the
related coupling strengths. However it can often be modeled

effectively as L(t) = exp
[
−

(
t/T ∗2

)2
]

[47].
Since we are dealing with a pure dephasing dynamics,

all common definitions of (non-)Markovianity coincide [48].
Explicitly, the dynamics is non-Markovian if and only if
dr(t)/dt > 0 for some time t ≥ 0. On the other hand, the differ-
ent ways to quantify the degree of non-Markovianity are not
equivalent [49, 50]. In particular, we choose to measure the
amount of non-Markovianity via the trace distance [27] which
identifies non-Markovian evolutions as those with a back flow
of information from the environment. By taking an integral
over all the time intervals where the trace distance increases
and maximizing over the couple of initial states, one can then
define a measure of non-Markovianity N . For the model at
hand, this is simply given by

N =
∑

m

r(τ′m) − r(τm), (5)

where m labels all intervals (τm, τ
′
m) with r(τ′m) − r(τm) > 0.

Indeed, we have N = 0 for a Markovian evolution, corre-
sponding to a monotonic decay of the electronic coherence,
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FIG. 2: (Color online) FID of curve of the NV center in units of
the measured photoluminescence (PL). The negligible values of the
decay constants āi in the top right histogram of sampled values sup-
ports the purely Gaussian shape of L(t). The histogram in the lower
left assembles the distribution for T ∗2 with the HPD interval marked
by the horizontal line. From the initial oscillations at short times,
the Bayesian method can extract also other parameters (distribu-
tions not shown), as p = 0.972 with HPD [0.943, 1], φ = 0.191
with HPD [0.151, 0.227] and A‖ = 2π · 2.143 MHz where HPD
2π · [2.137, 2.148] MHz.

while any revival in the coherence will induce an increase of
the non-Markovianity.

In order to analyze the collected data and predict un-
performed measurements we set up a probabilistic model
(see also the Supplementary Material [51]). Given a prior
(probability) distribution P(Θ) on a set Θ of paramaters to be
estimated, Bayes theorem provides the posterior distribution
P(Θ|X) quantifying the probability that the model employing
Θ accurately describes the data X, P(Θ|X) ∝ P (X|Θ)P(Θ).
Here P (X|Θ) is the likelihood that we obtain X given Θ. A
Markov Chain Monte Carlo (MCMC) algorithm samples the
posterior distribution after specifying likelihood and prior
yielding two main advantages: First, any correlation between
different parameters is inherent to the model, and second,
error bounds arise as a natural result from the sampling
process. Using probability theory, marginals for all elements
in Θ can be obtained [40, 41].

FID decay under the influence of the bath.— In a prelim-
inary experiment we explore the agreement of the FID en-
velope induced by HR with a monotonic decay to exclude
contributions to a non-Markovian evolution. Therefore, po-
larization of the 14N spin is performed such that p0 = 1 (and
R(φ) ≡ 1). This enables a measurement of |L(t)|. Fig.2(a)

shows the FID envelope. We model the observed likelihood
distribution by a normal distribution with a mean µ = r(t) + d
and |L(t)| = exp

(
−

∑5
i=0 aiti

)
, see also Eq.(4). Here, a0 is a

constant to normalize the measured contrast and d a possi-
ble bias in the asymptotic regime. After 50000 iterations of
the chosen sampling algorithm [51], we plot the red curve us-
ing the medians of the sampled parameters and the marginals
of the posterior distribution for all ai>0 in the insets. The
experimentally measured contrast at specific times is shown
with black dots. The FID envelope is well characterized by a

L(t) = exp
[
−

(
t/T ∗2

)2
]
, i.e. the dynamic is fully Markovian.

We extract the characteristic timescale from the marginal of
a2 (we take the median as the point estimate and denote it by
•̄) and obtain T ∗2 = 22.262 µs where the 95% highest poste-
rior density (HPD) interval (i.e. 95% of sampling values lie
in that region) is [21.878, 22.868] µs. Coherence envelopes of
this form are extremely useful for frequency estimation using
entangled states, since the Gaussian decay ensures a super-
classical scaling of the estimation error with the number of
probes [22].

