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A B S T R A C T

Odors have received increasing attention among atmospheric pollutants. Indeed, odor emissions are a common
source of complaints, affecting the quality of life of humans and animals. The odor is a property of a mixture of
different volatile chemical species (sulfur, nitrogen, and volatile organic compounds) capable of stimulating the
olfaction sense sufficiently to trigger a sensation of odor. The impact of odors on the surrounding areas depends
on different factors, such as the amount of odors emitted from the site, the distance from the site, weather
conditions, topography, other than odors sensitivity and tolerance of the neighborhood. Due to the complexity of
the odor issue, the aim of this review was to give an overview of: (i) techniques (sensorial and analytical) that
can be used to determine a quantitative and qualitative characterization; (ii) air dispersion models applied for
the evaluation of the spatial and temporal distribution of atmospheric pollutants in terms of concentration in air
and/or deposition in the studied domain; (iii) major sources of odor nuisance (waste and livestock); (iv) miti-
gation actions against odor impact. Among sensorial techniques dynamic olfactometry, field inspection, and
recording from residents were considered; whereas, for analytical methodologies: gas chromatography-mass
spectrometry, identification of specific compounds, and electronic nose. Both kinds of techniques evaluate the
odor concentration. Instead, to account for the effective impact of odors on the population, air dispersion models
are used. They can provide estimates of odor levels in both current and future emission scenarios. Moreover, they
can be useful to estimate the efficiency of mitigation strategies. Most of the odor control strategies involve
measures oriented to prevent, control dispersion, minimize the nuisance or remove the odorants from emissions,
such as adequate process design, buffer zones, odor covers, and treatment technologies.

1. Introduction

The growing interest of people towards the environment and the
greater attention to the quality of life have led to defining odors as
harmful atmospheric pollutants (Capelli et al., 2013b; Henshaw et al.,
2006), since malodorous conditions are mostly associated with un-
healthy air situations (Aatamila et al., 2011). Because of accelerated
urbanization and the lack of suitable sites, urban areas are sometimes
built directly within or close to existing waste treatment plants and
farms (Peters et al., 2014). Nuisance due to odor generation by waste
treatment plants (e.g. landfill and composting plants) (Blanco-
Rodríguez et al., 2018; Rincón et al., 2019), and animal production
operations is one of the major sources of complaints of people living
near these facilities (Keck et al., 2018), and has triggered increased
emphasis on controlling the impact of atmospheric pollutants on
neighboring areas (Bibbiani and Russo, 2012; Hayes et al., 2014). Un-
pleasant odors may cause a variety of emotional and undesirable re-
actions in people, ranging from annoyance to documented health ef-
fects, leading to a reduced quality of life (Blanes-Vidal, 2015; Domingo
and Nadal, 2009; Palmiotto et al., 2014).

The odor is defined by ISO 5492:2008 as an organoleptic attribute
perceptible by the olfactory organ (including nerves) on sniffing certain
volatile substances (International Organisation for Standardization,
2008). Thus, the odor can be defined as “perception of smell” or “a
sensation resulting from the reception of stimulus by the olfactory
sensory system”. Whereas odorant is a substance which stimulates a
human olfactory system so that an odor is perceived (Blanco-Rodríguez
et al., 2018). The odor is given by the interaction of different volatile
chemical species, including sulfur compounds (e.g. sulfides, mercap-
tans), nitrogen compounds (e.g. ammonia, amines) and volatile organic
compounds (e.g. esters, acids, aldehydes, ketones, alcohols) (Barth
et al., 1984). Odorous compounds include both organic odorants and
inorganic molecules that contribute to odor level (Zhu et al., 2016).
Volatile organic compounds (VOCs) are a large group of organic che-
micals, formed by molecules with different functional groups, having
different physical and chemical behaviors, but characterized by certain
volatility (Komilis et al., 2004), such as volatile fatty acids, alcohols,
aldehydes, amines, carbonates, esters, sulfides, disulfides, mercaptans,
and heterocyclic nitrogen compounds (Fang et al., 2012). On the other
hand, inorganic compounds (H2S, NH3, Cl2) due to their low molecular
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weights can bind olfactory receptors and affect odor level (Heaney
et al., 2011; Huang et al., 2014; Pagans et al., 2006).

Different approaches and techniques have been used for measuring
odors, both physical and chemical measurements (Capelli et al., 2013b;
Munoz et al., 2010), and for simulating their dispersion in the atmo-
sphere to plan setback distances, aimed at maintaining adequate buffer
zones between livestock units and residents (Guo et al., 2004; Jacobson
et al., 2005; Jacobson et al., 2000; Nimmermark et al., 2005;
Schauberger et al., 2012).

Odors have always represented a social problem, but recently public
concerns about their potential impact on health and wellbeing have
been raised. This has led public opinion to concern on air quality issues
and to complain to local Authorities (Brancher et al., 2019), with waste
treatment plants and livestock farms representing the major sources of
complaints (Keck et al., 2018; Sironi et al., 2005) to local Authorities
(Brancher et al., 2019).

Thus, the aim of this review was to present, through the analysis of
the published literature, an overview of techniques and models for
measuring odors and simulating their dispersion, other than of odor
emissions from waste management plants and livestock farms.

With this review we wanted to answer the following questions:

• Which techniques can be adopted for measuring odors in the field or
in the laboratory?
• How can odor annoyance be assessed?
• Where do the biggest odors come from?
• How to protect people from odor nuisance?

According to these questions, the review has been organized as
follows: Section 2 will be focused on odor measurements, Section 3 on
dispersion models, Section 4 will be on the major sources of odor, waste
and livestock, respectively, and, finally, Section 5 will be about stra-
tegies to protect people from odor nuisance.

2. Technical approaches to odor measurement

Quantitative and qualitative characterization of odors can be car-
ried out by direct or indirect methods. In 2018, the European Union
published a BREF (Bat REFerence document) on emissions monitoring
“JRC Reference Report on Monitoring of Emissions to Air and Water
from IED Installations” (Brinkmann et al., 2018). Regarding odor
emissions, the following approaches are mentioned: dynamic olfacto-
metry, dispersion models, field inspection, electronic noses, and odor
surveys. Overall, in order to quantify the effective odor discomfort,
sensorial techniques or analytical methodologies, based on human ex-
aminers, and on instruments, respectively, can be used (Munoz et al.,
2010). According to this criterion, in sensorial techniques are included:
dynamic olfactometry (Section 2.1.1), field inspection (2.1.2), and re-
cording from residents (2.1.3); whereas, in analytical methodologies
are mentioned: gas chromatography-mass spectrometry (2.2.1), iden-
tification of specific compounds (2.2.2), and electronic nose (2.2.3).

2.1. Sensorial techniques

2.1.1. Dynamic olfactometry
Olfactometry analysis is a standardized methodology (CEN EN

13725) used for determining the concentration of odors, combining an
olfactometer with human panelists. The EN 13725:2003 standardized
the procedures and methods of analysis, making the dynamic olfacto-
metry a reliable and consolidated measurement method (EN 13725
2003).

The olfactometer submits the odor sample, diluted with neutral air
at precise ratios, to a panel of human assessors (Munoz et al., 2010).
The samples are presented to the panel at increasing concentrations
until the panel members start perceiving an odor different from the
neutral reference air. The result is the odor concentration (Cod),

expressed in European odor units per cubic meter (ouE m−3), which
corresponds to the dilution factor necessary to reach the odor threshold,
that is the minimum concentration perceived by 50% of the population
(Blanco-Rodríguez et al., 2018). The odor concentration is calculated as
a geometric mean of at least 12 odor detection threshold values of each
member of the panel. The advantage of using a human nose is its higher
sensitivity, even if it suffers from a lack of specificity for individual
odorants (Barth et al., 1984). During the analysis of the air samples it is
necessary to monitor the following parameters: temperature, spare
parts/hour, soundproofing and code of behavior of the panel (not
smoking or using perfume, be cold, be stressed, etc. before performing
the analysis to avoid jeopardizing the results) (Brinkmann et al., 2018;
Hayes et al., 2014). During the evaluation, panelists should be located
in a dedicated and comfortable laboratory with temperature control
and they must not be influenced by the response of other panelists or by
the panel operator (Capelli et al., 2010; Dravnieks and Jarke, 1980).

