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Abstract: Personalized medicine relies on the integration and consideration of specific characteristics
of the patient, such as tumor phenotypic and genotypic profiling. Background: Radiogenomics aim
to integrate phenotypes from tumor imaging data with genomic data to discover genetic mechanisms
underlying tumor development and phenotype. Methods: We describe a computational approach
that correlates phenotype from magnetic resonance imaging (MRI) of breast cancer (BC) lesions
with microRNAs (miRNAs), mRNAs, and regulatory networks, developing a radiomiRNomic map.
We validated our approach to the relationships between MRI and miRNA expression data derived
from BC patients. We obtained 16 radiomic features quantifying the tumor phenotype. We integrated
the features with miRNAs regulating a network of pathways specific for a distinct BC subtype.
Results: We found six miRNAs correlated with imaging features in Luminal A (miR-1537, -205, -335,
-337, -452, and -99a), seven miRNAs (miR-142, -155, -190, -190b, -1910, -3617, and -429) in HER2+,
and two miRNAs (miR-135b and -365-2) in Basal subtype. We demonstrate that the combination
of correlated miRNAs and imaging features have better classification power of Luminal A versus
the different BC subtypes than using miRNAs or imaging alone. Conclusion: Our computational
approach could be used to identify new radiomiRNomic profiles of multi-omics biomarkers for BC
differential diagnosis and prognosis.

Keywords: radiogenomics; RadiomiRNomics; breast cancer; magnetic resonance imaging; MRI;
microRNAs/miRNAs; pathways; network

1. Introduction

The advent of new gene expression profiling using microarray and next generation sequencing
technologies has allowed scientists to investigate the molecular complexity of breast cancer (BC).
These studies identified gene signatures, such as the 70-gene MammaPrint microarray assay (Agendia,
Amsterdam, the Netherlands) [1,2], The 21-gene Oncotype DX assay (Genomic Health, Redwood
City, Ca, USA) [3–5], and the 50-gene PAM50 assay (Prosigna, Nanostring Technologies, Seattle, WA,
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USA) [6,7], which are useful in the management of BC by predicting prognosis and/or efficacy of
treatment. However, molecular characterization using genomic and proteomic technologies requires
invasive sampling of tissue portions. The analysis of single portions of tissue, not representative of the
entire tumor, limits the impact of characterization of oncological malignancies, which are both spatially
and temporally heterogeneous.

MicroRNAs (miRNAs) emerged as possible disease biomarkers, also in the form of circulating
molecules, being extremely stable in serum, plasma, and urine, and easy to access by non-invasive
tests [8]. MiRNAs, which are short (18–22 nucleotides) non-coding RNA sequences, are novel
biomarkers of breast tumorigenesis, with tissue-specific expression, stability in biofluids, and the ability
to regulate hundreds of genes and biological pathways [8]. They are appealing targets for screening,
diagnosis, prognosis, discovery, and the choice of correct treatment for patients [8,9].

Molecular imaging technologies, such as magnetic resonance imaging (MRI), play a central role
in the management of oncological pathologies, due to their ability to in vivo and non-invasively
characterize the presence of disease and visualize the entire tumor volume at different time points,
enabling the monitoring of tumor growth and response to therapy [10]. With respect to genomic data,
imaging can sample the entire tumor volume to allow assessing the tumor phenotype in vivo [11].
In standard clinical practice, dynamic contrast-enhanced MRI (DCE-MRI) is routinely used for
BC diagnosis, screening, and follow-up monitoring [12–14]. Whereas, DCE-MRI is an inherently
quantitative technique, radiologists still use a semantic lexicon to describe imaging phenotype.
However, the availability of advanced image processing methods stimulated the development of
quantitative approaches. Within this context, radiomics emerged as a methodology to convert images
into quantitative descriptors of tumor phenotype and to mine these features to obtain an imaging
signature for disease characterization or response to therapy prediction. In radiomics, the imaging
phenotype provides information about underling histopathology and genetics, fully depicting the
tumor and the tumor microenvironment [15].

Imaging-derived indices may help better characterize the whole tumor than biopsy alone.
However, these indices do not provide information about the altered biological functions underlying the
observed phenotype. A new area of research has emerged, called radiogenomics [16]. Radiogenomics refers
to the integration of image-extracted phenotypes and genomic data of the same tumor, which has the
potential to improve both diagnosis and therapeutic strategies for evaluating the individualized disease
signatures with higher accuracy.