A careful examination of the short time regime reveals
oscillations in the FID curve (see inset in Fig.2), suggesting
that the nitrogen spin is not fully polarized, as confirmed by
the Bayesian method exploiting Eq.(4) of our model [51].
The procedure is able to extract the different contributions
to the decay stemming from the bath (L(t)), but also the pa-
rameters describing the 14N spin, i.e. we obtain the coupling
strength A‖ and the parameters φ, p (values see Fig.2) for
the population distribution [up to the symmetry in |mI = ±1〉
which is not resolvable in such experiment, see Eq.(4)].

Tuneable non-Markovianity.— An imperfectly polarized
14N spin, i.e. a coherent or incoherent mixture of Iz eigen-
states, induces oscillations on the electron spin coherence (see
Fig.2), consequently the reduced electron spin state undergoes
a non-Markovian evolution. Vice versa, any population of the
14N spin state undergoes the conditional evolution governed
by the Hamiltonian (2). At the point of maximal achievable
correlations [Fig.1(b), right], the reduced state of the electron
spin has reached its point of minimal coherence. Following is
an increase in coherence corresponding to a reduction of cor-
relations [55] between the two spins. Consequently, changing
the orientation of the polarization of the nitrogen spin allows
to control the non-Markovianity of the electron spin in a con-
tinuous manner.

In order to measure experimentally the amount of non-
Markovianity, we follow again the Ramsey scheme, Fig.1(a).
After polarization, the nitrogen spin population can be
manipulated by a resonant radio-frequency pulse R(φ) to
create the nuclear spin state |ψI〉 = sin (φ/2) |mI = 0〉 +

cos (φ/2) |mI = 1〉. We track the evolution of the electron
spin for 14 different values of φ up to a maximum time of
T = 1.226 µs and record the oscillations in the coherence.

Let us now describe the probabilistic model for this spe-
cific setup (see [51] for further details). First, note that a the-
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FIG. 3: (Color online) Ramsey measurements are performed for dif-
ferent values of φ (top left, only φ = 2π/3 is shown, black circles)
and the non-Markovianity measure N ′ (lower plot, black circles) is
evaluated, which are both fed as observations into the likelihood dis-
tribution. The expectation value of the likelihood is constructed ac-
cording to N ′, while the prior distributions are taken as normal dis-
tributions around physically reasonable values [51]. The HPD pa-
rameter set Θ̄ can be plugged into the model defining the likelihood,
which results in the maximum a posteriori inference (red curve) to
the Ramsey data. The posterior distribution is sampled for different
and, crucially, not measured values of φ. This results in an expecta-
tion value 〈N ′〉 which is taken with respect to the posterior, shown
as the red curve in the lower plot along with the blue region mark-
ing the standard deviation. The black dotted line corresponds to the
theory result neglecting the varying readout contrast and remaining
population in |mI = −1〉.

oretical measure of non-Markovianity as defined in Eq.(5) re-
quires processed data (e.g. fits). Otherwise, fluctuations will
dominate the measure, e.g. for a constant coherence function
fluctuations of the measurement results accumulate and give
a positive measure. To avoid this issue we exploit the oscil-
latory nature of the modulation and stop the recording of the
oscillation before finishing an integer number of periods. The
requirement of an increase of the coherence in Eq.(3) is then
relaxed and the sum runs over all intervals, so that the fluctua-
tions in the data are averaged out. The model for the measure
then possesses the simple formN ′(φ) = C(φ){r[φ, p(φ),T ]−1}
where C(φ) is a parameter describing the measurement con-
trast [56] and 1 − p(φ) the population left in |mI = −1〉. We
infer the model on the measured data to obtain the informa-
tion of these functional dependencies, see the upper part of
Fig.3. Afterwards, the obtained posterior distribution is used
to predict N ′(φ) for different values of φ by drawing multiple
samples and calculating the mean values.

The theoretical and experimental results are reported in
Fig.3. In the lower part, black dots mark N ′(φ) for the 14

measured instances of φ. The theory curve according to
Eq.(5) in black (dotted) is rescaled to match the values of the
contrast. Its deviation from the red curve, which illustrates
the expectation value of N ′(φ) sampled with respect to the
posterior distribution, is due to the fact that the Bayesian
model includes the angle dependent contrast and the nitrogen
population left in |mI = −1〉. In other words, the posterior
distribution predictions of our parameters, together with the
model in Eq.(4) enable us to simulate further measurements
of the experiment. We show the standard deviation of the
sampling as the blue region, which covers most of the
actual measurements. This standard deviation is due to error
sources not included explicitly in the model, e.g., remaining
population of the electron spin in |ms = 1〉 or drifts in the
experimental setup.