Although all the panelists are selected according to their individual
sensitivity and repeatability regarding the reference gas, n-butanol,
they must be continuously screened and trained (Brattoli et al., 2011).
For this latter purpose, samples of n-butanol at different concentration
shall be used so that the panel members will not be able to guess the
right answer (Capelli et al., 2010).

On the market, there are different types of olfactometers, but two
are the most common. The first can be called “yes/no”; from the sniffing
port, odorless air or air with odor comes out alternatively and the pa-
nelist shall indicate on the evaluation card if he/she detects the odor or
not. The second olfactometer, called “forced choice” presents two or
three different sniffing ports and each panelist shall indicate from
which sniffing port the odor comes from (Guffanti et al., 2018; Munoz
et al., 2010).

Actually, the EN 13725 edited in 2003 is under revision with respect
to storage and materials for olfactometry, sampling techniques, re-
ference material for panel selection, panel size and panel management
procedures (EN 13725 2003). The reviewed EN 13725:2003 should be
available by the end of 2019.

2.1.2. Field inspection
Field inspection methodology is standardized by EN 16841:2016, it

is a field analysis that uses a panel of people (from 2 to 8) who assess
the presence or absence of an odor directly in the ambient air. EN
16841 (starting from pre-existing VDI Guideline 3940-Part 1 and Part
2) establishes two different methods: Grid and Plume method (EN
16841-1 2016; EN 16841-2:2016 2016). The application of the grid
method is odor exposure, whereas of the plume method is odor extent
from a specific source (Capelli et al., 2013b).

Grid method consists in designing a grid around the odor source to
cover all the sensitive receptors and areas where complaints were re-
corded (Dentoni et al., 2013). Each panelist has a specific path that
covers different intersection points (which correspond to evaluation
points) of this grid and walks inside and outside the mapped area to
prevent odors habituation. Prior to the field inspection, odor bags shall
be collected in order to train the panelists for the specific odor/odors
they need to recognize (Dentoni et al., 2013; Guillot et al., 2012). The
duration of a single evaluation is 10min, during which every 10 s the
panelist shall indicate on his/her card if he/she perceives no odor (e.g.
0= no odor), one of the training odors (e.g. 1= landfill, 2= livestock,
etc.), the mixture of the training odors (e.g. 3= 1+2) or a different
odor that is no under evaluation (e.g. 4= barbecue) (Dentoni et al.,
2013; Diallo et al., 2018). Each measurement is defined as “odor hour”
if 10% of the measurements is attributable to that/those specific odor/
odors considered (Diallo et al., 2018; Guillot et al., 2012). For each
area, the EN 16841 establish 104 evaluations (or 52 for 6months) given
by the sum of the four intersection points considering that in each point
the panel goes 26 times a year. At the end of the field inspection, the
result will be a map with different squares where will be reported the
odor frequency, expressed as a percentage, derived from the sum of
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“odor hours” (EN 16841-1 2016). The minimum period for this eva-
luation is at least 6months; however, the evaluation of one year is re-
commended to take into account the seasonality.

The Plume method is used to determine the extent of detectable and
recognizable odor from a specific source using direct observation in the
field by panelists under specific meteorological conditions (Guillot
et al., 2012). The extent of the plume is assessed as the transition from
zones in which odor is not perceived to zones in which is perceived. It is
used to verify the outputs of odor dispersion modeling (Capelli and
Sironi, 2018). The plume method includes two approaches: the sta-
tionary and the dynamic method (Dentoni et al., 2013; Van Elst and
Delva, 2016).

According to the stationary method, five panelists move in the field
upwind, approaching the odor source and along parallel lines, that are
perpendicular to the plume extent (Van Elst and Delva, 2016). Panelists
follow the same procedure illustrated for the grid method, except for
the fact that their path will consist of parallel lines and they do not have
to identify odors but only the presence or absence of recognizable odors
(Capelli et al., 2013b). A measurement cycle shall consist of at least 20
single measurements (four intersection lines each consisting of five
single measurement points), and eight transition points. Transition
points are those between points with absence and presence of odor. The
distance between the line without odor presence and the nearest line
with odor presence shall be less than 20% of the maximum odor plume,
otherwise, the odor plume remains too undefined.

According to the dynamic method, two panelists follow exactly the
same indications of the stationary method with the only difference that
they will move zigzag inside and outside from the plume, to identify the
presence or absence of recognizable odors (Brinkmann et al., 2018; EN
16841-2:2016 2016; Guillot et al., 2012; Van Elst and Delva, 2016).

Regardless of the method adopted, field inspections must occur on
different days, with different weather conditions and prior to the ana-
lyses, an inspection should be planned to decide the optimum location
and distribution of sampling points, accordingly to the topography and
also to the different kind of odor sources (Sówka, 2010). To define the
inspection area, information on the prevailing wind direction and wind
speed have to be taken into account. Moreover, the panel should be
composed of qualified assessors, selected using the criteria proposed for
the dynamic olfactometry procedure (Guillot et al., 2012).

In conclusion, the grid method uses panelists to characterize odor
exposure in a defined assessment area over a sufficiently long period
(typically one year) to include all different meteorological conditions of
that location. Instead, the plume method uses panelists to determine the
extent of the odor impact, under specified emission situation (based on
the source characteristics) and meteorological conditions (including
specific wind direction, wind speed, and boundary layer turbulence).

2.1.3. Recordings from residents
This method is based on reporting cards filled out by the population

living near the odor source, engaged as regular odor monitors (Capelli
et al., 2013b). It can be useful to identify the origin of the odor episodes
when the odor episode is geolocalized or when a new plant is built
(Aatamila et al., 2011). The database can be built using the reporting
cards, where residents have to sign their name, their position when they
perceive the odor, the date and duration (start and end time) of the
odor episode, and a description of both quality and intensity of the odor
(Blanes-Vidal et al., 2012; Gallego et al., 2008). Data obtained from
social participation can subsequently be associated with the meteor-
ological parameters recorded during the episodes detected (Sironi et al.,
2010).

Usually, this method takes a long time, but it is not expensive.
However, the limit is the weak scientific stability of the data due to the
psychological effect of the population involved that need to be formed
to have similar recordings (Brinkmann et al., 2018; Capelli et al.,
2013b; Sironi et al., 2010). Even if they are trained, they cannot be
considered experts like panelists used in the above-mentioned sensorial

techniques. Moreover, data variability based on people’s characteristics
must be considered. Indeed, for example, people living in rural place
probably will not associate livestock activities to malodor, instead,
people living in big cities will consider them a source of odor nuisance.
Finally, since participants are recruited on a voluntary basis, it is ne-
cessary making them actively involved in the odor impact assessment,
for example, asking them to regularly complete the reporting cards.
Social participation can be useful to identify odor episodes or record
odor incidents (Capelli et al., 2013b) and allows to build sensory da-
tabases (based on completed questionnaires) (Gallego et al., 2008).
Data obtained from residents need to be associated with meteorological
parameters recorded during the perceived odor episodes, thus allowing
the comparison to dispersion models (Sironi et al., 2010).

