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Abstract: Heat Shock Protein 90 (Hsp90) chaperone interacts with a broad range of client proteins
involved in cancerogenesis and cancer progression. However, Hsp90 inhibitors were unsuccessful
as anticancer agents due to their high toxicity, lack of selectivity against cancer cells and extrusion
by membrane transporters responsible for multidrug resistance (MDR) such as P-glycoprotein
(P-gp). Recognizing the potential of new compounds to inhibit P-gp function and/or expression
is essential in the search for effective anticancer drugs. Eleven Hsp90 inhibitors containing an
isoxazolonaphtoquinone core were synthesized and evaluated in two MDR models comprised of
sensitive and corresponding resistant cancer cells with P-gp overexpression (human non-small cell
lung carcinoma and colorectal adenocarcinoma). We investigated the effect of Hsp90 inhibitors on
cell growth inhibition, P-gp activity and P-gp expression. Structure–activity relationship analysis was
performed in respect to cell growth and P-gp inhibition. Compounds 5, 7, and 9 directly interacted with
P-gp and inhibited its ATPase activity. Their potential P-gp binding site was identified by molecular
docking studies. In addition, these compounds downregulated P-gp expression in MDR colorectal
carcinoma cells, showed good relative selectivity towards cancer cells, while compound 5 reversed
resistance to doxorubicin and paclitaxel in concentration-dependent manner. Therefore, compounds
5, 7 and 9 could be promising candidates for treating cancers with P-gp overexpression.

Keywords: isoxazolonaphthoquinones; Hsp90 inhibitors; P-glycoprotein inhibitors; cancer; multidrug
resistance

1. Introduction

Cancer is the second leading cause of death in the world, contributing to 8.8 million deaths in 2015
according to World Health Organization statistics [1]. Implementation of targeted therapeutics has
provided hope for more efficient cancer treatment. High proliferative capacity of cancer cells presented
a base for the selectivity of DNA damaging agents, also known as classic chemotherapeutics. Although
still widely used in clinical practice, the application of this type of therapeutics is connected with severe
damage in normal cells and systemic toxicity. New experimental tools and methodologies enabled
the discovery of new biomarkers that could serve as targets for specific cancer types. The expected
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outcome of new therapeutic strategies is directed towards the inhibition of cancer cell growth and
suppression of metastasis. However, the same obstacles recognized with classic chemotherapeutics
continue to obstruct the efficacy of new targeted therapies.

Molecular chaperones play an essential role in almost all cellular events by assisting unfolded or
misfolded macromolecules [2,3]. In addition, molecular chaperones are involved in soluble protein
transport and subcellular localization of signaling intermediates. They also modulate transcription
by epigenetic regulation of gene expression and chromatin modification. Heat shock proteins
(HSPs) are key molecular chaperones whose expression is triggered in response to environmental
stress conditions [4]. Cancer cells are more dependent on stress-related proteins including HSPs
when compared to normal cells, since they need to rewire their signal transduction and metabolic
pathways [5]. The most extensively studied target for cancer therapy is Hsp90, a heat shock protein
linked to cancer cell proliferation, differentiation, invasion, metastasis, and drug resistance [6]. Hsp90
interacts with hundreds of client proteins and other signaling molecules including various oncogenes,
p53, Akt, tyrosine kinases, steroid receptors, cytoskeletal proteins, importins, nucleoporins, and
histones [7]. Hsp90 inhibitors based on the purine scaffold of ATP, the resorcinol scaffold of radicicol,
the benzoquinone ansamycin scaffold of geldanamycin, and other chemical scaffolds shown to inhibit
Hsp90 have been extensively studied both in vitro and as a part of clinical trials [8,9]. Despite certain
promising results, issues such as toxicity, poor solubility, and limited bioavailability were responsible
for the discontinuation of clinical development and lack of regulatory approval of Hsp90 inhibitors [7].

Significant limits for the efficient cancer treatment include the heterogeneity of cancer cells,
development of resistance and evolutionary concept of regrowth that involves cancer stem cells
or drug tolerant cells [10]. Resistance mechanisms in targeted therapy include activation of the
downstream signaling molecules independently from the target, changes in the target molecule
such as mutations or expression level, activation of the target by alternative mechanisms and drug
elimination through export pumps—ATP Binding Cassette (ABC) transporters [11,12]. The most
relevant and most studied representative of ABC membrane transporters involved in the classic
mechanism of multidrug resistance (MDR) is P-glycoprotein (P-gp/MDR1/ABCB1). Its activity disables
intracellular accumulation of chemotherapeutics and drug-target interaction [13]. Unfortunately,
numerous anticancer therapeutics, including a variety of Hsp90 inhibitors [14], are substrates for P-gp.
Nevertheless, some of the anticancer agents could be recognized as P-gp inhibitors. There is no final
list of P-gp substrates and inhibitors; therefore, studying the efficacy of targeted therapeutics in cancer
models with overexpression of P-gp constitutes a rational approach in preclinical studies.

Our hypothesis is that Hsp90 inhibitors of specific structure can directly or indirectly interact with
P-gp and consequently modulate MDR. Directly, they may competitively inhibit P-gp behaving as
P-gp substrates or may act as P-gp inhibitors. Indirectly, Hsp90 inhibitors may change the expression
and activity of their client proteins involved in the regulation of P-gp expression. We previously
reported a series of 3-aryl-naphtho[2,3-d]isoxazole-4,9-diones as inhibitors of Hsp90 [15]. Reaction
of naphthoquinone (1) with suitable oximes (2) resulted in the generation of compounds 3–10, while
regioselective 1,3-dipolar cycloaddition on the bromonaphthoquinones (12) produced compounds 13–15.

In this paper, we report our efforts to develop dual targeting molecules, with potential to act against
both deregulated cancer metabolism by Hsp90 inhibition and MDR mechanism by P-gp inhibition.
Eleven Hsp90 inhibitors (compounds 3–10, 13, 14 and 15) were analyzed to identify those more selective
towards cancer cells with the ability to modulate MDR through interaction with P-gp. Docking studies
were performed to identify the potential P-gp binding site of selected inhibitors. The anticancer activity
of the compounds was tested on two MDR models comprised of P-gp overexpressing cancer cell
lines established after continuous exposure to paclitaxel (PTX) or doxorubicin (DOX) [16,17] and their
corresponding sensitive counterparts.
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2. Results and Discussion

2.1. Structure–Activity Relationship Analysis in Relation to Cell Growth Inhibition of Cancer and Normal Cells

Quinones are a class of organic compounds that possess a range of biological activities, mainly
associated with their redox properties. Numerous natural and synthetic quinones have been shown to
display significant anticancer activity [18–20].