Since the advent of imaging in diagnostic workup of oncological pathologies, the relationship
between the imaging pattern of the disease and the underlying biology were explored. The first attempt
was made in 2007 by Segal et al. [17] who, using an advanced and intensive computational approach,
described the tentative correlations between features extracted by a semantic lexicon, global gene
expression patterns, and prognosis in liver cancer. Since then, several other attempts have been made,
including correlating imaging features, gene expression modules, and prognosis in brain tumors [18];
positron emission tomography-computer tomography (PET-CT) imaging features; and gene expression
profiles and survival in non-small cell lung cancer [19]. The possibility of using advanced computational
approaches to image processing have motivated studies [20] and the term radiomics emerged, as a
high-throughput methodology to extract accurate quantitative descriptors of imaging tumor phenotype,
capturing biological tumor heterogeneity. With radiomics, molecular imaging techniques can be used
to assess intra-tumoral heterogeneity, as the translation of tumor genomic heterogeneity, allowing the
identification of patients that would ultimately exhibit worse prognosis. This has been confirmed
by other works, such as Segal et al. [17] who showed that the combination of only 28 imaging traits
from CT was sufficient to reconstruct the variation of 116 gene expression modules in hepatocellular
carcinoma. Diehn et al. [18] showed that in glioblastoma multiform (GBM), proliferation and hypoxia
gene expression patterns can be predicted by mass effect and tumor contrast enhancement as evaluated
by MRI. They also showed that a specific imaging pattern could predict overexpression of epidermal
growth factor receptor (EGFR) and that the infiltrative pattern of T2 hyperintense signal on MR images



Int. J. Mol. Sci. 2019, 20, 5825 3 of 16

was highly predictive of outcome. The authors concluded that MR imaging could provide an in vivo
portrait of genome-wide gene expression in GBM.

In the subsequent years, focusing mainly on imaging, several groups explored the signatures of
intratumor heterogeneity captured by quantitative molecular imaging techniques to define patient
prognosis and response to therapy in different cancers [21,22]. Despite this, the image phenotype of
intratumor heterogeneity was associated to omics and clinical data in few published works [11,23],
often including a limited number of patients [15]. Considering BC, Antunovic et al. [24] demonstrated
that PET/CT features are correlated to molecular BC subtypes obtained by immunohistochemistry,
suggesting that radiomics could be successfully applied to the identification of molecular subtypes.
In an initial study, Leithner et al. [25] evaluated DCE-MRI for the assessment of BC receptor status and
molecular subtypes, obtaining a high diagnostic accuracy. The possibility of applying machine learning
techniques to radiomics analysis has improved the diagnostic results in several cancer types [26–28],
even though different methodological issues have to be addressed and the number of involved patients
often limits the possibility of developing and assessing predictive models to be tested with artificial
intelligence methods.

The aim of our study was to classify the four BC subtypes (Luminal A, Luminal B, HER2+,
and Basal) using epigenomic miRNA (miRNomic) markers and radiomic imaging features. In this
radiomiRNomic study, we explored the integration of gene and miRNA expression profiles with
radiomic features of BC subtypes derived from The Cancer Genome Atlas (TCGA) [29] and The
Cancer Imaging Archive (TCIA) [30]. In particular, we used the TCGA/TCIA-BRCA_1 dataset,
which contains both miRNomic profile and radiomics features, and the TCGA/TCIA-BRCA_2 and
GSE81000 datasets, containing only radiomics data and only miRNA expression data, respectively.
The TCGA/TCIA-BRCA_1 data set was used to identify the relationships between miRNAs and
radiological phenotype; the TCGA/TCIA-BRCA_2 dataset was used for the validation of the
obtained radiomic signature. For miRNA signature validation, we used an independent dataset,
GSE81000. To the best of our knowledge, we are the first to investigate the relationships between the
miRNAs-regulating pathway network and radiomics features in BC subtypes using a radiomiRNomic
approach, assuming that radiomics of cancer lesions can express genetic and epigenetic features in its
in vivo microenvironment. The purpose of our study was to provide a proof-of-concept of combining
radiomics and miRNomic features to improve the classification results of BC subtypes. We identified a
network of pathways containing differentially expressed genes (DEGs) specific for each BC subtype
(Luminal A, Luminal B, HER2+, and basal) with respect to normal tissue with a system biology
approach. Then, we found miRNAs with a statistically significant role in regulating the genes of the
pathways’ networks that are best able to classify each of the four BC subtypes. In parallel, we extracted
quantitative MRI features from each of the four BC subtypes and analyzed the association between
miRNAs and radiomic features of the same patients. A machine learning approach was used to verify
whether the combination of miRNomics and radiomics better predicts the BC subtype than using either
of the two alone.

