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PIPE-T: a new Galaxy tool for the 
analysis of RT-qPCR expression 
data
Nicolò Zanardi1, Martina Morini1, Marco Antonio Tangaro2, Federico Zambelli   2,3, 
Maria Carla Bosco1*, Luigi Varesio1,5, Alessandra Eva1,4 & Davide Cangelosi   1,4*

Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is an accurate 
and fast method to measure gene expression. Reproducibility of the analyses is the main limitation 
of RT-qPCR experiments. Galaxy is an open, web-based, genomic workbench for a reproducible, 
transparent, and accessible science. Our aim was developing a new Galaxy tool for the analysis of RT-
qPCR expression data. Our tool was developed using Galaxy workbench version 19.01 and functions 
implemented in several R packages. We developed PIPE-T, a new Galaxy tool implementing a workflow, 
which offers several options for parsing, filtering, normalizing, imputing, and analyzing RT-qPCR data. 
PIPE-T requires two input files and returns seven output files. We tested the ability of PIPE-T to analyze 
RT-qPCR data on two example datasets available in the gene expression omnibus repository. In both 
cases, our tool successfully completed execution returning expected results. PIPE-T can be easily 
installed from the Galaxy main tool shed or from Docker. Source code, step-by-step instructions, and 
example files are available on GitHub to assist new users to install, execute, and test PIPE-T. PIPE-T is a 
new tool suitable for the reproducible, transparent, and accessible analysis of RT-qPCR expression data.

Quantitative real-time polymerase chain reaction (qPCR) is a routinely used technique for the detection of spe-
cific nucleic acids, RNA expression profiling, quantification of DNA and DNA methylation, and validation of 
microarray hybridization data1. Reverse transcription qPCR (RT-qPCR) is an accurate, sensitive, and fast method 
to quantify gene expression from qPCR experiments2, and is widely accepted as the Golden Standard for the 
analysis of gene expression1,3. Briefly, RT-qPCR measures the expression of a set of target RNAs through repeated 
cycles of sequence-specific amplification followed by expression measurements4. The cycle at which the observed 
expression first exceeds a user-specified threshold is commonly called the threshold cycle (Ct) or quantification 
cycle. The Ct values of the target RNAs represent a quantitative assessment of gene expression and are often 
treated as the raw data for subsequent analyses4. Two methods can be used to quantify gene expression from the 
Ct value: the absolute and the relative quantification3. In the absolute quantification, a standard curve is used as 
reference calibrator. In the relative quantification, the signal is related to the expression of a user-specified group3. 
Therefore, the difference between the two approaches depends on the data used as reference calibrator to which 
relating the signal.

In many RT-qPCR experiments not all Ct values can be numerically defined. For example, when the starting 
RNA abundance is too low, or an off-target product is amplified, or no reliable Ct can be determined, the corre-
sponding Ct value cannot be quantified numerically and is flagged as missing value5. Handling missing data is a 
crucial step in the analysis of RT-qPCR experiments because procedures used in the subsequent analyses of these 
data are based on statistics that are unable to handle both numeric and missing values4. Imputation is an estab-
lished technique to solve the problem6. Imputation substitutes a missing value with a rationally selected numeric 
value4. K-nearest neighbors (KNN)6, maximum Ct plus one cycle (Mestdagh)7, and cubic spline interpolation 
(Cubic)1 are known methods to impute missing values in RT-qPCR data5,6.

Another key step in the analysis of RT-qPCR data is the assessment of true biological changes associated with 
the phenomenon or disease of interest. In fact, biological changes are often masked by nonspecific technical 
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variability introduced in the data during the experimental procedure6. Data normalization is expected to reduce/
eliminate any technical variability without affecting the true biological results6. Global mean8, DeltaCt based on 
universal normalizers9, Modified global mean10, Quantile9, and Rank Invariant9 are among the most accepted 
methods used for RT-qPCR data normalization5.