A series of 3-aryl-naphtho[2,3-d]isoxazole-4,9-diones were synthesized (Scheme 1, Figure 1)
and their growth inhibition activity was tested in vitro on human non-small cell lung carcinoma
NCI-H460, colorectal carcinoma DLD1 and their corresponding MDR cells (NCI-H460/R and DLD1-TxR,
respectively), as well as normal embryonic lung fibroblasts MRC-5. The differences in cell growth
inhibition between cancer and normal cells obtained by the MTT assay after 72 h treatment are
presented in Table 1. The effect of compounds is presented as IC50 values that correspond to the 50% of
cell growth inhibition.
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Scheme 1. Synthesis of 3-aryl-naphtho[2,3-d]isoxazole-4,9-diones. Reagents and conditions: (a) TEA,
15% NaClO, CH2Cl2, 0 ◦C, 1.5 h; for 5: (a), then, BBr3, CH2Cl2, 0 ◦C, 1 h, rt, 30 min; (b) benzyl bromide,
DMSO, rt, overnight; (c) Ac2O Py, rt, 3 h; (d) NBS, AcOH/H2O, 50 ◦C, 2 h; (e) for 13: (i) H2SO4 1.5 M,
EtOH, reflux, 3 h; (ii) Mel, Ag2O, CH2Cl2, rt, overnight; (f) TEA, 15% NaClO, CH2Cl2, 0 ◦C, 1.5 h; (e)
benzyl bromide, DMSO, rt, overnight.

Table 1. Cell growth inhibition (presented as IC50 values in µM) induced by Hsp90 inhibitors with
different affinity of binding to Hsp90.

Compound NCI-H460 NCI-H460/R DLD1 DLD1-TxR MRC-5 #
Relative

Selectivity
RS

Hsp90
Affinity
binding

(µM) [15]

LogP

3 0.785 ± 0.032 * 0.599 ± 0.020 CS 0.925 ± 0.032 0.644 ± 0.020 CS 0.636 ± 0.023 NO 7.850 3.24
4 0.935 ± 0.048 0.579 ± 0.018 CS 1.523 ± 0.054 1.059 ± 0.025 CS 1.747 ± 0.083 1.71 5.840 3.08
5 5.722 ± 0.073 25.496 ± 0.925 R 5.683 ± 0.163 11.060 ± 0.304 R 127.677 ± 38.976 10.64 1.550 2.93
6 0.807 ± 0.035 0.472 ± 0.018 CS 0.439 ± 0.006 0.439 ± 0.010 E 4.737 ± 0.473 8.79 1.200 2.88
7 0.199 ± 0.005 0.231 ± 0.006 E 0.156 ± 0.004 0.138 ± 0.003 E 0.599 ± 0.015 3.31 0.390 2.02
8 0.159 ± 0.003 0.351 ± 0.005 R 0.251 ± 0.003 3.364 ± 0.049 R 11.021 ± 0.366 10.69 0.034 -0.20
9 0.096 ± 0.002 0.172 ± 0.005 R 0.045 ± 0.001 0.050 ± 0.001 E 0.302 ± 0.008 3.33 0.540 2.02

10 1.269 ± 0.014 1.375 ± 0.012 E 2.645 ± 0.035 1.787 ± 0.036 CS 0.257 ± 0.004 NO 1.060 2.40
13 1.250 ± 0.028 1.060 ± 0.012 E 1.895 ± 0.036 1.004 ± 0.016 CS 0.174 ± 0.004 NO 1.900 1.86
14 0.978 ± 0.018 23.597 ± 0.470 R 7.449 ± 0.212 10.632 ± 0.270 R 53.283 ± 1.729 5.00 0.340 –0.36
15 0.052 ± 0.002 0.039 ± 0.001 E 0.044 ± 0.001 0.193 ± 0.007 R 0.250 ± 0.014 3.05 0.084 1.63

* All values are presented as an average IC50 from three independent experiments and given in µM. # MRC-5 human
embryonic fibroblasts were used to determine relative selectivity to cancer cells. CS Collateral Sensitivity (IC50
values lower in MDR cells than in corresponding sensitive cells). R Resistance (IC50 values higher in MDR cells
than in corresponding sensitive cells). E Evading resistance mechanisms (similar IC50 values between MDR and
corresponding sensitive cells). RS Relative selectivity towards cancer cells: A relation between IC50 value obtained
in MRC-5 cells and an average IC50 value from four tested cancer cell lines.
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Isoxazolo-fused naphthoquinone 3 triggered a considerable growth inhibition in investigated
cancer cell lines (IC50 = 785 nM for NCI-H460; IC50 = 925 nM for DLD1), and, interestingly, showed
better efficacy in cells with MDR phenotype. A phenomenon in which development of MDR phenotype
in cancer cells confers higher sensitivity to drugs compared to parental cell is termed collateral
sensitivity [21]. The introduction of a polar pOMe group on the phenyl ring in compound 4 caused a
slight reduction in the activity (IC50 = 935 nM for NCI-H460; IC50 = 1523 nM for DLD1), but the efficacy
on both MDR cancer cells remained higher than in the corresponding sensitive cells. The activity
was further reduced by the introduction of a hydroxy group in the ortho position on the phenyl ring.
Consequently, compound 5 had lower activity in both cell lines (IC50 = 5722 nM for NCI-H460; IC50 =

5683 nM for DLD1). The effect was further compromised in the presence of MDR phenotype.
As the introduction of substituents at the ortho position on the benzyl ring seemed to be less

tolerated than in para position (compound 5 vs. compound 4), we intended to investigate the effect of
the introduction of other polar moieties at the para position, with the aim of increasing the polarity and
possibly the water solubility of the compounds. Derivative 6, containing a hydrophilic morpholine
hydrochloride moiety, showed strong activity in investigated cancer cell lines (IC50 = 807 nM for
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NCI-H460; IC50 = 439 nM for DLD1). Interestingly, the compound evaded resistance in DLD1-TxR
cells and showed collateral sensitivity in NCI-H460/R cells. It is important to point out that all
isoxazole-containing compounds with highest activity described in the literature contain morpholine
moiety [22–24].

Substitution of the phenyl ring with a pyridine moiety led to an increase in activity, as
compound 7 displayed a very strong effect (IC50 = 199 nM for NCI-H460; IC50 = 156 nM for
DLD1). The compound evaded resistance in both MDR cancer cell lines and exhibited higher activity
than the corresponding phenyl substituted compound 3.