2. Results

2.1. Association Between miRNAs and Imaging Features

The comparison between DEGs of Luminal A vs. normal samples revealed a net of differentially
expressed pathways (Figure 1A) that consists of 13 pathways that were best able to classify luminal
A BC vs. normal samples. The DEGs within these 13 pathways are potential targets of 10 miRNAs.
Figure 1B shows the relationships between pathways and miRNAs, where the green nodes represent
the pathways and purple nodes indicate the miRNAs. Edges in the network represent the cross-talk
among pathways or the interaction between the miRNA and pathway. The analysis of correlation
between imaging features and miRNAs regulating pathway cross-talk (miRNA-R), described by the
heatmap in Figure 1C, revealed that 6 out of 10 miRNAs (miR-1537, miR-205, miR-335, miR-337, miR-452,
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and miR-99a) in Luminal A were significantly associated with imaging features (IFs). In particular,
miR-1537 was correlated with run percentage (RP) (p-value < 0.05) from the gray-level run length
matrix (GLRLM), miR-205 was correlated with median and skewness of the intensity-based histogram
and variance (p-value < 0.05) from GLCM, and miR-335 and miR-337 were correlated with the volume,
showing significant enhancement (p-value < 0.05). miR-337 was also correlated with short run
emphasis (SRE) from GLRLM (p-value < 0.05), miR-452 was correlated with skewness from intensity
histogram (p-value = 0.06), and miR-99a with long run low gray-level emphasis (LRLGLE) from GLRLM
(p-value < 0.05).
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Figure 1. Breast cancer (BC) Luminal A. (A) The pathways able to classify Luminal A vs. normal
samples (p-value < 0.01, |logFoldChange (FC)| > 1). For each pathway (in different colours), miRNAs
(indicated in red) able to regulate differentially expressed genes (DEGs) are indicated. (B) Relationships
between pathways and miRNAs (green nodes, pathways; purple nodes, miRNAs). (C) Heatmap of
the correlation between imaging features and miRNAs. The color intensity in the figure shows the
corresponding p-value; yellow cells indicate greater statistical significance.

The comparison between the DEGs of Luminal B and normal samples revealed a group of
differentially expressed pathways (Figure 2A) that contains of 11 pathways that best classify of Luminal
B BC vs. normal samples. We found three miRNAs (miR-32, miR-577, and miR-3074) regulating
these pathways (Figure 2B). The analysis of correlation between IFs and miRNA-R, described by the
heatmap (Figure 2C), revealed no significant correlation for Luminal B BC. For this subtype, further
investigations are required due to the limited number of Luminal B samples.
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Figure 2. BC Luminal B. (A) Pathways able to classify Luminal B vs. normal samples (p-value < 0.01,
|logFC| > 1). For each pathway (in different colours), miRNAs (in red) able to regulate DEGs are
indicated. (B) Relationships between pathways and miRNAs (green nodes are the pathways and
purple nodes are the miRNAs). (C) Heatmap of the correlation between imaging features and miRNAs.
The color intensity in the figure shows the corresponding p-value; yellow cells indicate greater
statistical significance.

The comparison between DEGs of HER2+ BC vs. normal samples revealed a group of differentially
expressed pathways (Figure 3A) that consists of 13 pathways that were best able to classify HER2+ BC
vs. normal samples. We found 12 miRNAs regulating these pathways, creating the network shown in
Figure 3B. The analysis of correlation between IFs and miRNA-R, described by the heatmap (Figure 3C),
revealed that for HER2+ BC, 7 out of 12 miRNAs (miR-142, miR-155, miR-190, miR-190b, miR-1910,
miR-3617, and miR-429) had significant associations with IFs. In particular, miR-142 was correlated
with variance (VAR) (p-value < 0.05), miR-155 was correlated with SRE from GLRLM (p-value < 0.05),
miR-190 was correlated with energy from the intensity histogram (p-value < 0.05), and miR-190b was
correlated with skewness from the intensity histogram (p-value < 0.05). miR-1910 and miR-3617 were
correlated with VAR from GLCM (p-value = 0.06 and < 0.05, respectively), whereas, miR-429 was
associated with the energy (p-value = 0.06) and median of the intensity histogram (p-value < 0.05).
For this subtype, further investigations are required due to the limited number of HER2+ samples.
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Figure 3. BC HER2+. (A) The pathways able to classify HER2+ BC vs. normal samples (p-value < 0.01,
|logFC| > 1). For each pathway (indicated in different colours), miRNAs (in red) able to regulate
DEGs are indicated. (B) Relationships between pathways and miRNAs (the green nodes are the
pathways and purple nodes the miRNAs). (C) Heatmap of the correlation between imaging features
and miRNAs. The color intensity in the figure shows the corresponding p-value; yellow cells indicate
greater statistical significance.