Conclusion.— We experimentally demonstrated the control
of the degree of non-Markovianity in the dynamics of an NV
electron spin. To that end, we first examined the FID enve-
lope and employed a Bayesian probabilistic model to ensure
that the degree of non-Markovianity is induced by the resid-
ual background resulting mainly from a nuclear spin environ-
ment. Subsequently, we exploited the inherent 14N spin to
induce modulations on the electron spin coherence. The 14N
provides us with a natural source of non-Markovianity, which,
depending on its initial preparation, will be able to exchange
a certain amount of information with the electron spin, influ-
encing the evolution of the latter. Despite of the initial con-
trol the 14N remains a natural source of non-Markovianity as
no further interventions after the preparation have to be per-
formed. The experimental effort is kept sufficiently low by us-
ing Bayesian techniques, which allow to predict the shape of
the considered non-Markovianity measure. Let us also men-
tion that the scheme presented may be extended by the utiliza-
tion of strongly coupled 13C spins or interacting NV centers.
Using the same technique as described here, additional param-
eters to shape the evolution can be introduced. Further modi-
fications could be implemented as well via a classical driving
with random, but temporally correlated amplitude.

In summary, the configuration investigated here allows the
assembly of an experimental platform with intrinsic non-
Markovianity. This provides a building block for the system-
atic investigation of memory effects in the performance of,
e.g., quantum sensors and quantum metrology protocols, as
well as facilitating the controllable inclusion of memory in
quantum simulations of open quantum system dynamics.

Note added: During the writing up of our results, related
experimental results on non Markovian features of NV center
dynamics were reported in [57] and [58].
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Supplemental Material:
Controllable Non-Markovianity for a Spin Qubit in Diamond

I. EXPERIMENTAL DETAILS

We present an introduction to the experimental platform,
namely the nitrogen-vacancy center and the setup used to per-
form the measurement.

A. The nitrogen vacancy center

The nitrogen vacancy center (NV) is a point defect in the
diamond lattice (Fig.S1a), where it replaces two adjacent
carbon atoms. It consists of a nitrogen at the first lattice
site, while the other one remains empty. The three dangling
carbon bounds donate three electrons to the NV, while the
nitrogen atom possesses two free electrons. Together with an
additional electron of an external donor, the NV center can
form a negatively charged state which has an electronic spin
of S = 1. In the electronic ground state, this forms a spin
triplet 3A with a zero field splitting of ∆ = 2π · 2.87 GHz
between the |mS = 0〉 and |mS = ±1〉 states [S1]. Hyperfine
interaction with the inherent nitrogen nuclear spin results in
further splitting of the |mS = ±1〉 states, depending on the
nitrogen isotope. (A‖ = 2.14 MHz for the used 14N isotope
[S2], I = 1). This splitting is sketched in Fig.S1b.

The preparation and readout of the electron spin is per-
formed by optical excitation of the 3A state into the 3E state.
This transition is spin preserving, i.e. the population distri-
bution in the |mS 〉 is not touched. The decay back to the
3A is however strongly spin selective. The |mS = 0〉 state
radiatively decays into its ground state, while the |mS = ±1〉
mainly passes through a non-radiative inter-system crossing
to a metastable singlet state between excited and ground
state [S2], which also decays preferentially into the |mS = 0〉
ground state, i.e. this transition is not spin preserving. Firstly,
this results in a higher intensity of the |mS = 0〉 state hence
this difference in luminescence is used to determine the elec-
tron spin state. Therefore we will call the |mS = 0〉 state a
“bright” state, while we refer the |mS = ±1〉 as “dark” states.
Secondly, long enough optical pumping polarizes the electron
spin into the |mS = 0〉 ground state.

The application of an external magnetic field along the sym-
metry axis of the NV center (i.e. an axis through the nitro-
gen atom and the vacency), splits the ”darker” |mS = ±1〉
states from each other due to the Zeeman effect. In this work,
we employ the |mS = 0〉 and |mS = −1〉 states as our work-
ing transition for the artificial qubit. Furthermore, the ap-
plication of the external magnetic field close to 500 G (here
we used 453 G) sets the steady state for optical pumping to
|mS = 0,mI = +1〉 [S3]. This is due to a spin level anticross-
ing in the 3E state which allows energy conserving spin flip-
flop processes between the electron and nitrogen spin.