Shifting the position of the nitrogen atom to position 3 conserved a strong activity (compound 9,
IC50 = 96 nM for NCI-H460; IC50 = 45 nM for DLD1), whereas the presence of the nitrogen atom in
position 2 had an unfavorable effect (compound 10, IC50 = 1269 nM for NCI-H460; IC50 = 2645 nM for
DLD1). This trend was in line with the result found for compound 5, having a polar group on the
ortho position of the aromatic ring. Regardless of reduced activity, compound 10 overcame resistance
in NCI-H460/R and displayed collateral sensitivity in DLD1-TxR cells.

The introduction of an acetoxy group on the naphtoquinone ring (compound 15) further increased
the activity on sensitive cancer cell lines (IC50 = 52 nM for NCI-H460; IC50 = 44 nM for DLD1).
The activity was maintained in resistant NCI-H460/R cells (IC50 = 39 nM), whereas it was lower
in DLD1-TxR cell line (IC50 = 193 nM). The presence of a methoxy group in the same position
(compound 13) caused a drop in the activity (IC50 = 1895 nM for DLD1; IC50 = 1250 nM for NCI-H460).
Nevertheless, compound 13 evaded resistance mechanisms in NCI-H460/R and demonstrated collateral
sensitivity in DLD1-TxR cell line.

To increase the polarity and the water solubility, the pyridine derivatives 7 and 13 were alkylated
with benzyl bromide, to give the corresponding quaternary salts 8 and 14 (Scheme 1). This modification
was disadvantageous for the activity of compound 14 in DLD1 cell line (IC50 = 7449 nM for DLD1; IC50

= 978 nM for NCI-H460) and the effect was further compromised in the presence of MDR phenotype in
both cell lines. On the contrary, alkylation of compound 7 did not cause a reduction in the activity in
sensitive cancer cell lines (compound 8, IC50 = 159 nM for NCI-H460; IC50 = 251 nM for DLD1), but
this effect was also compromised in the presence of the MDR phenotype.

Compared to normal MRC-5 cell line, eight out of eleven investigated compounds (4–9, 14 and 15)
displayed relative selectivity towards cancer cells.

2.2. Comparison of Hsp90 Inhibitors’ Cell Growth Inhibition with HSP90 mRNA Expression Profile in Cancer
Cells and Hsp90 Affinity Binding

The expression of HSP90 was analyzed from total RNA samples of NCI-H460, NCI-H460/R, DLD1,
DLD1-TxR cells by qPCR (Table 2). The expression of HSP90 on mRNA level was affected by the
development of MDR phenotype in both resistant cell lines. In NCI-H460/R cells, mRNA HSP90
expression decreased approximately four-fold compared to sensitive NCI-H460 cells. In contrast, the
expression of HSP90 was reduced by 25% in DLD1-TxR cells compared to their parental cell line.

Table 2. mRNA HSP90 relative expression in NCI-H460, NCI-H460/R, DLD1 and DLD1-TxR cells.

Cell Lines NCI-H460 NCI-H460/R DLD1 DLD1-TxR

Relative mRNA
HSP90 expression 1.000 ± 0.001 0.240 ± 0.034 * 0.477 ± 0.018 # 0.356 ± 0.016 #

* significant difference compared to corresponding sensitive cell line; # mRNA HSP90 expression relative to NCI-H460
cells; results are expressed as mean ± SD of three replicates.

The obtained IC50 values from Table 1 were used to evaluate the influence of HSP90 mRNA
expression level on the cell growth inhibition by Hsp90 inhibitors (Figure 2a). Spearman correlation
indicates that the HSP90 mRNA expression profile of cell lines affected the cell growth inhibitory
potential of only two inhibitors, compounds 5 and 14 (r < −0.5). The decreased expression of HSP90 in
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MDR cell lines was accompanied by resistance to these Hsp90 inhibitors. The greater difference in
HSP90 expression between NCI-H460 and NCI-H460/R cells, also resulted in greater difference in their
effect, compared to the other sensitive/resistant pair of cells.
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Figure 2. Cell growth inhibition potential of Hsp90 inhibitors correlates with the level of Hsp90
expression and Hsp90 affinity binding. (a) Negative correlation between IC50 values and mRNA HSP90
relative expression. Spearman correlation indicates that the effect of compounds 5 and 14 on growth
inhibition is stronger in cell lines with higher mRNA HSP90 expression (r = Spearman’s correlation
coefficient). Statistical significance: p < 0.05 (*) (b) Positive correlation between Hsp90 inhibitors’ effect
on cell growth inhibition and Hsp90 affinity binding. Pearson correlation is applicable only for Hsp90
inhibitors with strong effect on cell growth (IC50 < 1000 nM). (r = Pearson’s correlation coefficient).
Statistical significance: p < 0.05 (*).

When the IC50 values obtained by the MTT assay were compared to Hsp90 affinity binding IC50

values (Table 1), a positive Pearson correlation (r > 0.5) was found for all cancer cell lines (Figure 2b).
However, this correlation is applicable only to Hsp90 inhibitors with IC50 values < 1000 nM (compounds
3, 6, 7, 9, and 15). Neither positive nor negative correlations were found for compounds 4, 5, 8, 10, 13
and 14 with IC50 values ≥ 1000 nM. This finding indicates that compounds with higher Hsp90 binding
affinity also possess a stronger cell growth inhibitory potential.
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2.3. Hsp90 Inhibitors Influence P-gp Activity and Expression

P-gp, as a member of the ATP-binding cassette transporter family, acts as an efflux pump for a
variety of anticancer agents [25–27]. The efficacy of Hsp90 inhibitors as anticancer agents has been
previously linked to P-gp expression and MDR phenotype [28]. Resistance to Hsp90 inhibitors such as
benzoquinone ansamycins GdA and herbimycin A was observed in doxorubicin-selected human breast
cancer MCF7/ADRR cells and associated with the overexpression of P-gp [29]. Another Hsp90 inhibitor,
17-AAG, was reported to be less effective in cells overexpressing efflux pumps [28,30]. On the contrary,
synthetic purine- and pyrazole-based inhibitors of Hsp90, which are not P-gp substrates, evade the
resistance mechanisms in MDR cancer cells [31–33]. As some of our Hsp90 inhibitors evaded resistance
in both MDR cancer cell lines (Table 1), we next analyzed their interaction with the P-gp transporter.

To study the effect of Hsp90 inhibitors on P-gp activity in MDR cancer cells, intracellular
accumulation of the P-gp substrate rhodamine 123 (Rho 123) was analyzed by flow cytometry after
30 min treatment (Figure 3a). A well-known inhibitor of P-gp activity, tariquidar (TQ), was included as
a positive control.
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Figure 3. Suppression of P-gp activity induced by Hsp90 inhibitors. (a) The inhibition of P-gp activity
in MDR NCI-H460/R and DLD1-TxR cells after 30 min treatment with Hsp90 inhibitors. (b) Dose
dependent effects on P-gp inhibition in NCI-H460/R and DLD1-TxR cells after 30 min treatment with
Hsp90 inhibitors. Tariquidar (TQ) is included as positive control. The results are expressed as mean
± SD. Statistical significance to untreated control from three independent experiments: p < 0.05 (*),
p < 0.001 (***).

