Encore – Sex Dependency of the Proteome

2

3 Medicine has for a long time assumed that non-reproductive organs and tissues in the human body

- 4 are independent of sex / gender, basing all their studies on the standard of a mostly young –
- 5 healthy male. It took centuries till this attitude has changed and the term "gender medicine" and its
- 6 background were generally accepted. For instance, only in 2010 the first gender medicine unit of
- 7 Austria was established, at the Medical University of Vienna

8 (https://www.meduniwien.ac.at/hp/gender-medicine/). Also animal models for pharmacology have

9 often been based on males, mainly rodents, to avoid influence of female hormonal cycles.

- 10 Having accepted sex-dependent differences in the chromosomes, the genes and physiology, also as a
- 11 function of age, it has become clear that this diversity has also to be reflected in the protein setup, as
- 12 proteins are the molecules responsible for many of the actions in the body. Here comes proteomics

13 into play. In a previous issue (<u>https://www.sciencedirect.com/journal/journal-of-</u>

14 proteomics/vol/178/suppl/C) we have collected papers that showed the usefulness of proteomics to

- 15 investigate sex differences. Topics in that issue span from impact of sex-specific protein patterns and
- 16 their changes in human diseases (cardiovascular diseases [1], cognitive disorders or Alzheimer's
- 17 disease [2]) to susceptibility to toxins (mycotoxins [3]). Gender-dependent differences are similarly
- 18 detectable in animals [e.g. pig, saliva [4]), whereof some serve as models of disease [5, 6]. Influence
- 19 of animal sex on susceptibility in toxicological experiments and its reflection in the proteome have
- 20 already been reported previously (in aquatic animals [7] or mice [8, 9]). Besides these male-female
- 21 comparisons of non-reproductive tissues/organs [10], some contributions dealt with the study of
- reproductive organs [11] or physiological changes during pregnancy and lactation [12, 13]. Last, but
- 23 not least, sex-specific differences were also shown for plants, having an influence in cases of soil with
- low nutritional value [14].
- 25 Given the importance of this area of research, and to investigate the potential impact on additional,
- 26 not yet covered topics, we collected in the present, smaller issue additional examples. In the field of
- 27 human medicine, investigation on HUVECs from twin pairs of opposite sex excludes factors like life-
- 28 style or environment often influencing other studies [15]. Specific enamel proteins allow sex-
- 29 determination even in 5000-year-old human teeth [16]. The hippocampus proteome of male and
- 30 females piglets is not affected in the same way during intra-uterine growth restriction [17]. Also the
- 31 proteome of meat (beef, pork) reflects sex of the animals, besides influence of breed, rearing
- 32 conditions and diet [18, 19]. Similarly, muscular, hepatic and adipose tissues proteomes of muskox, a
- 33 ruminant living in the arctic tundra of Northern America, show sex-dependent differences [20]. A last
- 34 example compares proteomes of reproductive tissues at different developmental stages of the
- 35 tobacco cutworm, whose larvae are well-known for damaging agricultural crops [21].