(a)

1A

3A

3E

(b)

FIG. S1: Properties of the nitrogen-vacency center. Panel (a) illus-
trates the geometry of the NV center. It exhibits a symmetry for
rotations of 2π/3 around the axis connecting the nitrogen atom and
the vacency. The corresponding simplified energy-level scheme is
shown in (b). The 3A electronic spin ground state triplet is excited
by a green laser (green arrow) and subsequently decays according
to the electronic spin state. Spin preserving radiative decay is indi-
cated by the red arrow. The |mS = ±1〉 states preferentially decay
by a non-radiative path (grey arrows) through an intermediate singlet
state 1A to the |mS = 0〉 state, which induces a difference in photolu-
minescence for the different inital states and enables polarization into
|mS = 0〉. Additionally, the |mS = ±1〉 levels are split by the hyper-
fine interaction with the inherent nitrogen nuclear spin (three levels
in the dotted circle shown exemplary for |mS = −1〉).

For an in depth description of the NV center and its proper-
ties we refer to reference [S4].

B. Sample information

The diamond used in this work is a low nitrogen electronic
grade diamond, grown by chemical vapor deposition with a
depleted 13C concentration of 0.2 % (natural concentration
1.1 %). The used NV center is located deep (few µm) be-
low the diamond surface. The external magnetic field had a
strength of 453 G.

A wire spanned over the diamond surface is used to real-
ize coherent manipulations of the electron spin transition (mi-
crowave) or nitrogen spin transitions (radio-frequency). Dur-
ing each measurement, we refocus the position of the NV cen-
ter every 40 seconds to overcome drifts in the optical setup. A
precise measurement of the microwave transition frequency
of the electron spin every 300 seconds ensures the elimination
of possible transition frequency detunings during the experi-
ment.
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FIG. S2: Pulse sequence for the free induction decay measurement.
After the initial polarization a π/2 microwave pulse flips the electron
spin to a superposition state in the equatorial plane, where it freely
evolves for a given time t. Afterwards a second π/2 pulse flips the
electron spin back to the z-axis (either bright or dark state), where
the spin state is read out optically.

C. FID measurement

To examine the noise felt by the electron spin (besides the
one originating the nitrogen spin), Ramsey experiments are
performed to measure the free induction decay (FID) of the
coherence. Therefore, we utilize the pulse sequence shown in
Fig.S2. After the initial polarization into |mS = 0〉, a π/2 mi-
crowave pulse flips the electron spin to a superposition state
in the equatorial plane. During the free evolution time t, the
electron spin picks up a phase, which originates from further
impurities and spins in the diamond lattice. The origin of this
phase can also be understood as a magnetic field along the z-
axis of the electron spin, which fluctuates in a stochastic fash-
ion. Afterwards, a second π/2 pulse flips the electron spin
back to the z-axis. The experiment is performed twice, where
either the dark or the bright state are chosen for the readout.
The resulting dark and bright state fluorescence signals are
subtracted to remove systematic errors in the measurement
setup.

D. Non-Markovianity control experiment

We performed Ramsey experiments on the electron spin to
demonstrate the precise control of coherence modulations via
the population of the nitrogen nuclear spin. The pulse se-
quence, shown in Fig.S3, follows the same procedure as the
one, discussed in section I C. However, we extend the pulse
sequence by a radio-frequency pulse to manipulate the popu-
lation of the |mI = 1〉 and |mI = 0〉 states coherently after the
initial polarisation (|mI = −1〉 is not used in this work). The
corresponding pulse length is determined by a Rabi measure-
ment between the |mI = 0〉 and |mI = 1〉 states. Since shifts of
the electrons transition (microwave-)frequency do not exceed
∼ 10 kHz, the transition (radio-)frequency between the nitro-
gen nuclear spin states is assumed to be constant due to the
smaller gyromagnetic ratio. Hence it is not refocused during
the measurement. The coherent control enables us to prepare
any arbitrary state |ψ〉 = cos (φ/2) |mI = 1〉+sin (φ/2) |mI = 0〉
for the nitrogen nuclear spin.