Compound 3, with a phenyl group on the isoxazolo-fused naphthoquinone ring, did not influence
the P-gp activity in either of the MDR cell lines (Figure 3a). The introduction of polar p-methoxy or
morpholino groups (compounds 4 and 6) did not have any positive effects, whereas the presence of an
o-hydroxy group (compound 5) had a significant beneficial effect on P-gp inhibition.

Compounds 9 and 7, both containing a pyridinyl moiety on the isoxazolo-fused naphthoquinone
ring, also showed an evident increase in Rho 123 accumulation.
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Conversely, a different linkage of the pyridinyl moiety (pyridin-2-yl vs. pyridin-4-yl), caused
a reduction in activity (compound 10 vs. compound 7). The activity was also decreased with the
introduction of a methoxy group in position 5 of compound 7 (compound 13 vs. compound 7), whereas
the introduction of an acetoxy moiety in the same position gave a compound that maintained a certain
activity but only in DLD1-TxR cells (compound 15).

The alkylation on the pyridine nitrogen by a benzyl group to obtain the corresponding pyridium
salt 8 was detrimental. The activity was partially restored with the introduction of a methoxy group in
position 5 (compound 14), as observed in DLD1-TxR cell line (Figure 3a).

We tried to rationalize the obtained results in light of physicochemical properties of this small
collection of compounds. In this respect the most active compounds (5, 9, and 7) have logP > 2 (Table 1).
Increasing the hydrophilicity appeared to have a negative effect on the compound activity. Indeed,
compound 8, with a morfolino hydrochloride moiety (see compounds 8 vs. 7) showed modest activity.
However, we cannot exclude that the reduced activity is due to the increased Van der Walls volume of
the compounds due to the introduction of bulky groups. In fact, the same trend is not followed for
compounds 13 and 14.

The presence of a methoxy group in position 5 seems to be unfavorable (compound 13 vs.
compound 7), as well as a methoxy group at the para position of the phenyl group (compound 4 vs.
compound 3). Conversely, the hydroxyl group on the phenyl ring in compound 5 has a significant
effect on the P-gp inhibition (compound 5 vs. compound 3).

Moreover, in the series containing the pyridinyl group in different positions (compound 9:
pyridin-3-yl; compound 7: pyridin-4-yl; compound 10: pyridin-2-yl) the reduction of pKa (2.40 for
compound 10, compared to 4.18 and 3.76 for compounds 9 and 7) led to a drop in activity.

Compounds 5, 7 and 9 which demonstrated the most prominent effect in both MDR cell lines,
were selected for a detailed investigation regarding concentration dependent inhibition of the P-gp
activity. Indeed, all three compounds exerted concentration dependent effect, as indicated by the
increase in rhodamine 123 accumulation (Figure 3b).

The main function of Hsp90, as a highly conserved molecular chaperone, is to regulate folding,
stability, and the activity of numerous Hsp90-associated proteins [34]. The ERK pathway is one of
the most important cell growth signaling pathways in cancer and its components are involved in the
regulation of P-gp expression in cancer cells [35–37]. Hsp90 enables the kinase activity of the ERK
pathway proteins such as Raf and MEK by regulating their folding which suggests that the application
of Hsp90 inhibitors could block the ERK signaling pathway, downregulating P-gp expression as a
result. Colorectal cancer has a high incidence of KRAS mutations and the constitutive activation of
Ras/Raf/MEK/ERK signaling [38]. This makes this type of cancer exceptionally interesting regarding
Hsp90 inhibition due to sensitivity of these signal transduction pathways to Hsp90 inhibitors [39–42].
The effectiveness of targeting Hsp90 in human colon cancer has been shown both in vitro and
in vivo [30,33,42,43].

Accordingly, we next analyzed the influence of our Hsp90 inhibitors (compounds 5, 7 and 9)
on P-gp expression in parental (sensitive) and MDR non-small cell lung carcinoma and colorectal
adenocarcinoma cells (Figure 4). Important findings were obtained on both sensitive cell lines NCI-H460
and DLD1 (Figure 4a,c). Namely, compounds 5, 7 and 9 did not change P-gp expression in sensitive
cancer cells quite oppositely from classic chemotherapeutics DOX and PTX that significantly increased
P-gp expression. Interestingly, TQ did not influence the P-gp expression in NCI-H460 and NCI-H460/R
cells (Figure 4a,b), while increased P-gp expression in DLD1 and DLD1-TxR cells was observed after
TQ treatment (Figure 4c,d). Compound 5 significantly increased P-gp expression only in NCI-H460/R
cells (Figure 4b) and this could be attributed to the compensatory mechanism due to compound 5’s
strong activity against P-gp functioning. Importantly, all tested compounds significantly decreased
P-gp expression in DLD1-TxR cell line (Figure 4d).
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Figure 4. Changes in P-gp expression at protein level after treatment with Hsp90 inhibitors. Changes
in P-gp expression in (a) parental NCI-H460 cell line, (b) MDR NCI-H460/R cell line, (c) parental DLD1
cell line and (d) MDR DLD1-TxR cell line after 72 h treatment with compounds 5, 7 and 9. Doxorubicin
DOX, paclitaxel (PTX) and tariquidar (TQ) are included as positive controls. The results are expressed
as mean ± SEM. Statistical significance to untreated control from three independent experiments:
p < 0.05 (*), p < 0.01 (**), p < 0.001 (***).

In addition to a prominent effect on P-gp function, compounds 5, 7 and 9 exhibited strongest
selectivity towards cancer cells as detected by the MTT assay. For this reason, compounds 5, 7 and 9
were selected to evaluate their ability to inhibit the ATPase activity of P-gp transporter. Verapamil,
a P-gp substrate and competitive inhibitor, and sodium orthovanadate (Na3VO4), a noncompetitive
inhibitor of P-gp ATPase activity, were used as positive controls. The results are reported in Figure 5a.
Compound 7 showed a potent dose-dependent inhibition. Compound 9 showed a significant inhibition
as well; however, it seemed to be independent from the concentration. The smallest effect on ATPase
activity was observed with compound 5.

