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Stochastic unravelings represent a useful tool to describe the dynamics of open quantum systems
and standard methods, such as quantum state diffusion (QSD), call for the complete positivity of
the open-system dynamics. Here, we present a generalization of QSD, which also applies to positive,
but not completely positive evolutions. The rate and the action of the diffusive processes involved
in the unraveling are obtained by applying a proper transformation to the operators which define
the master equation. The unraveling is first defined for semigroup dynamics and then extended to
a definite class of time-dependent generators. We test our approach on a prototypical model for the
description of exciton transfer, keeping track of relevant phenomena, which are instead disregarded
within the standard, completely positive framework.

Introduction.—The investigation of open quantum sys-
tems coupled to complex and possibly structured envi-
ronments has led to a renewed interest toward the de-
scription of quantum dynamics beyond the paradigm of
completely positive (CP) semigroups [1–3], as fixed by
the well-known Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) master equation [4, 5]. The development of more
general approaches has made possible to take into ac-
count memory effects and others phenomena which are
neglected within that framework; see for example the re-
cent reviews [6–8].

Mostly, the assumption to have a semigroup dynamics
is relaxed, while one holds firm that the evolution has
to be given by CP maps. If there are no initial correla-
tions between the system and the environment and the
initial state of the latter is fixed, the exact reduced dy-
namics, mathematically obtained via the partial trace on
the environmental degrees of freedom, is indeed CP [1–
3]. On the other hand, the partial trace can be hardly
ever performed explicitely, even with powerful numerical
techniques. The restriction to CP maps becomes then
questionable, not only when initial correlations have to
be considered [9–12], but also when one uses an approx-
imated description for specific open quantum systems at
hand. The weaker condition that the dynamics is posi-
tive (P) may be enough to guarantee the consistency of
the predictions one is interested in. Moreover, when a
master equation is derived from some underlying micro-
scopic model, CP is usually obtained by introducing some
specific approximations, which, needless to say, may over-
look some relevant phenomena. As a paradigmatic exam-
ple, in the weak coupling regime one imposes (on top of
the Born-Markov approximation) the secular approxima-
tion. The latter is justified when the free dynamics of the
system is much faster than its relaxation [1], which is not
the case for several systems of interest. Non-secular non-
CP evolutions, possibly still in the semigroup regime, are
extensively used, e.g., to model transport phenomena in
nanoscale biomolecular networks [13–16].

Certainly, CP evolutions possess several advantages,
mainly due to the general mathematical results which
allow for their full characterization, such as the Kraus
decomposition or the GKSL theorem itself [1]. In addi-
tion, CP evolutions have been equivalently formulated in
terms of unravelings in the form of stochastic trajecto-
ries, being they with jumps [17, 18] or continuous [19–24].
These methods yield a very powerful tool to simulate nu-
merically open-system dynamics, as well as a deeper un-
derstanding of the different effects induced on the system
by the interaction with the environment.

Here, we prove that a proper unraveling can be gener-
ally formulated also for P, not necessarily CP dynamics.
We focus in particular on a continuous form of the unrav-
eling, the so-called quantum state diffusion (QSD) [19–
23], and we show how it can be directly extended to the
more general case of P dynamics. The role of the rates
and Lindblad operators in the CP unraveling is replaced
by the eigenvalues and eigenvectors of a rate operator
[19, 21, 25]. Our approach includes not only semigroup
dynamics, but also a more general kind of evolutions;
namely, P-divisible dynamics [26–30], which has been re-
cently taken into account within the context of the defi-
nition of quantum Markovianity. In this way, we provide
a significant class of open-system dynamics with a useful
tool to describe physical phenomena, which would be ne-
glected within the usual CP framework. This is explicitly
shown by taking into account a model, which is of inter-
est for the description of energy transfer in biomolecular
networks [15, 16, 31].

Unraveling of CP semigroups.—Let us first briefly re-
call the standard results about (diffusive) unravelings of
CP semigroups, as well as the relevant notation.

We consider a finite dimensional quantum system,
whose state ρ is an element of the set S(Cn) of positive
trace-one operators on Cn. The dynamics is described
by a one-parameter family of linear maps {Λt}t≥0, where
Λt : S(Cn) → S(Cn) evolves the state ρ at the ini-
tial time t0 = 0, into the state ρt = Λt[ρ] at time t.
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These maps satisfy the semigroup property whenever
ΛtΛs = Λt+s,∀t, s ≥ 0, and in this case they can be
expressed as Λt = etG for some generator G, so that ρt is
fixed by the master equation (ME) dρt/dt = G[ρt]. The
maps Λt ensure the trace and hermiticity preservation of
the system’s state ρt if and only if the generator G can
be written as [4]

G[ρ] := −i [H, ρ] +

n2−1∑
j=1

cj

[
LjρL

†
j −

1

2

{
L†jLj , ρ

}]
, (1)

for some coefficients cj ∈ R, linear operators Lj and an
hermitian operator H = H†. According to the GKSL
theorem [4, 5], the maps Λt generated by G are CP if and
only if cj ≥ 0 ∀j.