RT-qPCR experiments allow measuring the expression of several transcripts in parallel using high-density 
plates9. Plates have been used in several explorative studies to find novel biomarkers from the analysis of different 
diseases, tissues, experimental conditions, and cell types3,5,6. The large number of studies published in the liter-
ature stimulated companies to develop commercial technologies to perform RT-qPCR experiments3. For each 
experiment, these technologies generate textual reports summarizing a number of experimental parameters and 
data such as feature name, quality control flags, and Ct values. Different technologies generate reports that can be 
of different format. According to our experience, SDS, EDS, and OpenArray are among the most used file formats 
for reporting results of RT-qPCR experiments.

Although the computational procedures and technologies for analyzing RT-qPCR data are well established, 
the heterogeneity of the assays employed in RT-qPCR experiments and the lack of a consensus on the best nor-
malization system and on the missing values imputation approach to adopt makes it hard to set up a standardized 
analysis procedure6. Furthermore producing high quality publications and reproducible data are among the most 
critical pitfalls of qPCR experiments11.

Several open-access software packages, tools, and web applications, such as R packages, have been proposed 
in the last years for the analysis of RT-qPCR data1. HTqPCR is a well-known open source R\Bioconductor pack-
age for the high-throughput analysis of RT-qPCR data9. It provides several functions and parameter options for 
assessing the quality of the experiment, filtering unreliable data, normalizing raw data, finding potential candi-
date biomarkers, and visualizing RT-qPCR data9. However, R-based analysis suffers from some known limita-
tions. First of all, analysis procedures are implemented in several packages lacking a unified framework. Second, 
users with biological background who want to use the functionalities of R packages need non-trivial coding skills. 
Furthermore, the lack of a simple framework for reusing, sharing, and communicating experimental procedures 
and results limits reproducibility, transparency, and accessibility of R-based analysis12.

Galaxy is an open, collaborative, web-based, genomic workbench for a reproducible, transparent, and acces-
sible science12. Galaxy provides a very active developer community. More than 6746 public tools and workflows 
are freely available in the Galaxy Tool Shed repositories12. New tools and workflows are easily deployable in 
the Galaxy repositories. To this purpose, Galaxy offers fresh installations of R and Python environments, a fast 
dependency resolver, a step-by-step documentation, a simple graphical interface, and GitHub integration13. 
However, to the best of our knowledge, no Galaxy tool or workflow has been reported to date for analyzing 
RT-qPCR data.

In the present work, we developed pipette (PIPE-T), a new tool for analyzing RT-qPCR expression data inte-
grating the functionalities implemented in various R packages into one unified, reusable, transparent, accessible, 
and easy to use Galaxy wrapper.

Methods
Overview of the main procedures implemented by PIPE-T.  PIPE-T implements the relative quanti-
fication method using the R language and computing environment14.

To start a PIPE-T analysis, users must upload two input files:

•	 A List collection of tab-separated text files for all samples generated as report of the RT-qPCR experiment 
(ListOfFile).

•	 A tab-separated text file associating each filename in ListOfFile with a treatment group (FileTreatment).

Five distinct computational procedures are implemented in PIPE-T. Procedures are summarized in Fig. 1 and 
a detailed description of each procedure is provided in the following sections.

The execution of PIPE-T outputs the following output files:

•	 A tab-separated text file containing the raw Ct values for every sample and transcript
•	 A PNG file showing the distribution of the Ct values of every samples obtained after the Ct filtering and cate-

gorization step visualized as sequence of boxplots.
•	 A tab-separated text file containing the normalized Ct values
•	 A PNG file showing the cumulative distribution plot before and after data normalization of the coefficient of 

variation of every transcript.
•	 A PNG file showing the distribution of the normalized Ct values visualized as sequence of boxplots.
•	 A tab-separated text file containing data after imputation
•	 A tab-separated text file containing the results of the differential expression analysis.

File uploading and parsing.  Heterogeneity of assays quantifying RT-qPCR gene expression is often asso-
ciated with heterogeneity of the file formats reporting data summarizing the results of the RT-qPCR experiment. 
Hence, it is crucial that the user uploads files whose content is compliant with the file format parsable by PIPE-T 
before running any PIPE-T analysis.