After the radio-frequency pulse, the pulse sequence is iden-
tical to the sequence used in the FID experiment. The first π/2
microwave pulse flips the electron spin to the equatorial plane,
where it freely evolves during the given time t. Afterwards the
electron spin is flipped back to the z-axis to measure the fluo-
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FIG. S3: Pulse sequence to demonstrate of the precise control of co-
herence modulations via the nitrogen nuclear spin population. By
applying a radio-frequency pulse R(φ) on the nitrogen nuclear spin,
one can utilize the method described in Fig.S2 to measure the free
induction decay. Since non-zero population in multiple nitrogen nu-
clear spin states result in a continuous alteration between a correlated
and uncorrelated state, one will observe an oscillation in the coher-
ence. Changing the phase of the last electronic π/2 pulse enables a
full readout of its Bloch vector length.

FIG. S4: Oscillations in the length of the electron spin’s Bloch vector.
The curves show three initial preparations of the nitrogen spin. Note
the difference in amplitude and offset but equality in frequency and
phase. The curve for φ = 0 (blue triangles) is supposed to show no
oscillations theoretically, but of course it is influenced in practice by
fluctuations in the measurement.

rescence. Changing the phase of the last π/2 microwave pulse,
i.e. either inducing a rotation around the x of y axis enables
full readout of the x and y components of the Bloch vector
which are required to calculate the length given in the main
text.

One observes an oscillating fluorescence signal, where
three examples are shown in Fig.S4. The fluorescence signal
corresponds to the absolute value of the Bloch vector length,
which changes due to continuous correlation and decorrela-
tion of the electron spin and nitrogen nuclear spin.

II. BAYESIAN INFERENCE

We describe the basic formalism underlying the Bayesian
approach adopted in the main text.
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A. Introduction

The problem of assigning observed outcomes to possible
causes, is a daily faced problem in science. We may catego-
rize possible causes with numbers which we call “probabili-
ties”. Contrary to a frequentist approach, where these proba-
bilities are understood as the relative number of occurrences
of precisely that cause (in the limit of infinite observations),
the Bayesian approach takes probabilities as a measure of
certainty, i.e., “how much one believes a certain cause to be
the true one”. Within the Bayesian approach, all causes, e.g.
parameters to be inferred are probability distributions them-
selves, while the frequentist approach assumes them to be
constant. For an in-depth review on Bayesian inference, see
the references [S5–S7].

We denote a random variable for the parameters by Θ and
a corresponding value by θ. Note that in general θ can be
a vector. The corresponding probability distribution is then
written as P(Θ). Let us introduce a second random variable
for the measured data, X, where the specific value is x. The
probability, to make certain observation X = x, i.e. a data
point or a whole set of data, given some model Θ is then the
conditional probability

P(X = x|Θ = θ) =
P(X = x,Θ = θ)
P(Θ = θ)

. (S1)

Note that the probability in the nominator on the r.h.s. denotes
the probability to find x and θ, while the l.h.s. is the probabil-
ity to find x given θ. From now on we will drop the notation
like Θ = θ and use the value alone.

Instead of the probability to make a specific observation x,
we are rather interested in the parameter θ. Hence, we can
formulate the conditional probability the other way round, i.e.

P(θ|x) =
P(x, θ)
P(x)

. (S2)

Usually, we do not have access to P(x, θ), hence we combine
Eq. (S1) and (S2) to obtain Bayes theorem,

P(θ|x) =
P(x|θ)P(θ)
P(x)

. (S3)

This theorem describes the desired object, i.e. the posterior
probability distribution P(Θ|X = x). This object quantifies
“how certain we are that a given Θ = θ is the cause of the out-
come X = x”. The r.h.s. of the theorem is specified in the fol-
lowing way. The likelihood function for Θ is P(X|Θ). While
it is a probability distribution for X given Θ, we can also think
of it as a function weighting the values of Θ to the usually
fixed, since observed, values X = x. The so called prior dis-
tribution P(Θ) is a powerful way to include prior knowledge
of the parameter. For example, a flat distribution would cor-
respond to no prior information. However, in the application
described in the main text, e.g. for estimates of the coupling
constant A⊥, we may choose a Gaussian distribution with a

mean value determined in earlier experiments. The only re-
maining quantity is the evidence P(X). While we are able to
express P(X) =

∫
dθP(X|Θ = θ)P(Θ = θ), we note that this

quantity only serves as a normalization constant, hence we
can neglect it and write Bayes theorem as

P(Θ|X) ∝ P(X|Θ)P(Θ) (S4)

Therefore, the posterior distribution is always totally deter-
mined by the likelihood function and the prior distribution.