In addition to the GKSL theorem, another crucial fea-
ture of CP semigroups, further motivating their ubiq-
uitous use to describe open system’s dynamics, is that
they can be equivalently characterized via unravelings.
An unraveling consists of a stochastic dynamics for the
pure states |ψ〉 of the system, which reproduces the ME
under stochastic average. Here, we focus on the case of
a diffusive unraveling, associated to a Stochastic Differ-
ential Equation (SDE) in the form [19–24]

|dψt〉 = Aψt |ψt〉 dt+

m∑
k=1

Bψt,k |ψt〉 dξk,t, (2)

where Aψt
, Bψt,k are (possibly non-linear) operators and

ξk,t are independent complex-valued Wiener processes,
with E[dξj,tdξ

∗
k,t] = δjkdt, E [dξj,tdξk,t] = E [dξj,t] =

0, where E denotes the statistical mean. The resulting
trajectories in the Hilbert space are usually referred to
as quantum trajectories. We always assume that the SDE
preserves the norm of |ψt〉.

The connection with the statistical operator ρt is ob-
tained via the stochastic average E. Given the stochastic
projector Pt := |ψt〉〈ψt| and its infinitesimal change dPt
fixed by the Itô formula, dPt = |dψt〉〈ψt| + |ψt〉〈dψt| +
|dψt〉〈dψt| , one says that Eq. (2) is an unraveling of
Eq. (1) when G[ρt] = E [dPt/dt] . In general, there ex-
ist infinite unravelings for the same ME. In the case of
CP semigroups the QSD unraveling is given by [19–23]
Eq. (2), with m = n2 − 1 and

Aψt
= −iH − 1

2

n2−1∑
j=1

cj
(
L†jLj − 2`∗ψ,jLj + |`ψ,j |2

)
(3)

Bψt,j=
√
cj (Lj − `ψ,j) , (4)

where `ψ,j := 〈ψ|Lj |ψ〉.
Unraveling of P semigroups.—The previous approach

can be extended to the case of P, but not necessarily CP
semigroups. In [32], the author shows that such an ex-
tension exists for two-level systems. Here we generalize
the result to Hilbert spaces of arbitrary finite dimension.

As long as we assume a semigroup evolution, this is the
largest class of dynamics that can have a norm-preserving
unraveling: any state obtained via the statistical average,
ρt = E[|ψt〉〈ψt|], is automatically positive, being the con-
vex mixture of pure states. Later, we will see how we
can replace the semigroup assumption with a more gen-
eral property of the dynamics.

The unraveling of a P semigroup depends on the be-
haviour of a nonlinear operator, whose relevance for CP
semigroups was noticed in [19, 21, 25]. Consider a gener-
ator as in Eq. (1); for any normalized vector ψ ∈ Cn, we
define the generalised transition rate operator (GTRO)
as the linear combination [21, 25]

Wψ :=

n2−1∑
j=1

cj
(
Lj − `ψ,j

)
|ψ〉〈ψ|

(
Lj − `ψ,j

)†
. (5)

The crucial role of this non-linear operator for the un-
raveling of P semigroups traces back to the following
result, which is a direct consequence of a theorem by
Kossakowski [33, 34] (and is proven in [35]).
Lemma 1. The dynamical map Λt = etG is P if and only
if, for any normalized vector ψ ∈ Cn, Wψ is a positive
semi-definite operator.
This implies that when we have a semigroup of P maps
and we consider the linear operator Wψ for any fixed ψ,
its eigenvalues λψ,i (i = 0, . . . , n − 1) are non-negative,
where λψ,0 = 0 corresponds to the eigenvector |ψ〉, so
that we can write the spectral decomposition as

Wψ =

n−1∑
i=1

λψ,i |φψ,i〉〈φψ,i| =
n−1∑
i=1

λψ,i
(
Vψ,i |ψ〉〈ψ|V †ψ,i

)
,

(6)
with λψ,i ≥ 0 and |φψ,i〉〈φψ,i| the corresponding orthog-
onal projectors, satisfying 〈φψ,i|ψ〉 = 0. The second
equivalence in Eq. (6) is trivially justified by defining
Vψ,i = |φψ,i〉〈ψ|, which will also provide us with a clear
physical interpretation of the unraveling.

Now, by using Itô calculus, it is readily verified that
Eq. (2) yields the following SDE for Pt = |ψt〉〈ψt|:

dPt =

(
AψtPt + PtA

†
ψt

+

m∑
k=1

Bψt,kPtB
†
ψt,k

)
dt (7)

+

m∑
k=1

(Bψt,kPtdξk,t + PtB
†
ψt,k

dξ∗k,t).