36	The few examples given here show two things: for one, today's proteomic methods are sensitive
37	enough to determine minor differences in protein patterns (both qualitative and quantitative
38	aspects), and, second, sex/gender may influence this pattern. However, some other factors, e.g. in
39	animals: breed, diet and developmental age for animals, have also an impact, sometimes an even
40	more marked one [19]. It needs careful testing to assess which factors prevail or to find (sex-, breed-
41	etc.) independent factors if looking for "biomarkers" [18].
42	For further reading: The importance of gender studies has been acknowledged by the European
43	Commission in a Report of the Expert Group "Innovation through Gender" [22], compiling projects in
44	different fields.
45	
46	
47	References:
48	
49	1) Baetta R, Pontremoli M, Fernandez AM, Spickett CM, Banfi C.
50	Proteomics in cardiovascular diseases: Unveiling sex and gender differences in the era of precision
51	medicine.
52	J Proteomics. 2018 Apr 30;178:57-72. doi: 10.1016/j.jprot.2018.03.017. Epub 2018 Apr 3.
53	
54	2) Reumiller CM, Schmidt GJ, Dhrami I, Umlauf E, Rappold E, Zellner M.
55	Gender-related increase of tropomyosin-1 abundance in platelets of Alzheimer's disease and mild
56	cognitive impairment patients.
57	J Proteomics. 2018 Apr 30;178:73-81. doi: 10.1016/j.jprot.2017.12.018. Epub 2017 Dec 24.
58	
59	3) Soler L, Oswald IP.
60	The importance of accounting for sex in the search of proteomic signatures of mycotoxin exposure.
61	J Proteomics. 2018 Apr 30;178:114-122. doi: 0.1016/j.jprot.2017.12.017. Epub 2017 Dec 27.
62	
63	4) Gutiérrez AM, Montes A, Gutiérrez-Panizo C, Fuentes P, De La Cruz-Sánchez E.
64	Gender influence on the salivary protein profile of finishing pigs.
65	J Proteomics. 2018 Apr 30;178:107-113. doi: 0.1016/j.jprot.2017.11.023. Epub 2017 Dec 1.
66	
67	5) Theuring F, Neumann B, Scheler C, Jungblut PR, Schwab K.
68	Sex differences in murine myocardium are not exclusively regulated by gonadal hormones.
69	J Proteomics. 2018 Apr 30;178:43-56. doi: 10.1016/j.jprot.2017.12.005. Epub 2017 Dec 19.
70	

- 6) Audano M, Maldini M, De Fabiani E, Mitro N, Caruso D.
- 72 Gender-related metabolomics and lipidomics: From experimental animal models to clinical evidence.
- 73 J Proteomics. 2018 Apr 30;178:82-91. doi: 10.1016/j.jprot.2017.11.001. Epub 2017 Nov 6.
- 74
- 75 7) Liang X, Feswick A, Simmons D, Martyniuk CJ.
- 76 Environmental toxicology and omics: A question of sex.
- 77 J Proteomics. 2018 Feb 10;172:152-164. doi: 0.1016/j.jprot.2017.09.010. Epub 2017 Oct 14.
- 78
- 8) Miller I, Serchi T, Cambier S, Diepenbroek C, Renaut J, Van den Berg JHJ, Kwadijk C, Gutleb AC,
- 80 Rijntjes E, Murk AJ.
- 81 Hexabromocyclododecane (HBCD) induced changes in the liver proteome of eu- and hypothyroid
- 82 female rats
- 83 Toxicol Lett. 2016 Mar 14;245:40-51. doi: 10.1016/j.toxlet.2016.01.002. Epub 2016 Jan 12.
- 84
- 9) Miller I, Diepenbroek C, Rijntjes E, Renaut J, Teerds KJ, Kwadijk C, Cambier S, Murk AJ, Gutleb AC,
 Serchi T.
- 87 Gender specific differences in the liver proteome of rats exposed to short term and low-
- 88 concentration hexabromocyclododecane (HBCD)
- Toxicol Res (Camb). 2016 Jun 30;5(5):1273-1283. doi: 10.1039/c6tx00166a. eCollection 2016 Sep 1.
 90
- 91 10) Gianazza E, Miller I, Guerrini U, Palazzolo L, Parravicini C, Eberini I.
- 92 Gender proteomics I. Which proteins in non-sexual organs.
- 93 J Proteomics. 2018 Apr 30;178:7-17. doi: 10.1016/j.jprot.2017.10.002. Epub 2017 Oct 6.
- 94
- 95 11) Gianazza E, Miller I, Guerrini U, Palazzolo L, Parravicini C, Eberini I.
- 96 Gender proteomics II. Which proteins in sexual organs.
- 97 J Proteomics. 2018 Apr 30;178:18-30. doi: 10.1016/j.jprot.2017.10.001. Epub 2017 Oct 6.
- 98
- 99 12) D'Silva AM, Hyett JA, Coorssen JR.
- 100 Proteomic analysis of first trimester maternal serum to identify candidate biomarkers potentially
- 101 predictive of spontaneous preterm birth.
- 102 J Proteomics. 2018 Apr 30;178:31-42. doi: 10.1016/j.jprot.2018.02.002. Epub 2018 Feb 13.
- 103
- 104 13) Ceciliani F, Lecchi C, Urh C, Sauerwein H.