“Upload File from your computer” is a Galaxy tool that allows uploading files into Galaxy. This tool is available 
on any fresh Galaxy instance or on the main Tool Shed repository15.
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PIPE-T processes tab-separated text files containing a dot as decimal separator uploaded with “Upload File 
from your computer” tool. The formats supported by PIPE-T are:

•	 Applied Biosystems Sequence Detection Systems (SDS)
•	 ThermoFisher Experiment Detection Systems (EDS)
•	 Applied Biosystems OpenArray (OpenArray)
•	 Roche LightCycler (LightCycler)
•	 Bio-Rad CFX (CFX)
•	 Fluidigm Biomark Table format (BioMark)
•	 User-formatted plain text (Plain)

SDS, OpenArray, LightCycler, CFX, BioMark, and Plain are HTqPCR R package9 parsable file formats. We 
updated the parsing procedure to adapt it working with R 3.5.0 and tab-separated text files. We extended the list 
of the parsable file formats including the possibility of processing EDS format, which is one of the most used by 
Thermo Fisher Scientific real-time qPCR instruments.

FileTreatment should have only two columns named SampleName and Treatment. The column named 
SampleName lists the name and the extension of the files uploaded into the ListOfFile collection. The column 
named Treatment associates each sampleName with an experimental condition or group of interest. Group spec-
ification is necessary since PIPE-T implements the relative quantification method to analyze data from RT-qPCR 
experiments. PIPE-T admits the specification of two treatment groups. In the GitHub documentation we pro-
vided a checklist of recommendations to help users formatting their input files and checking that these files con-
tain sufficient data to run PIPE-T without errors.

If file format is correct, PIPE-T populates a qPCRset object containing the following data for each transcript 
and sample:

•	 Raw Ct\Cq value,
•	 Value of the internal quality control flag,
•	 Transcript and sample names,
•	 FeatureCategory

Data parsing and qPCRset object generation are carried out using the readCtData function of the HTqPCR 
R package9.

Ct filtering and categorization.  Feature categorization is a procedure for describing the level of reliability 
of a transcript and can be used to filter out features whose expression is not sufficiently reliable9. HTqPCR package 
defines three possible categories: “Undertermined”, “Unreliable”, and “OK”9. “Undetermined” is used to flag Ct 
values above a user-defined threshold, and “Unreliable” indicates Ct values that are so low as to be estimated by 
the user to be problematic9.

By default, only Ct values labeled as “undetermined” in the input data files are placed into the “Undetermined” 
category, and the rest are classified as “OK”9.

The FeatureCategory for a transcript can be altered on the basis of two criteria9:

Figure 1.  Schematic representation of the analysis procedures implemented in PIPE-T. Input files are uploaded 
and parsed for initiating the analysis. Transcripts are categorized according to a user-defined range of values 
and\or quality control flag to label unreliable Ct values. Ct values are normalized to reduce\remove technical 
variability in the data. Transcripts are filtered out according to a user-specified maximum number of missing 
values to maintain the bias as low as possible. Imputation is applied to handle missing values. Transcripts 
discriminating between two treatments are identified for subsequent analyses.
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•	 Range of Ct values. Some Ct values might be too high or too low to be considered a reliable measure of gene 
expression in the sample and, therefore, should not be marked as “OK”.

•	 Flags. Depending on the qPCR input, the values might have associated flags, such as “Passed” or “Failed”, 
which are used for assigning categories.

PIPE-T implements the two criteria allowing users to set up a range of Ct values and a List button. Any Ct 
value exceeding the user-defined range is categorized as “Unreliable”. Users can force PIPE-T to check internal 

Figure 2.  Parameter settings used for the analysis of metastatic cancer data. PIPE-T wrapper interface with the 
settings used for the analysis of the metastatic cancer dataset. Input files have already been uploaded using the 
“Upload File from your computer” tool.
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control flag status. In this case, the FeatureCategory for a transcript is replaced by an “Undetermined” if the tran-
script did not pass internal quality control.

PIPE-T uses FeatureCategory labels to replace any Ct values corresponding to “Undertermined” and 
“Unreliable” with a not accessible value (NA).