In addition, since we want the SDE to be an unraveling
of the ME fixed by G at any time t, we are assuming,
in particular, that this is the case at time t = 0, i.e.
E [dPt/dt|t=0] = G[ρ0]. From this relation, along with

Eq. (7), it follows that the noise term
∑m
k=1Bψ,kPB

†
ψ,k

is given by the component of G
[
P
]

orthogonal to |ψ〉, i.e.

m∑
k=1

Bψ,kPB
†
ψ,k =

(
I − P

)
G
[
P
](
I − P

)
; (8)
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this statement, which was first shown in [19], is re-derived
consistently with our notation in [35]. With the help of
simple algebra, Eq. (8) reduces to

m∑
k=1

Bψ,kPB
†
ψ,k = Wψ. (9)

We can conclude that Eq. (9) has to be satisfied by all
possible (norm preserving) unravelings as in Eq. (2) of
the semigroup fixed by Eq. (1). Moreover, this relation
implies that the action of the drift operator Aψ on the
state |ψ〉 is determined by Wψ and the generator G via

AψP + PA†ψ = G
[
P
]
−Wψ. (10)

This means that Aψ can be set independently from the
specific solution of Eq. (9) for the Bψ,k, and, in par-
ticular, Aψ is still fixed by Eq. (3), see [35], where the
uniqueness of such a choice is also discussed.

To define a proper unraveling of a P semigroup, we
simply have to formulate a solution of Eq. (9). A nat-
ural choice is given by the spectral decomposition of
Wψ, which, by virtue of the positivity of the semigroup
and then Lemma 1, is characterized by the non-negative
eigenvalues λψ,k. Hence, let us set m = n− 1 and

Bψ,k =
√
λψ,kVψ,k. (11)

It is then easy to see that Bψ,k as in Eq. (11) satisfies
Eq. (8) and, along with Aψ as in Eq. (3), defines a SDE
as in Eq. (2) which provides us with a proper unraveling
of the P semigroup generated by Eq. (1). Eqs. (3) and
(11) generalize the QSD unraveling of CP semigroups to
the case of P, not necessarily CP, semigroups. In fact, for
cj ≥ 0 a solution to Eq. (9) is provided by m = n2−1 and
Bψ,k =

√
ck(Lk − `ψ,k), so that one recovers Eq. (4). In

other terms, for the unraveling of P non CP semigroups
the eigenvalues λψ,i take the role of the rates cj , while
the operators Vψ,i replace the Lindblad operators Lj (of
course, 〈ψ|Vψ,i |ψ〉 = 0).

The physical meaning of the unraveling here defined
is quite clear: the eigenvalues and eigenvectors of the
GTRO set, respectively, the strength of the diffusive pro-
cesses and how they act on the elements of the Hilbert
space. In particular, Vψt,i maps the stochastic state at
time t, |ψt〉, into the state |φψt,i〉, which appears in the
spectral decomposition of Wψt and is orthogonal to |ψt〉.
To deal with P, but not CP semigroups we need to get
the diagonalization of the GTRO, which in the CP case
is already contained in the specific structure provided by
the Lindblad equation, so that its coefficients and opera-
tors directly fix the quantum trajectories; the difference
between the two cases will be illustrated explicitly below
for a specific example.

Unraveling of P-divisible dynamics and relation with
Markovianity.—Now, we show how our approach can be

straightforwardly generalized to a much wider class of dy-
namics, which goes beyond the class that can be treated
via the usual unravelings for CP maps. We consider evo-
lutions where the coefficients, and possibly the operators,
in the ME depend on time. This allows us to describe sev-
eral situations of interest, where the semigroup approxi-
mation cannot be used, because time inhomogeneous and
non-Markovian effects become relevant [6–8].

Consider a time-dependent generator Gt, which at any
time t has the form as in Eq. (1), with the replacements
cj → cj(t), Lj → Lj(t) and H → H(t). The most general
conditions to guarantee CP, not to mention P, of the

resulting dynamical maps Λt = T exp
(∫ t

0
Gsds

)
(with T

the chronological time-ordering operator) are not known.
Nevertheless, the positivity in time of the coefficients,
cj(t) ≥ 0, guarantees that the dynamics is CP and can
be decomposed into intermediate CP steps [3, 36]: for
any t ≥ s ≥ 0, there is a CP map Λt,s such that

Λt = Λt,s ◦ Λs; (12)

in this case the dynamics is said to be CP-divisible and
this property has been identified with the Markovianity
of the quantum dynamics in [37]. Note that the positivity
of the coefficients allows to extend the QSD unraveling
of CP semigroups to this case: one has simply to replace
cj → cj(t), Lj → Lj(t) and H → H(t) in Eqs.(3) and
(4). On the other hand, if some coefficient cj(t) takes on
negative values, this construction no longer applies: by
defining the operators Bψ,k as in Eq. (4), and deriving
the ME via Pt := |ψt〉〈ψt|, one would get the positive
coefficients |cj(t)|.