2.4. Hsp90 Inhibitors have Potential to Modulate P-gp Activity via Direct Binding

In silico studies were further undertaken to elucidate possible interactions of compounds 5, 7
and 9 with P-gp. In particular, docking simulations were performed using two structures of P-gp
extracted from Protein Data Bank (PDB, www.rcsb.org)—human taxol-bound P-gp (PDB ID 6QEX)
and human-mouse chimeric zosuquidar-bound P-gp (PDB ID 6QEE, two molecules of zosuquidar
co-crystalized) [44]. These structures have been recently resolved and provide an excellent opportunity
for comparison of substrate- and inhibitor-bound structures in the drug-binding cavity of P-gp.
Particularly, it has been noted that the inhibited P-gp structure reveals two molecules of zosuquidar
that occupy the same central occluded pocket where the taxol is bound in [45].

Based on this observation, the binding site for docking simulations in both structures was defined
by superposition of the X-ray protein structures and identification of the space positions of the three

www.rcsb.org
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ligands (taxol and two zosuquidars) that fit the cavity where the docking poses to be placed. Similar
docking results were produced in both structures and finally the taxol-bound P-gp structure was used
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(a) Changes in P-gp ATPase activity after treatment with Hsp90 inhibitors. The y-axis represents
percentage of change in relative luminescence units (RLU). Control is normalized to zero. Na3VO4

and verapamil are included as positive controls. The results are expressed as mean ± SEM. Statistical
significance: p < 0.05 (*), p < 0.01 (**), p < 0.001 (***). (b) Binding poses of compound 5 (C atoms in
cyan), compound 7 (C atoms in magenta), compound 9 (C atoms in yellow), and the positive control
tariquidar (space filled atoms representation) in the P-gp cavity. The protein backbone is rendered as a
line ribbon, and the helices are colored red. The binding site is outlined by the molecular surfaces of
the X-ray structures of taxol and two zosuquidar molecules. Both general (left) and close-up views
(right) of the binding site are presented.

Different docking protocols were compared and the one with the best performance on re-docking
of the X-ray taxol and zosuquidar structures was selected in terms of (i) similarity between the
generated poses and the corresponding structures in the crystal complex, and (ii) calculated scores that
approximate the binding affinity (lower scores indicate more favorable interactions).

The compounds 5, 7 and 9, as well as TQ (used as a reference compound in the Rho 123
accumulation assay), were docked. The docking results confirmed the potential of the investigated
compounds to bind in the P-gp cavity. The range of the scores for the first five poses of compounds 5, 7
and 9 and TQ were (−9.49 ÷ −741), (−8.54 ÷ −7.86), (−9.78 ÷ −8.23) and (−16.41 ÷ −13.66), respectively.
For comparison, the scores of the re-docked X-ray ligands were in the range (−15.62 ÷ −13.87) for
taxol and (−13.17 ÷ −10.84) for zosuquidars. The docking results are in agreement with the in vitro
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results on Rho 123 accumulation, where the effects of the three studied compounds are comparable
and lower than the effect of the positive control TQ (Figure 3). The selected binding poses of the three
Hsp90 inhibitors and TQ resulting from the performed docking are presented in Figure 5b. As seen
from the figure, the investigated compounds occupy the same region within the cavity defined by the
X-ray ligands. At the same time, they are positioned closer to the upper site (near the outside of the
cell) compared to tariquidar. This is reasonable, taking into consideration that the structures under
investigations are smaller in size than TQ and binding into a more closed and burred site could better
stabilize their position.

The analysis of the ligand-protein interactions of the selected poses outlines a number of specific
interactions that may potentially occur upon binding, including hydrogen bonding with Gln725 and
arene–arene interactions with Phe336 for compound 7, as well as hydrogen bonding with Met 986,
arene–arene interactions with Phe983 and arene–H interactions with Phe72 for compound 5. No specific
interactions were recorded for compound 9.

We previously identified a binding site for Rho 123 (R-site) in the binding pocket of the P-gp
protein cavity [46] that involved the residues Ile340, Leu975, Val981, and Val982, proposed by Loo and
Clarke for the binding site of rhodamines in experiments with thiol-reactive rhodamine derivatives [47].
It is worth noting that the residues involved in the binding sites of the studied compounds include
those shown to form the R-site, and those performing specific interactions and being in the closest
contact to Rho 123 (Met68, Met69, Phe72, Phe336, Tyr953). Interestingly, the site of compound 7
includes also the residue Ile340 experimentally proven to relate to the R-site [47].

In a later study, we also proposed binding sites for the P-gp inhibitors tariquidar and elacridar [48].
In the current study, the highly ranked poses of TQ involved residues that overlapped with those
previously identified, including hydrogen bonding with Gln990. In agreement, the binding sites
for compounds 5, 7 and 9 proposed here involved residues that also shaped the binding site of TQ,
as illustrated by overlapping of the compounds and TQ (Figure 5b). Based on these results, and
in accordance with the experimental findings (Figure 3), we can suggest that the binding sites of
compounds 5, 7 and 9 may partially overlap with the R-site, implying that these compounds may act
as competitive inhibitors of this P-gp substrate.

2.5. Hsp90 Inhibitors Sensitizes MDR Cancer Cells to DOX and PTX

Due to the possible induction of the sever cytotoxicity when Hsp90 inhibitors are applied with
classic chemotherapeutics DOX and PTX, we analyzed and compared the induction and type of cell
death between cancer and normal cells exposed to compounds 5, 7 and 9 (Figure 6). The results showed
that all compounds induced cell death, early and late apoptosis, in cancer cells NCI-H460 and DLD1
(Figure 6a,b). The application of Hsp90 inhibitors led to the significant decrease in portion of necrotic
cells observed in normal untreated MRC-5 cells (Figure 6c). By this means we further confirmed good
selectivity profile of compounds 5, 7 and 9 and continued to test the combined strategy with Hsp90
inhibitors and classic chemotherapeutics DOX and PTX.

Considering that compound 5 showed the best selectivity index (10.64, Table 1), we tested the
interaction between 5 and DOX as well as 5 and PTX during combined treatments in NCI-H460/R and
DLD1-TxR cells, respectively.

Compound 5 increased the sensitivity of both MDR cell lines to classic chemotherapeutics
(Figure 7a,c) displaying synergistic interaction with DOX and PTX (Figure 7b,d). Decreased IC50 values
for DOX and PTX in all tested combinations are summarized in Table 3. The effect of compound 5 on
DOX resistance reversal increased in a concentration-dependent manner ranging from 1.31-fold to
5.28-fold and, similarly, PTX resistance was reversed by 1.80-fold to 5.27-fold.
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Figure 6. Cell death analysis confirmed good selectivity profile of Hsp90 inhibitors. Cell death
induction in (a) NCI-H460, (b) DLD1 and (c) MRC-5 cells assessed by AV/PI staining after 72 h treatment
with compounds 5, 7 and 9. Flow cytometric assay distinguishes viable (AV−PI−), early apoptotic
(AV+PI−), late apoptotic (AV+PI+) and necrotic (AV−PI+) cells. The results are expressed as mean
± SEM. Statistical significance to untreated control from three experiments: p < 0.05 (*), p < 0.01 (**),
p < 0.001 (***).