2.2. Analytical techniques

2.2.1. Gas chromatography-mass spectrometry, GC–MS
In the chemical analysis, the use of gas-chromatographic techniques

coupled with mass spectrometry allows to identify and quantify
odorous compounds, even if the source cannot be characterized and it is
not possible to know if the olfactory sensation is due to an individual
constituent or to the whole mixture (Blanco-Rodríguez et al., 2018;
Cadena et al., 2018).

The principle of the gas chromatographic method is the separation
of the components from the odor mixture according to their affinity
with the stationary phase in the column (Munoz et al., 2010). Since
each type of molecule has a different rate of progression, the various
components of the analyte mixture are separated as they progress along
the column and reach the end of the column at different times (reten-
tion time). According to the retention time, components are qualita-
tively identified. Then they are quantitative identified thanks to mass
spectrometry (Dincer et al.,et al., 2006). The association of these two
techniques amplifies their potential and enables to lower the detection
limits, allowing to identify analytes in very low concentrations
(Guffanti et al., 2018).

A problem that can arise during GC is the elution problem due to
poor chromatographic separation. It occurs when two (or more) com-
pounds due to widely differing retention properties do not chromato-
graphically separate because the late ones remain in the column too
long. Changing the chemistry of the mobile phase, stationary phase,
temperature, and column or plane length are good methods to increase
the separation (Brattoli et al., 2013; Delahunty et al., 2006).

An alternative approach to GC–MS is gas chromatography-mass
spectrometry coupled with olfactory analysis (GC–MS/O). The process
is equal to classical GC–MS with the only difference that at the end of
GC, the sample is split between an MS detector and the trained human
panelists (Munoz et al., 2010). Panelists shall press a button and record
what they are sniffing. In the end, the olfactogram and the chromato-
gram are combined. This represents an improvement compared to
GC–MS because the human nose is more sensitive, but there is sub-
jective components and panelists shall be really concentrated during
the analysis (Brattoli et al., 2013; Guffanti et al., 2018; Hayes et al.,
2014) because peaks are eluted very quickly and the panelist at the
same time has to both recognize odors and provide a description
(Brattoli et al., 2013). Since the odor detection is linked to the human
perception, as for dynamic olfactometry, the panel must be periodically
screened and trained, and observe a simple behavior code (Capelli
et al., 2010). Moreover, in order to obtain reproducible data, panel
members are selected according to their sensitivity, and the ability to
recall and recognize odor qualities (Brattoli et al., 2013).

Finally, being the GC–MS/O sessions quite long, the position of the
sniffing-port must be comfortable (long transfer line) and the panelist
should be seated far from the hot chromatograph components during
detection to avoid the smell of hot metal (Delahunty et al., 2006).
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2.2.2. Identification of specific compounds
Analysis of a single gas, for example, NH3 or H2S, can be useful

when these gases are tracer and representative of a specific source, such
as livestock farming and landfill, respectively. However, it is not pos-
sible to identify tracer compounds for all situations and or sources, nor
to relate analytical concentrations to odor properties, thus considering a
single compound may not be enough to determine the effective odor
perception (Capelli et al., 2013b). On the other hand, alternative ap-
proaches have been established for analysis of VOCs. One approach is to
use real-time detection devices, such as PID (photo ionization detec-
tors). PID is a broadband detector that detects ionized species with a UV
lamp. The output of this kind of sensors is a non-specific total con-
centration of organic compounds, expressed in ppm (or ppb) equivalent
(Biasioli et al., 2011; Chen et al., 2013). Alternatively, colorimetric
sensors can be used, which are easy to use and cost effective. Thanks to
the interactions between the analyte and the responsive colorants VOCs
are identified (Lin et al., 2011).

2.2.3. Electronic nose
The electronic nose allows a qualitative classification of the ana-

lyzed air, attributing the air sample to a specific olfactory class. It is
composed of an array of sensors that simulate the receptors of the
human olfactory system and a computer that simulates the response of
the human brain. The output is a pattern, which is typical of the gas
mixture (Blanco-Rodríguez et al., 2018; Capelli et al., 2014a). The
electronic nose includes three major parts: a matrix of sensors, a data
processing system, and a pattern recognition system. They simulate
three components of the human olfactory system: nose receptors, ol-
factory bulb, and brain. Odor interacts with the surface of the sensor
and causes a change in certain chemical and/or physical properties,
these variations are converted to an electronic signal which is sent to
the data processing unit. Here feature extraction is performed, followed

by an explorative analysis which converts features in results and re-
presentations that can be easily interpreted, thanks to statistical ana-
lysis. Finally, odor samples thanks to a series of algorithms are classified
into clusters (Guffanti et al., 2018). Prior to the measurements, the
electronic nose needs to be trained with qualified samples to build a
database of reference. For the training, odor bags near the odor source
need to be collected to train the nose for odor or odors it has to identify
(Brinkmann et al., 2018). For this reason, training is always site-spe-
cific. In case of long monitoring times (> 1 year) the nose needs to be
controlled to verify if the training is still valid and if sensors have been
damaged by adverse weather conditions. Indeed, during analysis, it is
important to always keep temperatures and humidity monitored to
avoid damaging the sensors (Hayes et al., 2014). Thanks to this method,
since the instrument is used in injection, the air is monitored con-
tinuously (if installed at the borders of the installation) and at the re-
ceptor (sensitive even a few kilometers away). Unfortunately, there is
no standard that provides minimum requirements for this type of
analysis (Capelli et al., 2014a).

2.3. Conclusions on technical approaches to odor measurement

Regardless of the measurement technique adopted (sensorial or
analytical techniques), the quality of the results obtained is heavily
dependent on appropriate sampling, which is one of the main issues
relating to odor characterization and measurement (Capelli et al.,
2013a). The purpose of sampling is to obtain representative informa-
tion on the typical characteristics of odor sources by collecting a vo-
lumetric fraction of the effluent (Lucernoni et al., 2016). Unfortunately,
these techniques alone are not sufficient to assess odor impact within a
community. Indeed, both sensorial (dynamic olfactometry) and analy-
tical techniques are used for the evaluation of odor concentration. In
the first case, the concentration is given by a panel of experts based on

Table 1
Advantages and disadvantages of sensorial techniques.

Sensorial techniques

Advantages Disadvantages Reference

Dynamic olfactometry • Recognized and standardized technique

• Endpoint assessment

• High sensitivity

• Possible implementation to atmospheric
dispersion models

• Sensitivity of human nose is higher than
electronic instruments

• Only quantitative characterization

• Impossibility of continuous measurements
and monitoring

• High measurement uncertainty

• Not applicable for low odor concentrations

• Time consuming

• Lower repeatability compared to chemical
analysis

• Subjectivity of human perception

• Psychological factors could affect the
evaluation

Blanco-Rodríguez et al. (2018), Cadena et al.
(2018), Capelli et al. (2014a), Guffanti et al.
(2018), Hayes et al. (2014), and Van Elst and
Delva (2016)

Field inspection • Direct determination of the odor impact in terms
of frequency (Grid method) or area of impact of
the odor at the receptor (Plume method)

• Possibility of comparing the results with other
methods

• Possibility to validate air dispersion method

• Sensitivity of human nose is higher than
electronic instruments

• High cost

• Many data to be processed

• Logistical difficulties related to the planning
of the evaluation card and to the
identification of paths (Plume method)

• Difficulty of finding an adequate panel,
available and not directly involved (Grid
method)

• Lack of reference acceptability values

• Time consuming

• Subjectivity of human perception

• Psychological factors could affect the
evaluation

Both (2001), Hayes et al. (2014), and Van Elst
and Delva (2016)

Recordings from
residents

• Low or no cost

• Useful for involving and sensitizing citizenship
(psychological effect)

• Sensitivity of human nose is higher than
electronic instruments

• Management difficulties in collecting
similar data

• Poor scientific stability of the data (due to
psychological effect)

• Lack of reference acceptability values

• Possibility of bias

• Long response times

• Subjectivity of human perception

Di Francesco et al. (2001), Hayes et al. (2014)
andSironi et al. (2010)
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samples of air, in the second one, it is assessed by means of complex
physical and chemical analyses (Mielcarek and Rzeznik, 2015).