The unraveling defined via Eqs. (3) and (11) can also
be extended to ME with time-dependent coefficients,
which need not be positive functions of time. Consider
any ME leading to a dynamics which, instead of being
CP-divisible, is P-divisible, which means that the de-
composition in Eq. (12) still applies, but now we make
the weaker requirement that the maps Λt,s are P [26];
this property, in turn, has been identified with quantum
Markovianity in [27]. The construction presented before
can be immediately generalized to this situation, since
the equivalence in Lemma 1 still applies. The dynamical

map Λt = T exp
(∫ t

0
Gsds

)
is P and can be written as

in Eq. (12) in terms of positive Λt,s for any t ≥ s ≥ 0
if and only if, for any normalized vector ψ ∈ Cn, Wψ is
a positive semi-definite operator (where cj → cj(t) and
Lj → Lj(t) in the definition of Wψ in Eq. (5) is under-
stood). Then Eqs. (3) and (11), with the proper intro-
duction of time-dependence, define a valid unraveling of
a generic P-divisible ME.

Of course, there are several open-system dynamics
which are not P-divisible and, therefore, cannot be unrav-
elled via our approach, but where other diffusive [38, 39]
or jump [40] techniques can be exploited. On the other
hand, our approach can be applied to dynamics which are
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P and not CP and, more importantly, it yields a direct
generalization of the construction for the semigroup case,
without calling for hierarchical equations, nor for corre-
lations between different trajectories, which are instead
usually required by the above-mentioned techniques.

As a final remark, we note that Eqs. (2), (3) and (11)
comprise the most general (Markovian) dynamics of col-
lapse models [41–45]. If we limit to a dynamics as in
Eq. (2), the requirement of getting a closed linear average
description (i.e. a closed ME for the statistical operator
ρt, which is physically motivated by the request of no-
superluminal-signaling [46, 47]) is not enough to guaran-
tee the CP. This has been shown with a counterexample
in [48], and it traces back to the possible lack of norm
preservation of the SDE extended to an arbitrary ancilla,
as explained more in detail in [35]. In this context, the
CP of the ensemble dynamics is an extra assumption, not
emerging from fundamental requirements.

The Bloch-Redfield equation for a dimer system.—As
a specific example, we consider a simple description of
a dimer system, which nevertheless yields a relevant
model to investigate the exciton transfer, for example
in biomolecular complexes [15, 16, 31].

The state of the excitation is associated with a three-
level system: two levels for the excitation being in one or
the other site, and one level for the absence of excitation.
The most relevant sources of noise are the pure dephas-
ing and the recombination process. Using a perturbative
approach (e.g., the projection operator techniques) up to
second order and the Born-Markov approximation, one
gets the Bloch-Redfield equation [1]. This equation usu-
ally does not guarantee the positivity of the evolution
and it is then further approximated by a Lindblad equa-
tion, which even ensures that the dynamics is CP. The
Lindblad equation is obtained via the secular approxi-
mation (SA), which essentially neglects all the terms cou-
pling population and coherences of the system. However,
this approximation is not always justified from a physical
point of view, as it calls for a large difference in the time
scales of the free evolution and the dissipative relaxation
of the system. To overcome this difficulty and retain all
the relevant phenomena in the dimer evolution, yet in a
semigroup description of the dynamics, a partial SA was
introduced in [15]. The latter discards only some terms
which couple population and coherences, while it pre-
serves the most relevant ones. The resulting ME implies
a P, but in general not CP evolution. Hence, it provides
us with a natural benchmark to test our method.

The ME both after the full and the partial SA can be
written as [15]

ρ̇ij(t) =

3∑
kl=1

Rχij;klρkl(t), (13)

where ρkl(t) = 〈k| ρ(t) |l〉. We will use the notation
χ = CP for the full SA, while χ = P for the partial

0.5

j,
(t

)j2

0  0.1 0.2 0.3 0.4 0.5

0.5

time (ps)

j-
(t

)j2

(a)

(b)

0.5

;
11

(t
)

0  0.1 0.2 0.3 0.4 0.5

0.5

time (ps)

;
22

(t
)

(c)

(d)

FIG. 1. Trajectories for the evolution of the population of site
one (a) and two (b); each trajectory corresponds to a differ-
ent realization of the solution of the SDE in Eq. (2), with Aψt

as in Eq. (3) and Bψt as in Eq. (11) and derived by diago-
nalizing the GTRO at each point of the computational time
domain; the deterministic initial state is |ψ(0)〉 = |2〉, while
the state at time t is |ψ(t)〉 = α(t) |1〉+β(t) |2〉+γ(t) |3〉. Evo-
lution of the population of site one (c) and site two (d) given
by the ensemble average of 1000 trajectories of our unravel-
ing (blue), and the solution of the Lindblad equation after
full SA (green); in the inset, the ensemble average (blue) and
the solution of the P ME (red dotted) are shown to agree
within the standard deviation of the mean (vertical bars) of
the trajectories; the initial state is set as ρ(0) = |2〉 〈2|.