It is important to highlight that the chemosensitization of NCI-H460/R and DLD1-TxR cells was
also achieved by concentrations considerably lower than those required for a significant cell growth
inhibition or P-gp inhibition. Consequently, application of compound 5 in non-toxic concentrations as
low as 1 and 2.5 µM, has the potential to increase intracellular accumulation of chemotherapeutics by
inhibiting the P-gp efflux in cells with MDR phenotype.



Int. J. Mol. Sci. 2019, 20, 4575 13 of 21Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 13 of 21 

 

(a) (b) 

(c) 

 

(d) 

Figure 7. Hsp90 inhibitors compound 5 chemosensitizes MDR cancer cells to doxorubicin (DOX) and 
paclitaxel (PTX). (a) Cell growth inhibition by DOX in single and combination treatments with Hsp90 
inhibitors in MDR NCI-H460/R cells. (b) Synergistic type of interaction between 5 and DOX. (c) Cell 
growth inhibition by PTX in single and combination treatments with Hsp90 inhibitors in MDR DLD1-
TxR cells. (d) Synergistic type of interaction between 5 and PTX. The results are expressed as mean ± 
SEM. Statistical significance to DOX or PTX alone from three experiments: p < 0.05 (*), p < 0.01 (**), p 
< 0.001 (***). CI values below 1 depict synergistic effect. 

Table 3. Relative reversal of doxorubicin (DOX) and paclitaxel (PTX) resistance in NCI-H460/R and 
DLD1-TxR cells induced by Hsp90 inhibitor. 

Compound DOX IC50 (nM) 
Relative 
Reversal 

DOX 2265.6 ± 42.4  
5   

2.5 μM 1731.4 ± 30.9 1.31 
5 μM 863.9 ± 25.6 2.62 

10 μM 429 ± 13.3 5.28 
PTX 1528.5 ± 48.6  

5   
1 μM 850.4 ± 13.1 1.80 

2.5 μM 588.3 ± 12.0 2.60 
5 μM 290.0 ± 5.0 5.27 

Figure 7. Hsp90 inhibitors compound 5 chemosensitizes MDR cancer cells to doxorubicin (DOX) and paclitaxel (PTX). (a) Cell growth inhibition by DOX in single and
combination treatments with Hsp90 inhibitors in MDR NCI-H460/R cells. (b) Synergistic type of interaction between 5 and DOX. (c) Cell growth inhibition by PTX in
single and combination treatments with Hsp90 inhibitors in MDR DLD1-TxR cells. (d) Synergistic type of interaction between 5 and PTX. The results are expressed as
mean ± SEM. Statistical significance to DOX or PTX alone from three experiments: p < 0.05 (*), p < 0.01 (**), p < 0.001 (***). CI values below 1 depict synergistic effect.
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Table 3. Relative reversal of doxorubicin (DOX) and paclitaxel (PTX) resistance in NCI-H460/R and
DLD1-TxR cells induced by Hsp90 inhibitor.

Compound DOX IC50 (nM) Relative Reversal

DOX 2265.6 ± 42.4
5

2.5 µM 1731.4 ± 30.9 1.31
5 µM 863.9 ± 25.6 2.62
10 µM 429 ± 13.3 5.28

PTX 1528.5 ± 48.6
5

1 µM 850.4 ± 13.1 1.80
2.5 µM 588.3 ± 12.0 2.60
5 µM 290.0 ± 5.0 5.27

Analysis of the nature of the interaction between the two drugs revealed that some combinations
of compound 5 with DOX and PTX have a pronounced synergistic effect with most Combination
Index (CI) values below 1 (Figure 7b,d). The combination of drugs with different modes of action is an
efficient strategy in chemotherapeutic cancer treatment, as it overcomes drug resistance and reduces
adverse side effects by decreasing drug dosage based on their synergy. Therefore, Hsp90 inhibitors
could offer a promising approach for the treatment of resistant cancers aimed at reducing therapy
resistance based on efflux pump overexpression.

3. Materials and Methods

3.1. Drugs

Hsp90 inhibitors (compounds 3–10, and 13, 14, and 15) containing an isoxazolonaphtoquinone
core were dissolved in dimethyl sulfoxide (DMSO) as 20 mM aliquots and kept at room temperature
until use. Tariquidar (Avaant Pharmaceuticals, London, UK) was stored as 10 mM aliquots at −20
◦C. Doxorubicin—DOX (EBEWE Arzneimittel GmbH, Vienna, Austria) was diluted in sterile water
and stored as 1 mM aliquots at −20 ◦C. Paclitaxel—PTX (Sigma-Aldrich Chemie Gmbh, Hamburg,
Germany) was diluted in absolute ethanol and 1 mM aliquots were stored at −20 ◦C. Before treatment,
all drugs were freshly diluted in sterile water.

3.2. Reagents

RPMI 1640 medium, fetal bovine serum (FBS), antibiotic-antimycotic solution, penicilin-
streptomicin solution, L-glutamine and trypsin/EDTA were purchased from Biological Industries (Beit
Haemek, Israel). Rhodamine 123, DMSO and thiazolyl blue tetrazolium bromide (MTT) were purchased
from Sigma-Aldrich Chemie GmbH (Hamburg, Germany). FITC-conjugated anti-P-glycoprotein
antibody was obtained from BD Biosciences (Plymouth, UK). Annexin V-FITC apoptosis detection kit
with Propidium Iodide was purchased from Abcam (Cambridge, UK).

3.3. Chemistry

The 1,3-dipolar cycloaddition of benzonitriloxides to quinones has been exploited for the synthesis
of isoxazolo-fused naphthoquinones as previously described [15]. Thus, compounds 3–10 were prepared
via reaction of naphthoquinone with suitable nitrile oxides obtained in situ by treating the corresponding
oximes with triethylamine and aqueous NaClO in dichloromethane (Scheme 1). Compounds 13–15
were obtained by regioselective 1,3-dipolar cycloaddition on the bromonaphthoquinones 12, followed
in the case of 14 by alkylation with benzyl bromide (Scheme 1).