Odor concentration is necessary to find the Odor Activity Value
(OAV), which is defined as the concentration of a single compound
divided by the odor threshold for that compound. Knowing the OAV of
an odorous compound allows to understand which is the contribute of
that specific odorant to the overall odor (Brattoli et al., 2013). How-
ever, an approach based just on OAVs is imprecise due to the different
values of the odor threshold reported in the literature (Capelli et al.,
2013b).

In odor measurement, the evaluation of odor concentration alone is
not sufficient. Also, the air flow associated with the monitored odor
source have to be taken into account, being these parameters inter-
related in most cases. Thus, Odor Emission Rate (OER) has to be eval-
uated, which is the quantity of odor emitted per unit of time and it is
expressed in ouE s−1 (Capelli et al., 2013a) (OER will be better de-
scribed in Section 3 – Air dispersion models).

In Tables 1 and 2 are reported the main advantages and dis-
advantages of sensorial techniques and analytical methodologies, re-
spectively. Odor dispersion models, combined with odor measurements,
allow a better understanding of odor nuisance and odor characteriza-
tion.

3. Air dispersion models

Different types of models, that take into account meteorological,
topographic and emission data, can be used to determine odors

dispersion into the atmosphere (Yu et al., 2010). They offer the possi-
bility of mathematically simulating the spatial and temporal variation
of odor concentrations (Zhou et al., 2005) and can provide estimates of
odor levels in both current and future emission scenarios, predicting the
atmospheric impact of a facility before being realized (Sheridan et al.,
2004). Therefore, these models are useful to determine appropriate
setback distances between production facilities (farms, industries, and
waste treatment plants) and neighboring areas (Capelli et al., 2013b;
Danuso et al., 2015; Guo et al., 2004).

Most dispersion models are Gaussian models, which assume the
concentration profile across the plume to follow a Gaussian probability
curve (Daly and Zannetti, 2007). The other models follow the La-
grangian or Eulerian approaches (Danuso et al., 2015). They are
mathematical models used to estimate (in case of existing facilities) or
to predict (when planning new operations or evaluating the efficacy of
mitigation strategies) the downwind concentration of air pollutants
emitted from sources, such as farms (Zhou et al., 2005).

Gaussian models assume “steady-state” conditions. The meteor-
ological conditions are assumed to remain constant during the disper-
sion from source to the receptor, which is effectively instantaneous.
Also, emissions are considered time-invariant and, for this reason, cal-
culations refer to periods of one hour or less (Danuso et al., 2015).
However, emissions and meteorological conditions can vary from hour
to hour thus the model simulate hourly-average concentrations, so that
calculations in each hour are independent of those in other hours. The
plume formula has the uniform wind speed in the denominator and
hence breaks down in calm conditions (Danuso et al., 2015). It is usual

Table 2
Advantages and disadvantages of analytical techniques.

Analytical techniques

Advantages Disadvantages Reference

Gas chromatography-mass
spectrometry (GC–MS)

• Recognized and repeatable technique

• Possibility to identify and quantify single
components

• Possibility to perform the analysis at the
emission and at the receptor

• Possible implementation to atmospheric
dispersion models

• Objectivity of the evaluation

• No information on the odor impact
provided

• Non-reliable in case of mixture of many
odorants at very low odor concentration

• High technical requirements

• Detection limits below the odor
detection threshold of the compounds

• Precise calibration required

• Interaction between odorants not
detected

• Possible masking effects with complex
odor mixtures

Blanco-Rodríguez et al. (2018), Cadena
et al. (2018), Capelli et al. (2014a),
Guffanti et al. (2018), Hayes et al. (2014)
and Mielcarek and Rzeznik (2015)

Identification of specific
compounds

• Possibility to make measurements at the
receptor

• Possibility to control accidental emissions

• Objectivity of the evaluation

• User-friendly (PID)

• Non-reliable in case of mixture of many
odorants at very low odor concentration

• Possible only with a source with a
particular type of emission

• Results depend on the type of
instrument and sensor

• High costs

• Impossible correlation with odor
concentration (different response
factors, different OTV)

• Inability to recognize source (many
interferers, no speciation)

Capelli et al. (2013b) and Hayes et al.
(2014)

Electronic nose • Continuous analysis of the ambient air at the
receptor

• Direct determination of the presence/absence
of odors where odor annoyance is lamented

• Determination of odor provenience in case of
multiple sources

• Odor recognition/classification (at the source)

• Possibility of comparing the results with other
methods

• Objectivity of the evaluation

• Positive effect on population which is
comforted by the presence of an instrument
that perform a continuous analysis of the
ambient air

• Absence of a specific regulation that
standardize the method

• Instrument complexity: precise
procedures for its use (training and data
processing)

• Odor impact assessment based only on
the quantification of the frequency of
odor episodes and not on their intensity

• Interaction between odorants not
detected

Blanco-Rodríguez et al. (2018), Cadena
et al. (2018), Capelli et al. (2014a), Di
Francesco et al. (2001), Guffanti et al.
(2018) and Hayes et al. (2014)
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to specify a minimum allowable wind speed for the model.
Assumptions in plume Gaussian modeling: (i) continuous emission,

(ii) conservation of mass, (iii) steady-state conditions, (iv) absence of
wind in calm conditions. Gaussian dispersion models are the most
widely used (Yu et al., 2010) since they are quite easy to be applied,
indeed assuming “steady-state” conditions they do not require sig-
nificant computer resources (Zhou et al., 2005). However, compared to
other models, they do not consider topography, so they give a precise
evaluation only in flat terrain (Danuso et al., 2015).

Puff models (no steady-state) are an evolution of classical Gaussian
models; the plume is presented by a series of independent elements
(puff) that evolve over time according to spatial and meteorological
characteristics (Zhou et al., 2005). These models are based on sets of
equations describing the three-dimensional space concentration gen-
erated from a point source and are able to encounter with changing
wind and emission data (Jung et al., 2003; Yu et al., 2010).

Lagrangian models (also known as particle models) describe the
motion in space of individual, non-interacting elementary odor parti-
cles (Danuso et al., 2015). Lagrangian models are based on the idea that
pollutant particles in the atmosphere move along trajectories de-
termined by the wind field, the buoyancy, and the turbulence effects
(Wilson and Sawford, 1996). The final distribution of randomly moving
particles gives a stochastic estimation of the concentration field; this
means that these models require high computing power as they simu-
late several trajectories of elementary particles to achieve an adequate
accuracy level (Flesch et al., 1995). Lagrangian models are ex-
ceptionally efficient close to the source and are particularly suited for
elevated point sources. Puff models are far less computationally ex-
pensive than particle models but are not as realistic in their description
of the pollutant distribution.

In Eulerian models (grid models), the area under investigation is
divided into grid cells, both in vertical and horizontal directions and in
each grid is calculated the average concentration of pollutant particles.
Their limit is the high computing power required, due to the fact they
allow a more correct spatio-temporal representation (Danuso et al.,
2015). The main difference between Lagrangian and Eulerian models is
related to the perspective of atmospheric motion (Nguyen et al., 1997).
The first ones take the perspective of an air particle, whereas the second
ones define specific reference points in a gridded system and treat the
particle phase as a continuum.