SA; the explicit coefficients Rχij;kl are given in [35]. In
Fig.1.a) and b) we report some trajectories for the evo-
lution of the, respectively, first and second site popula-
tions, which are obtained by means of the unraveling of
the P dynamics after the partial SA. Thus, we demon-
strate the effectiveness of our approach on a physically
relevant model; the explicit form of the GTRO and the
resulting unraveling operators Aψ and Bψ,k are given in
[35]. Let us stress that the traditional unravelings for CP
semigroups could not be applied to this dynamics, since
they require a Lindblad equation and thus, in this con-
text, a full SA. Crucially, the latter would cancel any cou-
pling between population and coherences, therefore po-
tentially disregarding some significant phenomena. This
is explicitly shown in Fig.1.c) and d), where we compare
the evolution of the populations obtained by solving the
Lindblad equation after the full SA and the populations
obtained by averaging 1000 trajectories of our unravel-
ing. The former completely neglects significant oscilla-
tions [15], which are instead fully captured by the unrav-
eling of the P dynamics.

Conclusions.— We have introduced a continuous un-
raveling for dynamics which are P, but not necessarily
CP. Our approach directly generalizes the QSD method:
the rates and operators extracted from the master equa-
tion have to be replaced by, respectively, the eigenval-
ues and eigenvectors of a proper rate operator. We have
taken into account the case of semigroup dynamical maps
and, additionally, we have extended our result to include
a more general class of divisible open-system dynamics.
By virtue of the unraveling of P dynamics, one can avoid
to impose approximations which could introduce signifi-
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cant errors in the system of interest. This has been shown
explicitly in a case study, by investigating the population
evolution in a dimer system.
Certainly, a crucial point will be to simplify the task of di-
agonalizing the GTRO at each time step, e.g. by looking
for possible connections between its spectral decomposi-
tions at subsequent times. Also, it will be of interest to
study how and to what extent the range of applicabil-
ity of our method can be further extended, for example,
combining it with other unraveling techniques [38–40],
which apply to general non-Markovian dynamics.
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[38] L. Diósi and W. T. Strunz, Phys. Lett. A 235, 569 (1997);
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Proof of Lemma 1

We prove Lemma 1 in the main text, that is,(
ρ ≥ 0⇒ Λt[ρ] ≥ 0

)
⇔
(
Wψ ≥ 0, ∀ ψ

)
. (14)

The lemma is actually equivalent to a theorem of Kos-
sakowski [33, 34]. As noticed in [27], such a theorem
can be rephrased as follows: given any orthonormal basis
{|ui〉}i=1,...n, then

(ρ ≥ 0⇒ Λt[ρ] ≥ 0)⇔
n2−1∑
j=1

cj |〈ui|Lj |ui′〉|2 ≥ 0, (15)

for any couple i 6= i′.
Let us consider two arbitrary states |ψ〉 , |ϕ〉. Write

|ϕ〉 = a |ψ〉+ b |ψ⊥〉 , (16)

where the two vectors on the r.h.s. are the components
of |ϕ〉, which are parallel and perpendicular to |ψ〉, re-
spectively. Notice the relations

〈ψ| (Lj − `ψ,j) |ψ〉 = 0, (17)

〈ψ| (Lj − `ψ,j) |ψ⊥〉 = 〈ψ|Lj |ψ⊥〉 . (18)

Then, using Eq. (17) and Eq. (18), we obtain for any ψ
the equivalence

〈ϕ|Wψ |ϕ〉 = |b|2
n2−1∑
j=1

cj |〈ψ|Lj |ψ⊥〉( |2 ∀ |ψ〉 , |ϕ〉 .

(19)
Given the above equation, the proof of the Lemma is
straightforward. On the one hand, the positivity of Wψ

for any |ψ〉 implies the positivity of the r.h.s. of Eq. (15)
for any couple of orthogonal elements of any given basis
(just set |ψ〉 = |ui〉 and |ψ⊥〉 = |ui′〉), from which the
positivity of the semigroup follows. One the other hand,
if Λt is P, and hence the r.h.s. of Eq. (15) is positive, the
non-negativity of the r.h.s. of Eq. (19) for any |ϕ〉 and
|ψ〉, therefore the positive semidefiniteness of Wψ for any
|ψ〉, directly follows from setting |ui〉 = |ψ〉 and using the
decomposition of |ψ⊥〉 on the elements of the basis |ui′〉
orthogonal to |ui〉, i.e. with i 6= i′.