Computer calculations of the logP and pKa values were performed by online software Chemicalize
(chemicalize.com) developed by ChemAxon (Budapest, Hungary).
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3.4. Cell Culture

Human colorectal carcinoma (DLD1), non-small cell lung carcinoma (NCI-H460), and normal
embryonic lung fibroblast (MRC-5) cell lines were purchased from the American Type Culture
Collection, Rockville, MD. P-gp overexpressing multidrug resistant DLD1-TxR cells were selected
by continuous exposure to stepwise increasing concentrations of paclitaxel from DLD1 cells, while
NCI-H460/R cells were selected from NCI-H460 cells after DOX selective pressure. MDR cancer cell
lines, DLD1-TxR and NCI-H460/R, and their sensitive counterparts were maintained in RPMI 1640
medium supplemented with 10% FBS, 2 mM L-glutamine, and 10,000 U/mL penicillin, 10 mg/mL
streptomycin, 25 mg/mL amphotericin B solutions. MRC-5 cells were cultured in DMEM supplemented
with 10% FBS, 4 g/L glucose, 2 mM L-glutamine and 5000 U/mL penicillin, 5 mg/mL streptomycin
solution. All cell lines were sub-cultured at 72 h intervals using 0.25% trypsin/EDTA and seeded
into a fresh medium at 8000 cells/cm2. All cell lines were maintained at 37 ◦C in a humidified 5%
CO2 atmosphere.

3.5. MTT Assay

Cell viability was assessed by the MTT assay (AppliChem GmbH, Darmstadt, Germany). Cells
grown in 25 cm2 tissue flasks were trypsinized and 1000 cells/well were seeded into flat-bottomed 96-well
tissue culture plates and incubated overnight. Subsequently, the cells were treated with increasing
concentrations of Hsp90 inhibitors for 72 h: compound 3 (0.1–2.5 µM), compound 4 (0.25–5 µM),
compound 5 (0.5–25 µM), compound 6 (50–1000 nM), compound 7 (10–250 nM), compound 8
(0.25–5 µM), compound 9 (10–250 nM), compound 10 (0.5–25 µM), compound 13 (0.5–10 µM),
compound 14 (1–25 µM), and compound 15 (10–250 nM). Due to the fact that the concentration range
of some compounds exceeded 10 µM (compound 5, 10 and 14), the same DMSO concentration (0.125%)
as was reached in 25 µM treatments was applied to exclude the effect of DMSO in these treatments.
No cytotoxicity was observed after the application of 0.125% DMSO in all tested cell lines. After
treatment, MTT was added to each well in a final concentration of 0.2 mg/mL for 4 h. Formazan product
was dissolved in 200 µl of DMSO, and the absorbance was measured at 540 nm using an automatic
LKB 5060-006 Micro Plate Reader (Vienna, Austria). IC50 value was defined as a concentration of the
drug that inhibited cell growth by 50% and was calculated by nonlinear regression analysis using
GraphPad Prism 6.0 for Windows (La Jolla, CA, USA). Relative selectivity towards cancer cells was
calculated as a relation between IC50 value obtained in MRC-5 cells and an average IC50 value from
four tested cancer cell lines.

3.6. RNA Extraction and Reverse Transcription Reaction

Total RNA was isolated from untreated NCI-H460, NCI-H460/R, DLD1 and DLD1-TxR cells.
The isolation was carried out using Trizol® reagent (Invitrogen Life Technologies, Waltham, MA, USA)
according to the manufacturer’s instructions. RNA was quantified by spectrophotometry and quality
was determined by agarose gel electrophoresis. Reverse transcription reactions were performed using
2 µg of total RNA, with a high-capacity cDNA reverse transcription kit (Applied Biosystems, Waltham,
MA, USA), following the manufacturer’s instructions.

3.7. Quantitative Real-Time PCR

Quantitative real-time PCR (qPCR) was used to evaluate HSP90α expression in NCI-H460,
NCI-H460/R, DLD1 and DLD1-TxR cells. The reactions were performed using a Maxima SYBR
Green/ROX qPCR Master Mix (Thermo Scientific, Waltham, MA, USA) on an ABI PRISM 7000
Sequence Detection System (Applied Biosystems, Waltham, MA, USA) according to the manufacturer’s
recommendations, using 100 ng cDNA in conjunction with primers specific for ABCB1 [49], HSP90α [50]
and ACTB as internal control for normalization [51]. Each sample was tested in triplicate and relative
gene expression levels were analyzed by the 2−∆∆Ct method [52].
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3.8. Flow Cytometric Analysis of P-gp Expression

P-glycoprotein expression level in NCI-H460, NCI-H460/R, DLD1, and DLD1-TxR and cells was
measured by flow cytometry. All cell lines were seeded in adherent 6-well plates and treated with
Hsp90 inhibitors for 72 h at the following concentrations: 5 µM compound 5, 200 nM compound 7,
100 nM compound 9 (NCI-H460 and DLD1), and 10 µM compound 5, 500 nM compound 7, 500 nM
compound 9 (NCI-H460/R and DLD1-TxR). Cells were also treated with 10 nM TQ, a non-competitive
P-gp inhibitor, which served as a positive control. In addition, sensitive cells (NCI-H460 and DLD1)
were treated with 50 nM DOX and 50 nM PTX that served as positive controls for the induction of P-gp
expression. Then, cells were collected by trypsinization, washed with PBS, and directly immunostained
by FITC-conjugated anti-P-gp antibody according to the manufacturer’s protocol. The samples were
kept in the dark until the analysis on CyFlow Space Partec flow cytometer (Sysmex Partec GmbH,
Görlitz, Germany). The fluorescence of FITC-conjugated anti-P-gp was detected on fluorescence
channel 1 (FL1-H) at 530 nm. A minimum of 10,000 events were collected for each sample (the gate
excluded cell debris and dead cells) and the obtained results were analyzed with Summit software v4.3
(Dako Colorado Inc., Fort Collins, CO, USA).

3.9. Rhodamine 123 Accumulation Assay

The accumulation of Rho 123, a fluorescent P-gp substrate, was measured by flow cytometry.
The intensity of the fluorescence is proportional to Rho 123 accumulation in the cell. All cell lines
were seeded in adherent 6-well plates and grown overnight. DLD1-TxR and NCI-H460/R cells were
treated for 30 min with the following concentrations of Hsp90 inhibitors: 500 nM compound 3, 1 µM
compound 4, 10 µM compound 5, 500 nM compound 6, 500 nM compound 7, 1 µM compound 8, 500 nM
compound 9, 1 µM compound 10, 1 µM compound 13, 10 µM compound 14, 100 nM compound 15. TQ
(10 nM) was used as a positive control for Rho 123 accumulation. Rho 123 (5 µM) was simultaneously
added with the investigated compounds and the cells were incubated at 37 ◦C in 5% CO2 for 30 min.
The cells were then trypsinized, pelleted by centrifugation, washed with PBS and placed in ice-cold
PBS. The samples were kept on ice in the dark until the analysis on CyFlow Space Partec flow cytometer
(Sysmex Partec GmbH, Görlitz, Germany). The fluorescence of Rho 123 was detected on fluorescence
channel 1 (FL1-H) at 530 nm. A minimum of 10,000 events were collected for each sample and the
obtained results were analyzed using Summit software.