Dispersion models usually calculate the hourly mean odor con-
centrations for every receptor for every hour of the simulation domain.
However, the sensation of the odor depends on the momentary (“peak”)
odor concentration. For the assessment of peak values, a so-called
“peak-to-mean” factor is used in order to account for these fluctuations
(Piringer and Schauberger, 2013). The goal of the use of peak-to-mean
factors is to simulate the rapid response of the human nose. The pick-to-
mean factor is calculated by dividing the peak concentration by the 1-h
averaged (mean) concentration (Schauberger and Piringer, 2012). The
applied peak-to-mean factors differ from country to country (Piringer
and Schauberger, 2013). For example, in Italy, DGR n. IX/3018 15/02/
2012 suggests a constant peak-to-mean factor of 2.3. Results are re-
presented as a map of the 98th percentile of the peak odor concentra-
tion values (D.G.R. 15 febbraio 2012 e n. IX/3018 Regione Lombardia,
2012). Austria suggests variable peak-to-mean factors in function of the
atmospheric stability and of the distance from the source (Schauberger
and Piringer, 2012). The United Kingdom establishes peak odor con-
centration values at 1.5 ouE m−3, 3.0 ouE m−3 and 6.0 ouE m−3 (at the
98th percentile), for high, medium and low “offensiveness” industry
types, respectively (UK-Environmental-Agency, 2002).

Models modified in this way are then able to calculate separation
distances for so-called odor impact criteria, a combination of odor
concentration (mostly an odor threshold) and a pre-selected exceedance
probability according to land use. An overview of various national odor
impact criteria can be found in Sommer-Quabach et al. (2014) and
Piringer et al. (2016).Ta
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A summary of principal dispersion models with their characteristics,
advantages, and limitations that have been applied to simulate odor
dispersion from waste and agricultural sources are reported in Table 3.

Regardless of the type of model, necessary input data are: (i) to-
pographic and orographic data; (ii) meteorological data (e.g. air tem-
perature, relative humidity, air pressure, solar radiation, precipitations,
wind speed, and wind direction); (iii) emission data (identification and
characterization of the odor source, quantification/estimation of the
amount of pollutant emitted in unit of time) (Schauberger et al., 2012;
Schulte et al., 2007; Sironi et al., 2010). The quality of the input data
affects the goodness of the results other than the choice of the model
(Capelli et al., 2013b).

Topographic and orographic data shall include the characteristics of
the terrain roughness, heights of potential receptors near the emitting
source, the planimetry of the plant and of the surrounding impact area
(Schauberger et al., 2012; Sheridan et al., 2002).

Regarding meteorological input data, besides wind data (speed and
direction), the main weather variables involved are temperature, solar
radiation, atmospheric pressure, humidity and precipitations (Danuso
et al., 2015; Piringer and Schauberger, 2013). Furthermore, informa-
tion on the stability of the atmosphere and the planetary boundary
layer (the portion of the atmosphere where the generation, decay,
transformation, and diffusion of most pollutants take place) is im-
portant, usually expressed as time series over at least one year (Piringer
and Schauberger, 2013). The classifications proposed by Pasquill
(1961) and Gifford (1959) for atmospheric stability classes are usually
adopted (ranging from class F “very stable”, to class A “very unstable”,
according to the meteorological conditions). Meteorological data can be
obtained from one or more near surface meteorological stations to de-
fine a representative station for the emission source considered (Capelli
et al., 2013b; Wu et al., 2019).

In addition to topographic and meteorological data, emission data
are necessary for the simulation of odor dispersion, since the evaluation
of odor concentration alone is not sufficient, also the air flow associated
with the monitored odor source has to be taken into account. OER (ouE
s−1) is calculated by taking the product of the odor concentration and
flow rate from a source. So, the method adopted for OER estimation is
strictly related to the characteristics of odor source (point or area). In
case of point sources, OER is the product between the odor con-
centration and the emitted air flow. For active area sources, the average
emitted odor concentration needs to be used (Capelli et al., 2013a).
Finally, in case of passive area sources, the procedure is quite complex.
Firstly, it is necessary to calculate the Specific Odor Emission Rate
(SOER), which is the odor emitted from the area source per unit of time
and surface (ouE m2 s−1), then OER is calculated by multiplying the
SOER and the emitting surface of the considered source (Lucernoni
et al., 2016).

To predict the odor impact, when data for a specific source are not
available, odor emission factors (OEFs) are fundamental for estimating
emissions since they enable the estimation of the OER. OEFs correlate
the quantity of odor emitted with the activity associated with the
emission of that odor. OEFs can be derived from experimental data or
found in the literature (Capelli et al., 2014b). OEFs are usually ex-
pressed as OER divided by a specific activity index, expressed in terms
of unit, such as animal, animal body weight, gross weight production,
area, production place, the site surface or a time unit (Mielcarek and
Rzeznik, 2015).

3.1. Conclusions on air dispersion models

Different types of air dispersion models are available and can be
applied to simulate odor dispersion into the atmosphere. They are
considered a useful tool in assessing the odor impacts associated with
existing and future or modified (with abatement systems) emission
sources.

Regarding Gaussian models, they assume that dispersion in cross-

wind direction and in the vertical direction has a Gaussian distribution,
with the maximum concentration in the center of the plume. Their main
advantage is that they require little computing power. However, they
are less accurate due to their assumptions (no three-dimensional space
characteristics; no memory of past conditions; no calm wind condi-
tions).

Conversely, Lagrangian and Eulerian models need high computing
power because, to achieve an adequate accuracy level, they simulate
several trajectories of elementary particles and consider more inputs.
However, having a more correct spatial-temporal representation, they
are more accurate and represent a more advanced tool. Their limit is
that turbulence is difficult to represent (Capelli et al., 2013b), indeed
turbulence that characterizes the planetary boundary layer has mainly
two origins: movement of air masses with viscosity effects on a rough
surface (mechanical turbulence) and soil heating/cooling effects caused
by daily solar radiation and nightly radiative cooling effects (Schiffman
et al., 2005).

4. Major sources of odor nuisance

4.1. Waste from treatment plants

Landfill, compost and anaerobic digestion plants are among the
main disposal technologies to treat municipal solid waste (MSW)
(Cadena et al., 2018). During waste handling and biological decom-
position steps, several gaseous compounds are emitted from the organic
matrix (Sarkar and Hobbs, 2002). VOCs, NH3, and H2S are responsible
for the unpleasant odors (Rincón et al., 2019), contributing to the odor
impact (Moreno et al., 2014). Among the organic compounds, it is
possible to find: terpenes, alkanes, oxygenated compounds, aromatics,
ketones, and other compounds such as sulfur compounds (Cheng et al.,
2019; Fang et al., 2012). Sulfur compounds or VSCs consist of VOCs
that contain sulfur, they are toxic and easily perceived at extremely low
concentrations, they are produced by organic matter degradation
during waste treatment and composting conditions (Rincón et al., 2019;
Zhang et al., 2013).

The organic fraction of MSW (OFMSW) is usually treated with
anaerobic digestion and composting (Font et al., 2011, Bacenetti and
Fiala, 2015). Although the objective of these technologies, as well as
other waste treatment technologies, is to enable sanitization of the
waste by the elimination of pathogenic microorganisms and transforms
the organic fraction in soil amendment (Renaud et al., 2017), they emit
potential toxic compounds, such as VOCs, VSCs, NH3 and nuisance
odors (Moreno et al., 2014; Nie et al., 2019; Rincón et al., 2019). De-
gradation of the organic fraction by microorganisms is the main cause
of odor production (Pierucci et al., 2005). Ammonia emissions depend
almost on the C/N ratio of the waste, temperature, moisture content
and pH (Moreno et al., 2014; Pagans et al., 2006), whereas VSCs
emissions are correlated to temperature and O2 concentration (Higgins
et al., 2006; Moreno et al., 2014). Moreover, offensive odors generated
by waste treatment depend on the type of raw material, the stage of the
decomposition and the operating conditions at the site (Bruno et al.,
2007; Toledo et al., 2018). As an example, Toledo et al. (2019) found
that fresh organic waste such as sewage sludge and OFMSW were the
most influential odorous substrates, due to their high concentration in
biodegradable organic matter.