The comparison between DEGs of basal BC vs. normal samples revealed a group of differentially
expressed pathways (Figure 4A) that consists of 11 pathways that obtained the best performance in
the classification of basal BC vs. normal samples. We found two miRNAs (miR-135b and miR-365-2)
regulating these pathways, creating the network shown in Figure 4B. The analysis of correlation
between IFs and miRNA-R, described by the heatmap in Figure 4C, revealed that for basal BC the
two miRNAs were significantly correlated with some IFs. miR-135b was correlated with Kurtosis f
intensity histogram (p-value < 0.05), and miR-365-2 was correlated with long run emphasis (LRE), SRE,
and LRLGLE (p-value < 0.05) from GLRLM. For this subtype, further investigations are required due
to the limited number of basal samples.

In conclusion, we found 15 statistically significant miRNAs associated with IFs. In Luminal A
samples, we found six miRNAs (miR-1537, miR-205, miR-335, miR-337, miR-452, and miR-99a) correlated
with both morphological features and features extracted using intensity histogram analysis and texture
analysis. Despite further investigations required in other subtypes, limited by the reduced sample size,
seven miRNAs (miR-142, miR-155, miR-190, miR-190b, miR-1910, miR-3617, and miR-429) in the HER2+

subtype and two miRNAs in the basal subtype (miR-135b and miR-365-2) were found to be correlated
with types of Ifs.
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Figure 4. BC Basal. (A) The pathways able to classify basal BC vs. normal samples (p-value < 0.01,
|logFC| > 1). For each pathway (in different colours), miRNAs (in red) able to regulate DEGs are
indicated. (B) Relationships between pathways and miRNAs (the green nodes are the pathways
and purple nodes are the miRNAs). (C) Heatmap of the correlation between imaging features and
miRNAs. The color intensity in the figure shows the corresponding p-value; yellow cells indicate
greater statistical significance.

2.2. Diagnostic Role of RadiomiRNomic Signature

To identify a radiomiRNomic signature able to classify Luminal A BC vs. all other subtypes,
we analyzed the classification performance of single miRNAs (Table 1), IFs (Table 2), and a combination
of multiple miRNA and IFs (Table 3). For this purpose, we used the TCGA/TCIA-BRCA_1 dataset,
containing both IFs and miRNA expression levels.

Table 1. Results of the classification of miRNAs in TCGA/TCIA-BRCA_1 and GSE81000 datasets.

miRNA AUC-TCGA/TCIA-BRCA_1 AUC-GSE81000

miR-190b 0.92 0.56
miR-155 0.88 0.74
miR-337 0.87 0.65
miR-135b 0.73 0.69
miR-99a 0.72 0.8

miR-365-2 0.68 0.55
miR-335 0.66 0.45
miR-452 0.64 0.51
miR-429 0.62 0.54
miR-190 0.61 -
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Table 2. Results of the classification of imaging features in TCGA/TCIA-BRCA_1 and
TCGA/TCIA-BRCA_1 datasets.

Imaging Features AUC-TCGA/TCIA-BRCA_1 AUC-TCGA/TCIA-BRCA_2

Correlation (Corr.) 0.84 0.63
Short Run Emphasis (SRE) 0.76 0.66

Long Run High Gray Level Emphasis (LRHGLE) 0.7 0.47
Volume (V) 0.6 0.78

Sum Average (SumA) 0.6 0.5

Table 3. Results of the classification of pairwise combination miRNA/imaging features in
TCGA/TCIA-BRCA.

miRNA AUC-TCGA/TCIA-BRCA_1

miR-135b; LRHGLE 0.94
miR-135b; V 0.92

miR-135b; SumA 0.88
miR-155; V 0.86

miR-135b; Corr 0.84
miR-99a; SRE 0.82
miR-155; Corr 0.8
miR-135b; SRE 0.8
miR-99a; SumA 0.74
miR-155; SumA 0.7