These operations are carried out using setCategory and filterCategory functions of HTqPCR package9.

Normalization.  Data normalization allows to minimize unwanted systematic technical and experimental 
variation in the data for better appreciating true biological changes16.

PIPE-T offers six different normalization options that are listed below:

•	 Global mean8

•	 DeltaCt9

Figure 3.  Qualitative assessment of the noise reduction for metastatic cancer data. Box plots show the 
distribution of Ct values in metastatic cancer samples after Ct filtering and categorization (Panel A) and after 
normalization (Panel B) procedures. Each box plot is relative to a sample.

Figure 4.  Quantitative assessment of the noise reduction for metastatic cancer data. ECDFs (y axis) and 
coefficient of variation (CV) is displayed for the metastatic cancer samples after Ct filtering and categorization 
(blue line) and after normalization (green line) procedures. Kolmogorov-Smirnov test assessing the significance 
of the separation between the curves and p value is reported on top of the plot.
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•	 Modified global mean10

•	 Quantile9

•	 Norm Rank Invariant9

•	 Scale rank invariant9.

Global mean, quantile, norm rank invariant, and scale rank invariant were already implemented in HTqPCR R 
package9. However, as Norm Rank Invariant and Scale rank invariant worked only if missing values were absent, 
we extended the procedure substituting any missing value with a numeric value using the na.spline function 
implemented in the zoo R package17. D’haene and collegues showed the benefits of using the geometric mean for 
the normalization of microRNA expression data by introducing the so-called modified global mean method10. 
For these reasons, we integrated the modified global mean method in PIPE-T.

PIPE-T supports the deltaCt method. Housekeeping genes can be specified by the user or can be estimated by 
the geNorm or NormFinder methods implemented in the NormqPCR R\Bioconductor package18. When geNorm 
is selected, PIPE-T identifies candidate normalizers taking those transcripts whose stability was greater than 1.5 
as reported by Vandesompele and collegues19.

Newly implemented normalization methods have been integrated in PIPE-T as an updated version of the 
function normalizeCtData of the HTqPCR R package9.

Transcript filtering and imputation.  High-throughput data may often contain missing values. For this 
reason, handling missing values is a crucial step of any RT-qPCR analysis5,6. The simplest solution for handling 
missing values would be to exclude from the analysis any transcript with at least one missing value. In such a 
case, missing values do not represent a problem anymore because they are removed from the analysis. However, 
this approach could filter out a considerable number of potential useful transcripts. Another solution would be 
to take every transcript no matter of the number of missing values. In such a case, all potential useful transcripts 
are taken into account for subsequent analysis, but the probability of making an error increases with the number 
of missing values6. In the literature, there is a wide accepted approach that consists in keeping transcripts with 
a reasonable number of missing values and filtering out those exceeding this threshold6. Transcripts that do not 

genesa t.testb p.valuec adj.p.valued ddCte FCf meanCalibratorg meanTargeth categoryCalibratori categoryTargetj

hsa-miR-200c-4395411 3.110 0.011 0.449 −4.414 21.324 25.793 21.378 OK OK

hsa-miR-375-4373027 2.558 0.026 0.560 −3.943 15.381 27.514 23.570 OK OK

hsa-miR-141-4373137 2.288 0.043 0.563 −3.640 12.467 28.392 24.751 OK OK

hsa-miR-654-3p-4395350 2.810 0.019 0.488 −3.008 8.045 34.747 31.739 Undetermined Undetermined

hsa-miR-135b-4395372 2.937 0.013 0.449 −2.916 7.546 28.848 25.932 OK OK

hsa-miR-200b-4395362 2.912 0.014 0.449 −2.516 5.722 24.808 22.291 OK OK

hsa-miR-410-4378093 2.299 0.047 0.563 −2.285 4.873 31.701 29.417 OK OK

hsa-miR-323-3p-4395338 2.209 0.049 0.563 −1.988 3.966 30.228 28.240 OK OK

hsa-miR-370-4395386 2.604 0.021 0.488 −1.686 3.218 27.286 25.600 OK OK

hsa-miR-642-4380995 2.807 0.015 0.449 −1.673 3.188 31.283 29.610 OK OK

hsa-miR-127-3p-4373147 2.338 0.035 0.563 −1.512 2.853 26.167 24.655 OK OK

hsa-miR-212-4373087 4.008 0.001 0.449 −1.422 2.680 27.481 26.059 OK OK

hsa-miR-628-5p-4395544 −2.530 0.032 0.563 1.097 0.467 29.281 30.378 OK Undetermined