The extension to the case of P-divisible dynamics di-
rectly follows from the analogous extension of the theo-
rem by Kossakowski, pointed out in [27]. Given a ME as
in Eq. (1), with cj → cj(t), Lj → Lj(t) and H → H(t),
the resulting dynamical map Λt is P and can be decom-
posed via Eq. (12) with P Λt,s if and only if

n2−1∑
j=1

cj(t) |〈ui|Lj(t) |ui′〉( |2 ≥ 0, (20)

for any couple i 6= i′. But then, similarly to the proof here
above one can show that the latter condition is equivalent
to the positivity of Wψ, defined as in Eq. (5), with the
replacements cj → cj(t) and Lj → Lj(t).

Proof of Eq. (8).

To prove Eq. (8), let us take the expectation of Eq. (7)
for a deterministic initial condition, |ψ0〉 =: |ψ〉 so that
ρ0 = P0 =: P ; since E [dPt/dt|t=0] = G[ρ0], we get

AψP + PA†ψ +

m∑
k=1

Bψ,kPB
†
ψ,k = G

[
P
]
. (21)

The SDE in Eq. (2) preserves the norm of the state vector
only if

〈ψ|Bψ,k |ψ〉 = 0 ∀ψ, k. (22)

Then, if we denote by |ψ⊥〉 a vector orthogonal to |ψ〉,
the norm constraint translates into Bψ,k |ψ〉 = |ψ⊥〉. In
other words, the noise operators must produce orthogo-
nal changes to the state vector they act upon. For any
fixed |ψ〉 this condition implies

P

(
m∑
k=1

Bψ,kPB
†
ψ,k

)
P = 0; (23)

on the other hand,

(I− P )
(
AψP + PA†ψ

)
(I− P ) = 0, (24)

so that by projecting Eq. (21) on the subspace orthogonal
to |ψ〉, Eq. (23) together with Eq. (24) prove the claim.

In addition, it is clear that Eq. (21), along with Eq. (9),
leads to Eq. (10). Writing explicitly G[P ] and Wψ via,
respectively, Eq. (1) and Eq. (5), one can easily check
that Eq. (3) gives a solution to Eq. (10). Let us empha-
size that, indeed, this is not the only non-linear operator
satisfying Eq. (10), but any other solution Ãψ would act
on the state ψ exactly in the same way, such that

Ãψt
|ψt〉 = Aψt

|ψt〉 ; (25)

in other terms, it would lead exactly to the same un-
raveling, see Eq. (2): in this regard, the choice of Aψ,
for fixed Bψ,k and noise ξk,t (see also the next Section),
is unique. To prove the validity of Eq. (25), consider
two different solutions, Aψ and Ãψ, to Eq. (10). Then,

AψP + PA†ψ = ÃψP + PÃ†ψ. Hence, for any state |ψ⊥〉
orthogonal to |ψ〉, one has

〈ψ⊥|Aψ |ψ〉 = 〈ψ⊥| Ãψ |ψ〉

and, analogously for the parallel component,

Re[〈ψ|Aψ |ψ〉] = Re[〈ψ| Ãψ |ψ〉].

In principle, Aψt
|ψt〉 and Ãψt

|ψt〉 could differ by a purely
imaginary component parallel to |ψt〉; but it is then easy
to see [45] that such a difference corresponds simply to
an irrelevant global phase applied to |ψt〉.
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Unraveling of a non-CP qubit ME

In this section, we deal with the unravelling of the
non-CP semigroup which was first derived in [32, 48].
Although the physical relevance of the model is not clear,
it is the first example of an unravelling of a P, but non
CP semigroup and it was thus used in [48] to prove that
the CP of the average dynamics is not guaranteed by the
existence of a Markovian unravelling. We will show now
how such a result can be straightforwardly re-derived and
further clarified using our method.