miR-155; LRHGLE 0.7

Of the 15 signatures of single miRNAs, 10 performed the best in the TCGA/TCIA-BRCA_1 dataset,
with an area under the curve (AUC) > 0.60 (Table 1, column 1). miR-190b, found to be a miRNA
regulating pathway cross-talks in HER2+ BC (axonal guidance signaling pathway, CXCR4 signaling,
and P2Y purigenic receptor signaling pathway) obtained the best AUC performance of 0.92. miR-155,
the miRNA regulating pathway cross-talk in HER2+ BC (growth hormone signaling and role of
macrophages, fibroblasts, and endothelial cells in R.A.), achieved an AUC value of 0.88. miR-337, the
miRNA regulating pathway cross-talk in luminal A BC (acute phase response signaling and axonal
guidance signaling pathways) achieved an AUC value of 0.87. miR-135-b, the miRNA regulating
pathway cross-talk in basal BC (mismatch repair signaling and ethanol degradation IV pathways)
achieved an AUC of 0.73. These signatures of single miRNAs were validated, from imaging, on the
GSE81000 dataset. Three miRNAs obtained an AUC value around or above 0.70 (Table 1, column 2).
These miRNAs were used for the validation on human BC samples (see below).

Of the 10 signatures of single IFs, five performed the best in the TCGA/TCIA-BRCA_1 dataset,
with an AUC > 0.60 (Table 2, column 1). Overall, in the TCGA/TCIA-BRCA_1 dataset, miRNAs
seem to provide better classification than IFs, but this is probably related to the sample size used for
epigenetic analysis with respect to the sample size of the image’s dataset. Three IFs (correlation from
GLCM, SRE, and volume of enhancement) achieved an AUC above 0.60 in the independent dataset
TCGA/TCIA-BRCA_2 (Table 2, column 2)

We expected to obtain much lower AUC values on the test sets than on the training sets.
We obtained some AUCs with higher values due to the low number of samples in the training
set. However, subsequent studies on datasets containing more samples must be performed.
The best performance was obtained when miRNAs and IFs are matched into a combined signature
(Tables 3 and 4); to validate the obtained results, an independent and combined dataset is required,
which is not yet available.



Int. J. Mol. Sci. 2019, 20, 5825 9 of 16

Table 4. Results of the classification using combinations of three features (miRNA/imaging features) in
TCGA/TCIA-BRCA_1 and miRNAs in GSE81000.

miRNA AUC-TCGA/TCIA-BRCA_1 AUC-(GSE81000)

miR-135b; miR-99a; SRE 0.94
miR-135b; miR-155; miR-99a 0.94 0.85

miR-155; miR-99a; SRE 0.92
miR-135b; miR-155; SRE 0.9
miR-135b; miR-99a; Corr 0.88

2.3. Validation of the Three miRNA Signature for the Differential Diagnosis of Human BC Samples

As miR-99a, miR-135b, and miR-155 were the miRNAs of the radiomiRNomic signature that
produced the best classification performance in terms of AUC on the GSE81000 validation dataset and,
in combination with IFs, performed good classification on the AUC TCGA/TCIA-BRCA_1 (Table 4),
we performed real-time (RT)-PCR analysis on human BC samples as a validation test. We compared
the relative expression level of each miRNA in Luminal A BC vs. all the other BC subtypes, including
Luminal B, HER2+, and basal BC tissues (n = 9). As shown in Figure 5, the miR-99a expression level
is reduced in Luminal B, HER2+, and basal BC tissues compared with Luminal A BC, as expected
(Figure 5A). As predicted from the bioinformatics analysis, the expression levels of miR-135b and
miR-155 were upregulated in Luminal B, HER2+, and basal BC tissues compared with Luminal A BC
(Figure 5B,C, respectively).
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Figure 5. Relative expression of miR-99a (A), miR-135b (B) and miR-155 (C) in Luminal A vs. all the
other BC subtypes (Luminal B, Basal, HER2+) (n = 9) (*** t-test, p-value < 0.001).

3. Discussion

To identify a radiomiRNomic signature able to classify Luminal A vs. the other BC subtypes,
we comprehensively analyzed the integration of miRNomic and radiomic data of BC subtypes from
TCGA and TCIA. To the best of our knowledge, this is the first report combining multiple types of
miRNomic data integrated with pathway networks and radiomic data in BC, assessing the associations
between miRNomic and radiomic features and four BC subtypes related to different prognoses,
and evaluating miRNAs and imaging signatures to stratify patients with the Luminal A histological
type. A few studies associated image phenotype of intratumor heterogeneity to omics and clinical
data [11,23]. The limitation of these analyses is the low number of patients [15].

We demonstrated that an association exists between IFs and miRNAs controlling several potential
targets. We identified the functional pathways containing a higher number of miRNA-regulated DEGs,
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correlated with several parameters of IFs, highlighting the direct link between the specific miRNomic
phenotype and the phenotype described by imaging of BC lesions. Different miRNAs were found to
be correlated with parameters describing the heterogeneity of the vascularization pattern of the tumor.