hsa-miR-125a-3p-4395310 −2.790 0.017 0.474 1.191 0.438 29.835 31.026 OK OK

hsa-miR-328-4373049 −2.592 0.028 0.563 1.215 0.431 27.772 28.987 OK OK

hsa-miR-886-3p-4395305 −2.311 0.042 0.563 1.225 0.428 24.007 25.232 OK OK

hsa-miR-140-5p-4373374 −2.880 0.012 0.449 1.245 0.422 23.457 24.702 OK OK

hsa-miR-29c-4395171 −2.926 0.015 0.449 1.339 0.395 23.351 24.691 OK OK

hsa-miR-140-3p-4395345 −3.118 0.008 0.449 1.410 0.376 26.526 27.935 OK OK

hsa-miR-570-4395458 −2.305 0.038 0.563 1.460 0.363 34.499 35.959 Undetermined Undetermined

hsa-miR-489-4395469 −3.029 0.009 0.449 1.522 0.348 26.810 28.332 OK OK

hsa-miR-545-4395378 −3.097 0.008 0.449 2.067 0.239 31.847 33.914 Undetermined Undetermined

hsa-miR-502-5p-4373227 −3.107 0.009 0.449 3.300 0.102 29.814 33.113 Undetermined Undetermined

Table 1.  Significant genes estimated by the differential expression analysis procedure in metastatic cancer 
dataset. aName of the microRNA in the card. Data are calculated by ttestCtData function of the HTqPCR 
package. Calibrator is the treatment group of the first sampleName in fileTreatment. Target is the alternative 
treatment group. In our example, Calibrator is OLIGO and Target is POLY. bValue of t statistics. cSignificance 
of the difference between the mean of expression of the treatment groups. MicroRNAs are ordered by p 
value. dP value adjusted for multiple hypothesis testing. eDelta delta Ct value. fFold change value calculated as 
2−ddCt. FC greater than 2 and lower than 0.5 have been reported. gAverage expression of the microRNA in the 
Calibrator group. hAverage expression of the microRNA in the target group. iCategory of the Ct values (“OK”, 
“Undetermined”) across the samples of calibrator group. jCategory of the Ct values (“OK”, “Undetermined”) 
across the samples of target group.
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exceed the threshold are imputed using a suitable method. In the literature, several imputation methods have 
been proposed20.

PIPE-T offers a slider that the user can move to specify the maximum percentage of missing values admissible 
for a specific transcript. PIPE-T allows filtering transcripts using a user-defined percentage of missing values and/
or a user-defined list of transcripts to be removed by using the filterCtData function of the HTqPCR package9.

In addition, PIPE-T gives the possibility of selecting one of three well-known imputation methods. These 
methods are:

Figure 5.  Parameter settings used for the analysis of NSLC data. PIPE-T wrapper interface with the settings 
used for the analysis of the NSLC dataset. Input files have already been uploaded using the “Upload File from 
your computer” tool.

https://doi.org/10.1038/s41598-019-53155-9
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•	 KNN
•	 Mestdagh
•	 Cubic

KNN and Cubic imputation methods were already implemented in the impute and zoo R packages.
Mestdagh is an imputation method that substitutes a missing Ct value with a numeric value obtained adding 

one cycle to the highest Ct value across samples7. This method has already been described in other reports5. This 
method assumes that missing values depends on the low or null abundance of the transcript in the sample.

Differential expression analysis.  Differential expression is a very popular analysis for identifying can-
didate transcripts whose expression can discriminate between two predefined conditions. Among the methods 
eligible for a differential expression analysis21, PIPE-T offers the possibility of choosing between three approaches:

•	 T-test21.
•	 Two sample Wilcoxon test21.
•	 Rank Product22.