3.10. P-gp ATPase Activity Assay

P-gp relies on the ATP hydrolysis energy to extrude the substrate outside the cell and compounds
that interact with P-gp can stimulate or inhibit its ATPase activity. Compounds that are P-gp substrates
usually stimulate its ATPase activity [53]. Pgp-Glo™ assay system (Promega, Madison, WI, USA)
detects the compound’s effect on recombinant human P-gp in a cell membrane fraction. P-gp
ATPase activity was measured using luminescent Pgp-Glo™ assay kit according to manufacturer’s
instructions. Briefly, ATP was first incubated with P-gp; then the P-gp ATPase reaction was stopped,
and the remaining unmetabolized ATP was detected as a luciferase-generated luminescent signal.
Pgp-dependent decreases in luminescence reflect ATP consumption by P-gp; thus, the greater the
decrease in signal, the higher the P-gp activity. Accordingly, samples containing compounds that
stimulate the P-gp ATPase will have significantly lower signals than untreated samples. Verapamil and
sodium orthovanadate, supplied in the assay kit were used as positive controls. Verapamil is a P-gp
substrate and competitive inhibitor, and sodium orthovanadate is a noncompetitive inhibitor of P-gp
ATPase activity. The luminescence of samples treated with increasing concentrations of compound 5
(5 µM, 10 µM and 20 µM), compound 7 (100 nM, 250 nM and 500 nM) and compound 9 (100 nM,
250 nM and 500 nM), was measured with a luminometer microplate reader (CHAMELEON™V, Hidex,
Turku, Finland).
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3.11. Cell Death Analysis

Induction of cell death after Hsp90 inhibitors treatment was assessed by dual staining with
Annexin V—FITC/Propidium Iodade (AV/PI). NCI-H460, DLD1 and MRC-5 cells were seeded in
adherent 6-well plates and incubated overnight. All cell lines were treated with 5 µM compound 5,
200 nM compound 7, and 100 nM compound 9. After 72 h, both attached and floating cells were
collected and re-suspended in 50 mL of binding buffer, containing AV and PI in ratio 1:1 (v/v). After
10 min at room temperature in the dark, an additional 200 mL of binding buffer was added, and AV/PI
staining was analyzed within 1 h by flow cytometry. The fluorescence intensities of AV and PI were
measured in green FL1 and red FL2 channel, respectively, on CyFlow Space flow cytometer (Sysmex
Partec GmbH, Görlitz, Germany). In each sample, the acquisition of 20,000 cells was performed, and
the percentages of viable (AV−PI−), early apoptotic (AV+PI−), late apoptotic (AV+PI+), and necrotic
(AV−PI+) cells were analyzed by Summit software.

3.12. Median Effect Analysis

The combined effects of compound 5 with DOX as well as with PTX were studied in NCI-H460/R
and DLD1-TxR cells, respectively, by MTT assay. In simultaneous treatments that lasted 72 h in
NCI-H460/R cells, three concentrations of compound 5 (2.5, 5, and 10µM) were combined with increasing
concentrations of DOX (250, 500 and 1000 nM), while in DLD1-TxR cells different concentrations of
compound 5 (1, 2.5, and 5 µM) were combined with increasing concentrations of PTX (100, 250 and
500 nM). The nature of the interaction between Hsp90 inhibitors and DOX/PTX was analyzed with
CalcuSyn software v1.1 (Biosoft, Cambridge, UK) that uses the Combination Index method based
on the multiple drug effect equation [54]. Three data points were used for each single drug in each
experiment. The non-constant ratio combination was chosen to assess the effect of both drugs in
combination. The results are presented in a fraction-affected CI graph. Values of CI < 1 point to a
pronounced additive effect or synergism (the smaller value, the greater the degree of synergy). A value
of CI = 1 indicates an additive effect, while values of CI > 1 point to an antagonistic effect.

3.13. In Silico Studies

For the docking simulations MOE v. 2019.01 software was applied (MOE, Molecular Operating
Environment, Chemical Computing Group Inc., Montreal, QC, Canada).

Preparation of the structures was as follows: The structures of TQ, compounds 5, 7 and 9 were
built and geometrically optimized using MMFF94s force field in MOE. Prior to docking, the P-gp
structures were processed in the “Protonate 3D” tool of MOE. This tool prepares the protein structure by
(I) assigning hydrogens to structures following the optimal free energy proton geometry; (ii) assigning
the ionization states of titratable protein groups using the Generalized Born electrostatics model.
The following settings were used to mimic physiologically relevant conditions: temperature of 300K;
pH = 7.4; ion concentration of 0.1 mol/L.

Docking: In the docking protocol the “Triangle Matcher” placement method was used and the
poses were ranked using London dG scoring function. Further refinement was performed using “Rigid
receptor” and final scoring was based on London dG scoring function.

Ligand-receptor interactions: This analysis was performed in the “Ligand interactions” tool of
MOE for the selected binding poses. The algorithm ascertains the interactions between the ligand
and the species immediately surrounding it, and decides which residues, solvents and ions are to be
included in the resulting output.

3.14. Statistical Methods

Statistical significance for the flow cytometric data on Rho 123 accumulation was calculated
by two-way ANOVA using Sidak’s multiple comparisons test. Statistical significance for the flow
cytometric data on P-gp expression was determined with unpaired Student’s t-test with Welch’s
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correction. Statistical analysis for combination treatments was performed by a two-way ANOVA test.
P-gp ATPase activity assay data were analyzed by unpaired Student’s t-test. Statistical significance
was set at p < 0.05. All statistical analysis was performed in GraphPad Prism 6.0 software (San Diego,
CA, USA).

4. Conclusions

Recognizing the potential of compounds to inhibit function and/or expression of P-gp is vital
in the search for efficient strategies for combating resistant cancers. In addition, the development of
dual-targeting inhibitors with capability to overcome MDR could lead to better efficacy, selectivity and
tolerability and better prospects for effective cancer treatment. In this study, we evaluated the potential
of eleven novel Hsp90 inhibitors to influence the P-gp activity and expression and evade the MDR
phenotype in two resistant cancer cell lines with P-gp overexpression. Three investigated compounds
displayed strong P-gp-modulating potential and emerged as new promising dual Hsp90 and P-gp
inhibitors. Thus, we propose these compounds could be considered as lead candidates for developing
new compounds with improved characteristics for dual Hsp90 and P-gp targeting.
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