Possessing the posterior distribution allows the calculation
of marginal probabilities, in case Θ has n dimensions. The
marginal distribution for one specific dimension of Θ quan-
tifies the probability distribution for this dimension alone, ir-
regardless of the distributions in other dimensions. In other
words, if we have the parameter θ = (θ1, θ2, . . . , θn) then the
marginal distribution for θi is given by

P(θi|x) =

∫
S

dθ1dθ2 . . . dθi−1dθi+1 . . . dθn P(θ|x), (S5)

where S the space of the allowed values for all θ j,i.
We can also use the posterior distribution to calculate a pos-

terior predictive. Integrating over θ yields the posterior pre-
dictive distribution

P(Y|X = x) =

∫
Θ

dθ P(Θ = θ|X = x)P(Y|Θ = θ) (S6)

where Y are a second set of observations, which have not yet
been detected in a real experiment. This is a powerful tool
to first validate the obtained posterior distribution, but it can
also be used to predict further observations due to the causes
specified with the parameters in Θ.

Usually, the posterior distribution cannot be calculated an-
alytically and even a numerical solution requires increasingly
large effort, when the dimension of the distributions increases.
However, one can use Markov-Chain-Monte-Carlo (MCMC)
methods to sample the r.h.s. of Eq.(S3) efficiently. This
technical detail goes well beyond the scope of this work and
many examples of these methods can be found [S6, S7]. Here
we use the No-U-Turn Sampler [S8], an extension to the
Hamilton-Monte-Carlo MCMC algorithm [S9]. The models
in this work have been implemented using the PyMC3 soft-
ware package for the Python programming language [S10].

Using these algorithms, the obtained posterior distribution
is given in terms of the relative frequencies, with which a spe-
cific realization of Θ appears. Calculating the marginals, gives
the relative frequencies of the values of a single parameter.
The point estimate, which we denote by an overbar •̄, is then
given by the median of the marginal posterior distribution (we
neglect multimodal distributions in this work), however the
uncertainty in this value is determined by the shape of the dis-
tribution. A natural way to summarize the distribution is the
interval of highest posterior density (HPD). The HPD speci-
fies the interval of values, which all have a higher probability
than the values outside the HPD. Usually, the HPD is taken to



4

cover a larger proportion of the distribution, e.g., as we also
chose in the main text, 95% of all values which occurred dur-
ing the sampling. An easy analogy is the width of a standard
derivation, which contains 95.45% of its values within a re-
gion of width 4σ around its mean value. In case the marginal
posterior distribution would be Gaussian, the HPD and the 4σ
region would be equivalent.

B. Free Induction Decay

We recall the expression for the length of the Bloch vector,
Eq.(4) in the main text:

r(t) =
[
p2

0 + p2
1 + p2

−1 + 2p0(p1 + p−1) cos(A‖t)

+2p1 p−1 cos(2A‖t)
]1/2
|L(t)|, (S7)

where our assumption for L(t) is of the form

L(t) = e−
∑5

i=0 aiti
. (S8)

As a first step, we define the parameters to be inferred. Note
that we have p0 + p1 + p−1 = 1 and hence we can express these
three parameters in terms of two as described in the main text,
i.e. p1 = p cos2(φ/2), p0 = p sin2(φ/2) and p−1 = 1 − p.
Therefore we define the parameters θ = ({ai}, φ, p, A‖, σ). We
are looking for the coefficients {ai} fixing the FID envelope,
the populations of the nitrogen spin and the parallel coupling
constant A‖. To account for errors, we define σ as the stan-
dard deviation of the measurements in the experiment. Each
data point j for the FID envelope in Fig.2 of the main text is
uniquely determined by its time t j and its value, let’s call it
x j. We construct the likelihood function in the following way.
Each value x j of a random variable X = (X1, . . . ,Xn) is as-
sumed to be a draw from a normal distribution of variance σ2

and an expectation value µ j = r(t j)|θ, i.e. we have

P(X|θ) ∝ exp
{
−

[X − r(T )|θ]2

2σ2

}
(S9)

where we use the vector of measurement times T =

(t1, . . . , tn). Prior distributions for the parameters θ are also as-
sumed either to be normally distributed around their expected
value, e.g., A‖ ∼ N(2π · 2.14 MHz, σA‖ ), or distributed accord-
ing to a positive half normal distribution (all ai ≥ 0). Note
that the origin of σ is not explicitly specified, but it is an in-
herent quantity of the model. As mentioned in the main text,
it accounts for error sources not specified in the model, but
an unnaturally large σ may also indicate a falsely specified
model.