T-test and two sample Wilcoxon test are among the most used statistical tests to perform a differential expres-
sion analysis21. Tests are implemented by ttestCtData and mannwhitneyCtData functions of the HTqPCR R pack-
age9. For the t-test and the two sample Wilcoxon test, PIPE-T offers the possibility of setting up six distinct 
parameters, which include: the types of alternative hypothesis to assess significance, the choice of a paired or an 
unpaired analysis, the presence in the data of replicated transcripts, the choice of a more or less stringent analysis, 
and the choice of the method for adjusting p-values in case of multiple hypothesis testing.

Rank Product is a popular method originating from a biological reasoning22. Rank Product is carried out 
using RP function of RankProd R package23.

If users do not specify any differential expression analysis method, PIPE-T allows them to select an option 
named NONE. In this case, no differential expression analysis is performed on the data.

Data visualization and outputting.  Quality assessment of RT-qPCR data is crucial for enhancing the 
accuracy of the results and the reliability of the conclusions2. HTqPCR provides several visualization options for 
assessing the quality of qPCR data, which include histograms, boxplots, density distributions, and scatter plots9. 
PIPE-T uses two boxplot visualizations showing the distribution of the expression values across all samples. The 
boxplots show the distribution of expression values before and after data normalization, respectively. The visual 
inspection of the two boxplots is used as qualitative assessment of the normalization procedure because box-
plots show the noise reduction comparing the data before and after data normalization8. Empirical Cumulative 
Distribution Function (ECDF) is also used in the literature for measuring noise reduction as an effect of data 
normalization8,10. PIPE-T computes and plots ECDF before and after data normalization by using ecdf func-
tion of the stats R package14. The significance of the difference between the two ECDF curves is estimated by 
Kolmogorov-Smirnov test and p-value is reported on top of the figure and in the standard output.

Tabular output files include raw data, filtered data, imputed data and statistics to assess differential expression. 
A detailed description of the row and column names can be found in HTqPCR and RankProd R packages doc-
umentation. A detailed description of visualization, sharing, and workflow integration using Galaxy graphical 
interface can be found in the Galaxy documentation.

Results
We tested the ability of PIPE-T of analyzing RT-qPCR data using two example datasets whose tab-separated text 
files were available in the Gene Expression Omnibus (GEO) with accession identifiers GSE25552 and GSE43000. 
Datasets were relative to two published studies on various metastatic tumors24 and non-small cell lung (NSCL) 
cancers25. The first study reported the results of the analysis of sixteen different tumors including Lung, Renal, 
Colon, Sarcoma, Ovarian, and Head and neck squamous cell carcinoma24. The second study reported the results 
of the analysis of forty-four NSCL tumor samples25. We carried out PIPE-T analysis of both datasets on a test 
Galaxy instance version 19.01, installed in a local Linux machine. Parameter settings for the two analyses have 
been taken from the original publications when available. When the parameters were not specified we selected 
them arbitrarily.

Various metastatic cancers.  We downloaded input tab-delimited files from GEO and we added a SDS 
version 2.4 format header to each of these files because it lacked. Input files contained experimental data for 
384 microRNAs. We coupled RT-qPCR data with information about tumor status, which was oligometastatic 
(OLIGO) for ten out of sixteen patients and polymetastatic (POLY) for the remaining six patients. File names and 
tumor status were organized into a tab-delimited text file. The newly created file and the sixteen tab-separated text 
files were uploaded in Galaxy as fileTreatment and ListOfFile through “Upload File from your computer” tool. 
Analysis was carried out with parameters settings reported in Fig. 2.

Our tool successfully completed the execution, returning seven output files (see Tables S1–S4 and Figs S1–S3). 
Boxplots and EDCF before and after data normalization as well as the significant genes and statistics reported by 
the differential expression analysis procedure are depicted in Figs 3, 4, and Table 1, respectively.