- 105 Proteomics and metabolomics characterizing the pathophysiology of adaptive reactions to the
- 106 metabolic challenges during the transition from late pregnancy to early lactation in dairy cows.
- 107 J Proteomics. 2018 Apr 30;178:92-106. doi: 10.1016/j.jprot.2017.10.010. Epub 2017 Oct 18.
- 108
- 109 14) Song H, Lei Y, Zhang S.
- 110 Differences in resistance to nitrogen and phosphorus deficiencies explain male-biased populations of
- 111 poplar in nutrient-deficient habitats.
- 112 J Proteomics. 2018 Apr 30;178:123-127. doi: 0.1016/j.jprot.2017.11.013. Epub 2017 Nov 21.
- 113
- 114 15) Witt E, Lorenz M, Völker U, Stangl K, Hammer E, Stangl V.
- 115 Sex-specific differences in the intracellular proteome of human endothelial cells from dizygotic twins.
- 116 J Proteomics. 2019 Apr 2;201:48-56. doi: 10.1016/j.jprot.2019.03.016. [Epub ahead of print]
- 117 JPROT-D-18-00677
- 118
- 119 16) Froment C, Hourset M, Sáenz-Oyhéréguy N, Mouton-Barbosa E, Willmann C, Zanolli C, Esclassan
- 120 R, Donat R, Thèves C, Burlet-Schiltz O, Mollereau C.
- 121 Analysis of 5000 year-old human teeth using optimized large-scale and targeted proteomics
- 122 approaches for phenotypic assessment
- 123 JPROT-D-19-00043
- 124
- 125 17) Valent D, Yeste N, Hernández-Castellano LE, Arroyo L, García-Contreras C, Vázquez-Gómez M,
- 126 González-Bulnes A, Bendixen E, Bassols A.
- 127 SWATH-MS quantitative proteomic investigation of intrauterine 1 growth restriction in a porcine
- 128 model reveals sex differences in hippocampus development
- 129 J Proteomics. 2019 Jul 30;204:103391. doi: 10.1016/j.jprot.2019.103391. Epub 2019 May 24
- 130 JPROT-D-19-00018
- 131
- 132 18) Picard B, Gagaoua M, Al Jammas M, Bonnet M.
- 133 Beef tenderness and intramuscular fat proteomic biomarkers: Effect of gender and rearing practices.
- 134 J Proteomics. 2019 May 30;200:1-10. doi: 10.1016/j.jprot.2019.03.010. Epub 2019 Mar 17.
- 135 JPROT-D-19-00072
- 136
- 137 19) Paredi G, Mori F, de Marino MG, Raboni S, Pietro D, Fiego L, Mozzarelli A.
- 138 Is the protein profile of pig *Longissimus dorsi* affected by gender and diet?
- 139 J Proteomics. 2019 Aug 30;206:103437. doi: 10.1016/j.jprot.2019.103437. Epub 2019 Jul 2.

- 140 JPROT-D-19-00177
- 141
- 142 20) Ribeiro DM, Planchon S, Leclercq CC, Raundrup K, Alves SP, Bessa RJB, Renaut J, Almeida AM.
- 143 The muscular, hepatic and adipose tissues proteomes in muskox(Ovibos moschatus): Differences
- 144 between males and females
- 145 J Proteomics. 2019 Sep 30;208:103480. doi: 10.1016/j.jprot.2019.103480. Epub 2019 Aug 5.
- 146 JPROT-D-19-00268
- 147
- 148 21) Sun R, Sun Z, Chen Y, Zhu F, Li Y, Zhong G, Yi X.
- 149 Comparative proteomic analysis of sex determination-related proteins in ovary and testis at different
- 150 stages of Spodoptera litura
- 151 J Proteomics. 2019 Aug 30;206:103439. doi: 10.1016/j.jprot.2019.103439. Epub 2019 Jul 2.
- 152 JPROT-D-19-00152
- 153
- 154 22) European Commission. Gendered Innovations. How Gender Analysis Contribute to Research.
- 155 Directorate Generla for Research & Innovation. EUR 25838, 2013.
- 156 ISBN 978-92-79-25982-1 doi:10.2777/11868.
- 157