C. Non-Markovianity - Model

Given the pure dephasing dynamics of the electron spin,
it is enough to monitor its modulated coherence evolution as

FIG. S5: Illustration of the collected data. For visibility in plot (a),
we only show 3 exemplary data sets of the total 14 which have been
collected. The angle of each set collected for the analysis is shown
via a red dot at t = 0, which also illustrates the measurement con-
trast depending on the polarization direction of the nitrogen spin.
All curves have two full revivals at the same position as the one for
φ = 3π/4 (orange dots). From this data, one can compute the mod-
ified measure of non-Markovianity N ′ which results in panel (b).
Each curve for a single instance of φ results in a single point of N ′

(compare also Fig.3 in the main text).

explained in the main text. To demonstrate controllable non-
Markovianity, we monitored the length of the Bloch vector
for 14 different initial preparations of the nitrogen spin, i.e.
different values for φ (see the applied pulse angle of the radio
frequency field). In the following, we want to illustrate the
construction of the model used for the Bayesian inference.

1. We aim to describe the whole collected data by a com-
mon function, i.e. a model which gives the value of the
coherence depending on the given point in time and the
rotation angle of the nitrogen spin. The Bloch vector is
still described by Eq.(S7). Since we parametrized the
population of the nitrogen spin, we have

r(t, φ) =

{
2(1 − p)p cos(2A‖t) cos2

(
φ

2

)
+

4 − p(8 − 7p) + p2 cos(2φ)
4

+ p cos(A‖t)[2 − p + p cos(φ)] sin2
(
φ

2

) } 1
2

.(S10)

Since the maximal time of the free evolution was chosen
such that t ≤ T = 1.226 µs, we assume L(T ) ≈ L(0) ≈ 1
because of the long coherence time provided by the low
13C concentration.

2. Three of the 14 data sets are shown in Fig.S5(a). The
red curve at t = 0 (red circles mark the position of other
data sets) illustrate the dependence of the readout con-
trast on φ. To take this into account, we model the con-
trast via

C(φ) = Ca cos (Cν φ) + Cb, (S11)
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where Cβ are unknown constants to model amplitude
(a), frequency (ν) and offset (b) of the modulation. Each
of these are chosen as normally distributed variables.

3. Analogously to the contrast, we need to parametrize p
in terms of φ. This is less straight forward, however
a suitable parametrization can be found by mimicking
Rabi oscillations found in driven three level systems in
ladder configuration. We assume

p(φ) = 1 −
[
pb + pa sin(pν φ + pϕ)

]
. (S12)

4. Next, we need to define the measure of non-
Markovianity. In Fig.S5, note the fluctuations for φ = 0
(blue triangles) and φ = 2π (green squares). Ideally,
these measurements would correspond to a constant
which results in a zero value of the non-Markovianity
measure. However, equally distributed fluctuations will
be eliminated when we sum over all differences instead
of only the positive ones. This results in the definition of
the measure N ′. Calculating the measure analytically,
we arrive at

N ′(φ) = C(φ)
n−1∑
i=1

[
r(ti+1, φ)|p=p(φ) − r(ti, φ)|p=p(φ)

]
= C(φ)

[
r(T, φ)|p=p(φ) − 1

]
, (S13)

which was already given in the main text (with tn = T ).
The result for the measured data sets is also shown in
Fig.S5(b). Note that we always have r(T, φ) ≤ 1 so it is
always N ′(φ) ≤ 0. However, because of the periodicity
of r(t, φ) in time (for all angles φ, it is fixed by A‖), this
does not change the meaningfulness of the measure. In
particular, because the induced oscillation has the same
frequency for all φ and at t = T all trajectories of r(t, φ)
are in phase, the amplitude of the oscillation is sufficient
to quantify the non-Markovianity of the evolution.