Hence, consider the non-CP semigroup acting on S(C2)
and generated by

dρt
dt

=

3∑
j=1

cj(σjρtσj − ρt), c1 = c2 = −c3 = 1, (26)

where σj are the usual Pauli matrices σ1 ≡ σx, σ2 ≡ σy
and σ3 ≡ σz. The GTRO associated to Eq. (26) is

Wψ =

3∑
j=1

cj(σj − sj) |ψ〉〈ψ| (σj − sj) (27)

with sj := 〈ψ|σj |ψ〉, and it has spectral decomposition

Wψ = λ1 |ψ〉〈ψ|+ λ2 |ψ⊥〉〈ψ⊥| ,

where the eigenvalues are λ1 = 0 and λ2 = 2 s23, while
the eigenvectors are |ψ〉 and |ψ⊥〉 orthogonal to |ψ〉. The
first eigenvalue and eigenvector can be easily found by
noticing that Wψ |ψ〉 = 0, as Eq. (17) ensures (see also
the discussion before Eq. (6)). Then, we are left with
verifying that

(Wψ − 2 s23) |ψ⊥〉 =

3∑
j=1

cj

(
σjPσj − sjPσj − 2s23

)
|ψ⊥〉

= 0. (28)

To show that, we project Eq. (28) on the basis vectors
〈ψ| and 〈ψ⊥|, respectively. Since for any j

〈ψ|σjPσj |ψ⊥〉 = 〈ψ|σj |ψ〉〈ψ|σj |ψ⊥〉
= 〈ψ| sj |ψ〉〈ψ|σj |ψ⊥〉
= 〈ψ| sjPσj |ψ⊥〉 ,

we have

〈ψ| (Wψ − 2 s23) |ψ⊥〉 =

3∑
j=1

cj 〈ψ| (σjPσj − sjPσj) |ψ⊥〉

= 0 (29)

On the other hand, since
∑3
j=1 s

2
j = 1 and rj =

| 〈ψ|σj |ψ⊥〉 |2 = 1− s2j , we have

〈ψ⊥| (Wψ − 2 s23) |ψ⊥〉 =

3∑
j=1

cj 〈ψ⊥|σjPσj |ψ⊥〉 − 2s23

=
∑
j

cjrj − 2s23 = 0. (30)

Eq. (29) together with Eq. (30) prove Eq. (28), which
implies Wψ = 2s23 |ψ⊥〉〈ψ⊥|.

Then, according to Eq. (6) and (3), the noise and the
drift terms which define a unraveling of Eq. (26) are
given, for any |ψ〉, by

Bψt
=
√

2s3 |ψt⊥〉〈ψt|

Aψt = −iH − 1

2

3∑
j=1

cj(σj − sj)2,

so that

|dψt〉 = −iH − 1

2

3∑
j=1

(σj − sj)2 |ψt〉 dt+
√

2 s3 |ψt⊥〉 dξj,t.

(31)
In fact, one can verify that Eq. (31) is norm preserving
(〈ψ|dψ〉+ 〈dψ|ψ〉+ 〈dψ|dψ〉 = 0) and generates, on aver-
age, the ME in Eq. (26).

CP and norm preservation

The requirement of getting a closed ME from a diffu-
sive norm preserving SDE does not imply, by itself, CP.
In this section we argue that the non CP character of the
resulting ME can be related to the lack of norm preser-
vation of its unraveling extended to an arbitrary ancilla.

To see this, let us recall that a linear map Λ : S(Cn)→
S(Cn) is CP if and only if the map Λ⊗ I : S(Cn⊗Cn)→
S(Cn⊗Cn) is P. Let G and G′ be the generators of Λ and
Λ⊗I, respectively. Assume Λ (at least) P, and call dψ the
norm preserving unraveling of its generator. Moreover,
we define dψ′ to be a particular extension of the original
SDE to an enlarged Hilbert space, such that it repro-
duces, on average, G′. Then, we are led to the following
diagram

dψ //
OO

��

dψ′
OO

��

G[ρ] // G′[ρ′]

(32)

where the vertical arrows represent the operations of un-
raveling and taking the stochastic average, and the hori-
zontal ones stand for tensoring with auxiliary operators,
in such a way that the diagram commutes.

Now let us assume that Λ is not CP. Then, there exist
t and ρ′ ∈ S(Cn⊗Cn) such that ρ̄ = (Λt⊗ I)[ρ′] = E[P ′t ],
where P ′t = |ψ′t〉 〈ψ′t|, is not a proper quantum state, i.e.
ρ̄ is either not positive, not trace one, or both. However,
any operator obtained via stochastic average is positive,
being the convex combination of the positive operators
P ′t . Then, if Λ ⊗ I is not P, it must be the case that
Tr(E[P ′t ]) = E[Tr(P ′t )] 6= 1, i.e. |dψ′〉 does not preserve
the norm of all state vectors. In summary, under the
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hypothesis that diagram (32) commutes, asking that the
extended SDE be norm preserving is a sufficient condition
for the CP of Λ.

Unraveling operators for the dimer system of [15]

Here, we show how to derive the explicit expression of
the unraveling operators Aψ and Bψ,k, see Eqs.(2), (3)
and (11), for the dimer system, which was investigated
in [15]; indeed, the reader is referred to the mentioned
paper for more details about the model. Hence, we first
need to write the master equation (13) into the Lindblad
form as in Eq.(1).