We found 12 significantly upregulated and 11 downregulated microRNAs in polymetastatic tumors (p 
value < 0.05 and FC > 2 or FC < 0.5; Table 1).

https://doi.org/10.1038/s41598-019-53155-9
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Interestingly, among the significantly modulated microRNAs reported in the Lussier and coworkers manu-
script24, 11 out of 12 microRNAs were consistently up regulated in polymetastatic tumors and 8 out of 11 microRNAs  
were consistently upregulated in oligometastatic tumors. Any difference between our findings and those reported 
by Lussier and collegues24 are probably due to the different approaches used in the experiments to filter and han-
dle missing values. Lussier and collegues did not report any information about filtering based on the percentage 
of missing values or the application of any method for handling missing or unreliable Ct values. These results 
provide the first evidence that PIPE-T is able to correctly analyze RT-qPCR expression data.

Non-small cell lung cancer.  NSCL input files were compliant with SDS format version 2.3 and reported 
experimental data for 381 microRNAs. Since the downloaded files used a comma as decimal separator, each 
comma was replaced with a dot before running PIPE-T. RT-qPCR data were coupled with histological data 

Figure 6.  Qualitative assessment of the noise reduction for NSLC data. Box plots show the distribution of 
Ct values in NSLC samples after Ct filtering and categorization (Panel A) and after normalization (Panel B) 
procedures. Each box plot is relative to a sample.

Figure 7.  Quantitative assessment of the noise reduction for NSLC data. ECDFs (y axis) and coefficient of 
variation (CV) is displayed for the NSLC samples after Ct filtering and categorization (blue line) and after 
normalization (Green line) procedures. Kolmogorov-Smirnov test assessing the significance of the separation 
between curves and p value is reported on top of the plot.
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provided in the original publication25, which refer to twenty lung adenocarcinoma (LA) and twenty-four squa-
mous cell lung cancer (SCLC). File names and tumor subtypes were organized into a text file. We uploaded the 
newly created file as fileTreatment, and the forty-four tab-separated text files as ListOfFile. Analysis was carried 
out with the parameter settings reported in Fig. 5.

Our tool successfully completed the execution returning seven output files (see Tables S5–S8 and Figs S4–S6). 
Boxplots and EDCF before and after normalization, as well as the significant microRNAs identified by the differ-
ential expression analysis procedure, are depicted in Figs 6, 7, and Table 2, respectively.

We found 16 significantly modulated microRNAs (p value < 0.05 and FC > 2 or FC < 0.5; Table 2). Interestingly, 
miR-205, miR-149, miR-422a, and miR-708 were significantly upregulated in SCLC and miR-375 was significantly 
upregulated in LA in accordance with the results of the original manuscript25. Any difference of fold change or 
p-value between our study and that by Molina-Pinelo and collegues25 can be explained by the different handling 
of missing values. Authors did not report their approach to missing or unreliable Ct values. In spite of three small 
differences, our results provide evidences that PIPE-T is able to correctly analyze RT-qPCR expression data.

Conclusions
We developed PIPE-T, a new Galaxy tool that offers several state-of-the-art options for parsing, filtering, normal-
izing, imputing, and analyzing RT-qPCR expression data. Integration of PIPE-T into Galaxy allows researchers 
with strong bioinformatic background, as well as those without any programming expertise, to perform complex 
analysis in a simple to use, transparent, accessible, reproducible, and user-friendly environment.

Availability of Supporting Source Code and Requirements
Project name: Pipe-t
Project home page: https://github.com/igg-molecular-biology-lab/pipe-t (2019)26

Operating system(s): Linux (Galaxy), and platform independent
Programming language: R
Other requirements: Galaxy
License: GNU GPL

PIPE-T is available on the Main Tool Shed15 at the link27, on the Docker28 at the link29 and on the web30 at the link31. 
PIPE-T code is freely available on GitHub at the link https://github.com/igg-molecular-biology-lab/pipe-t (2019)26.