5. The Bayesian inference model for the measure of non-
Markovianity possesses a parallel structure. Crucially,
our inferred parameters need to be fitted to the modula-
tions of the coherence, while they are at the same time
required to describe the measure of non-Markovianity.
That is, we have the parameters θ = ({Cβ}, {pα}, A‖)
which need to hold for all observed coherence data X.
However, we distinguish between the angle labels for
the coherence φ and the non-Markovianity measure φN
for clarity. We rewrite Bayes theorem as

P(θ, σ, σN |X) ∝ P(X|θ, σ, σN ) P(θ, σ, σN )
= Pr(Xφ|θ, σ) PN (XφN |θ, σN )
× P(θ)P(σ)P(σN ), (S14)

where we could split the likelihood function these vari-
ables are conditionally independent in our probability
model and mutually just depend on deterministically

FIG. S6: Resulting models with parameters inferred by the Bayesian
analysis. In (a) we plot the maximum posterior value (red curve) for
the nitrogen population in the subspace |mI = 0, 1〉. The HPD inter-
val is marked by the grey area and the blue squares indicate angles
for which we measured the length of the Bloch vector. We empha-
size that the blue squares do not represent a measured value of the
population. However, in (b) we are able to compare our modeling of
the contrast (red curve) with the contrast directly after initialization
(blue squares) and the first two full revivals (green triangles, black
circles). The HPD interval is set by the grey area.

collected data. By σ (σN ) we mark the standard devi-
ation of the normal distribution used to model the like-
lihood function Pr (PN ). These distributions have the
expectation values r(t, φ)|p(φ) and N ′(φN ) respectively
[compare also Eq.(S9)].

6. We formulate the posterior predictive distribution ac-
cording to Eq.(S6).

D. Non-Markovianity - Results

We infer the posterior distribution for the model of the
non-Markovianity measure as introduced above. The results
are summarized in the following table, where the first two
columns specify the properties of the prior normal distribu-
tion and the second two columns the point estimate (median
of the marginal) and the HPD interval:
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µ σ point estimate HPD

Ca 1 0.1 0.046 [0.044, 0.047]
Cν 0.3 0.1 1.030 [1.011, 1.050]
Cb 1 0.1 0.261 [0.260, 0.262]
pa 0.02 0.01 0.034 [0.023, 0.044]
pν 1.5 0.1 1.738 [1.611, 1.858]
pb 0.02 0.01 0.102 [0.091, 0.112]
pϕ 0 0.3 -0.528 [−0.904, −0.134]

A‖ /[rad/µs] 4.2π 0.5 2π 2.169 2π [2.165, 2.173]
σN 0 1 0.060 [0.037, 0.096]

The value for the σ values describing the standard deviations
of each coherence function is not explicitly shown here, but
the maximum posterior value for the largest of these is 0.018.

In Fig.S6 we illustrate the dependence of the population
p(φ) and the contrast C(φ) on the polarization direction of
the nitrogen spin. The plot in panel (a) shows the amount
of population in the desired subspace of |mI = 0, 1〉. We re-
mark again that the analytic solutions cannot distinguish be-
tween |mI = ±1〉. We assign the finite offset from unity to an
imperfect polarization (i.e. < 100%) of the nitrogen before
the radio-frequency pulse. At φ = 0 we can get a hint of the
efficiency of the polarization: The red curves shows the max-
imum posterior value p̄(0) = 0.915, while the HPD interval
(grey area) is fixed by [0.891 0.943]. During the pulse, popu-
lation leaks to the |mI = −1〉 state due to a non vanishing Rabi
frequency between |mI = 0〉 and |mI = −1〉, which is leading
to the shown curve.
The change of contrast is plotted in Fig.S6(b). Along with
the inferred curve, we also plot the coherence data at t = 0
(blue squares, corresponds to the red curve in Fig.S5(a)) and
the first two full revivals (green triangles, black circles), i.e.
r(tk, φ) = 1, which occur at

tk = k
2π
A‖
, k εN. (S15)

These times correspond to a totally decorrelated product state
(see main text), i.e. the state of the electron spin is equivalent
at all these points. Therefore the contrast is only determined
by the polarization direction of the nitrogen spin which en-
ables the comparison with our modeling of the contrast with-
out calculating the impact of correlations. We remark, that
from this plot we can again confirm that the assumption of a
decoherence free evolution (L(t) ≈ 1) is justified. Otherwise,
the coherence values of later times would strictly show less
contrast than the ones at earlier times, which is not the case
here. In particular, this is due to the long coherence time of
the sample and the Gaussian shape of the envelope.
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