The presence of odors associated with VOC emissions has been in-
vestigated by a wide number of researchers (Bruno et al., 2007; Defoer
et al., 2002; Fang et al., 2012; Mao et al., 2006; Pierucci et al., 2005),
that focused on how the odors mixture change according to the type of
waste, treatment technology and the sites within the treatment plant, as
reported in Table 4.

According to the literature reported in Table 4, in landfill the main
emissions sources can be identified in the MSW-related area, the lea-
chate-related area, and the sludge-related area, in particular gas ex-
traction wells, sludge discharge area, sludge disposal work place,
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leachate storage pool, wharf, dumping pool, lane, active working face,
and gas vent (Cheng et al., 2019; Fang et al., 2012). Instead in com-
posting plants, odorants are released by belt conveyor area, pile-turning
workshop, stacking workshop other than by the different substrates
(agricultural wastes, biowastes, green wastes, and kitchen waste)
(Cheng et al., 2019; Rincón et al., 2019; Zhang et al., 2013).

In general, to characterize the odor and chemical emissions released
from the different sources of waste, GC–MS and dynamic olfactometry
have been used. In particular, GC–MS to determine the chemical com-
position and dynamic olfactometry the odor concentration.

As it is possible to see from Table 4, among VOCs, terpenes, hy-
drocarbons, and oxygenated compounds were the most emitted che-
mical families. While, among nitrogen and sulfide compounds, NH3 and
H2S were the most abundant compounds emitted, respectively. Not in
all studies results of the chemical analyses showed a correlation with
odor concentration measured by dynamic olfactometry.

4.2. Livestock farms

Intensive livestock farming, especially swine operations (Trabue
et al., 2011), extensively contributes to NH3, VOCs and particulate
matter (PM10 and PM2.5) emissions (Bibbiani and Russo, 2012). The
agricultural sector is currently responsible for the vast majority of NH3

emissions in the European Union (EEA, 2018). NH3 is an atmospheric
pollutant causing soil acidification, nutrient-N enrichment of ecosys-
tems, and eutrophication of terrestrial and aquatic ecosystems (Erisman
et al., 2007). Moreover, in the atmosphere it reacts with other com-
pounds to form ammonium sulfate and ammonium nitrate aerosols,
leading to the formation of secondary inorganic aerosol (PM2.5), a po-
tential hazard (Kiesewetter and Amann, 2014). Therefore, NH3 affects
human and animal health both as a gas and as particulate matter
(Wagner et al., 2015). The particulate form of NH3 has broader im-
plications for the population, while the gaseous form is a localized issue
for the health of animals and agricultural workers (Kafle and Chen,
2014). Emissions of NH3 mainly occur from feces and urine in housing
and manure storage systems, from excreta of grazing animals voided on
pastures and from agricultural land following application of manure
and mineral N fertilizers (Velthof et al., 2014). The principal key ca-
tegories for NH3 emissions considered in EU are: i) animal manure
applied to soils; ii) inorganic N-fertilizers; iii) non-dairy manure man-
agement; iv) dairy cattle manure management; v) swine manure man-
agement; they jointly make up 52% of total NH3 emissions (EEA, 2018).

As for NH3 emissions, manure and urine are the main constituents of
odor from livestock operations (Barth et al., 1984; Kreis, 1978; Lemay,
1999). Particularly, storage, handling and land application of livestock
manure are the main causes of odor annoyance (Hansen et al., 2006;
Sheridan et al., 2002). Offensive odor is related to the incomplete
anaerobic decomposition of animal wastes (slurry or manure) (Wheeler
et al., 2011). However, odor emissions from animal production facilities
are a function of many variables including species, housing types,
feeding methods, management factors, manure storage, and handling
methods (Guo et al., 2004; Jacobson et al., 2005). Instead, their impact
on nearby communities depends on the amount of odor emitted from
the site, the distance from the site, weather conditions, topography,
other than odor sensitivity and tolerance of the neighborhood (Danuso
et al., 2015). Finally, the extent of emissions depends on: the size of the
settlement, phase of the rearing cycle, feeding operations, type of
building, conditioning and ventilation, type of paving and manure re-
moving and collection systems (Guo et al., 2006; Mielcarek and
Rzeznik, 2015).

Regarding species, for example in the north of Italy, intensive
poultry and pig farming are the major contributors to ammonia, odor
and particulate matter emissions (Bibbiani and Russo, 2012). Similarly,
in Denmark, odor annoyance is strictly related to pig farming, being
Denmark a country with an intense production of pork meat (Cantuaria
et al., 2017). For swine facilities, Ni et al. (2012) identified six majorTa
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sources of VOCs: confined spaces, wastewater, air above wastewater
surfaces, ambient air nearby, manure, dust inside and outside pig barns.

For swine facilities, different authors have investigated the relation
between animal buildings and odors (Akdeniz et al., 2012; Blanes-Vidal
et al., 2009; Miller et al., 2004; Ye et al., 2008). Akdeniz et al. (2012)
reported that OER for pig finishing rooms were lower than OER for sow
gestation barns although management characteristics of swine building
were similar (slatted floor type, mechanical tunnel ventilation, deep pit
manure storage removed twice a year) and they differed only for the
average body weight of animals and for the feeding method. Miller
et al. (2004) examined the OER differences between deep pit buildings
and shallow pit systems, taking into account building characteristics
and farming management (air cleanliness, barn cleanliness, manure
depth, and pig density). In the end, deep pit was found to have lower
OERs than shallow pit systems. Ye et al. (2008) focused only on NH3.
From the results of their study, NH3 emission rate resulted to be in-
fluenced by ventilation rate, floor slat opening and the air headspace
height in the slurry pit. Differently Schauberger et al. (2014a) focused
on constant emission factors vs time-resolved emission models. Usually
to calculate setback distance between livestock building and nearby
residents OER is estimated as an annual constant value, obtained by
multiplying live mass of the animals and OEF. However, this approach
is inappropriate since the live mass increases and also the odor release
is influenced by the indoor temperature, ventilation rate, animal ac-
tivity and so on. Taking into account these variables using time-re-
solved OER allows to obtain reliable separation distances, avoiding bias
due to the assumption of an annual mean value of OER.

In poultry production, Dunlop et al. (2016) identified litter as the
primary source of odor caused by anaerobic and aerobic microbial ac-
tivity. Also, Hayes et al. (2006) reported that litter is an important
factor in the production of odor and NH3 emissions for broiler units.

Regarding dairy farms, buildings and manure management (flooring
system, removal system, and land application) are a relevant source of
NH3 and odors (Baldini et al., 2016; O'Neill and Phillips, 1991). Odor is
a result of the incomplete anaerobic degradation of manure (Barth
et al., 1984). Baldini et al. (2016) identified higher NH3 emission in
dairy farms equipped with scrapers, and lower with perforated floor or
flushing system for manure removal.

Approximately 330 different odorous compounds have been iden-
tified in swine production facilities (Schiffman et al., 2001), 110 in
dairy facilities (Filipy et al., 2006), and more than 75 in animal manure
(Barth et al., 1984). Regardless of livestock facilities, relevant odorants
included many acids, alcohols, aldehydes, ketones, esters, ethers, aro-
matic hydrocarbons, halogenated hydrocarbons, terpenes, other hy-
drocarbons, amines, amides, nitriles, phenols, steroids, other nitrogen-
containing compounds, and sulfur-containing compounds, and other
compounds (Barth et al., 1984; Filipy et al., 2006; Schiffman et al.,
2001).