In Luminal A, we found some correlations between parameters describing the heterogeneity of
the vascularization pattern of the tumor and miR-99a, -205, -335, -337, and -452, suggesting that these
miRNAs could play a main role in the control of mRNA-encoding proteins involved in this process.
In particular, we identified acute phase response signaling and axonal guidance signaling pathways
that describe the immunological acute phase response activation [31,32] and the hyperproliferation
and invasion [33,34] of this BC subtype, respectively. Further investigations are required to determine
how these imaging parameters could be considered surrogate features of the immunological response
or of the cell proliferation. Moreover, the accuracy of this parameter should be validated to stratify
Luminal A patients in a more extended dataset, since only limited accuracy was obtained with our
reduced validation set. From a biological point of view, it is important to investigate how the indicated
miRNAs could be involved in the control of heterogeneity of tumor vascularization.

In Luminal B, HER2+ and basal subtypes, we found some correlations between miRNomic and
imaging phenotypes. Although the associated miRNAs may be involved in tumor vascularization,
the limited number of samples in the analysis prevented straightforward interpretation of the
obtained results.

Despite the limited number of patients, different IFs were correlated with miRNAs in the different
BC subtypes. This suggests that biological pathways, which may be important in each of the different
subtypes, can drive the choice of the optimized imaging modality reflecting the characteristics of each
different subtype.

Considering the association between the imaging parameters and the miRNAs, we applied the
obtained imaging and miRNA-correlation results to the differential diagnosis of Luminal A compared
with the other BC subtypes to determine the radiomiRNomic combination able to classify non metastatic
BC (Luminal A) versus potentially metastatic BC (all other subtypes). In particular, miRNAs and IFs
that were found to be associated with the different BC subtypes were used to evaluate the classification
performance of several radiomiRNomic signatures for the differential diagnosis of Luminal A BC.
We analyzed the classification performance of single miRNAs or IFs and we evaluated the performance
ability of the combination of multiple miRNA and IFs. As a first result, we observed that single
miRNAs were more predictive in the classification of Luminal A BC than single radiomic features.
This result has to be confirmed, since it could be an effect of disproportion in validation between
the sample sizes of the images dataset used for validation (15 Luminal A BC vs. 12 other subtypes
in TCGA/TCIA-BRCA_2) with respect to the sample size of epigenetic data (155 Luminal A BC vs.
176 other subtypes in GSE81000).

When combining miRNAs and IFs, better performance was achieved with an AUC value of 0.94.
This result has to be confirmed with a validation test in an independent and combined dataset, but it
suggests that a combination of miRNAs and imaging parameters as baseline can be used for patient
stratification before surgery or chemotherapy treatment.

Considering the possibility of evaluating miRNAs in serum, our results suggest that the
methodological approach proposed in this work has the potential to impact the clinical workup
of BC patients, enhancing diagnostic confidence using minimally invasive procedures, such as MRI
and blood sampling.

An extension to this work could be testing and comparing our radiomiRNomic signature with
other classification algorithms such as random forest classification k-nearest neighbor (NN) or an
improved version of k-NN [35].
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4. Materials and Methods

4.1. Genomic and Imaging Datasets

In this study, we focused on the gene and miRNA expression levels of four different BC subtypes:
Luminal A, Luminal B, HER2+, and basal. We used the following datasets to derive radiomiRNomic
signature:

(1) TCGA-BRCA: Gene and miRNA expression levels derived by The Cancer Genome Atlas (TCGA)
were downloaded including the profiles of 233 BC Luminal A, 103 BC Luminal B, 43 BC HER2+,
and 74 BC basal patients, according to PAM50 classification. BC subtypes were compared with
113 normal samples, allowing the identification of the DEGs of each subtype.

(2) TCGA/TCIA-BRCA_1 dataset: We used miRNA expression profiles of the TCGA-BRCA’s subset
to explore the relationships between miRNAs and radiological phenotype. The subset of
TCGA-BRCA (TCGA/TCIA-BRCA) was selected to include patients acquired on the same MR
scanner to avoid the impact of scanner on imaging features and it contains the genomic profiles
and images of 24 Luminal A, 4 Luminal B, 3 HER2+, and 6 basal samples. For these MRI samples,
miRNA expression levels and PAM50 classification were available. This analysis allowed the
identification of radiomic features of each BC subtype.