- 163 Editor CVs:
- 164
- 165
- 166 INGRID MILLER is at the Institute for Medical Biochemistry, Department for Biomedical Sciences,
- 167 University of Veterinary Medicine Vienna, Austria. Ingrid holds a PhD in Environmental Technology
- 168 awarded by the Wageningen University, the Netherlands.
- 169 Originally trained in technical chemistry, she specialized early in protein chemistry and protein
- 170 analytics, mainly on proteins of animal origin and from biological sources. Since more than three
- 171 decades, her major focus is on proteomics and two-dimensional electrophoresis, with a special
- 172 interest in methodology. She is a member of the editorial boards of several proteomic and analytical
- 173 journals and a regular reviewer, has been the Austrian representative in the EuPA General Council for
- 174 several years, and was one of the founding members of the Austrian proteomics society. Since
- 175 September 2009 she is Executive Editor for Animal Proteomics in the Journal of Proteomics.
- 176 Ingrid is coauthor of more than 100 peer-reviewed scientific papers, 8 book chapters and one of the
- 177 guest editors of three previous thematic issues in Journal of Proteomics.
- 178

- 182 ELISABETTA GIANAZZA is currently Associate Professor of Clinical Biochemistry at the Department
- 183 of Pharmacological and Biomolecular Sciences, University of Milan. She received her degree in
- 184 Pharmaceutical Chemistry and Technology in 1975; from 1981 to 2007 she was Assistant Professor in
- 185 Biochemistry.
- 186 Elisabetta's expertise focuses on conventional and non-conventional electrophoretic techniques for
- 187 protein and protein-ligand complex characterization. She pioneered proteomics procedures using
- 188 immobilized pH gradients (IPG) for the analysis of biological fluids. The main applications of the
- 189 proteomic approach have since been in the analysis of human and animal biological fluids under
- 190 different physiological and pathological conditions. Specifically, as part of a research group that
- 191 included the two co-editors of this thematic issue, she was involved in the first systematic investigation
- 192 on the proteomes of rat biological fluids; differences between males and females were assessed from
- 193 the very beginning of that study.
- 194 Elisabetta is coauthor of approx. 200 peer-reviewed scientific papers, of more than 40 reviews, and of
- 195 10 chapters in edited books.
- 196

- 200 IVANO EBERINI is presently Associate Professor of Biochemistry at the Department of
- 201 Pharmacological and Biomolecular Sciences of the University of Milan, where he is in charge of the
- 202 Computational Biochemistry and Biophysics Laboratory. Ivano graduated in 1998 in Pharmaceutical
- 203 Chemistry and Technology. In 2003 he obtained the PhD in Biotechnology Applied to Pharmacology
- and Toxicology and in 2004 the specialization in Pharmacology. Ivano's current research is in the field
- 205 of computational biochemistry; it focuses on the *in silico* modelling of the 3D arrangement of
- 206 structurally uncharacterized proteins (receptors, enzymes and carriers/transporters) and the simulation
- 207 of their behaviour in solution as well as of their interactions with ligands. Combining *in silico*
- 208 simulations with the experimental observation of biological effects in *in vitro* and *in vivo* tests
- 209 contributes to the comprehension of the underlying molecular mechanisms. Among the ways to select
- 210 and prioritize the protein targets, proteomics had been one of Ivano's main interests for a number of
- 211 years.
- 212 Ivano is co-author of over 100 peer-reviewed scientific papers and reviews, and of 3 book chapters.
- 213