5. Mitigation strategies and odor impact assessment

5.1. Mitigation strategies against odor nuisance

The relevance of the odors on public health and the increasing in-
terest of national and international authorities have led Authorities and
Governments to tackle the problem. In Europe, according to the
Directive 2008/98/CE, “Member States shall take the necessary mea-
sures to ensure that waste management is carried out without en-
dangering human health, without harming the environment and, in
particular: (b) without causing a nuisance through noise or odors”.
Moreover, Commission Implementing Decision (EU) 2018/1147 es-
tablishes best available techniques (BAT) conclusions for waste treat-
ment and Commission Implementing Decision (EU) 2017/302 estab-
lishes BAT for the intensive rearing of poultry or pigs.

In the U.S. the Environmental Protection Agency (EPA) does not
regulate odor, even if it is in force the Clean Air Act, a federal law

designed to control air pollution on a national level. Nevertheless, EPA
allows states to regulate odor directly. States that try to regulate odor,
follow the principles of the Nuisance Laws, that means that they
identified odor as a nuisance and established limits for odorous emis-
sions as a nuisance phenomenon (Brancher et al., 2017; Nicell, 2009).

In Japan, the Offensive Odor Control Law regulates offensive odors
emitted from business activities in order to preserve the living en-
vironment and to protect people’s health (Government of Japan -
Ministry of the Environment, 2019).

Moreover, some countries (e.g. Germany, The Netherlands,
Switzerland, Austria, and Canada) have established guidelines based on
minimum separation distances between livestock units and residential
areas, for determination of odor-annoyance-free level (Ubeda et al.,
2013). Setback distances can be determined by either by empirical
models or by a combination of experience and calculations by disper-
sion models. Using this last technique, separation distances are calcu-
lated in a direction-dependent manner (Piringer et al., 2016). Disper-
sion models are able to predict time series of ambient odor
concentrations with suitable meteorological data and source informa-
tion (Capelli et al., 2013b). Combinations of tolerated exceedance
probabilities and threshold odor concentrations are referred to as odor
impact criteria (OIC) (Piringer et al., 2016). In the study of Sommer-
Quabach et al. (2014) a wide variety of OIC used to determine se-
paration distances is reported, thus avoiding odor nuisance and com-
plaints by the residents. To establish appropriate OIC it is necessary to
consider odor concentration, intensity and hedonic tone and their re-
lationship (Huang and Guo, 2018). These impact criteria are selected by
the responsible authorities and vary by a quite extend (Sommer-
Quabach et al., 2014). In this regard, for example, in Austria a peak-to-
mean approach is used to assess the odor perception (Piringer et al.,
2016). In particular, in Germany and Austria the separation distances
are established with two empirical models based on dispersion model
AUSTAL2000 (also included in German VDI guidelines) and AODM
(Austrian Odor Dispersion Model), respectively. These empirical models
are based on equations that include one or more factors, such as type of
the animal, indoor air temperature and meteorology (Wu et al., 2019).

Overall, in empirical models (experience-based) setback distances
are established according to different scaling factors, determined by
animal number and species, weather parameters, housing character-
istics (e.g. ventilation, manure collection system, etc.) and abating
technologies used. Subsequently, these factors have been used to adjust
dispersion models to determine odor-annoyance-free intensity (Lim
et al., 2000; Yu et al., 2010). For example, the OFFSET (Odor From
Feedlots− Setback Estimation Tool) model was developed in Minne-
sota, taking in consideration numerous emission measurement, an air
dispersion model (INPUFF-2) and historical weather data (Jacobson
et al., 2005). In Canada Minimum Distance Separation guidelines (MDS-
I and II) were developed by the Ontario Ministry of Agriculture, Food,
and Rural Affairs in the 1990s (OMAFRA, 1995a,b), with separate
procedures for buildings and manure storage units (Guo et al., 2004).
Instead, AODM estimates the odor emission by considering animal
number and species, housing and ventilation systems, handling of
manure inside the building, the feeding methods, land use, and topo-
graphy (Guo et al., 2004; Schauberger et al., 2001). In conclusion, since
the setback distance models consider different scaling factors, they
generate different odor-annoyance-free level, ranging from 99% to 91%
(Guo et al., 2004). However, these models, used to determine separa-
tion distance, need the same input data previously described in Section
3, namely topographic, meteorological and emissions data. Regarding
this last input, OERs are usually estimated as an annual constant value
(Hayes et al., 2006) obtained by multiplying the mean live mass of the
animals by a constant OEF. This means that the increasing of the live
mass of the animals, as well as variation in indoor air temperature and
ventilation rate are usually not considered (Schauberger et al., 2013).
Therefore, assuming an annual mean and a constant OEF to calculate
OER is inappropriate, as pointed out by Schauberger et al. (2014a) and
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Schauberger et al. (2014b). In their studies, they suggest using an
emission model which considers a time series of the OER, to obtain a
more realistic description of the odor emission characteristics and to
avoid overestimation (in winter) or underestimation (in summer).

In addition to separation distance, other strategies against odor
nuisance can be applied. Generally, the odor control strategies involve
different measures oriented to prevent, control dispersion, minimize the
nuisance or remove the odorants from emission. Prevention of odorant
formation at the source can be obtained by adequate process design and
good operational practices. Establishing buffer zones or installation of
odor covers are useful for the control of dispersion of the emissions
(Guo et al., 2004; Hörnig et al., 1999). To minimize/remove the nui-
sance an alternative to the traditional treatment technologies (e.g.
scrubber, incineration, and biofilter) is the use of chemical additives
designed to mask, neutralize or minimize the perception of odorous
emission (McCrory and Hobbs, 2001). However, as reported by Bortone
et al. (2012), these technologies are not suitable to treat extensive areas
such as waste landfills.

Also composting can be applied to reduce odorous emissions (Hurst
et al., 2005). The odor reduction efficacy of composting is strictly
linked to well functioning composting plants, where the conditions (pH,
temperature, and aeration rates) are maintained optimal throughout
the whole process (Sundberg et al., 2013). The odor emission reduction
can be furtherly enhanced by increasing compost bulk density, Hurst
et al. (2005) obtained a reduction by up to 97% of odors, and sulfurous
compounds by up to 100% from landfill sites.

To reduce VOCs emissions from composting facilities, composting
process need to be conducted at neutral or alkaline pH values
(Sundberg et al., 2013), alternatively biofilter can be used to remove
VOCs and NH3 from the exhaust gases during organic waste composting
process (Li et al., 2013; Pagans et al., 2007).

Instead, regarding odor control strategies to reduce odors from
concentrated animal feeding operations, livestock housing, manure
storage facilities, and during land application, they have been studied
since the end of the 1900s (Kreis, 1978; Powers, 1999). Indeed, a wide
range of mitigation techniques is available, such as nutritional strate-
gies, manure additives, building design, air filtration, manure covers,
and treatment systems (Bibbiani and Russo, 2012; Ubeda et al., 2013).

Modified animal feeding can decrease odors. Since proteins and
fermentable carbohydrates are the main precursors of odor formation, it
has been demonstrated that altering their level can affect odor emis-
sions (Le et al., 2005). In their study, Hayes et al. (2004) found a 30%
reduction of odor emissions in case of 160 and 130 g/kg crude protein
diets. Moreover, reducing crude protein can effectively reduce excreted
nitrogen, which is associated with lower NH3 emissions (Ubeda et al.,
2013). Similar results can also be obtained increasing the fermentable
carbohydrates in diets. Indeed, they affect bacterial proliferation in
both the gastrointestinal tract and in the manure modifying N excretion
mechanism thus reducing NH3 and odor emissions (Le et al., 2005).