Since an independent dataset containing miRNA and MRI images was not available, we used the
following datasets to independently validate the obtained results: To validate the radiomic signature,
we used the TCGA/TCIA-BRCA_2 dataset. This independent subset, which contains 15 Luminal A,
5 Luminal B, 3 HER2+, and 4 basal samples, was not used in the previous analyses. To validate the
miRNomic signature, we used the independent GSE81000 dataset, which consists of 155 Luminal A,
89 Luminal B, 42 HER2+, and 45 basal samples. We used this data set to validate the diagnostic value
of the miRNomic features in a second cohort of BC patients. A scheme of the followed approach is
depicted in Figure 6.
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Figure 6. Workflow of the proposed approach.

The radiomic and miRNomic signatures were combined and tested on the
TCGA/TCIA-BRCA_1 dataset, allowing the identification of radiomiRNomic signatures able
to best classify Luminal A versus all other BC subtypes (including Luminal B, HER2+, and basal BCs).
TCGA data were normalized using the TCGAbiolinks package [36].
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4.2. TCGA/TCIA-BRCA_1 Dataset: Imaging Data Analysis

DCE-MRI data were downloaded and analyzed from TCIA, selecting from the multicentric
database only images acquired on a Signa Excite GE scanner (Oxford Instruments Healthcare, Ann
Arbor, MI) with 1.5 T magnet strength were considered. DCE-MRI images were acquired using
gadolinium-based contrast agent, and one pre-contrast and three to five post-contrast images were
obtained in the imaging protocol. Subtraction images were generated between the first post-contrast
images and the pre-contrast acquisition.

Breast masses were segmented on subtraction images using an approach based on region growing
implemented in 3D Slicer. IFs were extracted from subtraction images using the HeterogeneityCAD
package in open source 3D Slicer. The analysis included the extraction of 16 radiomic features from
image histogram analysis (IFh), 9 radiomic features from analysis of tumor morphology and shape
(IFm), and 32 textural features from the gray-level co-occurrence matrix (IFGLCM) and gray-level run
length matrix (IFGLRLM). A total of 57 imaging features were extracted from subtraction images and,
as a preliminary step, feature selection was conducted to avoid feature redundancy. Non-redundant
features were selected for correlation analysis by calculating the Spearman correlation coefficients of
pairs of features, both within each group and with different groups of features. Clusters of highly
correlated features were collapsed into one representative feature on the basis of their inter-subject
variability, as expressed by the feature coefficient of variation [15].

A set of 16 features were selected and used to study the association with miRNAs (Table 5).

Table 5. Sixteen selected features from imaging analysis to be correlated with miRNAs.

Type of Feature Feature

Histogram-based features

Energy [(g/cc)2] – [(mm2/sec)2]

Skewness

Kurtosis

Median [g/cc] – [mm2/sec]

Shape-and-size based features
Volume [cm3] (V)

Surface to volume ratio [cm−1] (SV)

Gray-Level Co-Occurrence Matrix based features
(IFGLCM)

Correlation (Corr.)

Variance (VAR)

Cluster prominence (CP)

Cluster tendency (CT)

Sum Average (SumA)

Gray-Level Run-Length Matrix based features
(IFGLRLM)

Long Run Emphasis (LRE)

Short Run Emphasis (SRE)

Run Percentage (RP)

Long Run Low Gray Level Emphasis (LRLGLE)

Long Run High Gray Level Emphasis (LRHGLE)

4.3. TCGA-BRCA Dataset: Analysis of miRNAs Regulating Pathway Cross-Talk in BC Subtypes

We applied an algorithm and approach previously presented [37,38] to the TCGA-BRCA dataset
to identify miRNAs regulating pathway cross-talk for each BC subtype. Given 589 pathways derived
using ingenuity pathways analysis, we filtered the pathways to select the differentially expressed
pathways between BC subtypes and normal samples. We quantified the cross-talk between these
pathways with a discriminating score. This score was used to select the pathway cross-talk network
that achieves the best performance in the classification of BC samples vs. normal samples using
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a machine learning approach. Since we obtained the networks of pathways for each BC subtype,
we focused on the role of miRNAs in regulating miRNA-R networks.

4.4. TCGA/TCIA-BRCA_1 Dataset: Association Between miRNAs and IFs

In this step, we revealed the association of IFs with miRNA-R. For each IF, we calculated the
Pearson correlation with miRNA-R expression levels. Considering the corresponding p-values of
the correlation, only IFs and miRNAs significantly correlated (p-values < 0.05) were retained for
subsequent analysis.