Before that, let us report the explicit expression of the
coefficients for the master equation in Eq.(13). After the
partial SA, we have [see Eq.(11) in [15]]

RP
11,11 = RP

22,22 = RP
33,33/2 = −4

RP
11,33 = RP

33,11 = RP
22,33 = RP

33,22 = 4

RP
11,12 = RP

22,21 = RP
31,32 = RP

32,31 = −71i

RP
22,12 = RP

11,21 = RP
13,23 = RP

23,13 = 71i

RP
21,11 = RP∗

12,11 = −RP∗
12,22 = −RP

21,22 = −1 + 71i

RP
12,12 = RP∗

21,21 = −8− 46i

RP
13,13 = RP∗

31,31 = −9 + 12210i

RP
23,23 = RP∗

32,32 = −9 + 12256i, (33)

and all the other coefficients are equal to 0; as one can
directly check, this provides us with a P, but not CP
evolution. On the other hand, as widely discussed in [15],
a CP evolution is obtained with a full SA, which means
that the terms coupling populations and coherences are
set to 0:

RCP
11,12 = RCP

22,21 = RCP
31,32 = RCP

32,31 = 0

RCP
22,12 = RCP

11,21 = RCP
13,23 = RCP

23,13 = 0

RCP
21,11 = RCP

12,11 = RCP
12,22 = RCP

21,22 = 0, (34)

while all the other coefficients in Eq.(33) are not changed.
The Lindblad form of these two master equations is now
readily obtained following [4]. First, note that the gener-
ator G can be directly reconstructed via the coefficients
in Eq.(13), since

Rχij;kl = 〈i| Gχ [|k〉〈l|] |j〉 . (35)

Then, consider the basis of operators on C3 given by
{τi}i=0,...8, with τ0 = 1/

√
3, while the τis with i = 1, . . . 8

are the Gell-Mann matrices over
√

2 (to guarantee the
normalization with respect to the Hilbert-Schmidt scalar
product). Hence, the so-called non-diagonal form of the
generator G is given by

G[ρ] := −i [H, ρ] +

8∑
ij=1

dij

[
τiρτ

†
j −

1

2

{
τ †j τi, ρ

}]
, (36)

with

H =
1

2i

(
τ † − τ

)
, τ =

1

3

8∑
i=1,k=0

Tr {τkτiG[τk]} τi

dij =

8∑
k=0

Tr {τjτkτiG[τk]} i, j = 1, . . . 8. (37)

The matrix of coefficients dij is Hermitian, as the dy-
namics is Hermiticity preserving; so there is a unitary
matrix U , with elements Uij , which diagonalizes it. The
resulting coefficients of the diagonal matrix are just the
coefficients cj appearing in the diagonal form of G in
Eq.(1), and the matrix U also defines the corresponding
Lindblad operators Lj : explicitly one has

cj =

8∑
kk′=1

U∗kjdkk′Uk′j

Lj =

8∑
i=1

Uijτi. (38)

For the generator GP fixed by Eq.(33) we get the coeffi-
cients

c1 = 2 +
√

5, c2 = c3 = c4 = c5 = 4, (39)

c6 =
1

3

(
4 +
√

19
)
, c7 = 2−

√
5 c8 =

1

3

(
4−
√

19
)
,

where, note, the last two are negative, thus witnessing
the non CP of the resulting semigroup dynamics. The
corresponding (canonical) Lindblad operators are

L1 = −f1,−τ1 + f1,+τ3 L7 = f1,+τ1 + f1,−τ3

L2 = τ4 L3 = τ5 L4 = τ6 L5 = τ7

L6 = if2,−τ2 + f2,+τ8 L8 = −if2,+τ2 + f2,−τ8

f1,± =

√
1

2
± 1√

5
f2,± =

√
1

2
± 2√

19
; (40)

finally, the Hamiltonian part of the dynamics is given by

H = −71
√

2τ1 −
√

2

3
τ2 + 23

√
2τ3 − 12233

√
2

3
τ8. (41)

The unraveling operator Aψ is hence directly defined by
Eq.(3), while Bψ,k is obtained via the evaluation of the
GTRO in Eq.(5) and its diagonalization, see Eqs.(6) and
(11).

Repeating the same calculations for the generator GCP
fixed by the full SA, i.e., Eq.(34), we directly get a diag-
onal form of the generator, with (positive) coefficients

c1 = c2 = c3 = c4 = c5 = 4, c6 =
8

3
(42)

and Lindblad operators, as well as Hamiltonian, given by

L1 = τ3 L2 = τ4 L3 = τ5 L4 = τ6

L5 = τ7 L6 = τ8

H = 23
√

2τ3 − 12233

√
2

3
τ8. (43)
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Here, since the dynamics is CP one could apply the usual formulation of the (diffusive) unraveling, which is directly
fixed by Eqs.(3) and (4).
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