As regards manure additives, the most common are: digestive ad-
ditives, disinfecting additives, oxidizing agents, adsorbents, and
masking agents (McCrory and Hobbs, 2001). However, at the moment,
the main disadvantages of using additives are that they provide a short-
term efficacy and they require frequent reapplication (McCrory and
Hobbs, 2001; Wheeler et al., 2011). Alternatively, covering stored
manure provides a physical barrier to reduce both NH3 and odors
emissions, by constructing rooftops or covering the surface with dif-
ferent materials to reduce the free surface of the slurry (Hörnig et al.,
1999). Other manure treatments are based on solid-liquid separation
alone (Zhang and Westerman, 1997) or coupled with anaerobic diges-
tion (Hansen et al., 2006; Hjorth et al., 2009). By reducing the dry
matter content, anaerobic digestion degrades also some VOCs, parti-
cularly volatile fatty acids, which can be reduced by between 79% and
97% (Hansen et al., 2006).

Regarding air filtration, bioscrubbers and biofilters can be used for
reducing the emission of odors and VOCs to the atmosphere, thanks to

the action of microorganisms that degrade gaseous contaminants
(Sheridan et al., 2002). In short, the exhaust air is injected in these
devices, pass through a biologically enriched layer where microorgan-
isms use the organic matter as feed, thus letting clean air out (Pagans
et al., 2005). Another straightforward way to reduce emissions is to
install air scrubbers at the ventilation outlets of livestock buildings.
Scrubbers consist mainly of three parts, at the bottom is located the
buffer tank, in the middle the packing material and on the top, there are
spray nozzles and air outlet nozzle.·NH3, odorous compounds, and dust
are trapped by the packing material (Van der Heyden et al., 2015).

In conclusion, odor emission reduction can be obtained thanks to
the application of one or more of the strategies reported above.
Although these strategies have been longer investigated and are well
known, further research is needed to explore efficient and cost-effective
management systems other than to ensure effective implementation at
the farm level.

5.2. Odor impact in life cycle assessment

The Life Cycle Assessment (LCA) is holistic approach to evaluate the
potential environmental impact of production processes. Although
originally developed for industrial processes, in the last years, it is more
and more applied also to agricultural systems. Nowadays, LCA is in-
ternationally recognized as a viable and consistent approach for the
environmental impact assessment. Nevertheless, among the different
environmental impacts that can be quantify with LCA the odor impact is
missing. Recently some preliminary approaches to include odor impact
in the LCA framework were proposed (Cadena et al., 2018; Peters et al.,
2014).

In particular, Cadena et al. (2018) presented an indicator for odor
impact potential (named Odor Impact Potential, OIP) that can be ap-
plied to different activities and processes. In the study, OIP is applied to
an anaerobic digestion plant considering that anaerobic digestion has
been recognized as an effective solution to reduced odor impact from
animal slurry storage (Lim et al., 2003; Fusi et al., 2016). OIP aims to
include odor-derived impact in LCA studies by combining (and not
replacing) parameters such as odor emission rates, odor concentration,
or odor emission factors. OIP expresses the amount of air needed to
dilute the odor emission below a concentration not detectable by
human panelists in olfactometry. According to the LCA approach, OIP
should be referred to the functional unit (i.e., the reference to which the
inputs and outputs and the potential environmental impact can be re-
lated).

Based on the previous experience of OIP proposed by Cadena et al
(2018), odor could be introduced in the LCA framework with an ad-
ditional impact category able to quantify the potential odor impact.
More in details, using olfactometry the different odor sources could be
quantified and, at the end, summed up to calculate the potential ol-
factometryc unit (OU) related to a specific production process. Even if
OU is quantified in laboratory and doesn’t account the dispersion
models, the developed odor impact category could be useful to compare
different production processes that provide the same function and are
responsible of odor annoyance. As for other impact categories such as
Climate Change, Ozone depletion, Human toxicity, the odor impact
category will consider (and sum up) emissions geographically located in
different areas; this issue should be considered in the last step of LCA
“Results interpretation”. From a practical point of view, the first step to
set up the odor impact category is the building, using olfactometry, of a
database with the different odor emission sources.

6. Conclusions

The release of odorous components, from waste treatment plant and
husbandry practices, is a concern for the people living near these fa-
cilities, other than for the health of workers and animals. A literature
review of odor measurements and of a major source of complaints was
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carried out to point out the state of the art of this concern with regard to
the odor from waste management and from livestock activity.

The literature reviewed highlighted that, over the last century, wide
attention has been paid to “odor issue” in different countries. If in Asia,
and in China in particular, it is mainly focused on odor from waste
management plants in other countries some researchers investigated
the issue from a livestock point of view. Considering that the impact of
odors on the surrounding communities depends on several factors (from
climatic conditions to technological aspects), some general conclusion
can be drawn regarding the evaluation of odors as well as about pos-
sible mitigation solutions and future research activities.

Sensorial or analytical techniques can be used, in alternative or in
combination, for quantitative and qualitative characterization of odors.
The main advantage of sensorial techniques is the higher sensitivity of
human nose compared to electronic instruments, while the main dis-
advantage is that the panel should be composed of qualified assessors to
ensure reliable and repeatable results. Instead, analytical methodolo-
gies are not subjected to human errors, but are less sensitive, non-re-
liable in case of mixture of many odorants at very low odor con-
centration and they are not able to detect the interaction between
odorants. The goal of both techniques is the evaluation of odor con-
centration.

However, to simulate odor dispersion, the evaluation of odor con-
centration alone is not sufficient, as also the air flow associated with the
monitored odor source have to be taken into account. For determining
odor plume extents, and therefore evaluating odor exposure at re-
ceptors, different air dispersion models, that applied different simula-
tion procedures, can be used. Models follow the Gaussian, Lagrangian
or Eulerian approaches. To be performed they require topographic/
orographic, meteorological and emission data, which goodness affect
the quality of the results. Air dispersion models are a useful tool when
evaluating technologies to reduce the odor re-lease at existing opera-
tions or when planning new operations, thus having not only a de-
scriptive nature but also predictive. Based on the model applied an
underestimation or an overestimation can be obtained. So, it could be
useful combining with sensorial and analytical techniques. Concerning
the livestock sector, specific odor dispersion models should be devel-
oped to include all the specific features of livestock odor dispersion (e.g.
short distance of transportation, multiple sources, animal mass, and
number). OERs are usually estimated as a yearly constant value ob-
tained by multiplying the average live mass of the animals by a constant
OEF. However, in this way, some factors (e.g. live mass, variation of
indoor air temperature, ventilation rate) that influence the odor release
are not considered. So, using a model that takes into account a time
series of OERs allows obtaining a better description of OEF and con-
sequently a more realistic emission scenario. This scenario will be
useful to improve the reliability of the calculation of setback distances.

Separation distances are just one possibility to protect people from
odor annoyance, but a wide range of mitigation techniques are avail-
able and applied. Some solutions have been longer investigated and are
well known (e.g. scrubber, additives, manure covers, etc.), while for
others (e.g. activated carbon adsorption and activated sludge diffusion)
further research is needed to explore efficient and cost-effective man-
agement systems other than to ensure effective implementation. To
minimize the nuisance of waste treatment plants a strategy is re-
presented by composting which need to be conducted at neutral or
alkaline pH values. Regarding intensive livestock farming, the common
mitigation techniques adopted are: nutritional strategies, manure ad-
ditives, building design, air filtration, manure covers, and treatment
systems, whose efficacy increases by combining them.

In conclusion, since odors have such a big impact on the sur-
rounding environment, it would be useful to quantify the nuisance also
from an environmental point of view. Thus, it is reasonable to integrate
odors as an indicator to be used in a Life Cycle Assessment framework,
and consequently, to develop a specific impact category quantifying the
odorous impact related to the life cycle of a product or a process. In fact,

up to now, although the different compounds responsible of the odor
(e.g·NH3, VOCs) affect some impact categories (e.g. eutrophication,
acidification, and particular matter formation) an impact category
specifically referred to the odor is missing.
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