4.5. TCGA/TCIA-BRCA_1, TCGA/TCIA-BRCA_2, and GSE81000 Datasets: Diagnostic Role of
RadiomiRNomic Signature

Significantly correlated IFs and miRNAs were combined and tested on the
TCGA/TCIA-BRCA_1 dataset to define radiomiRNomic signatures for differential diagnosis
of Luminal A BC. Given the higher probability of developing a metastatic status in Luminal B, HER2+,
and basal samples, we grouped the data in two sets: one set containing 24 BC samples (Luminal
A) and a second set containing 13 samples (Luminal B, HER2+, and basal). The performance was
evaluated using area under the receiver operating characteristic (ROC) curve (AUC). We evaluated the
performance of single miRNAs, single IFs, and combination of miRNAs and IFs using AUC values.
AUC values were indicated only for those datasets where miRNA or imaging features were present.

Since an independent dataset of combined miRNAs and MRI images was not available for
validation, we performed the validation of the obtained results independently. Validation for IFs was
performed on the TCGA/TCIA-BRCA_2 dataset considering 15 Luminal A patients and 12 samples
of the other BC subtypes. Validation of miRNAs was performed on the GEO dataset (GSE81000),
using 155 BC samples of Luminal A patients and a second set containing 176 samples of the other
BC subtypes.

For the evaluation and validation of signature, we developed and used a support vector machine
(SVM) using the R-package e1071. We optimized the SVM-feasible learning parameters: cost = 10(–1:2),
γ = c (0.5,1,2); kernel type = RADIAL (see e1071 documentation [20]) [39] to identify the best parameters
for the SVM learning process. These parameters were used to classify the testing set.

We implemented a Monte Carlo cross-validation method, which randomly selects some fractions
of data (60% of the original dataset) to form the training set, and then assigns the rest of the samples to
the testing set (40% of the original dataset).

4.6. Validation on BC Human Tissue Samples

As we did not have an independent dataset containing IFs and miRNAs for the validation phase,
we decided to validate miRNA-R expression levels directly on 9 Luminal A tissue samples compared
to 9 tissue samples of other subtypes (including Luminal B, HER2+, and basal human tumor tissues)
from surgical resections performed from 2011 to 2013 at the Breast Unit of Istituti Clinici Scientifici
Maugeri IRCCS, Pavia, Italy. Samples belonging to the biological collection of the Bruno Boerci
Oncological Biobank for research applications (Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy),
an ISO 9001:2015-certified biobank and member of the Italian node of the Biobanking and BioMolecular
Resources Research Infrastructure–European Research Infrastructure Consortium (BBMRI-ERIC;
BBMRI.it). Upon receiving patients’ informed consent, samples were collected immediately after
surgery, processed, and stored at −80 ◦C as snap-frozen aliquots according to the best practices
in biobanking (certification ISO 9001:2015). At the time of collection, immunohistochemical (IHC)
molecular characterization was performed for each subtype by the Pathology Service (Istituti Clinici
Scientifici Maugeri IRCCS, Pavia, Italy), according to the clinical guidelines on BC (American Society
of Clinical Oncology, ASCO). Molecular characterization has already been published [40]. The samples
were used for the isolation of total RNA and for the validation of miRNAs in real-time PCR.
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Total RNA was isolated using TRIzol reagent (Life Technologies, Waltham, MA, USA) following
the manufacturer’s recommendations and a previous report [9]. For miRNA quantification,
total RNA was reverse transcribed using the MystiCq microRNA cDNA synthesis kit (Sigma
Aldrich, Merck, Italy), following the manufacturer’s recommendations. miRNAs were amplified
in real-time-PCR (RT-PCR) (Eco-Illumina, Euroclone, Italy) using Power Up Sybr green mix
(Applied Biosystems, Life Technologies Monza, Italy) in combination with homemade designed
primers: Hsa-miR-99a (miR-99a) Fwd primer 5′-AACCCGTAGATCCGATCTTGTG-3′, Hsa-miR-135b-5p
(miR-135b) Fwd primer 5′-TATGGCTTTTCATTCCTATGTGA-3′, and Hsa-miR-155-5p (miR-155) Fwd
primer 5′-TTAATGCTAATCGTGATAGGGGTT-3′. For each RT-PCR analysis, the results are presented
as 2−∆Ct method [41], comparing the results of the expression of a housekeeping miRNA, either
miR-103-3p (5′-AGCAGCATTGTACAGGGCTATGA-3′) or the positive control present in the MystiCq
microRNA cDNA synthesis kit (Sigma Aldrich, Merck, Italy). All RT-PCRs were performed in triplicate
and the results are the average ± SD of three independent experiments.
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