PIPE-T has the following dependencies:
<requirements>
<requirement type = “package” version = “3.5.0”>r-base</requirement>
<requirement type = “package” version = “7.2.0”>libgcc</requirement>
<requirement type = “package” version = “1.36.0”>bioconductor-htqpcr</requirement>

genesa t.testb p.valuec adj.p.valued ddCte FCf meanCalibratorg meanTargeth categoryCalibratori categoryTargetj

hsa-miR-205-4373093 5.190 0.000 0.001 −4.411 21.272 8.013 3.602 Undetermined Undetermined

hsa-miR-375-4373027 −4.079 0.000 0.038 2.065 0.239 3.354 5.418 OK OK

hsa-miR-422a-4395408 3.854 0.000 0.069 −1.418 2.673 8.215 6.796 OK OK

hsa-miR-149-4395366 3.758 0.001 0.094 −2.322 5.000 7.393 5.071 OK Undetermined

hsa-miR-708-4395452 3.634 0.001 0.135 −2.044 4.123 5.995 3.952 OK OK

hsa-miR-204-4373094 3.440 0.001 0.232 −1.587 3.004 9.177 7.590 Undetermined Undetermined

hsa-miR-483-5p-4395449 3.376 0.002 0.285 −1.397 2.634 10.019 8.622 Undetermined Undetermined

hsa-miR-127-3p-4373147 2.984 0.005 0.918 −1.166 2.245 6.256 5.090 OK OK

hsa-miR-196b-4395326 2.915 0.006 1.000 −1.933 3.818 9.416 7.483 Undetermined Undetermined

hsa-miR-202-4395474 2.922 0.006 1.000 −1.061 2.087 10.305 9.244 Undetermined Undetermined

hsa-miR-494-4395476 2.669 0.011 1.000 −1.165 2.242 3.657 2.492 OK OK

hsa-miR-376a-4373026 2.628 0.012 1.000 −1.093 2.133 10.615 9.522 Undetermined Undetermined

hsa-miR-376c-4395233 2.624 0.013 1.000 −1.299 2.460 9.324 8.025 OK Undetermined

hsa-miR-130b-4373144 2.575 0.014 1.000 −1.071 2.100 8.247 7.176 Undetermined Undetermined

hsa-miR-203-4373095 2.131 0.039 1.000 −1.098 2.140 4.716 3.618 Undetermined OK

hsa-miR-194-4373106 −2.089 0.046 1.000 1.182 0.441 8.508 9.690 OK Undetermined

Table 2.  Significant genes estimated by the differential expression analysis procedure in the NSLC dataset. 
aName of the microRNA in the card. Data are calculated by ttestCtData function of the HTqPCR package. 
Calibrator is the treatment group of the first sampleName in fileTreatment. Target is the alternative treatment 
group. In our example, Calibrator is LA and Target is SCLC. bValue of t statistics. cSignificance of the difference 
between the mean of expression of the treatment groups. MicroRNAs are ordered by p value. dP value adjusted 
for multiple hypothesis testing. eDelta delta Ct value. fFold change value calculated as 2−ddCt. FC greater than 
2 and lower than 0.5 are reported. gAverage expression of the microRNA in the Calibrator group. hAverage 
expression of the microRNA in the target group. iCategory of the Ct values (“OK”, “Undetermined”) across the 
samples of calibrator group. jCategory of the Ct values (“OK”, “Undetermined”) across the samples of target 
group.
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<requirement type = “package” version = “3.8.0”>bioconductor-rankprod</requirement>
<requirement type = “package” version = “1.56.0”>bioconductor-impute</requirement>
<requirement type = “package” version = “1.11.0”>r-bbmisc</requirement>
<requirement type = “package” version = “1.8.4”>r-psych</requirement>
<requirement type = “package” version = “1.8_3”>r-zoo</requirement>
</requirements>
If Conda32 is installed and enabled, Galaxy locates and resolves any tool dependencies automatically during 

tool installation.

Data availability
The tab-separated text files included in the ListOfFile collections of the two example applications are available in 
GEO repository with accession numbers: GSE25552 and GSE43000. A detailed documentation, step-by-step tool 
installation instructions, configuration, example applications are available on GitHub at the link https://github.
com/igg-molecular-biology-lab/pipe-t (2019)26.
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